WO2019177011A1 - 腫瘍免疫賦活剤 - Google Patents

腫瘍免疫賦活剤 Download PDF

Info

Publication number
WO2019177011A1
WO2019177011A1 PCT/JP2019/010236 JP2019010236W WO2019177011A1 WO 2019177011 A1 WO2019177011 A1 WO 2019177011A1 JP 2019010236 W JP2019010236 W JP 2019010236W WO 2019177011 A1 WO2019177011 A1 WO 2019177011A1
Authority
WO
WIPO (PCT)
Prior art keywords
tumor
group
cells
carbon atoms
lower alkyl
Prior art date
Application number
PCT/JP2019/010236
Other languages
English (en)
French (fr)
Inventor
幸太 岩堀
和田 尚
侑記 野口
淳 熊ノ郷
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to US16/979,610 priority Critical patent/US20210113594A1/en
Priority to JP2020506598A priority patent/JP7154634B2/ja
Priority to CN201980018999.3A priority patent/CN111867598A/zh
Priority to EP19766516.9A priority patent/EP3766499A4/en
Publication of WO2019177011A1 publication Critical patent/WO2019177011A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/65Tetracyclines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • This specification discloses a tumor immunostimulator.
  • Non-Patent Documents 1 and 2 show that administration of chemically modified tetracycline to tumor cells suppresses the growth of tumor cells and causes cytotoxicity.
  • CAR Chimeric antigen receptor
  • tetracycline compounds are effective in activating tumor immunity from among existing drugs whose patent rights have expired.
  • a tumor immunity stimulating agent comprising at least one selected from the group consisting of tetracycline compounds represented by the following general formula (I) and pharmaceutically acceptable salts thereof: [Where: R 1 is a group represented by the following general formula (II) (R 8 is a hydrogen atom or a lower alkyl group having 1 to 3 carbon atoms) or a lower alkyl group having 1 to 3 carbon atoms: . R 2 is a group represented by the following general formula (III) (R 9 is a lower alkyl group having 1 to 3 carbon atoms or a hydrogen atom): .
  • R 3 is a hydrogen atom, a hydroxyl group, or a lower alkyl group having 1 to 3 carbon atoms.
  • R 4 and R 5 are both or independently a hydrogen atom, a hydroxyl group or a lower alkyl group having 1 to 3 carbon atoms, or R 4 and R 5 are a methylene group.
  • R 6 is a hydrogen atom, halogen or a group represented by the following general formula (IV) (R 10 is a hydrogen atom or a lower alkyl group having 1 to 3 carbon atoms): .
  • R 7 is a hydrogen atom, a lower alkyl group having 1 to 3 carbon atoms, —NH—CO—CH 2 —NH—C (CH 3 ) 3 or —CH 2 —NH—CH 2 —C (CH 3 ) 3 is there. ].
  • Item 2. The tumor immunostimulator according to Item 1, wherein the lower alkyl group having 1 to 3 carbon atoms is a methyl group.
  • the compound represented by General Formula (I) is at least one selected from the group consisting of demethylchlortetracycline, meclocycline, tetracycline, chlortetracycline, doxycycline, minocycline, and oxytetracycline. Tumor immune stimulator.
  • Item 4. The tumor immune activator according to any one of Items 1 to 3, for use in combination with an antitumor agent.
  • Item 5. The tumor immunity stimulating agent according to Item 4, wherein the antitumor agent is a tumor immunity agent.
  • Item 6. The tumor immunity stimulating agent according to Item 5, wherein the tumor immunizing agent is at least one selected from immune checkpoint inhibitors, CAR-T cell drugs, bispecific molecular drugs, and cancer vaccines.
  • Item 7. A tumor treatment composition comprising the tumor immunity stimulating agent according to any one of Items 1 to 3 and a tumor immunity agent.
  • Item 8. The composition for tumor treatment according to claim 7, wherein the tumor immunizing agent is at least one selected from immune checkpoint inhibitors, CAR-T cell drugs, bispecific molecular drugs, and cancer vaccines.
  • Tumor immunity can be activated by tetracycline compounds.
  • FIG. 1 shows an overview of a system for evaluating the antitumor activity of T cells in vitro.
  • FIG. 2 shows the effect of the test drug on the antitumor activity of T cells in vitro.
  • “BiTE” indicates the addition of BiTE alone, and “BiTE + DMC” indicates the addition of BiTE and demethylchlortetracycline (DMC).
  • FIG. 3 shows the effect of the test drug on the tumor cytotoxic activity of CD8 + T cells in vitro.
  • “BiTE” indicates the addition of BiTE alone, and “BiTE + DMC” indicates the combined addition of BiTE and DMC.
  • FIG. 4 shows the effect of the test drug on the abundance ratio of granzyme B-expressing CD8 + T cells in vitro.
  • FIG. 5 shows the effect of the test drug on the proliferation ability of CD8 + T cells in vitro.
  • “BiTE” indicates the addition of BiTE alone, and “BiTE + DMC” indicates the combined addition of BiTE and DMC.
  • FIG. 6 shows the effect of the test drug on the induction of CMV (cytomegalovirus) -specific cytotoxic T cells in vitro.
  • A shows scattergrams of FACS analysis on the 7th and 14th days after CMV treatment.
  • CMV Tetramer + cells are fractionated in the P7 fraction.
  • B shows the abundance ratio of CMV Tetramer + cells on day 14 after CMV treatment.
  • FIG. 7A shows the effect of the test drug on the cytotoxic activity of T cells in lung cancer tissue in vitro.
  • FIG. 7B shows the effect of the test drug on the abundance ratio of IFN ⁇ -producing CD8 + T cells in vitro.
  • FIG. 7C shows a scattergram of FACS analysis. IFN ⁇ -producing CD8 + T cells are fractionated in the P8 fraction.
  • FIG. 8A shows the administration protocol of the test drug.
  • FIG. 8B shows the change in tumor volume.
  • the broken line indicates the Vehicle group, and the solid line indicates the test drug administration group.
  • the combination effect of demethylchlortetracycline and an anti-PD-L1 antibody is shown. p indicates a significant difference.
  • a tumor immunity activator contains the tetracycline type compound or its pharmaceutically acceptable salt as an active ingredient.
  • the type of tumor is not particularly limited. It may be a benign tumor or a malignant tumor.
  • a malignant tumor is preferable.
  • the tumor includes epithelial tumors and non-epithelial tumors, preferably epithelial tumors. In the present invention, the most preferable tumor is an epithelial malignant tumor.
  • malignant tumors include respiratory malignant tumors arising from the trachea, bronchi or lungs; head and neck cancer; esophagus, stomach, duodenum, jejunum, ileum, cecum, appendix, ascending colon, transverse colon, sigmoid colon, Gastrointestinal malignant tumor arising from the rectum or anal region; liver cancer; pancreatic cancer; urinary malignant tumor arising from the bladder, ureter or kidney; female reproductive system malignant tumor arising from the ovary, fallopian tube, uterus, etc.
  • Breast cancer prostate cancer; skin cancer; endocrine malignant tumors such as hypothalamus, pituitary gland, thyroid, parathyroid gland, adrenal gland; central nervous system malignant tumors; solid tumors such as malignant tumors arising from bone and soft tissue; Plastic syndrome, acute lymphocytic leukemia, acute myeloid leukemia, chronic lymphocytic leukemia, chronic myelogenous leukemia, acute myelomonocytic leukemia, chronic myelomonocytic leukemia, acute monocytic leukemia, chronic monocytic leukemia, acute Whole bone marrow Leukemia, acute megakaryocytic leukemia, erythroleukemia, eosinophilic leukemia, chronic eosinophilic leukemia, chronic neutrophilic leukemia, adult T cell leukemia, hairy cell leukemia, plasma cell leukemia, multiple myeloma, Examples include hematopoietic malignant tumors such as
  • respiratory epithelial malignant tumors such as lung cancer (squamous cell cancer, small cell cancer, large cell cancer, adenocarcinoma), malignant pleural mesothelioma; head and neck cancer; esophageal cancer, stomach cancer, colon cancer (S Gastrointestinal epithelial malignant tumors such as sigmoid colon cancer and rectal cancer); liver cancer; pancreatic cancer; renal cell carcinoma; bladder cancer; malignant melanoma; classic Hodgkin lymphoma; ovarian cancer; breast cancer: prostate cancer; be able to.
  • lung cancer squamous cell cancer, small cell cancer, large cell cancer, adenocarcinoma), malignant pleural mesothelioma; head and neck cancer; esophageal cancer, stomach cancer, colon cancer (S Gastrointestinal epithelial malignant tumors such as sigmoid colon cancer and rectal cancer); liver cancer; pancreatic cancer; renal cell carcinoma; bladder cancer; malignant mela
  • Tumor immunity is considered to be a biological response to tumors based on the damaging activity of T cells against tumor cells. Therefore, it can be said that activating tumor immunity is enhancing the cytotoxic activity of T cells against tumor cells.
  • the tetracycline compound used in the present invention is not intended to exhibit a growth inhibitory action or cytotoxic action on direct tumor cells as described in Non-Patent Documents 1 and 2. As shown in the Example mentioned later, it has the effect
  • tetracycline compounds include compounds represented by the following general formula (I).
  • R 1 is a group represented by the following general formula (II) (R 8 is a hydrogen atom or a lower alkyl group having 1 to 3 carbon atoms) or a lower alkyl group having 1 to 3 carbon atoms: .
  • R 2 is a group represented by the following general formula (III) (R 9 is a lower alkyl group having 1 to 3 carbon atoms or a hydrogen atom): .
  • R 3 is a hydrogen atom, a hydroxyl group, or a lower alkyl group having 1 to 3 carbon atoms.
  • R 4 and R 5 are both or independently a hydrogen atom, a hydroxyl group or a lower alkyl group having 1 to 3 carbon atoms, or R 4 and R 5 are a methylene group.
  • R 6 is a hydrogen atom, halogen or a group represented by the following general formula (IV) (R 10 is a hydrogen atom or a lower alkyl group having 1 to 3 carbon atoms): .
  • R 7 is a hydrogen atom, a lower alkyl group having 1 to 3 carbon atoms, —NH—CO—CH 2 —NH—C (CH 3 ) 3 or —CH 2 —NH—CH 2 —C (CH 3 ) 3 is there. ].
  • Examples of the lower alkyl group having 1 to 3 carbon atoms include a methyl group, an ethyl group, a propyl group, and an isopropyl group.
  • a methyl group or an ethyl group is preferable, and a methyl group is more preferable.
  • Halogen is not particularly limited.
  • a chlorine atom, a fluorine atom, a bromine atom, an iodine atom, etc. can be mentioned.
  • it is a chlorine atom.
  • the tetracycline-based compound is preferably at least one selected from the group consisting of tetracycline compounds described in Table 1 below.
  • the tetracycline-based compound is at least one selected from the group consisting of demethylchlorotetracycline, meclocycline, tetracycline, chlorotetracycline, doxycycline, minocycline, and oxytetracycline.
  • tetracycline compounds and salts thereof disclosed in this specification are publicly known. Accordingly, methods for producing tetracycline compounds and salts thereof are also known.
  • the salt of the tetracycline compound is not limited as long as it is a pharmaceutically acceptable salt.
  • a salt of a tetracycline compound containing an amine or other basic group can be prepared by reacting the tetracycline compound with a suitable organic or inorganic acid to form an anionic salt.
  • anionic salts include acetate, benzenesulfonate, benzoate, bicarbonate, bitartrate, bromide, calcium edetate, cansylate, carbonate, chloride, citrate, dihydrochloride , Edetate, edicylate, estolate, esylate, fumarate, glucoceptate, gluconate, glutamate, glycolylarsanylate, hexyl resorcinol Acid salt, hydrobromide, hydrochloride, hydroxy naphthoate, iodide, isethionate, lactate, lactobionate, malate, maleate, mandelate, mesylate, methyl sulfate, Mucate, napsylate, nitrate, pamoate, pantothenate, Phosphate / diphosphate, polygalacturonate, salicylate, stearate, basic acetate, succinate, sulfate, tanna
  • Tetracycline-based compounds can generate cationic salts by reacting with a suitable base.
  • Cationic salts may be made with bases that give pharmaceutically acceptable cations, alkali metal salts (especially sodium and potassium), alkaline earth metal salts (especially calcium and magnesium), aluminum salts and ammonium.
  • Salts and trimethylamine, triethylamine, morpholine, pyridine, piperidine, picoline, dicyclohexylamine, N, N'-dibenzylethylenediamine, 2-hydroxyethylamine, bis- (2-hydroxyethyl) amine, tri- (2-hydroxyethyl) Amine, procaine, dibenzylpiperidine, dehydroabiethylamine, N, N'-bisdehydroabiethylamine, glucamine, N-methylglucamine, collidine, quinine, quinoline, and bases such as lysine and arginine Including a salt such as amino acids.
  • the tumor immunity stimulating agent includes a tetracycline compound or a pharmaceutically acceptable salt thereof.
  • the tumor immunostimulant may be prepared by combining a tetracycline compound or a pharmaceutically acceptable salt thereof with an appropriate carrier or additive.
  • Carriers and additives used for the preparation of the tumor immunostimulant include various types commonly used for ordinary drugs depending on the dosage form of the tumor immunostimulant, such as excipients, binders, and disintegrants. , Lubricants, colorants, flavoring agents, flavoring agents, surfactants and the like.
  • the dosage form in the case where the tumor immunostimulator is orally administered is not particularly limited, but is a tablet, powder, granule, capsule (including hard capsule and soft capsule), liquid, pill , Suspensions, and emulsions.
  • an injection, a drip, a suppository, a nasal drop, a transpulmonary administration etc. can be illustrated.
  • the tumor immunostimulant is a solid composition for oral use such as tablets, powders, granules, pills, capsules and the like, carriers such as lactose, sucrose, sodium chloride, glucose, urea, starch , Calcium carbonate, kaolin, crystalline cellulose, silicic acid, methylcellulose, glycerin, sodium alginate, gum arabic and other excipients; simple syrup, puddle sugar solution, starch solution, gelatin solution, polyvinyl alcohol, polyvinyl ether, polyvinylpyrrolidone, carboxy Binders such as methylcellulose, shellac, methylcellulose, ethylcellulose, water, ethanol, potassium phosphate; dry starch, sodium alginate, agar powder, laminaran powder, sodium bicarbonate, calcium carbonate, polyoxyethylene sorbitan fat Disintegrators such as esters, sodium lauryl sulfate, monostearate monoglyceride, starch, lactose
  • carriers
  • Moisturizers such as starch, lactose, kaolin, bentonite, colloidal silicic acid; lubricants such as purified talc, stearate, boric acid powder and polyethylene glycol can be used.
  • the tablets can be made into tablets with ordinary coatings as necessary, for example, sugar-coated tablets, gelatin-encapsulated tablets, enteric-coated tablets, film-coated tablets, double tablets, multilayer tablets and the like.
  • the tumor immunostimulator is a pill oral solid composition
