US20120237975A1 - Engineered nucleic acids and methods of use thereof - Google Patents
Engineered nucleic acids and methods of use thereof Download PDFInfo
- Publication number
- US20120237975A1 US20120237975A1 US13/252,049 US201113252049A US2012237975A1 US 20120237975 A1 US20120237975 A1 US 20120237975A1 US 201113252049 A US201113252049 A US 201113252049A US 2012237975 A1 US2012237975 A1 US 2012237975A1
- Authority
- US
- United States
- Prior art keywords
- protein
- nucleic acid
- cell
- nucleotide sequence
- interest
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000007523 nucleic acids Chemical class 0.000 title claims abstract description 273
- 102000039446 nucleic acids Human genes 0.000 title claims abstract description 255
- 108020004707 nucleic acids Proteins 0.000 title claims abstract description 255
- 238000000034 method Methods 0.000 title claims abstract description 124
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 234
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 216
- 239000000203 mixture Substances 0.000 claims abstract description 105
- 238000004519 manufacturing process Methods 0.000 claims abstract description 35
- 210000004027 cell Anatomy 0.000 claims description 288
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 100
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 87
- 125000003729 nucleotide group Chemical group 0.000 claims description 84
- 229920001184 polypeptide Polymers 0.000 claims description 78
- 239000002773 nucleotide Substances 0.000 claims description 77
- 230000014616 translation Effects 0.000 claims description 72
- 229920002477 rna polymer Polymers 0.000 claims description 59
- 230000004048 modification Effects 0.000 claims description 52
- 238000012986 modification Methods 0.000 claims description 52
- 239000002777 nucleoside Substances 0.000 claims description 34
- 150000003833 nucleoside derivatives Chemical class 0.000 claims description 34
- 230000000694 effects Effects 0.000 claims description 27
- 238000013519 translation Methods 0.000 claims description 27
- 108060003951 Immunoglobulin Proteins 0.000 claims description 25
- 102000018358 immunoglobulin Human genes 0.000 claims description 25
- 230000015788 innate immune response Effects 0.000 claims description 25
- 241000282414 Homo sapiens Species 0.000 claims description 24
- 230000001965 increasing effect Effects 0.000 claims description 21
- 229960004641 rituximab Drugs 0.000 claims description 18
- 239000012636 effector Substances 0.000 claims description 17
- 239000012634 fragment Substances 0.000 claims description 17
- 210000004962 mammalian cell Anatomy 0.000 claims description 16
- 230000015556 catabolic process Effects 0.000 claims description 15
- 238000006731 degradation reaction Methods 0.000 claims description 15
- 230000002829 reductive effect Effects 0.000 claims description 15
- 230000001413 cellular effect Effects 0.000 claims description 14
- 238000004806 packaging method and process Methods 0.000 claims description 13
- 230000003247 decreasing effect Effects 0.000 claims description 10
- 101710163270 Nuclease Proteins 0.000 claims description 9
- UHDGCWIWMRVCDJ-UHFFFAOYSA-N 1-beta-D-Xylofuranosyl-NH-Cytosine Natural products O=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 UHDGCWIWMRVCDJ-UHFFFAOYSA-N 0.000 claims description 8
- UHDGCWIWMRVCDJ-PSQAKQOGSA-N Cytidine Natural products O=C1N=C(N)C=CN1[C@@H]1[C@@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-PSQAKQOGSA-N 0.000 claims description 8
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical class O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 claims description 8
- UHDGCWIWMRVCDJ-ZAKLUEHWSA-N cytidine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O1 UHDGCWIWMRVCDJ-ZAKLUEHWSA-N 0.000 claims description 8
- 238000011282 treatment Methods 0.000 claims description 7
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 claims description 5
- 230000001580 bacterial effect Effects 0.000 claims description 5
- 238000012258 culturing Methods 0.000 claims description 5
- 230000003834 intracellular effect Effects 0.000 claims description 5
- 239000000825 pharmaceutical preparation Substances 0.000 claims description 5
- 101150029707 ERBB2 gene Proteins 0.000 claims description 4
- 210000005253 yeast cell Anatomy 0.000 claims description 4
- 208000023275 Autoimmune disease Diseases 0.000 claims description 3
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 claims description 3
- 206010006187 Breast cancer Diseases 0.000 claims description 3
- 101900034967 Ceramide transfer protein (isoform 2) Proteins 0.000 claims description 3
- 102300046644 Ceramide transfer protein isoform 2 Human genes 0.000 claims description 3
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 claims description 3
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 claims description 3
- ZAYHVCMSTBRABG-UHFFFAOYSA-N 5-Methylcytidine Natural products O=C1N=C(N)C(C)=CN1C1C(O)C(O)C(CO)O1 ZAYHVCMSTBRABG-UHFFFAOYSA-N 0.000 claims description 2
- ZAYHVCMSTBRABG-JXOAFFINSA-N 5-methylcytidine Chemical compound O=C1N=C(N)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 ZAYHVCMSTBRABG-JXOAFFINSA-N 0.000 claims description 2
- 208000026310 Breast neoplasm Diseases 0.000 claims description 2
- 241000238631 Hexapoda Species 0.000 claims description 2
- 229930185560 Pseudouridine Natural products 0.000 claims description 2
- PTJWIQPHWPFNBW-UHFFFAOYSA-N Pseudouridine C Natural products OC1C(O)C(CO)OC1C1=CNC(=O)NC1=O PTJWIQPHWPFNBW-UHFFFAOYSA-N 0.000 claims description 2
- WGDUUQDYDIIBKT-UHFFFAOYSA-N beta-Pseudouridine Natural products OC1OC(CN2C=CC(=O)NC2=O)C(O)C1O WGDUUQDYDIIBKT-UHFFFAOYSA-N 0.000 claims description 2
- PTJWIQPHWPFNBW-GBNDHIKLSA-N pseudouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1C1=CNC(=O)NC1=O PTJWIQPHWPFNBW-GBNDHIKLSA-N 0.000 claims description 2
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 claims 2
- 206010025323 Lymphomas Diseases 0.000 claims 1
- 101710100968 Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 claims 1
- 206010052779 Transplant rejections Diseases 0.000 claims 1
- 230000006907 apoptotic process Effects 0.000 claims 1
- 230000025084 cell cycle arrest Effects 0.000 claims 1
- 208000032839 leukemia Diseases 0.000 claims 1
- 210000000056 organ Anatomy 0.000 claims 1
- 108020004999 messenger RNA Proteins 0.000 abstract description 52
- 230000014509 gene expression Effects 0.000 abstract description 27
- 235000018102 proteins Nutrition 0.000 description 177
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 74
- 201000010099 disease Diseases 0.000 description 40
- 208000035475 disorder Diseases 0.000 description 34
- 229960000575 trastuzumab Drugs 0.000 description 33
- 239000004480 active ingredient Substances 0.000 description 29
- 239000003814 drug Substances 0.000 description 28
- 108091028043 Nucleic acid sequence Proteins 0.000 description 27
- -1 viral nucleic acids Chemical class 0.000 description 26
- 108020004414 DNA Proteins 0.000 description 23
- 239000008194 pharmaceutical composition Substances 0.000 description 23
- 238000001890 transfection Methods 0.000 description 22
- 239000002609 medium Substances 0.000 description 21
- 239000000047 product Substances 0.000 description 21
- 230000027455 binding Effects 0.000 description 19
- 239000000546 pharmaceutical excipient Substances 0.000 description 19
- 241001465754 Metazoa Species 0.000 description 17
- 239000003795 chemical substances by application Substances 0.000 description 17
- 238000000338 in vitro Methods 0.000 description 16
- 229920000642 polymer Polymers 0.000 description 16
- 230000000069 prophylactic effect Effects 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- 238000003384 imaging method Methods 0.000 description 15
- 239000000843 powder Substances 0.000 description 15
- 239000003755 preservative agent Substances 0.000 description 15
- 238000002965 ELISA Methods 0.000 description 14
- 102100035437 Ceramide transfer protein Human genes 0.000 description 13
- 101710119334 Ceramide transfer protein Proteins 0.000 description 13
- 238000004113 cell culture Methods 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 102000014150 Interferons Human genes 0.000 description 12
- 108010050904 Interferons Proteins 0.000 description 12
- 150000001413 amino acids Chemical class 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 102100039619 Granulocyte colony-stimulating factor Human genes 0.000 description 11
- 230000014759 maintenance of location Effects 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- 230000001225 therapeutic effect Effects 0.000 description 11
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 10
- 241000282412 Homo Species 0.000 description 10
- 229920002472 Starch Polymers 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 229940079593 drug Drugs 0.000 description 10
- 229940079322 interferon Drugs 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 239000004055 small Interfering RNA Substances 0.000 description 10
- 235000019698 starch Nutrition 0.000 description 10
- 239000000725 suspension Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 9
- 108020004459 Small interfering RNA Proteins 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 9
- 235000019441 ethanol Nutrition 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- 239000004615 ingredient Substances 0.000 description 9
- 239000003921 oil Substances 0.000 description 9
- 235000019198 oils Nutrition 0.000 description 9
- 229920001223 polyethylene glycol Polymers 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 229940032147 starch Drugs 0.000 description 9
- 239000008107 starch Substances 0.000 description 9
- 229940124597 therapeutic agent Drugs 0.000 description 9
- 238000013518 transcription Methods 0.000 description 9
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- KOSRFJWDECSPRO-UHFFFAOYSA-N alpha-L-glutamyl-L-glutamic acid Natural products OC(=O)CCC(N)C(=O)NC(CCC(O)=O)C(O)=O KOSRFJWDECSPRO-UHFFFAOYSA-N 0.000 description 8
- 239000000427 antigen Substances 0.000 description 8
- 108091007433 antigens Proteins 0.000 description 8
- 102000036639 antigens Human genes 0.000 description 8
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 8
- 108010055341 glutamyl-glutamic acid Proteins 0.000 description 8
- 230000002401 inhibitory effect Effects 0.000 description 8
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 230000004952 protein activity Effects 0.000 description 8
- 230000009467 reduction Effects 0.000 description 8
- 238000006722 reduction reaction Methods 0.000 description 8
- 230000035897 transcription Effects 0.000 description 8
- 102000012605 Cystic Fibrosis Transmembrane Conductance Regulator Human genes 0.000 description 7
- 108010079245 Cystic Fibrosis Transmembrane Conductance Regulator Proteins 0.000 description 7
- 101000746367 Homo sapiens Granulocyte colony-stimulating factor Proteins 0.000 description 7
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 7
- 241000124008 Mammalia Species 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000030279 gene silencing Effects 0.000 description 7
- 125000003835 nucleoside group Chemical group 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 6
- 241000283973 Oryctolagus cuniculus Species 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 241000700159 Rattus Species 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 6
- 108091023040 Transcription factor Proteins 0.000 description 6
- 102000040945 Transcription factor Human genes 0.000 description 6
- 235000010443 alginic acid Nutrition 0.000 description 6
- 229920000615 alginic acid Polymers 0.000 description 6
- 230000030833 cell death Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 239000003995 emulsifying agent Substances 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 239000001963 growth medium Substances 0.000 description 6
- 230000035772 mutation Effects 0.000 description 6
- 102000040430 polynucleotide Human genes 0.000 description 6
- 108091033319 polynucleotide Proteins 0.000 description 6
- 239000002157 polynucleotide Substances 0.000 description 6
- 230000004481 post-translational protein modification Effects 0.000 description 6
- 239000003380 propellant Substances 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 6
- 208000024891 symptom Diseases 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 101800001779 2'-O-methyltransferase Proteins 0.000 description 5
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- 108020004684 Internal Ribosome Entry Sites Proteins 0.000 description 5
- 241000699670 Mus sp. Species 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 229930006000 Sucrose Natural products 0.000 description 5
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 5
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 5
- 230000004071 biological effect Effects 0.000 description 5
- 239000006172 buffering agent Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 210000005260 human cell Anatomy 0.000 description 5
- 239000008101 lactose Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 230000028327 secretion Effects 0.000 description 5
- 235000002639 sodium chloride Nutrition 0.000 description 5
- 239000005720 sucrose Substances 0.000 description 5
- 102000003390 tumor necrosis factor Human genes 0.000 description 5
- 239000001993 wax Substances 0.000 description 5
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 4
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 4
- WRMNZCZEMHIOCP-UHFFFAOYSA-N 2-phenylethanol Chemical compound OCCC1=CC=CC=C1 WRMNZCZEMHIOCP-UHFFFAOYSA-N 0.000 description 4
- QXDXBKZJFLRLCM-UAKXSSHOSA-N 5-hydroxyuridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(O)=C1 QXDXBKZJFLRLCM-UAKXSSHOSA-N 0.000 description 4
- PEHVGBZKEYRQSX-UHFFFAOYSA-N 7-deaza-adenine Chemical compound NC1=NC=NC2=C1C=CN2 PEHVGBZKEYRQSX-UHFFFAOYSA-N 0.000 description 4
- HCGHYQLFMPXSDU-UHFFFAOYSA-N 7-methyladenine Chemical compound C1=NC(N)=C2N(C)C=NC2=N1 HCGHYQLFMPXSDU-UHFFFAOYSA-N 0.000 description 4
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 4
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- AHWRSSLYSGLBGD-CIUDSAMLSA-N Asp-Pro-Glu Chemical compound OC(=O)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(O)=O AHWRSSLYSGLBGD-CIUDSAMLSA-N 0.000 description 4
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 4
- 241000283690 Bos taurus Species 0.000 description 4
- 241000282472 Canis lupus familiaris Species 0.000 description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 4
- 241000699802 Cricetulus griseus Species 0.000 description 4
- 201000003883 Cystic fibrosis Diseases 0.000 description 4
- 102000004127 Cytokines Human genes 0.000 description 4
- 108090000695 Cytokines Proteins 0.000 description 4
- 241000282326 Felis catus Species 0.000 description 4
- 102000004877 Insulin Human genes 0.000 description 4
- 108090001061 Insulin Proteins 0.000 description 4
- FADYJNXDPBKVCA-UHFFFAOYSA-N L-Phenylalanyl-L-lysin Natural products NCCCCC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FADYJNXDPBKVCA-UHFFFAOYSA-N 0.000 description 4
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 4
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 4
- 238000008214 LDL Cholesterol Methods 0.000 description 4
- 108700011259 MicroRNAs Proteins 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- SLEHROROQDYRAW-KQYNXXCUSA-N N(2)-methylguanosine Chemical compound C1=NC=2C(=O)NC(NC)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O SLEHROROQDYRAW-KQYNXXCUSA-N 0.000 description 4
- YBAFDPFAUTYYRW-UHFFFAOYSA-N N-L-alpha-glutamyl-L-leucine Natural products CC(C)CC(C(O)=O)NC(=O)C(N)CCC(O)=O YBAFDPFAUTYYRW-UHFFFAOYSA-N 0.000 description 4
- KZNQNBZMBZJQJO-UHFFFAOYSA-N N-glycyl-L-proline Natural products NCC(=O)N1CCCC1C(O)=O KZNQNBZMBZJQJO-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 4
- 238000012300 Sequence Analysis Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 108091027967 Small hairpin RNA Proteins 0.000 description 4
- 229920002125 Sokalan® Polymers 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- NLNCNKIVJPEFBC-DLOVCJGASA-N Val-Val-Glu Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CCC(O)=O NLNCNKIVJPEFBC-DLOVCJGASA-N 0.000 description 4
- 230000001594 aberrant effect Effects 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 239000011543 agarose gel Substances 0.000 description 4
- 239000000783 alginic acid Substances 0.000 description 4
- 229960001126 alginic acid Drugs 0.000 description 4
- 150000004781 alginic acids Chemical class 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 229910000019 calcium carbonate Inorganic materials 0.000 description 4
- 229960003563 calcium carbonate Drugs 0.000 description 4
- 235000010216 calcium carbonate Nutrition 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 201000011510 cancer Diseases 0.000 description 4
- 239000001768 carboxy methyl cellulose Substances 0.000 description 4
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 4
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 4
- 229940105329 carboxymethylcellulose Drugs 0.000 description 4
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 4
- 235000012000 cholesterol Nutrition 0.000 description 4
- 210000004748 cultured cell Anatomy 0.000 description 4
- 229940124447 delivery agent Drugs 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 239000002552 dosage form Substances 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 230000009368 gene silencing by RNA Effects 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 4
- 108010049041 glutamylalanine Proteins 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 108010036413 histidylglycine Proteins 0.000 description 4
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 4
- 230000028993 immune response Effects 0.000 description 4
- 229940125396 insulin Drugs 0.000 description 4
- 108010027338 isoleucylcysteine Proteins 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- 108010054155 lysyllysine Proteins 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 238000007069 methylation reaction Methods 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- 229920000136 polysorbate Polymers 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 229940096913 pseudoisocytidine Drugs 0.000 description 4
- 230000003248 secreting effect Effects 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 239000013589 supplement Substances 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 229960005486 vaccine Drugs 0.000 description 4
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 3
- 108700028369 Alleles Proteins 0.000 description 3
- 241000271566 Aves Species 0.000 description 3
- 241000283707 Capra Species 0.000 description 3
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 3
- 229920002261 Corn starch Polymers 0.000 description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- 102000003951 Erythropoietin Human genes 0.000 description 3
- 108090000394 Erythropoietin Proteins 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 241000710198 Foot-and-mouth disease virus Species 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- 108010034791 Heterochromatin Proteins 0.000 description 3
- NUKXXNFEUZGPRO-BJDJZHNGSA-N Ile-Leu-Cys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)O)N NUKXXNFEUZGPRO-BJDJZHNGSA-N 0.000 description 3
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 3
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 229930182816 L-glutamine Natural products 0.000 description 3
- 108010007622 LDL Lipoproteins Proteins 0.000 description 3
- 102000007330 LDL Lipoproteins Human genes 0.000 description 3
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 3
- 240000007472 Leucaena leucocephala Species 0.000 description 3
- 229930195725 Mannitol Natural products 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 108700026244 Open Reading Frames Proteins 0.000 description 3
- 241001494479 Pecora Species 0.000 description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 3
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 3
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 3
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 3
- 102100032889 Sortilin Human genes 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000008272 agar Substances 0.000 description 3
- 229940023476 agar Drugs 0.000 description 3
- 235000010419 agar Nutrition 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 108010013835 arginine glutamate Proteins 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 239000000440 bentonite Substances 0.000 description 3
- 229910000278 bentonite Inorganic materials 0.000 description 3
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 239000001506 calcium phosphate Substances 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 239000006143 cell culture medium Substances 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 235000019868 cocoa butter Nutrition 0.000 description 3
- 229940110456 cocoa butter Drugs 0.000 description 3
- 239000008120 corn starch Substances 0.000 description 3
- 229940099112 cornstarch Drugs 0.000 description 3
- 239000006071 cream Substances 0.000 description 3
- 230000002939 deleterious effect Effects 0.000 description 3
- 210000004207 dermis Anatomy 0.000 description 3
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 210000002919 epithelial cell Anatomy 0.000 description 3
- 229940105423 erythropoietin Drugs 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 229940029575 guanosine Drugs 0.000 description 3
- 210000004458 heterochromatin Anatomy 0.000 description 3
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 3
- 238000003119 immunoblot Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000003701 inert diluent Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 108010034529 leucyl-lysine Proteins 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 230000004807 localization Effects 0.000 description 3
- 239000006210 lotion Substances 0.000 description 3
- 239000000594 mannitol Substances 0.000 description 3
- 235000010355 mannitol Nutrition 0.000 description 3
- 229920000609 methyl cellulose Polymers 0.000 description 3
- 239000001923 methylcellulose Substances 0.000 description 3
- 235000010981 methylcellulose Nutrition 0.000 description 3
- 239000002674 ointment Substances 0.000 description 3
- 210000001672 ovary Anatomy 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 239000008389 polyethoxylated castor oil Substances 0.000 description 3
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 230000002685 pulmonary effect Effects 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 235000017550 sodium carbonate Nutrition 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000007909 solid dosage form Substances 0.000 description 3
- 239000008247 solid mixture Substances 0.000 description 3
- 108010014657 sortilin Proteins 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 239000000829 suppository Substances 0.000 description 3
- 108010027510 vaccinia virus capping enzyme Proteins 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 239000000080 wetting agent Substances 0.000 description 3
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 3
- YZSZLBRBVWAXFW-LNYQSQCFSA-N (2R,3R,4S,5R)-2-(2-amino-6-hydroxy-6-methoxy-3H-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1(O)NC(N)=NC2=C1N=CN2[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O YZSZLBRBVWAXFW-LNYQSQCFSA-N 0.000 description 2
- PQFMROVJTOPVDF-JBDRJPRFSA-N (2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-amino-3-carboxypropanoyl]amino]-3-carboxypropanoyl]amino]-4-carboxybutanoyl]amino]butanedioic acid Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O PQFMROVJTOPVDF-JBDRJPRFSA-N 0.000 description 2
- MYUOTPIQBPUQQU-CKTDUXNWSA-N (2s,3r)-2-amino-n-[[9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2-methylsulfanylpurin-6-yl]carbamoyl]-3-hydroxybutanamide Chemical compound C12=NC(SC)=NC(NC(=O)NC(=O)[C@@H](N)[C@@H](C)O)=C2N=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O MYUOTPIQBPUQQU-CKTDUXNWSA-N 0.000 description 2
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- OYTVCAGSWWRUII-DWJKKKFUSA-N 1-Methyl-1-deazapseudouridine Chemical compound CC1C=C(C(=O)NC1=O)[C@H]2[C@@H]([C@@H]([C@H](O2)CO)O)O OYTVCAGSWWRUII-DWJKKKFUSA-N 0.000 description 2
- MIXBUOXRHTZHKR-XUTVFYLZSA-N 1-Methylpseudoisocytidine Chemical compound CN1C=C(C(=O)N=C1N)[C@H]2[C@@H]([C@@H]([C@H](O2)CO)O)O MIXBUOXRHTZHKR-XUTVFYLZSA-N 0.000 description 2
- KYEKLQMDNZPEFU-KVTDHHQDSA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,3,5-triazine-2,4-dione Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)N=C1 KYEKLQMDNZPEFU-KVTDHHQDSA-N 0.000 description 2
- UTQUILVPBZEHTK-ZOQUXTDFSA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-3-methylpyrimidine-2,4-dione Chemical compound O=C1N(C)C(=O)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 UTQUILVPBZEHTK-ZOQUXTDFSA-N 0.000 description 2
- QLOCVMVCRJOTTM-TURQNECASA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-prop-1-ynylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(C#CC)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 QLOCVMVCRJOTTM-TURQNECASA-N 0.000 description 2
- GUNOEKASBVILNS-UHFFFAOYSA-N 1-methyl-1-deaza-pseudoisocytidine Chemical compound CC(C=C1C(C2O)OC(CO)C2O)=C(N)NC1=O GUNOEKASBVILNS-UHFFFAOYSA-N 0.000 description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 2
- GFYLSDSUCHVORB-IOSLPCCCSA-N 1-methyladenosine Chemical compound C1=NC=2C(=N)N(C)C=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O GFYLSDSUCHVORB-IOSLPCCCSA-N 0.000 description 2
- UTAIYTHAJQNQDW-KQYNXXCUSA-N 1-methylguanosine Chemical compound C1=NC=2C(=O)N(C)C(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O UTAIYTHAJQNQDW-KQYNXXCUSA-N 0.000 description 2
- WJNGQIYEQLPJMN-IOSLPCCCSA-N 1-methylinosine Chemical compound C1=NC=2C(=O)N(C)C=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WJNGQIYEQLPJMN-IOSLPCCCSA-N 0.000 description 2
- UVBYMVOUBXYSFV-XUTVFYLZSA-N 1-methylpseudouridine Chemical compound O=C1NC(=O)N(C)C=C1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 UVBYMVOUBXYSFV-XUTVFYLZSA-N 0.000 description 2
- UVBYMVOUBXYSFV-UHFFFAOYSA-N 1-methylpseudouridine Natural products O=C1NC(=O)N(C)C=C1C1C(O)C(O)C(CO)O1 UVBYMVOUBXYSFV-UHFFFAOYSA-N 0.000 description 2
- JCNGYIGHEUKAHK-DWJKKKFUSA-N 2-Thio-1-methyl-1-deazapseudouridine Chemical compound CC1C=C(C(=O)NC1=S)[C@H]2[C@@H]([C@@H]([C@H](O2)CO)O)O JCNGYIGHEUKAHK-DWJKKKFUSA-N 0.000 description 2
- BVLGKOVALHRKNM-XUTVFYLZSA-N 2-Thio-1-methylpseudouridine Chemical compound CN1C=C(C(=O)NC1=S)[C@H]2[C@@H]([C@@H]([C@H](O2)CO)O)O BVLGKOVALHRKNM-XUTVFYLZSA-N 0.000 description 2
- CWXIOHYALLRNSZ-JWMKEVCDSA-N 2-Thiodihydropseudouridine Chemical compound C1C(C(=O)NC(=S)N1)[C@H]2[C@@H]([C@@H]([C@H](O2)CO)O)O CWXIOHYALLRNSZ-JWMKEVCDSA-N 0.000 description 2
- NUBJGTNGKODGGX-YYNOVJQHSA-N 2-[5-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2,4-dioxopyrimidin-1-yl]acetic acid Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1C1=CN(CC(O)=O)C(=O)NC1=O NUBJGTNGKODGGX-YYNOVJQHSA-N 0.000 description 2
- VJKJOPUEUOTEBX-TURQNECASA-N 2-[[1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2,4-dioxopyrimidin-5-yl]methylamino]ethanesulfonic acid Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(CNCCS(O)(=O)=O)=C1 VJKJOPUEUOTEBX-TURQNECASA-N 0.000 description 2
- LCKIHCRZXREOJU-KYXWUPHJSA-N 2-[[5-[(2S,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2,4-dioxopyrimidin-1-yl]methylamino]ethanesulfonic acid Chemical compound C(NCCS(=O)(=O)O)N1C=C([C@H]2[C@H](O)[C@H](O)[C@@H](CO)O2)C(NC1=O)=O LCKIHCRZXREOJU-KYXWUPHJSA-N 0.000 description 2
- MPDKOGQMQLSNOF-GBNDHIKLSA-N 2-amino-5-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1h-pyrimidin-6-one Chemical compound O=C1NC(N)=NC=C1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 MPDKOGQMQLSNOF-GBNDHIKLSA-N 0.000 description 2
- JRYMOPZHXMVHTA-DAGMQNCNSA-N 2-amino-7-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1h-pyrrolo[2,3-d]pyrimidin-4-one Chemical compound C1=CC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O JRYMOPZHXMVHTA-DAGMQNCNSA-N 0.000 description 2
- OTDJAMXESTUWLO-UUOKFMHZSA-N 2-amino-9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)-2-oxolanyl]-3H-purine-6-thione Chemical compound C12=NC(N)=NC(S)=C2N=CN1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OTDJAMXESTUWLO-UUOKFMHZSA-N 0.000 description 2
- IBKZHHCJWDWGAJ-FJGDRVTGSA-N 2-amino-9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1-methylpurine-6-thione Chemical compound C1=NC=2C(=S)N(C)C(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O IBKZHHCJWDWGAJ-FJGDRVTGSA-N 0.000 description 2
- HPKQEMIXSLRGJU-UUOKFMHZSA-N 2-amino-9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-7-methyl-3h-purine-6,8-dione Chemical compound O=C1N(C)C(C(NC(N)=N2)=O)=C2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O HPKQEMIXSLRGJU-UUOKFMHZSA-N 0.000 description 2
- PBFLIOAJBULBHI-JJNLEZRASA-N 2-amino-n-[[9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]purin-6-yl]carbamoyl]acetamide Chemical compound C1=NC=2C(NC(=O)NC(=O)CN)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O PBFLIOAJBULBHI-JJNLEZRASA-N 0.000 description 2
- MWBWWFOAEOYUST-UHFFFAOYSA-N 2-aminopurine Chemical compound NC1=NC=C2N=CNC2=N1 MWBWWFOAEOYUST-UHFFFAOYSA-N 0.000 description 2
- RLZMYTZDQAVNIN-ZOQUXTDFSA-N 2-methoxy-4-thio-uridine Chemical compound COC1=NC(=S)C=CN1[C@H]2[C@@H]([C@@H]([C@H](O2)CO)O)O RLZMYTZDQAVNIN-ZOQUXTDFSA-N 0.000 description 2
- QCPQCJVQJKOKMS-VLSMUFELSA-N 2-methoxy-5-methyl-cytidine Chemical compound CC(C(N)=N1)=CN([C@@H]([C@@H]2O)O[C@H](CO)[C@H]2O)C1OC QCPQCJVQJKOKMS-VLSMUFELSA-N 0.000 description 2
- TUDKBZAMOFJOSO-UHFFFAOYSA-N 2-methoxy-7h-purin-6-amine Chemical compound COC1=NC(N)=C2NC=NC2=N1 TUDKBZAMOFJOSO-UHFFFAOYSA-N 0.000 description 2
- STISOQJGVFEOFJ-MEVVYUPBSA-N 2-methoxy-cytidine Chemical compound COC(N([C@@H]([C@@H]1O)O[C@H](CO)[C@H]1O)C=C1)N=C1N STISOQJGVFEOFJ-MEVVYUPBSA-N 0.000 description 2
- WBVPJIKOWUQTSD-ZOQUXTDFSA-N 2-methoxyuridine Chemical compound COC1=NC(=O)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 WBVPJIKOWUQTSD-ZOQUXTDFSA-N 0.000 description 2
- FXGXEFXCWDTSQK-UHFFFAOYSA-N 2-methylsulfanyl-7h-purin-6-amine Chemical compound CSC1=NC(N)=C2NC=NC2=N1 FXGXEFXCWDTSQK-UHFFFAOYSA-N 0.000 description 2
- QEWSGVMSLPHELX-UHFFFAOYSA-N 2-methylthio-N6-(cis-hydroxyisopentenyl) adenosine Chemical compound C12=NC(SC)=NC(NCC=C(C)CO)=C2N=CN1C1OC(CO)C(O)C1O QEWSGVMSLPHELX-UHFFFAOYSA-N 0.000 description 2
- JUMHLCXWYQVTLL-KVTDHHQDSA-N 2-thio-5-aza-uridine Chemical compound [C@@H]1([C@H](O)[C@H](O)[C@@H](CO)O1)N1C(=S)NC(=O)N=C1 JUMHLCXWYQVTLL-KVTDHHQDSA-N 0.000 description 2
- VRVXMIJPUBNPGH-XVFCMESISA-N 2-thio-dihydrouridine Chemical compound OC[C@H]1O[C@H]([C@H](O)[C@@H]1O)N1CCC(=O)NC1=S VRVXMIJPUBNPGH-XVFCMESISA-N 0.000 description 2
- ZVGONGHIVBJXFC-WCTZXXKLSA-N 2-thio-zebularine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=S)N=CC=C1 ZVGONGHIVBJXFC-WCTZXXKLSA-N 0.000 description 2
- RHFUOMFWUGWKKO-XVFCMESISA-N 2-thiocytidine Chemical compound S=C1N=C(N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 RHFUOMFWUGWKKO-XVFCMESISA-N 0.000 description 2
- GJTBSTBJLVYKAU-XVFCMESISA-N 2-thiouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=S)NC(=O)C=C1 GJTBSTBJLVYKAU-XVFCMESISA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- 108020005345 3' Untranslated Regions Proteins 0.000 description 2
- RDPUKVRQKWBSPK-UHFFFAOYSA-N 3-Methylcytidine Natural products O=C1N(C)C(=N)C=CN1C1C(O)C(O)C(CO)O1 RDPUKVRQKWBSPK-UHFFFAOYSA-N 0.000 description 2
- UTQUILVPBZEHTK-UHFFFAOYSA-N 3-Methyluridine Natural products O=C1N(C)C(=O)C=CN1C1C(O)C(O)C(CO)O1 UTQUILVPBZEHTK-UHFFFAOYSA-N 0.000 description 2
- RDPUKVRQKWBSPK-ZOQUXTDFSA-N 3-methylcytidine Chemical compound O=C1N(C)C(=N)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 RDPUKVRQKWBSPK-ZOQUXTDFSA-N 0.000 description 2
- ZSIINYPBPQCZKU-BQNZPOLKSA-O 4-Methoxy-1-methylpseudoisocytidine Chemical compound C[N+](CC1[C@H]([C@H]2O)O[C@@H](CO)[C@@H]2O)=C(N)N=C1OC ZSIINYPBPQCZKU-BQNZPOLKSA-O 0.000 description 2
- FGFVODMBKZRMMW-XUTVFYLZSA-N 4-Methoxy-2-thiopseudouridine Chemical compound COC1=C(C=NC(=S)N1)[C@H]2[C@@H]([C@@H]([C@H](O2)CO)O)O FGFVODMBKZRMMW-XUTVFYLZSA-N 0.000 description 2
- HOCJTJWYMOSXMU-XUTVFYLZSA-N 4-Methoxypseudouridine Chemical compound COC1=C(C=NC(=O)N1)[C@H]2[C@@H]([C@@H]([C@H](O2)CO)O)O HOCJTJWYMOSXMU-XUTVFYLZSA-N 0.000 description 2
- VTGBLFNEDHVUQA-XUTVFYLZSA-N 4-Thio-1-methyl-pseudouridine Chemical compound S=C1NC(=O)N(C)C=C1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 VTGBLFNEDHVUQA-XUTVFYLZSA-N 0.000 description 2
- DMUQOPXCCOBPID-XUTVFYLZSA-N 4-Thio-1-methylpseudoisocytidine Chemical compound CN1C=C(C(=S)N=C1N)[C@H]2[C@@H]([C@@H]([C@H](O2)CO)O)O DMUQOPXCCOBPID-XUTVFYLZSA-N 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- OCMSXKMNYAHJMU-JXOAFFINSA-N 4-amino-1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2-oxopyrimidine-5-carbaldehyde Chemical compound C1=C(C=O)C(N)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 OCMSXKMNYAHJMU-JXOAFFINSA-N 0.000 description 2
- OZHIJZYBTCTDQC-JXOAFFINSA-N 4-amino-1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2-thione Chemical compound S=C1N=C(N)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 OZHIJZYBTCTDQC-JXOAFFINSA-N 0.000 description 2
- CFKMVGJGLGKFKI-UHFFFAOYSA-N 4-chloro-m-cresol Chemical compound CC1=CC(O)=CC=C1Cl CFKMVGJGLGKFKI-UHFFFAOYSA-N 0.000 description 2
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 2
- GCNTZFIIOFTKIY-UHFFFAOYSA-N 4-hydroxypyridine Chemical compound OC1=CC=NC=C1 GCNTZFIIOFTKIY-UHFFFAOYSA-N 0.000 description 2
- LOICBOXHPCURMU-UHFFFAOYSA-N 4-methoxy-pseudoisocytidine Chemical compound COC1NC(N)=NC=C1C(C1O)OC(CO)C1O LOICBOXHPCURMU-UHFFFAOYSA-N 0.000 description 2
- FIWQPTRUVGSKOD-UHFFFAOYSA-N 4-thio-1-methyl-1-deaza-pseudoisocytidine Chemical compound CC(C=C1C(C2O)OC(CO)C2O)=C(N)NC1=S FIWQPTRUVGSKOD-UHFFFAOYSA-N 0.000 description 2
- SJVVKUMXGIKAAI-UHFFFAOYSA-N 4-thio-pseudoisocytidine Chemical compound NC(N1)=NC=C(C(C2O)OC(CO)C2O)C1=S SJVVKUMXGIKAAI-UHFFFAOYSA-N 0.000 description 2
- FAWQJBLSWXIJLA-VPCXQMTMSA-N 5-(carboxymethyl)uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(CC(O)=O)=C1 FAWQJBLSWXIJLA-VPCXQMTMSA-N 0.000 description 2
- NMUSYJAQQFHJEW-UHFFFAOYSA-N 5-Azacytidine Natural products O=C1N=C(N)N=CN1C1C(O)C(O)C(CO)O1 NMUSYJAQQFHJEW-UHFFFAOYSA-N 0.000 description 2
- NFEXJLMYXXIWPI-JXOAFFINSA-N 5-Hydroxymethylcytidine Chemical compound C1=C(CO)C(N)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NFEXJLMYXXIWPI-JXOAFFINSA-N 0.000 description 2
- ITGWEVGJUSMCEA-KYXWUPHJSA-N 5-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1-prop-1-ynylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)N(C#CC)C=C1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 ITGWEVGJUSMCEA-KYXWUPHJSA-N 0.000 description 2
- DDHOXEOVAJVODV-GBNDHIKLSA-N 5-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1C1=CNC(=S)NC1=O DDHOXEOVAJVODV-GBNDHIKLSA-N 0.000 description 2
- BNAWMJKJLNJZFU-GBNDHIKLSA-N 5-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-4-sulfanylidene-1h-pyrimidin-2-one Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1C1=CNC(=O)NC1=S BNAWMJKJLNJZFU-GBNDHIKLSA-N 0.000 description 2
- XUNBIDXYAUXNKD-DBRKOABJSA-N 5-aza-2-thio-zebularine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=S)N=CN=C1 XUNBIDXYAUXNKD-DBRKOABJSA-N 0.000 description 2
- OSLBPVOJTCDNEF-DBRKOABJSA-N 5-aza-zebularine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)N=CN=C1 OSLBPVOJTCDNEF-DBRKOABJSA-N 0.000 description 2
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 2
- RPQQZHJQUBDHHG-FNCVBFRFSA-N 5-methyl-zebularine Chemical compound C1=C(C)C=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 RPQQZHJQUBDHHG-FNCVBFRFSA-N 0.000 description 2
- USVMJSALORZVDV-UHFFFAOYSA-N 6-(gamma,gamma-dimethylallylamino)purine riboside Natural products C1=NC=2C(NCC=C(C)C)=NC=NC=2N1C1OC(CO)C(O)C1O USVMJSALORZVDV-UHFFFAOYSA-N 0.000 description 2
- OZTOEARQSSIFOG-MWKIOEHESA-N 6-Thio-7-deaza-8-azaguanosine Chemical compound Nc1nc(=S)c2cnn([C@@H]3O[C@H](CO)[C@@H](O)[C@H]3O)c2[nH]1 OZTOEARQSSIFOG-MWKIOEHESA-N 0.000 description 2
- CBNRZZNSRJQZNT-IOSLPCCCSA-O 6-thio-7-deaza-guanosine Chemical compound CC1=C[NH+]([C@@H]([C@@H]2O)O[C@H](CO)[C@H]2O)C(NC(N)=N2)=C1C2=S CBNRZZNSRJQZNT-IOSLPCCCSA-O 0.000 description 2
- RFHIWBUKNJIBSE-KQYNXXCUSA-O 6-thio-7-methyl-guanosine Chemical compound C1=2NC(N)=NC(=S)C=2N(C)C=[N+]1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O RFHIWBUKNJIBSE-KQYNXXCUSA-O 0.000 description 2
- MJJUWOIBPREHRU-MWKIOEHESA-N 7-Deaza-8-azaguanosine Chemical compound NC=1NC(C2=C(N=1)N(N=C2)[C@H]1[C@H](O)[C@H](O)[C@H](O1)CO)=O MJJUWOIBPREHRU-MWKIOEHESA-N 0.000 description 2
- ISSMDAFGDCTNDV-UHFFFAOYSA-N 7-deaza-2,6-diaminopurine Chemical compound NC1=NC(N)=C2NC=CC2=N1 ISSMDAFGDCTNDV-UHFFFAOYSA-N 0.000 description 2
- YVVMIGRXQRPSIY-UHFFFAOYSA-N 7-deaza-2-aminopurine Chemical compound N1C(N)=NC=C2C=CN=C21 YVVMIGRXQRPSIY-UHFFFAOYSA-N 0.000 description 2
- ZTAWTRPFJHKMRU-UHFFFAOYSA-N 7-deaza-8-aza-2,6-diaminopurine Chemical compound NC1=NC(N)=C2NN=CC2=N1 ZTAWTRPFJHKMRU-UHFFFAOYSA-N 0.000 description 2
- SMXRCJBCWRHDJE-UHFFFAOYSA-N 7-deaza-8-aza-2-aminopurine Chemical compound NC1=NC=C2C=NNC2=N1 SMXRCJBCWRHDJE-UHFFFAOYSA-N 0.000 description 2
- LHCPRYRLDOSKHK-UHFFFAOYSA-N 7-deaza-8-aza-adenine Chemical compound NC1=NC=NC2=C1C=NN2 LHCPRYRLDOSKHK-UHFFFAOYSA-N 0.000 description 2
- VJNXUFOTKNTNPG-IOSLPCCCSA-O 7-methylinosine Chemical compound C1=2NC=NC(=O)C=2N(C)C=[N+]1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O VJNXUFOTKNTNPG-IOSLPCCCSA-O 0.000 description 2
- HCAJQHYUCKICQH-VPENINKCSA-N 8-Oxo-7,8-dihydro-2'-deoxyguanosine Chemical compound C1=2NC(N)=NC(=O)C=2NC(=O)N1[C@H]1C[C@H](O)[C@@H](CO)O1 HCAJQHYUCKICQH-VPENINKCSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- ABXGJJVKZAAEDH-IOSLPCCCSA-N 9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2-(dimethylamino)-3h-purine-6-thione Chemical compound C1=NC=2C(=S)NC(N(C)C)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O ABXGJJVKZAAEDH-IOSLPCCCSA-N 0.000 description 2
- ADPMAYFIIFNDMT-KQYNXXCUSA-N 9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2-(methylamino)-3h-purine-6-thione Chemical compound C1=NC=2C(=S)NC(NC)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O ADPMAYFIIFNDMT-KQYNXXCUSA-N 0.000 description 2
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- NHCPCLJZRSIDHS-ZLUOBGJFSA-N Ala-Asp-Ala Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(O)=O NHCPCLJZRSIDHS-ZLUOBGJFSA-N 0.000 description 2
- GSCLWXDNIMNIJE-ZLUOBGJFSA-N Ala-Asp-Asn Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O GSCLWXDNIMNIJE-ZLUOBGJFSA-N 0.000 description 2
- CKLDHDOIYBVUNP-KBIXCLLPSA-N Ala-Ile-Glu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(O)=O CKLDHDOIYBVUNP-KBIXCLLPSA-N 0.000 description 2
- CFPQUJZTLUQUTJ-HTFCKZLJSA-N Ala-Ile-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](C)N CFPQUJZTLUQUTJ-HTFCKZLJSA-N 0.000 description 2
- LXAARTARZJJCMB-CIQUZCHMSA-N Ala-Ile-Thr Chemical compound [H]N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(O)=O LXAARTARZJJCMB-CIQUZCHMSA-N 0.000 description 2
- IHRGVZXPTIQNIP-NAKRPEOUSA-N Ala-Met-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CCSC)NC(=O)[C@H](C)N IHRGVZXPTIQNIP-NAKRPEOUSA-N 0.000 description 2
- YCRAFFCYWOUEOF-DLOVCJGASA-N Ala-Phe-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)C)CC1=CC=CC=C1 YCRAFFCYWOUEOF-DLOVCJGASA-N 0.000 description 2
- RTZCUEHYUQZIDE-WHFBIAKZSA-N Ala-Ser-Gly Chemical compound C[C@H](N)C(=O)N[C@@H](CO)C(=O)NCC(O)=O RTZCUEHYUQZIDE-WHFBIAKZSA-N 0.000 description 2
- IOFVWPYSRSCWHI-JXUBOQSCSA-N Ala-Thr-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](C)N IOFVWPYSRSCWHI-JXUBOQSCSA-N 0.000 description 2
- YJHKTAMKPGFJCT-NRPADANISA-N Ala-Val-Glu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O YJHKTAMKPGFJCT-NRPADANISA-N 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 241000272517 Anseriformes Species 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- 235000010777 Arachis hypogaea Nutrition 0.000 description 2
- VBFJESQBIWCWRL-DCAQKATOSA-N Arg-Ala-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCCNC(N)=N VBFJESQBIWCWRL-DCAQKATOSA-N 0.000 description 2
- JGDGLDNAQJJGJI-AVGNSLFASA-N Arg-Arg-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CCCN=C(N)N)N JGDGLDNAQJJGJI-AVGNSLFASA-N 0.000 description 2
- SQKPKIJVWHAWNF-DCAQKATOSA-N Arg-Asp-Lys Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(O)=O SQKPKIJVWHAWNF-DCAQKATOSA-N 0.000 description 2
- VXXHDZKEQNGXNU-QXEWZRGKSA-N Arg-Asp-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](N)CCCN=C(N)N VXXHDZKEQNGXNU-QXEWZRGKSA-N 0.000 description 2
- RWDVGVPHEWOZMO-GUBZILKMSA-N Arg-Cys-Val Chemical compound CC(C)[C@H](NC(=O)[C@H](CS)NC(=O)[C@@H](N)CCCNC(N)=N)C(O)=O RWDVGVPHEWOZMO-GUBZILKMSA-N 0.000 description 2
- XLWSGICNBZGYTA-CIUDSAMLSA-N Arg-Glu-Asp Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O XLWSGICNBZGYTA-CIUDSAMLSA-N 0.000 description 2
- OGUPCHKBOKJFMA-SRVKXCTJSA-N Arg-Glu-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CCCN=C(N)N OGUPCHKBOKJFMA-SRVKXCTJSA-N 0.000 description 2
- WMEVEPXNCMKNGH-IHRRRGAJSA-N Arg-Leu-His Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N WMEVEPXNCMKNGH-IHRRRGAJSA-N 0.000 description 2
- BNYNOWJESJJIOI-XUXIUFHCSA-N Arg-Lys-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCCN=C(N)N)N BNYNOWJESJJIOI-XUXIUFHCSA-N 0.000 description 2
- FKQITMVNILRUCQ-IHRRRGAJSA-N Arg-Phe-Asp Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(O)=O)C(O)=O FKQITMVNILRUCQ-IHRRRGAJSA-N 0.000 description 2
- UTSMXMABBPFVJP-SZMVWBNQSA-N Arg-Val-Trp Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N UTSMXMABBPFVJP-SZMVWBNQSA-N 0.000 description 2
- ZZXMOQIUIJJOKZ-ZLUOBGJFSA-N Asn-Asn-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](N)CC(N)=O ZZXMOQIUIJJOKZ-ZLUOBGJFSA-N 0.000 description 2
- VYLVOMUVLMGCRF-ZLUOBGJFSA-N Asn-Asp-Ser Chemical compound NC(=O)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(O)=O VYLVOMUVLMGCRF-ZLUOBGJFSA-N 0.000 description 2
- DXVMJJNAOVECBA-WHFBIAKZSA-N Asn-Gly-Asn Chemical compound NC(=O)C[C@H](N)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(O)=O DXVMJJNAOVECBA-WHFBIAKZSA-N 0.000 description 2
- SXNJBDYEBOUYOJ-DCAQKATOSA-N Asn-His-Met Chemical compound CSCC[C@@H](C(=O)O)NC(=O)[C@H](CC1=CN=CN1)NC(=O)[C@H](CC(=O)N)N SXNJBDYEBOUYOJ-DCAQKATOSA-N 0.000 description 2
- QUCCLIXMVPIVOB-BZSNNMDCSA-N Asn-Tyr-Phe Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)O)NC(=O)[C@H](CC2=CC=C(C=C2)O)NC(=O)[C@H](CC(=O)N)N QUCCLIXMVPIVOB-BZSNNMDCSA-N 0.000 description 2
- GBAWQWASNGUNQF-ZLUOBGJFSA-N Asp-Ala-Cys Chemical compound C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(=O)O)N GBAWQWASNGUNQF-ZLUOBGJFSA-N 0.000 description 2
- HTOZUYZQPICRAP-BPUTZDHNSA-N Asp-Arg-Trp Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(=O)O)N HTOZUYZQPICRAP-BPUTZDHNSA-N 0.000 description 2
- RATOMFTUDRYMKX-ACZMJKKPSA-N Asp-Glu-Cys Chemical compound C(CC(=O)O)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC(=O)O)N RATOMFTUDRYMKX-ACZMJKKPSA-N 0.000 description 2
- OGTCOKZFOJIZFG-CIUDSAMLSA-N Asp-His-Asp Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(O)=O)C(O)=O OGTCOKZFOJIZFG-CIUDSAMLSA-N 0.000 description 2
- VSMYBNPOHYAXSD-GUBZILKMSA-N Asp-Lys-Glu Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(O)=O VSMYBNPOHYAXSD-GUBZILKMSA-N 0.000 description 2
- HJCGDIGVVWETRO-ZPFDUUQYSA-N Asp-Lys-Ile Chemical compound CC[C@H](C)[C@H](NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CC(O)=O)C(O)=O HJCGDIGVVWETRO-ZPFDUUQYSA-N 0.000 description 2
- LTCKTLYKRMCFOC-KKUMJFAQSA-N Asp-Phe-Leu Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(C)C)C(O)=O LTCKTLYKRMCFOC-KKUMJFAQSA-N 0.000 description 2
- PWAIZUBWHRHYKS-MELADBBJSA-N Asp-Phe-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CC=CC=C2)NC(=O)[C@H](CC(=O)O)N)C(=O)O PWAIZUBWHRHYKS-MELADBBJSA-N 0.000 description 2
- KESWRFKUZRUTAH-FXQIFTODSA-N Asp-Pro-Asp Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(O)=O)C(O)=O KESWRFKUZRUTAH-FXQIFTODSA-N 0.000 description 2
- YFGUZQQCSDZRBN-DCAQKATOSA-N Asp-Pro-Leu Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(O)=O YFGUZQQCSDZRBN-DCAQKATOSA-N 0.000 description 2
- MRYDJCIIVRXVGG-QEJZJMRPSA-N Asp-Trp-Glu Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CCC(O)=O)C(O)=O MRYDJCIIVRXVGG-QEJZJMRPSA-N 0.000 description 2
- XWKPSMRPIKKDDU-RCOVLWMOSA-N Asp-Val-Gly Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)NCC(O)=O XWKPSMRPIKKDDU-RCOVLWMOSA-N 0.000 description 2
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 2
- QFOHBWFCKVYLES-UHFFFAOYSA-N Butylparaben Chemical compound CCCCOC(=O)C1=CC=C(O)C=C1 QFOHBWFCKVYLES-UHFFFAOYSA-N 0.000 description 2
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 2
- 101710167800 Capsid assembly scaffolding protein Proteins 0.000 description 2
- 102000000018 Chemokine CCL2 Human genes 0.000 description 2
- 241000839426 Chlamydia virus Chp1 Species 0.000 description 2
- 101150071546 Chp1 gene Proteins 0.000 description 2
- 241000710777 Classical swine fever virus Species 0.000 description 2
- 241000710127 Cricket paralysis virus Species 0.000 description 2
- 229920002785 Croscarmellose sodium Polymers 0.000 description 2
- UXIYYUMGFNSGBK-XPUUQOCRSA-N Cys-Gly-Val Chemical compound [H]N[C@@H](CS)C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O UXIYYUMGFNSGBK-XPUUQOCRSA-N 0.000 description 2
- SRIRHERUAMYIOQ-CIUDSAMLSA-N Cys-Leu-Ser Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O SRIRHERUAMYIOQ-CIUDSAMLSA-N 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 2
- YKWUPFSEFXSGRT-JWMKEVCDSA-N Dihydropseudouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1C1C(=O)NC(=O)NC1 YKWUPFSEFXSGRT-JWMKEVCDSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- 102000001301 EGF receptor Human genes 0.000 description 2
- 108060006698 EGF receptor Proteins 0.000 description 2
- 238000008157 ELISA kit Methods 0.000 description 2
- 241000710188 Encephalomyocarditis virus Species 0.000 description 2
- 241000991587 Enterovirus C Species 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 241000283073 Equus caballus Species 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 2
- KBKGRMNVKPSQIF-XDTLVQLUSA-N Glu-Ala-Tyr Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O KBKGRMNVKPSQIF-XDTLVQLUSA-N 0.000 description 2
- CKRUHITYRFNUKW-WDSKDSINSA-N Glu-Asn-Gly Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(O)=O CKRUHITYRFNUKW-WDSKDSINSA-N 0.000 description 2
- SBYVDRJAXWSXQL-AVGNSLFASA-N Glu-Asn-Phe Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O SBYVDRJAXWSXQL-AVGNSLFASA-N 0.000 description 2
- XXCDTYBVGMPIOA-FXQIFTODSA-N Glu-Asp-Glu Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O XXCDTYBVGMPIOA-FXQIFTODSA-N 0.000 description 2
- SJPMNHCEWPTRBR-BQBZGAKWSA-N Glu-Glu-Gly Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(O)=O SJPMNHCEWPTRBR-BQBZGAKWSA-N 0.000 description 2