  • a carrier for example, excipients such as glucose, lactose, starch, cocoa butter, hydrogenated vegetable oil, kaolin, talc; Binders such as rubber powder, tragacanth powder and gelatin; disintegrants such as laminaran and agar can be used.
  • the tumor immunity stimulating agent is an oral solid composition of a capsule
  • the capsule is mixed with the various carriers exemplified above and filled into a hard capsule or a soft capsule.
  • the preparation When the preparation is a liquid, it may be an aqueous or oily suspension, solution, syrup, or elixir, and is prepared according to a conventional method using ordinary additives.
  • the carrier is, for example, water, ethyl alcohol, macrogol, propylene glycol, ethoxylated isostearyl alcohol, polyoxylated isostearyl alcohol, polyoxyethylene sorbitan fatty acid esters, etc.
  • Diluting agent such as sodium citrate, sodium acetate, sodium phosphate; buffering agent such as dipotassium phosphate, trisodium phosphate, sodium hydrogen phosphate, sodium citrate; sodium pyrosulfite, EDTA, thio Stabilizers such as glycolic acid and thiolactic acid; saccharides such as mannitol, inositol, maltose, sucrose, and lactose can be used as a molding agent when lyophilized.
  • a sufficient amount of glucose or glycerin may be included in the preparation to prepare an isotonic solution, and a normal solubilizing agent, soothing agent, local anesthetic, etc. may be added. good.
  • the above preparation is an instillation, it can be prepared by dissolving the administered compound in an isotonic electrolyte infusion preparation based on physiological saline, Ringer's solution or the like.
  • the tumor immunostimulator in the present invention may be either an oral composition or a parenteral composition, but is preferably an oral composition.
  • the tetracycline compound or a pharmaceutically acceptable salt thereof contained in the tumor immune activator may be one kind or plural kinds. That is, the tumor immunostimulant only needs to contain at least one selected from the group consisting of tetracycline compounds and pharmaceutically acceptable salts thereof.
  • the dose of the tetracycline compound or a pharmaceutically acceptable salt thereof is known. Therefore, the dose of the tumor immune activator can also be determined in terms of the dose of a known tetracycline compound.
  • the dose of tetracycline compound or a pharmaceutically acceptable salt thereof is 0.1 mg to 1,000 mg / kg (adult) per day or 0.02 mg to 100 mg / day per day for oral administration. About kg (child). In the case of injection or intravenous infusion, it is about 0.1 mg to 500 mg / kg (adult) per day or 0.02 mg to 50 mg / kg (children) per day.
  • the dose can be adjusted as appropriate according to age, symptoms, tumor size, administration status of other drugs, and the like.
  • the total amount of the tetracycline compound or a pharmaceutically acceptable salt thereof is preferably the above dose.
  • the tetracycline compound or a pharmaceutically acceptable salt thereof may be used in combination with other drugs.
  • Other drugs that can be used in combination are not particularly limited, but are preferably antitumor drugs.
  • antitumor agents include those commonly used as anticancer agents, such as alkylating agents, antimetabolites, antitumor antibiotics, microvascular inhibitors, hormones or hormone analogs, platinum preparations, Topoisomerase inhibitors, cytokines, antibody drugs, tumor immunity drugs (radioimmunotherapy drugs, non-specific immunoactive drugs, immune checkpoint inhibitors, CAR-T cell drugs, BiTE drugs, cancer vaccines, etc.), molecular targeted drugs, And other antitumor drugs can be appropriately selected according to the target tumor.
  • anticancer agents such as alkylating agents, antimetabolites, antitumor antibiotics, microvascular inhibitors, hormones or hormone analogs, platinum preparations, Topoisomerase inhibitors, cytokines, antibody drugs, tumor immunity drugs (radioimmunotherapy drugs, non-specific immunoactive drugs, immune checkpoint inhibitors, CAR-T cell drugs, BiTE drugs, cancer vaccines, etc.), molecular targeted drugs, And other antitumor drugs can be appropriately selected according to the
  • alkylating agent examples include cyclophosphamide, ifosfamide, busulfan, melphalan, bendamustine hydrochloride, nimustine hydrochloride, ranimustine, dagarvazine, procarbazine hydrochloride temozolomide and the like; , Methotrexate, pemetrexed sodium, fluorouracil, doxyfluridine, capecitabine, tegafur, cytarabine, cytarabine ocphosphatate hydrate, enocitabine, gemcitabine hydrochloride, mercaptopurine hydrate, fludarabine phosphate ester, nelarabine, pentostatin, cladribolin revoline , Folinate calcium, hydroxycarbamide, L-asparaginase, azacitidine, etc .; Rubicin hydrochloride, daunorubicin hydrochloride, pirarubicin
  • Microvascular inhibitors include vincristine sulfate, vinblastine sulfate, vindesine sulfate, vinorelbine tartrate, paclitaxel, docetaxel hydrate, eribulin mesylate, etc .; hormones or hormone analogs (hormonal agents) include Strozol, exemestane, letrozole, tamoxifen citrate, toremifene citrate, fulvestrant, flutamide, bicalutamide, medroxyprogesterone acetate, est Mustine phosphate sodium hydrate, goserelin acetate, leuprorelin acetate, etc .; as a platinum preparation, cisplatin, miriplatin hydrate, carboplatin, nedaplatin, oxaliplatin, etc .; as a topoisomerase inhibitor, irinotecan hydrochloride hydrate And topoisomerase I inhibitors such as Nogitecan hydroch
  • the cancer vaccine, Shipuryuse -T like; (TM) drug can be exemplified other, aceglatone, porfimer sodium, Talaporfin Sodium, ethanol, arsenic trioxide and the like.
  • the bispecific molecule is an antigen-binding region that binds to at least one surface antigen present in tumor cells and an antigen-binding region that binds to at least one surface antigen present in T cells.
  • a molecule having The antigen binding region that binds to at least one of the surface antigens may be one or more than one antigen.
  • the antigen-binding region that binds to at least one of the surface antigens includes a combination of the same Fab region, a combination of the same variable region, a combination of the same sc-Fv, a heavy chain Fab region derived from one antibody, and a light chain.
  • Combination of chain Fab regions Combination of heavy chain variable region and light chain variable region derived from one antibody, and combination of heavy chain sc-Fv derived from one antibody.
  • the surface antigen of the T cell is not limited as long as it exists on the surface of the T cell and can bind to at least one antigen-binding region contained in the bispecific molecule or trispecific molecule.
  • Preferred examples of the T cell surface antigen include cytotoxic T cell surface antigens.
  • T cell surface antigens include CD3, CD8, TCR, CTLA-4, PD1, Tim3, CD27, CD28, CD40, CD134 (OX40), CD137 (4-1BB), and CD278 (ICOS). .
  • CD3 is preferred.
  • the surface antigen of the tumor cell is not limited as long as it exists on the surface of the tumor cell and can bind to at least one antigen-binding region contained in the bispecific molecule.
  • EphA1 ephrin type-A receptor 1
  • EphA2, FolR1 flaring receptor 1
  • EpCAM epidermal cell adhesion molecule
  • CD19 Herbylberbetic (Herborgoid).
  • Bispecific molecules include BiTE TM, bispecific antibodies and the like.
  • BiTE TM includes bispecific molecules that target CD19 and CD3, and bispecific molecules that target EphA2 and CD3.
  • Examples of bispecific antibodies include antibodies that target EpCAM and CD3.
  • the antitumor drug is preferably a tumor immunotherapy drug, more preferably an immune checkpoint inhibitor, a CAR-T cell drug, a bispecific molecular drug, and And at least one selected from cancer vaccines.
  • tumor immunizing agents are immune checkpoint inhibitors (atezolizumab, nivolumab, pembrolizumab, ipilimumab, durvalumab, avelumab, tremelimumab, etc.).
  • the administration of the antitumor drug can be performed according to a known method.
  • Example 1 According to the method for measuring tumor cytotoxic activity using peripheral blood mononuclear cells, the strength of tumor cytotoxic activity of T cells of peripheral blood mononuclear cells is evaluated for each patient, and the dose according to this strength is evaluated. May be determined.
  • the aspect of the combined use of the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof and an antitumor drug is not particularly limited as long as it is an aspect of use that exhibits the effects of the present invention.
  • a tetracycline compound or a pharmaceutically acceptable salt thereof may be administered concurrently with the administration of the antitumor drug, and tetracycline may be administered prior to or after the administration of the antitumor drug.
  • a system compound or a pharmaceutically acceptable salt thereof may be administered.
  • the tetracycline compound or a pharmaceutically acceptable salt thereof and the antitumor drug may be administered alternately.
  • a tetracycline compound or a pharmaceutically acceptable salt thereof may be administered in combination during the course of the administration of the antitumor drug in accordance with the degree of tumor tissue shrinkage, etc.
  • an antitumor agent may be administered in the middle of the administration.
  • the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof may be any one of single administration, continuous administration, and intermittent administration as long as it is used in combination with an antitumor drug.
  • the tetracycline compound of the present invention or a pharmaceutically acceptable salt thereof is administered prior to administration of the antitumor drug, for example, from 7 days before the start of administration of the antitumor drug, or from 3 days before A method of administering once a day for consecutive days for 14 to 21 days can be exemplified.
  • tetracycline compounds or pharmaceutically acceptable salts may be administered every day during the course of administration of the antitumor drug.
  • the tetracycline compound or pharmaceutically acceptable salt of the present invention is prepared as a pharmaceutical composition of various forms (dosage forms) according to its administration route (administration method), and combined with an antitumor agent, It is administered to patients with tumors.
  • the patient to whom the tumor immunostimulant is administered is not limited as long as it can be applied with tumor immunotherapy.
  • a patient a patient who has any of the tumors described above and has not yet been treated, a patient who has already undergone some kind of tumor treatment, a patient who is being treated for a tumor, or a tumor that has recurred or metastasized List patients.
  • the tumor treatment preferably includes surgical tumor resection, chemotherapy, radiation therapy and the like.
  • the tumor therapeutic composition comprises: And an antitumor agent described in 1. above.
  • the antineoplastic agent is a tumor immunity agent, more preferably the tumor immunity agent is at least one selected from immune checkpoint inhibitors, CAR-T cell drugs, bispecific molecular drugs, and cancer vaccines. is there.
  • the dosage is as described in 1. above. The description given in is incorporated herein by reference.
  • the composition for tumor treatment containing a tumor immunostimulant and an antitumor agent includes the following embodiments: (I) When the tumor immunostimulant and the antitumor agent are in a state of being mixed in the same preparation (formulation), (Ii) A tumor immunostimulant alone or a preparation containing a tumor immunostimulant and an antitumor drug alone or a preparation containing an antitumor agent are packaged as separate formulations, and both are combined (kit ) (Iii) A tumor immunostimulant alone or a preparation containing a tumor immunostimulant and an anti-tumor drug alone or a preparation containing an anti-tumor agent are individual formulations, which are combined and sold as a single package Or (iv) a tumor immunostimulant alone or a preparation containing a tumor immunostimulant and an antitumor drug alone or a preparation containing an antitumor agent are packaged as separate formulations, and Both are on the market with separate distribution channels and are used in combination when used.
  • This indication includes the tumor immunostimulant mentioned above and the tumor treatment method using the composition for tumor treatment.
  • the administration method and administration target of the tumor immunity stimulating agent and the tumor treatment composition are as described in 1. above. The description given in is incorporated herein by reference.
  • PBMC peripheral blood mononuclear cells
  • T cells tumor cells and Of T cells in PBMC by measuring how much the tumor cells were damaged by PBMC (tumor cytotoxic activity) after culturing the cells through contactors such as BiTE (registered trademark) Activity was evaluated.
  • U251 cell line was cultured in RPMI1640 medium supplemented with 10% FBS (RPMI1640 medium supplemented with 10% FBS), then peeled off with trypsin, and RPMI1640 medium supplemented with 10% FBS to 1 ⁇ 10 5 cells / mL To prepare a cell suspension. The cell suspension was seeded in a 96-well plate at 100 ⁇ L / well, and incubated at 37 ° C. for 18 hours in a wet incubator containing 5% carbon dioxide gas.
  • Peripheral blood was collected from healthy individuals, and PBMCs were collected using Lymphoprep TM (Alere Technologies AS) according to the attached protocol. Specifically, peripheral blood collected in Lymphoprep TM placed in a tube was slowly overlaid, centrifuged at 400 g for 50 minutes, and then the lymphocyte layer was recovered. RPMI1640 medium supplemented with 10% FBS was added to the collected solution and centrifuged, and then the supernatant was removed. The cell pellet was suspended in RPMI 1640 medium supplemented with 10% FBS and adjusted to 1 ⁇ 10 6 / mL. The recovery of the PBMC was performed immediately before the step (3) described later.
  • EphA2-CD3 BiTE (registered trademark) having an antigen-binding site for EphA2 and an antigen-binding site for CD3 in one molecule was prepared in 400% ng / mL in RPMI1640 medium supplemented with 10% FBS (“BiTE solution "). Each test drug was adjusted to 10 ⁇ M with the BiTE solution. To the 96-well plate after the incubation in (1), 50 ⁇ L of PBMC cell suspension and 50 ⁇ L of BiTE solution containing each test drug were added per well. The final concentration of BiTE was 100 ng / mL, and the final concentration of each test drug was 2.5 ⁇ M.
  • Wells were prepared in which 50 ⁇ L of PBMC cell suspension and 50 ⁇ L of 10% FBS-added RPMI1640 medium were added.