- UHVIQGKBMXEVGN-WDSKDSINSA-N Glu-Gly-Asn Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(O)=O UHVIQGKBMXEVGN-WDSKDSINSA-N 0.000 description 2
- OGNJZUXUTPQVBR-BQBZGAKWSA-N Glu-Gly-Glu Chemical compound OC(=O)CC[C@H](N)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(O)=O OGNJZUXUTPQVBR-BQBZGAKWSA-N 0.000 description 2
- ZHNHJYYFCGUZNQ-KBIXCLLPSA-N Glu-Ile-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H](N)CCC(O)=O ZHNHJYYFCGUZNQ-KBIXCLLPSA-N 0.000 description 2
- GMAGZGCAYLQBKF-NHCYSSNCSA-N Glu-Met-Val Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(O)=O GMAGZGCAYLQBKF-NHCYSSNCSA-N 0.000 description 2
- RFTVTKBHDXCEEX-WDSKDSINSA-N Glu-Ser-Gly Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)NCC(O)=O RFTVTKBHDXCEEX-WDSKDSINSA-N 0.000 description 2
- VNCNWQPIQYAMAK-ACZMJKKPSA-N Glu-Ser-Ser Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O VNCNWQPIQYAMAK-ACZMJKKPSA-N 0.000 description 2
- YQAQQKPWFOBSMU-WDCWCFNPSA-N Glu-Thr-Leu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(O)=O YQAQQKPWFOBSMU-WDCWCFNPSA-N 0.000 description 2
- KCCNSVHJSMMGFS-NRPADANISA-N Glu-Val-Cys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CCC(=O)O)N KCCNSVHJSMMGFS-NRPADANISA-N 0.000 description 2
- LZEUDRYSAZAJIO-AUTRQRHGSA-N Glu-Val-Glu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O LZEUDRYSAZAJIO-AUTRQRHGSA-N 0.000 description 2
- KQDMENMTYNBWMR-WHFBIAKZSA-N Gly-Asp-Ala Chemical compound [H]NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(O)=O KQDMENMTYNBWMR-WHFBIAKZSA-N 0.000 description 2
- YZACQYVWLCQWBT-BQBZGAKWSA-N Gly-Cys-Arg Chemical compound [H]NCC(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O YZACQYVWLCQWBT-BQBZGAKWSA-N 0.000 description 2
- UESJMAMHDLEHGM-NHCYSSNCSA-N Gly-Ile-Leu Chemical compound NCC(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O UESJMAMHDLEHGM-NHCYSSNCSA-N 0.000 description 2
- OOCFXNOVSLSHAB-IUCAKERBSA-N Gly-Pro-Pro Chemical compound NCC(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 OOCFXNOVSLSHAB-IUCAKERBSA-N 0.000 description 2
- VNNRLUNBJSWZPF-ZKWXMUAHSA-N Gly-Ser-Ile Chemical compound [H]NCC(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O VNNRLUNBJSWZPF-ZKWXMUAHSA-N 0.000 description 2
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 2
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 2
- RVKIPWVMZANZLI-UHFFFAOYSA-N H-Lys-Trp-OH Natural products C1=CC=C2C(CC(NC(=O)C(N)CCCCN)C(O)=O)=CNC2=C1 RVKIPWVMZANZLI-UHFFFAOYSA-N 0.000 description 2
- 241000711557 Hepacivirus Species 0.000 description 2
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 2
- HXKZJLWGSWQKEA-LSJOCFKGSA-N His-Ala-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC1=CN=CN1 HXKZJLWGSWQKEA-LSJOCFKGSA-N 0.000 description 2
- WGVPDSNCHDEDBP-KKUMJFAQSA-N His-Asp-Phe Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O WGVPDSNCHDEDBP-KKUMJFAQSA-N 0.000 description 2
- BKOVCRUIXDIWFV-IXOXFDKPSA-N His-Lys-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CC1=CN=CN1 BKOVCRUIXDIWFV-IXOXFDKPSA-N 0.000 description 2
- PZAJPILZRFPYJJ-SRVKXCTJSA-N His-Ser-Leu Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O PZAJPILZRFPYJJ-SRVKXCTJSA-N 0.000 description 2
- ILUVWFTXAUYOBW-CUJWVEQBSA-N His-Ser-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC1=CN=CN1)N)O ILUVWFTXAUYOBW-CUJWVEQBSA-N 0.000 description 2
- GBMSSORHVHAYLU-QTKMDUPCSA-N His-Val-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC1=CN=CN1)N)O GBMSSORHVHAYLU-QTKMDUPCSA-N 0.000 description 2
- DRKZDEFADVYTLU-AVGNSLFASA-N His-Val-Val Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(O)=O DRKZDEFADVYTLU-AVGNSLFASA-N 0.000 description 2
- 108010033040 Histones Proteins 0.000 description 2
- 101000907904 Homo sapiens Endoribonuclease Dicer Proteins 0.000 description 2
- 102000002265 Human Growth Hormone Human genes 0.000 description 2
- 108010000521 Human Growth Hormone Proteins 0.000 description 2
- 239000000854 Human Growth Hormone Substances 0.000 description 2
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 2
- 208000031226 Hyperlipidaemia Diseases 0.000 description 2
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 2
- UAVQIQOOBXFKRC-BYULHYEWSA-N Ile-Asn-Gly Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(O)=O UAVQIQOOBXFKRC-BYULHYEWSA-N 0.000 description 2
- QIHJTGSVGIPHIW-QSFUFRPTSA-N Ile-Asn-Val Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](C(C)C)C(=O)O)N QIHJTGSVGIPHIW-QSFUFRPTSA-N 0.000 description 2
- HGNUKGZQASSBKQ-PCBIJLKTSA-N Ile-Asp-Phe Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)N HGNUKGZQASSBKQ-PCBIJLKTSA-N 0.000 description 2
- LPXHYGGZJOCAFR-MNXVOIDGSA-N Ile-Glu-Leu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CC(C)C)C(=O)O)N LPXHYGGZJOCAFR-MNXVOIDGSA-N 0.000 description 2
- HXIDVIFHRYRXLZ-NAKRPEOUSA-N Ile-Ser-Val Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)O)N HXIDVIFHRYRXLZ-NAKRPEOUSA-N 0.000 description 2
- ANTFEOSJMAUGIB-KNZXXDILSA-N Ile-Thr-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@@H]1C(=O)O)N ANTFEOSJMAUGIB-KNZXXDILSA-N 0.000 description 2
- UYODHPPSCXBNCS-XUXIUFHCSA-N Ile-Val-Leu Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC(C)C UYODHPPSCXBNCS-XUXIUFHCSA-N 0.000 description 2
- 229930010555 Inosine Natural products 0.000 description 2
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 2
- 102000015696 Interleukins Human genes 0.000 description 2
- 108010063738 Interleukins Proteins 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 2
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 2
- 241000880493 Leptailurus serval Species 0.000 description 2
- CQQGCWPXDHTTNF-GUBZILKMSA-N Leu-Ala-Glu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CCC(O)=O CQQGCWPXDHTTNF-GUBZILKMSA-N 0.000 description 2
- DBVWMYGBVFCRBE-CIUDSAMLSA-N Leu-Asn-Asn Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O DBVWMYGBVFCRBE-CIUDSAMLSA-N 0.000 description 2
- YKNBJXOJTURHCU-DCAQKATOSA-N Leu-Asp-Arg Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(O)=O)CCCN=C(N)N YKNBJXOJTURHCU-DCAQKATOSA-N 0.000 description 2
- KPYAOIVPJKPIOU-KKUMJFAQSA-N Leu-Lys-Lys Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(O)=O KPYAOIVPJKPIOU-KKUMJFAQSA-N 0.000 description 2
- UHNQRAFSEBGZFZ-YESZJQIVSA-N Leu-Phe-Pro Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N2CCC[C@@H]2C(=O)O)N UHNQRAFSEBGZFZ-YESZJQIVSA-N 0.000 description 2
- AMSSKPUHBUQBOQ-SRVKXCTJSA-N Leu-Ser-Lys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)O)N AMSSKPUHBUQBOQ-SRVKXCTJSA-N 0.000 description 2
- SQUFDMCWMFOEBA-KKUMJFAQSA-N Leu-Ser-Tyr Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 SQUFDMCWMFOEBA-KKUMJFAQSA-N 0.000 description 2
- JGKHAFUAPZCCDU-BZSNNMDCSA-N Leu-Tyr-Leu Chemical compound CC(C)C[C@H]([NH3+])C(=O)N[C@H](C(=O)N[C@@H](CC(C)C)C([O-])=O)CC1=CC=C(O)C=C1 JGKHAFUAPZCCDU-BZSNNMDCSA-N 0.000 description 2
- KNKHAVVBVXKOGX-JXUBOQSCSA-N Lys-Ala-Thr Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O KNKHAVVBVXKOGX-JXUBOQSCSA-N 0.000 description 2
- IRNSXVOWSXSULE-DCAQKATOSA-N Lys-Ala-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCCCN IRNSXVOWSXSULE-DCAQKATOSA-N 0.000 description 2
- CLBGMWIYPYAZPR-AVGNSLFASA-N Lys-Arg-Arg Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O CLBGMWIYPYAZPR-AVGNSLFASA-N 0.000 description 2
- YNNPKXBBRZVIRX-IHRRRGAJSA-N Lys-Arg-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(O)=O YNNPKXBBRZVIRX-IHRRRGAJSA-N 0.000 description 2
- DGAAQRAUOFHBFJ-CIUDSAMLSA-N Lys-Asn-Ala Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(O)=O DGAAQRAUOFHBFJ-CIUDSAMLSA-N 0.000 description 2
- IMAKMJCBYCSMHM-AVGNSLFASA-N Lys-Glu-Lys Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@H](C(O)=O)CCCCN IMAKMJCBYCSMHM-AVGNSLFASA-N 0.000 description 2
- LCMWVZLBCUVDAZ-IUCAKERBSA-N Lys-Gly-Glu Chemical compound [NH3+]CCCC[C@H]([NH3+])C(=O)NCC(=O)N[C@H](C([O-])=O)CCC([O-])=O LCMWVZLBCUVDAZ-IUCAKERBSA-N 0.000 description 2
- HAUUXTXKJNVIFY-ONGXEEELSA-N Lys-Gly-Val Chemical compound [H]N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O HAUUXTXKJNVIFY-ONGXEEELSA-N 0.000 description 2
- YUAXTFMFMOIMAM-QWRGUYRKSA-N Lys-Lys-Gly Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)NCC(O)=O YUAXTFMFMOIMAM-QWRGUYRKSA-N 0.000 description 2
- LKDXINHHSWFFJC-SRVKXCTJSA-N Lys-Ser-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)N LKDXINHHSWFFJC-SRVKXCTJSA-N 0.000 description 2
- LMMBAXJRYSXCOQ-ACRUOGEOSA-N Lys-Tyr-Phe Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](Cc1ccc(O)cc1)C(=O)N[C@@H](Cc1ccccc1)C(O)=O LMMBAXJRYSXCOQ-ACRUOGEOSA-N 0.000 description 2
- UGCIQUYEJIEHKX-GVXVVHGQSA-N Lys-Val-Glu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O UGCIQUYEJIEHKX-GVXVVHGQSA-N 0.000 description 2
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 2
- 240000003183 Manihot esculenta Species 0.000 description 2
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 2
- JPCHYAUKOUGOIB-HJGDQZAQSA-N Met-Glu-Thr Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O JPCHYAUKOUGOIB-HJGDQZAQSA-N 0.000 description 2
- WTHGNAAQXISJHP-AVGNSLFASA-N Met-Lys-Val Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(O)=O WTHGNAAQXISJHP-AVGNSLFASA-N 0.000 description 2
- RDLSEGZJMYGFNS-FXQIFTODSA-N Met-Ser-Asp Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(O)=O RDLSEGZJMYGFNS-FXQIFTODSA-N 0.000 description 2
- FXBKQTOGURNXSL-HJGDQZAQSA-N Met-Thr-Glu Chemical compound CSCC[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@H](C(O)=O)CCC(O)=O FXBKQTOGURNXSL-HJGDQZAQSA-N 0.000 description 2
- LPNWWHBFXPNHJG-AVGNSLFASA-N Met-Val-Lys Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CCCCN LPNWWHBFXPNHJG-AVGNSLFASA-N 0.000 description 2
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 2
- 241000714177 Murine leukemia virus Species 0.000 description 2
- RSPURTUNRHNVGF-IOSLPCCCSA-N N(2),N(2)-dimethylguanosine Chemical compound C1=NC=2C(=O)NC(N(C)C)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O RSPURTUNRHNVGF-IOSLPCCCSA-N 0.000 description 2
- NIDVTARKFBZMOT-PEBGCTIMSA-N N(4)-acetylcytidine Chemical compound O=C1N=C(NC(=O)C)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NIDVTARKFBZMOT-PEBGCTIMSA-N 0.000 description 2
- WVGPGNPCZPYCLK-WOUKDFQISA-N N(6),N(6)-dimethyladenosine Chemical compound C1=NC=2C(N(C)C)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WVGPGNPCZPYCLK-WOUKDFQISA-N 0.000 description 2
- USVMJSALORZVDV-SDBHATRESA-N N(6)-(Delta(2)-isopentenyl)adenosine Chemical compound C1=NC=2C(NCC=C(C)C)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O USVMJSALORZVDV-SDBHATRESA-N 0.000 description 2
- VQAYFKKCNSOZKM-IOSLPCCCSA-N N(6)-methyladenosine Chemical compound C1=NC=2C(NC)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O VQAYFKKCNSOZKM-IOSLPCCCSA-N 0.000 description 2
- WVGPGNPCZPYCLK-UHFFFAOYSA-N N-Dimethyladenosine Natural products C1=NC=2C(N(C)C)=NC=NC=2N1C1OC(CO)C(O)C1O WVGPGNPCZPYCLK-UHFFFAOYSA-N 0.000 description 2
- UNUYMBPXEFMLNW-DWVDDHQFSA-N N-[(9-beta-D-ribofuranosylpurin-6-yl)carbamoyl]threonine Chemical compound C1=NC=2C(NC(=O)N[C@@H]([C@H](O)C)C(O)=O)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O UNUYMBPXEFMLNW-DWVDDHQFSA-N 0.000 description 2
- XMBSYZWANAQXEV-UHFFFAOYSA-N N-alpha-L-glutamyl-L-phenylalanine Natural products OC(=O)CCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 XMBSYZWANAQXEV-UHFFFAOYSA-N 0.000 description 2
- AJHCSUXXECOXOY-UHFFFAOYSA-N N-glycyl-L-tryptophan Natural products C1=CC=C2C(CC(NC(=O)CN)C(O)=O)=CNC2=C1 AJHCSUXXECOXOY-UHFFFAOYSA-N 0.000 description 2
- 108010079364 N-glycylalanine Proteins 0.000 description 2
- 108010087066 N2-tryptophyllysine Proteins 0.000 description 2
- LZCNWAXLJWBRJE-ZOQUXTDFSA-N N4-Methylcytidine Chemical compound O=C1N=C(NC)C=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 LZCNWAXLJWBRJE-ZOQUXTDFSA-N 0.000 description 2
- GOSWTRUMMSCNCW-UHFFFAOYSA-N N6-(cis-hydroxyisopentenyl)adenosine Chemical compound C1=NC=2C(NCC=C(CO)C)=NC=NC=2N1C1OC(CO)C(O)C1O GOSWTRUMMSCNCW-UHFFFAOYSA-N 0.000 description 2
- VQAYFKKCNSOZKM-UHFFFAOYSA-N NSC 29409 Natural products C1=NC=2C(NC)=NC=NC=2N1C1OC(CO)C(O)C1O VQAYFKKCNSOZKM-UHFFFAOYSA-N 0.000 description 2
- XMIFBEZRFMTGRL-TURQNECASA-N OC[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cc(CNCCS(O)(=O)=O)c(=O)[nH]c1=S Chemical compound OC[C@H]1O[C@H]([C@H](O)[C@@H]1O)n1cc(CNCCS(O)(=O)=O)c(=O)[nH]c1=S XMIFBEZRFMTGRL-TURQNECASA-N 0.000 description 2
- 240000007817 Olea europaea Species 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- VHWOBXIWBDWZHK-IHRRRGAJSA-N Phe-Arg-Asp Chemical compound NC(N)=NCCC[C@@H](C(=O)N[C@@H](CC(O)=O)C(O)=O)NC(=O)[C@@H](N)CC1=CC=CC=C1 VHWOBXIWBDWZHK-IHRRRGAJSA-N 0.000 description 2
- NAXPHWZXEXNDIW-JTQLQIEISA-N Phe-Gly-Gly Chemical compound OC(=O)CNC(=O)CNC(=O)[C@@H](N)CC1=CC=CC=C1 NAXPHWZXEXNDIW-JTQLQIEISA-N 0.000 description 2
- DNAXXTQSTKOHFO-QEJZJMRPSA-N Phe-Lys-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CC1=CC=CC=C1 DNAXXTQSTKOHFO-QEJZJMRPSA-N 0.000 description 2
- KAJLHCWRWDSROH-BZSNNMDCSA-N Phe-Phe-Asp Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC(O)=O)C(O)=O)C1=CC=CC=C1 KAJLHCWRWDSROH-BZSNNMDCSA-N 0.000 description 2
- MVIJMIZJPHQGEN-IHRRRGAJSA-N Phe-Ser-Val Chemical compound CC(C)[C@@H](C([O-])=O)NC(=O)[C@H](CO)NC(=O)[C@@H]([NH3+])CC1=CC=CC=C1 MVIJMIZJPHQGEN-IHRRRGAJSA-N 0.000 description 2
- 108091007412 Piwi-interacting RNA Proteins 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- IFMDQWDAJUMMJC-DCAQKATOSA-N Pro-Ala-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(O)=O IFMDQWDAJUMMJC-DCAQKATOSA-N 0.000 description 2
- XQLBWXHVZVBNJM-FXQIFTODSA-N Pro-Ala-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H]1CCCN1 XQLBWXHVZVBNJM-FXQIFTODSA-N 0.000 description 2
- DEDANIDYQAPTFI-IHRRRGAJSA-N Pro-Asp-Tyr Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O DEDANIDYQAPTFI-IHRRRGAJSA-N 0.000 description 2
- ABSSTGUCBCDKMU-UWVGGRQHSA-N Pro-Lys-Gly Chemical compound NCCCC[C@@H](C(=O)NCC(O)=O)NC(=O)[C@@H]1CCCN1 ABSSTGUCBCDKMU-UWVGGRQHSA-N 0.000 description 2
- 101710130420 Probable capsid assembly scaffolding protein Proteins 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 108010079005 RDV peptide Proteins 0.000 description 2
- 235000004443 Ricinus communis Nutrition 0.000 description 2
- 101710204410 Scaffold protein Proteins 0.000 description 2
- BRKHVZNDAOMAHX-BIIVOSGPSA-N Ser-Ala-Pro Chemical compound C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CO)N BRKHVZNDAOMAHX-BIIVOSGPSA-N 0.000 description 2
- BNFVPSRLHHPQKS-WHFBIAKZSA-N Ser-Asp-Gly Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O BNFVPSRLHHPQKS-WHFBIAKZSA-N 0.000 description 2
- UOLGINIHBRIECN-FXQIFTODSA-N Ser-Glu-Glu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O UOLGINIHBRIECN-FXQIFTODSA-N 0.000 description 2
- QKQDTEYDEIJPNK-GUBZILKMSA-N Ser-Glu-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CO QKQDTEYDEIJPNK-GUBZILKMSA-N 0.000 description 2
- MUARUIBTKQJKFY-WHFBIAKZSA-N Ser-Gly-Asp Chemical compound [H]N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O MUARUIBTKQJKFY-WHFBIAKZSA-N 0.000 description 2
- LOKXAXAESFYFAX-CIUDSAMLSA-N Ser-His-Cys Chemical compound OC[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](CS)C(O)=O)CC1=CN=CN1 LOKXAXAESFYFAX-CIUDSAMLSA-N 0.000 description 2
- KCGIREHVWRXNDH-GARJFASQSA-N Ser-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CO)N KCGIREHVWRXNDH-GARJFASQSA-N 0.000 description 2
- DINQYZRMXGWWTG-GUBZILKMSA-N Ser-Pro-Pro Chemical compound OC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 DINQYZRMXGWWTG-GUBZILKMSA-N 0.000 description 2
- SRSPTFBENMJHMR-WHFBIAKZSA-N Ser-Ser-Gly Chemical compound OC[C@H](N)C(=O)N[C@@H](CO)C(=O)NCC(O)=O SRSPTFBENMJHMR-WHFBIAKZSA-N 0.000 description 2
- ILZAUMFXKSIUEF-SRVKXCTJSA-N Ser-Ser-Phe Chemical compound OC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 ILZAUMFXKSIUEF-SRVKXCTJSA-N 0.000 description 2
- AXKJPUBALUNJEO-UBHSHLNASA-N Ser-Trp-Asn Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CC(N)=O)C(O)=O AXKJPUBALUNJEO-UBHSHLNASA-N 0.000 description 2
- JZRYFUGREMECBH-XPUUQOCRSA-N Ser-Val-Gly Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)NCC(O)=O JZRYFUGREMECBH-XPUUQOCRSA-N 0.000 description 2
- MFQMZDPAZRZAPV-NAKRPEOUSA-N Ser-Val-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CO)N MFQMZDPAZRZAPV-NAKRPEOUSA-N 0.000 description 2
- 108020003224 Small Nucleolar RNA Proteins 0.000 description 2
- 102000042773 Small Nucleolar RNA Human genes 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 2
- 241000282898 Sus scrofa Species 0.000 description 2
- 230000024932 T cell mediated immunity Effects 0.000 description 2
- CQNFRKAKGDSJFR-NUMRIWBASA-N Thr-Glu-Asn Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CC(=O)N)C(=O)O)N)O CQNFRKAKGDSJFR-NUMRIWBASA-N 0.000 description 2
- HJOSVGCWOTYJFG-WDCWCFNPSA-N Thr-Glu-Lys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CCCCN)C(=O)O)N)O HJOSVGCWOTYJFG-WDCWCFNPSA-N 0.000 description 2
- ONNSECRQFSTMCC-XKBZYTNZSA-N Thr-Glu-Ser Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O ONNSECRQFSTMCC-XKBZYTNZSA-N 0.000 description 2
- LKEKWDJCJSPXNI-IRIUXVKKSA-N Thr-Glu-Tyr Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 LKEKWDJCJSPXNI-IRIUXVKKSA-N 0.000 description 2
- YZUWGFXVVZQJEI-PMVVWTBXSA-N Thr-Gly-His Chemical compound C[C@H]([C@@H](C(=O)NCC(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N)O YZUWGFXVVZQJEI-PMVVWTBXSA-N 0.000 description 2
- NQVDGKYAUHTCME-QTKMDUPCSA-N Thr-His-Arg Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)N)O NQVDGKYAUHTCME-QTKMDUPCSA-N 0.000 description 2
- FKIGTIXHSRNKJU-IXOXFDKPSA-N Thr-His-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)[C@H](O)C)CC1=CN=CN1 FKIGTIXHSRNKJU-IXOXFDKPSA-N 0.000 description 2
- KZSYAEWQMJEGRZ-RHYQMDGZSA-N Thr-Leu-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O KZSYAEWQMJEGRZ-RHYQMDGZSA-N 0.000 description 2
- RVMNUBQWPVOUKH-HEIBUPTGSA-N Thr-Ser-Thr Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(O)=O RVMNUBQWPVOUKH-HEIBUPTGSA-N 0.000 description 2
- NDZYTIMDOZMECO-SHGPDSBTSA-N Thr-Thr-Ala Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(O)=O NDZYTIMDOZMECO-SHGPDSBTSA-N 0.000 description 2
- QYDKSNXSBXZPFK-ZJDVBMNYSA-N Thr-Thr-Arg Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O QYDKSNXSBXZPFK-ZJDVBMNYSA-N 0.000 description 2
- NHQVWACSJZJCGJ-FLBSBUHZSA-N Thr-Thr-Ile Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O NHQVWACSJZJCGJ-FLBSBUHZSA-N 0.000 description 2
- GJOBRAHDRIDAPT-NGTWOADLSA-N Thr-Trp-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)NC(=O)[C@H]([C@@H](C)O)N GJOBRAHDRIDAPT-NGTWOADLSA-N 0.000 description 2
- CYCGARJWIQWPQM-YJRXYDGGSA-N Thr-Tyr-Ser Chemical compound C[C@@H](O)[C@H]([NH3+])C(=O)N[C@H](C(=O)N[C@@H](CO)C([O-])=O)CC1=CC=C(O)C=C1 CYCGARJWIQWPQM-YJRXYDGGSA-N 0.000 description 2
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 2
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 2
- 108020004566 Transfer RNA Proteins 0.000 description 2
- 239000007984 Tris EDTA buffer Substances 0.000 description 2
- XZSJDSBPEJBEFZ-QRTARXTBSA-N Trp-Asn-Val Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(O)=O XZSJDSBPEJBEFZ-QRTARXTBSA-N 0.000 description 2
- HLDFBNPSURDYEN-VHWLVUOQSA-N Trp-Ile-Asp Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)N HLDFBNPSURDYEN-VHWLVUOQSA-N 0.000 description 2
- IKUMWSDCGQVGHC-UMPQAUOISA-N Trp-Pro-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@H](CC2=CNC3=CC=CC=C32)N)O IKUMWSDCGQVGHC-UMPQAUOISA-N 0.000 description 2
- HHPSUFUXXBOFQY-AQZXSJQPSA-N Trp-Thr-Asn Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)N)O HHPSUFUXXBOFQY-AQZXSJQPSA-N 0.000 description 2
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 2
- 102100024598 Tumor necrosis factor ligand superfamily member 10 Human genes 0.000 description 2
- 101710097160 Tumor necrosis factor ligand superfamily member 10 Proteins 0.000 description 2
- WTXQBCCKXIKKHB-JYJNAYRXSA-N Tyr-Arg-Arg Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O WTXQBCCKXIKKHB-JYJNAYRXSA-N 0.000 description 2
- AZGZDDNKFFUDEH-QWRGUYRKSA-N Tyr-Gly-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CC1=CC=C(O)C=C1 AZGZDDNKFFUDEH-QWRGUYRKSA-N 0.000 description 2
- DZKFGCNKEVMXFA-JUKXBJQTSA-N Tyr-Ile-His Chemical compound CC[C@H](C)[C@H](NC(=O)[C@@H](N)Cc1ccc(O)cc1)C(=O)N[C@@H](Cc1cnc[nH]1)C(O)=O DZKFGCNKEVMXFA-JUKXBJQTSA-N 0.000 description 2
- PGEFRHBWGOJPJT-KKUMJFAQSA-N Tyr-Lys-Ser Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(O)=O PGEFRHBWGOJPJT-KKUMJFAQSA-N 0.000 description 2
- VYQQQIRHIFALGE-UWJYBYFXSA-N Tyr-Ser-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 VYQQQIRHIFALGE-UWJYBYFXSA-N 0.000 description 2
- 108091023045 Untranslated Region Proteins 0.000 description 2
- 108010062497 VLDL Lipoproteins Proteins 0.000 description 2
- UUYCNAXCCDNULB-QXEWZRGKSA-N Val-Arg-Asn Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CC(N)=O)C(O)=O UUYCNAXCCDNULB-QXEWZRGKSA-N 0.000 description 2
- OVLIFGQSBSNGHY-KKHAAJSZSA-N Val-Asp-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](C(C)C)N)O OVLIFGQSBSNGHY-KKHAAJSZSA-N 0.000 description 2
- PFMAFMPJJSHNDW-ZKWXMUAHSA-N Val-Cys-Asn Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(=O)N)C(=O)O)N PFMAFMPJJSHNDW-ZKWXMUAHSA-N 0.000 description 2
- BRPKEERLGYNCNC-NHCYSSNCSA-N Val-Glu-Arg Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@H](C(O)=O)CCCN=C(N)N BRPKEERLGYNCNC-NHCYSSNCSA-N 0.000 description 2
- AEMPCGRFEZTWIF-IHRRRGAJSA-N Val-Leu-Lys Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(O)=O AEMPCGRFEZTWIF-IHRRRGAJSA-N 0.000 description 2
- UGFMVXRXULGLNO-XPUUQOCRSA-N Val-Ser-Gly Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CO)C(=O)NCC(O)=O UGFMVXRXULGLNO-XPUUQOCRSA-N 0.000 description 2
- VHIZXDZMTDVFGX-DCAQKATOSA-N Val-Ser-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](C(C)C)N VHIZXDZMTDVFGX-DCAQKATOSA-N 0.000 description 2
- QTPQHINADBYBNA-DCAQKATOSA-N Val-Ser-Lys Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CCCCN QTPQHINADBYBNA-DCAQKATOSA-N 0.000 description 2
- GBIUHAYJGWVNLN-UHFFFAOYSA-N Val-Ser-Pro Natural products CC(C)C(N)C(=O)NC(CO)C(=O)N1CCCC1C(O)=O GBIUHAYJGWVNLN-UHFFFAOYSA-N 0.000 description 2
- VBTFUDNTMCHPII-FKBYEOEOSA-N Val-Trp-Tyr Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](Cc1ccc(O)cc1)C(O)=O VBTFUDNTMCHPII-FKBYEOEOSA-N 0.000 description 2
- VBTFUDNTMCHPII-UHFFFAOYSA-N Val-Trp-Tyr Natural products C=1NC2=CC=CC=C2C=1CC(NC(=O)C(N)C(C)C)C(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 VBTFUDNTMCHPII-UHFFFAOYSA-N 0.000 description 2
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- JCZSFCLRSONYLH-UHFFFAOYSA-N Wyosine Natural products N=1C(C)=CN(C(C=2N=C3)=O)C=1N(C)C=2N3C1OC(CO)C(O)C1O JCZSFCLRSONYLH-UHFFFAOYSA-N 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- FHHZHGZBHYYWTG-INFSMZHSSA-N [(2r,3s,4r,5r)-5-(2-amino-7-methyl-6-oxo-3h-purin-9-ium-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl [[[(2r,3s,4r,5r)-5-(2-amino-6-oxo-3h-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl] phosphate Chemical compound N1C(N)=NC(=O)C2=C1[N+]([C@H]1[C@@H]([C@H](O)[C@@H](COP([O-])(=O)OP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=C(C(N=C(N)N4)=O)N=C3)O)O1)O)=CN2C FHHZHGZBHYYWTG-INFSMZHSSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 108010047495 alanylglycine Proteins 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 235000012211 aluminium silicate Nutrition 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000003698 anagen phase Effects 0.000 description 2
- 210000004102 animal cell Anatomy 0.000 description 2
- 239000005557 antagonist Substances 0.000 description 2
- 230000000843 anti-fungal effect Effects 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 229940027983 antiseptic and disinfectant quaternary ammonium compound Drugs 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 108010069926 arginyl-glycyl-serine Proteins 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 108010040443 aspartyl-aspartic acid Proteins 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229960002756 azacitidine Drugs 0.000 description 2
- 210000000270 basal cell Anatomy 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- 229960000686 benzalkonium chloride Drugs 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 2
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 2
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 2
- 229920002988 biodegradable polymer Polymers 0.000 description 2
- 239000004621 biodegradable polymer Substances 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 235000019437 butane-1,3-diol Nutrition 0.000 description 2
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 2
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 2
- 235000013539 calcium stearate Nutrition 0.000 description 2
- 239000008116 calcium stearate Substances 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 239000004359 castor oil Substances 0.000 description 2
- 239000003729 cation exchange resin Substances 0.000 description 2
- 239000013592 cell lysate Substances 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229960002798 cetrimide Drugs 0.000 description 2
- 229960000541 cetyl alcohol Drugs 0.000 description 2
- 229960001927 cetylpyridinium chloride Drugs 0.000 description 2
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 description 2
- 239000002738 chelating agent Substances 0.000 description 2
- 229960004926 chlorobutanol Drugs 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 239000003593 chromogenic compound Substances 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 239000001767 crosslinked sodium carboxy methyl cellulose Substances 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 239000000032 diagnostic agent Substances 0.000 description 2
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 2
- 235000019700 dicalcium phosphate Nutrition 0.000 description 2
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 2
- 229940038472 dicalcium phosphate Drugs 0.000 description 2
- ZPTBLXKRQACLCR-XVFCMESISA-N dihydrouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)CC1 ZPTBLXKRQACLCR-XVFCMESISA-N 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- SMVRDGHCVNAOIN-UHFFFAOYSA-L disodium;1-dodecoxydodecane;sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O.CCCCCCCCCCCCOCCCCCCCCCCCC SMVRDGHCVNAOIN-UHFFFAOYSA-L 0.000 description 2
- 239000006196 drop Substances 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 229960001484 edetic acid Drugs 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 2
- MMXKVMNBHPAILY-UHFFFAOYSA-N ethyl laurate Chemical compound CCCCCCCCCCCC(=O)OCC MMXKVMNBHPAILY-UHFFFAOYSA-N 0.000 description 2
- 230000029142 excretion Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000003889 eye drop Substances 0.000 description 2
- 229940012356 eye drops Drugs 0.000 description 2
- 230000005714 functional activity Effects 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 108010063718 gamma-glutamylaspartic acid Proteins 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 239000007903 gelatin capsule Substances 0.000 description 2
- 229930195712 glutamate Natural products 0.000 description 2
- 229960002743 glutamine Drugs 0.000 description 2
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 2
- XBGGUPMXALFZOT-UHFFFAOYSA-N glycyl-L-tyrosine hemihydrate Natural products NCC(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 XBGGUPMXALFZOT-UHFFFAOYSA-N 0.000 description 2
- 108010028188 glycyl-histidyl-serine Proteins 0.000 description 2
- 108010089804 glycyl-threonine Proteins 0.000 description 2
- 108010045126 glycyl-tyrosyl-glycine Proteins 0.000 description 2
- 108010077515 glycylproline Proteins 0.000 description 2
- 108010087823 glycyltyrosine Proteins 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000003979 granulating agent Substances 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 108010092114 histidylphenylalanine Proteins 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 2
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000007972 injectable composition Substances 0.000 description 2
- 239000002054 inoculum Substances 0.000 description 2
- 229960003786 inosine Drugs 0.000 description 2
- 229940047124 interferons Drugs 0.000 description 2
- 229940047122 interleukins Drugs 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 108010044374 isoleucyl-tyrosine Proteins 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 2
- 210000003292 kidney cell Anatomy 0.000 description 2
- 229940001447 lactate Drugs 0.000 description 2
- 108010091871 leucylmethionine Proteins 0.000 description 2
- 239000008297 liquid dosage form Substances 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 108010017391 lysylvaline Proteins 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 2
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 2
- 230000011987 methylation Effects 0.000 description 2
- 229960002216 methylparaben Drugs 0.000 description 2
- 239000004530 micro-emulsion Substances 0.000 description 2
- 239000002679 microRNA Substances 0.000 description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 2
- 239000008108 microcrystalline cellulose Substances 0.000 description 2
- 229940016286 microcrystalline cellulose Drugs 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 235000014571 nuts Nutrition 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 229940055577 oleyl alcohol Drugs 0.000 description 2
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 2
- 238000002515 oligonucleotide synthesis Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 230000007170 pathology Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- 229960003742 phenol Drugs 0.000 description 2
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 2
- 108010070409 phenylalanyl-glycyl-glycine Proteins 0.000 description 2
- 108010084572 phenylalanyl-valine Proteins 0.000 description 2
- 108010083476 phenylalanyltryptophan Proteins 0.000 description 2
- 229940067107 phenylethyl alcohol Drugs 0.000 description 2
- 230000026731 phosphorylation Effects 0.000 description 2
- 238000006366 phosphorylation reaction Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- RWPGFSMJFRPDDP-UHFFFAOYSA-L potassium metabisulfite Chemical compound [K+].[K+].[O-]S(=O)S([O-])(=O)=O RWPGFSMJFRPDDP-UHFFFAOYSA-L 0.000 description 2
- 229940043349 potassium metabisulfite Drugs 0.000 description 2
- 235000010263 potassium metabisulphite Nutrition 0.000 description 2
- 108010070643 prolylglutamic acid Proteins 0.000 description 2
- 108010053725 prolylvaline Proteins 0.000 description 2
- 235000019260 propionic acid Nutrition 0.000 description 2
- 229960004063 propylene glycol Drugs 0.000 description 2
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 239000002342 ribonucleoside Substances 0.000 description 2
- DWRXFEITVBNRMK-JXOAFFINSA-N ribothymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 DWRXFEITVBNRMK-JXOAFFINSA-N 0.000 description 2
- RHFUOMFWUGWKKO-UHFFFAOYSA-N s2C Natural products S=C1N=C(N)C=CN1C1C(O)C(O)C(CO)O1 RHFUOMFWUGWKKO-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 108010069117 seryl-lysyl-aspartic acid Proteins 0.000 description 2
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 235000010413 sodium alginate Nutrition 0.000 description 2
- 239000000661 sodium alginate Substances 0.000 description 2
- 229940005550 sodium alginate Drugs 0.000 description 2
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 2
- 235000010234 sodium benzoate Nutrition 0.000 description 2
- 239000004299 sodium benzoate Substances 0.000 description 2
- 229940001607 sodium bisulfite Drugs 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 235000011083 sodium citrates Nutrition 0.000 description 2
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 2
- 229940001584 sodium metabisulfite Drugs 0.000 description 2
- 235000010262 sodium metabisulphite Nutrition 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- 235000011008 sodium phosphates Nutrition 0.000 description 2
- 229920003109 sodium starch glycolate Polymers 0.000 description 2
- 229940079832 sodium starch glycolate Drugs 0.000 description 2
- 239000008109 sodium starch glycolate Substances 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 235000010199 sorbic acid Nutrition 0.000 description 2
- 239000004334 sorbic acid Substances 0.000 description 2
- 229940075582 sorbic acid Drugs 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 2
- 229940104230 thymidine Drugs 0.000 description 2
- 229960000187 tissue plasminogen activator Drugs 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 210000003412 trans-golgi network Anatomy 0.000 description 2
- 239000012096 transfection reagent Substances 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 102000035160 transmembrane proteins Human genes 0.000 description 2
- 108091005703 transmembrane proteins Proteins 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- 108010051110 tyrosyl-lysine Proteins 0.000 description 2
- 108010078580 tyrosylleucine Proteins 0.000 description 2
- 108010003137 tyrosyltyrosine Proteins 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- 108010073969 valyllysine Proteins 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- QAOHCFGKCWTBGC-QHOAOGIMSA-N wybutosine Chemical compound C1=NC=2C(=O)N3C(CC[C@H](NC(=O)OC)C(=O)OC)=C(C)N=C3N(C)C=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O QAOHCFGKCWTBGC-QHOAOGIMSA-N 0.000 description 2
- QAOHCFGKCWTBGC-UHFFFAOYSA-N wybutosine Natural products C1=NC=2C(=O)N3C(CCC(NC(=O)OC)C(=O)OC)=C(C)N=C3N(C)C=2N1C1OC(CO)C(O)C1O QAOHCFGKCWTBGC-UHFFFAOYSA-N 0.000 description 2
- JCZSFCLRSONYLH-QYVSTXNMSA-N wyosin Chemical compound N=1C(C)=CN(C(C=2N=C3)=O)C=1N(C)C=2N3[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O JCZSFCLRSONYLH-QYVSTXNMSA-N 0.000 description 2
- RPQZTTQVRYEKCR-WCTZXXKLSA-N zebularine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)N=CC=C1 RPQZTTQVRYEKCR-WCTZXXKLSA-N 0.000 description 2
- FTLYMKDSHNWQKD-UHFFFAOYSA-N (2,4,5-trichlorophenyl)boronic acid Chemical compound OB(O)C1=CC(Cl)=C(Cl)C=C1Cl FTLYMKDSHNWQKD-UHFFFAOYSA-N 0.000 description 1
- MJYQFWSXKFLTAY-OVEQLNGDSA-N (2r,3r)-2,3-bis[(4-hydroxy-3-methoxyphenyl)methyl]butane-1,4-diol;(2r,3r,4s,5s,6r)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O.C1=C(O)C(OC)=CC(C[C@@H](CO)[C@H](CO)CC=2C=C(OC)C(O)=CC=2)=C1 MJYQFWSXKFLTAY-OVEQLNGDSA-N 0.000 description 1
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- ICLYJLBTOGPLMC-KVVVOXFISA-N (z)-octadec-9-enoate;tris(2-hydroxyethyl)azanium Chemical compound OCCN(CCO)CCO.CCCCCCCC\C=C/CCCCCCCC(O)=O ICLYJLBTOGPLMC-KVVVOXFISA-N 0.000 description 1
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- QMMJWQMCMRUYTG-UHFFFAOYSA-N 1,2,4,5-tetrachloro-3-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=C(Cl)C(Cl)=CC(Cl)=C1Cl QMMJWQMCMRUYTG-UHFFFAOYSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- DTOUUUZOYKYHEP-UHFFFAOYSA-N 1,3-bis(2-ethylhexyl)-5-methyl-1,3-diazinan-5-amine Chemical compound CCCCC(CC)CN1CN(CC(CC)CCCC)CC(C)(N)C1 DTOUUUZOYKYHEP-UHFFFAOYSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 description 1
- 239000000263 2,3-dihydroxypropyl (Z)-octadec-9-enoate Substances 0.000 description 1
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 1
- WGIMXKDCVCTHGW-UHFFFAOYSA-N 2-(2-hydroxyethoxy)ethyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCCOCCO WGIMXKDCVCTHGW-UHFFFAOYSA-N 0.000 description 1
- FKOKUHFZNIUSLW-UHFFFAOYSA-N 2-Hydroxypropyl stearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(C)O FKOKUHFZNIUSLW-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- RFVNOJDQRGSOEL-UHFFFAOYSA-N 2-hydroxyethyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCO RFVNOJDQRGSOEL-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- LEACJMVNYZDSKR-UHFFFAOYSA-N 2-octyldodecan-1-ol Chemical compound CCCCCCCCCCC(CO)CCCCCCCC LEACJMVNYZDSKR-UHFFFAOYSA-N 0.000 description 1
- QCDWFXQBSFUVSP-UHFFFAOYSA-N 2-phenoxyethanol Chemical compound OCCOC1=CC=CC=C1 QCDWFXQBSFUVSP-UHFFFAOYSA-N 0.000 description 1
- UBLAMKHIFZBBSS-UHFFFAOYSA-N 3-Methylbutyl pentanoate Chemical compound CCCCC(=O)OCCC(C)C UBLAMKHIFZBBSS-UHFFFAOYSA-N 0.000 description 1
- RZRNAYUHWVFMIP-GDCKJWNLSA-N 3-oleoyl-sn-glycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-GDCKJWNLSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- CYDQOEWLBCCFJZ-UHFFFAOYSA-N 4-(4-fluorophenyl)oxane-4-carboxylic acid Chemical compound C=1C=C(F)C=CC=1C1(C(=O)O)CCOCC1 CYDQOEWLBCCFJZ-UHFFFAOYSA-N 0.000 description 1
- OSDLLIBGSJNGJE-UHFFFAOYSA-N 4-chloro-3,5-dimethylphenol Chemical compound CC1=CC(O)=CC(C)=C1Cl OSDLLIBGSJNGJE-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- UZOVYGYOLBIAJR-UHFFFAOYSA-N 4-isocyanato-4'-methyldiphenylmethane Chemical compound C1=CC(C)=CC=C1CC1=CC=C(N=C=O)C=C1 UZOVYGYOLBIAJR-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical group OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 240000006054 Agastache cana Species 0.000 description 1
- BLIMFWGRQKRCGT-YUMQZZPRSA-N Ala-Gly-Lys Chemical compound C[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CCCCN BLIMFWGRQKRCGT-YUMQZZPRSA-N 0.000 description 1
- LDLSENBXQNDTPB-DCAQKATOSA-N Ala-Lys-Arg Chemical compound NCCCC[C@H](NC(=O)[C@@H](N)C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N LDLSENBXQNDTPB-DCAQKATOSA-N 0.000 description 1
- IPZQNYYAYVRKKK-FXQIFTODSA-N Ala-Pro-Ala Chemical compound C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)C(O)=O IPZQNYYAYVRKKK-FXQIFTODSA-N 0.000 description 1
- 235000006667 Aleurites moluccana Nutrition 0.000 description 1
- 244000136475 Aleurites moluccana Species 0.000 description 1
- 244000144725 Amygdalus communis Species 0.000 description 1
- 235000011437 Amygdalus communis Nutrition 0.000 description 1
- 244000144730 Amygdalus persica Species 0.000 description 1
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 235000003276 Apios tuberosa Nutrition 0.000 description 1
- 108091023037 Aptamer Proteins 0.000 description 1
- 235000017060 Arachis glabrata Nutrition 0.000 description 1
- 235000018262 Arachis monticola Nutrition 0.000 description 1
- 235000010744 Arachis villosulicarpa Nutrition 0.000 description 1
- IJPNNYWHXGADJG-GUBZILKMSA-N Arg-Ala-Val Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(O)=O IJPNNYWHXGADJG-GUBZILKMSA-N 0.000 description 1
- PQWTZSNVWSOFFK-FXQIFTODSA-N Arg-Asp-Asn Chemical compound C(C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CC(=O)N)C(=O)O)N)CN=C(N)N PQWTZSNVWSOFFK-FXQIFTODSA-N 0.000 description 1
- 102000008682 Argonaute Proteins Human genes 0.000 description 1
- 108010088141 Argonaute Proteins Proteins 0.000 description 1
- XUTOXNRSAGLAKO-UHFFFAOYSA-N Asn Val Asn Pro Chemical compound NC(=O)CC(N)C(=O)NC(C(C)C)C(=O)NC(CC(N)=O)C(=O)N1CCCC1C(O)=O XUTOXNRSAGLAKO-UHFFFAOYSA-N 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- 235000007689 Borago officinalis Nutrition 0.000 description 1
- 240000004355 Borago officinalis Species 0.000 description 1
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000006008 Brassica napus var napus Nutrition 0.000 description 1
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 description 1
- 244000188595 Brassica sinapistrum Species 0.000 description 1
- 235000004936 Bromus mango Nutrition 0.000 description 1
- LVDKZNITIUWNER-UHFFFAOYSA-N Bronopol Chemical compound OCC(Br)(CO)[N+]([O-])=O LVDKZNITIUWNER-UHFFFAOYSA-N 0.000 description 1
- 239000004255 Butylated hydroxyanisole Substances 0.000 description 1
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- 102100035875 C-C chemokine receptor type 5 Human genes 0.000 description 1
- 101710149870 C-C chemokine receptor type 5 Proteins 0.000 description 1
- 102100031650 C-X-C chemokine receptor type 4 Human genes 0.000 description 1
- 101710082513 C-X-C chemokine receptor type 4 Proteins 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- YDNKGFDKKRUKPY-JHOUSYSJSA-N C16 ceramide Natural products CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@H](O)C=CCCCCCCCCCCCCC YDNKGFDKKRUKPY-JHOUSYSJSA-N 0.000 description 1
- 101150077194 CAP1 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 239000001736 Calcium glycerylphosphate Substances 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 235000003255 Carthamus tinctorius Nutrition 0.000 description 1
- 244000020518 Carthamus tinctorius Species 0.000 description 1
- 235000005747 Carum carvi Nutrition 0.000 description 1
- 240000000467 Carum carvi Species 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 235000009024 Ceanothus sanguineus Nutrition 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- PTHCMJGKKRQCBF-UHFFFAOYSA-N Cellulose, microcrystalline Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC)C(CO)O1 PTHCMJGKKRQCBF-UHFFFAOYSA-N 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 102000009410 Chemokine receptor Human genes 0.000 description 1
- 108050000299 Chemokine receptor Proteins 0.000 description 1
- GHXZTYHSJHQHIJ-UHFFFAOYSA-N Chlorhexidine Chemical compound C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 GHXZTYHSJHQHIJ-UHFFFAOYSA-N 0.000 description 1
- 241000206575 Chondrus crispus Species 0.000 description 1
- 102000017589 Chromo domains Human genes 0.000 description 1
- 108050005811 Chromo domains Proteins 0.000 description 1
- 241000123346 Chrysosporium Species 0.000 description 1
- 244000223760 Cinnamomum zeylanicum Species 0.000 description 1
- 241000132536 Cirsium Species 0.000 description 1
- YASYEJJMZJALEJ-UHFFFAOYSA-N Citric acid monohydrate Chemical compound O.OC(=O)CC(O)(C(O)=O)CC(O)=O YASYEJJMZJALEJ-UHFFFAOYSA-N 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 101100007328 Cocos nucifera COS-1 gene Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 235000010919 Copernicia prunifera Nutrition 0.000 description 1
- 244000180278 Copernicia prunifera Species 0.000 description 1
- 240000009226 Corylus americana Species 0.000 description 1
- 235000001543 Corylus americana Nutrition 0.000 description 1
- 235000007466 Corylus avellana Nutrition 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- 240000001980 Cucurbita pepo Species 0.000 description 1
- 235000009852 Cucurbita pepo Nutrition 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- ZAKOWWREFLAJOT-CEFNRUSXSA-N D-alpha-tocopherylacetate Chemical compound CC(=O)OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C ZAKOWWREFLAJOT-CEFNRUSXSA-N 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 1
- 101710096438 DNA-binding protein Proteins 0.000 description 1
- XMSXQFUHVRWGNA-UHFFFAOYSA-N Decamethylcyclopentasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 XMSXQFUHVRWGNA-UHFFFAOYSA-N 0.000 description 1
- 239000004287 Dehydroacetic acid Substances 0.000 description 1
- 108091027757 Deoxyribozyme Proteins 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 241000224495 Dictyostelium Species 0.000 description 1
- 108010016626 Dipeptides Proteins 0.000 description 1
- 241000271571 Dromaius novaehollandiae Species 0.000 description 1
- ZGTMUACCHSMWAC-UHFFFAOYSA-L EDTA disodium salt (anhydrous) Chemical compound [Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC(O)=O)CC([O-])=O ZGTMUACCHSMWAC-UHFFFAOYSA-L 0.000 description 1
- QZKRHPLGUJDVAR-UHFFFAOYSA-K EDTA trisodium salt Chemical compound [Na+].[Na+].[Na+].OC(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O QZKRHPLGUJDVAR-UHFFFAOYSA-K 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 102100023387 Endoribonuclease Dicer Human genes 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 101150016266 Eri1 gene Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- FPVVYTCTZKCSOJ-UHFFFAOYSA-N Ethylene glycol distearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCOC(=O)CCCCCCCCCCCCCCCCC FPVVYTCTZKCSOJ-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 244000004281 Eucalyptus maculata Species 0.000 description 1
- 108050001049 Extracellular proteins Proteins 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 206010071602 Genetic polymorphism Diseases 0.000 description 1
- 239000005792 Geraniol Substances 0.000 description 1
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 1
- BUZMZDDKFCSKOT-CIUDSAMLSA-N Glu-Glu-Glu Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O BUZMZDDKFCSKOT-CIUDSAMLSA-N 0.000 description 1
- QDMVXRNLOPTPIE-WDCWCFNPSA-N Glu-Lys-Thr Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O QDMVXRNLOPTPIE-WDCWCFNPSA-N 0.000 description 1
- KXRORHJIRAOQPG-SOUVJXGZSA-N Glu-Tyr-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CC=C(C=C2)O)NC(=O)[C@H](CCC(=O)O)N)C(=O)O KXRORHJIRAOQPG-SOUVJXGZSA-N 0.000 description 1
- PHONXOACARQMPM-BQBZGAKWSA-N Gly-Ala-Met Chemical compound [H]NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCSC)C(O)=O PHONXOACARQMPM-BQBZGAKWSA-N 0.000 description 1
- UPADCCSMVOQAGF-LBPRGKRZSA-N Gly-Gly-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)CNC(=O)CN)C(O)=O)=CNC2=C1 UPADCCSMVOQAGF-LBPRGKRZSA-N 0.000 description 1
- YABRDIBSPZONIY-BQBZGAKWSA-N Gly-Ser-Met Chemical compound [H]NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CCSC)C(O)=O YABRDIBSPZONIY-BQBZGAKWSA-N 0.000 description 1
- FBUMPXILDTWCJW-UHFFFAOYSA-N Gly-Trp-Ala-Pro Natural products C=1NC2=CC=CC=C2C=1CC(NC(=O)CN)C(=O)NC(C)C(=O)N1CCCC1C(O)=O FBUMPXILDTWCJW-UHFFFAOYSA-N 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229940033330 HIV vaccine Drugs 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 102100027685 Hemoglobin subunit alpha Human genes 0.000 description 1
- 108091005902 Hemoglobin subunit alpha Proteins 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- 240000000950 Hippophae rhamnoides Species 0.000 description 1
- 235000003145 Hippophae rhamnoides Nutrition 0.000 description 1
- 102000011787 Histone Methyltransferases Human genes 0.000 description 1
- 108010036115 Histone Methyltransferases Proteins 0.000 description 1
- 102000006947 Histones Human genes 0.000 description 1
- 101000669402 Homo sapiens Toll-like receptor 7 Proteins 0.000 description 1
- 101000800483 Homo sapiens Toll-like receptor 8 Proteins 0.000 description 1
- 241000384508 Hoplostethus atlanticus Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 235000010650 Hyssopus officinalis Nutrition 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 1
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 1
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 1
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- IMQLKJBTEOYOSI-GPIVLXJGSA-N Inositol-hexakisphosphate Chemical compound OP(O)(=O)O[C@H]1[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H]1OP(O)(O)=O IMQLKJBTEOYOSI-GPIVLXJGSA-N 0.000 description 1
- 108010065920 Insulin Lispro Proteins 0.000 description 1
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 1
- 102000014429 Insulin-like growth factor Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 108090000174 Interleukin-10 Proteins 0.000 description 1
- 108090000177 Interleukin-11 Proteins 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 102000004560 Interleukin-12 Receptors Human genes 0.000 description 1
- 108010017515 Interleukin-12 Receptors Proteins 0.000 description 1
- 108090000176 Interleukin-13 Proteins 0.000 description 1
- 102000003812 Interleukin-15 Human genes 0.000 description 1
- 108090000172 Interleukin-15 Proteins 0.000 description 1
- 102000049772 Interleukin-16 Human genes 0.000 description 1
- 101800003050 Interleukin-16 Proteins 0.000 description 1
- 108050003558 Interleukin-17 Proteins 0.000 description 1
- 102000013691 Interleukin-17 Human genes 0.000 description 1
- 102000003810 Interleukin-18 Human genes 0.000 description 1
- 108090000171 Interleukin-18 Proteins 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 102100036672 Interleukin-23 receptor Human genes 0.000 description 1
- 101710195550 Interleukin-23 receptor Proteins 0.000 description 1
- 108010002386 Interleukin-3 Proteins 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108010002616 Interleukin-5 Proteins 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 108010002335 Interleukin-9 Proteins 0.000 description 1
- 108010019437 Janus Kinase 2 Proteins 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- SENJXOPIZNYLHU-UHFFFAOYSA-N L-leucyl-L-arginine Natural products CC(C)CC(N)C(=O)NC(C(O)=O)CCCN=C(N)N SENJXOPIZNYLHU-UHFFFAOYSA-N 0.000 description 1
- 108010028554 LDL Cholesterol Proteins 0.000 description 1
- 241000218652 Larix Species 0.000 description 1
- 235000005590 Larix decidua Nutrition 0.000 description 1
- 244000165082 Lavanda vera Species 0.000 description 1
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 1
- 241000408747 Lepomis gibbosus Species 0.000 description 1
- 240000003553 Leptospermum scoparium Species 0.000 description 1
- USLNHQZCDQJBOV-ZPFDUUQYSA-N Leu-Ile-Asn Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(O)=O USLNHQZCDQJBOV-ZPFDUUQYSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 241001072282 Limnanthes Species 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 235000012854 Litsea cubeba Nutrition 0.000 description 1
- 240000002262 Litsea cubeba Species 0.000 description 1
- 235000015459 Lycium barbarum Nutrition 0.000 description 1
- WALVCOOOKULCQM-ULQDDVLXSA-N Lys-Arg-Phe Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O WALVCOOOKULCQM-ULQDDVLXSA-N 0.000 description 1
- NCZIQZYZPUPMKY-PPCPHDFISA-N Lys-Ile-Thr Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(O)=O NCZIQZYZPUPMKY-PPCPHDFISA-N 0.000 description 1
- LNMKRJJLEFASGA-BZSNNMDCSA-N Lys-Phe-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(C)C)C(O)=O LNMKRJJLEFASGA-BZSNNMDCSA-N 0.000 description 1
- 240000000982 Malva neglecta Species 0.000 description 1
- 235000000060 Malva neglecta Nutrition 0.000 description 1
- 235000014826 Mangifera indica Nutrition 0.000 description 1
- 240000007228 Mangifera indica Species 0.000 description 1
- 208000026139 Memory disease Diseases 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 244000179970 Monarda didyma Species 0.000 description 1
- 235000010672 Monarda didyma Nutrition 0.000 description 1
- 229920000715 Mucilage Polymers 0.000 description 1
- 101100346932 Mus musculus Muc1 gene Proteins 0.000 description 1
- 101100245221 Mus musculus Prss8 gene Proteins 0.000 description 1
- 208000014767 Myeloproliferative disease Diseases 0.000 description 1
- 235000009421 Myristica fragrans Nutrition 0.000 description 1
- 244000270834 Myristica fragrans Species 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- CRJGESKKUOMBCT-VQTJNVASSA-N N-acetylsphinganine Chemical compound CCCCCCCCCCCCCCC[C@@H](O)[C@H](CO)NC(C)=O CRJGESKKUOMBCT-VQTJNVASSA-N 0.000 description 1
- RYXKQMIZNVATOB-UWFJSTKDSA-I NC1=NC(=O)N([C@@H]2O[C@H](COP([O-])(O)=S)C(O)[C@@H]2O)C=C1.NC1=NC2=C(N=CN2[C@@H]2O[C@H](COP([O-])(O)=S)C(O)[C@@H]2O)C(=O)N1.NC1=NC=NC2=C1N=CN2[C@@H]1O[C@H](COP([O-])(O)=S)C(O)[C@@H]1O.O=C1C=CN([C@@H]2O[C@H](COP([O-])(O)=S)C(O)[C@@H]2O)C(=O)N1.O=C1N=CC([C@@H]2O[C@H](COP([O-])(O)=S)C(O)[C@@H]2O)C(=O)N1 Chemical compound NC1=NC(=O)N([C@@H]2O[C@H](COP([O-])(O)=S)C(O)[C@@H]2O)C=C1.NC1=NC2=C(N=CN2[C@@H]2O[C@H](COP([O-])(O)=S)C(O)[C@@H]2O)C(=O)N1.NC1=NC=NC2=C1N=CN2[C@@H]1O[C@H](COP([O-])(O)=S)C(O)[C@@H]1O.O=C1C=CN([C@@H]2O[C@H](COP([O-])(O)=S)C(O)[C@@H]2O)C(=O)N1.O=C1N=CC([C@@H]2O[C@H](COP([O-])(O)=S)C(O)[C@@H]2O)C(=O)N1 RYXKQMIZNVATOB-UWFJSTKDSA-I 0.000 description 1
- 241000772415 Neovison vison Species 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108020004485 Nonsense Codon Proteins 0.000 description 1
- 108091093105 Nuclear DNA Proteins 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 241000219925 Oenothera Species 0.000 description 1
- 235000004496 Oenothera biennis Nutrition 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 235000014643 Orbignya martiana Nutrition 0.000 description 1
- 244000021150 Orbignya martiana Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 235000008753 Papaver somniferum Nutrition 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 241000228143 Penicillium Species 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 244000025272 Persea americana Species 0.000 description 1
- 235000008673 Persea americana Nutrition 0.000 description 1
- 241000286209 Phasianidae Species 0.000 description 1
- IMQLKJBTEOYOSI-UHFFFAOYSA-N Phytic acid Natural products OP(O)(=O)OC1C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C(OP(O)(O)=O)C1OP(O)(O)=O IMQLKJBTEOYOSI-UHFFFAOYSA-N 0.000 description 1
- 241000709664 Picornaviridae Species 0.000 description 1
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 1
- 101710124239 Poly(A) polymerase Proteins 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- HLCFGWHYROZGBI-JJKGCWMISA-M Potassium gluconate Chemical compound [K+].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O HLCFGWHYROZGBI-JJKGCWMISA-M 0.000 description 1
- OBVCYFIHIIYIQF-CIUDSAMLSA-N Pro-Asn-Glu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O OBVCYFIHIIYIQF-CIUDSAMLSA-N 0.000 description 1
- FUVBEZJCRMHWEM-FXQIFTODSA-N Pro-Asn-Ser Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(O)=O FUVBEZJCRMHWEM-FXQIFTODSA-N 0.000 description 1
- VZKBJNBZMZHKRC-XUXIUFHCSA-N Pro-Ile-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O VZKBJNBZMZHKRC-XUXIUFHCSA-N 0.000 description 1
- 235000009827 Prunus armeniaca Nutrition 0.000 description 1
- 244000018633 Prunus armeniaca Species 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 108091034057 RNA (poly(A)) Proteins 0.000 description 1
- 108020005073 RNA Cap Analogs Proteins 0.000 description 1
- 108090000944 RNA Helicases Proteins 0.000 description 1
- 102000004409 RNA Helicases Human genes 0.000 description 1
- 230000026279 RNA modification Effects 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 102000002278 Ribosomal Proteins Human genes 0.000 description 1
- 108010000605 Ribosomal Proteins Proteins 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 244000178231 Rosmarinus officinalis Species 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 240000000513 Santalum album Species 0.000 description 1
- 235000008632 Santalum album Nutrition 0.000 description 1
- 241000235346 Schizosaccharomyces Species 0.000 description 1
- 238000010266 Sephadex chromatography Methods 0.000 description 1
- HAYADTTXNZFUDM-IHRRRGAJSA-N Ser-Tyr-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](C(C)C)C(O)=O HAYADTTXNZFUDM-IHRRRGAJSA-N 0.000 description 1
- YEDSOSIKVUMIJE-DCAQKATOSA-N Ser-Val-Leu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O YEDSOSIKVUMIJE-DCAQKATOSA-N 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 244000040738 Sesamum orientale Species 0.000 description 1
- 244000044822 Simmondsia californica Species 0.000 description 1
- 235000004433 Simmondsia californica Nutrition 0.000 description 1
- BCKXLBQYZLBQEK-KVVVOXFISA-M Sodium oleate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCC([O-])=O BCKXLBQYZLBQEK-KVVVOXFISA-M 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- IYFATESGLOUGBX-YVNJGZBMSA-N Sorbitan monopalmitate Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O IYFATESGLOUGBX-YVNJGZBMSA-N 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- 235000009184 Spondias indica Nutrition 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- SSZBUIDZHHWXNJ-UHFFFAOYSA-N Stearinsaeure-hexadecylester Natural products CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCCCC SSZBUIDZHHWXNJ-UHFFFAOYSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical group OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 102000002689 Toll-like receptor Human genes 0.000 description 1
- 108020000411 Toll-like receptor Proteins 0.000 description 1
- 102100039390 Toll-like receptor 7 Human genes 0.000 description 1
- 102100033110 Toll-like receptor 8 Human genes 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 241000223259 Trichoderma Species 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- RGJZPXFZIUUQDN-BPNCWPANSA-N Tyr-Val-Ala Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C)C(O)=O RGJZPXFZIUUQDN-BPNCWPANSA-N 0.000 description 1
- 235000007769 Vetiveria zizanioides Nutrition 0.000 description 1
- 244000284012 Vetiveria zizanioides Species 0.000 description 1
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 235000018936 Vitellaria paradoxa Nutrition 0.000 description 1
- 241001135917 Vitellaria paradoxa Species 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- IJCWFDPJFXGQBN-RYNSOKOISA-N [(2R)-2-[(2R,3R,4S)-4-hydroxy-3-octadecanoyloxyoxolan-2-yl]-2-octadecanoyloxyethyl] octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCCCCCCCCCCCC IJCWFDPJFXGQBN-RYNSOKOISA-N 0.000 description 1
- 239000001089 [(2R)-oxolan-2-yl]methanol Substances 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000003655 absorption accelerator Substances 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- VJHCJDRQFCCTHL-UHFFFAOYSA-N acetic acid 2,3,4,5,6-pentahydroxyhexanal Chemical compound CC(O)=O.OCC(O)C(O)C(O)C(O)C=O VJHCJDRQFCCTHL-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 150000003838 adenosines Chemical class 0.000 description 1
- 238000004115 adherent culture Methods 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- OENHQHLEOONYIE-UKMVMLAPSA-N all-trans beta-carotene Natural products CC=1CCCC(C)(C)C=1/C=C/C(/C)=C/C=C/C(/C)=C/C=C/C=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C OENHQHLEOONYIE-UKMVMLAPSA-N 0.000 description 1
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- 229940087168 alpha tocopherol Drugs 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229940024545 aluminum hydroxide Drugs 0.000 description 1
- 150000003862 amino acid derivatives Chemical class 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 229960001040 ammonium chloride Drugs 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000000420 anogeissus latifolia wall. gum Substances 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- BTFJIXJJCSYFAL-UHFFFAOYSA-N arachidyl alcohol Natural products CCCCCCCCCCCCCCCCCCCCO BTFJIXJJCSYFAL-UHFFFAOYSA-N 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 235000001053 badasse Nutrition 0.000 description 1
- 210000004082 barrier epithelial cell Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229960001950 benzethonium chloride Drugs 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 229960004365 benzoic acid Drugs 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- 235000013734 beta-carotene Nutrition 0.000 description 1
- 239000011648 beta-carotene Substances 0.000 description 1
- TUPZEYHYWIEDIH-WAIFQNFQSA-N beta-carotene Natural products CC(=C/C=C/C=C(C)/C=C/C=C(C)/C=C/C1=C(C)CCCC1(C)C)C=CC=C(/C)C=CC2=CCCCC2(C)C TUPZEYHYWIEDIH-WAIFQNFQSA-N 0.000 description 1
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 1
- 229960002747 betacarotene Drugs 0.000 description 1
- 230000008236 biological pathway Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 210000002798 bone marrow cell Anatomy 0.000 description 1
- 201000008274 breast adenocarcinoma Diseases 0.000 description 1
- 229960003168 bronopol Drugs 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 235000019282 butylated hydroxyanisole Nutrition 0.000 description 1
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 1
- 229940043253 butylated hydroxyanisole Drugs 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 1
- 229940067596 butylparaben Drugs 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229960005069 calcium Drugs 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229960002713 calcium chloride Drugs 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- FNAQSUUGMSOBHW-UHFFFAOYSA-H calcium citrate Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O FNAQSUUGMSOBHW-UHFFFAOYSA-H 0.000 description 1
- 239000001354 calcium citrate Substances 0.000 description 1
- 229960004256 calcium citrate Drugs 0.000 description 1
- YPCRNBPOUVJVMU-LCGAVOCYSA-L calcium glubionate Chemical compound [Ca+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.[O-]C(=O)[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O YPCRNBPOUVJVMU-LCGAVOCYSA-L 0.000 description 1
- 229960002283 calcium glubionate Drugs 0.000 description 1
- 229940078512 calcium gluceptate Drugs 0.000 description 1
- 235000013927 calcium gluconate Nutrition 0.000 description 1
- 239000004227 calcium gluconate Substances 0.000 description 1
- 229960004494 calcium gluconate Drugs 0.000 description 1
- UHHRFSOMMCWGSO-UHFFFAOYSA-L calcium glycerophosphate Chemical compound [Ca+2].OCC(CO)OP([O-])([O-])=O UHHRFSOMMCWGSO-UHFFFAOYSA-L 0.000 description 1
- 229940095618 calcium glycerophosphate Drugs 0.000 description 1
- 235000019299 calcium glycerylphosphate Nutrition 0.000 description 1
- MKJXYGKVIBWPFZ-UHFFFAOYSA-L calcium lactate Chemical compound [Ca+2].CC(O)C([O-])=O.CC(O)C([O-])=O MKJXYGKVIBWPFZ-UHFFFAOYSA-L 0.000 description 1
- 239000001527 calcium lactate Substances 0.000 description 1
- 235000011086 calcium lactate Nutrition 0.000 description 1
- 229960002401 calcium lactate Drugs 0.000 description 1
- 229940078480 calcium levulinate Drugs 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- FATUQANACHZLRT-XBQZYUPDSA-L calcium;(2r,3r,4s,5r,6r)-2,3,4,5,6,7-hexahydroxyheptanoate Chemical compound [Ca+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O)C([O-])=O FATUQANACHZLRT-XBQZYUPDSA-L 0.000 description 1
- NEEHYRZPVYRGPP-UHFFFAOYSA-L calcium;2,3,4,5,6-pentahydroxyhexanoate Chemical compound [Ca+2].OCC(O)C(O)C(O)C(O)C([O-])=O.OCC(O)C(O)C(O)C(O)C([O-])=O NEEHYRZPVYRGPP-UHFFFAOYSA-L 0.000 description 1
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 1
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 1
- 229940096529 carboxypolymethylene Drugs 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 229940023913 cation exchange resins Drugs 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000012930 cell culture fluid Substances 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229940106189 ceramide Drugs 0.000 description 1
- ZVEQCJWYRWKARO-UHFFFAOYSA-N ceramide Natural products CCCCCCCCCCCCCCC(O)C(=O)NC(CO)C(O)C=CCCC=C(C)CCCCCCCCC ZVEQCJWYRWKARO-UHFFFAOYSA-N 0.000 description 1
- 229960000800 cetrimonium bromide Drugs 0.000 description 1
- 229960005395 cetuximab Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 229960003260 chlorhexidine Drugs 0.000 description 1
- 229960002242 chlorocresol Drugs 0.000 description 1
- 229960005443 chloroxylenol Drugs 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 235000017803 cinnamon Nutrition 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 229960004106 citric acid Drugs 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 229960002303 citric acid monohydrate Drugs 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000012761 co-transfection Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 235000019516 cod Nutrition 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 229940013361 cresol Drugs 0.000 description 1
- 229960005168 croscarmellose Drugs 0.000 description 1
- 229960000913 crospovidone Drugs 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 229940097362 cyclodextrins Drugs 0.000 description 1
- HCAJEUSONLESMK-UHFFFAOYSA-N cyclohexylsulfamic acid Chemical compound OS(=O)(=O)NC1CCCCC1 HCAJEUSONLESMK-UHFFFAOYSA-N 0.000 description 1
- 229940086555 cyclomethicone Drugs 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 235000019258 dehydroacetic acid Nutrition 0.000 description 1
- 229940061632 dehydroacetic acid Drugs 0.000 description 1
- PGRHXDWITVMQBC-UHFFFAOYSA-N dehydroacetic acid Natural products CC(=O)C1C(=O)OC(C)=CC1=O PGRHXDWITVMQBC-UHFFFAOYSA-N 0.000 description 1
- JEQRBTDTEKWZBW-UHFFFAOYSA-N dehydroacetic acid Chemical compound CC(=O)C1=C(O)OC(C)=CC1=O JEQRBTDTEKWZBW-UHFFFAOYSA-N 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 229940111685 dibasic potassium phosphate Drugs 0.000 description 1
- 229940061607 dibasic sodium phosphate Drugs 0.000 description 1
- CGMRCMMOCQYHAD-UHFFFAOYSA-J dicalcium hydroxide phosphate Chemical compound [OH-].[Ca++].[Ca++].[O-]P([O-])([O-])=O CGMRCMMOCQYHAD-UHFFFAOYSA-J 0.000 description 1
- 229940095079 dicalcium phosphate anhydrous Drugs 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 229940008099 dimethicone Drugs 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- KCIDZIIHRGYJAE-YGFYJFDDSA-L dipotassium;[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] phosphate Chemical compound [K+].[K+].OC[C@H]1O[C@H](OP([O-])([O-])=O)[C@H](O)[C@@H](O)[C@H]1O KCIDZIIHRGYJAE-YGFYJFDDSA-L 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- WSDISUOETYTPRL-UHFFFAOYSA-N dmdm hydantoin Chemical compound CC1(C)N(CO)C(=O)N(CO)C1=O WSDISUOETYTPRL-UHFFFAOYSA-N 0.000 description 1
- 229960000878 docusate sodium Drugs 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- 239000003221 ear drop Substances 0.000 description 1
- 229940047652 ear drops Drugs 0.000 description 1
- 229940009662 edetate Drugs 0.000 description 1
- 235000013345 egg yolk Nutrition 0.000 description 1
- 210000002969 egg yolk Anatomy 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 230000026502 entry into host cell Effects 0.000 description 1
- 230000004890 epithelial barrier function Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229960004756 ethanol Drugs 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 229960001617 ethyl hydroxybenzoate Drugs 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 235000010228 ethyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004403 ethyl p-hydroxybenzoate Substances 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- NUVBSKCKDOMJSU-UHFFFAOYSA-N ethylparaben Chemical compound CCOC(=O)C1=CC=C(O)C=C1 NUVBSKCKDOMJSU-UHFFFAOYSA-N 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000013265 extended release Methods 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000004426 flaxseed Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 229960002598 fumaric acid Drugs 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 229940113087 geraniol Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 229950006191 gluconic acid Drugs 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- 229960005150 glycerol Drugs 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 210000002288 golgi apparatus Anatomy 0.000 description 1
- 229940087559 grape seed Drugs 0.000 description 1
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical class COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 235000019314 gum ghatti Nutrition 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-M hexadecanoate Chemical compound CCCCCCCCCCCCCCCC([O-])=O IPCSVZSSVZVIGE-UHFFFAOYSA-M 0.000 description 1
- 229960004867 hexetidine Drugs 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 239000008172 hydrogenated vegetable oil Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 229940031574 hydroxymethyl cellulose Drugs 0.000 description 1
- 239000012216 imaging agent Substances 0.000 description 1
- ZCTXEAQXZGPWFG-UHFFFAOYSA-N imidurea Chemical compound O=C1NC(=O)N(CO)C1NC(=O)NCNC(=O)NC1C(=O)NC(=O)N1CO ZCTXEAQXZGPWFG-UHFFFAOYSA-N 0.000 description 1
- 229940113174 imidurea Drugs 0.000 description 1
- 230000005965 immune activity Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 210000002490 intestinal epithelial cell Anatomy 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 230000010039 intracellular degradation Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 230000002601 intratumoral effect Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 229940090046 jet injector Drugs 0.000 description 1
- 210000002510 keratinocyte Anatomy 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 239000000832 lactitol Substances 0.000 description 1
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 description 1
- 235000010448 lactitol Nutrition 0.000 description 1
- 229960003451 lactitol Drugs 0.000 description 1
- 244000056931 lavandin Species 0.000 description 1
- 235000009606 lavandin Nutrition 0.000 description 1
- 239000001102 lavandula vera Substances 0.000 description 1
- 235000018219 lavender Nutrition 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000005772 leucine Nutrition 0.000 description 1
- 108010000761 leucylarginine Proteins 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000000865 liniment Substances 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 210000005228 liver tissue Anatomy 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 108010026228 mRNA guanylyltransferase Proteins 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229960000816 magnesium hydroxide Drugs 0.000 description 1
- 229940037627 magnesium lauryl sulfate Drugs 0.000 description 1
- HBNDBUATLJAUQM-UHFFFAOYSA-L magnesium;dodecyl sulfate Chemical compound [Mg+2].CCCCCCCCCCCCOS([O-])(=O)=O.CCCCCCCCCCCCOS([O-])(=O)=O HBNDBUATLJAUQM-UHFFFAOYSA-L 0.000 description 1
- 230000031852 maintenance of location in cell Effects 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229940099690 malic acid Drugs 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 1
- 229940111688 monobasic potassium phosphate Drugs 0.000 description 1
- 229940045641 monobasic sodium phosphate Drugs 0.000 description 1
- RZRNAYUHWVFMIP-UHFFFAOYSA-N monoelaidin Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-UHFFFAOYSA-N 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- PJUIMOJAAPLTRJ-UHFFFAOYSA-N monothioglycerol Chemical compound OCC(O)CS PJUIMOJAAPLTRJ-UHFFFAOYSA-N 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- DUWWHGPELOTTOE-UHFFFAOYSA-N n-(5-chloro-2,4-dimethoxyphenyl)-3-oxobutanamide Chemical compound COC1=CC(OC)=C(NC(=O)CC(C)=O)C=C1Cl DUWWHGPELOTTOE-UHFFFAOYSA-N 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 229940097496 nasal spray Drugs 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 238000002663 nebulization Methods 0.000 description 1
- 210000003061 neural cell Anatomy 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- VVGIYYKRAMHVLU-UHFFFAOYSA-N newbouldiamide Natural products CCCCCCCCCCCCCCCCCCCC(O)C(O)C(O)C(CO)NC(=O)CCCCCCCCCCCCCCCCC VVGIYYKRAMHVLU-UHFFFAOYSA-N 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 230000037434 nonsense mutation Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000001668 nucleic acid synthesis Methods 0.000 description 1
- 239000001702 nutmeg Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- KSCKTBJJRVPGKM-UHFFFAOYSA-N octan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCCCCCC[O-].CCCCCCCC[O-].CCCCCCCC[O-].CCCCCCCC[O-] KSCKTBJJRVPGKM-UHFFFAOYSA-N 0.000 description 1
- 229960002969 oleic acid Drugs 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229940041678 oral spray Drugs 0.000 description 1
- 239000000668 oral spray Substances 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 229960002566 papillomavirus vaccine Drugs 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 239000000813 peptide hormone Substances 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229960005323 phenoxyethanol Drugs 0.000 description 1
- PDTFCHSETJBPTR-UHFFFAOYSA-N phenylmercuric nitrate Chemical compound [O-][N+](=O)O[Hg]C1=CC=CC=C1 PDTFCHSETJBPTR-UHFFFAOYSA-N 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229960004838 phosphoric acid Drugs 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical group 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 239000000467 phytic acid Substances 0.000 description 1
- 229940068041 phytic acid Drugs 0.000 description 1
- 235000002949 phytic acid Nutrition 0.000 description 1
- 229960000502 poloxamer Drugs 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920001993 poloxamer 188 Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000056 polyoxyethylene ether Polymers 0.000 description 1
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 229940068965 polysorbates Drugs 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229940068984 polyvinyl alcohol Drugs 0.000 description 1
- 235000013809 polyvinylpolypyrrolidone Nutrition 0.000 description 1
- 229920000523 polyvinylpolypyrrolidone Polymers 0.000 description 1
- 210000003240 portal vein Anatomy 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229960003975 potassium Drugs 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 235000007686 potassium Nutrition 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 229960004109 potassium acetate Drugs 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 235000010235 potassium benzoate Nutrition 0.000 description 1
- 239000004300 potassium benzoate Substances 0.000 description 1
- 229940103091 potassium benzoate Drugs 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 229960002816 potassium chloride Drugs 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 239000004224 potassium gluconate Substances 0.000 description 1
- 235000013926 potassium gluconate Nutrition 0.000 description 1
- 229960003189 potassium gluconate Drugs 0.000 description 1
- 229940096992 potassium oleate Drugs 0.000 description 1
- 229940093916 potassium phosphate Drugs 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 235000010241 potassium sorbate Nutrition 0.000 description 1
- 239000004302 potassium sorbate Substances 0.000 description 1
- 229940069338 potassium sorbate Drugs 0.000 description 1
- BHZRJJOHZFYXTO-UHFFFAOYSA-L potassium sulfite Chemical compound [K+].[K+].[O-]S([O-])=O BHZRJJOHZFYXTO-UHFFFAOYSA-L 0.000 description 1
- 235000019252 potassium sulphite Nutrition 0.000 description 1
- MLICVSDCCDDWMD-KVVVOXFISA-M potassium;(z)-octadec-9-enoate Chemical compound [K+].CCCCCCCC\C=C/CCCCCCCC([O-])=O MLICVSDCCDDWMD-KVVVOXFISA-M 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 229920003124 powdered cellulose Polymers 0.000 description 1
- 235000019814 powdered cellulose Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 229940095574 propionic acid Drugs 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 229940093625 propylene glycol monostearate Drugs 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 235000020236 pumpkin seed Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 230000037425 regulation of transcription Effects 0.000 description 1
- 230000000754 repressing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000003340 retarding agent Substances 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229940085605 saccharin sodium Drugs 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229940057910 shea butter Drugs 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229960004249 sodium acetate Drugs 0.000 description 1
- 235000010378 sodium ascorbate Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 description 1
- 229960005055 sodium ascorbate Drugs 0.000 description 1
- 229960003885 sodium benzoate Drugs 0.000 description 1
- 229960002668 sodium chloride Drugs 0.000 description 1
- 229960001790 sodium citrate Drugs 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical compound [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 1
- 229940037001 sodium edetate Drugs 0.000 description 1
- 239000001540 sodium lactate Substances 0.000 description 1
- 235000011088 sodium lactate Nutrition 0.000 description 1
- 229940005581 sodium lactate Drugs 0.000 description 1
- 229960003339 sodium phosphate Drugs 0.000 description 1
- JXKPEJDQGNYQSM-UHFFFAOYSA-M sodium propionate Chemical compound [Na+].CCC([O-])=O JXKPEJDQGNYQSM-UHFFFAOYSA-M 0.000 description 1
- 235000010334 sodium propionate Nutrition 0.000 description 1
- 239000004324 sodium propionate Substances 0.000 description 1
- 229960003212 sodium propionate Drugs 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 235000011069 sorbitan monooleate Nutrition 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- 235000011071 sorbitan monopalmitate Nutrition 0.000 description 1
- 239000001570 sorbitan monopalmitate Substances 0.000 description 1
- 229940031953 sorbitan monopalmitate Drugs 0.000 description 1
- 235000011076 sorbitan monostearate Nutrition 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 229940035048 sorbitan monostearate Drugs 0.000 description 1
- 235000011078 sorbitan tristearate Nutrition 0.000 description 1
- 239000001589 sorbitan tristearate Substances 0.000 description 1
- 229960004129 sorbitan tristearate Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 150000003408 sphingolipids Chemical class 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229940012831 stearyl alcohol Drugs 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000003206 sterilizing agent Substances 0.000 description 1
- 210000000434 stratum corneum Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 229960001367 tartaric acid Drugs 0.000 description 1
- 238000011191 terminal modification Methods 0.000 description 1
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L thimerosal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- 229940033663 thimerosal Drugs 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 229960000984 tocofersolan Drugs 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 229960001295 tocopherol Drugs 0.000 description 1
- 229940042585 tocopherol acetate Drugs 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- 235000013337 tricalcium citrate Nutrition 0.000 description 1
- 235000019731 tricalcium phosphate Nutrition 0.000 description 1
- LADGBHLMCUINGV-UHFFFAOYSA-N tricaprin Chemical compound CCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCC)COC(=O)CCCCCCCCC LADGBHLMCUINGV-UHFFFAOYSA-N 0.000 description 1
- 229940117013 triethanolamine oleate Drugs 0.000 description 1
- VLPFTAMPNXLGLX-UHFFFAOYSA-N trioctanoin Chemical compound CCCCCCCC(=O)OCC(OC(=O)CCCCCCC)COC(=O)CCCCCCC VLPFTAMPNXLGLX-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 229960005066 trisodium edetate Drugs 0.000 description 1
- 229960000281 trometamol Drugs 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- 230000006453 vascular barrier function Effects 0.000 description 1
- 239000010679 vetiver oil Substances 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 231100000747 viability assay Toxicity 0.000 description 1
- 238000003026 viability measurement method Methods 0.000 description 1
- 235000019155 vitamin A Nutrition 0.000 description 1
- 239000011719 vitamin A Substances 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 229940045997 vitamin a Drugs 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 235000020234 walnut Nutrition 0.000 description 1
- 239000008170 walnut oil Substances 0.000 description 1
- 239000010497 wheat germ oil Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 230000003936 working memory Effects 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
- 239000002076 α-tocopherol Substances 0.000 description 1
- 235000004835 α-tocopherol Nutrition 0.000 description 1
- OENHQHLEOONYIE-JLTXGRSLSA-N β-Carotene Chemical compound CC=1CCCC(C)(C)C=1\C=C\C(\C)=C\C=C\C(\C)=C\C=C\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C OENHQHLEOONYIE-JLTXGRSLSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
- A61K48/0066—Manipulation of the nucleic acid to modify its expression pattern, e.g. enhance its duration of expression, achieved by the presence of particular introns in the delivered nucleic acid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H19/00—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
- C07H19/02—Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
- C07H19/04—Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
- C07H19/06—Pyrimidine radicals
- C07H19/10—Pyrimidine radicals with the saccharide radical esterified by phosphoric or polyphosphoric acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H21/00—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
- C07H21/02—Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2887—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/102—Mutagenizing nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1136—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1138—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/67—General methods for enhancing the expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/558—Immunoassay; Biospecific binding assay; Materials therefor using diffusion or migration of antigen or antibody
- G01N33/559—Immunoassay; Biospecific binding assay; Materials therefor using diffusion or migration of antigen or antibody through a gel, e.g. Ouchterlony technique
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/33—Chemical structure of the base
- C12N2310/334—Modified C
- C12N2310/3341—5-Methylcytosine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/30—Chemical structure
- C12N2310/33—Chemical structure of the base
- C12N2310/335—Modified T or U
Definitions
- RNAs are synthesized from four basic ribonucleotides: ATP, CTP, UTP and GTP, but may contain post-transcriptionally modified nucleotides. Further, approximately one hundred different nucleoside modifications have been identified in RNA (Rozenski, J, Crain, P, and McCloskey, J. (1999). The RNA Modification Database: 1999 update. Nucl Acids Res 27: 196-197). The role of nucleoside modifications on the immuno-stimulatory potential and on the translation efficiency of RNA, however, is unclear.
- heterologous DNA introduced into a cell can be inherited by daughter cells (whether or not the heterologous DNA has integrated into the chromosome) or by offspring. Introduced DNA can integrate into host cell genomic DNA at some frequency, resulting in alterations and/or damage to the host cell genomic DNA.
- multiple steps must occur before a protein is made. Once inside the cell, DNA must be transported into the nucleus where it is transcribed into RNA. The RNA transcribed from DNA must then enter the cytoplasm where it is translated into protein. This need for multiple processing steps creates lag times before the generation of a protein of interest. Further, it is difficult to obtain DNA expression in cells; frequently DNA enters cells but is not expressed or not expressed at reasonable rates or concentrations. This can be a particular problem when DNA is introduced into cells such as primary cells or modified cell lines.
- the method includes introducing a nucleic acid (e.g., a modified nucleic acid described herein) encoding a protein, polypeptide, or peptide of interest into a cell (e.g., a human cell), under conditions that the protein, polypeptide, or peptide of interest is produced (e.g., translated) in the cell.
- a nucleic acid e.g., a modified nucleic acid described herein
- the nucleic acid comprises one or more nucleoside modifications (e.g., one or more nucleoside modifications described herein).
- the nucleic acid is capable of evading an innate immune response of a cell into which the nucleic acid is introduced.
- the protein, polypeptide, or peptide is a therapeutic protein described herein.
- the protein, polypeptide, or peptide comprises one or more post-translational modifications (e.g., post-translational modifications present in human cells).
- Compositions and kits for protein production are also described herein. Further described herein are cells and cultures with altered protein levels (e.g., generated by a method described herein).
- the disclosure features a method of producing a protein (e.g., a heterologous protein) of interest in a cell, the method comprising the steps: (i) providing a target cell capable of protein translation; and (ii) introducing into the target cell a composition comprising a first isolated nucleic acid comprising a translatable region encoding the protein of interest and a nucleoside modification, under conditions such that the protein of interest is produced in the cell.
- the method further comprises the step of substantially purifying the protein of interest from the cell.
- the protein of interest is a secreted protein.
- the disclosure features a method of producing a protein (e.g., a heterologous protein) of interest in a cell, the method comprising the steps: (i) providing a target cell capable of protein translation; and (ii) introducing into the target cell a composition comprising: (a) a first isolated nucleic acid comprising a translatable region encoding the protein of interest and a nucleoside modification; and (b) a second nucleic acid comprising an inhibitory nucleic acid, under conditions such that the protein of interest is produced in the cell.
- the method further comprises the step of substantially purifying the protein of interest from the cell.
- the protein of interest is a secreted protein.
- the disclosure features a method of increasing the production of a recombinantly expressed protein of interest in a cell, comprising the steps: (i) providing a target cell comprising a recombinant nucleic acid encoding the protein of interest; and (ii) introducing into the target cell a composition comprising a first isolated nucleic acid comprising a translatable region encoding a translation effector protein and a nucleoside modification under conditions such that the effector protein is produced in the cell, thereby increasing the production of the recombinantly expressed protein in the cell.
- the target cell is a mammalian cell. In some embodiments, the target cell is a yeast cell. In some embodiments, the target cell is a bacterial cell, an insect cell, or a plant cell. In some embodiments, the protein of interest is a secreted protein. In some embodiments, the protein of interest is a transmembrane protein. In some embodiments, the protein of interest is an antibody or an antigen-binding fragment thereof. In some embodiments, the protein of interest is a growth factor or cytokine. In some embodiments, the protein of interest is a peptide or peptidomimetic. In some embodiments, the translation effector protein is ceramide transfer protein (CERT).
- CERT ceramide transfer protein
- the translation effector protein is translated in the target cell in an amount effective to increase efficiency of translation of the recombinantly expressed protein. In some embodiments, the translation effector protein is translated in the target cell in an amount effective to reduce efficiency of translation of proteins in the cell other than the recombinantly expressed protein. In some embodiments, the translation effector protein is translated in the target cell in an amount effective to reduce formation of inclusion bodies containing the recombinantly expressed protein. In some embodiments, the translation effector protein is translated in the target cell in an amount effective to reduce intracellular degradation of the recombinantly expressed protein. In some embodiments, the translation effector protein is translated in the target cell in an amount effective to increase secretion of the recombinantly expressed protein.
- the disclosure features a method for altering the level of a protein of interest in a target cell, the method comprising the steps of: (i) modulating the activity of at least one translation effector molecule in the target cell; and (ii) culturing the cell.
- the target cell does not contain a recombinant nucleic acid.
- the method further comprises the step of isolating the protein of interest.
- the disclosure features a method for modulating the level of a protein of interest in a target cell, comprising the steps of: i) modulating the activity of at least one translation effector molecule in the target cell, wherein the modulation comprises introducing into the target cell a first isolated nucleic acid comprising a translatable region encoding the translation effector protein and a nucleoside modification; and ii) culturing the cell.
- the disclosure features an animal cell (e.g., a mammalian cell) with an altered protein level, generated by the steps of: (i) introducing into the cell an effective amount of a first isolated nucleic acid comprising a translatable region encoding a translation effector protein and a nucleoside modification; and (ii) culturing the cell.
- the effective amount of the first isolated nucleic acid introduced into the cell is titrated against a desired amount of protein translated from the translatable region.
- the disclosure features a high density culture comprising a plurality of the cells described herein.
- the culture comprises a batch process.
- the culture comprises a continuous feed process.
- the disclosure features a composition for protein production, the composition comprising a first isolated nucleic acid comprising a translatable region and a nucleoside modification, wherein the nucleic acid exhibits reduced degradation by a cellular nuclease, and a mammalian cell suitable for translation of the translatable region of the first nucleic acid.
- the mammalian cell comprises a recombinant nucleic acid.
- the disclosure features a composition for protein production, the composition comprising: (i) a first isolated nucleic acid comprising a translatable region and a nucleoside modification, wherein the nucleic acid exhibits reduced degradation by a cellular nuclease; (ii) a second nucleic acid comprising an inhibitory nucleic acid; and (iii) a mammalian cell suitable for translation of the translatable region of the first nucleic acid, wherein the mammalian cell comprises a target nucleic acid capable of being acted upon by the inhibitory nucleic acid.
- the mammalian cell comprises a recombinant nucleic acid.
- the disclosure features a kit for protein production, the kit comprising a first isolated nucleic acid comprising a translatable region and a nucleic acid modification, wherein the nucleic acid is capable of evading an innate immune response of a cell into which the first isolated nucleic acid is introduced, and packaging and instructions therefor.
- the disclosure features a kit for protein production, the kit comprising: (i) a first isolated nucleic acid comprising a translatable region, provided in an amount effective to produce a desired amount of a protein encoded by the translatable region when introduced into a target cell; (ii) a second nucleic acid comprising an inhibitory nucleic acid, provided in an amount effective to substantially inhibit the innate immune response of the cell; and (iii) packaging and instructions therefor.
- the disclosure features a kit for protein production, the kit comprising a first isolated nucleic acid comprising a translatable region and a nucleoside modification, wherein the nucleic acid exhibits reduced degradation by a cellular nuclease, and packaging and instructions therefor.
- the disclosure features a kit for protein production, the kit comprising a first isolated nucleic acid comprising a translatable region and at least two different nucleoside modifications, wherein the nucleic acid exhibits reduced degradation by a cellular nuclease, and packaging and instructions therefor.
- the disclosure features a kit for protein production, the kit comprising: (i) a first isolated nucleic acid comprising a translatable region; (ii) a second nucleic acid comprising an inhibitory nucleic acid; and (iii) packaging and instructions therefor.
- the disclosure features a kit for protein production, the kit comprising: (i) a first isolated nucleic acid comprising a translatable region and at least one nucleoside modification, wherein the nucleic acid exhibits reduced degradation by a cellular nuclease; (ii) a second nucleic acid comprising an inhibitory nucleic acid; and (iii) packaging and instructions therefor.
- the disclosure features a kit for protein production, comprising a first isolated nucleic acid encoding a translatable region encoding a protein, wherein the first nucleic acid comprises a nucleic acid modification, wherein the first nucleic acid displays decreased degradation in a cell into which the first isolated nucleic acid is introduced as compared to a nucleic acid not comprising a nucleic acid modification, and packaging and instructions therefor.
- the disclosure features a kit for protein production, comprising a first isolated nucleic acid encoding a translatable region encoding a protein, wherein the first nucleic acid comprises a nucleic acid modification, wherein the first nucleic acid displays is more stable in a cell into which the first isolated nucleic acid is introduced as compared to a nucleic acid not comprising a nucleic acid modification, and packaging and instructions therefor.
- the disclosure features a kit for immunoglobulin protein production, comprising a first isolated nucleic acid comprising i) a translatable region encoding the immunoglobulin protein and ii) a nucleic acid modification, wherein the first nucleic acid is capable of evading an innate immune response of a cell into which the first isolated nucleic acid is introduced, wherein the translatable region is substantially devoid of cytidine and uracil nucleotides, and packaging and instructions therefor.
- the disclosure features a mammalian cell generated by use of a kit described herein.
- the disclosure features an isolated immunoglobulin protein produced from a production cell comprising a first isolated nucleic acid comprising i) a translatable region encoding the immunoglobulin protein and ii) a nucleic acid modification, wherein the first nucleic acid is capable of evading an innate immune response of the cell, wherein the translatable region is substantially devoid of either cytidine or uracil nucleotides or the combination of cytidine and uracil nucleotides.
- the disclosure features a pharmaceutical preparation comprising an effective amount of a protein described herein.
- the disclosure features a pharmaceutical preparation comprising an effective amount of a first nucleic acid comprising i) a translatable region encoding an immunoglobulin protein and ii) a nucleic acid modification, wherein the first nucleic acid exhibits reduced degradation by a cellular nuclease and is capable of evading an innate immune response of a cell into which the first nucleic acid is introduced, wherein the translatable region is substantially devoid of cytidine and uracil nucleotides.
- Embodiments of the aforesaid methods, cells, cultures, compositions, preparations, and kits may include one or more of the following features:
- the first isolated nucleic acid comprises messenger RNA (mRNA).