  • the final volume of 10% FBS-added RPMI medium per well was 200 ⁇ L.
  • the tube after incubation was centrifuged at 400 ⁇ g for 5 minutes to remove the supernatant, leaving a PBMC pellet.
  • Wash buffer was added at 200 ⁇ L / tube to suspend the pellet, and the supernatant was removed by centrifugation at 400 g for 5 minutes to leave a PBMC pellet.
  • Anti-Granzyme B antibody was diluted 100 times with Wash buffer, and the remaining PBMC was suspended in 30 ⁇ L / tube of this antibody dilution, and incubated at 4 ° C for 30 minutes. Wash buffer was added at 200 ⁇ L / tube, centrifuged at 400 ⁇ g for 5 minutes, and the supernatant was removed to leave a PBMC pellet.
  • the remaining PBMC was suspended in HBSS + 2% FBS + 10 mM HEPES medium, and the suspension was subjected to FACS analysis.
  • CytoTell assay According to the method of (1), PBMC was collected from peripheral blood of healthy persons. A solution prepared by mixing CytoTell red in HBSS + 2% FBS + 10 mM HEPES medium was added to the collected PBMC pellets, and the mixture was incubated at 37 ° C. for 30 minutes. After incubation, the mixture was centrifuged at 400 g for 5 minutes, and the supernatant was removed to leave a PBMC pellet. The remaining PBMC was suspended by adding RPMI medium supplemented with 10% FBS to prepare a 1 ⁇ 10 6 / mL PBMC cell suspension.
  • the U251 cell line and PBMC and BiTE, or the U251 cell line and PBMC, BiTE, and the test drug were contacted and cultured at 37 ° C. for 96 hours.
  • the culture supernatant was collected, and further washed three times with 10% FBS-added RPMI1640 medium, and the medium was also collected. At this time, the first collected medium and the medium collected at the time of washing were collected in one tube for each well.
  • the collected medium was centrifuged at 400 g for 5 minutes to remove the supernatant, leaving a PBMC pellet.
  • Each antibody (CD3, CD4, CD8, CD45RA) is diluted 100-fold with HBSS + 2% FBS + 10mM HEPES medium, these antibody solutions are added to the pellet at 30 ⁇ L / tube, and the remaining PBMC is suspended. Incubated for 30 minutes.
  • HBSS + 2% FBS + 10mM HEPES medium was added at 200 ⁇ L / tube and centrifuged at 400g for 5 minutes, and then the supernatant was removed to leave a PBMC pellet.
  • the remaining PBMC was suspended in HBSS + 2% FBS + 10 mM HEPES medium, and the suspension was subjected to FACS analysis.
  • CMV-specific CTL induction (Mixed CMV peptide / Lymphocytes culture) CMV peptide adjusted to 10 ⁇ g / mL with RPMI medium supplemented with 10% FBS was added to PBMC of a healthy person whose HLA type was 24:02 and cultured in 96 well plate for 3 days. The medium was changed to a 10% FBS-added RPMI medium containing 10 ⁇ g / mL CMV peptide + 20 U / mL IL-2 ⁇ 2.5 ⁇ M demethylchlortetracycline (DMC), and further cultured for 4 days (7 days culture).
  • DMC demethylchlortetracycline
  • the medium of each well containing PBMC was transferred to a 24-well plate and scaled up, and then further cultured in 10% FBS-supplemented RPMI medium containing 10 ⁇ g / mL peptide + 20 U / mL IL-2 ⁇ 2.5 ⁇ M DMC for 3 days.
  • the medium was replaced with 10% FBS-added RPMI medium containing 10 ⁇ g / mL peptide + 20 U / mL IL-2 ⁇ 2.5 ⁇ M DMC, and further cultured for 4 days (14 days culture).
  • PBMC pellet After completion of the culture, centrifuge at 400 g for 5 minutes to remove the supernatant and leave a PBMC pellet. Dilute each antibody (CD3, CD4, CD8) 100 times with HBSS + 2% FBS + 10 mMmHEPES medium and CMV Tetramer Was diluted 10 times) and added to the pellet pellet of PBMC at 30 ⁇ L / tube to suspend PBMC and incubated at 4 ° C. for 30 minutes. HBSS + 2% FBS + 10 mM HEPES medium was added at 200 ⁇ L / tube and centrifuged at 400 ⁇ g for 5 minutes, and the supernatant was removed to leave a PBMC pellet.
  • HBSS + 2% FBS + 10 mM HEPES medium was added at 200 ⁇ L / tube and centrifuged at 400 ⁇ g for 5 minutes, and the supernatant was removed to leave a PBMC pellet.
  • the remaining PBMC was suspended in HBSS + 2% FBS + 10 mM HEPES medium, and the suspension was subjected to FACS analysis.
  • T cells in lung cancer tissue were collected from lung cancer tissue according to the following method. Tumor cytotoxic activity was measured as the activity of the cell population.
  • tissue stirring solution Tumor Dissociation Kit (Miltenyi Biotec) added to HBSS + 2% FBS + 10 mM HEPES) and stirred with gentleMACS TM Dissociator (Miltenyi Biotec) And incubated for 30 minutes in an incubator maintained at 37 ° C. Thereafter, the tissue residue was removed by passing the stirring solution containing cells through a 70 ⁇ m mesh, and the filtrate was centrifuged at 600 ⁇ g for 10 minutes to collect the precipitate. BD Pharm lyse (BD Biosciences) was added to the precipitate containing cells and allowed to stand for 2 minutes.
  • HBSS Buffer was added to the lysate containing the cells after standing, and centrifuged at 600 ⁇ g for 10 minutes, and the precipitate was collected again. A 30% percoll solution was added to the re-collected precipitate and centrifuged at 12000 ⁇ g for 30 seconds to collect the precipitate again. The re-recovered precipitate was washed with HBSS Buffer and centrifuged at 12000 ⁇ g for 30 seconds to recover cells in the tissue. The tumor cytotoxic activity of the collected cells is determined according to the above I. 1. Measurement was carried out in the same manner as in (1) to (5). Since BiTE that binds to CD3 is used, the tumor cytotoxic activity of cells collected from the lung cancer tissue is considered to be the tumor cytotoxic activity of T cells in the lung cancer tissue.
  • Each antibody (CD3, CD4, CD8, CD45RA) is diluted 100-fold with HBSS + 2% FBS + 10mM HEPES medium and anti-i-IFN ⁇ antibody is diluted 10-fold, and these antibody dilutions are added to the remaining PBMC at 30 ⁇ L / Tubes were added to suspend PBMC and incubated at 4 ° C. for 30 minutes.
  • CT26WT cells were inoculated intradermally at 2 ⁇ 10 5 cells / mouse.
  • the test drug administration group the test drug was dissolved in physiological saline and adjusted to 3.0 mg / mL, and 200 ⁇ L / animal was administered intraperitoneally at 30 mg / kg / day.
  • vehicle group only physiological saline was administered intraperitoneally at 200 ⁇ L / animal.
  • the test drug or physiological saline was administered every day for 10 days (FIG. 8A). Tumor diameter was measured 10 days, 13 days and 16 days after tumor cell administration.
  • the antitumor activity of T cells was enhanced in all DMC, MC, TC, CTC, and MINO compared to the case where BiTE was added alone (DMC, MC, and CTC: p ⁇ 0.01, TC and MINO: p ⁇ 0.05). From this, it was clarified that the tetracycline compound has an effect of activating T cell antitumor activity.
  • Example 2 Verification of enhancing effect of CD8 + T cell tumor cytotoxicity by tetracycline compound I. 1.
  • demeclocycline DMC: final concentration 2.5 ⁇ M
  • tumors of CD8 positive T cells CD8 + T cells
  • CD8 + T cells were negatively selected with CD8 + T cell Isolation Kit (Miltenyi Biotec).
  • Example 3 Verification of an increase in the abundance ratio of granzyme B-expressing CD8 + T cells by a tetracycline compound 2.
  • DMC demethylchlortetracycline
  • the abundance ratio of granzyme B-expressing CD8 + T cells in each PBMC collected from 4 healthy individuals The effect of tetracycline compounds was verified.
  • Example 4 Verification of enhanced proliferation ability of CD8 + T cells by tetracycline compound I. 3.
  • tetracycline system for the proliferative ability of CD8 + T cells in each PBMC collected from 5 healthy individuals using demethylchlortetracycline (DMC: final concentration 2.5 ⁇ M) as a test drug The effect of the compound was verified.
  • DMC demethylchlortetracycline
  • Example 5 Verification of CMV-specific cytotoxic T cell induction enhancement effect by tetracycline compound I. 4).
  • DMC Demethylchlortetracycline
  • PMBC was collected from one healthy person.
  • CMV-specific cytotoxic T cells were identified by FACS analysis. As shown in FIG. 6A, at 7 days after stimulation of CMV-specific cytotoxic T cells with the inducing antigen, induction of CMV-specific cytotoxic T cells (fractionated in compartment P7 in FIG.
  • Example 6 Verification of the effect of enhancing the cytotoxic activity of T cells in lung cancer tissue by a tetracycline compound. 5.
  • T cells in the tumor tissue of lung cancer patients were collected, the tumor cytotoxic activity was measured using the cells, and the effect of the tetracycline compound was verified.
  • the above I.D. 5.
  • T cells in the tumor tissue of lung cancer patients are collected according to the method described in 1). 6).
  • the abundance ratio of IFN ⁇ -producing CD8 + T cells was measured, and the effect of the tetracycline compound was verified.
  • DMC Demethylchlortetracycline
  • Example 7 Effect of tetracycline compound in vivo According to the method described in (4), the in vivo tumor growth inhibitory effect of tetracycline compounds was verified. Compared to the vehicle group, the test drug administration group tended to suppress the increase in tumor diameter (FIG. 8B).
  • the tetracycline compound has an effect of activating the antitumor action of T cells.
  • Example 8 Verification of combined effect of tetracycline compound and anti-PD-L1 antibody in vivo It was verified that tetracycline compound can enhance the antitumor effect of immune checkpoint inhibitor in vivo.
  • CT26WT cells were thawed and cultured in DMEM medium supplemented with 10% FBS and 1% penicillin / streptomycin. Two days before administration to the tumor, CT26WT cells were passaged by trypsinization. After trimming the hair on the right dorsal side of Balb / c 6-week-old mice, 3 ⁇ 10 5 cells / 50 ⁇ L / mouse was inoculated intradermally (Day 0). On Day 6, the body weight and tumor diameter of the mice were measured, and 9 mice were divided into 5 groups so that they were uniform. BioXCell InVivoMAb anti-mouse PD-L1 was used as an anti-PD-L1 antibody.
  • Control IgG and water group Control IgG + H2O group
  • Anti-PD-L1 antibody and water group aPD-L1 + H2O group
  • Anti-PD-L1 antibody and DMC 300 mg / kg) group
  • aPD-L1 + DMC 300 mg / kg group
  • Anti-PD-L1 antibody and DMC 100 mg / kg
  • aPD-L1 + DMC 100 mg / kg group
  • Anti-PD-L1 antibody and DMC (30 mg / kg) group
  • aPD-L1 + DMC (30 mg / kg) group aPD-L1 + DMC (30 mg / kg) group
  • DMC DMC was administered once a day from Day 7 to Day 12.
  • anti-PD-L1 antibody or control IgG was intraperitoneally administered at 200 ⁇ g / 200 ⁇ L / mouse.
  • Tumor diameter was measured on Day 10 and Day 13.
  • the tumor volume was calculated by the formula (minor axis 2 ⁇ major axis) / 2.
  • FIG. 9 shows the measurement results.
  • the tumor volume which was about 40 mm 3 at the start of DMC administration, increased to about 160 mm 3 .
  • the tumor volume in the aPD-L1 + H2O group was only about 90 mm 3 .
  • the increase in tumor volume was suppressed more than in the aPD-L1 + H2O group.
  • the aPD-L1 + DMC (30 mg / kg) group an inhibitory effect on the increase in tumor volume was observed. From this, it was shown that administration of a tetracycline compound enhances the antitumor effect of an immune checkpoint inhibitor.
  • Example 9 Verification that the anti-tumor effect of anti-PD-L1 antibody by a tetracycline compound in vivo depends on CD8 + T cells Immune checkpoint inhibitor shown by tetracycline compound in vivo In order to verify whether the enhancement of antitumor action of CD8 + T cells depends on the antitumor action of tetracycline compounds in the presence and absence of CD8 + T cells, immune checkpoint inhibitors The effect on the antitumor activity of was investigated.
  • Method CT26WT cells were cultured as in Example 8, and inoculated subcutaneously into Balb / c 6-week-old mice (Day 0). On Day 6, the body weight and tumor diameter of the mice were measured, and 9 mice were divided into 6 groups so that they were uniform.
  • Control IgG and water group Anti-PD-L1 antibody and water group (aPD-L1 + H2O group) Anti-PD-L1 antibody, water and anti-CD8 antibody group (aPD-L1 + H2O + CD 8 depletion group) Anti-PD-L1 antibody, DMC (30 mg / kg) and anti-CD8 antibody group (aPD-L1 + DMC + CD8 depletion group) Group to receive control IgG and DMC (30 mg / kg) (IgG + DMC group) Anti-PD-L1 antibody and DMC (30 mg / kg) group (aPD-L1 + DMC group)
  • DMC administration of DMC was started from Day 7.
  • DMC was dissolved in physiological saline and administered orally using an oral sonde at 200 ⁇ L / animal.
  • distilled water was orally administered at 200 ⁇ L / animal.
  • DMC was administered once a day from Day 7 to Day 12.
  • anti-PD-L1 antibody or control IgG was intraperitoneally administered at 200 ⁇ g / 200 ⁇ L / mouse.
  • Tumor diameter was measured on Day 10 and Day 13.
  • Tumor volume was calculated in the same manner as in Example 8.
  • FIG. 10 shows the results.
  • the tumor volume on Day 13 was about 150 mm 3 .
  • the tumor volume of the aPD-L1 + H2O group on Day 13 was about 120 mm 3 .
  • the increase in tumor volume was suppressed more than in the aPD-L1 + H2O group, and the tumor volume on Day 13 was about 100 mm 3 .
  • the tumor volume on Day 13 was about 80 mm 3 .
  • the increase rate of the tumor volume was accelerated compared to the IgG + H2O group, and in the aPD-L1 + H2O + CD8 depletion group and the aPD-L1 + DMC + CD8 depletion group, the tumor volume increased compared to the IgG + H2O group on Day 10. It was. Furthermore, on day 13, the tumor volume was around 300 mm 3 in both the aPD-L1 + H2O + CD 8 depletion group and the aPD-L1 + DMC + CD8 depletion group, even if anti-PD-L1 antibody or anti-PD-L1 antibody and demethylchlortetracycline were present. The increase in tumor volume was accelerating.
  • Example 10 Verification of the effect on cancer antigen-specific CD8 + T cells by tetracycline compounds in vivo Due to the antitumor effect enhancing effect of tetracycline compounds on immune checkpoint inhibitors, cancer antigen-specific CD8 in vivo + It was verified whether T cells increased.
  • HBSS + 2% FBS + 10 mM HEPES HBSS + 2% FBS + 10 mM HEPES
  • gp70 Tetramer [T-Select H-2Ld MuLV gp70 Tetramer-SPSYVYHQF-PE, MBL] was added and reacted at 4 ° C. for 30 minutes.
  • ⁇ -galactosidase Tetramer [T-Select H-2Ld ⁇ -galactosidase Tetramer-TPHPARIGL-PE, MBL, Inc.] was added to the tube containing the sediment and allowed to react at 4 ° C. for 30 minutes.
  • HBSS + 2% FBS + 10 mM HEPES was added to the tube after completion of the reaction and mixed. The tube was centrifuged again and the supernatant was removed.
  • Anti-CD8 antibody was added to the tube, and after staining, the cells were washed and subjected to FACS measurement, and cells positive for gp70 Tetramer and CD8 were counted.