- the mRNA comprises at least one nucleoside selected from the group consisting of pyridin-4-one ribonucleoside, 5-aza-uridine, 2-thio-5-aza-uridine, 2-thiouridine, 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxyuridine, 3-methyluridine, 5-carboxymethyl-uridine, 1-carboxymethyl-pseudouridine, 5-propynyl-uridine, 1-propynyl-pseudouridine, 5-taurinomethyluridine, 1-taurinomethyl-pseudouridine, 5-taurinomethyl-2-thio-uridine, 1-taurinomethyl-4-thio-uridine, 5-methyl-uridine, 1-methyl-pseudouridine, 4-thio-1-methyl-pseudouridine, 2-thio-1-
- the mRNA comprises at least one nucleoside selected from the group consisting of 5-aza-cytidine, pseudoisocytidine, 3-methyl-cytidine, N4-acetylcytidine, 5-formylcytidine, N4-methylcytidine, 5-hydroxymethylcytidine, 1-methyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoisocytidine, 2-thio-cytidine, 2-thio-5-methyl-cytidine, 4-thio-pseudoisocytidine, 4-thio-1-methyl-pseudoisocytidine, 4-thio-1-methyl-1-deaza-pseudoisocytidine, 1-methyl-1-deaza-pseudoisocytidine, zebularine, 5-aza-zebularine, 5-methyl-zebularine, 5-aza-2-thio-
- the mRNA comprises at least one nucleoside selected from the group consisting of 2-aminopurine, 2, 6-diaminopurine, 7-deaza-adenine, 7-deaza-8-aza-adenine, 7-deaza-2-aminopurine, 7-deaza-8-aza-2-aminopurine, 7-deaza-2,6-diaminopurine, 7-deaza-8-aza-2,6-diaminopurine, 1-methyladenosine, N6-methyladenosine, N6-isopentenyladenosine, N6-(cis-hydroxyisopentenyl)adenosine, 2-methylthio-N6-(cis-hydroxyisopentenyl)adenosine, N6-glycinylcarbamoyladenosine, N6-threonylcarbamoyladenosine, 2-methylthio-N6-threonyl carbamoyladeno
- mRNA comprises at least one nucleoside selected from the group consisting of inosine, 1-methyl-inosine, wyosine, wybutosine, 7-deaza-guanosine, 7-deaza-8-aza-guanosine, 6-thio-guanosine, 6-thio-7-deaza-guanosine, 6-thio-7-deaza-8-aza-guanosine, 7-methyl-guanosine, 6-thio-7-methyl-guanosine, 7-methylinosine, 6-methoxy-guanosine, 1-methylguanosine, N2-methylguanosine, N2,N2-dimethylguanosine, 8-oxo-guanosine, 7-methyl-8-oxo-guanosine, 1-methyl-6-thio-guanosine, N2-methyl-6-thio-guanosine, and N2,N2-dimethyl-6-thio-guanosine.
- nucleoside selected from the group consisting of ino
- FIG. 1 depicts bar graphs of an Enzyme-linked immunosorbent assay (ELISA) detection of Human G-CSF of in vitro transfected Chinese Hamster Ovary with modRNA encoding human G-CSF at 12 and 24 hours post-transfection.
- ELISA Enzyme-linked immunosorbent assay
- FIG. 2 depicts bar graphs of an Enzyme-linked immunosorbent assay (ELISA) for Human IgG of in vitro transfected Chinese Hamster Ovary cells with the Heavy and Light chains of modRNA encoding Trastuzumab at 12, 24, and 36 hours post-transfection.
- ELISA Enzyme-linked immunosorbent assay
- FIG. 3 depicts bar graphs of an Enzyme-linked immunosorbent assay (ELISA) for detection of Human IgG of in vitro transfected Human Embryonic Kidneys cells (HEK293) with Heavy and Light chains of modRNA encoding Trastuzumab at 36 hours post-transfection.
- ELISA Enzyme-linked immunosorbent assay
- FIG. 4 depicts an image of a western blot detection of in vitro transfected Chinese Hamster Ovary cells with the Heavy and Light chains of modRNA encoding Trastuzumab at 24 hours post-transfection.
- HC and LC indicate the Heavy Chain and Light Chain of Trastuzumab respectively.
- FIG. 5 depicts images from cell immune-staining of in vitro-transfected Chinese Hamster Ovary cells with the Heavy and Light chains of modRNA encoding both Trastuzumab and Rituximab at 13 hours post-transfection.
- FIG. 6 depicts images of a binding immunoblot assay of modRNA encoding Trastuzumab and Rituximab.
- the black boxes display the protein of interest.
- the disclosure provides, at least in part, methods of producing a protein, polypeptide, or peptide (e.g., a heterologous protein) of interest in a cell, methods increasing the production of a protein, polypeptide, or peptide (e.g., a recombinantly expressed protein) of interest in a cell, and methods of altering the level of a protein, polypeptide, or peptide of interest in a cell.
- a protein, polypeptide, or peptide e.g., a heterologous protein
- methods increasing the production of a protein, polypeptide, or peptide e.g., a recombinantly expressed protein
- the methods can include the step of introducing a nucleic acid (e.g., a modified nucleic acid described herein) encoding a protein, polypeptide, or peptide of interest into a cell (e.g., a human cell), under conditions that the protein, polypeptide, or peptide of interest is produced (e.g., translated) in the cell.
- a nucleic acid e.g., a modified nucleic acid described herein
- the nucleic acid comprises one or more nucleoside modifications (e.g., one or more nucleoside modifications described herein).
- the nucleic acid is capable of evading an innate immune response of a cell into which the nucleic acid is introduced, thus increasing the efficiency of protein production in the cell.
- the protein is a therapeutic protein described herein.
- the protein comprises one or more post-translational modifications (e.g., post-translational modifications present in human cells).
- Compositions and kits for protein production are also described herein. Further described herein are cells and cultures with altered protein levels (e.g., generated by a method described herein).
- exogenous nucleic acids particularly viral nucleic acids
- exogenous nucleic acids introduced into cells induce an innate immune response, resulting in interferon (IFN) production and cell death.
- IFN interferon
- a nucleic acid e.g., a ribonucleic acid (RNA)
- RNA ribonucleic acid
- nucleic acids encoding useful polypeptides capable of modulating a cell's function and/or activity, and methods of making and using these nucleic acids and polypeptides.
- these nucleic acids are capable of reducing the innate immune activity of a population of cells into which they are introduced, thus increasing the efficiency of protein production in that cell population. Further, one or more additional advantageous activities and/or properties of the nucleic acids and proteins of the invention are described.
- the methods provided herein are useful for enhancing protein product yield in a cell culture process.
- introduction of the modified mRNAs described herein results in increased protein production efficiency relative to a corresponding unmodified nucleic acid.
- Such increased protein production efficiency can be demonstrated, e.g., by showing increased cell transfection, increased protein translation from the nucleic acid, decreased nucleic acid degradation, and/or reduced innate immune response of the host cell.
- Protein production can be measured by ELISA, and protein activity can be measured by various functional assays known in the art.
- the protein production may be generated in a continuous or a fed-batch process.
- the cells are cultured.
- Cells may be cultured in suspension or as adherent cultures.
- Cells may be cultured in a variety of vessels including, for example, bioreactors, cell bags, wave bags, culture plates, flasks, hyperflasks and other vessels well known to those of ordinary skill in the art.
- Cells may be cultured in IMDM (Invitrogen, Catalog number 12440-53) or any other suitable media including chemically defined media formulations.
- Ambient conditions suitable for cell culture, such as temperature and atmospheric composition, are also well known to those skilled in the art.
- the methods of the disclosure may be used with any cell that is suitable for use in protein production.
- the cells are selected from the group consisting of animal cells (e.g., mammalian cells), bacterial cells, plant, microbial, algal, and fungal cells.
- animal cells e.g., mammalian cells
- bacterial cells e.g., bacterial cells
- plant e.g., bacterial cells
- microbial cells e.g., bacterial cells
- algal cells e.g., bacterial cells
- algal cells e.g., bacterial cells
- algal e.g., algal cells
- fungal cells e.g., bacterial cells
- the cells are mammalian cells, such human, mouse, rat, goat, horse, rabbit, hamster or cow cells.
- the cells may be from any established cell line, including but not limited to HeLa, NS0, SP2/0, HEK 293T, Vero, Caco, Caco-2, MDCK, COS-1, COS-7, K562, Jurkat, CHO-K1, DG44, CHOK1SV, CHO-S, Huvec, CV-1, HuH-7, NIH3T3, HEK293, 293, A549, HepG2, IMR-90, MCF-7, U-20S, Per.C6, SF9, SF21, or Chinese Hamster Ovary (CHO) cells.
- the cells are fungal cells, such as cells selected from the group consisting of: Chrysosporium cells, Aspergillus cells, Trichoderma cells, Dictyostelium cells, Candida cells, Saccharomyces cells, Schizosaccharomyces cells, and Penicillium cells.
- the cells are bacterial cells, such as E. coli, B. subtilis , or BL21 cells.
- Primary and secondary cells to be transfected by the present method can be obtained from a variety of tissues and include all cell types which can be maintained in culture.
- primary and secondary cells which can be transfected by the present method include fibroblasts, keratinocytes, epithelial cells (e.g., mammary epithelial cells, intestinal epithelial cells), endothelial cells, glial cells, neural cells, formed elements of the blood (e.g., lymphocytes, bone marrow cells), muscle cells and precursors of these somatic cell types.
- Primary cells can be obtained from a donor of the same species or another species (e.g., mouse, rat, rabbit, cat, dog, pig, cow, bird, sheep, goat, horse).
- the cells of the present disclosure are useful for in vitro production of therapeutic products which can be purified and delivered by conventional routes of administration. With or without amplification, these cells can be subject to large-scale cultivation for harvest of intracellular or extracellular protein products.
- Methods of the present disclosure enhance nucleic acid delivery into a cell population, in vivo, ex vivo, or in culture.
- a cell culture containing a plurality of host cells e.g., eukaryotic cells such as yeast or mammalian cells
- the composition also generally contains a transfection reagent or other compound that increases the efficiency of enhanced nucleic acid uptake into the host cells.
- the enhanced nucleic acid exhibits enhanced retention in the cell population, relative to a corresponding unmodified nucleic acid. The retention of the enhanced nucleic acid is greater than the retention of the unmodified nucleic acid.
- it is at least about 50%, 75%, 90%, 95%, 100%, 150%, 200%, or more than 200% greater than the retention of the unmodified nucleic acid.
- retention advantage may be achieved by one round of transfection with the enhanced nucleic acid, or may be obtained following repeated rounds of transfection.
- Transiently transfected cells may be generated by methods of transfection, electroporation, cationic agents, polymers, or lipid-based delivery molecules well known to those of ordinary skill in the art.
- the modified transient RNAs can be introduced into the cultured cells in either traditional batch like steps or continuous flow through steps if appropriate.
- the methods and compositions of the present disclosure may be used to produce cells with increased production of one or more protein of interest.
- Cells can be transfected or otherwise introduced with one or more RNA.
- the cells may be transfected with the two or more RNA constructs simultaneously or sequentially. In certain embodiments, multiple rounds of the methods described herein may be used to obtain cells with increased expression of one or more RNAs or proteins of interest.
- cells may be transfected with one or more RNA constructs that encode an RNA or protein of interest and isolated according to the methods described herein.
- the isolated cells may then be subjected to further rounds of transfection with one or more other RNA that encode an RNA or protein of interest and isolated once again.
- This method is useful, for example, for generating cells with increased expression of a complex of proteins, RNAs or proteins in the same or related biological pathway, RNAs or proteins that act upstream or downstream of each other, RNAs or proteins that have a modulating, activating or repressing function to each other, RNAs or proteins that are dependent on each other for function or activity, or RNAs or proteins that share homology (e.g., sequence, structural, or functional homology).
- this method may be used to generate a cell line with increased expression of the heavy and light chains of an immunoglobulin protein (e.g., IgA, IgD, IgE, IgG, and IgM) or antigen-binding fragments thereof.
- the immunoglobulin proteins may be fully human, humanized, or chimeric immunoglobulin proteins.
- An RNA that is transfected into a cell of the disclosure may comprise a sequence that is an RNA encoding a protein of interest. Any protein may be produced according to the methods described herein.
- proteins examples include, without limitation, peptide hormones (e.g., insulin), glycoprotein hormones (e.g., erythropoietin), antibiotics, cytokines, enzymes, vaccines (e.g., HIV vaccine, HPV vaccine, HBV vaccine), anticancer therapeutics (e.g., Muc1), and therapeutic antibodies.
- the RNA encodes an immunoglobulin protein or an antigen-binding fragment thereof, such as an immunoglobulin heavy chain, an immunoglobulin light chain, a single chain Fv, a fragment of an antibody, such as Fab, Fab′, or (Fab′) 2 , or an antigen binding fragment of an immunoglobulin.
- the RNA encodes erythropoietin.
- the RNA encodes one or more immunoglobulin proteins, or fragments thereof, that bind to and, optionally, antagonize or agonize a cell surface receptor: the epidermal growth factor receptor (EGFR), HER2, or c-ErbB-1, such as ErbituxTM (cetuximab).
- EGFR epidermal growth factor receptor
- HER2 epidermal growth factor receptor
- c-ErbB-1 such as ErbituxTM (cetuximab).
- the methods described herein can further comprise the step of isolating or purifying the proteins, polypeptides, or peptides produced by the methods described herein.
- Those of ordinary skill in the art can easily make a determination of the proper manner to purify or isolate the protein of interest from the cultured cells. Generally, this is done through a capture method using affinity binding or non-affinity purification. If the protein of interest is not secreted by the cultured cells, then a lysis of the cultured cells would be performed prior to purification or isolation as described above.
- the process can be conducted, if desired, in the bioreactor itself.
- the fluid may either be preconditioned to a desired stimulus such as pH, temperature or other stimulus characteristic or the fluid can be conditioned upon addition of the polymer(s) or the polymer(s) can be added to a carrier liquid that is properly conditioned to the required parameter for the stimulus condition required for that polymer to be solubilized in the fluid.
- the polymer(s) is allowed to circulate thoroughly with the fluid and then the stimulus is applied (change in pH, temperature, salt concentration, etc) and the desired protein and polymer(s) precipitate out of solution.
- the polymer and desired protein(s) is separated from the rest of the fluid and optionally washed one or more times to remove any trapped or loosely bound contaminants.
- the desired protein is then recovered from the polymer(s) such as by elution and the like. Typically, the elution is done under a set of conditions such that the polymer remains in its solid (precipitated) form and retains any impurities to it during the selective elution of the desired protein.
- the polymer and protein as well as any impurities can be solubilized in a new fluid such as water or a buffered solution and the protein be recovered by a means such as affinity, ion exchange, hydrophobic, or some other type of chromatography that has a preference and selectivity for the protein over that of the polymer or impurities.
- the eluted protein is then recovered and if desired subjected to additional processing steps, either traditional batch like steps or continuous flow through steps if appropriate.
- a specific polypeptide in a cell line or collection of cell lines of potential interest particularly an engineered protein such as a protein variant of a reference protein having a known activity.
- an engineered protein such as a protein variant of a reference protein having a known activity.
- a method of optimizing expression of an engineered protein in a target cell by providing a plurality of target cell types, and independently contacting with each of the plurality of target cell types a modified mRNA encoding an engineered polypeptide. Additionally, culture conditions may be altered to increase protein production efficiency.
- the presence and/or level of the engineered polypeptide in the plurality of target cell types is detected and/or quantitated, allowing for the optimization of an engineered polypeptide's expression by selection of an efficient target cell and cell culture conditions relating thereto.
- Such methods are particularly useful when the engineered polypeptide contains one or more post-translational modifications or has substantial tertiary structure, situations which often complicate efficient protein production.
- Proteins of interest include those provided herein and fragments, mutants, variants, and alterations thereof.
- desired proteins/polypeptides or proteins of interest are for example, but not limited to insulin, insulin-like growth factor, human growth hormone (hGH), tissue plasminogen activator (tPA), cytokines, such as interleukins (IL), e.g., IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, interferon (IFN) alpha, IFN beta, IFN gamma, IFN omega or IFN tau, tumor necrosis factor (TNF), such as TNF alpha and TNF beta, TNF gamma, TNF-related apoptosis-inducing ligand (TRAIL); granulfin-associated fibroblasts,
- Fab fragments fragment antigen-binding
- Fab fragments consist of the variable regions of both chains which are held together by the adjacent constant region. These may be formed by protease digestion, e.g., with papain, from conventional antibodies, but similar Fab fragments may also be produced in the mean time by genetic engineering.
- Further antibody fragments include F(ab′)2 fragments, which may be prepared by proteolytic cleaving with pepsin.
- the protein of interest is typically recovered from the culture medium as a secreted polypeptide, or it can be recovered from host cell lysates if expressed without a secretory signal. It is necessary to purify the protein of interest from other recombinant proteins and host cell proteins in a way that substantially homogenous preparations of the protein of interest are obtained.
- cells and/or particulate cell debris are removed from the culture medium or lysate.
- the product of interest thereafter is purified from contaminant soluble proteins, polypeptides and nucleic acids, for example, by fractionation on immunoaffinity or ion-exchange columns, ethanol precipitation, reverse phase HPLC, Sephadex chromatography, chromatography on silica or on a cation exchange resin such as DEAE.
- methods teaching a skilled person how to purify a protein heterologous expressed by host cells are well known in the art. Such methods are for example described by (Harris and Angal, Protein Purification Methods: A Practical Approach , Oxford University Press, 1995) or (Robert Scopes, Protein Purification: Principles and Practice , Springer, 1988).
- Methods of the present disclosure enhance nucleic acid delivery into a cell population, in vivo, ex vivo, or in culture.
- a cell culture containing a plurality of host cells e.g., eukaryotic cells such as yeast or mammalian cells
- the composition also generally contains a transfection reagent or other compound that increases the efficiency of enhanced nucleic acid uptake into the host cells.
- the enhanced nucleic acid exhibits enhanced retention in the cell population, relative to a corresponding unmodified nucleic acid. The retention of the enhanced nucleic acid is greater than the retention of the unmodified nucleic acid.
- it is at least about 50%, 75%, 90%, 95%, 100%, 150%, 200%, or more than 200% greater than the retention of the unmodified nucleic acid.
- retention advantage may be achieved by one round of transfection with the enhanced nucleic acid, or may be obtained following repeated rounds of transfection.
- the enhanced nucleic acid is delivered to a target cell population with one or more additional nucleic acids. Such delivery may be at the same time, or the enhanced nucleic acid is delivered prior to delivery of the one or more additional nucleic acids.
- the additional one or more nucleic acids may be modified nucleic acids or unmodified nucleic acids. It is understood that the initial presence of the enhanced nucleic acids does not substantially induce an innate immune response of the cell population and, moreover, that the innate immune response will not be activated by the later presence of the unmodified nucleic acids. In this regard, the enhanced nucleic acid may not itself contain a translatable region, if the protein desired to be present in the target cell population is translated from the unmodified nucleic acids.
- IL-12 and IL-23 receptor signaling is enhanced in chronic autoimmune disorders such as multiple sclerosis and inflammatory diseases such as rheumatoid arthritis, psoriasis, lupus erythematosus, ankylosing spondylitis and Crohn's disease (Kikly K, Liu L, Na S, Sedgwick J D (2006) Curr. Opin. Immunol. 18 (6): 670-5).
- a nucleic acid encodes an antagonist for chemokine receptors.
- Chemokine receptors CXCR-4 and CCR-5 are required for HIV entry into host cells (Arenzana-Seisdedos F et al, (1996) Nature. Oct 3; 383 (6599):400).
- modified nucleic acids are provided to express a protein-binding partner or a receptor on the surface of the cell, which functions to target the cell to a specific tissue space or to interact with a specific moiety, either in vivo or in vitro.
- Suitable protein-binding partners include antibodies and functional fragments thereof, scaffold proteins, or peptides.
- modified nucleic acids can be employed to direct the synthesis and extracellular localization of lipids, carbohydrates, or other biological moieties.
- a method for epigenetically silencing gene expression in a mammalian subject comprising a nucleic acid where the translatable region encodes a polypeptide or polypeptides capable of directing sequence-specific histone H3 methylation to initiate heterochromatin formation and reduce gene transcription around specific genes for the purpose of silencing the gene.
- a gain-of-function mutation in the Janus Kinase 2 gene is responsible for the family of Myeloproliferative Diseases.
- Fission yeast require two RNAi complexes for siRNA-mediated heterochromatin assembly: the RNA-induced transcriptional silencing (RITS) complex and the RNA-directed RNA polymerase complex (RDRC) (Motamedi et al. Cell 2004, 119, 789-802).
- the RITS complex contains the siRNA binding Argonaute family protein Ago1, a chromodomain protein Chp1, and Tas3.
- the fission yeast RDRC complex is composed of an RNA-dependent RNA Polymerase Rdp1, a putative RNA helicase Hrr1, and a polyA polymerase family protein Cid12.
- Ago1 binds siRNA molecules generated through Dicer-mediated cleavage of Rdp1 co-transcriptionally generated dsRNA transcripts and allows for the sequence-specific direct association of Chp1, Tas3, Hrr1, and Clr4 to regions of DNA destined for methylation and histone modification and subsequent compaction into transcriptionally silenced heterochromatin.
- sequence-specific trans silencing is possible through co-transfection with double-stranded siRNAs for specific regions of DNA and concomitant RNAi-directed silencing of the siRNA ribonuclease Eri1 (Buhler et al. Cell 2006, 125, 873-886).
- nucleic acids that encode variant polypeptides which have a certain identity with a reference polypeptide sequence.
- identity refers to a relationship between the sequences of two or more peptides, as determined by comparing the sequences. In the art, “identity” also means the degree of sequence relatedness between peptides, as determined by the number of matches between strings of two or more amino acid residues. “Identity” measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (i.e., “algorithms”).
- Identity of related peptides can be readily calculated by known methods. Such methods include, but are not limited to, those described in Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M. Stockton Press, New York, 1991; and Carillo et al., SIAM J. Applied Math. 48, 1073 (1988).
- the polypeptide variant has the same or a similar activity as the reference polypeptide.
- the variant has an altered activity (e.g., increased or decreased) relative to a reference polypeptide.
- variants of a particular polynucleotide or polypeptide of the disclosure will have at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to that particular reference polynucleotide or polypeptide as determined by sequence alignment programs and parameters described herein and known to those skilled in the art.
- protein fragments, functional protein domains, and homologous proteins are also considered to be within the scope of this disclosure.
- any protein fragment of a reference protein meaning a polypeptide sequence at least one amino acid residue shorter than a reference polypeptide sequence but otherwise identical
- any protein that includes a stretch of about 20, about 30, about 40, about 50, or about 100 amino acids, which are about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, or about 100% identical to any of the sequences described herein can be utilized in accordance with the disclosure.
- a protein sequence to be utilized in accordance with the disclosure includes 2, 3, 4, 5, 6, 7, 8, 9, 10, or more mutations as shown in any of the sequences provided or referenced herein.
- polypeptide libraries can be used for production of polypeptide libraries.
- polynucleotide libraries containing nucleoside modifications wherein the polynucleotides individually contain a first nucleic acid sequence encoding a polypeptide, such as an antibody, protein binding partner, scaffold protein, and other polypeptides known in the art.
- the polynucleotides are mRNA in a form suitable for direct introduction into a target cell host, which in turn synthesizes the encoded polypeptide.
- multiple variants of a protein are produced and tested to determine the best variant in terms of pharmacokinetics, stability, biocompatibility, and/or biological activity, or a biophysical property such as expression level.
- a library may contain about 10, 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 , 10 8 , 10 9 , or over 10 9 possible variants (including substitutions, deletions of one or more residues, and insertion of one or more residues).
- polypeptide-nucleic acid complexes Proper protein translation involves the physical aggregation of a number of polypeptides and nucleic acids associated with the mRNA.
- protein-nucleic acid complexes containing a translatable mRNA having one or more nucleoside modifications (e.g., at least two different nucleoside modifications) and one or more polypeptides bound to the mRNA.
- the proteins are provided in an amount effective to prevent or reduce an innate immune response of a cell into which the complex is introduced.
- mRNAs having sequences that are substantially not translatable are provided. Such mRNA is effective as a vaccine when administered to a mammalian subject.
- modified nucleic acids that contain one or more noncoding regions. Such modified nucleic acids are generally not translated, but are capable of binding to and sequestering one or more translational machinery component such as a ribosomal protein or a transfer RNA (tRNA), thereby effectively reducing protein expression in the cell.
- the modified nucleic acid may contain a small nucleolar RNA (sno-RNA), microRNA (miRNA), small interfering RNA (siRNA), small hairpin RNA (shRNA), or Piwi-interacting RNA (piRNA).
- RNAs such as messenger RNAs (mRNAs) that contain one or more modified nucleosides (termed “modified nucleic acids”), which have useful properties including the lack of a substantial induction of the innate immune response of a cell into which the mRNA is introduced.
- modified nucleic acids enhance the efficiency of protein production, intracellular retention of nucleic acids, and viability of contacted cells, as well as possess reduced immunogenicity, these nucleic acids having these properties are termed “enhanced nucleic acids” herein.
- nucleic acid in its broadest sense, includes any compound and/or substance that is or can be incorporated into an oligonucleotide chain.
- exemplary nucleic acids for use in accordance with the present disclosure include, but are not limited to, one or more of DNA, RNA including messenger mRNA (mRNA), hybrids thereof, RNA interference (RNAi)-inducing agents, RNAi agents, small interfering RNAs (siRNAs), small hairpin RNAs (shRNAs), microRNAs (miRNAs), antisense RNAs, ribozymes, catalytic DNA, RNAs that induce triple helix formation, aptamers, vectors, etc., described in detail herein.
- mRNA messenger mRNA
- RNAi RNA interference
- siRNAs small interfering RNAs
- shRNAs small hairpin RNAs
- miRNAs microRNAs
- antisense RNAs ribozymes, catalytic DNA, RNAs that induce triple
- modified nucleic acids containing a translatable region and one, two, or more than two different nucleoside modifications.
- the modified nucleic acid exhibits reduced degradation in a cell into which the nucleic acid is introduced, relative to a corresponding unmodified nucleic acid.
- the degradation rate of the modified nucleic acid is reduced by about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or greater than 90%, compared to the degradation rate of the corresponding unmodified nucleic acid.
- nucleic acids include ribonucleic acids (RNAs), deoxyribonucleic acids (DNAs), threose nucleic acids (TNAs), glycol nucleic acids (GNAs), or a hybrid thereof.
- the modified nucleic acid includes messenger RNAs (mRNAs).
- mRNAs messenger RNAs
- the nucleic acids of the disclosure do not substantially induce an innate immune response of a cell into which the mRNA is introduced.
- modified nucleosides include pyridin-4-one ribonucleoside, 5-aza-uridine, 2-thio-5-aza-uridine, 2-thiouridine, 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxyuridine, 3-methyluridine, 5-carboxymethyl-uridine, 1-carboxymethyl-pseudouridine, 5-propynyl-uridine, 1-propynyl-pseudouridine, 5-taurinomethyluridine, 1-taurinomethyl-pseudouridine, 5-taurinomethyl-2-thio-uridine, 1-taurinomethyl-4-thio-uridine, 5-methyl-uridine, 1-methyl-pseudouridine, 4-thio-1-methyl-pseudouridine, 2-thio-1-methyl-pseudouridine, 1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-1-methyl-1-
- modified nucleosides include 5-aza-cytidine, pseudoisocytidine, 3-methyl-cytidine, N4-acetylcytidine, 5-formylcytidine, N4-methylcytidine, 5-hydroxymethylcytidine, 1-methyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoisocytidine, 2-thio-cytidine, 2-thio-5-methyl-cytidine, 4-thio-pseudoisocytidine, 4-thio-1-methyl-pseudoisocytidine, 4-thio-1-methyl-1-deaza-pseudoisocytidine, 1-methyl-1-deaza-pseudoisocytidine, zebularine, 5-aza-zebularine, 5-methyl-zebularine, 5-aza-2-thio-zebularine, 2-thio-zebula
- modified nucleosides include 2-aminopurine, 2,6-diaminopurine, 7-deaza-adenine, 7-deaza-8-aza-adenine, 7-deaza-2-aminopurine, 7-deaza-8-aza-2-aminopurine, 7-deaza-2,6-diaminopurine, 7-deaza-8-aza-2,6-diaminopurine, 1-methyladenosine, N6-methyladenosine, N6-isopentenyladenosine, N6-(cis-hydroxyisopentenyl)adenosine, 2-methylthio-N6-(cis-hydroxyisopentenyl)adenosine, N6-glycinylcarbamoyladenosine, N6-threonylcarbamoyladenosine, 2-methylthio-N6-threonyl carbamoyladenosine, N6,N6-dimethylmethyladeno
- a modified nucleoside is 5′-O-(1-Thiophosphate)-Adenosine, 5′-O-(1-Thiophosphate)-Cytidine, 5′-O-(1-Thiophosphate)-Guanosine, 5′-O-(1-Thiophosphate)-Uridine or 5′-O-(1-Thiophosphate)-Pseudouridine.
- the ⁇ -thio substituted phosphate moiety is provided to confer stability to RNA and DNA polymers through the unnatural phosphorothioate backbone linkages.
- Phosphorothioate DNA and RNA have increased nuclease resistance and subsequently a longer half-life in a cellular environment.
- Phosphorothioate linked nucleic acids are expected to also reduce the innate immune response through weaker binding/activation of cellular innate immune molecules.
- the disclosure provides a modified nucleic acid containing a degradation domain, which is capable of being acted on in a directed manner within a cell.
- modified nucleosides include inosine, 1-methyl-inosine, wyosine, wybutosine, 7-deaza-guanosine, 7-deaza-8-aza-guanosine, 6-thio-guanosine, 6-thio-7-deaza-guanosine, 6-thio-7-deaza-8-aza-guanosine, 7-methyl-guanosine, 6-thio-7-methyl-guanosine, 7-methylinosine, 6-methoxy-guanosine, 1-methylguanosine, N2-methylguanosine, N2,N2-dimethylguanosine, 8-oxo-guanosine, 7-methyl-8-oxo-guanosine, 1-methyl-6-thio-guanosine, N2-methyl-6-thio-guanosine, and N2,N2-dimethyl-6-thio-guanosine.
- nucleic acid is optional, and are beneficial in some embodiments.
- a 5′ untranslated region (UTR) and/or a 3′UTR are provided, wherein either or both may independently contain one or more different nucleoside modifications.
- nucleoside modifications may also be present in the translatable region.
- nucleic acids containing a Kozak sequence are also provided.
- nucleic acids containing one or more intronic nucleotide sequences capable of being excised from the nucleic acid.
- nucleic acids containing an internal ribosome entry site may act as the sole ribosome binding site, or may serve as one of multiple ribosome binding sites of an mRNA.
- An mRNA containing more than one functional ribosome binding site may encode several peptides or polypeptides that are translated independently by the ribosomes (“multicistronic mRNA”).
- multicistronic mRNA When nucleic acids are provided with an IRES, further optionally provided is a second translatable region. Examples of IRES sequences that can be used according to the disclosure include without limitation, those from picornaviruses (e.g.
- FMDV pest viruses
- CFFV pest viruses
- PV polio viruses
- ECMV encephalomyocarditis viruses
- FMDV foot-and-mouth disease viruses
- HCV hepatitis C viruses
- CSFV classical swine fever viruses
- MLV murine leukemia virus
- SIV simian immune deficiency viruses
- CrPV cricket paralysis viruses
- the modified nucleic acids described herein are capable of evading an innate immune response of a cell into which the nucleic acids are introduced, thus increasing the efficiency of protein production in the cell.
- innate immune response includes a cellular response to exogenous single stranded nucleic acids, generally of viral or bacterial origin, which involves the induction of cytokine expression and release, particularly the interferons, and cell death. Protein synthesis is also reduced during the innate cellular immune response. While it is advantageous to eliminate the innate immune response in a cell, the disclosure provides modified mRNAs that substantially reduce the immune response, including interferon signaling, without entirely eliminating such a response.
- the immune response is reduced by about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, 99.9%, or greater than 99.9%, as compared to the immune response induced by a corresponding unmodified nucleic acid.
- a reduction can be measured by expression or activity level of Type 1 interferons or the expression of interferon-regulated genes such as the toll-like receptors (e.g., TLR7 and TLR8).
- Reduction of innate immune response can also be measured by decreased cell death following one or more administrations of modified RNAs to a cell population; e.g., cell death is about 10%, 25%, 50%, 75%, 85%, 90%, 95%, or over 95% less than the cell death frequency observed with a corresponding unmodified nucleic acid.
- cell death may affect fewer than about 50%, 40%, 30%, 20%, 10%, 5%, 1%, 0.1%, 0.01%, or fewer than 0.01% of cells contacted with the modified nucleic acids.
- the disclosure provides for the repeated introduction (e.g., transfection) of modified nucleic acids into a target cell population, e.g., in vitro, ex vivo, or in vivo.
- the step of contacting the cell population may be repeated one or more times (such as two, three, four, five, or more than five times).
- the step of contacting the cell population with the modified nucleic acids is repeated a number of times sufficient such that a predetermined efficiency of protein translation in the cell population is achieved. Given the reduced cytotoxicity of the target cell population provided by the nucleic acid modifications, such repeated transfections are achievable in a diverse array of cell types.
- Nucleic acids for use in accordance with the disclosure may be prepared according to any available technique including, but not limited to chemical synthesis, enzymatic synthesis, which is generally termed in vitro transcription, enzymatic or chemical cleavage of a longer precursor, etc.
- Methods of synthesizing RNAs are known in the art (see, e.g., Gait, M. J. (ed.) Oligonucleotide synthesis: a practical approach , Oxford [Oxfordshire], Washington, D.C.: IRL Press, 1984; and Herdewijn, P. (ed.) Oligonucleotide synthesis: methods and applications , Methods in Molecular Biology, v. 288 (Clifton, N.J.) Totowa, N.J.: Humana Press, 2005; both of which are incorporated herein by reference).
- Modified nucleic acids need not be uniformly modified along the entire length of the molecule. Different nucleotide modifications and/or backbone structures may exist at various positions in the nucleic acid. One of ordinary skill in the art will appreciate that the nucleotide analogs or other modification(s) may be located at any position(s) of a nucleic acid such that the function of the nucleic acid is not substantially decreased. A modification may also be a 5′ or 3′ terminal modification.
- the nucleic acids may contain at a minimum one and at maximum 100% modified nucleotides, or any intervening percentage, such as at least about 50% modified nucleotides, at least about 80% modified nucleotides, or at least about 90% modified nucleotides.
- the length of a modified mRNA of the present disclosure is suitable for protein, polypeptide, or peptide production in a cell (e.g., a human cell).
- the mRNA is of a length sufficient to allow translation of at least a dipeptide in a cell.
- the length of the modified mRNA is greater than 30 nucleotides.
- the length is greater than 35 nucleotides.
- the length is at least 40 nucleotides.
- the length is at least 45 nucleotides.
- the length is at least 55 nucleotides.
- the length is at least 60 nucleotides.
- the length is at least 60 nucleotides.
- the length is at least 80 nucleotides. In another embodiment, the length is at least 90 nucleotides. In another embodiment, the length is at least 100 nucleotides. In another embodiment, the length is at least 120 nucleotides. In another embodiment, the length is at least 140 nucleotides. In another embodiment, the length is at least 160 nucleotides. In another embodiment, the length is at least 180 nucleotides. In another embodiment, the length is at least 200 nucleotides. In another embodiment, the length is at least 250 nucleotides. In another embodiment, the length is at least 300 nucleotides. In another embodiment, the length is at least 350 nucleotides. In another embodiment, the length is at least 400 nucleotides.
- the length is at least 450 nucleotides. In another embodiment, the length is at least 500 nucleotides. In another embodiment, the length is at least 600 nucleotides. In another embodiment, the length is at least 700 nucleotides. In another embodiment, the length is at least 800 nucleotides. In another embodiment, the length is at least 900 nucleotides. In another embodiment, the length is at least 1000 nucleotides. In another embodiment, the length is at least 1100 nucleotides. In another embodiment, the length is at least 1200 nucleotides. In another embodiment, the length is at least 1300 nucleotides. In another embodiment, the length is at least 1400 nucleotides.
- the length is at least 1500 nucleotides. In another embodiment, the length is at least 1600 nucleotides. In another embodiment, the length is at least 1800 nucleotides. In another embodiment, the length is at least 2000 nucleotides. In another embodiment, the length is at least 2500 nucleotides. In another embodiment, the length is at least 3000 nucleotides. In another embodiment, the length is at least 4000 nucleotides. In another embodiment, the length is at least 5000 nucleotides, or greater than 5000 nucleotides.
- proteins, polypeptides, or peptides produced by the methods described herein can be used as therapeutic agents to treat or prevent one or more diseases or conditions described herein.
- compositions, methods, kits, and reagents for treatment or prevention of disease or conditions in humans and other animals e.g., mammals.
- the active therapeutic agents of the disclosure include polypeptides translated from modified nucleic acids, cells containing modified nucleic acids or polypeptides translated from the modified nucleic acids, and cells contacted with cells containing modified nucleic acids or polypeptides translated from the modified nucleic acids.
- Such translation can be in vivo, ex vivo, in culture, or in vitro.
- the cell population is contacted with an effective amount of a composition containing a nucleic acid that has at least one nucleoside modification, and a translatable region encoding the recombinant polypeptide.
- the population is contacted under conditions such that the nucleic acid is localized into one or more cells of the cell population and the recombinant polypeptide is translated in the cell from the nucleic acid.
- An effective amount of the composition is provided based, at least in part, on the target tissue, target cell type, means of administration, physical characteristics of the protein translated from the modified nucleic acid (e.g., size), and other determinants.
- compositions containing modified nucleic acids are formulated for administration intramuscularly, transarterially, intraperitoneally, intravenously, intranasally, subcutaneously, endoscopically, transdermally, or intrathecally.
- the composition is formulated for extended release.
- the subject to whom the therapeutic agent is administered suffers from or is at risk of developing a disease, disorder, or deleterious condition.
- GWAS genome-wide association studies
- the administered recombinant polypeptide translated from the modified nucleic acid described herein provide a functional activity which is substantially absent in the cell in which the recombinant polypeptide is administered.
- the missing functional activity may be enzymatic, structural, or gene regulatory in nature.
- the administered recombinant polypeptide replaces a polypeptide (or multiple polypeptides) that is substantially absent in the cell in which the recombinant polypeptide is administered. Such absence may be due to genetic mutation of the encoding gene or regulatory pathway thereof.
- the recombinant polypeptide functions to antagonize the activity of an endogenous protein present in, on the surface of, or secreted from the cell. Usually, the activity of the endogenous protein is deleterious to the subject, for example, due to mutation of the endogenous protein resulting in altered activity or localization.
- the recombinant polypeptide antagonizes, directly or indirectly, the activity of a biological moiety present in, on the surface of, or secreted from the cell.
- antagonized biological moieties include lipids (e.g., cholesterol), a lipoprotein (e.g., low density lipoprotein), a nucleic acid, a carbohydrate, or a small molecule toxin.
- the recombinant proteins described herein are engineered for localization within the cell, potentially within a specific compartment such as the nucleus, or are engineered for secretion from the cell or translocation to the plasma membrane of the cell.
- a useful feature of the modified nucleic acids of the disclosure is the capacity to reduce the innate immune response of a cell to an exogenous nucleic acid, e.g., to increase protein production.
- the cell is contacted with a first composition that contains a first dose of a first exogenous nucleic acid including a translatable region and at least one nucleoside modification, and the level of the innate immune response of the cell to the first exogenous nucleic acid is determined.
- the cell is contacted with a second composition, which includes a second dose of the first exogenous nucleic acid, the second dose containing a lesser amount of the first exogenous nucleic acid as compared to the first dose.
- the cell is contacted with a first dose of a second exogenous nucleic acid.
- the second exogenous nucleic acid may contain one or more modified nucleosides, which may be the same or different from the first exogenous nucleic acid or, alternatively, the second exogenous nucleic acid may not contain modified nucleosides.
- the steps of contacting the cell with the first composition and/or the second composition may be repeated one or more times. Additionally, efficiency of protein production (e.g., protein translation) in the cell is optionally determined, and the cell may be re-transfected with the first and/or second composition repeatedly until a target protein production efficiency is achieved.
- Diseases characterized by dysfunctional or aberrant protein activity include, but not limited to, cancer and proliferative diseases, genetic diseases (e.g., cystic fibrosis), autoimmune diseases, diabetes, neurodegenerative diseases, cardiovascular diseases, and metabolic diseases.
- the present disclosure provides a method for treating such conditions or diseases in a subject by introducing protein or cell-based therapeutics produced by a method using the modified nucleic acids provided herein, wherein the modified nucleic acids encode for a protein that antagonizes or otherwise overcomes the aberrant protein activity present in the cell of the subject.
- Specific examples of a dysfunctional protein are the mis sense mutation variants of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which produce a dysfunctional protein variant of CFTR protein, which causes cystic fibrosis.
- CFTR cystic fibrosis transmembrane conductance regulator
- CFTR cystic fibrosis transmembrane conductance regulator
- Typical target cells are epithelial cells, such as the lung, and methods of administration are determined in view of the target tissue; i.e., for lung delivery, the RNA molecules are formulated for administration by inhalation.
- the present disclosure provides a method for treating hyperlipidemia in a subject, by introducing into a cell population of the subject with Sortilin (a protein recently characterized by genomic studies) produced by a method described herein using a modified mRNA molecule encoding Sortilin, thereby ameliorating the hyperlipidemia in a subject.
- Sortilin a protein recently characterized by genomic studies
- the SORT1 gene encodes a trans-Golgi network (TGN) transmembrane protein called Sortilin.
- LDL low-density lipoprotein
- VLDL very-low-density lipoprotein
- compositions may optionally comprise one or more additional therapeutically active substances.
- a method of administering pharmaceutical compositions comprising one or more proteins to be delivered to a subject in need thereof is provided.
- compositions are administered to humans.
- active ingredient generally refers to a protein or protein-containing complex as described herein.
- compositions suitable for administration to humans are principally directed to pharmaceutical compositions which are suitable for administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to animals of all sorts. Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and/or perform such modification with merely ordinary, if any, experimentation.
- Subjects to which administration of the pharmaceutical compositions is contemplated include, but are not limited to, humans and/or other primates; mammals, including commercially relevant mammals such as cattle, pigs, horses, sheep, cats, dogs, mice, and/or rats; and/or birds, including commercially relevant birds such as chickens, ducks, geese, and/or turkeys.
- Formulations of the pharmaceutical compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of bringing the active ingredient into association with an excipient and/or one or more other accessory ingredients, and then, if necessary and/or desirable, shaping and/or packaging the product into a desired single- or multi-dose unit.
- a pharmaceutical composition in accordance with the disclosure may be prepared, packaged, and/or sold in bulk, as a single unit dose, and/or as a plurality of single unit doses.
- a “unit dose” is discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient.
- the amount of the active ingredient is generally equal to the dosage of the active ingredient which would be administered to a subject and/or a convenient fraction of such a dosage such as, for example, one-half or one-third of such a dosage.
- compositions in accordance with the disclosure will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered.
- the composition may comprise between 0.1% and 100% (w/w) active ingredient.
- compositions may be formulated to additionally comprise a pharmaceutically acceptable excipient, which, as used herein, includes any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired.
- a pharmaceutically acceptable excipient includes any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired.
- Remington's The Science and Practice of Pharmacy 21 st Edition, A. R. Gennaro (Lippincott, Williams & Wilkins, Baltimore, Md., 2006; incorporated herein by reference) discloses various
- a pharmaceutically acceptable excipient is at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% pure.
- an excipient is approved for use in humans and for veterinary use.
- an excipient is approved by United States Food and Drug Administration.
- an excipient is pharmaceutical grade.
- an excipient meets the standards of the United States Pharmacopoeia (USP), the European Pharmacopoeia (EP), the British Pharmacopoeia, and/or the International Pharmacopoeia.
- compositions used in the manufacture of pharmaceutical compositions include, but are not limited to, inert diluents, dispersing and/or granulating agents, surface active agents and/or emulsifiers, disintegrating agents, binding agents, preservatives, buffering agents, lubricating agents, and/or oils. Such excipients may optionally be included in pharmaceutical compositions. Excipients such as cocoa butter and suppository waxes, coloring agents, coating agents, sweetening, flavoring, and/or perfuming agents can be present in the composition, according to the judgment of the formulator.
- Exemplary diluents include, but are not limited to, calcium carbonate, sodium carbonate, calcium phosphate, dicalcium phosphate, calcium sulfate, calcium hydrogen phosphate, sodium phosphate lactose, sucrose, cellulose, microcrystalline cellulose, kaolin, mannitol, sorbitol, inositol, sodium chloride, dry starch, cornstarch, powdered sugar, etc., and/or combinations thereof.
- Exemplary granulating and/or dispersing agents include, but are not limited to, potato starch, corn starch, tapioca starch, sodium starch glycolate, clays, alginic acid, guar gum, citrus pulp, agar, bentonite, cellulose and wood products, natural sponge, cation-exchange resins, calcium carbonate, silicates, sodium carbonate, cross-linked poly(vinyl-pyrrolidone) (crospovidone), sodium carboxymethyl starch (sodium starch glycolate), carboxymethyl cellulose, cross-linked sodium carboxymethyl cellulose (croscarmellose), methylcellulose, pregelatinized starch (starch 1500), microcrystalline starch, water insoluble starch, calcium carboxymethyl cellulose, magnesium aluminum silicate (Veegum), sodium lauryl sulfate, quaternary ammonium compounds, etc., and/or combinations thereof.
- crospovidone cross-linked poly(vinyl-pyrrolidone)
- Exemplary surface active agents and/or emulsifiers include, but are not limited to, natural emulsifiers (e.g., acacia, agar, alginic acid, sodium alginate, tragacanth, chondrux, cholesterol, xanthan, pectin, gelatin, egg yolk, casein, wool fat, cholesterol, wax, and lecithin), colloidal clays (e.g., bentonite [aluminum silicate] and Veegum® [magnesium aluminum silicate]), long chain amino acid derivatives, high molecular weight alcohols (e.g., stearyl alcohol, cetyl alcohol, oleyl alcohol, triacetin monostearate, ethylene glycol distearate, glyceryl monostearate, and propylene glycol monostearate, polyvinyl alcohol), carbomers (e.g., natural emulsifiers (e.g., acacia, agar, alginic
- Exemplary binding agents include, but are not limited to, starch (e.g., cornstarch and starch paste); gelatin; sugars (e.g., sucrose, glucose, dextrose, dextrin, molasses, lactose, lactitol, mannitol,); natural and synthetic gums (e.g., acacia, sodium alginate, extract of Irish moss, panwar gum, ghatti gum, mucilage of isapol husks, carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, microcrystalline cellulose, cellulose acetate, poly(vinyl-pyrrolidone), magnesium aluminum silicate)(Veegum®, and larch arabogalactan); alginates; polyethylene oxide; polyethylene glycol; inorganic calcium salts; silicic acid; polymethacrylates; waxes; water; alcohol
- Exemplary preservatives may include, but are not limited to, antioxidants, chelating agents, antimicrobial preservatives, antifungal preservatives, alcohol preservatives, acidic preservatives, and/or other preservatives.
- Exemplary antioxidants include, but are not limited to, alpha tocopherol, ascorbic acid, acorbyl palmitate, butylated hydroxyanisole, butylated hydroxytoluene, monothioglycerol, potassium metabisulfite, propionic acid, propyl gallate, sodium ascorbate, sodium bisulfite, sodium metabisulfite, and/or sodium sulfite.
- Exemplary chelating agents include ethylenediaminetetraacetic acid (EDTA), citric acid monohydrate, disodium edetate, dipotassium edetate, edetic acid, fumaric acid, malic acid, phosphoric acid, sodium edetate, tartaric acid, and/or trisodium edetate.
- EDTA ethylenediaminetetraacetic acid
- citric acid monohydrate disodium edetate
- dipotassium edetate dipotassium edetate
- edetic acid fumaric acid, malic acid, phosphoric acid, sodium edetate, tartaric acid, and/or trisodium edetate.
- antimicrobial preservatives include, but are not limited to, benzalkonium chloride, benzethonium chloride, benzyl alcohol, bronopol, cetrimide, cetylpyridinium chloride, chlorhexidine, chlorobutanol, chlorocresol, chloroxylenol, cresol, ethyl alcohol, glycerin, hexetidine, imidurea, phenol, phenoxyethanol, phenylethyl alcohol, phenylmercuric nitrate, propylene glycol, and/or thimerosal.
- Exemplary antifungal preservatives include, but are not limited to, butyl paraben, methyl paraben, ethyl paraben, propyl paraben, benzoic acid, hydroxybenzoic acid, potassium benzoate, potassium sorbate, sodium benzoate, sodium propionate, and/or sorbic acid.
- Exemplary alcohol preservatives include, but are not limited to, ethanol, polyethylene glycol, phenol, phenolic compounds, bisphenol, chlorobutanol, hydroxybenzoate, and/or phenylethyl alcohol.
- Exemplary acidic preservatives include, but are not limited to, vitamin A, vitamin C, vitamin E, beta-carotene, citric acid, acetic acid, dehydroacetic acid, ascorbic acid, sorbic acid, and/or phytic acid.
- preservatives include, but are not limited to, tocopherol, tocopherol acetate, deteroxime mesylate, cetrimide, butylated hydroxyanisol (BHA), butylated hydroxytoluened (BHT), ethylenediamine, sodium lauryl sulfate (SLS), sodium lauryl ether sulfate (SLES), sodium bisulfite, sodium metabisulfite, potassium sulfite, potassium metabisulfite, Glydant Plus®, Phenonip®, methylparaben, Germall®115, Germaben®II, NeoloneTM, KathonTM, and/or Euxyl®.
- Exemplary buffering agents include, but are not limited to, citrate buffer solutions, acetate buffer solutions, phosphate buffer solutions, ammonium chloride, calcium carbonate, calcium chloride, calcium citrate, calcium glubionate, calcium gluceptate, calcium gluconate, D-gluconic acid, calcium glycerophosphate, calcium lactate, propanoic acid, calcium levulinate, pentanoic acid, dibasic calcium phosphate, phosphoric acid, tribasic calcium phosphate, calcium hydroxide phosphate, potassium acetate, potassium chloride, potassium gluconate, potassium mixtures, dibasic potassium phosphate, monobasic potassium phosphate, potassium phosphate mixtures, sodium acetate, sodium bicarbonate, sodium chloride, sodium citrate, sodium lactate, dibasic sodium phosphate, monobasic sodium phosphate, sodium phosphate mixtures, tromethamine, magnesium hydroxide, aluminum hydroxide, alginic acid, pyrogen-free water, isotonic
- Exemplary lubricating agents include, but are not limited to, magnesium stearate, calcium stearate, stearic acid, silica, talc, malt, glyceryl behanate, hydrogenated vegetable oils, polyethylene glycol, sodium benzoate, sodium acetate, sodium chloride, leucine, magnesium lauryl sulfate, sodium lauryl sulfate, etc., and combinations thereof.
- oils include, but are not limited to, almond, apricot kernel, avocado, babassu, bergamot, black current seed, borage, cade, camomile, canola, caraway, carnauba, castor, cinnamon, cocoa butter, coconut, cod liver, coffee, corn, cotton seed, emu, eucalyptus, evening primrose, fish, flaxseed, geraniol, gourd, grape seed, hazel nut, hyssop, isopropyl myristate, jojoba, kukui nut, lavandin, lavender, lemon, litsea cubeba, macademia nut, mallow, mango seed, meadowfoam seed, mink, nutmeg, olive, orange, orange roughy, palm, palm kernel, peach kernel, peanut, poppy seed, pumpkin seed, rapeseed, rice bran, rosemary, safflower, sandalwood, sasquana, savoury
- oils include, but are not limited to, butyl stearate, caprylic triglyceride, capric triglyceride, cyclomethicone, diethyl sebacate, dimethicone 360, isopropyl myristate, mineral oil, octyldodecanol, oleyl alcohol, silicone oil, and/or combinations thereof.
- Liquid dosage forms for oral and parenteral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups, and/or elixirs.
- liquid dosage forms may comprise inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
- inert diluents commonly used in the art such as, for example,
- oral compositions can include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and/or perfuming agents.
- adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and/or perfuming agents.
- compositions are mixed with solubilizing agents such as Cremophor®, alcohols, oils, modified oils, glycols, polysorbates, cyclodextrins, polymers, and/or combinations thereof.
- Injectable preparations for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing agents, wetting agents, and/or suspending agents.
- Sterile injectable preparations may be sterile injectable solutions, suspensions, and/or emulsions in nontoxic parenterally acceptable diluents and/or solvents, for example, as a solution in 1,3-butanediol.
- the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P., and isotonic sodium chloride solution.
- Sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil can be employed including synthetic mono- or diglycerides.
- Fatty acids such as oleic acid can be used in the preparation of injectables.
- Injectable compositions can be sterilized, for example, by filtration through a bacterial-retaining filter, and/or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
- the rate of drug release can be controlled.
- biodegradable polymers include poly(orthoesters) and poly(anhydrides).
- Depot injectable compositions are formulated or prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissues.
- compositions for rectal or vaginal administration are typically suppositories which can be prepared by mixing compositions with suitable non-irritating excipients such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active ingredient.
- suitable non-irritating excipients such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active ingredient.
- Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules.
- an active ingredient is mixed with at least one inert, pharmaceutically acceptable excipient such as sodium citrate or dicalcium phosphate and/or fillers or extenders (e.g., starches, lactose, sucrose, glucose, mannitol, and silicic acid), binders (e.g., carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia), humectants (e.g.
- glycerol e.g., agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate
- solution retarding agents e.g., paraffin
- absorption accelerators e.g., quaternary ammonium compounds
- wetting agents e.g., cetyl alcohol and glycerol monostearate
- absorbents e.g., kaolin and bentonite clay
- lubricants e.g., talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate
- the dosage form may comprise buffering agents.
- Solid compositions of a similar type may be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
- Solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally comprise opacifying agents and can be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes.
- Solid compositions of a similar type may be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
- Dosage forms for topical and/or transdermal administration of a composition may include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants and/or patches.
- an active ingredient is admixed under sterile conditions with a pharmaceutically acceptable excipient and/or any needed preservatives and/or buffers as may be required.
- the present disclosure contemplates the use of transdermal patches, which often have the added advantage of providing controlled delivery of a compound to the body.
- dosage forms may be prepared, for example, by dissolving and/or dispensing the compound in the proper medium.
- rate may be controlled by either providing a rate controlling membrane and/or by dispersing the compound in a polymer matrix and/or gel.
- Suitable devices for use in delivering intradermal pharmaceutical compositions described herein include short needle devices such as those described in U.S. Pat. Nos. 4,886,499; 5,190,521; 5,328,483; 5,527,288; 4,270,537; 5,015,235; 5,141,496; and 5,417,662.
- Intradermal compositions may be administered by devices which limit the effective penetration length of a needle into the skin, such as those described in PCT publication WO 99/34850 and functional equivalents thereof.
- Jet injection devices which deliver liquid compositions to the dermis via a liquid jet injector and/or via a needle which pierces the stratum corneum and produces a jet which reaches the dermis are suitable.
- Jet injection devices are described, for example, in U.S. Pat. Nos. 5,480,381; 5,599,302; 5,334,144; 5,993,412; 5,649,912; 5,569,189; 5,704,911; 5,383,851; 5,893,397; 5,466,220; 5,339,163; 5,312,335; 5,503,627; 5,064,413; 5,520,639; 4,596,556; 4,790,824; 4,941,880; 4,940,460; and PCT publications WO 97/37705 and WO 97/13537.
- Ballistic powder/particle delivery devices which use compressed gas to accelerate vaccine in powder form through the outer layers of the skin to the dermis are suitable.
- conventional syringes may be used in the classical mantoux method of intradermal administration.
- compositions formulated for topical administration include, but are not limited to, liquid and/or semi liquid preparations such as liniments, lotions, oil in water and/or water in oil emulsions such as creams, ointments and/or pastes, and/or solutions and/or suspensions.
- Topically-administrable compositions may be formulated, for example, to comprise from about 1% to about 10% (w/w) active ingredient, although the concentration of active ingredient may be as high as the solubility limit of the active ingredient in the solvent.
- Compositions formulated for topical administration may further comprise one or more of the additional ingredients described herein.
- a pharmaceutical composition may be formulated, prepared, packaged, and/or sold for pulmonary administration via the buccal cavity.
- Such a composition may be formulated to comprise dry particles which comprise the active ingredient and which have a diameter in the range from about 0.5 nm to about 7 nm or from about 1 nm to about 6 nm.
- Such compositions are conveniently in the form of dry powders for administration using a device comprising a dry powder reservoir to which a stream of propellant may be directed to disperse the powder and/or using a self propelling solvent/powder dispensing container such as a device comprising the active ingredient dissolved and/or suspended in a low-boiling propellant in a sealed container.
- Such powders comprise particles wherein at least 98% of the particles by weight have a diameter greater than 0.5 nm and at least 95% of the particles by number have a diameter less than 7 nm. Alternatively, at least 95% of the particles by weight have a diameter greater than 1 nm and at least 90% of the particles by number have a diameter less than 6 nm.
- Dry powder compositions may include a solid fine powder diluent such as sugar and are conveniently provided in a unit dose form.
- Low boiling propellants generally include liquid propellants having a boiling point of below 65° F. at atmospheric pressure. Generally the propellant may constitute about 50% to about 99.9% (w/w) of the composition, and active ingredient may constitute about 0.1% to about 20% (w/w) of the composition.
- a propellant may further comprise additional ingredients such as a liquid non-ionic and/or solid anionic surfactant and/or a solid diluent (which may have a particle size of the same order as particles comprising the active ingredient).
- compositions formulated for pulmonary delivery may provide an active ingredient in the form of droplets of a solution and/or suspension.
- Such compositions may be formulated, prepared, packaged, and/or sold as aqueous and/or dilute alcoholic solutions and/or suspensions, optionally sterile, comprising active ingredient, and may conveniently be administered using any nebulization and/or atomization device.
- Such compositions may further comprise one or more additional ingredients including, but not limited to, a flavoring agent such as saccharin sodium, a volatile oil, a buffering agent, a surface active agent, and/or a preservative such as methylhydroxybenzoate.
- Droplets provided by this route of administration may have an average diameter in the range from about 0.1 nm to about 200 nm.
- Formulations described herein as being useful for pulmonary delivery are useful for intranasal delivery of a pharmaceutical composition.
- Another composition formulated for intranasal administration is a coarse powder comprising the active ingredient and having an average particle from about 0.2 ⁇ m to 500 ⁇ m.
- Such a composition is formulated for administration in the manner in which snuff is taken, i.e. by rapid inhalation through the nasal passage from a container of the powder held close to the nose.
- compositions formulated for nasal administration may, for example, comprise from about as little as 0.1% (w/w) and as much as 100% (w/w) of active ingredient, and may comprise one or more of the additional ingredients described herein.
- a pharmaceutical composition may be formulated, prepared, packaged, and/or sold for buccal administration. Such compositions may, for example, be formulated in the form of tablets and/or lozenges made using conventional methods, and may contain, for example, 0.1% to 20% (w/w) active ingredient, the balance comprising an orally dissolvable and/or degradable composition and, optionally, one or more of the additional ingredients described herein.
- compositions formulated for buccal administration may comprise a powder and/or an aerosolized and/or atomized solution and/or suspension comprising active ingredient.
- Such powdered, aerosolized, and/or aerosolized compositions when dispersed, may have an average particle and/or droplet size in the range from about 0.1 nm to about 200 nm, and may further comprise one or more of any additional ingredients described herein.
- a pharmaceutical composition may be formulated, prepared, packaged, and/or sold for ophthalmic administration.
- Such compositions may, for example, be formulated in the form of eye drops including, for example, a 0.1/1.0% (w/w) solution and/or suspension of the active ingredient in an aqueous or oily liquid excipient.
- Such drops may further comprise buffering agents, salts, and/or one or more other of any additional ingredients described herein.
- Other opthalmically-administrable compositions which are useful include those which comprise the active ingredient in microcrystalline form and/or in a liposomal preparation. Ear drops and/or eye drops are contemplated as being within the scope of this disclosure.
- the present disclosure provides methods comprising administering proteins or compositions produced by the methods described herein to a subject in need thereof.
- Proteins or complexes, or pharmaceutical, imaging, diagnostic, or prophylactic compositions thereof may be administered to a subject using any amount and any route of administration effective for preventing, treating, diagnosing, or imaging a disease, disorder, and/or condition (e.g., a disease, disorder, and/or condition relating to working memory deficits).
- a disease, disorder, and/or condition e.g., a disease, disorder, and/or condition relating to working memory deficits.
- the exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease, the particular composition, its mode of administration, its mode of activity, and the like.
- Compositions in accordance with the disclosure are typically formulated in dosage unit form for ease of administration and uniformity of dosage.
- compositions of the present disclosure will be decided by the attending physician within the scope of sound medical judgment.
- the specific therapeutically effective, prophylactically effective, or appropriate imaging dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts.
- Proteins to be delivered and/or pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof may be administered to animals, such as mammals (e.g., humans, domesticated animals, cats, dogs, mice, rats, etc.). In some embodiments, pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof are administered to humans.
- Proteins to be delivered and/or pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof in accordance with the present disclosure may be administered by any route.
- proteins and/or pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof are administered by one or more of a variety of routes, including oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, subcutaneous, intraventricular, transdermal, interdermal, rectal, intravaginal, intraperitoneal, topical (e.g., by powders, ointments, creams, gels, lotions, and/or drops), mucosal, nasal, buccal, enteral, vitreal, intratumoral, sublingual; by intratracheal instillation, bronchial instillation, and/or inhalation; as an oral spray, nasal spray, and/or aerosol, and/or through a portal vein catheter.
- routes including oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal
- proteins or complexes, and/or pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof are administered by systemic intravenous injection.
- proteins or complexes and/or pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof may be administered intravenously and/or orally.
- proteins or complexes, and/or pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof may be administered in a way which allows the protein or complex to cross the blood-brain barrier, vascular barrier, or other epithelial barrier.
- the disclosure encompasses the delivery of proteins or complexes, and/or pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof, by any appropriate route taking into consideration likely advances in the sciences of drug delivery.
- the most appropriate route of administration will depend upon a variety of factors including the nature of the protein or complex comprising proteins associated with at least one agent to be delivered (e.g., its stability in the environment of the gastrointestinal tract, bloodstream, etc.), the condition of the patient (e.g., whether the patient is able to tolerate particular routes of administration), etc.
- the disclosure encompasses the delivery of the pharmaceutical, prophylactic, diagnostic, or imaging compositions by any appropriate route taking into consideration likely advances in the sciences of drug delivery.
- compositions in accordance with the disclosure may be administered at dosage levels sufficient to deliver from about 0.0001 mg/kg to about 100 mg/kg, from about 0.01 mg/kg to about 50 mg/kg, from about 0.1 mg/kg to about 40 mg/kg, from about 0.5 mg/kg to about 30 mg/kg, from about 0.01 mg/kg to about 10 mg/kg, from about 0.1 mg/kg to about 10 mg/kg, or from about 1 mg/kg to about 25 mg/kg, of subject body weight per day, one or more times a day, to obtain the desired therapeutic, diagnostic, prophylactic, or imaging effect.
- the desired dosage may be delivered three times a day, two times a day, once a day, every other day, every third day, every week, every two weeks, every three weeks, or every four weeks.
- the desired dosage may be delivered using multiple administrations (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more administrations).
- Proteins or complexes may be used in combination with one or more other therapeutic, prophylactic, diagnostic, or imaging agents.
- combination with it is not intended to imply that the agents must be administered at the same time and/or formulated for delivery together, although these methods of delivery are within the scope of the disclosure.
- Compositions can be administered concurrently with, prior to, or subsequent to, one or more other desired therapeutics or medical procedures. In general, each agent will be administered at a dose and/or on a time schedule determined for that agent.
- the disclosure encompasses the delivery of pharmaceutical, prophylactic, diagnostic, or imaging compositions in combination with agents that improve their bioavailability, reduce and/or modify their metabolism, inhibit their excretion, and/or modify their distribution within the body.
- combination therapeutics containing one or more modified nucleic acids containing translatable regions that encode for a protein or proteins that boost a mammalian subject's immunity along with a protein that induces antibody-dependent cellular toxitity.
- G-CSF granulocyte-colony stimulating factor
- such combination therapeutics are useful in Her2+ breast cancer patients who develop induced resistance to trastuzumab. (See, e.g., Albrecht, Immunotherapy. 2(6):795-8 (2010)).
- therapeutically, prophylactically, diagnostically, or imaging active agents utilized in combination may be administered together in a single composition or administered separately in different compositions.
- agents utilized in combination with be utilized at levels that do not exceed the levels at which they are utilized individually. In some embodiments, the levels utilized in combination will be lower than those utilized individually.
- the particular combination of therapies (therapeutics or procedures) to employ in a combination regimen will take into account compatibility of the desired therapeutics and/or procedures and the desired therapeutic effect to be achieved. It will also be appreciated that the therapies employed may achieve a desired effect for the same disorder (for example, a composition useful for treating cancer in accordance with the disclosure may be administered concurrently with a chemotherapeutic agent), or they may achieve different effects (e.g., control of any adverse effects).
- kits for conveniently and/or effectively carrying out methods of the present disclosure are kits for conveniently and/or effectively carrying out methods of the present disclosure.
- described herein are kits for protein production using a modified nucleic acid described herein.
- kits will comprise sufficient amounts and/or numbers of components to allow a user to perform multiple treatments of a subject(s) and/or to perform multiple experiments.
- therapeutic agent refers to any agent that, when administered to a subject, has a therapeutic, diagnostic, and/or prophylactic effect and/or elicits a desired biological and/or pharmacological effect.
- animal refers to any member of the animal kingdom. In some embodiments, “animal” refers to humans at any stage of development. In some embodiments, “animal” refers to non-human animals at any stage of development. In certain embodiments, the non-human animal is a mammal (e.g., a rodent, a mouse, a rat, a rabbit, a monkey, a dog, a cat, a sheep, cattle, a primate, or a pig). In some embodiments, animals include, but are not limited to, mammals, birds, reptiles, amphibians, fish, and worms. In some embodiments, the animal is a transgenic animal, genetically-engineered animal, or a clone.
- mammal e.g., a rodent, a mouse, a rat, a rabbit, a monkey, a dog, a cat, a sheep, cattle, a primate, or a pig.
- animals include, but are not limited to, mammals,
- the terms “associated with,” “conjugated,” “linked,” “attached,” and “tethered,” when used with respect to two or more moieties, means that the moieties are physically associated or connected with one another, either directly or via one or more additional moieties that serves as a linking agent, to form a structure that is sufficiently stable so that the moieties remain physically associated under the conditions in which the structure is used, e.g., physiological conditions.
- biologically active refers to a characteristic of any substance that has activity in a biological system and/or organism. For instance, a substance that, when administered to an organism, has a biological effect on that organism, is considered to be biologically active.
- a nucleic acid is biologically active
- a portion of that nucleic acid that shares at least one biological activity of the whole nucleic acid is typically referred to as a “biologically active” portion.
- conserved refers to nucleotides or amino acid residues of a polynucleotide sequence or amino acid sequence, respectively, that are those that occur unaltered in the same position of two or more related sequences being compared. Nucleotides or amino acids that are relatively conserved are those that are conserved amongst more related sequences than nucleotides or amino acids appearing elsewhere in the sequences. In some embodiments, two or more sequences are said to be “completely conserved” if they are 100% identical to one another.
- two or more sequences are said to be “highly conserved” if they are at least 70% identical, at least 80% identical, at least 90% identical, or at least 95% identical to one another. In some embodiments, two or more sequences are said to be “highly conserved” if they are about 70% identical, about 80% identical, about 90% identical, about 95%, about 98%, or about 99% identical to one another. In some embodiments, two or more sequences are said to be “conserved” if they are at least 30% identical, at least 40% identical, at least 50% identical, at least 60% identical, at least 70% identical, at least 80% identical, at least 90% identical, or at least 95% identical to one another.
- two or more sequences are said to be “conserved” if they are about 30% identical, about 40% identical, about 50% identical, about 60% identical, about 70% identical, about 80% identical, about 90% identical, about 95% identical, about 98% identical, or about 99% identical to one another.
- expression of a nucleic acid sequence refers to one or more of the following events: (1) production of an RNA template from a DNA sequence (e.g., by transcription); (2) processing of an RNA transcript (e.g., by splicing, editing, 5′ cap formation, and/or 3′ end processing); (3) translation of an RNA into a polypeptide or protein; and (4) post-translational modification of a polypeptide or protein.
- Ex vivo refers to events that which occur outside an organism, e.g., in or on tissue in an artificial environment outside the organism, e.g., with the minimum alteration of natural conditions.
- a “functional” biological molecule is a biological molecule in a form in which it exhibits a property and/or activity by which it is characterized.
- homology refers to the overall relatedness between polymeric molecules, e.g. between nucleic acid molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules.
- polymeric molecules are considered to be “homologous” to one another if their sequences are at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical.
- polymeric molecules are considered to be “homologous” to one another if their sequences are at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% similar.
- the term “homologous” necessarily refers to a comparison between at least two sequences (nucleotides sequences or amino acid sequences).
- two nucleotide sequences are considered to be homologous if the polypeptides they encode are at least about 50% identical, at least about 60% identical, at least about 70% identical, at least about 80% identical, or at least about 90% identical for at least one stretch of at least about 20 amino acids.
- homologous nucleotide sequences are characterized by the ability to encode a stretch of at least 4-5 uniquely specified amino acids. Both the identity and the approximate spacing of these amino acids relative to one another must be considered for nucleotide sequences to be considered homologous. For nucleotide sequences less than 60 nucleotides in length, homology is determined by the ability to encode a stretch of at least 4-5 uniquely specified amino acids.
- two protein sequences are considered to be homologous if the proteins are at least about 50% identical, at least about 60% identical, at least about 70% identical, at least about 80% identical, or at least about 90% identical for at least one stretch of at least about 20 amino acids.
- identity refers to the overall relatedness between polymeric molecules, e.g., between nucleic acid molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules. Calculation of the percent identity of two nucleic acid sequences, for example, can be performed by aligning the two sequences for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second nucleic acid sequences for optimal alignment and non-identical sequences can be disregarded for comparison purposes).
- the length of a sequence aligned for comparison purposes is at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or 100% of the length of the reference sequence.
- the nucleotides at corresponding nucleotide positions are then compared. When a position in the first sequence is occupied by the same nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position.
- the percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which needs to be introduced for optimal alignment of the two sequences.
- the comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm.
- the percent identity between two nucleotide sequences can be determined using methods such as those described in Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Computer Analysis of Sequence Data, Part I, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; and Sequence Analysis Primer, Gribskov, M.
- the percent identity between two nucleotide sequences can be determined using the algorithm of Meyers and Miller (CABIOS, 1989, 4:11-17), which has been incorporated into the ALIGN program (version 2.0) using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.
- the percent identity between two nucleotide sequences can, alternatively, be determined using the GAP program in the GCG software package using an NWSgapdna.CMP matrix.
- Methods commonly employed to determine percent identity between sequences include, but are not limited to those disclosed in Carillo, H., and Lipman, D., SIAM J Applied Math., 48:1073 (1988); incorporated herein by reference. Techniques for determining identity are codified in publicly available computer programs. Exemplary computer software to determine homology between two sequences include, but are not limited to, GCG program package, Devereux, J., et al., Nucleic Acids Research, 12(1), 387 (1984)), BLASTP, BLASTN, and FASTA Atschul, S. F. et al., J. Molec. Biol., 215, 403 (1990)).
- Inhibit expression of a gene means to cause a reduction in the amount of an expression product of the gene.
- the expression product can be an RNA transcribed from the gene (e.g., an mRNA) or a polypeptide translated from an mRNA transcribed from the gene.
- a reduction in the level of an mRNA results in a reduction in the level of a polypeptide translated therefrom.
- the level of expression may be determined using standard techniques for measuring mRNA or protein.
- in vitro refers to events that occur in an artificial environment, e.g., in a test tube or reaction vessel, in cell culture, in a Petri dish, etc., rather than within an organism (e.g., animal, plant, or microbe).
- an artificial environment e.g., in a test tube or reaction vessel, in cell culture, in a Petri dish, etc., rather than within an organism (e.g., animal, plant, or microbe).
- in vivo refers to events that occur within an organism (e.g., animal, plant, or microbe).
- Isolated refers to a substance or entity that has been (1) separated from at least some of the components with which it was associated when initially produced (whether in nature or in an experimental setting), and/or (2) produced, prepared, and/or manufactured by the hand of man. Isolated substances and/or entities may be separated from at least about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, or more of the other components with which they were initially associated. In some embodiments, isolated agents are more than about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or more than about 99% pure. As used herein, a substance is “pure” if it is substantially free of other components.
- the term “preventing” refers to partially or completely delaying onset of a particular disease, disorder, and/or condition; partially or completely delaying onset of one or more symptoms, features, or clinical manifestations of a particular disease, disorder, and/or condition (e.g., prior to an identifiable disease, disorder, and/or condition); partially or completely delaying progression from a latent disease, disorder, and/or condition to an active disease, disorder, and/or condition; and/or decreasing the risk of developing pathology associated with a particular disease, disorder, and/or condition.
- Similarity refers to the overall relatedness between polymeric molecules, e.g. between nucleic acid molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules. Calculation of percent similarity of polymeric molecules to one another can be performed in the same manner as a calculation of percent identity, except that calculation of percent similarity takes into account conservative substitutions as is understood in the art.
- subject refers to any organism to which a composition in accordance with the disclosure may be administered, e.g., for experimental, diagnostic, prophylactic, and/or therapeutic purposes.
- Typical subjects include animals (e.g., mammals such as mice, rats, rabbits, non-human primates, and humans) and/or plants.
- the term “substantially” refers to the qualitative condition of exhibiting total or near-total extent or degree of a characteristic or property of interest.
- One of ordinary skill in the biological arts will understand that biological and chemical phenomena rarely, if ever, go to completion and/or proceed to completeness or achieve or avoid an absolute result.
- the term “substantially” is therefore used herein to capture the potential lack of completeness inherent in many biological and chemical phenomena.
- an individual who is “susceptible to” a disease, disorder, and/or condition has not been diagnosed with and/or may not exhibit symptoms of the disease, disorder, and/or condition.
- an individual who is susceptible to a disease, disorder, and/or condition may be characterized by one or more of the following: (1) a genetic mutation associated with development of the disease, disorder, and/or condition; (2) a genetic polymorphism associated with development of the disease, disorder, and/or condition; (3) increased and/or decreased expression and/or activity of a protein and/or nucleic acid associated with the disease, disorder, and/or condition; (4) habits and/or lifestyles associated with development of the disease, disorder, and/or condition; (5) a family history of the disease, disorder, and/or condition; and (6) exposure to and/or infection with a microbe associated with development of the disease, disorder, and/or condition.
- an individual who is susceptible to a disease, disorder, and/or condition will develop the disease, disorder, and/or condition. In some embodiments, an individual who is susceptible to a disease, disorder, and/or condition will not develop the disease, disorder, and/or condition.
- therapeutically effective amount means an amount of an agent to be delivered (e.g., nucleic acid, drug, therapeutic agent, diagnostic agent, prophylactic agent, etc.) that is sufficient, when administered to a subject suffering from or susceptible to a disease, disorder, and/or condition, to treat, improve symptoms of, diagnose, prevent, and/or delay the onset of the disease, disorder, and/or condition.
- an agent to be delivered e.g., nucleic acid, drug, therapeutic agent, diagnostic agent, prophylactic agent, etc.
- transcription factor refers to a DNA-binding protein that regulates transcription of DNA into RNA, for example, by activation or repression of transcription. Some transcription factors effect regulation of transcription alone, while others act in concert with other proteins. Some transcription factor can both activate and repress transcription under certain conditions. In general, transcription factors bind a specific target sequence or sequences highly similar to a specific consensus sequence in a regulatory region of a target gene. Transcription factors may regulate transcription of a target gene alone or in a complex with other molecules.
- treating refers to partially or completely alleviating, ameliorating, improving, relieving, delaying onset of, inhibiting progression of, reducing severity of, and/or reducing incidence of one or more symptoms, features, or clinical manifestations of a particular disease, disorder, and/or condition.
- treating cancer may refer to inhibiting survival, growth, and/or spread of a tumor.
- Treatment may be administered to a subject who does not exhibit signs of a disease, disorder, and/or condition (e.g., prior to an identifiable disease, disorder, and/or condition), and/or to a subject who exhibits only early signs of a disease, disorder, and/or condition for the purpose of decreasing the risk of developing pathology associated with the disease, disorder, and/or condition.
- treatment comprises delivery of a protein associated with a therapeutically active nucleic acid to a subject in need thereof.
- Unmodified refers to a nucleic acid prior to being modified.
- Modified mRNAs according to the invention were made using standard laboratory methods and materials.
- the open reading frame (ORF) of the gene of interest is flanked by a 5′ untranslated region (UTR) containing a strong Kozak translational initiation signal and an alpha-globin 3′ UTR terminating with an oligo(dT) sequence for templated addition of a polyA tail.
- the modRNAs were modified with pseudouridine ( ⁇ ) and 5-methyl-cytidine (5meC) to reduce the cellular innate immune response.
- pseudouridine ⁇
- 5-methyl-cytidine 5meC
- the cloning, gene synthesis and vector sequencing was performed by DNA2.0 Inc. (Menlo Park, Calif.). Vector sequences and insert sequences are set forth in SEQ ID NOs: 5-8.
- the ORFs were restriction digested using XbaI or HindIII and used for cDNA synthesis using tailed-PCR. This tailed-PCR cDNA product was used as the template for the modified mRNA synthesis reaction using 25 mM each modified nucleotide mix (modified U/C was manufactured by TriLink Biotech, San Diego, Calif., unmodified A/G was purchased from Epicenter Biotechnologies, Madison, Wis.) and CellScript MegaScriptTM (Epicenter Biotechnologies, Madison, Wis.) complete mRNA synthesis kit.
- the in vitro transcription reaction was run for 3-4 hours at 37° C.
- PCR reaction used HiFi PCR 2 ⁇ Master MixTM (Kapa Biosystems, Woburn, Mass.).
- the In vitro transcribed mRNA product was run on an agarose gel and visualized.
- mRNA was purified with Ambion/Applied Biosystems (Austin, Tex.) MEGAClear RNATM purification kit.
- PCR used PureLinkTM PCR purification kit (Invitrogen, Carlsbad, Calif.) or PCR cleanup kit (Qiagen, Valencia, Calif.).
- the product was quantified on NanodropTM UV Absorbance (ThermoFisher, Waltham, Mass.). Quality, UV absorbance quality and visualization of the product was performed on an 1.2% agarose gel.
- the product was resuspended in TE buffer.
- RNAs incorporating adenosine analogs were poly (A) tailed using yeast Poly (A) Polymerase (Affymetrix, Santa Clara, Calif.). PCR reaction used HiFi PCR 2 ⁇ Master MixTM (Kapa Biosystems, Woburn, Mass.). Modified RNAs were post-transcriptionally capped using recombinant Vaccinia Virus Capping Enzyme (New England BioLabs, Ipswich, Mass.) and a recombinant 2′-o-methyltransferase (Epicenter Biotechnologies, Madison, Wis.) to generate the 5′-guanosine Cap1 structure. Cap 2 structure and Cap 3 structure may be generated using additional 2′-o-methyltransferases.
- RNA was purified with Ambion/Applied Biosystems (Austin, Tex.) MEGAClear RNATM purification kit.
- PCR PureLinkTM PCR purification kit (Invitrogen, Carlsbad, Calif.).
- the product was quantified on NanodropTM UV Absorbance (ThermoFisher, Waltham, Mass.). Quality, UV absorbance quality and visualization of the product was performed on an 1.2% agarose gel.
- the product was resuspended in TE buffer.
- 5′-capping of modified RNA may be completed concomitantly during the in vitro-transcription reaction using the following chemical RNA cap analogs to generate the 5′-guanosine cap structure according to manufacturer protocols: 3′-O-Me-m7G(5′)ppp(5′)G; G(5′)ppp(5′)A; G(5′)ppp(5′)G; m7G(5′)ppp(5′)A; m7G(5′)ppp(5′)G (New England BioLabs, Ipswich, Mass.).
- 5′-capping of modified RNA may be completed post-transcriptionally using a Vaccinia Virus Capping Enzyme to generate the “Cap 0” structure: m7G(5′)ppp(5′)G (New England BioLabs, Ipswich, Mass.).
- Cap 1 structure may be generated using both Vaccinia Virus Capping Enzyme and a 2′-O methyl-transferase to generate: m7G(5′)ppp(5′)G-2′-O-methyl.
- Cap 2 structure may be generated from the Cap 1 structure followed by the 2′-O-methylation of the 5′-antepenultimate nucleotide using a 2′-O methyl-transferase.
- Cap 3 structure may be generated from the Cap 2 structure followed by the 2′-O-methylation of the 5′-preantepenultimate nucleotide using a 2′-O methyl-transferase.
- Enzymes are preferably derived from a recombinant source.
- the modified mRNAs When transfected into mammalian cells, the modified mRNAs may have a stability of between 12-18 hours or more than 18 hours, e.g., 24, 36, 48, 60, 72 or greater than 72 hours.
- G-CSF granulocyte colony stimulating factor
- the nucleic acid sequence for G-CSF mRNA is set forth in SEQ ID NO: 2:
- modified mRNA (modRNA) is set forth in SEQ ID NO: 3:
- FIG. 1 shows an Enzyme-linked immunosorbent assay (ELISA) for Human Granulocyte-Colony Stimulating Factor (G-CSF) from Chinese Hamster Ovary Cells (CHO) transfected with modRNA for G-CSF.
- the CHO cells were grown in CD CHO Medium with Supplement of L-Glutamine, Hypoxanthine and Thymidine. 2 ⁇ 10 6 Cells were transfected with 24 ug modRNA complexed with RNAiMax from Invitrogen in a 75 cm 2 culture flask from Corning with 7 ml of medium.
- the RNA:RNAiMAX complex was formed by first incubating the RNA with CD CHO Medium in a 5 ⁇ volumetric dilution for 10 minutes at room temperature.
- RNAiMAX reagent was incubated with CD CHO Medium in a 10 ⁇ volumetric dilution for 10 minutes at room temperature.
- the RNA vial was then mixed with the RNAiMAX vial and incubated for 20-30 at room temperature before being added to the cells in a drop-wise fashion.
- the concentration of secreted huG-CSF in the culture medium was measured at 12 and 24 hours post-transfection.
- Cell supernatants were stored at ⁇ 20° C.
- Secretion of Human Granulocyte-Colony Stimulating Factor (G-CSF) from transfected Human Embryonic Kidney cells was quantified using an ELISA kit from Invitrogen following the manufacturers recommended instructions.
- G-CSF Human Granulocyte-Colony Stimulating Factor
- the nucleic acid sequence for the Heavy Chain of Rituximab is set forth in SEQ ID NO: 4:
- the nucleic acid sequence for the mRNA for the Heavy Chain of Rituximab is set forth in SEQ ID NO: 5:
- nucleic acid sequence for the nucleic acid sequence for the Light Chain of Rituximab is set forth in SEQ ID NO: 6:
- the nucleic acid sequence for the mRNA of the Light Chain of Rituximab is set forth in SEQ ID NO: 7.
- nucleic acid sequence for the nucleic acid sequence for the Heavy Chain of Trastuzumab is set forth in SEQ ID NO: 8:
- nucleic acid sequence of the mRNA for the Heavy Chain of Trastuzumab is set forth in SEQ ID NO: 9:
- nucleic acid sequence for the nucleic acid sequence for the Light Chain of Trastuzumab is set forth in SEQ ID NO: 10:
- nucleic acid sequence for the mRNA of the Light Chain of Trastuzumab is set forth in SEQ ID NO: 11:
- nucleic acid sequence for nucleotide sequence of the wild type CERT protein is set forth in SEQ ID NO: 12:
- the protein sequence for the wild type CERT protein is set forth in SEQ ID NO: 13:
- the nucleic acid sequence for the nucleotide sequence of the Ser132A Cert mutant is set forth as SEQ ID NO: 14:
- the protein sequence of the Ser132A Cert mutant is set forth as SEQ ID NO. 15:
- FIG. 2 and FIG. 3 show an Enzyme-linked immunosorbent assay (ELISA) for Human IgG from Chinese Hamster Ovary's (CHO) and Human Embryonic Kidney (HEK, HER-2 Negative) 293 cells transfected with human IgG modRNA, respectively.
- the Human Embryonic Kidney (HEK) 293 were grown in CD 293 Medium with Supplement of L-Glutamine from Invitrogen until they reached a confluence of 80-90%.
- the CHO cells were grown in CD CHO Medium with Supplement of L-Glutamine, Hypoxanthine and Thymidine.
- ELISA Enzyme-linked immunosorbent assay
- RNAiMAX complex was formed by first incubating the RNA with CD 293 or CD CHO Medium in a 5 ⁇ volumetric dilution for 10 minutes at room temperature. In a second vial, RNAiMAX reagent was incubated with CD 293 Medium or CD CHO Medium in a 10 ⁇ volumetric dilution for 10 minutes at room temperature.
- RNA vial was then mixed with the RNAiMAX vial and incubated for 20-30 at room temperature before being added to the cells in a drop-wise fashion.
- concentration of secreted human IgG in the culture medium was measured at 12, 24, 36 hours post-transfection.
- secreted human IgG was measured at 36 hours.
- the culture supernatants were stored at 4 degrees. Secretion of Trastuzumab from transfected Human Embryonic Kidney 293 cells was quantified using an ELISA kit from Abcam following the manufacturers recommended instructions.
- FIG. 4 shows a Western Blot of CHO-K1 cells co-transfected with 1 ⁇ g each of Heavy and Light Chain of Trastuzumab modRNA.
- cells were grown using standard protocols in 24-well plates, and cell supernatants or cell lysates were collected at 24 hours post-transfection and separated on a 12% SDS-Page gel and transferred onto a nitrocellulose membrane using the iBlot by Invitrogen.
- FIG. 5 shows CHO-K1 cells co-transfected with 500 ng each of Heavy and Light Chain of Trastuzumab or Rituximab.
- Cells were grown in F-12K Medium from Gibco and 10% FBS. Cells were fixed with 4% paraformaldehyde in PBS and permeabilized with 0.1% Triton X-100 in PBS for 5-10 minutes at room temperature. Cells were then washed 3 ⁇ with room temperature PBS.
- Trastuzumab and Rituximab staining was performed using rabbit polyclonal antibody to Human IgG conjugated to DyLight® 594 (ab96904, abcam, Cambridge, Mass.) according to the manufacturer's recommended dilutions. Nuclear DNA staining was performed with DAPI dye from Invitrogen. The protein for Trastuzumab and Rituximab is translated and localized to the cytoplasm upon modRNA transfection. The pictures were taken 13 hours post-transfection.
- FIG. 6 shows a Binding Immunoblot detection assay for Trastuzumab and Rituximab. Varying concentrations of the ErB2 peptide (ab40048, abcam, Cambridge, Mass.),
- antigen for Trastuzumab and the CD20 peptide (ab97360, abcam, Cambridge, Mass.), antigen for Rituximab were run at varying concentrations (100 ng/ul to 0 ng/ul on a 12% SDS-Page gel and transferred onto a membrane using the iBlot from Invitrogen.
- the membranes were incubated for 1 hour with their respective cell supernatants from CHO-K1 cells co-transfected with 500 ng each of Heavy and Light Chain of Trastuzumab or Rituximab.
- the membranes were blocked with 1% BSA and a secondary anti-human IgG antibody conjugated to alkaline phosphatase (abcam, Cambridge, Mass.) was added.
- Antibody detection was conducted using the Novex® alkaline phosphatase chromogenic substrate by Invitrogen. This data show that a humanized IgG antibodies generated from modRNA are capable of recognizing and binding to their respective antigens.
- the SK-BR-3 cell line an adherent cell line derived from a human breast adenocarcinoma, which overexpress the HER2/neu receptor can be used to compare the antiproliferative properties of modRNA generated Trastuzumab. Varying concentrations of purified Trastuzumab generated from modRNA and trastuzumab can be added to cell cultures, and their effects on cell growth can be assessed in triplicate cytotoxicity and viability assays.
- the anti-cancer effects of modRNA generated Trastuzumab can be determined by consecutive injections of 1) modRNA Trastuzumab, 2) trastuzumab, and 3) modRNA Trastuzumab+modRNA GCSF over a period of 28 days in SKOV-3 xenograft mice. The reduction in tumor growth size can be monitored over time.
- An antibody producing CHO cell line (CHO DG44) secreting a humanized therapeutic IgG antibody is transfected a single time with lipid cationic delivery agent alone (control) or a synthetic mRNA transcript encoding wild type ceramide transfer protein (CERT) or a non-phosphorylation competent Ser132A CERT mutant.
- CERT is an essential cytosolic protein in mammalian cells that transfers the sphingolipid ceramide from the endoplasmic reticulum to the Golgi complex where it is converted to sphingomyelin (Hanada et al., 2003).
- Synthetic mRNA transcripts are pre-mixed with a lipid cationic delivery agent at a 2-5:1 carrier:RNA ratio.
- the initial seeding density is about 2 ⁇ 10 5 viable cells/mL.
- the synthetic mRNA transcript is delivered after initial culture seeding during the exponential culture growth phase to achieve a final synthetic mRNA copy number between 10 ⁇ 10 2 and 10 ⁇ 10 3 per cell.
- the basal cell culture medium used for all phases of cell inoculum generation and for growth of cultures in bioreactors is modified CD-CHO medium containing glutamine, sodium bicarbonate, insulin and methotrexate.
- the pH of the medium is adjusted to 7.0 with 1 N HCl or 1N NaOH after addition of all components.
- Culture run times end on days 7, 14, 21 or 28+.
- Production-level 50 L scale reactors (stainless steel reactor with two marine impellers) may be used and are scalable to >10,000 L stainless steel reactors (described in commonly-assigned patent application U.S. Ser. No. 60/436,050, filed Dec. 23, 2002, and U.S. Ser. No. 10/740,645).
- a data acquisition system (Intellution Fix 32) records temperature, pH, and dissolved oxygen (DO) throughout runs. Gas flows are controlled via rotameters. Air is sparged into the reactor via a submerged frit (5 ⁇ m pore size) and through the reactor head space for CO 2 removal. Molecular oxygen is sparged through the same frit for DO control. CO 2 is sparged through same frit as used for pH control. Samples of cells are removed from the reactor on a daily basis. A sample used for cell counting is stained with trypan blue (Sigma, St. Louis, Mo.). Cell count and cell viability determination are performed via hemocytometry using a microscope. For analysis of metabolites, additional samples are centrifuged for 20 minutes at 2000 rpm (4° C.) for cell separation.
- Supernatant is analyzed for the following parameters: titer, sialic acid, glucose, lactate, glutamine, glutamate, pH, pO 2 , pCO 2 , ammonia, and, optionally, lactate dehydrogenase (LDH). Additional back-up samples are frozen at ⁇ 20° C.
- titer sialic acid
- glucose lactate
- glutamine glutamate
- pH pH, pO 2 , pCO 2
- ammonia and, optionally, lactate dehydrogenase (LDH).
- LDH lactate dehydrogenase
- Additional back-up samples are frozen at ⁇ 20° C.
- To measure secreted humanized IgG antibody titers supernatant is taken from seed-stock cultures of all stable cell pools, the IgG titer is determined by ELISA and divided by the mean number of cells to calculate the specific productivity. The highest values are the cell pools with the Ser132A CERT mutant (SEQ ID No.14
- An antibody producing CHO cell line (CHO DG44) secreting humanized IgG antibody is transfected with lipid cationic delivery agent alone (control) or a synthetic mRNA transcript encoding wild type ceramide transfer protein or a non-phosphorylation competent Ser132A CERT mutant.
- Synthetic mRNA transcripts are pre-mixed with a lipid cationic delivery agent at a 2-5:1 carrier:RNA ratio. The initial seeding density was about 2 ⁇ 10 5 viable cells/mL.
- Synthetic mRNA transcript is delivered after initial culture seeding during the exponential culture growth phase to achieve a final synthetic mRNA copy number between 10 ⁇ 10 2 and 10 ⁇ 10 3 per cell.
- the basal cell culture medium used for all phases of cell inoculum generation and for growth of cultures in bioreactors was modified CD-CHO medium containing glutamine, sodium bicarbonate, insulin and methotrexate.
- the pH of the medium is adjusted to 7.0 with 1 N HCl or 1N NaOH after addition of all components.
- Bioreactors of 5 L scale glass reactor with one marine impeller) are used to obtain maximum CERT protein production and secreted humanized IgG antibody curves.
- the culturing run time is increased by supplementing the culture medium one or more times daily (or continuously) with fresh medium during the run.
- the cultures receive feeding medium as a continuously-supplied infusion, or other automated addition to the culture, in a timed, regulated, and/or programmed fashion so as to achieve and maintain the appropriate amount of synthetic mRNA:carrier in the culture.
- the typical method is a feeding regimen of a once per day bolus feed with feeding medium containing synthetic mRNA:carrier on each day of the culture run, from the beginning of the culture run to the day of harvesting the cells.
- the daily feed amount is recorded on batch sheets.
- Production-level 50 L scale reactors stainless steel reactor with two marine impellers) were used and are scalable to >10,000 L stainless steel reactors.
- a data acquisition system (Intellution Fix 32) record temperature, pH, and dissolved oxygen (DO) throughout runs. Gas flows are controlled via rotameters. Air is sparged into the reactor via a submerged frit (5 ⁇ m pore size) and through the reactor head space for CO 2 removal. Molecular oxygen was sparged through the same frit for DO control. CO 2 is sparged through same frit as used for pH control. Samples of cells are removed from the reactor on a daily basis. A sample used for cell counting is typically stained with trypan blue (Sigma, St. Louis, Mo.). Cell count and cell viability determination are performed via hemocytometry using a microscope. For analysis of metabolites, additional samples are centrifuged for 20 minutes at 2000 rpm (4° C.) for cell separation.
- Supernatant is analyzed for the following parameters: titer, sialic acid, glucose, lactate, glutamine, glutamate, pH, pO 2 , pCO 2 , ammonia, and, optionally, lactate dehydrogenase (LDH). Additional back-up samples are frozen at ⁇ 20° C.
- titer sialic acid
- glucose lactate
- glutamine glutamate
- pH pH, pO 2 , pCO 2
- ammonia and, optionally, lactate dehydrogenase (LDH).
- LDH lactate dehydrogenase
- Additional back-up samples are frozen at ⁇ 20° C.
- To measure secreted humanized IgG antibody titers supernatant is taken from seed-stock cultures of all stable cell pools, the IgG titer is determined by ELISA and divided by the mean number of cells to calculate the specific productivity. The highest values are the cell pools with the Ser132A CERT mutant (SEQ ID NO: 14
- any particular embodiment of the present disclosure that falls within the prior art may be explicitly excluded from any one or more of the claims. Since such embodiments are deemed to be known to one of ordinary skill in the art, they may be excluded even if the exclusion is not set forth explicitly herein. Any particular embodiment of the compositions of the disclosure (e.g., any protein; any nucleic acid; any method of production; any method of use; etc.) can be excluded from any one or more claims, for any reason, whether or not related to the existence of prior art.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Endocrinology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- The present application claims the benefit of U.S. Provisional Application No. 61/404,413, filed Oct. 1, 2010, the disclosure of which is considered part of (and is incorporated herein by reference in) the disclosure of this application.
- Naturally occurring RNAs are synthesized from four basic ribonucleotides: ATP, CTP, UTP and GTP, but may contain post-transcriptionally modified nucleotides. Further, approximately one hundred different nucleoside modifications have been identified in RNA (Rozenski, J, Crain, P, and McCloskey, J. (1999). The RNA Modification Database: 1999 update. Nucl Acids Res 27: 196-197). The role of nucleoside modifications on the immuno-stimulatory potential and on the translation efficiency of RNA, however, is unclear.
- There are multiple problems with prior methodologies of effecting protein expression. For example, heterologous DNA introduced into a cell can be inherited by daughter cells (whether or not the heterologous DNA has integrated into the chromosome) or by offspring. Introduced DNA can integrate into host cell genomic DNA at some frequency, resulting in alterations and/or damage to the host cell genomic DNA. In addition, multiple steps must occur before a protein is made. Once inside the cell, DNA must be transported into the nucleus where it is transcribed into RNA. The RNA transcribed from DNA must then enter the cytoplasm where it is translated into protein. This need for multiple processing steps creates lag times before the generation of a protein of interest. Further, it is difficult to obtain DNA expression in cells; frequently DNA enters cells but is not expressed or not expressed at reasonable rates or concentrations. This can be a particular problem when DNA is introduced into cells such as primary cells or modified cell lines.
- There is a need in the art for biological modalities to address the modulation of intracellular translation of nucleic acids.
- Unless explained otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described herein. The materials, methods, and examples are illustrative only and not intended to be limiting. Other features of the disclosure are apparent from the following detailed description and the claims.
- Described herein are methods of producing proteins, polypeptides, and peptides. For example, the method includes introducing a nucleic acid (e.g., a modified nucleic acid described herein) encoding a protein, polypeptide, or peptide of interest into a cell (e.g., a human cell), under conditions that the protein, polypeptide, or peptide of interest is produced (e.g., translated) in the cell. In some embodiments, the nucleic acid comprises one or more nucleoside modifications (e.g., one or more nucleoside modifications described herein). In some embodiments, the nucleic acid is capable of evading an innate immune response of a cell into which the nucleic acid is introduced. In some embodiments, the protein, polypeptide, or peptide is a therapeutic protein described herein. In some embodiments, the protein, polypeptide, or peptide comprises one or more post-translational modifications (e.g., post-translational modifications present in human cells). Compositions and kits for protein production are also described herein. Further described herein are cells and cultures with altered protein levels (e.g., generated by a method described herein).
- In one aspect, the disclosure features a method of producing a protein (e.g., a heterologous protein) of interest in a cell, the method comprising the steps: (i) providing a target cell capable of protein translation; and (ii) introducing into the target cell a composition comprising a first isolated nucleic acid comprising a translatable region encoding the protein of interest and a nucleoside modification, under conditions such that the protein of interest is produced in the cell. In some embodiments, the method further comprises the step of substantially purifying the protein of interest from the cell. In some embodiments, the protein of interest is a secreted protein.
- In another aspect, the disclosure features a method of producing a protein (e.g., a heterologous protein) of interest in a cell, the method comprising the steps: (i) providing a target cell capable of protein translation; and (ii) introducing into the target cell a composition comprising: (a) a first isolated nucleic acid comprising a translatable region encoding the protein of interest and a nucleoside modification; and (b) a second nucleic acid comprising an inhibitory nucleic acid, under conditions such that the protein of interest is produced in the cell. In some embodiments, the method further comprises the step of substantially purifying the protein of interest from the cell. In some embodiments, the protein of interest is a secreted protein.