Abstract

安価な、腫瘍免疫治療薬を提供する。 テトラサイクリン系化合物及びその薬学的に許容される塩よりなる群から選択される少なくとも一種により、腫瘍免疫を賦活化することができる。

Description

腫瘍免疫賦活剤
 本明細書には、腫瘍免疫賦活化剤が開示される。
 現在、がん免疫療法として、抗PD-1抗体をはじめとする免疫チェックポイント阻害療法が実地臨床で用いられ、効果を発揮し、その有用性が示唆されている。
 また、非特許文献1及び2には化学修飾型テトラサイクリンを腫瘍細胞に投与することで、腫瘍細胞の増殖が抑制され、細胞傷害が起こることが示されている。
Anticancer Drugs 2013 Sep;24(8)799-809 Curr Med Chem 2001 Feb;8(3)271-279
 しかし、免疫チェックポイント阻害剤で奏功するのは一部の患者群のみであり、奏功する患者を予測するバイオマーカーも開発途上である。さらに、免疫チェックポイント阻害剤は薬価が非常に高額であるという問題を抱えている。他のがん免疫療法として開発が進められているキメラ抗原受容体(CAR)遺伝子改変T細胞療法も非常に高額な治療法であり、その価格が実用化への障壁となっている。このような現状から安価でより多数のがん患者に有効な免疫療法の開発は、喫緊の課題である。
 このような状況から、本発明者らは、特許権の存続期間が満了した既存薬の中から、腫瘍免疫の賦活化に、テトラサイクリン系化合物が有効であることを見出した。
 本明細書に開示される発明は、当該知見に基づいて完成されたものであり、以下の態様を含む。
項1.下記一般式(I)で示されるテトラサイクリン系化合物及びその薬学的に許容される塩よりなる群から選択される少なくとも一種を含む、腫瘍免疫賦活化剤:
Figure JPOXMLDOC01-appb-C000005
[式中、
は、下記一般式(II)で示される基(Rは水素原子又は炭素数1~3の低級アルキル基)、又は炭素数1~3の低級アルキル基である:
Figure JPOXMLDOC01-appb-C000006

は、下記一般式(III)で示される基(Rは炭素数1~3の低級アルキル基又は水素原子)である:
Figure JPOXMLDOC01-appb-C000007

は、水素原子、水酸基、又は炭素数1~3の低級アルキル基である。
及びRは、共に又は独立して水素原子、水酸基又は炭素数1~3の低級アルキル基であるか、R及びRは、1つになってメチレン基である。
は、水素原子、ハロゲン又は下記一般式(IV)で表される基(R10は水素原子、又は炭素数1~3の低級アルキル基)である:
Figure JPOXMLDOC01-appb-C000008

は、水素原子、炭素数1~3の低級アルキル基、-NH-CO-CH-NH-C(CH又は-CH-NH-CH-C(CHである。]。
項2.前記炭素数1~3の低級アルキル基がメチル基である、項1に記載の腫瘍免疫賦活化剤。
項3.前記一般式(I)で示される化合物が、デメチルクロルテトラサイクリン、メクロサイクリン、テトラサイクリン、クロルテトラサイクリン、ドキシサイクリン、ミノサイクリン、及びオキシテトラサイクリンよりなる群から選択される少なくとも一種である、項1に記載の腫瘍免疫賦活化剤。
項4.抗腫瘍薬と併用するための、項1~3のいずれか一項に記載の腫瘍免疫賦活化剤。
項5.前記抗腫瘍薬が、腫瘍免疫薬、である、項4に記載の腫瘍免疫賦活化剤。
項6.前記腫瘍免疫薬が、免疫チェックポイント阻害薬、CAR-T細胞薬、二重特異性分子薬、がんワクチンから選択される少なくとも一種である、項5に記載の腫瘍免疫賦活化剤。項7.項1~3のいずれか一項に記載の腫瘍免疫賦活化剤と、腫瘍免疫薬とを含む、腫瘍治療用組成物。
項8.前記腫瘍免疫薬が、免疫チェックポイント阻害薬、CAR-T細胞薬、二重特異性分子薬、がんワクチンから選択される少なくとも一種である、請求項7に記載の腫瘍治療用組成物。
 テトラサイクリン系化合物により、腫瘍免疫を賦活化することができる。
図1は、in vitroにおいてT細胞の抗腫瘍活性を評価するシステムの概要を示す。 図2は、被験薬のin vitroにおけるT細胞の抗腫瘍活性に対する効果を示す。 “BiTE”は、BiTEの単独添加を、 “BiTE+DMC”は、BiTEとデメチルクロルテトラサイクリン(DMC)とを併用添加を示す。 図3は、被験薬のin vitroにおけるCD8T細胞の腫瘍細胞傷害活性に対する効果を示す。“BiTE”は、BiTEの単独添加を、 “BiTE+DMC”は、BiTEとDMCとを併用添加を示す。 図4は、被験薬のin vitroにおけるグランザイムB発現CD8T細胞の存在比率に対する効果を示す。“BiTE”は、BiTEの単独添加を、 “BiTE+DMC”は、BiTEとDMCとを併用添加を示す。 図5は、被験薬のin vitroにおけるCD8T細胞の増殖能に対する効果を示す。“BiTE”は、BiTEの単独添加を、 “BiTE+DMC”は、BiTEとDMCとを併用添加を示す。 図6は、被験薬のin vitroにおけるCMV(サイトメガロウイルス)特異的細胞傷害性T細胞の誘導に対する効果を示す。Aは、CMV処理後7日目及び14日目のFACS解析のスキャッタグラムを示す。P7分画にCMV Tetramer細胞が分画される。Bは、CMV処理後14日目のCMV Tetramer細胞の存在比率を示す。 図7Aは、被験薬のin vitroにおける肺癌組織内T細胞の細胞傷害活性に対する効果を示す。図7Bは、被験薬のin vitroにおけるIFNγ産生CD8+T細胞の存在比率に対する効果を示す。図7Cは、FACS解析のスキャッタグラムを示す。P8分画にIFNγ産生CD8+T細胞が分画される。 図8Aは、被験薬の投与プロトコールを示す。図8Bは、腫瘍体積の変化を示す。図8Bにおいて、破線はVehicle群を、実線は被験薬投与群を示す。 デメチルクロルテトラサイクリンと抗PD-L1抗体の併用効果を示す。pは有意差を示す。 デメチルクロルテトラサイクリンの免疫チェックポイント阻害剤の抗腫瘍作用の増強効果が、CD8+T細胞に依存していることを示す図である。pは有意差を示す。 マウス末梢血中のがん抗原特異的CD8陽性T細胞の存在比率に対するデメチルクロルテトラサイクリンの効果を示す。pは有意差を示す。
1.腫瘍免疫賦活化剤
 本明細書において、腫瘍免疫賦活化剤は、テトラサイクリン系化合物又はその薬学的に許容される塩を有効成分として含む。
 腫瘍の種類は、特に制限されない。良性腫瘍であっても悪性腫瘍であってもよい。好ましくは悪性腫瘍である。また、腫瘍には、上皮性腫瘍及び非上皮性腫瘍が含まれるが、好ましくは上皮性腫瘍である。本発明において、腫瘍として最も好ましくは、上皮性悪性腫瘍である。
 悪性腫瘍としては、例えば、気管、気管支又は肺等から発生する呼吸器系悪性腫瘍;頭頸部癌;食道、胃、十二指腸、空腸、回腸、盲腸、虫垂、上行結腸、横行結腸、S状結腸、直腸又は肛門部等から発生する消化管系悪性腫瘍;肝臓癌;膵臓癌;膀胱、尿管又は腎臓から発生する泌尿器系悪性腫瘍;卵巣、卵管及び子宮等のから発生する女性生殖器系悪性腫瘍;乳癌:前立腺癌;皮膚癌;視床下部、下垂体、甲状腺、副甲状腺、副腎等の内分泌系悪性腫瘍;中枢神経系悪性腫瘍;骨軟部組織から発生する悪性腫瘍等の固形腫瘍、及び骨髄異形成症候群、急性リンパ性白血病、急性骨髄性白血病、慢性リンパ性白血病、慢性骨髄性白血病、急性骨髄単球性白血病、慢性骨髄単球性白血病、急性単球性白血病、慢性単球性白血病、急性全骨髄性白血病、急性巨核球性白血病、赤白血病、好酸球性白血病、慢性好酸球性白血病、慢性好中球性白血病、成人T細胞白血病、ヘアリー細胞白血病、形質細胞性白血病、多発性骨髄腫、悪性リンパ腫等の造血系悪性腫瘍;リンパ系悪性腫瘍等の造血器腫瘍が挙げられる。より好ましくは、肺癌(扁平上皮癌、小細胞癌、大細胞癌、腺癌)等の呼吸器系上皮性悪性腫瘍、悪性胸膜中皮腫;頭頸部癌;食道癌、胃癌、大腸癌(S状結腸癌、直腸癌等)等の消化管系上皮性悪性腫瘍;肝臓癌;膵臓癌;腎細胞癌;膀胱癌;悪性黒色腫;古典的ホジキンリンパ腫;卵巣癌;乳癌:前立腺癌;を挙げることができる。最も好ましくは、肺癌である。
 腫瘍免疫は、T細胞の腫瘍細胞に対する傷害活性に基づく生体の対腫瘍反応であると考えられている。したがって、腫瘍免疫を賦活化するとは、T細胞の腫瘍細胞に対する細胞傷害活性を高めることであるともいえる。
 本発明で使用するテトラサイクリン化合物は、非特許文献1及び2に記載されているような直接腫瘍細胞に対して増殖抑制作用や細胞傷害作用を示すことを意図するものではない。後述する実施例に示すように、T細胞の腫瘍細胞傷害活性を増強する作用を有するものである。
 テトラサイクリン系化合物は、例えば下記一般式(I)で表される化合物を例示することができる。
Figure JPOXMLDOC01-appb-C000009
[式中、
 Rは、下記一般式(II)で示される基(Rは水素原子又は炭素数1~3の低級アルキル基)、又は炭素数1~3の低級アルキル基である:
Figure JPOXMLDOC01-appb-C000010

 Rは、下記一般式(III)で示される基(Rは炭素数1~3の低級アルキル基又は水素原子)である:
Figure JPOXMLDOC01-appb-C000011

 Rは、水素原子、水酸基、又は炭素数1~3の低級アルキル基である。
 R及びRは、共に又は独立して水素原子、水酸基又は炭素数1~3の低級アルキル基であるか、R及びRは、1つになってメチレン基である。
 Rは、水素原子、ハロゲン又は下記一般式(IV)で表される基(R10は水素原子、又は炭素数1~3の低級アルキル基)である:
Figure JPOXMLDOC01-appb-C000012

 Rは、水素原子、炭素数1~3の低級アルキル基、-NH-CO-CH-NH-C(CH又は-CH-NH-CH-C(CHである。]。
 炭素数1~3の低級アルキル基としては、メチル基、エチル基、プロピル基、及びイソプロピル基を例示することができる。好ましくはメチル基、又はエチル基であり、より好ましくはメチル基である。
 ハロゲンは、特に制限されない。例えば、塩素原子、フッ素原子、臭素原子、及びヨウ素原子等を挙げることができる。好ましくは、塩素原子である。
 テトラサイクリン系化合物として、好ましくは下記表1に記載されたテトラサイクリン化合物よりなる群から選択される少なくとも一種である。
Figure JPOXMLDOC01-appb-T000013
 テトラサイクリン系化合物として、より好ましくはデメチルクロルテトラサイクリン、メクロサイクリン、テトラサイクリン、クロルテトラサイクリン、ドキシサイクリン、ミノサイクリン、及びオキシテトラサイクリンよりなる群から選択される少なくとも一種である。
 本明細書に開示されるテトラサイクリン系化合物及びその塩は、公知である。したがって、テトラサイクリン系化合物及びその塩の製造方法も、公知である。
 テトラサイクリン系化合物の塩は、薬学的に許容される塩である限り制限されない。例えば、塩は、アミン又は他の塩基性基を含むテトラサイクリン系化合物の酸塩は、テトラサイクリン系化合物を好適な有機又は無機酸と反応させ陰イオン塩を生じさせることにより製造することができる。陰イオン塩の例として、酢酸塩、ベンゼンスルホン酸塩、安息香酸塩、重炭酸塩、重酒石酸塩、臭化物、エデト酸カルシウム、カンシル酸塩、炭酸塩、塩化物、クエン酸塩、二塩酸塩、エデト酸塩、エジシル酸塩、エストル酸塩(estolate)、エシル酸塩(esylate)、フマル酸塩、グルセプト酸塩、グルコン酸塩、グルタミン酸塩、グリコリルアルサニル酸塩(glycollylarsanilate)、ヘキシルレゾルシン酸塩、臭化水素酸塩、塩酸塩、ヒドロキシナフトエ酸塩、ヨウ化物、イセチオン酸塩、乳酸塩、ラクトビオン酸塩、リンゴ酸塩、マレイン酸塩、マンデル酸塩、メシル酸塩、硫酸メチル、ムチン酸塩(mucate)、ナプシル酸塩(napsylate)、硝酸塩、パモ酸塩、パントテン酸塩、リン酸塩/二リン酸塩、ポリガラクツロン酸塩、サリチル酸塩、ステアリン酸塩、塩基性酢酸塩、コハク酸塩、硫酸塩、タンニン酸塩、酒石酸塩、テオクル酸塩、トシル酸塩、及びトリエチオジド(triethiodide)塩等が含まれる。塩として好ましくは、塩酸塩又は二塩酸塩である。
 テトラサイクリン系化合物は、好適な塩基と反応させることによって陽イオン塩を生じさせることができる。陽イオン塩は、薬学的に許容できる陽イオンを与える塩基で作製されてもよく、アルカリ金属塩(特に、ナトリウムおよびカリウム)、アルカリ土類金属塩(特に、カルシウムおよびマグネシウム)、アルミニウム塩及びアンモニウム塩、並びにトリメチルアミン、トリエチルアミン、モルホリン、ピリジン、ピペリジン、ピコリン、ジシクロヘキシルアミン、N,N’-ジベンジルエチレンジアミン、2-ヒドロキシエチルアミン、ビス-(2-ヒドロキシエチル)アミン、トリ-(2-ヒドロキシエチル)アミン、プロカイン、ジベンジルピペリジン、デヒドロアビエチルアミン、N,N’-ビスデヒドロアビエチルアミン、グルカミン、N-メチルグルカミン、コリジン、キニーネ、キノリン、並びにリジン及びアルギニンなどの塩基性アミノ酸などの塩を含む。
 腫瘍免疫賦活化剤は、テトラサイクリン系化合物又はその薬学的に許容される塩を含む。腫瘍免疫賦活化剤は、テトラサイクリン系化合物又はその薬学的に許容される塩と適当な担体又は添加剤とを組み合わせて調製してもよい。当該腫瘍免疫賦活化剤の調製に用いられる担体や添加剤としては、腫瘍免疫賦活化剤の剤形に応じて通常の薬剤に汎用される各種のもの、例えば賦形剤、結合剤、崩壊剤、滑沢剤、着色剤、矯味剤、矯臭剤、界面活性剤等を例示できる。
 上記腫瘍免疫賦活化剤が経口投与されるものである場合の剤形は、特に制限されないが、錠剤、散剤、顆粒剤、カプセル剤(硬質カプセル剤及び軟質カプセル剤を含む)、液剤、丸剤、懸濁剤、及び乳剤等を例示できる。また上記腫瘍免疫賦活化剤が、非経口投与されるものである場合には、注射剤、点滴剤、坐剤、点鼻剤、及び経肺投与剤等を例示できる。
 上記腫瘍免疫賦活化剤が、錠剤、散剤、顆粒剤、丸剤、カプセル剤等の経口用固形組成物である場合の調製に際しては、担体として例えば乳糖、白糖、塩化ナトリウム、ブドウ糖、尿素、デンプン、炭酸カルシウム、カオリン、結晶セルロース、ケイ酸、メチルセルロース、グリセリン、アルギン酸ナトリウム、アラビアゴム等の賦形剤;単シロップ、プドウ糖液、デンプン液、ゼラチン溶液、ポリビニルアルコール、ポリビニルエーテル、ポリビニルピロリドン、カルボキシメチルセルロース、セラック、メチルセルロース、エチルセルロース、水、エタノール、リン酸カリウム等の結合剤;乾燥デンプン、アルギン酸ナトリウム、カンテン末、ラミナラン末、炭酸水素ナトリウム、炭酸カルシウム、ポリオキシエチレンソルビタン脂肪酸エステル類、ラウリル硫酸ナトリウム、ステアリン酸モノグリセリド、デンプン、乳糖等の崩壊剤;白糖、ステアリン酸、カカオバター、水素添加油等の崩壊抑制剤;ラウリル硫酸ナトリウム等の吸収促進剤;グリセリン、デンプン等の保湿剤;デンプン、乳糖、カオリン、ベントナイト、コロイド状ケイ酸等の吸着剤;精製タルク、ステアリン酸塩、ホウ酸末、ポリエチレングリコール等の滑沢剤等を使用できる。更に錠剤は必要に応じ通常の剤皮を施した錠剤、例えば糖衣錠、ゼラチン被包錠、腸溶被錠、フイルムコーティング錠、二重錠、多層錠等とすることができる。
 上記腫瘍免疫賦活化剤が、丸剤の経口用固形組成物である場合の調製に際しては、担体として、例えばブドウ糖、乳糖、デンプン、カカオ脂、硬化植物油、カオリン、タルク等の賦形剤;アラビアゴム末、トラガント末、ゼラチン等の結合剤;ラミナラン、カンテン等の崩壊剤等を使用できる。
 上記腫瘍免疫賦活化剤が、カプセル剤の経口用固形組成物である場合の調製に際しては、カプセル剤は有効成分を上記で例示した各種の担体と混合し、硬質カプセル、又は軟質カプセル等に充填して調製される。
 上記製剤が液剤の場合には、水性又は油性の懸濁液、溶液、シロップ、エリキシル剤であってもよく、通常の添加剤を用いて常法に従い、調製される。
 上記腫瘍免疫賦活化剤が注射剤の場合の調製に際しては、担体として例えば水、エチルアルコール、マクロゴール、プロピレングリコール、エトキシ化イソステアリルアルコール、ポリオキシ化イソステアリルアルコール、ポリオキシエチレンソルビタン脂肪酸エステル類等の希釈剤;クエン酸ナトリウム、酢酸ナトリウム、リン酸ナトリウム等のpH調整剤;リン酸二カリウム、リン酸三ナトリウム、リン酸水素ナトリウム、クエン酸ナトリウム等の緩衝剤;ピロ亜硫酸ナトリウム、EDTA、チオグリコール酸、チオ乳酸等の安定化剤;凍結乾燥した際の成形剤として例えばマンニトール、イノシトール、マルトース、シュクロース、ラクトース等の糖類を使用できる。なお、この場合等張性の溶液を調整するに十分な量のブドウ糖或いはグリセリンを剤中に含有せしめてもよく、また通常の溶解補助剤、無痛化剤、局所麻酔剤等を添加しても良い。これらの担体を添加して、常法により皮下、筋肉内、静脈内用注射剤を製造することができる。
 上記製剤が点滴剤の場合には、投与化合物を生理食塩水、リンゲル液等を基本とした等張電解質輸液製剤に溶解して調製することができる。
 本発明における腫瘍免疫賦活化剤は、経口用組成物及び非経口用組成物のいずれであってもよいが、好ましくは経口用組成物である。
 腫瘍免疫賦活化剤に含まれる、テトラサイクリン系化合物又はその薬学的に許容される塩は一種であっても複数種であってもよい。すなわち、腫瘍免疫賦活化剤は、テトラサイクリン系化合物及びその薬学的に許容される塩よりなる群から選択される少なくとも一種を含んでいればよい。
 テトラサイクリン系化合物又はその薬学的に許容される塩の投与量は公知である。したがって、腫瘍免疫賦活化剤の投与量も、公知のテトラサイクリン系化合物の投与量から換算して決定することができる。例えば、テトラサイクリン系化合物又はその薬学的に許容される塩の投与量は、経口投与の場合、1日あたり0.1mg~1,000mg/kg(成人)、又は1日あたり0.02mg~100mg/kg(小児)程度である。注射又は静脈点滴の場合、1日あたり0.1mg~500mg/kg(成人)、又は1日あたり0.02mg~50mg/kg(小児)程度である。投与量は、年齢、症状、腫瘍の大きさ、他の薬剤の投与状況等に応じて適宜調整できる。テトラサイクリン系化合物及びその薬学的に許容される塩の二種以上を組み合わせて投与する場合には、テトラサイクリン系化合物又はその薬学的に許容される塩の合計量が上記投与量となることが好ましい。
 テトラサイクリン系化合物又はその薬学的に許容される塩は、他の薬剤と併用してもよい。併用されうる他の薬剤は、特に制限されないが、好ましくは抗腫瘍薬である。
 抗腫瘍薬として、例えば一般に抗がん剤と使用されるものを挙げることができ、アルキル化薬、代謝拮抗薬、抗腫瘍性抗生物質、微小血管阻害薬、ホルモン又はホルモン類似薬、白金製剤、トポイソメラーゼ阻害薬、サイトカイン、抗体薬、腫瘍免疫薬(放射免疫療法薬、非特異的免疫活薬、免疫チェックポイント阻害薬、CAR-T細胞薬、BiTE薬、がんワクチン等)、分子標的薬、及びその他の抗腫瘍薬の中から、対象とする腫瘍に応じて適宜選択することができる。
 ここで制限はされないものの、アルキル化薬としては、例えば、シクロホスファミド、イホスファミド、ブスルファン、メルファラン、ベンダムスチン塩酸塩、ニムスチン塩酸塩、ラニムスチン、ダガルバジン、プロカルバジン塩酸塩テモゾロミド等;代謝拮抗薬としては、メトトレキサート、ペメトレキセドナトリウム、フルオロウラシル、ドキシフルリジン、カペシタビン、テガフール、シタラビン、シタラビンオクホスファート水和物、エノシタビン、ゲムシタビン塩酸塩、メルカプトプリン水和物、フルダラビンリン酸エステル、ネララビン、ペントスタチン、クラドリビン、レボホリナートカルシウム、ホリナートカルシウム、ヒドロキシカルバミド、L-アスパラギナーゼ、アザシチジン等;抗腫瘍性抗生物質としては、ドキソルビシン塩酸塩、ダウノルビシン塩酸塩、ピラルビシン、エピルビシン塩酸塩、イダルビシン塩酸塩、アクラルビシン塩酸塩、アムルビシン塩酸塩、ミトキサントロン塩酸塩、マイトマイシンC、アクチノマイシンD、ブレオマイシン、ペプロマイシン硫酸塩、ジノスタチンスチラマー等;微小血管阻害薬としては、ビンクリスチン硫酸塩、ビンブラスチン硫酸塩、ビンデシン硫酸塩、ビノレルビン酒石酸塩、パクリタキセル、ドセタキセル水和物、エリブリンメシル酸塩等;ホルモン又はホルモン類似薬(ホルモン剤)としては、アナストロゾール、エキセメスタン、レトロゾール、タモキシフェンクエン酸塩、トレミフェンクエン酸塩、フルベストラント、フルタミド、ビカルタミド、メドロキシプロゲステロン酢酸エステル、エストラムスチンリン酸エステルナトリウム水和物、ゴセレリン酢酸塩、リュープロレリン酢酸塩等;白金製剤としては、シスプラチン、ミリプラチン水和物、カルボプラチン、ネダプラチン、オキサリプラチン等;トポイソメラーゼ阻害薬としては、イリノテカン塩酸塩水和物、及びノギテカン塩酸塩等のトポイソメラーゼI阻害薬、並びにエトポシド、及びソブゾキサン等のトポイソメラーゼII阻害薬;サイトカインとしては、インターフェロンガンマ-1a、テセロイキン、セルモロイキン等;抗体薬としては、トラスツズマブ、リツキシマブ、ゲムツズマブオゾガマイシン、ベバシズマブ、セツキシマブ、パニツムマブ、アレムツズマブ等;放射免疫療法薬としては、イブリツモマブ、チウキセタン配合剤等;分子標的薬としては、ゲフィチニブ、イマチニブメシル酸塩、ボルテゾミブ、エルロチニブ塩酸塩、ソラフェニブトシル酸塩、スニチニブリンゴ酸塩、サリドマイド、ニロチニブ塩酸塩水和物、ダサチニブ水和物、ラパチニブトシル酸塩水和物、エベロリムス、レナリドミド水和物、デキサメタゾン、テムシロリムス、ボリノスタット、トレチノイン、及びタミバロテン等;非特異的免疫活薬としては、OK-432、乾燥BCG、かわらたけ多糖体製剤、レンチナン、ウベニメクス等;免疫チェックポイント阻害薬としては、アテゾリズマブ、ニボルマブ、ペンブロリズマブ、イピリムマブ、デュルバルマブ、アベルマブ、トレメリムマブ等;CAR-T細胞薬としては、Tisagenlecleucel等;二重特異性分子薬としては、ブリナツモマブ等のBiTE(商標)薬;がんワクチンとしては、シプリューセ-T等;その他、アセグラトン、ポルフィマーナトリウム、タラポルフィンナトリウム、エタノール、三酸化ヒ素等を例示することができる。ここで、二重特異性分子とは、一分子内に、腫瘍細胞に存在する少なくとも一種の表面抗原と結合する抗原結合領域と、T細胞に存在する表面抗原の少なくとも一種と結合する抗原結合領域とを有する分子を意図する。表面抗原の少なくとも一種と結合する抗原結合領域は、1つの抗原に対して、1つであっても2以上であってもよい。例えば、表面抗原の少なくとも一種と結合する抗原結合領域は、同種のFab領域の組み合わせ、同種の可変領域の組み合わせ、同種のsc-Fvの組み合わせ、1種の抗体に由来する重鎖Fab領域と軽鎖Fab領域の組み合わせ1種の抗体に由来する重鎖可変領域と軽鎖可変領域の組み合わせ、1種の抗体に由来する重鎖sc-Fvの組み合わせであってもよい。T細胞の表面抗原は、T細胞の表面に存在し、二重特異性分子又は三重特異性分子に含まれる少なくとも一つの抗原結合領域が結合できる限り制限されない。T細胞の表面抗原として、好ましくは細胞障害性T細胞の表面抗原を挙げることができる。例えば、T細胞の表面抗原は、CD3、CD8、TCR、CTLA-4、PD1、Tim3、CD27、CD28、CD40、CD134(OX40)、CD137(4-1BB)、CD278(ICOS)を挙げることができる。好ましくはCD3である。腫瘍細胞の表面抗原は、腫瘍細胞の表面に存在し、二重特異性分子に含まれる少なくとも一つの抗原結合領域が結合できる限り制限されない。腫瘍細胞の表面抗原としては、EphA1(ephrin type-A receptor 1)、EphA2、FolR1(folate receptor 1)、EpCAM(Epithelial cell adhesion molecule)、CD19、Her1 (v-erb-b2 erythroblastic leukemia viral oncogene homolog 1: ErbB1)、Her2、CD20、EGFR(Epidermal Growth Factor Receptor)、CCR4(C-C chemokine receptor type 4)、CEA(Carcinoembryonic antigen)、GD2、GD3,CD22、CD30、CD33、CD70、CD123、EGFRvIII、MUC1(Mucin1)、PSCA(Prostate stem cell antigen)、PSMA(Prostate-specific membrane antigen)、HLA-A1+NY-ESO1(HLA-A1 restricted NY-ESO1)、HLA-A2+NY-ESO1(HLA-A2 restricted NY-ESO1)、HLA-A3+NY-ESO1(HLA-A3 restricted NY-ESO1)等を挙げることができる。二重特異性分子には、BiTE(商標)、二重特異性抗体等が含まれる。BiTE(商標)としては、CD19とCD3を標的とする二重特異性分子、EphA2とCD3を標的とする二重特異性分子を挙げることができる。また二重特異性抗体としては、EpCAMとCD3を標的とする抗体を挙げることができる。