- In one aspect, the disclosure features a method of increasing the production of a recombinantly expressed protein of interest in a cell, comprising the steps: (i) providing a target cell comprising a recombinant nucleic acid encoding the protein of interest; and (ii) introducing into the target cell a composition comprising a first isolated nucleic acid comprising a translatable region encoding a translation effector protein and a nucleoside modification under conditions such that the effector protein is produced in the cell, thereby increasing the production of the recombinantly expressed protein in the cell.
- In some embodiments, the target cell is a mammalian cell. In some embodiments, the target cell is a yeast cell. In some embodiments, the target cell is a bacterial cell, an insect cell, or a plant cell. In some embodiments, the protein of interest is a secreted protein. In some embodiments, the protein of interest is a transmembrane protein. In some embodiments, the protein of interest is an antibody or an antigen-binding fragment thereof. In some embodiments, the protein of interest is a growth factor or cytokine. In some embodiments, the protein of interest is a peptide or peptidomimetic. In some embodiments, the translation effector protein is ceramide transfer protein (CERT). In some embodiments, the translation effector protein is translated in the target cell in an amount effective to increase efficiency of translation of the recombinantly expressed protein. In some embodiments, the translation effector protein is translated in the target cell in an amount effective to reduce efficiency of translation of proteins in the cell other than the recombinantly expressed protein. In some embodiments, the translation effector protein is translated in the target cell in an amount effective to reduce formation of inclusion bodies containing the recombinantly expressed protein. In some embodiments, the translation effector protein is translated in the target cell in an amount effective to reduce intracellular degradation of the recombinantly expressed protein. In some embodiments, the translation effector protein is translated in the target cell in an amount effective to increase secretion of the recombinantly expressed protein.
- In another aspect, the disclosure features a method for altering the level of a protein of interest in a target cell, the method comprising the steps of: (i) modulating the activity of at least one translation effector molecule in the target cell; and (ii) culturing the cell. In some embodiments, the target cell does not contain a recombinant nucleic acid. In some embodiments, the method further comprises the step of isolating the protein of interest.
- In another aspect, the disclosure features a method for modulating the level of a protein of interest in a target cell, comprising the steps of: i) modulating the activity of at least one translation effector molecule in the target cell, wherein the modulation comprises introducing into the target cell a first isolated nucleic acid comprising a translatable region encoding the translation effector protein and a nucleoside modification; and ii) culturing the cell.
- In one aspect, the disclosure features an animal cell (e.g., a mammalian cell) with an altered protein level, generated by the steps of: (i) introducing into the cell an effective amount of a first isolated nucleic acid comprising a translatable region encoding a translation effector protein and a nucleoside modification; and (ii) culturing the cell. In some embodiments, the effective amount of the first isolated nucleic acid introduced into the cell is titrated against a desired amount of protein translated from the translatable region.
- In one aspect, the disclosure features a high density culture comprising a plurality of the cells described herein. In some embodiments, the culture comprises a batch process. In some embodiments, the culture comprises a continuous feed process.
- In one aspect, the disclosure features a composition for protein production, the composition comprising a first isolated nucleic acid comprising a translatable region and a nucleoside modification, wherein the nucleic acid exhibits reduced degradation by a cellular nuclease, and a mammalian cell suitable for translation of the translatable region of the first nucleic acid. In some embodiments, the mammalian cell comprises a recombinant nucleic acid.
- In another aspect, the disclosure features a composition for protein production, the composition comprising: (i) a first isolated nucleic acid comprising a translatable region and a nucleoside modification, wherein the nucleic acid exhibits reduced degradation by a cellular nuclease; (ii) a second nucleic acid comprising an inhibitory nucleic acid; and (iii) a mammalian cell suitable for translation of the translatable region of the first nucleic acid, wherein the mammalian cell comprises a target nucleic acid capable of being acted upon by the inhibitory nucleic acid. In some embodiments, the mammalian cell comprises a recombinant nucleic acid.
- In one aspect, the disclosure features a kit for protein production, the kit comprising a first isolated nucleic acid comprising a translatable region and a nucleic acid modification, wherein the nucleic acid is capable of evading an innate immune response of a cell into which the first isolated nucleic acid is introduced, and packaging and instructions therefor.
- In another aspect, the disclosure features a kit for protein production, the kit comprising: (i) a first isolated nucleic acid comprising a translatable region, provided in an amount effective to produce a desired amount of a protein encoded by the translatable region when introduced into a target cell; (ii) a second nucleic acid comprising an inhibitory nucleic acid, provided in an amount effective to substantially inhibit the innate immune response of the cell; and (iii) packaging and instructions therefor.
- In yet another aspect, the disclosure features a kit for protein production, the kit comprising a first isolated nucleic acid comprising a translatable region and a nucleoside modification, wherein the nucleic acid exhibits reduced degradation by a cellular nuclease, and packaging and instructions therefor.
- In one aspect, the disclosure features a kit for protein production, the kit comprising a first isolated nucleic acid comprising a translatable region and at least two different nucleoside modifications, wherein the nucleic acid exhibits reduced degradation by a cellular nuclease, and packaging and instructions therefor.
- In another aspect, the disclosure features a kit for protein production, the kit comprising: (i) a first isolated nucleic acid comprising a translatable region; (ii) a second nucleic acid comprising an inhibitory nucleic acid; and (iii) packaging and instructions therefor.
- In yet another aspect, the disclosure features a kit for protein production, the kit comprising: (i) a first isolated nucleic acid comprising a translatable region and at least one nucleoside modification, wherein the nucleic acid exhibits reduced degradation by a cellular nuclease; (ii) a second nucleic acid comprising an inhibitory nucleic acid; and (iii) packaging and instructions therefor.
- In one aspect, the disclosure features a kit for protein production, comprising a first isolated nucleic acid encoding a translatable region encoding a protein, wherein the first nucleic acid comprises a nucleic acid modification, wherein the first nucleic acid displays decreased degradation in a cell into which the first isolated nucleic acid is introduced as compared to a nucleic acid not comprising a nucleic acid modification, and packaging and instructions therefor.
- In another aspect, the disclosure features a kit for protein production, comprising a first isolated nucleic acid encoding a translatable region encoding a protein, wherein the first nucleic acid comprises a nucleic acid modification, wherein the first nucleic acid displays is more stable in a cell into which the first isolated nucleic acid is introduced as compared to a nucleic acid not comprising a nucleic acid modification, and packaging and instructions therefor.
- In one aspect, the disclosure features a kit for immunoglobulin protein production, comprising a first isolated nucleic acid comprising i) a translatable region encoding the immunoglobulin protein and ii) a nucleic acid modification, wherein the first nucleic acid is capable of evading an innate immune response of a cell into which the first isolated nucleic acid is introduced, wherein the translatable region is substantially devoid of cytidine and uracil nucleotides, and packaging and instructions therefor.
- In another aspect, the disclosure features a mammalian cell generated by use of a kit described herein.
- In yet another aspect, the disclosure features an isolated immunoglobulin protein produced from a production cell comprising a first isolated nucleic acid comprising i) a translatable region encoding the immunoglobulin protein and ii) a nucleic acid modification, wherein the first nucleic acid is capable of evading an innate immune response of the cell, wherein the translatable region is substantially devoid of either cytidine or uracil nucleotides or the combination of cytidine and uracil nucleotides.
- In one aspect, the disclosure features a pharmaceutical preparation comprising an effective amount of a protein described herein.
- In another aspect, the disclosure features a pharmaceutical preparation comprising an effective amount of a first nucleic acid comprising i) a translatable region encoding an immunoglobulin protein and ii) a nucleic acid modification, wherein the first nucleic acid exhibits reduced degradation by a cellular nuclease and is capable of evading an innate immune response of a cell into which the first nucleic acid is introduced, wherein the translatable region is substantially devoid of cytidine and uracil nucleotides.
- Embodiments of the aforesaid methods, cells, cultures, compositions, preparations, and kits may include one or more of the following features:
- In some embodiments, the first isolated nucleic acid comprises messenger RNA (mRNA). In some embodiments, the mRNA comprises at least one nucleoside selected from the group consisting of pyridin-4-one ribonucleoside, 5-aza-uridine, 2-thio-5-aza-uridine, 2-thiouridine, 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxyuridine, 3-methyluridine, 5-carboxymethyl-uridine, 1-carboxymethyl-pseudouridine, 5-propynyl-uridine, 1-propynyl-pseudouridine, 5-taurinomethyluridine, 1-taurinomethyl-pseudouridine, 5-taurinomethyl-2-thio-uridine, 1-taurinomethyl-4-thio-uridine, 5-methyl-uridine, 1-methyl-pseudouridine, 4-thio-1-methyl-pseudouridine, 2-thio-1-methyl-pseudouridine, 1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-1-deaza-pseudouridine, dihydrouridine, dihydropseudouridine, 2-thio-dihydrouridine, 2-thio-dihydropseudouridine, 2-methoxyuridine, 2-methoxy-4-thio-uridine, 4-methoxy-pseudouridine, and 4-methoxy-2-thio-pseudouridine. In some embodiments, the mRNA comprises at least one nucleoside selected from the group consisting of 5-aza-cytidine, pseudoisocytidine, 3-methyl-cytidine, N4-acetylcytidine, 5-formylcytidine, N4-methylcytidine, 5-hydroxymethylcytidine, 1-methyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoisocytidine, 2-thio-cytidine, 2-thio-5-methyl-cytidine, 4-thio-pseudoisocytidine, 4-thio-1-methyl-pseudoisocytidine, 4-thio-1-methyl-1-deaza-pseudoisocytidine, 1-methyl-1-deaza-pseudoisocytidine, zebularine, 5-aza-zebularine, 5-methyl-zebularine, 5-aza-2-thio-zebularine, 2-thio-zebularine, 2-methoxy-cytidine, 2-methoxy-5-methyl-cytidine, 4-methoxy-pseudoisocytidine, and 4-methoxy-1-methyl-pseudoisocytidine. In some embodiments, the mRNA comprises at least one nucleoside selected from the group consisting of 2-aminopurine, 2, 6-diaminopurine, 7-deaza-adenine, 7-deaza-8-aza-adenine, 7-deaza-2-aminopurine, 7-deaza-8-aza-2-aminopurine, 7-deaza-2,6-diaminopurine, 7-deaza-8-aza-2,6-diaminopurine, 1-methyladenosine, N6-methyladenosine, N6-isopentenyladenosine, N6-(cis-hydroxyisopentenyl)adenosine, 2-methylthio-N6-(cis-hydroxyisopentenyl)adenosine, N6-glycinylcarbamoyladenosine, N6-threonylcarbamoyladenosine, 2-methylthio-N6-threonyl carbamoyladenosine, N6,N6-dimethyladenosine, 7-methyladenine, 2-methylthio-adenine, and 2-methoxy-adenine. In some embodiments, mRNA comprises at least one nucleoside selected from the group consisting of inosine, 1-methyl-inosine, wyosine, wybutosine, 7-deaza-guanosine, 7-deaza-8-aza-guanosine, 6-thio-guanosine, 6-thio-7-deaza-guanosine, 6-thio-7-deaza-8-aza-guanosine, 7-methyl-guanosine, 6-thio-7-methyl-guanosine, 7-methylinosine, 6-methoxy-guanosine, 1-methylguanosine, N2-methylguanosine, N2,N2-dimethylguanosine, 8-oxo-guanosine, 7-methyl-8-oxo-guanosine, 1-methyl-6-thio-guanosine, N2-methyl-6-thio-guanosine, and N2,N2-dimethyl-6-thio-guanosine.
-
FIG. 1 depicts bar graphs of an Enzyme-linked immunosorbent assay (ELISA) detection of Human G-CSF of in vitro transfected Chinese Hamster Ovary with modRNA encoding human G-CSF at 12 and 24 hours post-transfection. -
FIG. 2 depicts bar graphs of an Enzyme-linked immunosorbent assay (ELISA) for Human IgG of in vitro transfected Chinese Hamster Ovary cells with the Heavy and Light chains of modRNA encoding Trastuzumab at 12, 24, and 36 hours post-transfection. -
FIG. 3 depicts bar graphs of an Enzyme-linked immunosorbent assay (ELISA) for detection of Human IgG of in vitro transfected Human Embryonic Kidneys cells (HEK293) with Heavy and Light chains of modRNA encoding Trastuzumab at 36 hours post-transfection. R1, R2, R3 are triplicate transfection experiments performed in a 24-well plate and normalized to untreated samples. -
FIG. 4 depicts an image of a western blot detection of in vitro transfected Chinese Hamster Ovary cells with the Heavy and Light chains of modRNA encoding Trastuzumab at 24 hours post-transfection. HC and LC indicate the Heavy Chain and Light Chain of Trastuzumab respectively. -
FIG. 5 depicts images from cell immune-staining of in vitro-transfected Chinese Hamster Ovary cells with the Heavy and Light chains of modRNA encoding both Trastuzumab and Rituximab at 13 hours post-transfection. -
FIG. 6 depicts images of a binding immunoblot assay of modRNA encoding Trastuzumab and Rituximab. The black boxes display the protein of interest. - Methods of producing proteins, polypeptides, and peptides are described herein. The disclosure provides, at least in part, methods of producing a protein, polypeptide, or peptide (e.g., a heterologous protein) of interest in a cell, methods increasing the production of a protein, polypeptide, or peptide (e.g., a recombinantly expressed protein) of interest in a cell, and methods of altering the level of a protein, polypeptide, or peptide of interest in a cell. For example, the methods can include the step of introducing a nucleic acid (e.g., a modified nucleic acid described herein) encoding a protein, polypeptide, or peptide of interest into a cell (e.g., a human cell), under conditions that the protein, polypeptide, or peptide of interest is produced (e.g., translated) in the cell. In some embodiments, the nucleic acid comprises one or more nucleoside modifications (e.g., one or more nucleoside modifications described herein). In some embodiments, the nucleic acid is capable of evading an innate immune response of a cell into which the nucleic acid is introduced, thus increasing the efficiency of protein production in the cell. In some embodiments, the protein is a therapeutic protein described herein. In some embodiments, the protein comprises one or more post-translational modifications (e.g., post-translational modifications present in human cells). Compositions and kits for protein production are also described herein. Further described herein are cells and cultures with altered protein levels (e.g., generated by a method described herein).
- In general, exogenous nucleic acids, particularly viral nucleic acids, introduced into cells induce an innate immune response, resulting in interferon (IFN) production and cell death. However, it is of great interest for recombinant protein production to deliver a nucleic acid, e.g., a ribonucleic acid (RNA) inside a cell, e.g., in cell culture, in vitro, in vivo, or ex vivo, such as to cause intracellular translation of the nucleic acid and production of the encoded protein. Provided herein in part are nucleic acids encoding useful polypeptides capable of modulating a cell's function and/or activity, and methods of making and using these nucleic acids and polypeptides. As described herein, these nucleic acids are capable of reducing the innate immune activity of a population of cells into which they are introduced, thus increasing the efficiency of protein production in that cell population. Further, one or more additional advantageous activities and/or properties of the nucleic acids and proteins of the invention are described.
- Methods of Protein Production.
- The methods provided herein are useful for enhancing protein product yield in a cell culture process. In a cell culture containing a plurality of host cells, introduction of the modified mRNAs described herein results in increased protein production efficiency relative to a corresponding unmodified nucleic acid. Such increased protein production efficiency can be demonstrated, e.g., by showing increased cell transfection, increased protein translation from the nucleic acid, decreased nucleic acid degradation, and/or reduced innate immune response of the host cell. Protein production can be measured by ELISA, and protein activity can be measured by various functional assays known in the art. The protein production may be generated in a continuous or a fed-batch process.
- Cell Culture and Growth.
- In the methods of the disclosure, the cells are cultured. Cells may be cultured in suspension or as adherent cultures. Cells may be cultured in a variety of vessels including, for example, bioreactors, cell bags, wave bags, culture plates, flasks, hyperflasks and other vessels well known to those of ordinary skill in the art. Cells may be cultured in IMDM (Invitrogen, Catalog number 12440-53) or any other suitable media including chemically defined media formulations. Ambient conditions suitable for cell culture, such as temperature and atmospheric composition, are also well known to those skilled in the art. The methods of the disclosure may be used with any cell that is suitable for use in protein production. In one embodiment, the cells are selected from the group consisting of animal cells (e.g., mammalian cells), bacterial cells, plant, microbial, algal, and fungal cells. In some embodiments, the cells are mammalian cells, such human, mouse, rat, goat, horse, rabbit, hamster or cow cells. For instance, the cells may be from any established cell line, including but not limited to HeLa, NS0, SP2/0, HEK 293T, Vero, Caco, Caco-2, MDCK, COS-1, COS-7, K562, Jurkat, CHO-K1, DG44, CHOK1SV, CHO-S, Huvec, CV-1, HuH-7, NIH3T3, HEK293, 293, A549, HepG2, IMR-90, MCF-7, U-20S, Per.C6, SF9, SF21, or Chinese Hamster Ovary (CHO) cells. In certain embodiments, the cells are fungal cells, such as cells selected from the group consisting of: Chrysosporium cells, Aspergillus cells, Trichoderma cells, Dictyostelium cells, Candida cells, Saccharomyces cells, Schizosaccharomyces cells, and Penicillium cells. In certain other embodiments, the cells are bacterial cells, such as E. coli, B. subtilis, or BL21 cells. Primary and secondary cells to be transfected by the present method can be obtained from a variety of tissues and include all cell types which can be maintained in culture. For example, primary and secondary cells which can be transfected by the present method include fibroblasts, keratinocytes, epithelial cells (e.g., mammary epithelial cells, intestinal epithelial cells), endothelial cells, glial cells, neural cells, formed elements of the blood (e.g., lymphocytes, bone marrow cells), muscle cells and precursors of these somatic cell types. Primary cells can be obtained from a donor of the same species or another species (e.g., mouse, rat, rabbit, cat, dog, pig, cow, bird, sheep, goat, horse).
- The cells of the present disclosure are useful for in vitro production of therapeutic products which can be purified and delivered by conventional routes of administration. With or without amplification, these cells can be subject to large-scale cultivation for harvest of intracellular or extracellular protein products.
- Methods of Cellular Nucleic Acid Delivery.
- Methods of the present disclosure enhance nucleic acid delivery into a cell population, in vivo, ex vivo, or in culture. For example, a cell culture containing a plurality of host cells (e.g., eukaryotic cells such as yeast or mammalian cells) is contacted with a composition that contains an enhanced nucleic acid having at least one nucleoside modification and, optionally, a translatable region. The composition also generally contains a transfection reagent or other compound that increases the efficiency of enhanced nucleic acid uptake into the host cells. The enhanced nucleic acid exhibits enhanced retention in the cell population, relative to a corresponding unmodified nucleic acid. The retention of the enhanced nucleic acid is greater than the retention of the unmodified nucleic acid. In some embodiments, it is at least about 50%, 75%, 90%, 95%, 100%, 150%, 200%, or more than 200% greater than the retention of the unmodified nucleic acid. Such retention advantage may be achieved by one round of transfection with the enhanced nucleic acid, or may be obtained following repeated rounds of transfection.
- Introduction of Modified or Transient RNAs into Cells for Protein Production.
- Transiently transfected cells may be generated by methods of transfection, electroporation, cationic agents, polymers, or lipid-based delivery molecules well known to those of ordinary skill in the art. The modified transient RNAs can be introduced into the cultured cells in either traditional batch like steps or continuous flow through steps if appropriate. The methods and compositions of the present disclosure may be used to produce cells with increased production of one or more protein of interest. Cells can be transfected or otherwise introduced with one or more RNA. The cells may be transfected with the two or more RNA constructs simultaneously or sequentially. In certain embodiments, multiple rounds of the methods described herein may be used to obtain cells with increased expression of one or more RNAs or proteins of interest. For example, cells may be transfected with one or more RNA constructs that encode an RNA or protein of interest and isolated according to the methods described herein. The isolated cells may then be subjected to further rounds of transfection with one or more other RNA that encode an RNA or protein of interest and isolated once again. This method is useful, for example, for generating cells with increased expression of a complex of proteins, RNAs or proteins in the same or related biological pathway, RNAs or proteins that act upstream or downstream of each other, RNAs or proteins that have a modulating, activating or repressing function to each other, RNAs or proteins that are dependent on each other for function or activity, or RNAs or proteins that share homology (e.g., sequence, structural, or functional homology). For example, this method may be used to generate a cell line with increased expression of the heavy and light chains of an immunoglobulin protein (e.g., IgA, IgD, IgE, IgG, and IgM) or antigen-binding fragments thereof. The immunoglobulin proteins may be fully human, humanized, or chimeric immunoglobulin proteins. An RNA that is transfected into a cell of the disclosure may comprise a sequence that is an RNA encoding a protein of interest. Any protein may be produced according to the methods described herein. Examples of proteins that may be produced according the methods of the disclosure include, without limitation, peptide hormones (e.g., insulin), glycoprotein hormones (e.g., erythropoietin), antibiotics, cytokines, enzymes, vaccines (e.g., HIV vaccine, HPV vaccine, HBV vaccine), anticancer therapeutics (e.g., Muc1), and therapeutic antibodies. In a particular embodiment the RNA encodes an immunoglobulin protein or an antigen-binding fragment thereof, such as an immunoglobulin heavy chain, an immunoglobulin light chain, a single chain Fv, a fragment of an antibody, such as Fab, Fab′, or (Fab′)2, or an antigen binding fragment of an immunoglobulin. In a specific embodiment, the RNA encodes erythropoietin. In another specific embodiment, the RNA encodes one or more immunoglobulin proteins, or fragments thereof, that bind to and, optionally, antagonize or agonize a cell surface receptor: the epidermal growth factor receptor (EGFR), HER2, or c-ErbB-1, such as Erbitux™ (cetuximab).
- Isolation or Purification of Proteins.
- The methods described herein can further comprise the step of isolating or purifying the proteins, polypeptides, or peptides produced by the methods described herein. Those of ordinary skill in the art can easily make a determination of the proper manner to purify or isolate the protein of interest from the cultured cells. Generally, this is done through a capture method using affinity binding or non-affinity purification. If the protein of interest is not secreted by the cultured cells, then a lysis of the cultured cells would be performed prior to purification or isolation as described above. One can use unclarified cell culture fluid containing the protein of interest along with cell culture media components as well as cell culture additives, such as anti-foam compounds and other nutrients and supplements, cells, cellular debris, host cell proteins, DNA, viruses and the like in the present disclosure. Moreover, the process can be conducted, if desired, in the bioreactor itself. The fluid may either be preconditioned to a desired stimulus such as pH, temperature or other stimulus characteristic or the fluid can be conditioned upon addition of the polymer(s) or the polymer(s) can be added to a carrier liquid that is properly conditioned to the required parameter for the stimulus condition required for that polymer to be solubilized in the fluid. The polymer(s) is allowed to circulate thoroughly with the fluid and then the stimulus is applied (change in pH, temperature, salt concentration, etc) and the desired protein and polymer(s) precipitate out of solution. The polymer and desired protein(s) is separated from the rest of the fluid and optionally washed one or more times to remove any trapped or loosely bound contaminants. The desired protein is then recovered from the polymer(s) such as by elution and the like. Typically, the elution is done under a set of conditions such that the polymer remains in its solid (precipitated) form and retains any impurities to it during the selective elution of the desired protein. Alternatively, the polymer and protein as well as any impurities can be solubilized in a new fluid such as water or a buffered solution and the protein be recovered by a means such as affinity, ion exchange, hydrophobic, or some other type of chromatography that has a preference and selectivity for the protein over that of the polymer or impurities. The eluted protein is then recovered and if desired subjected to additional processing steps, either traditional batch like steps or continuous flow through steps if appropriate.
- Additionally, it is useful to optimize the expression of a specific polypeptide in a cell line or collection of cell lines of potential interest, particularly an engineered protein such as a protein variant of a reference protein having a known activity. In one embodiment, provided is a method of optimizing expression of an engineered protein in a target cell, by providing a plurality of target cell types, and independently contacting with each of the plurality of target cell types a modified mRNA encoding an engineered polypeptide. Additionally, culture conditions may be altered to increase protein production efficiency. Subsequently, the presence and/or level of the engineered polypeptide in the plurality of target cell types is detected and/or quantitated, allowing for the optimization of an engineered polypeptide's expression by selection of an efficient target cell and cell culture conditions relating thereto. Such methods are particularly useful when the engineered polypeptide contains one or more post-translational modifications or has substantial tertiary structure, situations which often complicate efficient protein production.
- “Proteins of interest” or “desired proteins” include those provided herein and fragments, mutants, variants, and alterations thereof. Especially, desired proteins/polypeptides or proteins of interest are for example, but not limited to insulin, insulin-like growth factor, human growth hormone (hGH), tissue plasminogen activator (tPA), cytokines, such as interleukins (IL), e.g., IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, interferon (IFN) alpha, IFN beta, IFN gamma, IFN omega or IFN tau, tumor necrosis factor (TNF), such as TNF alpha and TNF beta, TNF gamma, TNF-related apoptosis-inducing ligand (TRAIL); granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), monocyte chemotactic protein-1 (MCP-1), and vascular endothelial growth factor (VEGF). Also included is the production of erythropoietin or any other hormone growth factors. The method according to the disclosure can also be advantageously used for production of antibodies or fragments thereof. Such fragments include e.g., Fab fragments (Fragment antigen-binding). Fab fragments consist of the variable regions of both chains which are held together by the adjacent constant region. These may be formed by protease digestion, e.g., with papain, from conventional antibodies, but similar Fab fragments may also be produced in the mean time by genetic engineering. Further antibody fragments include F(ab′)2 fragments, which may be prepared by proteolytic cleaving with pepsin.
- The protein of interest is typically recovered from the culture medium as a secreted polypeptide, or it can be recovered from host cell lysates if expressed without a secretory signal. It is necessary to purify the protein of interest from other recombinant proteins and host cell proteins in a way that substantially homogenous preparations of the protein of interest are obtained. As a first step, cells and/or particulate cell debris are removed from the culture medium or lysate. The product of interest thereafter is purified from contaminant soluble proteins, polypeptides and nucleic acids, for example, by fractionation on immunoaffinity or ion-exchange columns, ethanol precipitation, reverse phase HPLC, Sephadex chromatography, chromatography on silica or on a cation exchange resin such as DEAE. In general, methods teaching a skilled person how to purify a protein heterologous expressed by host cells, are well known in the art. Such methods are for example described by (Harris and Angal, Protein Purification Methods: A Practical Approach, Oxford University Press, 1995) or (Robert Scopes, Protein Purification: Principles and Practice, Springer, 1988).
- Methods of the present disclosure enhance nucleic acid delivery into a cell population, in vivo, ex vivo, or in culture. For example, a cell culture containing a plurality of host cells (e.g., eukaryotic cells such as yeast or mammalian cells) is contacted with a composition that contains an enhanced nucleic acid having at least one nucleoside modification and, optionally, a translatable region. The composition also generally contains a transfection reagent or other compound that increases the efficiency of enhanced nucleic acid uptake into the host cells. The enhanced nucleic acid exhibits enhanced retention in the cell population, relative to a corresponding unmodified nucleic acid. The retention of the enhanced nucleic acid is greater than the retention of the unmodified nucleic acid. In some embodiments, it is at least about 50%, 75%, 90%, 95%, 100%, 150%, 200%, or more than 200% greater than the retention of the unmodified nucleic acid. Such retention advantage may be achieved by one round of transfection with the enhanced nucleic acid, or may be obtained following repeated rounds of transfection.
- In some embodiments, the enhanced nucleic acid is delivered to a target cell population with one or more additional nucleic acids. Such delivery may be at the same time, or the enhanced nucleic acid is delivered prior to delivery of the one or more additional nucleic acids. The additional one or more nucleic acids may be modified nucleic acids or unmodified nucleic acids. It is understood that the initial presence of the enhanced nucleic acids does not substantially induce an innate immune response of the cell population and, moreover, that the innate immune response will not be activated by the later presence of the unmodified nucleic acids. In this regard, the enhanced nucleic acid may not itself contain a translatable region, if the protein desired to be present in the target cell population is translated from the unmodified nucleic acids.
- Antagonist Protein Expression.
- Methods and compositions described herein can be used to produced proteins that are capable of attenuating or blocking the endogenous agonist biological response and/or antagonizing a receptor or signaling molecule in a mammalian subject. For example, IL-12 and IL-23 receptor signaling is enhanced in chronic autoimmune disorders such as multiple sclerosis and inflammatory diseases such as rheumatoid arthritis, psoriasis, lupus erythematosus, ankylosing spondylitis and Crohn's disease (Kikly K, Liu L, Na S, Sedgwick J D (2006) Curr. Opin. Immunol. 18 (6): 670-5). In another embodiment, a nucleic acid encodes an antagonist for chemokine receptors. Chemokine receptors CXCR-4 and CCR-5 are required for HIV entry into host cells (Arenzana-Seisdedos F et al, (1996) Nature. Oct 3; 383 (6599):400).
- Targeting Moieties.
- In embodiments of the disclosure, modified nucleic acids are provided to express a protein-binding partner or a receptor on the surface of the cell, which functions to target the cell to a specific tissue space or to interact with a specific moiety, either in vivo or in vitro. Suitable protein-binding partners include antibodies and functional fragments thereof, scaffold proteins, or peptides. Additionally, modified nucleic acids can be employed to direct the synthesis and extracellular localization of lipids, carbohydrates, or other biological moieties.
- Permanent Gene Expression Silencing.
- A method for epigenetically silencing gene expression in a mammalian subject, comprising a nucleic acid where the translatable region encodes a polypeptide or polypeptides capable of directing sequence-specific histone H3 methylation to initiate heterochromatin formation and reduce gene transcription around specific genes for the purpose of silencing the gene. For example, a gain-of-function mutation in the Janus Kinase 2 gene is responsible for the family of Myeloproliferative Diseases.
- Mechanism details.
- Fission yeast require two RNAi complexes for siRNA-mediated heterochromatin assembly: the RNA-induced transcriptional silencing (RITS) complex and the RNA-directed RNA polymerase complex (RDRC) (Motamedi et al. Cell 2004, 119, 789-802). In fission yeast, the RITS complex contains the siRNA binding Argonaute family protein Ago1, a chromodomain protein Chp1, and Tas3. The fission yeast RDRC complex is composed of an RNA-dependent RNA Polymerase Rdp1, a putative RNA helicase Hrr1, and a polyA polymerase family protein Cid12. These two complexes require the Dicer ribonuclease and Clr4 histone H3 methyltransferase for activity. Together, Ago1 binds siRNA molecules generated through Dicer-mediated cleavage of Rdp1 co-transcriptionally generated dsRNA transcripts and allows for the sequence-specific direct association of Chp1, Tas3, Hrr1, and Clr4 to regions of DNA destined for methylation and histone modification and subsequent compaction into transcriptionally silenced heterochromatin. While this mechanism functions in cis- with centromeric regions of DNA, sequence-specific trans silencing is possible through co-transfection with double-stranded siRNAs for specific regions of DNA and concomitant RNAi-directed silencing of the siRNA ribonuclease Eri1 (Buhler et al. Cell 2006, 125, 873-886).
- Production of Polypeptide Variants.
- Methods and compositions described herein can be used for production of polypeptide variants. Provided herein are nucleic acids that encode variant polypeptides, which have a certain identity with a reference polypeptide sequence. The term “identity” as known in the art, refers to a relationship between the sequences of two or more peptides, as determined by comparing the sequences. In the art, “identity” also means the degree of sequence relatedness between peptides, as determined by the number of matches between strings of two or more amino acid residues. “Identity” measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (i.e., “algorithms”). Identity of related peptides can be readily calculated by known methods. Such methods include, but are not limited to, those described in Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data,
Part 1, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M. Stockton Press, New York, 1991; and Carillo et al., SIAM J. Applied Math. 48, 1073 (1988). - In some embodiments, the polypeptide variant has the same or a similar activity as the reference polypeptide. Alternatively, the variant has an altered activity (e.g., increased or decreased) relative to a reference polypeptide. Generally, variants of a particular polynucleotide or polypeptide of the disclosure will have at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to that particular reference polynucleotide or polypeptide as determined by sequence alignment programs and parameters described herein and known to those skilled in the art.
- As recognized by those skilled in the art, protein fragments, functional protein domains, and homologous proteins are also considered to be within the scope of this disclosure. For example, provided herein is any protein fragment of a reference protein (meaning a polypeptide sequence at least one amino acid residue shorter than a reference polypeptide sequence but otherwise identical) about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, or greater than 100 amino acids in length. In another example, any protein that includes a stretch of about 20, about 30, about 40, about 50, or about 100 amino acids, which are about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, or about 100% identical to any of the sequences described herein, can be utilized in accordance with the disclosure. In certain embodiments, a protein sequence to be utilized in accordance with the disclosure includes 2, 3, 4, 5, 6, 7, 8, 9, 10, or more mutations as shown in any of the sequences provided or referenced herein.
- Production of Polypeptide Libraries.
- Methods and compositions described herein can be used for production of polypeptide libraries. Provided herein are polynucleotide libraries containing nucleoside modifications, wherein the polynucleotides individually contain a first nucleic acid sequence encoding a polypeptide, such as an antibody, protein binding partner, scaffold protein, and other polypeptides known in the art. Typically, the polynucleotides are mRNA in a form suitable for direct introduction into a target cell host, which in turn synthesizes the encoded polypeptide.
- In certain embodiments, multiple variants of a protein, each with different amino acid modification(s), are produced and tested to determine the best variant in terms of pharmacokinetics, stability, biocompatibility, and/or biological activity, or a biophysical property such as expression level. Such a library may contain about 10, 102, 103, 104, 105, 106, 107, 108, 109, or over 109 possible variants (including substitutions, deletions of one or more residues, and insertion of one or more residues).
- Production of Polypeptide-Nucleic Acid Complexes.
- Methods and compositions described herein can be used for production of polypeptide-nucleic acid complexes. Proper protein translation involves the physical aggregation of a number of polypeptides and nucleic acids associated with the mRNA. Provided by the disclosure are protein-nucleic acid complexes, containing a translatable mRNA having one or more nucleoside modifications (e.g., at least two different nucleoside modifications) and one or more polypeptides bound to the mRNA. Generally, the proteins are provided in an amount effective to prevent or reduce an innate immune response of a cell into which the complex is introduced.
- Production of Untranslatable Modified Nucleic Acids.
- Methods and compositions described herein can be used for production of untranslatable modified nucleic acids. As described herein, provided are mRNAs having sequences that are substantially not translatable. Such mRNA is effective as a vaccine when administered to a mammalian subject.
- Also provided are modified nucleic acids that contain one or more noncoding regions. Such modified nucleic acids are generally not translated, but are capable of binding to and sequestering one or more translational machinery component such as a ribosomal protein or a transfer RNA (tRNA), thereby effectively reducing protein expression in the cell. The modified nucleic acid may contain a small nucleolar RNA (sno-RNA), microRNA (miRNA), small interfering RNA (siRNA), small hairpin RNA (shRNA), or Piwi-interacting RNA (piRNA).
- Modified Nucleic Acids.
- This disclosure provides methods of producing proteins using nucleic acids, including RNAs such as messenger RNAs (mRNAs) that contain one or more modified nucleosides (termed “modified nucleic acids”), which have useful properties including the lack of a substantial induction of the innate immune response of a cell into which the mRNA is introduced. Because these modified nucleic acids enhance the efficiency of protein production, intracellular retention of nucleic acids, and viability of contacted cells, as well as possess reduced immunogenicity, these nucleic acids having these properties are termed “enhanced nucleic acids” herein.
- The term “nucleic acid,” in its broadest sense, includes any compound and/or substance that is or can be incorporated into an oligonucleotide chain. Exemplary nucleic acids for use in accordance with the present disclosure include, but are not limited to, one or more of DNA, RNA including messenger mRNA (mRNA), hybrids thereof, RNA interference (RNAi)-inducing agents, RNAi agents, small interfering RNAs (siRNAs), small hairpin RNAs (shRNAs), microRNAs (miRNAs), antisense RNAs, ribozymes, catalytic DNA, RNAs that induce triple helix formation, aptamers, vectors, etc., described in detail herein.
- Provided are modified nucleic acids containing a translatable region and one, two, or more than two different nucleoside modifications. In some embodiments, the modified nucleic acid exhibits reduced degradation in a cell into which the nucleic acid is introduced, relative to a corresponding unmodified nucleic acid. For example, the degradation rate of the modified nucleic acid is reduced by about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or greater than 90%, compared to the degradation rate of the corresponding unmodified nucleic acid. Exemplary nucleic acids include ribonucleic acids (RNAs), deoxyribonucleic acids (DNAs), threose nucleic acids (TNAs), glycol nucleic acids (GNAs), or a hybrid thereof. In typical embodiments, the modified nucleic acid includes messenger RNAs (mRNAs). As described herein, the nucleic acids of the disclosure do not substantially induce an innate immune response of a cell into which the mRNA is introduced.
- In some embodiments, modified nucleosides include pyridin-4-one ribonucleoside, 5-aza-uridine, 2-thio-5-aza-uridine, 2-thiouridine, 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxyuridine, 3-methyluridine, 5-carboxymethyl-uridine, 1-carboxymethyl-pseudouridine, 5-propynyl-uridine, 1-propynyl-pseudouridine, 5-taurinomethyluridine, 1-taurinomethyl-pseudouridine, 5-taurinomethyl-2-thio-uridine, 1-taurinomethyl-4-thio-uridine, 5-methyl-uridine, 1-methyl-pseudouridine, 4-thio-1-methyl-pseudouridine, 2-thio-1-methyl-pseudouridine, 1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-1-deaza-pseudouridine, dihydrouridine, dihydropseudouridine, 2-thio-dihydrouridine, 2-thio-dihydropseudouridine, 2-methoxyuridine, 2-methoxy-4-thio-uridine, 4-methoxy-pseudouridine, and 4-methoxy-2-thio-pseudouridine.
- In some embodiments, modified nucleosides include 5-aza-cytidine, pseudoisocytidine, 3-methyl-cytidine, N4-acetylcytidine, 5-formylcytidine, N4-methylcytidine, 5-hydroxymethylcytidine, 1-methyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoisocytidine, 2-thio-cytidine, 2-thio-5-methyl-cytidine, 4-thio-pseudoisocytidine, 4-thio-1-methyl-pseudoisocytidine, 4-thio-1-methyl-1-deaza-pseudoisocytidine, 1-methyl-1-deaza-pseudoisocytidine, zebularine, 5-aza-zebularine, 5-methyl-zebularine, 5-aza-2-thio-zebularine, 2-thio-zebularine, 2-methoxy-cytidine, 2-methoxy-5-methyl-cytidine, 4-methoxy-pseudoisocytidine, and 4-methoxy-1-methyl-pseudoisocytidine.
- In other embodiments, modified nucleosides include 2-aminopurine, 2,6-diaminopurine, 7-deaza-adenine, 7-deaza-8-aza-adenine, 7-deaza-2-aminopurine, 7-deaza-8-aza-2-aminopurine, 7-deaza-2,6-diaminopurine, 7-deaza-8-aza-2,6-diaminopurine, 1-methyladenosine, N6-methyladenosine, N6-isopentenyladenosine, N6-(cis-hydroxyisopentenyl)adenosine, 2-methylthio-N6-(cis-hydroxyisopentenyl)adenosine, N6-glycinylcarbamoyladenosine, N6-threonylcarbamoyladenosine, 2-methylthio-N6-threonyl carbamoyladenosine, N6,N6-dimethyladenosine, 7-methyladenine, 2-methylthio-adenine, and 2-methoxy-adenine.
- In specific embodiments, a modified nucleoside is 5′-O-(1-Thiophosphate)-Adenosine, 5′-O-(1-Thiophosphate)-Cytidine, 5′-O-(1-Thiophosphate)-Guanosine, 5′-O-(1-Thiophosphate)-Uridine or 5′-O-(1-Thiophosphate)-Pseudouridine.
- The α-thio substituted phosphate moiety is provided to confer stability to RNA and DNA polymers through the unnatural phosphorothioate backbone linkages. Phosphorothioate DNA and RNA have increased nuclease resistance and subsequently a longer half-life in a cellular environment. Phosphorothioate linked nucleic acids are expected to also reduce the innate immune response through weaker binding/activation of cellular innate immune molecules.
- In certain embodiments it is desirable to intracellularly degrade a modified nucleic acid introduced into the cell, for example if precise timing of protein production is desired. Thus, the disclosure provides a modified nucleic acid containing a degradation domain, which is capable of being acted on in a directed manner within a cell.
- In other embodiments, modified nucleosides include inosine, 1-methyl-inosine, wyosine, wybutosine, 7-deaza-guanosine, 7-deaza-8-aza-guanosine, 6-thio-guanosine, 6-thio-7-deaza-guanosine, 6-thio-7-deaza-8-aza-guanosine, 7-methyl-guanosine, 6-thio-7-methyl-guanosine, 7-methylinosine, 6-methoxy-guanosine, 1-methylguanosine, N2-methylguanosine, N2,N2-dimethylguanosine, 8-oxo-guanosine, 7-methyl-8-oxo-guanosine, 1-methyl-6-thio-guanosine, N2-methyl-6-thio-guanosine, and N2,N2-dimethyl-6-thio-guanosine.
- Other components of nucleic acid are optional, and are beneficial in some embodiments. For example, a 5′ untranslated region (UTR) and/or a 3′UTR are provided, wherein either or both may independently contain one or more different nucleoside modifications. In such embodiments, nucleoside modifications may also be present in the translatable region. Also provided are nucleic acids containing a Kozak sequence.
- Additionally, provided are nucleic acids containing one or more intronic nucleotide sequences capable of being excised from the nucleic acid.
- Further, provided are nucleic acids containing an internal ribosome entry site (IRES). An IRES may act as the sole ribosome binding site, or may serve as one of multiple ribosome binding sites of an mRNA. An mRNA containing more than one functional ribosome binding site may encode several peptides or polypeptides that are translated independently by the ribosomes (“multicistronic mRNA”). When nucleic acids are provided with an IRES, further optionally provided is a second translatable region. Examples of IRES sequences that can be used according to the disclosure include without limitation, those from picornaviruses (e.g. FMDV), pest viruses (CFFV), polio viruses (PV), encephalomyocarditis viruses (ECMV), foot-and-mouth disease viruses (FMDV), hepatitis C viruses (HCV), classical swine fever viruses (CSFV), murine leukemia virus (MLV), simian immune deficiency viruses (SIV) or cricket paralysis viruses (CrPV).
- Prevention or Reduction of Innate Cellular Immune Response Activation Using Modified Nucleic Acids.
- The modified nucleic acids described herein are capable of evading an innate immune response of a cell into which the nucleic acids are introduced, thus increasing the efficiency of protein production in the cell. The term “innate immune response” includes a cellular response to exogenous single stranded nucleic acids, generally of viral or bacterial origin, which involves the induction of cytokine expression and release, particularly the interferons, and cell death. Protein synthesis is also reduced during the innate cellular immune response. While it is advantageous to eliminate the innate immune response in a cell, the disclosure provides modified mRNAs that substantially reduce the immune response, including interferon signaling, without entirely eliminating such a response. In some embodiments, the immune response is reduced by about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, 99.9%, or greater than 99.9%, as compared to the immune response induced by a corresponding unmodified nucleic acid. Such a reduction can be measured by expression or activity level of
Type 1 interferons or the expression of interferon-regulated genes such as the toll-like receptors (e.g., TLR7 and TLR8). Reduction of innate immune response can also be measured by decreased cell death following one or more administrations of modified RNAs to a cell population; e.g., cell death is about 10%, 25%, 50%, 75%, 85%, 90%, 95%, or over 95% less than the cell death frequency observed with a corresponding unmodified nucleic acid. Moreover, cell death may affect fewer than about 50%, 40%, 30%, 20%, 10%, 5%, 1%, 0.1%, 0.01%, or fewer than 0.01% of cells contacted with the modified nucleic acids. - The disclosure provides for the repeated introduction (e.g., transfection) of modified nucleic acids into a target cell population, e.g., in vitro, ex vivo, or in vivo. The step of contacting the cell population may be repeated one or more times (such as two, three, four, five, or more than five times). In some embodiments, the step of contacting the cell population with the modified nucleic acids is repeated a number of times sufficient such that a predetermined efficiency of protein translation in the cell population is achieved. Given the reduced cytotoxicity of the target cell population provided by the nucleic acid modifications, such repeated transfections are achievable in a diverse array of cell types.
- Modified Nucleic Acid Synthesis.
- Nucleic acids for use in accordance with the disclosure may be prepared according to any available technique including, but not limited to chemical synthesis, enzymatic synthesis, which is generally termed in vitro transcription, enzymatic or chemical cleavage of a longer precursor, etc. Methods of synthesizing RNAs are known in the art (see, e.g., Gait, M. J. (ed.) Oligonucleotide synthesis: a practical approach, Oxford [Oxfordshire], Washington, D.C.: IRL Press, 1984; and Herdewijn, P. (ed.) Oligonucleotide synthesis: methods and applications, Methods in Molecular Biology, v. 288 (Clifton, N.J.) Totowa, N.J.: Humana Press, 2005; both of which are incorporated herein by reference).
- Modified nucleic acids need not be uniformly modified along the entire length of the molecule. Different nucleotide modifications and/or backbone structures may exist at various positions in the nucleic acid. One of ordinary skill in the art will appreciate that the nucleotide analogs or other modification(s) may be located at any position(s) of a nucleic acid such that the function of the nucleic acid is not substantially decreased. A modification may also be a 5′ or 3′ terminal modification. The nucleic acids may contain at a minimum one and at maximum 100% modified nucleotides, or any intervening percentage, such as at least about 50% modified nucleotides, at least about 80% modified nucleotides, or at least about 90% modified nucleotides.
- Generally, the length of a modified mRNA of the present disclosure is suitable for protein, polypeptide, or peptide production in a cell (e.g., a human cell). For example, the mRNA is of a length sufficient to allow translation of at least a dipeptide in a cell. In one embodiment, the length of the modified mRNA is greater than 30 nucleotides. In another embodiment, the length is greater than 35 nucleotides. In another embodiment, the length is at least 40 nucleotides. In another embodiment, the length is at least 45 nucleotides. In another embodiment, the length is at least 55 nucleotides. In another embodiment, the length is at least 60 nucleotides. In another embodiment, the length is at least 60 nucleotides. In another embodiment, the length is at least 80 nucleotides. In another embodiment, the length is at least 90 nucleotides. In another embodiment, the length is at least 100 nucleotides. In another embodiment, the length is at least 120 nucleotides. In another embodiment, the length is at least 140 nucleotides. In another embodiment, the length is at least 160 nucleotides. In another embodiment, the length is at least 180 nucleotides. In another embodiment, the length is at least 200 nucleotides. In another embodiment, the length is at least 250 nucleotides. In another embodiment, the length is at least 300 nucleotides. In another embodiment, the length is at least 350 nucleotides. In another embodiment, the length is at least 400 nucleotides. In another embodiment, the length is at least 450 nucleotides. In another embodiment, the length is at least 500 nucleotides. In another embodiment, the length is at least 600 nucleotides. In another embodiment, the length is at least 700 nucleotides. In another embodiment, the length is at least 800 nucleotides. In another embodiment, the length is at least 900 nucleotides. In another embodiment, the length is at least 1000 nucleotides. In another embodiment, the length is at least 1100 nucleotides. In another embodiment, the length is at least 1200 nucleotides. In another embodiment, the length is at least 1300 nucleotides. In another embodiment, the length is at least 1400 nucleotides. In another embodiment, the length is at least 1500 nucleotides. In another embodiment, the length is at least 1600 nucleotides. In another embodiment, the length is at least 1800 nucleotides. In another embodiment, the length is at least 2000 nucleotides. In another embodiment, the length is at least 2500 nucleotides. In another embodiment, the length is at least 3000 nucleotides. In another embodiment, the length is at least 4000 nucleotides. In another embodiment, the length is at least 5000 nucleotides, or greater than 5000 nucleotides.
- Uses of Modified Nucleic Acids.
- The proteins, polypeptides, or peptides produced by the methods described herein can be used as therapeutic agents to treat or prevent one or more diseases or conditions described herein.
- Therapeutic Agents.
- Provided are compositions, methods, kits, and reagents for treatment or prevention of disease or conditions in humans and other animals (e.g., mammals). The active therapeutic agents of the disclosure include polypeptides translated from modified nucleic acids, cells containing modified nucleic acids or polypeptides translated from the modified nucleic acids, and cells contacted with cells containing modified nucleic acids or polypeptides translated from the modified nucleic acids.
- Provided are methods of inducing translation of a recombinant polypeptide in a cell population using the modified nucleic acids described herein. Such translation can be in vivo, ex vivo, in culture, or in vitro. The cell population is contacted with an effective amount of a composition containing a nucleic acid that has at least one nucleoside modification, and a translatable region encoding the recombinant polypeptide. The population is contacted under conditions such that the nucleic acid is localized into one or more cells of the cell population and the recombinant polypeptide is translated in the cell from the nucleic acid.
- An effective amount of the composition is provided based, at least in part, on the target tissue, target cell type, means of administration, physical characteristics of the protein translated from the modified nucleic acid (e.g., size), and other determinants.
- Compositions containing modified nucleic acids are formulated for administration intramuscularly, transarterially, intraperitoneally, intravenously, intranasally, subcutaneously, endoscopically, transdermally, or intrathecally. In some embodiments, the composition is formulated for extended release.
- The subject to whom the therapeutic agent is administered suffers from or is at risk of developing a disease, disorder, or deleterious condition. Provided are methods of identifying, diagnosing, and classifying subjects on these bases, which may include clinical diagnosis, biomarker levels, genome-wide association studies (GWAS), and other methods known in the art.