 テトラサイクリン系化合物の作用効果の点から、抗腫瘍薬として好ましくは腫瘍免疫療法薬を挙げることができ、より好ましくは免疫チェックポイント阻害薬、CAR-T細胞薬、二重特異性分子薬、及びがんワクチンから選択される少なくとも一種を挙げることができる。腫瘍免疫薬のうち最も好ましくは、免疫チェックポイント阻害薬(アテゾリズマブ、ニボルマブ、ペンブロリズマブ、イピリムマブ、デュルバルマブ、アベルマブ、トレメリムマブ等)である。
 抗腫瘍薬の投与は、公知の方法にしたがって行うことができる。また、抗腫瘍薬の投与量を決定するにあたり、後述する実施例1.末梢血単核細胞を用いた腫瘍細胞傷害活性の測定方法にしたがって、各患者について末梢血単核細胞のT細胞の腫瘍細胞傷害活性の強さを評価して、この強さに応じて投与量を決定してもよい。
 本発明のテトラサイクリン系化合物又はその薬学的に許容される塩と抗腫瘍薬との併用(組み合わせ)の態様は、本発明の効果を奏する使用の態様であればよく、特に制限されない。例えば、抗腫瘍薬の投与と同時にテトラサイクリン系化合物又はその薬学的に許容される塩を並行して投与してもよいし、また抗腫瘍薬の投与に先立って、又は抗腫瘍薬の投与後にテトラサイクリン系化合物又はその薬学的に許容される塩を投与してもよい。この場合、テトラサイクリン系化合物又はその薬学的に許容される塩と抗腫瘍薬の投与を交互に行ってもよい。さらに、抗腫瘍薬投与後、腫瘍の組織の縮小度合い等に併せて、抗腫瘍薬投与の途中から、テトラサイクリン系化合物又はその薬学的に許容される塩を併用投与してもよいし、また逆に、テトラサイクリン系化合物又はその薬学的に許容される塩を投与後、その途中から抗腫瘍薬を併用投与してもよい。
 また、本発明のテトラサイクリン系化合物又はその薬学的に許容される塩は、抗腫瘍薬と併用する態様であれば、単回投与、連続投与、また間歇的投与のいずれであってもよい。例えば、抗腫瘍薬の投与に先立って本発明のテトラサイクリン系化合物又はその薬学的に許容される塩を投与する場合を例にすれば、抗腫瘍薬の投与開始の7日前から、又は3日前から、1日1回連日、14日間から21日間程度、投与する方法を例示することができる。また、テトラサイクリン系化合物又は薬学的に許容される塩を抗腫瘍薬の投与クール中連日投与してもよい。
 本発明のテトラサイクリン系化合物又は薬学的に許容される塩は、その投与経路(投与方法)に応じて、種々の形態(剤型)の医薬組成物として調製され、抗腫瘍薬と組み合わせて、対象とする腫瘍患者に投与される。
 腫瘍免疫賦活剤の投与対象患者は、腫瘍免疫療法が適用されうる者である限り制限されない。例えば、患者としては、上記に記載のいずれかの腫瘍を有し、かつ未治療である患者、又は既に何らかの腫瘍治療を受けた患者、腫瘍の治療中の患者、腫瘍が再発又は転移している患者を挙げることができる。前記、腫瘍の治療には、好ましくは、外科的腫瘍切除、化学療法、放射療法等を含む。
2.腫瘍治療用組成物
 腫瘍治療用組成物は、上記1.に記載の腫瘍免疫賦活剤と、抗腫瘍薬を含む。好ましくは抗腫瘍薬は、腫瘍免疫薬であり、より好ましくは腫瘍免疫薬は、免疫チェックポイント阻害薬、CAR-T細胞薬、二重特異性分子薬、がんワクチンから選択される少なくとも一種である。投与量は、上記1.に記載の説明をここに援用する。
 腫瘍免疫賦活剤と、抗腫瘍薬とを含む腫瘍治療用組成物には下記態様が含まれる:
 (i)腫瘍免疫賦活剤と抗腫瘍薬とが同一製剤中に混合された態様で含まれている状態(配合剤)である場合、
 (ii)腫瘍免疫賦活剤単体若しくは腫瘍免疫賦活剤を含有する製剤と、抗腫瘍薬単体若しくは抗腫瘍薬を含有する製剤とが、おのおの別個の製剤として包装されており、両者が組み合わせ物(キット)として販売される場合、
 (iii)腫瘍免疫賦活剤単体若しくは腫瘍免疫賦活剤を含有する製剤と、抗腫瘍薬単体若しくは抗腫瘍薬を含有する製剤とがおのおの個別の製剤であり、これらが組み合わせて一つの包装物として販売される場合、又は
 (iv)腫瘍免疫賦活剤単体若しくは腫瘍免疫賦活剤を含有する製剤と、抗腫瘍薬単体若しくは抗腫瘍薬を含有する製剤とが、おのおの別個の製剤として包装されており、また両者は別個の流通経路で市場に存在し、使用時に組み合わせて使用される場合。
3.腫瘍の治療方法
 本開示は、上述した腫瘍免疫賦活化剤、及び腫瘍治療用組成物を使用した腫瘍の治療方法を含む。腫瘍免疫賦活化剤、及び腫瘍治療用組成物の投与方法及び投与対象は、上記1.に記載の説明をここに援用する。
 以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定し解釈されるものではない。
I.各実験プロトコール
1.末梢血単核細胞を用いた腫瘍細胞傷害活性の測定と各被験薬の評価
 図1に示すように、in vitroにおいて、末梢血単核細胞群(Peripheral Blood Mononuclear Cells:PBMC)と、腫瘍細胞とを、BiTE(登録商標)等のエンゲージャーを介して接触させて培養した後に、PBMCによって腫瘍細胞がどのくらい傷害されたか(腫瘍細胞傷害活性)を測定することにより、PBMC中のT細胞の抗腫瘍活性を評価した。
(1)U251細胞株を、10%FBSを添加したRPMI1640培地(10%FBS加RPMI1640培地)で培養した後、トリプシンで剥がし、1×105個/mLとなるように10%FBS加RPMI1640培地に懸濁し細胞懸濁液を調製した。前記細胞懸濁液を100μL/ウェルとなるように96ウェルプレートに播種し、5%炭酸ガスが存在する湿式インキュベータ内で、37℃で18時間インキュベーションした。
(2)健常人から末梢血(ヘパリン採血)を採取し、LymphoprepTM (Alere Technologies AS)を使って、添付のプロトコールにしたがって、PBMCを回収した。具体的には、チューブに入れたLymphoprepTMに採取した末梢血をゆっくりと重層し、50分間400 gで遠心した後、リンパ球層を回収した。回収した溶液に10%FBS加RPMI1640培地を加えて遠心した後、上清を除去した。細胞のペレットを10%FBS加RPMI1640培地で懸濁して1×106/mLに調整した。前記PBMCの回収は、後述する(3)の工程の直前に行った。
(3)1分子内にEphA2に対する抗原結合部位とCD3に対する抗原結合部位を有するEphA2-CD3 BiTE(登録商標)を10%FBS加RPMI1640培地で400 ng/mLとなるように調製した(「BiTE溶液」という)。また、各被験薬は、前記BiTE溶液で10μMとなるように調整した。(1)でインキュベーションが終わった96ウェルプレートに、1ウェルあたり、PBMC細胞懸濁液50μLと、各被験薬を含むBiTE溶液50μLとを添加した。BiTE終濃度は100ng/mL、各被験薬の終濃度は2.5μMとなるようにした。コントロールとして、(1)でインキュベーションが終わった96ウェルプレート内にPBMC細胞懸濁液50μLと、被験薬を含まないBiTE溶液50μLとを添加するウェルと、(1)でインキュベーションが終わった96ウェルプレート内にPBMC細胞懸濁液50μLと、10%FBS加RPMI1640培地50μLとを添加するウェルを準備した。1ウェルあたりの10%FBS加RPMI培地の量は、最終的に総量が200μLとなるようにした。PBMCとEphA2-CD3 BiTE(登録商標)とを添加した後、又はPBMCとEphA2-CD3 BiTE(登録商標)と被験薬とを添加した後の96ウェルプレートを、37℃で48時間インキュベーションした。
(4)インキュベーション終了後、各ウェルの培地をPBMCとともに回収した。さらに各ウェルに10%FBS加RPMI培地を200μL加えウェル内を洗浄し、洗浄に使用した培地を回収した。この操作を3回繰り返しウェル内を3回洗浄した。この時、最初に回収した培地と洗浄の際に回収した培地はウェルごとに1つのチューブにまとめた。洗浄後培地とPBMCが除去された各ウェルに、100μLの10%FBS加RPMI培地と20μLのCellTiter 96(登録商標) AQueous One Solution Reagent (MTS reagent:プロメガ)を添加した。その後、96ウェルマイクロプレートを5%炭酸ガスが存在する湿式インキュベータ内で、30分~1時間程度、37℃でインキュベーションした。
(5)(4)でインキュベーションが終了した96ウェルマイクロプレートについて、マイクロプレートリーダを使って各ウェルの492 nmにおける吸光度を測定した。続いて、下式にしたがって、腫瘍細胞傷害活性を算出した。
  U251細胞株とPBMCのみを含むウェルの吸光度=A
  U251細胞株とPBMCとEphA2-CD3 BiTE(登録商標)とを含むウェル、又はU251細胞株とPBMCとEphA2-CD3 BiTE(登録商標)と被験薬とを含むウェルの吸光度=B  腫瘍細胞傷害活性 (%)=[(A-B)/A]×100 
2. Granzyme B染色
 上記1.(4)において回収した培地を400 gで5分間遠心し、上清を除去しPBMCのペレットを残した。2%FBSおよび10mM HEPES加HBSS培地(以下、「HBSS+2%FBS+10mM HEPES」培地とする)でそれぞれの抗体(CD3、CD4、CD8、CD45RA)を100倍希釈し、これらの抗体希釈液を上清が除去されたペレットへ30μL/tubeずつ加えて4℃で30分間インキュベーションした。HBSS+2%FBS+10mM HEPES培地を200μL/tubeずつ加えて400 gで5分間遠心した後、上清を除去しペレットを残した。Fix bufferを100μL/tubeずつ加えて残ったPBMCを懸濁した後、4℃で30分間インキュベーションした。
 インキュベーションが終わったチューブを400 gで5分間遠心して上清を除去し、PBMCのペレットを残した。Wash bufferを200μL/tubeずつ加えてペレットを懸濁した後、400 gで5分間遠心して上清を除去し、PBMCのペレットを残した。Wash bufferで抗Granzyme B抗体を100倍希釈し、この抗体希釈液30μL/tubeで残ったPBMCを懸濁して4℃で30分間インキュベーションした。Wash bufferを200μL/tubeずつ加えて、400 gで5分間遠心し上清を除去し、PBMCのペレットを残した。HBSS+2%FBS+10mM HEPES培地で残ったPBMCを懸濁し、懸濁液をFACS解析に供した。
3.CytoTellアッセイ
 上記1.(1)の方法にしたがって、健常人末梢血からPBMCを回収した。回収したPBMCのペレットに、HBSS+2%FBS+10mM HEPES培地にCytoTell redを混合した溶液を加えて、37℃で30分間インキュベーションした。インキュベーション終了後、400 gで5分間遠心し、上清を除去しPBMCのペレットを残した。10%FBS加RPMI培地を加えて残ったPBMCを懸濁し、1×106/mLのPBMC細胞懸濁液を調整した。
 上記1.(3)と同様にU251細胞株とPBMCとBiTE、又はU251細胞株とPBMCとBiTEと被験薬とを接触させ、37℃で96時間培養した。
 培養終了後、培養上清を回収し、さらに10%FBS加RPMI1640培地で3回洗浄した、その培地も回収した。この時、最初に回収した培地と洗浄の際に回収した培地はウェルごとに1つのチューブにまとめた。
 回収した培地を400 gで5分間遠心し上清を除去し、PBMCのペレットを残した。HBSS+2%FBS+10mM HEPES培地でそれぞれの抗体(CD3、CD4、CD8、CD45RA)を100倍希釈し、これらの抗体液をペレットに30μL/tubeで添加し残ったPBMCを懸濁し、4℃で30分間インキュベーションした。
 インキュベーションが終わったチューブに、HBSS+2%FBS+10mM HEPES培地を200μL/tubeずつ加えて400 gで5分間遠心した後、上清を除去し、PBMCのペレットを残した。HBSS+2%FBS+10mM HEPES培地で残ったPBMCを懸濁し、懸濁液をFACS解析に供した。
4.CMV特異的CTL誘導(Mixed CMV peptide/Lymphocytes culture)
 HLAタイプが24:02の健常人のPBMCに10%FBS加RPMI培地で10μg/mLに調整したCMV peptideを加えて96 well plateで3日間培養した。10μg/mL CMV peptide + 20U/mL IL-2±2.5μM デメチルクロルテトラサイクリン(DMC)を含む10%FBS加RPMI培地に培地を交換し、さらに4日間培養した(7日間培養)。PBMCを含む各wellの培地を24 well plateに移してscale upした後、10μg/mL peptide+20U/mL IL-2±2.5μM DMCを含む10%FBS加RPMI培地でさらに3日間培養した。10μg/mL peptide+20U/mL IL-2±2.5μM DMCを含む10%FBS加RPMI培地に培地を交換し、さらに4日間培養した(14日間培養)。
 培養終了後、400 gで5分間遠心して上清を除去してPBMCのペレットを残し、HBSS+2%FBS+10mM HEPES培地でそれぞれの抗体(CD3、CD4、CD8)を100倍希釈 及びCMV Tetramerを10倍希釈)してPBMCのペレットペレットに30μL/tubeで加えPBMCを懸濁し、4℃で30分間インキュベーションした。HBSS+2%FBS+10mM HEPES培地を200μL/tubeずつ加えて400 gで5分間遠心し、上清を除去しPBMCのペレットを残した。
 HBSS+2%FBS+10mM HEPES培地で残ったPBMCを懸濁し、懸濁液をFACS解析に供した。
5.肺癌組織内T細胞の採取
 肺癌組織内のT細胞の腫瘍細胞傷害活性は、以下の方法にしたがって肺癌組織から細胞を回収した。腫瘍細胞傷害活性は、その細胞群の活性として測定した。
 癌組織を6 cm Dishに移して細断した後、組織攪拌溶液(HBSS + 2% FBS + 10mM HEPESにTumor Dissociation Kit (Miltenyi Biotec)を添加)に入れてgentleMACSTM Dissociator (Miltenyi Biotec)で攪拌後、37℃で維持したインキュベータ内で30分回転させながらインキュベーションした。その後、細胞を含む攪拌液を70 μmメッシュを通して、組織残渣を取り除き、濾液を600xg、10分遠心して沈殿物を回収した。細胞を含む沈殿物にBD Pharm lyse (BD Biosciences)を添加して2分間静置した。静置後の細胞を含む溶解液にHBSS Bufferを加えて600xg、10分遠心し、再度沈殿物を回収した。再回収された沈殿物に30% パーコール液を加えて12000xg、30秒遠心し、再度沈殿物を回収した。再回収された沈殿物をHBSS Bufferで洗浄し、12000xg、30秒遠心して組織内の細胞を回収した。回収された細胞の腫瘍細胞傷害活性は、上記I.1.(1)~(5)と同様の方法で測定した。BiTEとしてCD3に結合するものを使用していることから、この肺癌組織内から回収された細胞の腫瘍細胞傷害活性は、肺癌組織内T細胞の腫瘍細胞傷害活性であると考えられる。
6.IFNγ産生アッセイ
 上記5.において上記1.(4)に準じて回収した全ての培地内の細胞について、IFNγ産生能を、IFN-γSecretion Assayキット(Miltenyi Biotec)を用いて測定した。
 上記1.(4)において回収した培地を400 gで5分間遠心し、上清を除去した。残ったPBMCのペレットに、10%ヒト血清加AIM培地で100倍希釈したIFNγ Catch Reagentを100μL/tubeずつ添加し、PBMCを懸濁した後4℃で10分間インキュベーションした。
 インキュベーションが終わったチューブに、37℃に温めた10%ヒト血清加AIM培地を1mL/tubeずつ分注し、チューブを攪拌しながら37℃下で45分間インキュベーションした。インキュベーション終了後、再度氷上で冷却した後、400×g、5分遠心して上清を除去しPBMCのペレットを残した。
 HBSS+2%FBS+10mM HEPES培地で残ったPBMCを懸濁し、各サンプルを2つに分けた(片方はisotype染色用)後、再度400 gで5分間遠心して上清を除去しペレットを残した。
 HBSS+2%FBS+10mM HEPES培地でそれぞれの抗体(CD3、CD4、CD8、CD45RA)を100倍希釈及び抗i-IFNγ抗体を10倍希釈し、これらの抗体希釈液を残ったPBMCへ30μL/tubeずつ加えてPBMCを懸濁し、4℃で30分間インキュベーションした。
 インキュベーションが終わったチューブにHBSS+2%FBS+10mM HEPES培地を200μL/tubeずつ加えて400gで5分間遠心した後、上清を除去し、再度HBSS+2%FBS+10mM HEPES培地で残ったPBMCを懸濁し、懸濁液をFACS解析に供した。
7.in vivoにおける腫瘍細胞増殖抑制作用の検証
 接種の5日前にCT26WT細胞を解凍し、DMEM+10%FBS+1% penicillin/streptomycin培地で培養した。腫瘍細胞接種2日前にCT26WT細胞をトリプシン処理し継代した。
 BALB/cマウスの右背側の毛をトリミングした後、CT26WT細胞を2×105cells/匹ずつ皮内接種した。腫瘍細胞接種後6日目にマウスの体重及び腫瘍径を測定し、それらが均一になるように被検薬投与群とVehicle群(各n=9)とに群分けした。被検薬投与群には、被験薬を生理食塩水で溶解し3.0 mg/mLに調整し、200μL/匹ずつ30mg/kg/dayとなるように腹腔内へ投与した。Vehicle群は生理食塩水のみを200μL/匹ずつ腹腔内へ投与した。被験薬又は生理食塩水の投与は10日間連日行った(図8A)。 腫瘍細胞投与後10日、13日、16日に腫瘍径を測定した。
II.実施例1:テトラサイクリン系化合物のT細胞抗腫瘍活性の賦活化作用の検証
 上記I.1.で述べた方法にしたがって、被験薬として、デメチルクロルテトラサイクリン(DMC)、メクロサイクリン(MC)、テトラサイクリン(TC)、及びクロルテトラサイクリン(CTC)、ミノサイクリン(MINO)を用い、T細胞抗腫瘍活性の賦活化作用を検証した。nはそれぞれ3(独立した健常人)として、BiTE単独添加群とBiTEと被験薬併用群の差をt検定により算出した。その結果を図2に示す。
 BiTEと被験薬併用群では、DMC、MC、TC、CTC及びMINO全てにおいて、BiTEを単独で添加した場合と比較してT細胞の抗腫瘍活性が増強していた(DMC、MC及びCTC:p<0.01、TC及びMINO:p<0.05)。このことから、テトラサイクリン系化合物には、T細胞抗腫瘍活性を賦活化する作用があることが明らかとなった。
III.実施例2:テトラサイクリン系化合物によるCD8T細胞の腫瘍細胞傷害活性の増強作用の検証
 上記I.1.で述べた方法にしたがって、被験薬として、デメクロサイクリン(DMC:終濃度2.5μM)を用い、3名の健常人から採取したそれぞれのPBMC中のCD8陽性T細胞(CD8+T細胞)の腫瘍細胞傷害活性に対するテトラサイクリン系化合物の効果を検証した。CD8+T細胞はCD8+T cell Isolation Kit (Miltenyi Biotec) でネガティブセレクションした。図3に示すように、BiTEを単独で添加したCD8T細胞と比較してBiTEと被験薬とを併用添加したCD8T細胞では、腫瘍細胞傷害活性が高くなっていた(p=0.05)。このことからテトラサイクリン系化合物には、CD8T細胞の腫瘍細胞傷害活性を増強する作用があることが示唆された。
IV.実施例3:テトラサイクリン系化合物によるグランザイムB発現CD8T細胞の存在比率の増加の検証
 上記I.2.で述べた方法にしたがって、被験薬として、デメチルクロルテトラサイクリン(DMC:終濃度2.5μM)を用い、4名の健常人から採取したそれぞれのPBMC中のグランザイムB発現CD8T細胞の存在比率に対するテトラサイクリン系化合物の効果を検証した。図4に示すように、BiTEを単独で添加したPBMCと比較してBiTEと被験薬との両方を添加したPBMCでは、グランザイムB発現CD8T細胞の存在比率が高くなっていた(p=0.01)。このことからテトラサイクリン系化合物は、グランザイムB発現CD8T細胞を増やすことが示唆された。
V.実施例4: テトラサイクリン系化合物によるCD8T細胞の増殖能亢進の検証
 上記I.3.で述べた方法にしたがって、被験薬として、デメチルクロルテトラサイクリン(DMC:終濃度2.5μM)を用い、5名の健常人から採取したそれぞれのPBMC中のCD8T細胞の増殖能に対するに対するテトラサイクリン系化合物の効果を検証した。図5に示すように、BiTEを単独で添加したPBMCと比較してBiTEと被験薬とを併用添加したPBMCでは、CD8T細胞の増殖能が高くなっていた(p=0.007)。このことからテトラサイクリン系化合物は、腫瘍細胞傷害活性を示すCD8T細胞の増殖能を高めることが示唆された。
VI.実施例5:テトラサイクリン系化合物によるCMV特異的細胞傷害性T細胞の誘導亢進効果の検証
 上記I.4.で述べた方法にしたがって、PBMCをCMV抗原で刺激してCMV特異的細胞傷害性T細胞を誘導する際の、テトラサイクリン系化合物の効果を検証した。被験薬として、デメチルクロルテトラサイクリン(DMC:終濃度2.5μM)を用いた。PMBCは、1名の健常人から採取した。CMV特異的細胞傷害性T細胞はFACS解析で同定した。図6Aに示すように、CMV特異的細胞傷害性T細胞を誘導抗原で刺激後7日目ではまだCMV特異的細胞傷害性T細胞(図6A中の区画P7に分画される)の誘導は認められないが、14日目では、CMV特異的細胞傷害性T細胞の誘導が認められた。DMCを添加しなかった群(DMC-)とDMCを添加した群(DMC+)を比較すると、DMC+では、DMC-と比較して有意にCMV特異的細胞傷害性T細胞(CMV Tetramer+ CD8+T cells)の存在比率が高くなった(図6B;p<0.05)。このことからテトラサイクリン系化合物は、抗原特異的T細胞の増殖能を高めることが示唆された。
VII.実施例6:テトラサイクリン系化合物による肺癌組織内T細胞の腫瘍細胞傷害活性の増強効果の検証
 上記I.5.で述べた方法にしたがって、肺癌患者の腫瘍組織内のT細胞を採取し、その細胞を用いて、腫瘍細胞傷害活性を測定し、テトラサイクリン系化合物の効果を検証した。また、上記I.5.で述べた方法にしたがって、肺癌患者の腫瘍組織内のT細胞を採取し、上記I.6.で述べた方法にしたがって、IFNγ産生CD8+T細胞の存在比率を測定し、テトラサイクリン系化合物の効果を検証した。
 被験薬として、デメチルクロルテトラサイクリン(DMC)を用い、nは、細胞傷害活性測定は5(独立した患者)、IFNγ産生CD8+T細胞の存在比率測定は3(独立した患者)とした。
 BiTEと被験薬併用群では、BiTEを単独で添加した場合と比較してT細胞の抗腫瘍活性が増強していた(図7A)。
 BiTEと被験薬併用群では、BiTEを単独で添加した場合と比較してIFNγ産生CD8+T細胞の存在比率が高くなった(図7B、C)。このことからテトラサイクリン系化合物は、IFNγ産生CD8+T細胞を増やすことが示唆された。
VIII.実施例7:in vivoにおけるテトラサイクリン系化合物の効果
 上記7.で述べた方法にしたがって、テトラサイクリン系化合物のin vivoにおける腫瘍増殖の抑制効果を検証した。Vehicle群と比較して、被検薬投与群では、腫瘍径の増加が抑制される傾向にあった(図8B)。
 以上の結果から、テトラサイクリン系化合物には、T細胞の抗腫瘍作用を賦活化する効果があることが示された。
VIII.実施例8:in vivoにおけるテトラサイクリン系化合物と抗PD-L1抗体の併用効果の検証
 in vivoにおいてテトラサイクリン系化合物が免疫チェックポイント阻害薬の抗腫瘍効果を増強できることを検証した。
1.方法
 接種する6日前にCT26WT細胞を解凍し、10%FBS及び1% penicillin/streptomycin を添加したDMEM培地で培養した。腫瘍に投与2日前にCT26WT細胞をトリプシン処理して継代した。
 Balb/c 6週齢 マウスの右背側の毛をトリミングした後、3×105 cells/50μL/匹ずつトリミングした箇所の皮内に接種した(Day 0)。Day 6にマウスの体重及び腫瘍径を測定し、それらが均一になるように9匹ずつ5群に分けた。抗PD-L1抗体として、BioXCell社のInVivoMAb anti-mouse PD-L1を使用した。
 各群の内訳は、以下の通りである。
 コントロールIgGと水を投与する群(コントロールIgG+H2O群)
 抗PD-L1抗体と水を投与する群(aPD-L1+H2O群)
 抗PD-L1抗体とDMC(300 mg/kg)を投与する群(aPD-L1+DMC(300 mg/kg)群)
 抗PD-L1抗体とDMC(100 mg/kg)を投与する群(aPD-L1+DMC(100 mg/kg)群)
 抗PD-L1抗体とDMC(30 mg/kg)を投与する群(aPD-L1+DMC(30 mg/kg)群)
 はじめにDay 7よりDMCの投与を開始した。DMCは生理食塩水で溶解した後、200μl/匹ずつ経口ゾンデを用いて経口投与した。DMC非投与群は蒸留水を200μL/匹ずつ経口投与した。DMCの投与は、Day 7~Day 12まで1日1回連日行った。
 次にDay 10に、抗PD-L1抗体、又はコントロールIgGを200μg/200μL/匹で腹腔内へ投与した。
 Day 10、Day 13に腫瘍径を測定した。腫瘍体積は、(短径2×長径)/2の式により算出した。
2.結果
 図9に測定結果を示す。コントロールIgG+H2O群では、DMC投与開始時に40 mm3程度であった腫瘍体積が160 mm3程度まで増加した。これに対してaPD-L1+H2O群の腫瘍体積は90 mm3程度にとどまった。さらに、DMCをあらかじめ投与した群では、いずれもaPD-L1+H2O群よりも腫瘍体積の増加の抑制が認められた。特にaPD-L1+DMC(30 mg/kg)群では、より腫瘍体積の増加の抑制効果が認められた。
 このことから、テトラサイクリン系化合物の投与は、免疫チェックポイント阻害薬の抗腫瘍効果を増強させることが示された。
IX.実施例9:in vivoにおけるテトラサイクリン系化合物による抗PD-L1抗体の抗腫瘍作用の増強効果がCD8+T細胞に依存していることの検証
 in vivoにおいてテトラサイクリン系化合物が示した免疫チェックポイント阻害薬の抗腫瘍作用の増強効果が、CD8+T細胞の抗腫瘍作用に依存しているか否かを検証するため、CD8+T細胞の存在下及び非存在下でテトラサイクリン系化合物が免疫チェックポイント阻害薬の抗腫瘍作用に及ぼす影響を検討した。
1.方法
 実施例8と同様にCT26WT細胞を培養し、Balb/c 6週齢 マウスの皮下に接種した(Day 0)。Day 6にマウスの体重及び腫瘍径を測定し、それらが均一になるように9匹ずつ6群に分けた。
 コントロールIgGと水を投与する群(IgG+H2O群)
 抗PD-L1抗体と水を投与する群(aPD-L1+H2O群)
 抗PD-L1抗体と水と抗CD8抗体を投与する群(aPD-L1+H2O+CD 8depletion群)
 抗PD-L1抗体とDMC(30 mg/kg)と抗CD8抗体を投与する群(aPD-L1+DMC+CD8 depletion群)
 コントロールIgGとDMC(30 mg/kg)を投与する群(IgG+DMC群)
 抗PD-L1抗体とDMC(30 mg/kg)を投与する群(aPD-L1+DMC群)
 DMC又は水及び抗PD-L1抗体の投与に先立って、Day 6で、CD8 depletion群には抗CD8抗体(InVivoMAb anti-mouse CD8α、BioXCell社)400μg/200μL/匹を腹腔内投与した。それ以外の群にはコントロールIgG 400μg/200μL/匹を投与した。
 次に、Day 7よりDMCの投与を開始した。DMCは生理食塩水で溶解した後,200μL/匹ずつ経口ゾンデを用いて経口投与した。DMC非投与群は蒸留水を200μL/匹ずつ経口投与した。DMCの投与は、Day 7~Day 12まで1日1回連日行った。
 次にDay 10に、抗PD-L1抗体、又はコントロールIgGを200μg/200μL/匹で腹腔内へ投与した。
 Day 10、Day 13に腫瘍径を測定した。腫瘍体積は、実施例8と同様に算出した。
2.結果
 図10に結果を示す。IgG+H2O群ではDay 13における腫瘍体積は150 mm3程度であった。これに対して、Day 13におけるaPD-L1+H2O群の腫瘍体積は120 mm3程度であった。また、IgG+DMC群では腫瘍体積の増加がaPD-L1+H2O群よりも抑制され、Day 13における腫瘍体積は100 mm3程度であった。さらに、aPD-L1+DMC群ではDay 13における腫瘍体積は80 mm3程度であった。これに対して、抗CD8抗体を投与すると腫瘍体積の増加速度がIgG+H2O群よりも加速し、aPD-L1+H2O+CD 8 depletion群及びaPD-L1+DMC+CD8 depletion群では、Day 10でIgG+H2O群よりも腫瘍体積が増加していた。さらに腫瘍体積は、Day 13において、aPD-L1+H2O+CD 8 depletion群及びaPD-L1+DMC+CD8 depletion群とも300 mm3前後となり、抗PD-L1抗体又は抗PD-L1抗体及びデメチルクロルテトラサイクリンが存在していても、腫瘍体積の増加が加速していた。Day 13において、aPD-L1+DMC群ではaPD-L1+H2O群に比べ有意に腫瘍体積の減少が認められたのに対し、aPD-L1+DMC+CD 8depletion群及びaPD-L1+H2O+CD8 depletion群の腫瘍体積に有意な差は認められなかった。
 このことから、テトラサイクリン系化合物の免疫チェックポイント阻害薬の抗腫瘍作用の増強効果はCD8+T細胞に依存していることが示された。
X.実施例10:in vivoにおけるテトラサイクリン系化合物によるがん抗原特異的CD8T細胞に対する効果の検証
 免疫チェックポイント阻害薬に対するテトラサイクリン系化合物の抗腫瘍作用増強効果により、in vivoにおいてがん抗原特異的CD8T細胞が増加するか否かを検証した。
1.方法
 実施例9のIgG+H2O群、aPD-L1+H2O群、aPD-L1+DMC群のマウスの眼底からDay 13に血液を採取した。採取した血液が入っているチューブにPharmlyseを1 ml加えて赤血球を溶血させ、遠心後、上清を除去した。沈渣を含むチューブに2%FBSと10mM HEPESを添加したHBSS培地(以下、「HBSS+2%FBS+10mM HEPES」という)を加えて沈渣を懸濁してから、再度遠心し上清を除去した。沈渣を含むチューブにgp70 Tetramer[T-Select H-2Ld MuLV gp70 Tetramer-SPSYVYHQF-PE、MBL社]を加え4℃で30分間反応させた。コントロールとして沈渣を含むチューブにβ-galactosidase Tetramer [T-Select H-2Ld β-galactosidase Tetramer-TPHPARIGL-PE、MBL社]を加え4℃で30分間反応させた。反応終了後のチューブにHBSS+2%FBS+10mM HEPESを加え混合した。再度チューブを遠心し、上清を除去した。チューブ内に抗CD8抗体を添加し、染色後、細胞を洗浄してFACS測定に供し、gp70 TetramerとCD8が陽性の細胞を計数した。
2.結果
 計数結果を図11に示す。IgG+H2O群と比較して、aPD-L1+DMC群では、がん抗原特異的CD8+細胞の存在比率が増加していた。このことから、テトラサイクリン系化合物は、免疫チェックポイント阻害薬の抗腫瘍作用を増強させる際に、がん抗原特異的CD8T細胞を増加させることが明らかとなった。