- In certain embodiments, the administered recombinant polypeptide translated from the modified nucleic acid described herein provide a functional activity which is substantially absent in the cell in which the recombinant polypeptide is administered. For example, the missing functional activity may be enzymatic, structural, or gene regulatory in nature.
- In other embodiments, the administered recombinant polypeptide replaces a polypeptide (or multiple polypeptides) that is substantially absent in the cell in which the recombinant polypeptide is administered. Such absence may be due to genetic mutation of the encoding gene or regulatory pathway thereof. Alternatively, the recombinant polypeptide functions to antagonize the activity of an endogenous protein present in, on the surface of, or secreted from the cell. Usually, the activity of the endogenous protein is deleterious to the subject, for example, due to mutation of the endogenous protein resulting in altered activity or localization. Additionally, the recombinant polypeptide antagonizes, directly or indirectly, the activity of a biological moiety present in, on the surface of, or secreted from the cell. Examples of antagonized biological moieties include lipids (e.g., cholesterol), a lipoprotein (e.g., low density lipoprotein), a nucleic acid, a carbohydrate, or a small molecule toxin.
- The recombinant proteins described herein are engineered for localization within the cell, potentially within a specific compartment such as the nucleus, or are engineered for secretion from the cell or translocation to the plasma membrane of the cell.
- As described herein, a useful feature of the modified nucleic acids of the disclosure is the capacity to reduce the innate immune response of a cell to an exogenous nucleic acid, e.g., to increase protein production. Provided are methods for performing the titration, reduction or elimination of the immune response in a cell or a population of cells. In some embodiments, the cell is contacted with a first composition that contains a first dose of a first exogenous nucleic acid including a translatable region and at least one nucleoside modification, and the level of the innate immune response of the cell to the first exogenous nucleic acid is determined. Subsequently, the cell is contacted with a second composition, which includes a second dose of the first exogenous nucleic acid, the second dose containing a lesser amount of the first exogenous nucleic acid as compared to the first dose. Alternatively, the cell is contacted with a first dose of a second exogenous nucleic acid. The second exogenous nucleic acid may contain one or more modified nucleosides, which may be the same or different from the first exogenous nucleic acid or, alternatively, the second exogenous nucleic acid may not contain modified nucleosides. The steps of contacting the cell with the first composition and/or the second composition may be repeated one or more times. Additionally, efficiency of protein production (e.g., protein translation) in the cell is optionally determined, and the cell may be re-transfected with the first and/or second composition repeatedly until a target protein production efficiency is achieved.
- Therapeutics for Diseases and Conditions.
- Provided are methods for treating or preventing a symptom of diseases characterized by missing or aberrant protein activity, by replacing the missing protein activity or overcoming the aberrant protein activity.
- Diseases characterized by dysfunctional or aberrant protein activity include, but not limited to, cancer and proliferative diseases, genetic diseases (e.g., cystic fibrosis), autoimmune diseases, diabetes, neurodegenerative diseases, cardiovascular diseases, and metabolic diseases. The present disclosure provides a method for treating such conditions or diseases in a subject by introducing protein or cell-based therapeutics produced by a method using the modified nucleic acids provided herein, wherein the modified nucleic acids encode for a protein that antagonizes or otherwise overcomes the aberrant protein activity present in the cell of the subject. Specific examples of a dysfunctional protein are the mis sense mutation variants of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which produce a dysfunctional protein variant of CFTR protein, which causes cystic fibrosis.
- Multiple diseases are characterized by missing (or substantially diminished such that proper protein function does not occur) protein activity. Such proteins may not be present, or are essentially non-functional. The present disclosure provides a method for treating such conditions or diseases in a subject by introducing nucleic acid or cell-based therapeutics containing the modified nucleic acids provided herein, wherein the modified nucleic acids encode for a protein that replaces the protein activity missing from the target cells of the subject. Specific examples of a dysfunctional protein are the nonsense mutation variants of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which produce a nonfunctional protein variant of CFTR protein, which causes cystic fibrosis.
- Thus, provided are methods of treating cystic fibrosis in a mammalian subject by contacting a cell of the subject with a modified nucleic acid having a translatable region that encodes a functional CFTR polypeptide, under conditions such that an effective amount of the CTFR polypeptide is present in the cell. Typical target cells are epithelial cells, such as the lung, and methods of administration are determined in view of the target tissue; i.e., for lung delivery, the RNA molecules are formulated for administration by inhalation.
- In another embodiment, the present disclosure provides a method for treating hyperlipidemia in a subject, by introducing into a cell population of the subject with Sortilin (a protein recently characterized by genomic studies) produced by a method described herein using a modified mRNA molecule encoding Sortilin, thereby ameliorating the hyperlipidemia in a subject. The SORT1 gene encodes a trans-Golgi network (TGN) transmembrane protein called Sortilin. Genetic studies have shown that one of five individuals has a single nucleotide polymorphism, rs12740374, in the 1p13 locus of the SORT1 gene that predisposes them to having low levels of low-density lipoprotein (LDL) and very-low-density lipoprotein (VLDL). Each copy of the minor allele, present in about 30% of people, alters LDL cholesterol by 8 mg/dL, while two copies of the minor allele, present in about 5% of the population, lowers LDL cholesterol 16 mg/dL. Carriers of the minor allele have also been shown to have a 40% decreased risk of myocardial infarction. Functional in vivo studies in mice describes that overexpression of SORT1 in mouse liver tissue led to significantly lower LDL-cholesterol levels, as much as 80% lower, and that silencing SORT1 increased LDL cholesterol approximately 200% (Musunuru K et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 2010; 466: 714-721).
- The present disclosure provides proteins generated from modified mRNAs and proteins produced by the methods described herein can be used in pharmaceutical compositions. Pharmaceutical compositions may optionally comprise one or more additional therapeutically active substances. In accordance with some embodiments, a method of administering pharmaceutical compositions comprising one or more proteins to be delivered to a subject in need thereof is provided. In some embodiments, compositions are administered to humans. For the purposes of the present disclosure, the phrase “active ingredient” generally refers to a protein or protein-containing complex as described herein.
- Although the descriptions of pharmaceutical compositions provided herein are principally directed to pharmaceutical compositions which are suitable for administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to animals of all sorts. Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and/or perform such modification with merely ordinary, if any, experimentation. Subjects to which administration of the pharmaceutical compositions is contemplated include, but are not limited to, humans and/or other primates; mammals, including commercially relevant mammals such as cattle, pigs, horses, sheep, cats, dogs, mice, and/or rats; and/or birds, including commercially relevant birds such as chickens, ducks, geese, and/or turkeys.
- Formulations of the pharmaceutical compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of bringing the active ingredient into association with an excipient and/or one or more other accessory ingredients, and then, if necessary and/or desirable, shaping and/or packaging the product into a desired single- or multi-dose unit.
- A pharmaceutical composition in accordance with the disclosure may be prepared, packaged, and/or sold in bulk, as a single unit dose, and/or as a plurality of single unit doses. As used herein, a “unit dose” is discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient. The amount of the active ingredient is generally equal to the dosage of the active ingredient which would be administered to a subject and/or a convenient fraction of such a dosage such as, for example, one-half or one-third of such a dosage.
- Relative amounts of the active ingredient, the pharmaceutically acceptable excipient, and/or any additional ingredients in a pharmaceutical composition in accordance with the disclosure will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered. By way of example, the composition may comprise between 0.1% and 100% (w/w) active ingredient.
- Pharmaceutical compositions may be formulated to additionally comprise a pharmaceutically acceptable excipient, which, as used herein, includes any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired. Remington's The Science and Practice of Pharmacy, 21st Edition, A. R. Gennaro (Lippincott, Williams & Wilkins, Baltimore, Md., 2006; incorporated herein by reference) discloses various excipients used in formulating pharmaceutical compositions and known techniques for the preparation thereof. Except insofar as any conventional excipient medium is incompatible with a substance or its derivatives, such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component(s) of the pharmaceutical composition, its use is contemplated to be within the scope of this disclosure.
- In some embodiments, a pharmaceutically acceptable excipient is at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% pure. In some embodiments, an excipient is approved for use in humans and for veterinary use. In some embodiments, an excipient is approved by United States Food and Drug Administration. In some embodiments, an excipient is pharmaceutical grade. In some embodiments, an excipient meets the standards of the United States Pharmacopoeia (USP), the European Pharmacopoeia (EP), the British Pharmacopoeia, and/or the International Pharmacopoeia.
- Pharmaceutically acceptable excipients used in the manufacture of pharmaceutical compositions include, but are not limited to, inert diluents, dispersing and/or granulating agents, surface active agents and/or emulsifiers, disintegrating agents, binding agents, preservatives, buffering agents, lubricating agents, and/or oils. Such excipients may optionally be included in pharmaceutical compositions. Excipients such as cocoa butter and suppository waxes, coloring agents, coating agents, sweetening, flavoring, and/or perfuming agents can be present in the composition, according to the judgment of the formulator.
- Exemplary diluents include, but are not limited to, calcium carbonate, sodium carbonate, calcium phosphate, dicalcium phosphate, calcium sulfate, calcium hydrogen phosphate, sodium phosphate lactose, sucrose, cellulose, microcrystalline cellulose, kaolin, mannitol, sorbitol, inositol, sodium chloride, dry starch, cornstarch, powdered sugar, etc., and/or combinations thereof.
- Exemplary granulating and/or dispersing agents include, but are not limited to, potato starch, corn starch, tapioca starch, sodium starch glycolate, clays, alginic acid, guar gum, citrus pulp, agar, bentonite, cellulose and wood products, natural sponge, cation-exchange resins, calcium carbonate, silicates, sodium carbonate, cross-linked poly(vinyl-pyrrolidone) (crospovidone), sodium carboxymethyl starch (sodium starch glycolate), carboxymethyl cellulose, cross-linked sodium carboxymethyl cellulose (croscarmellose), methylcellulose, pregelatinized starch (starch 1500), microcrystalline starch, water insoluble starch, calcium carboxymethyl cellulose, magnesium aluminum silicate (Veegum), sodium lauryl sulfate, quaternary ammonium compounds, etc., and/or combinations thereof.
- Exemplary surface active agents and/or emulsifiers include, but are not limited to, natural emulsifiers (e.g., acacia, agar, alginic acid, sodium alginate, tragacanth, chondrux, cholesterol, xanthan, pectin, gelatin, egg yolk, casein, wool fat, cholesterol, wax, and lecithin), colloidal clays (e.g., bentonite [aluminum silicate] and Veegum® [magnesium aluminum silicate]), long chain amino acid derivatives, high molecular weight alcohols (e.g., stearyl alcohol, cetyl alcohol, oleyl alcohol, triacetin monostearate, ethylene glycol distearate, glyceryl monostearate, and propylene glycol monostearate, polyvinyl alcohol), carbomers (e.g. carboxy polymethylene, polyacrylic acid, acrylic acid polymer, and carboxyvinyl polymer), carrageenan, cellulosic derivatives (e.g., carboxymethylcellulose sodium, powdered cellulose, hydroxymethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, methylcellulose), sorbitan fatty acid esters (e.g., polyoxyethylene sorbitan monolaurate [Tween® 20], polyoxyethylene sorbitan [Tween® 60], polyoxyethylene sorbitan monooleate [Tween® 80], sorbitan monopalmitate [Span® 40], sorbitan monostearate [Span® 60], sorbitan tristearate [Span® 65], glyceryl monooleate, sorbitan monooleate [Span® 80]), polyoxyethylene esters (e.g., polyoxyethylene monostearate [Myrj® 45], polyoxyethylene hydrogenated castor oil, polyethoxylated castor oil, polyoxymethylene stearate, and Solutol®), sucrose fatty acid esters, polyethylene glycol fatty acid esters (e.g., Cremophor®), polyoxyethylene ethers, (e.g., polyoxyethylene lauryl ether [Brij® 30]), poly(vinyl-pyrrolidone), diethylene glycol monolaurate, triethanolamine oleate, sodium oleate, potassium oleate, ethyl oleate, oleic acid, ethyl laurate, sodium lauryl sulfate, Pluronic®F 68, Poloxamer® 188, cetrimonium bromide, cetylpyridinium chloride, benzalkonium chloride, docusate sodium, etc. and/or combinations thereof.
- Exemplary binding agents include, but are not limited to, starch (e.g., cornstarch and starch paste); gelatin; sugars (e.g., sucrose, glucose, dextrose, dextrin, molasses, lactose, lactitol, mannitol,); natural and synthetic gums (e.g., acacia, sodium alginate, extract of Irish moss, panwar gum, ghatti gum, mucilage of isapol husks, carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, microcrystalline cellulose, cellulose acetate, poly(vinyl-pyrrolidone), magnesium aluminum silicate)(Veegum®, and larch arabogalactan); alginates; polyethylene oxide; polyethylene glycol; inorganic calcium salts; silicic acid; polymethacrylates; waxes; water; alcohol; etc.; and combinations thereof.
- Exemplary preservatives may include, but are not limited to, antioxidants, chelating agents, antimicrobial preservatives, antifungal preservatives, alcohol preservatives, acidic preservatives, and/or other preservatives. Exemplary antioxidants include, but are not limited to, alpha tocopherol, ascorbic acid, acorbyl palmitate, butylated hydroxyanisole, butylated hydroxytoluene, monothioglycerol, potassium metabisulfite, propionic acid, propyl gallate, sodium ascorbate, sodium bisulfite, sodium metabisulfite, and/or sodium sulfite. Exemplary chelating agents include ethylenediaminetetraacetic acid (EDTA), citric acid monohydrate, disodium edetate, dipotassium edetate, edetic acid, fumaric acid, malic acid, phosphoric acid, sodium edetate, tartaric acid, and/or trisodium edetate. Exemplary antimicrobial preservatives include, but are not limited to, benzalkonium chloride, benzethonium chloride, benzyl alcohol, bronopol, cetrimide, cetylpyridinium chloride, chlorhexidine, chlorobutanol, chlorocresol, chloroxylenol, cresol, ethyl alcohol, glycerin, hexetidine, imidurea, phenol, phenoxyethanol, phenylethyl alcohol, phenylmercuric nitrate, propylene glycol, and/or thimerosal. Exemplary antifungal preservatives include, but are not limited to, butyl paraben, methyl paraben, ethyl paraben, propyl paraben, benzoic acid, hydroxybenzoic acid, potassium benzoate, potassium sorbate, sodium benzoate, sodium propionate, and/or sorbic acid. Exemplary alcohol preservatives include, but are not limited to, ethanol, polyethylene glycol, phenol, phenolic compounds, bisphenol, chlorobutanol, hydroxybenzoate, and/or phenylethyl alcohol. Exemplary acidic preservatives include, but are not limited to, vitamin A, vitamin C, vitamin E, beta-carotene, citric acid, acetic acid, dehydroacetic acid, ascorbic acid, sorbic acid, and/or phytic acid. Other preservatives include, but are not limited to, tocopherol, tocopherol acetate, deteroxime mesylate, cetrimide, butylated hydroxyanisol (BHA), butylated hydroxytoluened (BHT), ethylenediamine, sodium lauryl sulfate (SLS), sodium lauryl ether sulfate (SLES), sodium bisulfite, sodium metabisulfite, potassium sulfite, potassium metabisulfite, Glydant Plus®, Phenonip®, methylparaben, Germall®115, Germaben®II, Neolone™, Kathon™, and/or Euxyl®.
- Exemplary buffering agents include, but are not limited to, citrate buffer solutions, acetate buffer solutions, phosphate buffer solutions, ammonium chloride, calcium carbonate, calcium chloride, calcium citrate, calcium glubionate, calcium gluceptate, calcium gluconate, D-gluconic acid, calcium glycerophosphate, calcium lactate, propanoic acid, calcium levulinate, pentanoic acid, dibasic calcium phosphate, phosphoric acid, tribasic calcium phosphate, calcium hydroxide phosphate, potassium acetate, potassium chloride, potassium gluconate, potassium mixtures, dibasic potassium phosphate, monobasic potassium phosphate, potassium phosphate mixtures, sodium acetate, sodium bicarbonate, sodium chloride, sodium citrate, sodium lactate, dibasic sodium phosphate, monobasic sodium phosphate, sodium phosphate mixtures, tromethamine, magnesium hydroxide, aluminum hydroxide, alginic acid, pyrogen-free water, isotonic saline, Ringer's solution, ethyl alcohol, etc., and/or combinations thereof.
- Exemplary lubricating agents include, but are not limited to, magnesium stearate, calcium stearate, stearic acid, silica, talc, malt, glyceryl behanate, hydrogenated vegetable oils, polyethylene glycol, sodium benzoate, sodium acetate, sodium chloride, leucine, magnesium lauryl sulfate, sodium lauryl sulfate, etc., and combinations thereof.
- Exemplary oils include, but are not limited to, almond, apricot kernel, avocado, babassu, bergamot, black current seed, borage, cade, camomile, canola, caraway, carnauba, castor, cinnamon, cocoa butter, coconut, cod liver, coffee, corn, cotton seed, emu, eucalyptus, evening primrose, fish, flaxseed, geraniol, gourd, grape seed, hazel nut, hyssop, isopropyl myristate, jojoba, kukui nut, lavandin, lavender, lemon, litsea cubeba, macademia nut, mallow, mango seed, meadowfoam seed, mink, nutmeg, olive, orange, orange roughy, palm, palm kernel, peach kernel, peanut, poppy seed, pumpkin seed, rapeseed, rice bran, rosemary, safflower, sandalwood, sasquana, savoury, sea buckthorn, sesame, shea butter, silicone, soybean, sunflower, tea tree, thistle, tsubaki, vetiver, walnut, and wheat germ oils. Exemplary oils include, but are not limited to, butyl stearate, caprylic triglyceride, capric triglyceride, cyclomethicone, diethyl sebacate, dimethicone 360, isopropyl myristate, mineral oil, octyldodecanol, oleyl alcohol, silicone oil, and/or combinations thereof.
- Liquid dosage forms for oral and parenteral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups, and/or elixirs. In addition to active ingredients, liquid dosage forms may comprise inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, oral compositions can include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and/or perfuming agents. In certain embodiments for parenteral administration, compositions are mixed with solubilizing agents such as Cremophor®, alcohols, oils, modified oils, glycols, polysorbates, cyclodextrins, polymers, and/or combinations thereof.
- Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing agents, wetting agents, and/or suspending agents. Sterile injectable preparations may be sterile injectable solutions, suspensions, and/or emulsions in nontoxic parenterally acceptable diluents and/or solvents, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P., and isotonic sodium chloride solution. Sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. Fatty acids such as oleic acid can be used in the preparation of injectables.
- Injectable compositions can be sterilized, for example, by filtration through a bacterial-retaining filter, and/or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
- In order to prolong the effect of an active ingredient, it is often desirable to slow the absorption of the active ingredient from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle. Injectable depot forms are made by forming microencapsule matrices of the drug in biodegradable polymers such as polylactide-polyglycolide. Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable compositions are formulated or prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissues.
- Compositions for rectal or vaginal administration are typically suppositories which can be prepared by mixing compositions with suitable non-irritating excipients such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active ingredient.
- Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, an active ingredient is mixed with at least one inert, pharmaceutically acceptable excipient such as sodium citrate or dicalcium phosphate and/or fillers or extenders (e.g., starches, lactose, sucrose, glucose, mannitol, and silicic acid), binders (e.g., carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia), humectants (e.g. glycerol), disintegrating agents (e.g., agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate), solution retarding agents (e.g., paraffin), absorption accelerators (e.g., quaternary ammonium compounds), wetting agents (e.g., cetyl alcohol and glycerol monostearate), absorbents (e.g., kaolin and bentonite clay), and lubricants (e.g., talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate), and mixtures thereof. In the case of capsules, tablets and pills, the dosage form may comprise buffering agents.
- Solid compositions of a similar type may be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like. Solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally comprise opacifying agents and can be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes. Solid compositions of a similar type may be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
- Dosage forms for topical and/or transdermal administration of a composition may include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants and/or patches. Generally, an active ingredient is admixed under sterile conditions with a pharmaceutically acceptable excipient and/or any needed preservatives and/or buffers as may be required. Additionally, the present disclosure contemplates the use of transdermal patches, which often have the added advantage of providing controlled delivery of a compound to the body. Such dosage forms may be prepared, for example, by dissolving and/or dispensing the compound in the proper medium. Alternatively or additionally, rate may be controlled by either providing a rate controlling membrane and/or by dispersing the compound in a polymer matrix and/or gel.
- Suitable devices for use in delivering intradermal pharmaceutical compositions described herein include short needle devices such as those described in U.S. Pat. Nos. 4,886,499; 5,190,521; 5,328,483; 5,527,288; 4,270,537; 5,015,235; 5,141,496; and 5,417,662. Intradermal compositions may be administered by devices which limit the effective penetration length of a needle into the skin, such as those described in PCT publication WO 99/34850 and functional equivalents thereof. Jet injection devices which deliver liquid compositions to the dermis via a liquid jet injector and/or via a needle which pierces the stratum corneum and produces a jet which reaches the dermis are suitable. Jet injection devices are described, for example, in U.S. Pat. Nos. 5,480,381; 5,599,302; 5,334,144; 5,993,412; 5,649,912; 5,569,189; 5,704,911; 5,383,851; 5,893,397; 5,466,220; 5,339,163; 5,312,335; 5,503,627; 5,064,413; 5,520,639; 4,596,556; 4,790,824; 4,941,880; 4,940,460; and PCT publications WO 97/37705 and WO 97/13537. Ballistic powder/particle delivery devices which use compressed gas to accelerate vaccine in powder form through the outer layers of the skin to the dermis are suitable. Alternatively or additionally, conventional syringes may be used in the classical mantoux method of intradermal administration.
- Compositions formulated for topical administration include, but are not limited to, liquid and/or semi liquid preparations such as liniments, lotions, oil in water and/or water in oil emulsions such as creams, ointments and/or pastes, and/or solutions and/or suspensions. Topically-administrable compositions may be formulated, for example, to comprise from about 1% to about 10% (w/w) active ingredient, although the concentration of active ingredient may be as high as the solubility limit of the active ingredient in the solvent. Compositions formulated for topical administration may further comprise one or more of the additional ingredients described herein.
- A pharmaceutical composition may be formulated, prepared, packaged, and/or sold for pulmonary administration via the buccal cavity. Such a composition may be formulated to comprise dry particles which comprise the active ingredient and which have a diameter in the range from about 0.5 nm to about 7 nm or from about 1 nm to about 6 nm. Such compositions are conveniently in the form of dry powders for administration using a device comprising a dry powder reservoir to which a stream of propellant may be directed to disperse the powder and/or using a self propelling solvent/powder dispensing container such as a device comprising the active ingredient dissolved and/or suspended in a low-boiling propellant in a sealed container. Such powders comprise particles wherein at least 98% of the particles by weight have a diameter greater than 0.5 nm and at least 95% of the particles by number have a diameter less than 7 nm. Alternatively, at least 95% of the particles by weight have a diameter greater than 1 nm and at least 90% of the particles by number have a diameter less than 6 nm. Dry powder compositions may include a solid fine powder diluent such as sugar and are conveniently provided in a unit dose form.
- Low boiling propellants generally include liquid propellants having a boiling point of below 65° F. at atmospheric pressure. Generally the propellant may constitute about 50% to about 99.9% (w/w) of the composition, and active ingredient may constitute about 0.1% to about 20% (w/w) of the composition. A propellant may further comprise additional ingredients such as a liquid non-ionic and/or solid anionic surfactant and/or a solid diluent (which may have a particle size of the same order as particles comprising the active ingredient).
- Pharmaceutical compositions formulated for pulmonary delivery may provide an active ingredient in the form of droplets of a solution and/or suspension. Such compositions may be formulated, prepared, packaged, and/or sold as aqueous and/or dilute alcoholic solutions and/or suspensions, optionally sterile, comprising active ingredient, and may conveniently be administered using any nebulization and/or atomization device. Such compositions may further comprise one or more additional ingredients including, but not limited to, a flavoring agent such as saccharin sodium, a volatile oil, a buffering agent, a surface active agent, and/or a preservative such as methylhydroxybenzoate. Droplets provided by this route of administration may have an average diameter in the range from about 0.1 nm to about 200 nm.
- Formulations described herein as being useful for pulmonary delivery are useful for intranasal delivery of a pharmaceutical composition. Another composition formulated for intranasal administration is a coarse powder comprising the active ingredient and having an average particle from about 0.2 μm to 500 μm. Such a composition is formulated for administration in the manner in which snuff is taken, i.e. by rapid inhalation through the nasal passage from a container of the powder held close to the nose.
- Compositions formulated for nasal administration may, for example, comprise from about as little as 0.1% (w/w) and as much as 100% (w/w) of active ingredient, and may comprise one or more of the additional ingredients described herein. A pharmaceutical composition may be formulated, prepared, packaged, and/or sold for buccal administration. Such compositions may, for example, be formulated in the form of tablets and/or lozenges made using conventional methods, and may contain, for example, 0.1% to 20% (w/w) active ingredient, the balance comprising an orally dissolvable and/or degradable composition and, optionally, one or more of the additional ingredients described herein. Alternately, compositions formulated for buccal administration may comprise a powder and/or an aerosolized and/or atomized solution and/or suspension comprising active ingredient. Such powdered, aerosolized, and/or aerosolized compositions, when dispersed, may have an average particle and/or droplet size in the range from about 0.1 nm to about 200 nm, and may further comprise one or more of any additional ingredients described herein.
- A pharmaceutical composition may be formulated, prepared, packaged, and/or sold for ophthalmic administration. Such compositions may, for example, be formulated in the form of eye drops including, for example, a 0.1/1.0% (w/w) solution and/or suspension of the active ingredient in an aqueous or oily liquid excipient. Such drops may further comprise buffering agents, salts, and/or one or more other of any additional ingredients described herein. Other opthalmically-administrable compositions which are useful include those which comprise the active ingredient in microcrystalline form and/or in a liposomal preparation. Ear drops and/or eye drops are contemplated as being within the scope of this disclosure.
- General considerations in the formulation and/or manufacture of pharmaceutical agents may be found, for example, in Remington: The Science and Practice of Pharmacy 21st ed., Lippincott Williams & Wilkins, 2005 (incorporated herein by reference).
- Administration.
- The present disclosure provides methods comprising administering proteins or compositions produced by the methods described herein to a subject in need thereof. Proteins or complexes, or pharmaceutical, imaging, diagnostic, or prophylactic compositions thereof, may be administered to a subject using any amount and any route of administration effective for preventing, treating, diagnosing, or imaging a disease, disorder, and/or condition (e.g., a disease, disorder, and/or condition relating to working memory deficits). The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease, the particular composition, its mode of administration, its mode of activity, and the like. Compositions in accordance with the disclosure are typically formulated in dosage unit form for ease of administration and uniformity of dosage. It will be understood, however, that the total daily usage of the compositions of the present disclosure will be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective, prophylactically effective, or appropriate imaging dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts.
- Proteins to be delivered and/or pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof may be administered to animals, such as mammals (e.g., humans, domesticated animals, cats, dogs, mice, rats, etc.). In some embodiments, pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof are administered to humans.
- Proteins to be delivered and/or pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof in accordance with the present disclosure may be administered by any route. In some embodiments, proteins and/or pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof, are administered by one or more of a variety of routes, including oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, subcutaneous, intraventricular, transdermal, interdermal, rectal, intravaginal, intraperitoneal, topical (e.g., by powders, ointments, creams, gels, lotions, and/or drops), mucosal, nasal, buccal, enteral, vitreal, intratumoral, sublingual; by intratracheal instillation, bronchial instillation, and/or inhalation; as an oral spray, nasal spray, and/or aerosol, and/or through a portal vein catheter. In some embodiments, proteins or complexes, and/or pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof, are administered by systemic intravenous injection. In specific embodiments, proteins or complexes and/or pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof may be administered intravenously and/or orally. In specific embodiments, proteins or complexes, and/or pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof, may be administered in a way which allows the protein or complex to cross the blood-brain barrier, vascular barrier, or other epithelial barrier.
- However, the disclosure encompasses the delivery of proteins or complexes, and/or pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof, by any appropriate route taking into consideration likely advances in the sciences of drug delivery.
- In general the most appropriate route of administration will depend upon a variety of factors including the nature of the protein or complex comprising proteins associated with at least one agent to be delivered (e.g., its stability in the environment of the gastrointestinal tract, bloodstream, etc.), the condition of the patient (e.g., whether the patient is able to tolerate particular routes of administration), etc. The disclosure encompasses the delivery of the pharmaceutical, prophylactic, diagnostic, or imaging compositions by any appropriate route taking into consideration likely advances in the sciences of drug delivery.
- In certain embodiments, compositions in accordance with the disclosure may be administered at dosage levels sufficient to deliver from about 0.0001 mg/kg to about 100 mg/kg, from about 0.01 mg/kg to about 50 mg/kg, from about 0.1 mg/kg to about 40 mg/kg, from about 0.5 mg/kg to about 30 mg/kg, from about 0.01 mg/kg to about 10 mg/kg, from about 0.1 mg/kg to about 10 mg/kg, or from about 1 mg/kg to about 25 mg/kg, of subject body weight per day, one or more times a day, to obtain the desired therapeutic, diagnostic, prophylactic, or imaging effect. The desired dosage may be delivered three times a day, two times a day, once a day, every other day, every third day, every week, every two weeks, every three weeks, or every four weeks. In certain embodiments, the desired dosage may be delivered using multiple administrations (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more administrations).
- Proteins or complexes may be used in combination with one or more other therapeutic, prophylactic, diagnostic, or imaging agents. By “in combination with,” it is not intended to imply that the agents must be administered at the same time and/or formulated for delivery together, although these methods of delivery are within the scope of the disclosure. Compositions can be administered concurrently with, prior to, or subsequent to, one or more other desired therapeutics or medical procedures. In general, each agent will be administered at a dose and/or on a time schedule determined for that agent. In some embodiments, the disclosure encompasses the delivery of pharmaceutical, prophylactic, diagnostic, or imaging compositions in combination with agents that improve their bioavailability, reduce and/or modify their metabolism, inhibit their excretion, and/or modify their distribution within the body. In certain embodiments, provided are combination therapeutics containing one or more modified nucleic acids containing translatable regions that encode for a protein or proteins that boost a mammalian subject's immunity along with a protein that induces antibody-dependent cellular toxitity. For example, provided are therapeutics containing one or more nucleic acids that encode trastuzumab and granulocyte-colony stimulating factor (G-CSF). In particular, such combination therapeutics are useful in Her2+ breast cancer patients who develop induced resistance to trastuzumab. (See, e.g., Albrecht, Immunotherapy. 2(6):795-8 (2010)).
- It will further be appreciated that therapeutically, prophylactically, diagnostically, or imaging active agents utilized in combination may be administered together in a single composition or administered separately in different compositions. In general, it is expected that agents utilized in combination with be utilized at levels that do not exceed the levels at which they are utilized individually. In some embodiments, the levels utilized in combination will be lower than those utilized individually.
- The particular combination of therapies (therapeutics or procedures) to employ in a combination regimen will take into account compatibility of the desired therapeutics and/or procedures and the desired therapeutic effect to be achieved. It will also be appreciated that the therapies employed may achieve a desired effect for the same disorder (for example, a composition useful for treating cancer in accordance with the disclosure may be administered concurrently with a chemotherapeutic agent), or they may achieve different effects (e.g., control of any adverse effects).
- Kits.
- The disclosure provides a variety of kits for conveniently and/or effectively carrying out methods of the present disclosure. For example, described herein are kits for protein production using a modified nucleic acid described herein. Typically kits will comprise sufficient amounts and/or numbers of components to allow a user to perform multiple treatments of a subject(s) and/or to perform multiple experiments.
- Therapeutic Agent: The term “therapeutic agent” refers to any agent that, when administered to a subject, has a therapeutic, diagnostic, and/or prophylactic effect and/or elicits a desired biological and/or pharmacological effect.
- Animal: As used herein, the term “animal” refers to any member of the animal kingdom. In some embodiments, “animal” refers to humans at any stage of development. In some embodiments, “animal” refers to non-human animals at any stage of development. In certain embodiments, the non-human animal is a mammal (e.g., a rodent, a mouse, a rat, a rabbit, a monkey, a dog, a cat, a sheep, cattle, a primate, or a pig). In some embodiments, animals include, but are not limited to, mammals, birds, reptiles, amphibians, fish, and worms. In some embodiments, the animal is a transgenic animal, genetically-engineered animal, or a clone.
- Approximately: As used herein, the term “approximately” or “about,” as applied to one or more values of interest, refers to a value that is similar to a stated reference value. In certain embodiments, the term “approximately” or “about” refers to a range of values that fall within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value).
- Associated with: As used herein, the terms “associated with,” “conjugated,” “linked,” “attached,” and “tethered,” when used with respect to two or more moieties, means that the moieties are physically associated or connected with one another, either directly or via one or more additional moieties that serves as a linking agent, to form a structure that is sufficiently stable so that the moieties remain physically associated under the conditions in which the structure is used, e.g., physiological conditions.
- Biologically active: As used herein, the phrase “biologically active” refers to a characteristic of any substance that has activity in a biological system and/or organism. For instance, a substance that, when administered to an organism, has a biological effect on that organism, is considered to be biologically active. In particular embodiments, where a nucleic acid is biologically active, a portion of that nucleic acid that shares at least one biological activity of the whole nucleic acid is typically referred to as a “biologically active” portion.
- Conserved: As used herein, the term “conserved” refers to nucleotides or amino acid residues of a polynucleotide sequence or amino acid sequence, respectively, that are those that occur unaltered in the same position of two or more related sequences being compared. Nucleotides or amino acids that are relatively conserved are those that are conserved amongst more related sequences than nucleotides or amino acids appearing elsewhere in the sequences. In some embodiments, two or more sequences are said to be “completely conserved” if they are 100% identical to one another. In some embodiments, two or more sequences are said to be “highly conserved” if they are at least 70% identical, at least 80% identical, at least 90% identical, or at least 95% identical to one another. In some embodiments, two or more sequences are said to be “highly conserved” if they are about 70% identical, about 80% identical, about 90% identical, about 95%, about 98%, or about 99% identical to one another. In some embodiments, two or more sequences are said to be “conserved” if they are at least 30% identical, at least 40% identical, at least 50% identical, at least 60% identical, at least 70% identical, at least 80% identical, at least 90% identical, or at least 95% identical to one another. In some embodiments, two or more sequences are said to be “conserved” if they are about 30% identical, about 40% identical, about 50% identical, about 60% identical, about 70% identical, about 80% identical, about 90% identical, about 95% identical, about 98% identical, or about 99% identical to one another.
- Expression: As used herein, “expression” of a nucleic acid sequence refers to one or more of the following events: (1) production of an RNA template from a DNA sequence (e.g., by transcription); (2) processing of an RNA transcript (e.g., by splicing, editing, 5′ cap formation, and/or 3′ end processing); (3) translation of an RNA into a polypeptide or protein; and (4) post-translational modification of a polypeptide or protein.
- Ex vivo: As used herein, “ex vivo” refers to events that which occur outside an organism, e.g., in or on tissue in an artificial environment outside the organism, e.g., with the minimum alteration of natural conditions.
- Functional: As used herein, a “functional” biological molecule is a biological molecule in a form in which it exhibits a property and/or activity by which it is characterized.
- Homology: As used herein, the term “homology” refers to the overall relatedness between polymeric molecules, e.g. between nucleic acid molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules. In some embodiments, polymeric molecules are considered to be “homologous” to one another if their sequences are at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical. In some embodiments, polymeric molecules are considered to be “homologous” to one another if their sequences are at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% similar. The term “homologous” necessarily refers to a comparison between at least two sequences (nucleotides sequences or amino acid sequences). In accordance with the disclosure, two nucleotide sequences are considered to be homologous if the polypeptides they encode are at least about 50% identical, at least about 60% identical, at least about 70% identical, at least about 80% identical, or at least about 90% identical for at least one stretch of at least about 20 amino acids. In some embodiments, homologous nucleotide sequences are characterized by the ability to encode a stretch of at least 4-5 uniquely specified amino acids. Both the identity and the approximate spacing of these amino acids relative to one another must be considered for nucleotide sequences to be considered homologous. For nucleotide sequences less than 60 nucleotides in length, homology is determined by the ability to encode a stretch of at least 4-5 uniquely specified amino acids. In accordance with the disclosure, two protein sequences are considered to be homologous if the proteins are at least about 50% identical, at least about 60% identical, at least about 70% identical, at least about 80% identical, or at least about 90% identical for at least one stretch of at least about 20 amino acids.
- Identity: As used herein, the term “identity” refers to the overall relatedness between polymeric molecules, e.g., between nucleic acid molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules. Calculation of the percent identity of two nucleic acid sequences, for example, can be performed by aligning the two sequences for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second nucleic acid sequences for optimal alignment and non-identical sequences can be disregarded for comparison purposes). In certain embodiments, the length of a sequence aligned for comparison purposes is at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or 100% of the length of the reference sequence. The nucleotides at corresponding nucleotide positions are then compared. When a position in the first sequence is occupied by the same nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which needs to be introduced for optimal alignment of the two sequences. The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. For example, the percent identity between two nucleotide sequences can be determined using methods such as those described in Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Computer Analysis of Sequence Data, Part I, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; each of which is incorporated herein by reference. For example, the percent identity between two nucleotide sequences can be determined using the algorithm of Meyers and Miller (CABIOS, 1989, 4:11-17), which has been incorporated into the ALIGN program (version 2.0) using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. The percent identity between two nucleotide sequences can, alternatively, be determined using the GAP program in the GCG software package using an NWSgapdna.CMP matrix. Methods commonly employed to determine percent identity between sequences include, but are not limited to those disclosed in Carillo, H., and Lipman, D., SIAM J Applied Math., 48:1073 (1988); incorporated herein by reference. Techniques for determining identity are codified in publicly available computer programs. Exemplary computer software to determine homology between two sequences include, but are not limited to, GCG program package, Devereux, J., et al., Nucleic Acids Research, 12(1), 387 (1984)), BLASTP, BLASTN, and FASTA Atschul, S. F. et al., J. Molec. Biol., 215, 403 (1990)).
- Inhibit expression of a gene: As used herein, the phrase “inhibit expression of a gene” means to cause a reduction in the amount of an expression product of the gene. The expression product can be an RNA transcribed from the gene (e.g., an mRNA) or a polypeptide translated from an mRNA transcribed from the gene. Typically a reduction in the level of an mRNA results in a reduction in the level of a polypeptide translated therefrom. The level of expression may be determined using standard techniques for measuring mRNA or protein.
- In vitro: As used herein, the term “in vitro” refers to events that occur in an artificial environment, e.g., in a test tube or reaction vessel, in cell culture, in a Petri dish, etc., rather than within an organism (e.g., animal, plant, or microbe).
- In vivo: As used herein, the term “in vivo” refers to events that occur within an organism (e.g., animal, plant, or microbe).
- Isolated: As used herein, the term “isolated” refers to a substance or entity that has been (1) separated from at least some of the components with which it was associated when initially produced (whether in nature or in an experimental setting), and/or (2) produced, prepared, and/or manufactured by the hand of man. Isolated substances and/or entities may be separated from at least about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, or more of the other components with which they were initially associated. In some embodiments, isolated agents are more than about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or more than about 99% pure. As used herein, a substance is “pure” if it is substantially free of other components.
- Preventing: As used herein, the term “preventing” refers to partially or completely delaying onset of a particular disease, disorder, and/or condition; partially or completely delaying onset of one or more symptoms, features, or clinical manifestations of a particular disease, disorder, and/or condition (e.g., prior to an identifiable disease, disorder, and/or condition); partially or completely delaying progression from a latent disease, disorder, and/or condition to an active disease, disorder, and/or condition; and/or decreasing the risk of developing pathology associated with a particular disease, disorder, and/or condition.
- Similarity: As used herein, the term “similarity” refers to the overall relatedness between polymeric molecules, e.g. between nucleic acid molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules. Calculation of percent similarity of polymeric molecules to one another can be performed in the same manner as a calculation of percent identity, except that calculation of percent similarity takes into account conservative substitutions as is understood in the art.
- Subject: As used herein, the term “subject” or “patient” refers to any organism to which a composition in accordance with the disclosure may be administered, e.g., for experimental, diagnostic, prophylactic, and/or therapeutic purposes. Typical subjects include animals (e.g., mammals such as mice, rats, rabbits, non-human primates, and humans) and/or plants.
- Substantially: As used herein, the term “substantially” refers to the qualitative condition of exhibiting total or near-total extent or degree of a characteristic or property of interest. One of ordinary skill in the biological arts will understand that biological and chemical phenomena rarely, if ever, go to completion and/or proceed to completeness or achieve or avoid an absolute result. The term “substantially” is therefore used herein to capture the potential lack of completeness inherent in many biological and chemical phenomena.
- Suffering from: An individual who is “suffering from” a disease, disorder, and/or condition has been diagnosed with or displays one or more symptoms of a disease, disorder, and/or condition.
- Susceptible to: An individual who is “susceptible to” a disease, disorder, and/or condition has not been diagnosed with and/or may not exhibit symptoms of the disease, disorder, and/or condition. In some embodiments, an individual who is susceptible to a disease, disorder, and/or condition (for example, cancer) may be characterized by one or more of the following: (1) a genetic mutation associated with development of the disease, disorder, and/or condition; (2) a genetic polymorphism associated with development of the disease, disorder, and/or condition; (3) increased and/or decreased expression and/or activity of a protein and/or nucleic acid associated with the disease, disorder, and/or condition; (4) habits and/or lifestyles associated with development of the disease, disorder, and/or condition; (5) a family history of the disease, disorder, and/or condition; and (6) exposure to and/or infection with a microbe associated with development of the disease, disorder, and/or condition. In some embodiments, an individual who is susceptible to a disease, disorder, and/or condition will develop the disease, disorder, and/or condition. In some embodiments, an individual who is susceptible to a disease, disorder, and/or condition will not develop the disease, disorder, and/or condition.
- Therapeutically effective amount: As used herein, the term “therapeutically effective amount” means an amount of an agent to be delivered (e.g., nucleic acid, drug, therapeutic agent, diagnostic agent, prophylactic agent, etc.) that is sufficient, when administered to a subject suffering from or susceptible to a disease, disorder, and/or condition, to treat, improve symptoms of, diagnose, prevent, and/or delay the onset of the disease, disorder, and/or condition.
- Transcription factor: As used herein, the term “transcription factor” refers to a DNA-binding protein that regulates transcription of DNA into RNA, for example, by activation or repression of transcription. Some transcription factors effect regulation of transcription alone, while others act in concert with other proteins. Some transcription factor can both activate and repress transcription under certain conditions. In general, transcription factors bind a specific target sequence or sequences highly similar to a specific consensus sequence in a regulatory region of a target gene. Transcription factors may regulate transcription of a target gene alone or in a complex with other molecules.
- Treating: As used herein, the term “treating” refers to partially or completely alleviating, ameliorating, improving, relieving, delaying onset of, inhibiting progression of, reducing severity of, and/or reducing incidence of one or more symptoms, features, or clinical manifestations of a particular disease, disorder, and/or condition. For example, “treating” cancer may refer to inhibiting survival, growth, and/or spread of a tumor. Treatment may be administered to a subject who does not exhibit signs of a disease, disorder, and/or condition (e.g., prior to an identifiable disease, disorder, and/or condition), and/or to a subject who exhibits only early signs of a disease, disorder, and/or condition for the purpose of decreasing the risk of developing pathology associated with the disease, disorder, and/or condition. In some embodiments, treatment comprises delivery of a protein associated with a therapeutically active nucleic acid to a subject in need thereof.
- Unmodified: As used herein, “unmodified” refers to a nucleic acid prior to being modified.
- Modified mRNAs (modRNAs) according to the invention were made using standard laboratory methods and materials. The open reading frame (ORF) of the gene of interest is flanked by a 5′ untranslated region (UTR) containing a strong Kozak translational initiation signal and an alpha-globin 3′ UTR terminating with an oligo(dT) sequence for templated addition of a polyA tail. The modRNAs were modified with pseudouridine (ψ) and 5-methyl-cytidine (5meC) to reduce the cellular innate immune response. Kariko K et al. Immunity 23:165-75 (2005), Kariko K et al. Mol Ther 16:1833-40 (2008), Anderson B R et al. NAR (2010).
- The cloning, gene synthesis and vector sequencing was performed by DNA2.0 Inc. (Menlo Park, Calif.). Vector sequences and insert sequences are set forth in SEQ ID NOs: 5-8. The ORFs were restriction digested using XbaI or HindIII and used for cDNA synthesis using tailed-PCR. This tailed-PCR cDNA product was used as the template for the modified mRNA synthesis reaction using 25 mM each modified nucleotide mix (modified U/C was manufactured by TriLink Biotech, San Diego, Calif., unmodified A/G was purchased from Epicenter Biotechnologies, Madison, Wis.) and CellScript MegaScript™ (Epicenter Biotechnologies, Madison, Wis.) complete mRNA synthesis kit. The in vitro transcription reaction was run for 3-4 hours at 37° C. PCR reaction used HiFi PCR 2× Master Mix™ (Kapa Biosystems, Woburn, Mass.). The In vitro transcribed mRNA product was run on an agarose gel and visualized. mRNA was purified with Ambion/Applied Biosystems (Austin, Tex.) MEGAClear RNA™ purification kit. PCR used PureLink™ PCR purification kit (Invitrogen, Carlsbad, Calif.) or PCR cleanup kit (Qiagen, Valencia, Calif.). The product was quantified on Nanodrop™ UV Absorbance (ThermoFisher, Waltham, Mass.). Quality, UV absorbance quality and visualization of the product was performed on an 1.2% agarose gel. The product was resuspended in TE buffer.
- Modified RNAs incorporating adenosine analogs were poly (A) tailed using yeast Poly (A) Polymerase (Affymetrix, Santa Clara, Calif.). PCR reaction used HiFi PCR 2× Master Mix™ (Kapa Biosystems, Woburn, Mass.). Modified RNAs were post-transcriptionally capped using recombinant Vaccinia Virus Capping Enzyme (New England BioLabs, Ipswich, Mass.) and a recombinant 2′-o-methyltransferase (Epicenter Biotechnologies, Madison, Wis.) to generate the 5′-guanosine Cap1 structure. Cap 2 structure and Cap 3 structure may be generated using additional 2′-o-methyltransferases. The in vitro transcribed mRNA product was run on an agarose gel and visualized. Modified RNA was purified with Ambion/Applied Biosystems (Austin, Tex.) MEGAClear RNA™ purification kit. PCR used PureLink™ PCR purification kit (Invitrogen, Carlsbad, Calif.). The product was quantified on Nanodrop™ UV Absorbance (ThermoFisher, Waltham, Mass.). Quality, UV absorbance quality and visualization of the product was performed on an 1.2% agarose gel. The product was resuspended in TE buffer.
- Exemplary capping structures.
- 5′-capping of modified RNA may be completed concomitantly during the in vitro-transcription reaction using the following chemical RNA cap analogs to generate the 5′-guanosine cap structure according to manufacturer protocols: 3′-O-Me-m7G(5′)ppp(5′)G; G(5′)ppp(5′)A; G(5′)ppp(5′)G; m7G(5′)ppp(5′)A; m7G(5′)ppp(5′)G (New England BioLabs, Ipswich, Mass.). 5′-capping of modified RNA may be completed post-transcriptionally using a Vaccinia Virus Capping Enzyme to generate the “
Cap 0” structure: m7G(5′)ppp(5′)G (New England BioLabs, Ipswich, Mass.).Cap 1 structure may be generated using both Vaccinia Virus Capping Enzyme and a 2′-O methyl-transferase to generate: m7G(5′)ppp(5′)G-2′-O-methyl. Cap 2 structure may be generated from theCap 1 structure followed by the 2′-O-methylation of the 5′-antepenultimate nucleotide using a 2′-O methyl-transferase. Cap 3 structure may be generated from the Cap 2 structure followed by the 2′-O-methylation of the 5′-preantepenultimate nucleotide using a 2′-O methyl-transferase. Enzymes are preferably derived from a recombinant source. - When transfected into mammalian cells, the modified mRNAs may have a stability of between 12-18 hours or more than 18 hours, e.g., 24, 36, 48, 60, 72 or greater than 72 hours.