Claims (7)

  1. 下記一般式(I)で示されるテトラサイクリン系化合物及びその薬学的に許容される塩よりなる群から選択される少なくとも一種を含む、腫瘍免疫賦活化剤:
    Figure JPOXMLDOC01-appb-C000001
    [式中、
    は、下記一般式(II)で示される基(Rは水素原子又は炭素数1~3の低級アルキル基)、又は炭素数1~3の低級アルキル基である:
    Figure JPOXMLDOC01-appb-C000002

    は、下記一般式(III)で示される基(Rは炭素数1~3の低級アルキル基又は水素原子)である:
    Figure JPOXMLDOC01-appb-C000003

    は、水素原子、水酸基、又は炭素数1~3の低級アルキル基である。
    及びRは、共に又は独立して水素原子、水酸基又は炭素数1~3の低級アルキル基であるか、R及びRは、1つになってメチレン基である。
    は、水素原子、ハロゲン又は下記一般式(IV)で表される基(R10は水素原子、又は炭素数1~3の低級アルキル基)である:
    Figure JPOXMLDOC01-appb-C000004

    は、水素原子、炭素数1~3の低級アルキル基、-NH-CO-CH-NH-C(CH又は-CH-NH-CH-C(CHである。]。
  2. 前記炭素数1~3の低級アルキル基がメチル基である、請求項1に記載の腫瘍免疫賦活化剤。
  3. 前記一般式(I)で示される化合物が、デメチルクロルテトラサイクリン、メクロサイクリン、テトラサイクリン、クロルテトラサイクリン、ドキシサイクリン、ミノサイクリン、及びオキシテトラサイクリンよりなる群から選択される少なくとも一種である、請求項1に記載の腫瘍免疫賦活化剤。
  4. 腫瘍免疫薬と併用するための、請求項1~3のいずれか一項に記載の腫瘍免疫賦活化剤。
  5. 前記腫瘍免疫薬が、免疫チェックポイント阻害薬、CAR-T細胞薬、二重特異性分子薬、及びがんワクチンから選択される少なくとも一種である、請求項4に記載の腫瘍免疫賦活化剤。
  6. 請求項1~3のいずれか一項に記載の腫瘍免疫賦活化剤と、腫瘍免疫薬とを含む、腫瘍治療用組成物。
  7. 前記腫瘍免疫薬が、免疫チェックポイント阻害薬、CAR-T細胞薬、二重特異性分子薬、及びがんワクチンから選択される少なくとも一種である、請求項6に記載の腫瘍治療用組成物。 
PCT/JP2019/010236 2018-03-13 2019-03-13 腫瘍免疫賦活剤 WO2019177011A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/979,610 US20210113594A1 (en) 2018-03-13 2019-03-13 Tumor immunomodulator
JP2020506598A JP7154634B2 (ja) 2018-03-13 2019-03-13 腫瘍免疫賦活剤
CN201980018999.3A CN111867598A (zh) 2018-03-13 2019-03-13 肿瘤免疫赋活剂
EP19766516.9A EP3766499A4 (en) 2018-03-13 2019-03-13 TUMOR IMMUNE STIMULATOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018045935 2018-03-13
JP2018-045935 2018-03-13

Publications (1)

Publication Number Publication Date
WO2019177011A1 true WO2019177011A1 (ja) 2019-09-19

Family

ID=67906798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/010236 WO2019177011A1 (ja) 2018-03-13 2019-03-13 腫瘍免疫賦活剤

Country Status (5)

Country Link
US (1) US20210113594A1 (ja)
EP (1) EP3766499A4 (ja)
JP (1) JP7154634B2 (ja)
CN (1) CN111867598A (ja)
WO (1) WO2019177011A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215405A1 (ja) * 2020-04-20 2021-10-28 国立大学法人大阪大学 免疫賦活化剤、及び治療又は予防用組成物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512020A (ja) * 1998-04-21 2002-04-23 マイクロメット アーゲー Cd19×cd3特異的ポリペプチドおよびその使用
JP2006340714A (ja) * 2005-05-09 2006-12-21 Ono Pharmaceut Co Ltd ProgrammedDeath1(PD−1)に対するヒトモノクローナル抗体および抗PD−1抗体単独または他の免疫療法と併用した癌治療方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020077276A1 (en) * 1999-04-27 2002-06-20 Fredeking Terry M. Compositions and methods for treating hemorrhagic virus infections and other disorders
SG196798A1 (en) * 2008-12-09 2014-02-13 Genentech Inc Anti-pd-l1 antibodies and their use to enhance t-cell function
WO2017087235A1 (en) * 2015-11-20 2017-05-26 Senhwa Biosciences, Inc. Combination therapy of tetracyclic quinolone analogs for treating cancer
JP2018537511A (ja) * 2015-12-16 2018-12-20 アドバクシス, インコーポレイテッド リステリア系免疫療法およびその使用方法
WO2017133175A1 (en) * 2016-02-04 2017-08-10 Nanjing Legend Biotech Co., Ltd. Engineered mammalian cells for cancer therapy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512020A (ja) * 1998-04-21 2002-04-23 マイクロメット アーゲー Cd19×cd3特異的ポリペプチドおよびその使用
JP2006340714A (ja) * 2005-05-09 2006-12-21 Ono Pharmaceut Co Ltd ProgrammedDeath1(PD−1)に対するヒトモノクローナル抗体および抗PD−1抗体単独または他の免疫療法と併用した癌治療方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANTICANCER DRUGS, vol. 24, no. 8, September 2013 (2013-09-01), pages 799 - 809
CURR MED CHEM, vol. 8, no. 3, February 2001 (2001-02-01), pages 271 - 279
HUI TANG , PADMA SAMPATH , XINMIN YAN , STEPHEN H THORNE : "Potential for enhanced therapeutic activity of biological cancer therapies with doxycycline combination", GENE THERAPY, vol. 20, no. 7, 31 July 2013 (2013-07-31), pages 1 - 21, XP055641380, ISSN: 0969-7128, DOI: 10.1038/gt.2012.96 *
IWASAKI, HIROMICHI: "Apoptosis of induced human leukemia cells by tetracycline", JAPANESE JOURNAL OFCLINICAL PHARMACOLOGY AND THERAPEUTICS, vol. 31, no. 2, 31 March 2000 (2000-03-31), pages 337 - 338, XP055741118, ISSN: 0388-1601, DOI: 10.3999/jscpt.31.337 *
MILIN R ACHARYA , JURGEN VENTIZ , WILLIAM D FIGG , ALEX SPARREBOOM: "Chemically modified tetracyclines as inhibitors of matrix metalloproteinases", DRUG RESISTANCE UPDATES, vol. 7, no. 3, 30 June 2004 (2004-06-30), pages 195 - 208, XP055641382, ISSN: 1368-7646, DOI: 10.1016/j.drup.2004.04.002 *
See also references of EP3766499A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215405A1 (ja) * 2020-04-20 2021-10-28 国立大学法人大阪大学 免疫賦活化剤、及び治療又は予防用組成物

Also Published As

Publication number Publication date
EP3766499A1 (en) 2021-01-20
CN111867598A (zh) 2020-10-30
JPWO2019177011A1 (ja) 2021-02-04
JP7154634B2 (ja) 2022-10-18
EP3766499A4 (en) 2021-04-21
US20210113594A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
TWI786044B (zh) 藉由投予pd-1抑制劑治療皮膚癌之方法
JP7462606B2 (ja) 3-(5-アミノ-1-オキソイソインドリン-2-イル)ピペリジン-2,6-ジオン誘導体及びIkarosファミリージンクフィンガー2(IKZF2)依存性疾患の治療におけるその使用
EP3730152A1 (en) Combination drug including tlr7 agonist
CN111787938A (zh) 靶向bcma的嵌合抗原受体、靶向cd19的嵌合抗原受体及组合疗法
WO2018156815A1 (en) Therapeutic compositions and related methods for photoimmunotherapy
CN112292128A (zh) Ep4抑制剂和其用途
CA3123511A1 (en) Dosing regimen and pharmaceutical combination comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
WO2019072220A1 (zh) Pd-1抗体和表观遗传调节剂联合在制备治疗肿瘤的药物中的用途
JP2023036999A (ja) 免疫応答を調節するためのオキサビシクロヘプタン
JP2022512161A (ja) 免疫療法のための組成物及び方法
WO2019177011A1 (ja) 腫瘍免疫賦活剤
KR102600728B1 (ko) 암 치료를 위한 화합물, 조성물 및 이것의 용도
US20210379106A1 (en) Oxabicycloheptanes for enhancing car t cell function
CN113316449A (zh) 胍那苄作为免疫疗法的佐剂
KR20210124187A (ko) 마드라신-유도체 화합물, 조성물 및 암 치료를 위한 이의 용도
WO2021215405A1 (ja) 免疫賦活化剤、及び治療又は予防用組成物
TWI830747B (zh) 3-(5-胺基-1-側氧基異吲哚啉-2-基)哌啶-2,6-二酮衍生物及其用途
WO2024043257A1 (ja) 癌の治療及び/又は予防のための医薬品
WO2024043258A1 (ja) 癌の治療及び/又は予防のための医薬品
Verma et al. OX40 and CD40 Agonists for the Treatment of Lung Cancer
CN116322771A (zh) 结核杆菌提取物的新型用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766516

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506598

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019766516

Country of ref document: EP

Effective date: 20201013