- The nucleic acid sequence for the precursor of human granulocyte colony stimulating factor (G-CSF) is set forth in SEQ ID NO: 1:
-
(SEQ ID NO: 1) agcttttggaccctcgtacagaagctaatacgactcactatagggaaataagagagaaaagaagagtaagaagaaatataa gagccaccatggccggtcccgcgacccaaagccccatgaaacttatggccctgcagttgctgctttggcactcggccctctggacagtcca agaagcgactcctctcggacctgcctcatcgttgccgcagtcattccttttgaagtgtctggagcaggtgcgaaagattcagggcgatggag ccgcactccaagagaagctctgcgcgacatacaaactttgccatcccgaggagctcgtactgctcgggcacagcttggggattccctgggc tcctctctcgtcctgtccgtcgcaggctttgcagttggcagggtgcctttcccagctccactccggtttgttcttgtatcagggactgctgcaag cccttgagggaatctcgccagaattgggcccgacgctggacacgttgcagctcgacgtggcggatttcgcaacaaccatctggcagcaga tggaggaactggggatggcacccgcgctgcagcccacgcagggggcaatgccggcctttgcgtccgcgtttcagcgcagggcgggtgg agtcctcgtagcgagccaccttcaatcatttttggaagtctcgtaccgggtgctgagacatcttgcgcagccgtgaagcgctgccttctgcgg ggcttgccttctggccatgcccttcttctctcccttgcacctgtacctcttggtctttgaataaagcctgagtaggaaggcggccgctcgagcat gcatctagagggcccaattcgccctattcgaagtcg - The nucleic acid sequence for G-CSF mRNA is set forth in SEQ ID NO: 2:
-
(SEQ ID NO: 2) agcuuuuggacccucguacagaagcuaauacgacucacuauagggaaauaagagagaaaagaagaguaagaagaaauauaaga gccaccauggccggucccgcgacccaaagccccaugaaacuuauggcccugcaguugcugcuuuggcacucggcccucuggac aguccaagaagcgacuccucucggaccugccucaucguugccgcagucauuccuuuugaagugucuggagcaggugcgaaag auucagggcgauggagccgcacuccaagagaagcucugcgcgacauacaaacuuugccaucccgaggagcucguacugcucgg gcacagcuuggggauucccugggcuccucucucguccuguccgucgcaggcuuugcaguuggcagggugccuuucccagcu ccacuccgguuuguucuuguaucagggacugcugcaagcccuugagggaaucucgccagaauugggcccgacgcuggacacg uugcagcucgacguggcggauuucgcaacaaccaucuggcagcagauggaggaacuggggauggcacccgcgcugcagccca cgcagggggcaaugccggccuuugcguccgcguuucagcgcagggcggguggaguccucguagcgagccaccuucaaucauu uuuggaagucucguaccgggugcugagacaucuugcgcagccgugaagcgcugccuucugcggggcuugccuucuggccau gcccuucuucucucccuugcaccuguaccucuuggucuuugaauaaagccugaguaggaaggcggccgcucgagcaugcauc uagagggcccaauucgcccuauucgaagucg - The nucleic acid sequence for an exemplary G-CSF modified mRNA (modRNA) is set forth in SEQ ID NO: 3:
-
(SEQ ID NO: 3) ag5meψψψψgga5meC5meC5meCψ5meCgψa5meCagaag5meCψaaψa5meCga5meCψ5meCa5 meCψaψagggaaaψaagagagaaaagaagagψaagaagaaaψaψaagag5meC5meCa5meC5meCaψgg5meC 5meCggψ5meC5meC5meCg5meCga5meC5meC5meCaaag5meC5meC5meC5meCaψgaaa5meC ψψaψgg5meC5meC5meCψg5meCagψψg5meCψg5meCψψψgg5meCa5meCψ5meCgg5meC5me C5meCψ5meCψgga5meCagψ5meC5meCaagaag5meCga5meCψ5meC5meCψ5meCψ5meCgga5 meC5meCψg5meC5meCψ5meCaψ5meCgψψg5meC5meCg5meCagψ5meCaψψ5meC5meCψψψ ψgaagψgψ5meCψggag5meCaggψg5meCgaaagaψψ5meCaggg5meCgaψggag5meC5meCg5meCa 5meCψ5meC5meCaagagaag5meCψ5meCψg5meCg5meCga5meCaψa5meCaaa5meCψψψg5me C5meCaψ5meC5meC5meCgaggag5meCψ5meCgψa5meCψg5meCψ5meCggg5meCa5meCag5 meCwψggggaψψ5meC5meC5meCψggg5meCψ5meC5meCψ5meCψ5meCψ5meCgψ5meC5meC ψgψ5meC5meCgψ5meCg5meCagg5meCψψψg5meCagψψgg5meCagggψg5meC5meCψψψ5me C5meC5meCag5meCψ5meC5meCa5meCψ5meC5meCggψψψgψψ5meCψψgψaψ5meCaggga5m eCψg5meCψg5meCaag5meC5meC5meCψψgagggaaψ5meCψ5meCg5meC5meCagaaψψggg5me C5meC5meCga5meCg5meCψgga5meCa5meCgψψg5meCag5meCψ5meCga5meCgψgg5meCgg aψψψ5meCg5meCaa5meCaa5meC5meCaψ5meCψgg5meCag5meCagaψggaggaa5meCψggggaψ gg5meCa5meC5meC5meCg5meCg5meCψg5meCag5meC5meC5meCa5meCg5meCaggggg5me Caaψg5meC5meCgg5meC5meCψψψg5meCgψ5meC5meCg5meCgψψψ5meCag5meCg5meCag gg5meCgggψggagψ5meC5meCψ5meCgψag5meCgag5meC5meCa5meC5meCψψ5meCaaψ5me Caψψψψψggaagψ5meCψ5meCgψa5meC5meCgggψg5meCψgaga5meCaψ5meCψψg5meCg5me Cag5meC5meCgψgaag5meCg5meCψg5meC5meCψψ5meCψg5meCgggg5meCψψg5meC5meC ψψ5meCψgg5meC5meCaψg5meC5meC5meCψψ5meCψψ5meCψ5meCψ5meC5meC5meCψψg 5meCa5meC5meCψgψa5meC5meCψ5meCψψggψ5meCψψψgaaψaaag5meC5meCψgagψaggaag g5meCgg5meC5meCg5meCψ5meCgag5meCaψg5meCaψ5meCψagaggg5meC5meC5meCaaψψ 5meCg5meC5meC5meCψaψψ5meCgaagψ5meCg -
FIG. 1 shows an Enzyme-linked immunosorbent assay (ELISA) for Human Granulocyte-Colony Stimulating Factor (G-CSF) from Chinese Hamster Ovary Cells (CHO) transfected with modRNA for G-CSF. The CHO cells were grown in CD CHO Medium with Supplement of L-Glutamine, Hypoxanthine and Thymidine. 2×106 Cells were transfected with 24 ug modRNA complexed with RNAiMax from Invitrogen in a 75 cm2 culture flask from Corning with 7 ml of medium. The RNA:RNAiMAX complex was formed by first incubating the RNA with CD CHO Medium in a 5× volumetric dilution for 10 minutes at room temperature. In a second vial, RNAiMAX reagent was incubated with CD CHO Medium in a 10× volumetric dilution for 10 minutes at room temperature. The RNA vial was then mixed with the RNAiMAX vial and incubated for 20-30 at room temperature before being added to the cells in a drop-wise fashion. The concentration of secreted huG-CSF in the culture medium was measured at 12 and 24 hours post-transfection. Cell supernatants were stored at −20° C. Secretion of Human Granulocyte-Colony Stimulating Factor (G-CSF) from transfected Human Embryonic Kidney cells was quantified using an ELISA kit from Invitrogen following the manufacturers recommended instructions. These data show that huG-CSF modRNA (SEQ ID NO: 3) is capable of being translated in CHO cells, and that huG-CSF is secreted out of the cells and released into the extracellular environment. Furthermore these data demonstrate that transfection of cells with modRNA huG-CSF for the production of secreted protein can be scaled up to a bioreactor or large cell culture conditions. - The nucleic acid sequence for the Heavy Chain of Rituximab is set forth in SEQ ID NO: 4:
-
(SEQ ID NO: 4) CTCGTACAGAAGCTAATACGACTCACTATAGGGAA ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAG AGCCACCATGGCCGTGATGGCGCCGAGGACCCTGG TGCTCTTGCTCACGGGTGCCTTGGCCCTCACGCAA ACATGGGCGGGACAGGCGTACTTGCAGCAGTCAGG GGCAGAACTCGTAAGGCCCGGAGCGTCGGTGAAGA TGTCGTGTAAAGCGTCGGGCTATACTTTCACATCG TACAACATGCACTGGGTCAAACAGACGCCCCGACA AGGGCTGGAGTGGATTGGAGCTATCTACCCCGGTA ACGGGGATACGTCGTACAACCAGAAGTTTAAGGGG AAGGCGACTCTTACTGTCGACAAGTCGTCCTCCAC CGCCTATATGCAGCTGTCGAGCCTGACTTCGGAAG ATTCAGCGGTGTACTTTTGTGCGCGCGTGGTCTAT TACTCAAATTCGTATTGGTATTTCGATGTGTGGGG TACGGGGACCACTGTGACCGTGTCAGGACCCTCGG TATTCCCCCTCGCGCCTAGCTCAAAGTCCACCTCC GGGGGAACAGCCGCCTTGGGTTGCTTGGTAAAGGA CTATTTCCCCGAGCCCGTCACAGTGAGCTGGAACT CCGGGGCACTGACATCGGGAGTGCACACGTTTCCC GCGGTACTTCAGTCATCAGGACTCTACTCGCTGTC AAGCGTGGTCACGGTGCCTTCATCCTCCCTTGGAA CGCAGACTTACATCTGCAACGTGAATCATAAGCCT AGCAATACCAAGGTCGACAAGAAAGCCGAACCCAA ATCATGTGATAAAACACACACGTGTCCTCCCTGCC CCGCACCGGAGCTTCTCGGGGGACCGAGCGTGTTC TTGTTTCCACCTAAGCCGAAAGATACGCTTATGAT CTCCCGGACCCCCGAAGTAACTTGCGTAGTAGTAG ACGTAAGCCACGAGGACCCCGAAGTGAAATTCAAT TGGTACGTCGACGGAGTGGAGGTCCATAATGCGAA AACAAAGCCGAGAGAGGAACAGTACAATTCCACAT ACCGCGTCGTAAGCGTCTTGACAGTATTGCATCAG GATTGGCTGAACGGAAAGGAATACAAGTGCAAAGT ATCAAACAAAGCACTTCCGGCACCGATTGAAAAGA CGATCTCAAAAGCAAAAGGGCAACCTCGGGAGCCA CAAGTCTATACTCTCCCGCCGTCGCGCGATGAATT GACCAAAAACCAGGTGTCCCTTACATGTCTCGTAA AGGGTTTTTACCCGTCAGACATCGCCGTCGAGTGG GAGTCAAACGGTCAGCCGGAGAATAACTATAAGAC GACCCCACCAGTCTTGGACAGCGATGGCTCCTTCT TCTTGTATTCAAAGCTGACGGTGGACAAATCGAGA TGGCAGCAGGGTAATGTGTTTTCGTGCAGCGTCAT GCACGAGGCGCTTCATAATCATTACACTCAAAAGT CCCTGTCGCTGTCGCCCGGAAAGCACCATCACCAC CACCATTGAAGCGCTGCCTTCTGCGGGGCTTGCCT TCTGGCCATGCCCTTCTTCTCTCCCTTGCACCTGT ACCTCTTGGTCTTTGAATAAAGCCTGAGTAGGAAG GCGGCCGCTCGAGCATGCATCTAGA - The nucleic acid sequence for the mRNA for the Heavy Chain of Rituximab is set forth in SEQ ID NO: 5:
-
(SEQ ID NO: 5) CUCGUACAGAAGCUAAUACGACUCACUAUAGGGAA AUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAG AGCCACCAUGGCCGUGAUGGCGCCGAGGACCCUGG UGCUCUUGCUCACGGGUGCCUUGGCCCUCACGCAA ACAUGGGCGGGACAGGCGUACUUGCAGCAGUCAGG GGCAGAACUCGUAAGGCCCGGAGCGUCGGUGAAGA UGUCGUGUAAAGCGUCGGGCUAUACUUUCACAUCG UACAACAUGCACUGGGUCAAACAGACGCCCCGACA AGGGCUGGAGUGGAUUGGAGCUAUCUACCCCGGUA ACGGGGAUACGUCGUACAACCAGAAGUUUAAGGGG AAGGCGACUCUUACUGUCGACAAGUCGUCCUCCAC CGCCUAUAUGCAGCUGUCGAGCCUGACUUCGGAAG AUUCAGCGGUGUACUUUUGUGCGCGCGUGGUCUAU UACUCAAAUUCGUAUUGGUAUUUCGAUGUGUGGGG UACGGGGACCACUGUGACCGUGUCAGGACCCUCGG UAUUCCCCCUCGCGCCUAGCUCAAAGUCCACCUCC GGGGGAACAGCCGCCUUGGGUUGCUUGGUAAAGGA CUAUUUCCCCGAGCCCGUCACAGUGAGCUGGAACU CCGGGGCACUGACAUCGGGAGUGCACACGUUUCCC GCGGUACUUCAGUCAUCAGGACUCUACUCGCUGUC AAGCGUGGUCACGGUGCCUUCAUCCUCCCUUGGAA CGCAGACUUACAUCUGCAACGUGAAUCAUAAGCCU AGCAAUACCAAGGUCGACAAGAAAGCCGAACCCAA AUCAUGUGAUAAAACACACACGUGUCCUCCCUGCC CCGCACCGGAGCUUCUCGGGGGACCGAGCGUGUUC UUGUUUCCACCUAAGCCGAAAGAUACGCUUAUGAU CUCCCGGACCCCCGAAGUAACUUGCGUAGUAGUAG ACGUAAGCCACGAGGACCCCGAAGUGAAAUUCAAU UGGUACGUCGACGGAGUGGAGGUCCAUAAUGCGAA AACAAAGCCGAGAGAGGAACAGUACAAUUCCACAU ACCGCGUCGUAAGCGUCUUGACAGUAUUGCAUCAG GAUUGGCUGAACGGAAAGGAAUACAAGUGCAAAGU AUCAAACAAAGCACUUCCGGCACCGAUUGAAAAGA CGAUCUCAAAAGCAAAAGGGCAACCUCGGGAGCCA CAAGUCUAUACUCUCCCGCCGUCGCGCGAUGAAUU GACCAAAAACCAGGUGUCCCUUACAUGUCUCGUAA AGGGUUUUUACCCGUCAGACAUCGCCGUCGAGUGG GAGUCAAACGGUCAGCCGGAGAAUAACUAUAAGAC GACCCCACCAGUCUUGGACAGCGAUGGCUCCUUCU UCUUGUAUUCAAAGCUGACGGUGGACAAAUCGAGA UGGCAGCAGGGUAAUGUGUUUUCGUGCAGCGUCAU GCACGAGGCGCUUCAUAAUCAUUACACUCAAAAGU CCCUGUCGCUGUCGCCCGGAAAGCACCAUCACCAC CACCAUUGAAGCGCUGCCUUCUGCGGGGCUUGCCU UCUGGCCAUGCCCUUCUUCUCUCCCUUGCACCUGU ACCUCUUGGUCUUUGAAUAAAGCCUGAGUAGGAAG GCGGCCGCUCGAGCAUGCAUCUAGA - The nucleic acid sequence for the nucleic acid sequence for the Light Chain of Rituximab is set forth in SEQ ID NO: 6:
-
(SEQ ID NO: 6) CTCGTACAGAAGCTAATACGACTCACTATAGGGAA ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAG AGCCACCATGGCTGTCATGGCCCCGAGAACACTTG TGCTGTTGTTGACAGGAGCGCTCGCACTCACACAG ACTTGGGCCGGTCAGATTGTGCTCAGCCAGTCGCC AGCGATCCTTTCGGCCTCCCCTGGTGAGAAAGTAA CGATGACGTGCCGAGCCTCCTCAAGCGTGTCATAC ATGCATTGGTATCAGCAGAAGCCTGGGTCGTCGCC CAAGCCCTGGATCTACGCCCCGTCCAATCTTGCGT CAGGGGTCCCGGCACGGTTCAGCGGATCGGGGTCG GGTACATCGTATTCACTCACGATTAGCCGCGTAGA GGCCGAGGACGCGGCGACTTACTACTGTCAGCAAT GGTCCTTTAATCCACCCACGTTTGGAGCGGGCACC AAGCTCGAACTTAAAAGAACGGTCGCCGCACCCTC AGTGTTTATCTTCCCGCCCTCGGACGAACAACTTA AGTCGGGGACCGCTTCCGTGGTGTGCTTGCTGAAC AATTTCTATCCTCGGGAAGCTAAAGTGCAATGGAA AGTCGATAACGCATTGCAGAGCGGAAACTCACAAG AGTCGGTAACTGAGCAGGATAGCAAGGATTCGACA TACTCGCTGAGCAGCACGCTGACGTTGTCCAAGGC GGACTACGAGAAACACAAGGTATATGCGTGTGAAG TCACCCACCAGGGATTGTCATCGCCGGTCACCAAA TCATTCAACAGGTGATAAAGCGCTGCCTTCTGCGG GGCTTGCCTTCTGGCCATGCCCTTCTTCTCTCCCT TGCACCTGTACCTCTTGGTCTTTGAATAAAGCCTG AGTAGGAAGGCGGCCGCTCGAGCATGCATCTAGA - The nucleic acid sequence for the mRNA of the Light Chain of Rituximab is set forth in SEQ ID NO: 7.
-
(SEQ ID NO: 7) CUCGUACAGAAGCUAAUACGACUCACUAUAGGGAA AUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAG AGCCACCAUGGCUGUCAUGGCCCCGAGAACACUUG UGCUGUUGUUGACAGGAGCGCUCGCACUCACACAG ACUUGGGCCGGUCAGAUUGUGCUCAGCCAGUCGCC AGCGAUCCUUUCGGCCUCCCCUGGUGAGAAAGUAA CGAUGACGUGCCGAGCCUCCUCAAGCGUGUCAUAC AUGCAUUGGUAUCAGCAGAAGCCUGGGUCGUCGCC CAAGCCCUGGAUCUACGCCCCGUCCAAUCUUGCGU CAGGGGUCCCGGCACGGUUCAGCGGAUCGGGGUCG GGUACAUCGUAUUCACUCACGAUUAGCCGCGUAGA GGCCGAGGACGCGGCGACUUACUACUGUCAGCAAU GGUCCUUUAAUCCACCCACGUUUGGAGCGGGCACC AAGCUCGAACUUAAAAGAACGGUCGCCGCACCCUC AGUGUUUAUCUUCCCGCCCUCGGACGAACAACUUA AGUCGGGGACCGCUUCCGUGGUGUGCUUGCUGAAC AAUUUCUAUCCUCGGGAAGCUAAAGUGCAAUGGAA AGUCGAUAACGCAUUGCAGAGCGGAAACUCACAAG AGUCGGUAACUGAGCAGGAUAGCAAGGAUUCGACA UACUCGCUGAGCAGCACGCUGACGUUGUCCAAGGC GGACUACGAGAAACACAAGGUAUAUGCGUGUGAAG UCACCCACCAGGGAUUGUCAUCGCCGGUCACCAAA UCAUUCAACAGGUGAUAAAGCGCUGCCUUCUGCGG GGCUUGCCUUCUGGCCAUGCCCUUCUUCUCUCCCU UGCACCUGUACCUCUUGGUCUUUGAAUAAAGCCUG AGUAGGAAGGCGGCCGCUCGAGCAUGCAUCUAGA - The nucleic acid sequence for the nucleic acid sequence for the Heavy Chain of Trastuzumab is set forth in SEQ ID NO: 8:
-
(SEQ ID NO: 8) CTCGTACAGAAGCTAATACGACTCACTATAGGGAA ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAG AGCCACCATGGCCGTGATGGCGCCGCGGACCCTGG TCCTCCTGCTGACCGGCGCCCTCGCCCTGACGCAG ACCTGGGCCGGGGAGGTGCAGCTGGTCGAGAGCGG CGGGGGCCTCGTGCAGCCGGGCGGGTCGCTGCGGC TGAGCTGCGCCGCGAGCGGGTTCAACATCAAGGAC ACCTACATCCACTGGGTGCGCCAGGCCCCCGGCAA GGGCCTCGAGTGGGTCGCCCGGATCTACCCCACGA ACGGGTACACCCGCTACGCCGACAGCGTGAAGGGC CGGTTCACCATCAGCGCGGACACCTCGAAGAACAC GGCCTACCTGCAGATGAACAGCCTGCGCGCCGAGG ACACCGCCGTGTACTACTGCAGCCGGTGGGGCGGC GACGGGTTCTACGCCATGGACTACTGGGGGCAGGG CACCCTCGTCACCGTGAGCAGCGCGTCGACGAAGG GGCCCAGCGTGTTCCCGCTGGCCCCCAGCAGCAAG AGCACCAGCGGCGGGACCGCCGCCCTGGGCTGCCT CGTCAAGGACTACTTCCCCGAGCCCGTGACCGTGT CGTGGAACAGCGGCGCGCTGACGAGCGGGGTCCAC ACCTTCCCGGCCGTGCTGCAGAGCAGCGGCCTCTA CTCGCTGAGCAGCGTGGTCACCGTGCCCAGCAGCA GCCTGGGGACCCAGACGTACATCTGCAACGTGAAC CACAAGCCCTCGAACACCAAGGTCGACAAGAAGGT GGAGCCCCCGAAGAGCTGCGACAAGACCCACACCT GCCCGCCCTGCCCCGCCCCCGAGCTCCTGGGCGGG CCCAGCGTGTTCCTGTTCCCGCCCAAGCCCAAGGA CACGCTCATGATCAGCCGCACCCCCGAGGTCACCT GCGTGGTGGTCGACGTGAGCCACGAGGACCCCGAG GTGAAGTTCAACTGGTACGTCGACGGCGTGGAGGT GCACAACGCCAAGACCAAGCCGCGGGAGGAGCAGT ACAACTCGACGTACCGCGTCGTGAGCGTGCTGACC GTCCTGCACCAGGACTGGCTCAACGGCAAGGAGTA CAAGTGCAAGGTGAGCAACAAGGCCCTGCCCGCGC CCATCGAGAAGACCATCAGCAAGGCCAAGGGGCAG CCCCGGGAGCCGCAGGTGTACACCCTGCCCCCCAG CCGCGACGAGCTCACGAAGAACCAGGTCAGCCTGA CCTGCCTGGTGAAGGGCTTCTACCCCTCGGACATC GCCGTGGAGTGGGAGAGCAACGGGCAGCCGGAGAA CAACTACAAGACCACCCCGCCCGTCCTCGACAGCG ACGGCAGCTTCTTCCTGTACAGCAAGCTGACGGTG GACAAGTCGCGGTGGCAGCAGGGCAACGTGTTCAG CTGCAGCGTCATGCACGAGGCCCTCCACAACCACT ACACCCAGAAGAGCCTGAGCCTGAGCCCCGGGAAG CATCATCATCATCATCATTGAAGCGCTGCCTTCTG CGGGGCTTGCCTTCTGGCCATGCCCTTCTTCTCTC CCTTGCACCTGTACCTCTTGGTCTTTGAATAAAGC CTGAGTAGGAAGGCGGCCGCTCGAGCATGCATCTA GA - The nucleic acid sequence of the mRNA for the Heavy Chain of Trastuzumab is set forth in SEQ ID NO: 9:
-
(SEQ ID NO: 9) CUCGUACAGAAGCUAAUACGACUCACUAUAGGGAA AUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAG AGCCACCAUGGCCGUGAUGGCGCCGCGGACCCUGG UCCUCCUGCUGACCGGCGCCCUCGCCCUGACGCAG ACCUGGGCCGGGGAGGUGCAGCUGGUCGAGAGCGG CGGGGGCCUCGUGCAGCCGGGCGGGUCGCUGCGGC UGAGCUGCGCCGCGAGCGGGUUCAACAUCAAGGAC ACCUACAUCCACUGGGUGCGCCAGGCCCCCGGCAA GGGCCUCGAGUGGGUCGCCCGGAUCUACCCCACGA ACGGGUACACCCGCUACGCCGACAGCGUGAAGGGC CGGUUCACCAUCAGCGCGGACACCUCGAAGAACAC GGCCUACCUGCAGAUGAACAGCCUGCGCGCCGAGG ACACCGCCGUGUACUACUGCAGCCGGUGGGGCGGC GACGGGUUCUACGCCAUGGACUACUGGGGGCAGGG CACCCUCGUCACCGUGAGCAGCGCGUCGACGAAGG GGCCCAGCGUGUUCCCGCUGGCCCCCAGCAGCAAG AGCACCAGCGGCGGGACCGCCGCCCUGGGCUGCCU CGUCAAGGACUACUUCCCCGAGCCCGUGACCGUGU CGUGGAACAGCGGCGCGCUGACGAGCGGGGUCCAC ACCUUCCCGGCCGUGCUGCAGAGCAGCGGCCUCUA CUCGCUGAGCAGCGUGGUCACCGUGCCCAGCAGCA GCCUGGGGACCCAGACGUACAUCUGCAACGUGAAC CACAAGCCCUCGAACACCAAGGUCGACAAGAAGGU GGAGCCCCCGAAGAGCUGCGACAAGACCCACACCU GCCCGCCCUGCCCCGCCCCCGAGCUCCUGGGCGGG CCCAGCGUGUUCCUGUUCCCGCCCAAGCCCAAGGA CACGCUCAUGAUCAGCCGCACCCCCGAGGUCACCU GCGUGGUGGUCGACGUGAGCCACGAGGACCCCGAG GUGAAGUUCAACUGGUACGUCGACGGCGUGGAGGU GCACAACGCCAAGACCAAGCCGCGGGAGGAGCAGU ACAACUCGACGUACCGCGUCGUGAGCGUGCUGACC GUCCUGCACCAGGACUGGCUCAACGGCAAGGAGUA CAAGUGCAAGGUGAGCAACAAGGCCCUGCCCGCGC CCAUCGAGAAGACCAUCAGCAAGGCCAAGGGGCAG CCCCGGGAGCCGCAGGUGUACACCCUGCCCCCCAG CCGCGACGAGCUCACGAAGAACCAGGUCAGCCUGA CCUGCCUGGUGAAGGGCUUCUACCCCUCGGACAUC GCCGUGGAGUGGGAGAGCAACGGGCAGCCGGAGAA CAACUACAAGACCACCCCGCCCGUCCUCGACAGCG ACGGCAGCUUCUUCCUGUACAGCAAGCUGACGGUG GACAAGUCGCGGUGGCAGCAGGGCAACGUGUUCAG CUGCAGCGUCAUGCACGAGGCCCUCCACAACCACU ACACCCAGAAGAGCCUGAGCCUGAGCCCCGGGAAG CAUCAUCAUCAUCAUCAUUGAAGCGCUGCCUUCUG CGGGGCUUGCCUUCUGGCCAUGCCCUUCUUCUCUC CCUUGCACCUGUACCUCUUGGUCUUUGAAUAAAGC CUGAGUAGGAAGGCGGCCGCUCGAGCAUGCAUCUA GA - The nucleic acid sequence for the nucleic acid sequence for the Light Chain of Trastuzumab is set forth in SEQ ID NO: 10:
-
(SEQ ID NO: 10) CTCGTACAGAAGCTAATACGACTCACTATAGGGAA ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAG AGCCACCATGGCCGTGATGGCGCCGCGGACCCTGG TCCTCCTGCTGACCGGCGCCCTCGCCCTGACGCAG ACCTGGGCCGGGGACATCCAGATGACCCAGAGCCC GTCGAGCCTGAGCGCCAGCGTGGGCGACCGGGTCA CGATCACCTGCCGCGCGAGCCAGGACGTGAACACC GCCGTGGCCTGGTACCAGCAGAAGCCCGGGAAGGC CCCCAAGCTCCTGATCTACTCGGCGAGCTTCCTGT ACAGCGGCGTCCCCAGCCGGTTCAGCGGGTCGCGC AGCGGCACCGACTTCACGCTCACCATCAGCAGCCT GCAGCCGGAGGACTTCGCCACCTACTACTGCCAGC AGCACTACACCACGCCCCCCACCTTCGGGCAGGGC ACCAAGGTGGAGATCAAGCGGACCGTGGCCGCCCC CAGCGTCTTCATCTTCCCGCCCAGCGACGAGCAGC TGAAGTCGGGCACGGCCAGCGTGGTGTGCCTCCTG AACAACTTCTACCCCCGCGAGGCGAAGGTCCAGTG GAAGGTGGACAACGCCCTGCAGAGCGGGAACAGCC AGGAGAGCGTGACCGAGCAGGACTCGAAGGACAGC ACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAA GGCCGACTACGAGAAGCACAAGGTCTACGCCTGCG AGGTGACCCACCAGGGGCTCTCGAGCCCCGTGACC AAGAGCTTCAACCGGGGCGAGTGCTGAAGCGCTGC CTTCTGCGGGGCTTGCCTTCTGGCCATGCCCTTCT TCTCTCCCTTGCACCTGTACCTCTTGGTCTTTGAA TAAAGCCTGAGTAGGAAGGCGGCCGCTCGAGCATG CATCTAGA - The nucleic acid sequence for the mRNA of the Light Chain of Trastuzumab is set forth in SEQ ID NO: 11:
-
(SEQ ID NO: 11) CUCGUACAGAAGCUAAUACGACUCACUAUAGGGAAAUAAGAGAGAAAAGA AGAGUAAGAAGAAAUAUAAGAGCCACCAUGGCCGUGAUGGCGCCGCGGAC CCUGGUCCUCCUGCUGACCGGCGCCCUCGCCCUGACGCAGACCUGGGCCG GGGACAUCCAGAUGACCCAGAGCCCGUCGAGCCUGAGCGCCAGCGUGGGC GACCGGGUCACGAUCACCUGCCGCGCGAGCCAGGACGUGAACACCGCCGU GGCCUGGUACCAGCAGAAGCCCGGGAAGGCCCCCAAGCUCCUGAUCUACU CGGCGAGCUUCCUGUACAGCGGCGUCCCCAGCCGGUUCAGCGGGUCGCGC AGCGGCACCGACUUCACGCUCACCAUCAGCAGCCUGCAGCCGGAGGACUU CGCCACCUACUACUGCCAGCAGCACUACACCACGCCCCCCACCUUCGGGC AGGGCACCAAGGUGGAGAUCAAGCGGACCGUGGCCGCCCCCAGCGUCUUC AUCUUCCCGCCCAGCGACGAGCAGCUGAAGUCGGGCACGGCCAGCGUGGU GUGCCUCCUGAACAACUUCUACCCCCGCGAGGCGAAGGUCCAGUGGAAGG UGGACAACGCCCUGCAGAGCGGGAACAGCCAGGAGAGCGUGACCGAGCAG GACUCGAAGGACAGCACCUACAGCCUCAGCAGCACCCUGACGCUGAGCAA GGCCGACUACGAGAAGCACAAGGUCUACGCCUGCGAGGUGACCCACCAGG GGCUCUCGAGCCCCGUGACCAAGAGCUUCAACCGGGGCGAGUGCUGAAGC GCUGCCUUCUGCGGGGCUUGCCUUCUGGCCAUGCCCUUCUUCUCUCCCUU GCACCUGUACCUCUUGGUCUUUGAAUAAAGCCUGAGUAGGAAGGCGGCCG CUCGAGCAUGCAUCUAGA - The nucleic acid sequence for nucleotide sequence of the wild type CERT protein is set forth in SEQ ID NO: 12:
-
(SEQ ID NO: 12) atgtcggata atcagagctg gaactcgtcg ggctcggagg aggatccaga gacggagtct gggccgcctg tggagcgctg cggggtcctc agtaagtgga caaactacat tcatgggtgg caggatcgtt gggtagtttt gaaaaataat gctctgagtt actacaaatc tgaagatgaa acagagtatg gctgcagagg atccatctgt cttagcaagg ctgtcatcac acctcacgat tttgatgaat gtcgatttga tattagtgta aatgatagtg tttggtatct tcgtgctcag gatccagatc atagacagca atggatagat gccattgaac agcacaagac tgaatctgga tatggatctg aatccagctt gcgtcgacat ggctcaatgg tgtccctggt gtctggagca agtggctact ctgcaacatc cacctcttca ttcaagaaag gccacagttt acgtgagaag ttggctgaaa tggaaacatt tagagacatc ttatgtagac aagttgacac gctacagaag tactttgatg cctgtgctga tgctgtctct aaggatgaac ttcaaaggga taaagtggta gaagatgatg aagatgactt tcctacaacg cgttctgatg gtgacttctt gcatagtacc aacggcaata aagaaaagtt atttccacat gtgacaccaa aaggaattaa tggtatagac tttaaagggg aagcgataac ttttaaagca actactgctg gaatccttgc aacactttct cattgtattg aactaatggt taaacgtgag gacagctggc agaagagact ggataaggaa actgagaaga aaagaagaac agaggaagca tataaaaatg caatgacaga acttaagaaa aaatcccact ttggaggacc agattatgaa gaaggcccta acagtctgat taatgaagaa gagttctttg atgctgttga agctgctctt gacagacaag ataaaataga agaacagtca cagagtgaaa aggtgagatt acattggcct acatccttgc cctctggaga tgccttttct tctgtgggga cacatagatt tgtccaaaag gttgaagaga tggtgcagaa ccacatgact tactcattac aggatgtagg cggagatgcc aattggcagt tggttgtaga agaaggagaa atgaaggtat acagaagaga agtagaagaa aatgggattg ttctggatcc tttaaaagct acccatgcag ttaaaggcgt cacaggacat gaagtctgca attatttctg gaatgttgac gttcgcaatg actgggaaac aactatagaa aactttcatg tggtggaaac attagctgat aatgcaatca tcatttatca aacacacaag agggtgtggc ctgcttctca gcgagacgta ttatatcttt ctgtcattcg aaagatacca gccttgactg aaaatgaccc tgaaacttgg atagtttgta atttttctgt ggatcatgac agtgctcctc taaacaaccg atgtgtccgt gccaaaataa atgttgctat gatttgtcaa accttggtaa gcccaccaga gggaaaccag gaaattagca gggacaacat tctatgcaag attacatatg tagctaatgt gaaccctgga ggatgggcac cagcctcagt gttaagggca gtggcaaagc gagagtatcc taaatttcta aaacgtttta cttcttacgt ccaagaaaaa actgcaggaa agcctatttt gttctag - The protein sequence for the wild type CERT protein is set forth in SEQ ID NO: 13:
-
(SEQ ID NO: 13) Met Ser Asp Asn Gin Ser Trp Asn Ser Ser Gly Ser Glu Glu Asp Pro Glu Thr Glu Ser Gly Pro Pro Val Glu Arg Cys Gly Val Leu Ser Lys Trp Thr Asn Tyr Ile His Gly Trp Gin Asp Arg Trp Val Val Leu Lys Asn Asn Ala Leu Ser Tyr Tyr Lys Ser Glu Asp Glu Thr Glu Tyr Gly Cys Arg Gly Ser Ile Cys Leu Ser Lys Ala Val Ile Thr Pro His Asp Phe Asp Glu Cys Arg Phe Asp Ile Ser Val Asn Asp Ser Val Trp Tyr Leu Arg Ala Gin Asp Pro Asp His Arg Gin Gin Trp Ile Asp Ala Ile Glu Gin His Lys Thr Glu Ser Gly Tyr Gly Ser Glu Ser Ser Leu Arg Arg His Gly Ser Met Val Ser Leu Val Ser Gly Ala Ser Gly Tyr Ser Ala Thr Ser Thr Ser Ser Phe Lys Lys Gly His Ser Leu Arg Glu Lys Leu Ala Glu Met Glu Thr Phe Arg Asp Ile Leu Cys Arg Gin Val Asp Thr Leu Gin Lys Tyr Phe Asp Ala Cys Ala Asp Ala Val Ser Lys Asp Glu Leu Gin Arg Asp Lys Val Val Glu Asp Asp Glu Asp Asp Phe Pro Thr Thr Arg Ser Asp Gly Asp Phe Leu His Ser Thr Asn Gly Asn Lys Glu Lys Leu Phe Pro His Val Thr Pro Lys Gly Ile Asn Gly Ile Asp Phe Lys Gly Glu Ala Ile Thr Phe Lys Ala Thr Thr Ala Gly Ile Leu Ala Thr Leu Ser His Cys Ile Glu Leu Met Val Lys Arg Glu Asp Ser Trp Gin Lys Arg Leu Asp Lys Glu Thr Glu Lys Lys Arg Arg Thr Glu Glu Ala Tyr Lys Asn Ala Met Thr Glu Leu Lys Lys Lys Ser His Phe Gly Gly Pro Asp Tyr Glu Glu Gly Pro Asn Ser Leu Ile Asn Glu Glu Glu Phe Phe Asp Ala Val Glu Ala Ala Leu Asp Arg Gin Asp Lys Ile Glu Glu Gin Ser Gin Ser Glu Lys Val Arg Leu His Trp Pro Thr Ser Leu Pro Ser Gly Asp Ala Phe Ser Ser Val Gly Thr His Arg Phe Val Gin Lys Val Glu Glu Met Val Gin Asn His Met Thr Tyr Ser Leu Gin Asp Val Gly Gly Asp Ala Asn Trp Gin Leu Val Val Glu Glu Gly Glu Met Lys Val Tyr Arg Arg Glu Val Glu Glu Asn Gly Ile Val Leu Asp Pro Leu Lys Ala Thr His Ala Val Lys Gly Val Thr Gly His Glu Val Cys Asn Tyr Phe Trp Asn Val Asp Val Arg Asn Asp Trp Glu Thr Thr Ile Glu Asn Phe His Val Val Glu Thr Leu Ala Asp Asn Ala Ile Ile Ile Tyr Gin Thr His Lys Arg Val Trp Pro Ala Ser Gin Arg Asp Val Leu Tyr Leu Ser Val Ile Arg Lys Ile Pro Ala Leu Thr Glu Asn Asp Pro Glu Thr Trp Ile Val Cys Asn Phe Ser Val Asp His Asp Ser Ala Pro Leu Asn Asn Arg Cys Val Arg Ala Lys Ile Asn Val Ala Met Ile Cys Gin Thr Leu Val Ser Pro Pro Glu Gly Asn Gin Glu Ile Ser Arg - The nucleic acid sequence for the nucleotide sequence of the Ser132A Cert mutant is set forth as SEQ ID NO: 14:
-
(SEQ ID NO: 14) atgtcggata atcagagctg gaactcgtcg ggctcggagg aggatccaga gacggagtct gggccgcctg tggagcgctg cggggtcctc agtaagtgga caaactacat tcatgggtgg caggatcgtt gggtagtttt gaaaaataat gctctgagtt actacaaatc tgaagatgaa acagagtatg gctgcagagg atccatctgt cttagcaagg ctgtcatcac acctcacgat tttgatgaat gtcgatttga tattagtgta aatgatagtg tttggtatct tcgtgctcag gatccagatc atagacagca atggatagat gccattgaac agcacaagac tgaatctgga tatggatctg aatccagctt gcgtcgacat ggcgcaatgg tgtccctggt gtctggagca agtggctact ctgcaacatc cacctcttca ttcaagaaag gccacagttt acgtgagaag ttggctgaaa tggaaacatt tagagacatc ttatgtagac aagttgacac gctacagaag tactttgatg cctgtgctga tgctgtctct aaggatgaac ttcaaaggga taaagtggta gaagatgatg aagatgactt tcctacaacg cgttctgatg gtgacttctt gcatagtacc aacggcaata aagaaaagtt atttccacat gtgacaccaa aaggaattaa tggtatagac tttaaagggg aagcgataac ttttaaagca actactgctg gaatccttgc aacactttct cattgtattg aactaatggt taaacgtgag gacagctggc agaagagact ggataaggaa actgagaaga aaagaagaac agaggaagca tataaaaatg caatgacaga acttaagaaa aaatcccact ttggaggacc agattatgaa gaaggcccta acagtctgat taatgaagaa gagttctttg atgctgttga agctgctctt gacagacaag ataaaataga agaacagtca cagagtgaaa aggtgagatt acattggcct acatccttgc cctctggaga tgccttttct tctgtgggga cacatagatt tgtccaaaag gttgaagaga tggtgcagaa ccacatgact tactcattac aggatgtagg cggagatgcc aattggcagt tggttgtaga agaaggagaa atgaaggtat acagaagaga agtagaagaa aatgggattg ttctggatcc tttaaaagct acccatgcag ttaaaggcgt cacaggacat gaagtctgca attatttctg gaatgttgac gttcgcaatg actgggaaac aactatagaa aactttcatg tggtggaaac attagctgat aatgcaatca tcatttatca aacacacaag agggtgtggc ctgcttctca gcgagacgta ttatatcttt ctgtcattcg aaagatacca gccttgactg aaaatgaccc tgaaacttgg atagtttgta atttttctgt ggatcatgac agtgctcctc taaacaaccg atgtgtccgt gccaaaataa atgttgctat gatttgtcaa accttggtaa gcccaccaga gggaaaccag gaaattagca gggacaacat tctatgcaag attacatatg tagctaatgt gaaccctgga ggatgggcac cagcctcagt gttaagggca gtggcaaagc gagagtatcc taaatttcta aaacgtttta cttcttacgt ccaagaaaaa actgcaggaa agcctatttt gttctag - The protein sequence of the Ser132A Cert mutant is set forth as SEQ ID NO. 15:
-
(SEQ ID NO: 15) Met Ser Asp Asn Gin Ser Trp Asn Ser Ser Gly Ser Glu Glu Asp Pro Glu Thr Glu Ser Gly Pro Pro Val Glu Arg Cys Gly Val Leu Ser Lys Trp Thr Asn Tyr Ile His Gly Trp Gin Asp Arg Trp Val Val Leu Lys Asn Asn Ala Leu Ser Tyr Tyr Lys Ser Glu Asp Glu Thr Glu Tyr Gly Cys Arg Gly Ser Ile Cys Leu Ser Lys Ala Val Ile Thr Pro His Asp Phe Asp Glu Cys Arg Phe Asp Ile Ser Val Asn Asp Ser Val Trp Tyr Leu Arg Ala Gin Asp Pro Asp His Arg Gin Gin Trp Ile Asp Ala Ile Glu Gin His Lys Thr Glu Ser Gly Tyr Gly Ser Glu Ser Ser Leu Arg Arg His Gly Ala Met Val Ser Leu Val Ser Gly Ala Ser Gly Tyr Ser Ala Thr Ser Thr Ser Ser Phe Lys Lys Gly His Ser Leu Arg Glu Lys Leu Ala Glu Met Glu Thr Phe Arg Asp Ile Leu Cys Arg Gin Val Asp Thr Leu Gin Lys Tyr Phe Asp Ala Cys Ala Asp Ala Val Ser Lys Asp Glu Leu Gin Arg Asp Lys Val Val Glu Asp Asp Glu Asp Asp Phe Pro Thr Thr Arg Ser Asp Gly Asp Phe Leu His Ser Thr Asn Gly Asn Lys Glu Lys Leu Phe Pro His Val Thr Pro Lys Gly Ile Asn Gly Ile Asp Phe Lys Gly Glu Ala Ile Thr Phe Lys Ala Thr Thr Ala Gly Ile Leu Ala Thr Leu Ser His Cys Ile Glu Leu Met Val Lys Arg Glu Asp Ser Trp Gin Lys Arg Leu Asp Lys Glu Thr Glu Lys Lys Arg Arg Thr Glu Glu Ala Tyr Lys Asn Ala Met Thr Glu Leu Lys Lys Lys Ser His Phe Gly Gly Pro Asp Tyr Glu Glu Gly Pro Asn Glu Phe Phe Asp Ala Val Glu Ala Ala Leu Asp Arg Gin Asp Lys Ile Glu Glu Gin Ser Gin Ser Glu Lys Val Arg Leu His Trp Pro Thr Ser Leu Pro Ser Gly Asp Ala Phe Ser Ser Val Gly Thr His Arg Phe Val Gin Lys Val Glu Glu Met Val Gin Asn His Met Thr Tyr Ser Leu Gin Asp Val Gly Gly Asp Ala Asn Trp Gin Leu Val Val Glu Glu Gly Glu Met Lys Val Tyr Arg Arg Glu Val Glu Glu Asn Gly Ile Val Leu Asp Pro Leu Lys Ala Thr His Ala Val Lys Gly Val Thr Gly His Glu Val Cys Asn Tyr Phe Trp Asn Val Asp Val Arg Asn Asp Trp Glu Thr Thr Ile Glu Asn Phe His Val Val Glu Thr Leu Ala Asp Asn Ala Ile Ile Ile Tyr Gin Thr His Lys Arg Val Trp Pro Ala Ser Gin Arg Asp Val Leu Tyr Leu Ser Val Ile Arg Lys Ile Pro Ala Leu Thr Glu Asn Asp Pro Glu Thr Trp Ile Val Cys Asn Phe Ser Val Asp His Asp Ser Ala Pro Leu Asn Asn Arg Cys Val Arg Ala Lys Ile Asn Val Ala Met Ile Cys Gin Thr Leu Val Ser Pro Pro Glu Gly Asn Gin Glu Ile Ser Arg Asp Asn Ile Leu Cys Lys Ile Thr Tyr Val Ala Asn Val Asn Pro Gly Gly Trp Ala Pro Ala Ser Val Leu Arg Ala Val Ala Lys Arg Glu Tyr Pro Lys Phe Leu Lys Arg Phe Thr Ser Tyr Val Gin Glu Lys Thr Ala Gly Lys Pro Ile Leu Phe - ELISA Detection of Human IgG Antibodies
-
FIG. 2 andFIG. 3 show an Enzyme-linked immunosorbent assay (ELISA) for Human IgG from Chinese Hamster Ovary's (CHO) and Human Embryonic Kidney (HEK, HER-2 Negative) 293 cells transfected with human IgG modRNA, respectively. The Human Embryonic Kidney (HEK) 293 were grown in CD 293 Medium with Supplement of L-Glutamine from Invitrogen until they reached a confluence of 80-90%. The CHO cells were grown in CD CHO Medium with Supplement of L-Glutamine, Hypoxanthine and Thymidine. InFIG. 2 , 2×106 cells were transfected with 24 ug modRNA complexed with RNAiMax from Invitrogen in a 75 cm2 culture flask from Corning in 7 ml of medium. InFIG. 3 , 80,000 cells were transfected with 1 ug modRNA complexed with RNAiMax from Invitrogen in a 24-well plate. The RNA:RNAiMAX complex was formed by first incubating the RNA with CD 293 or CD CHO Medium in a 5× volumetric dilution for 10 minutes at room temperature. In a second vial, RNAiMAX reagent was incubated with CD 293 Medium or CD CHO Medium in a 10× volumetric dilution for 10 minutes at room temperature. The RNA vial was then mixed with the RNAiMAX vial and incubated for 20-30 at room temperature before being added to the cells in a drop-wise fashion. InFIG. 2 , the concentration of secreted human IgG in the culture medium was measured at 12, 24, 36 hours post-transfection. InFIG. 3 , secreted human IgG was measured at 36 hours. The culture supernatants were stored at 4 degrees. Secretion of Trastuzumab from transfected Human Embryonic Kidney 293 cells was quantified using an ELISA kit from Abcam following the manufacturers recommended instructions. This data show that a Humanized IgG antibody (Trastuzumab) modRNA (SEQ ID NOs: 6 and 7) is capable of being translated in Human Embryonic Kidney Cells and that Trastuzumab is secreted out of the cells and released into the extracellular environment. Furthermore these data demonstrate that transfection of cells with modRNA encoding Trastuzumab for the production of secreted protein can be scaled up to a bioreactor or large cell culture conditions. - Western Detection of modRNA Produced Human IgG Antibody.
-
FIG. 4 shows a Western Blot of CHO-K1 cells co-transfected with 1 μg each of Heavy and Light Chain of Trastuzumab modRNA. In order to detect translation of protein product, cells were grown using standard protocols in 24-well plates, and cell supernatants or cell lysates were collected at 24 hours post-transfection and separated on a 12% SDS-Page gel and transferred onto a nitrocellulose membrane using the iBlot by Invitrogen. After incubation with a rabbit polyclonal antibody to Human IgG conjugated to DyLight® 594 (ab96904, abcam, Cambridge, Mass.) and a secondary goat polyclonal antibody to Rb IgG which was conjugated to alkaline phosphatase, the antibody was detected using Novex® alkaline phosphatase chromogenic substrate by Invitrogen. - Cell Immuno Staining of modRNA Produced Trastuzumab and Rituximab
-
FIG. 5 shows CHO-K1 cells co-transfected with 500 ng each of Heavy and Light Chain of Trastuzumab or Rituximab. Cells were grown in F-12K Medium from Gibco and 10% FBS. Cells were fixed with 4% paraformaldehyde in PBS and permeabilized with 0.1% Triton X-100 in PBS for 5-10 minutes at room temperature. Cells were then washed 3× with room temperature PBS. Trastuzumab and Rituximab staining was performed using rabbit polyclonal antibody to Human IgG conjugated to DyLight® 594 (ab96904, abcam, Cambridge, Mass.) according to the manufacturer's recommended dilutions. Nuclear DNA staining was performed with DAPI dye from Invitrogen. The protein for Trastuzumab and Rituximab is translated and localized to the cytoplasm upon modRNA transfection. The pictures were taken 13 hours post-transfection. - Binding Immunoblot Assay for modRNA produced Trastuzumab and Rituximab
-
FIG. 6 shows a Binding Immunoblot detection assay for Trastuzumab and Rituximab. Varying concentrations of the ErB2 peptide (ab40048, abcam, Cambridge, Mass.), - antigen for Trastuzumab and the CD20 peptide (ab97360, abcam, Cambridge, Mass.), antigen for Rituximab were run at varying concentrations (100 ng/ul to 0 ng/ul on a 12% SDS-Page gel and transferred onto a membrane using the iBlot from Invitrogen. The membranes were incubated for 1 hour with their respective cell supernatants from CHO-K1 cells co-transfected with 500 ng each of Heavy and Light Chain of Trastuzumab or Rituximab. The membranes were blocked with 1% BSA and a secondary anti-human IgG antibody conjugated to alkaline phosphatase (abcam, Cambridge, Mass.) was added. Antibody detection was conducted using the Novex® alkaline phosphatase chromogenic substrate by Invitrogen. This data show that a humanized IgG antibodies generated from modRNA are capable of recognizing and binding to their respective antigens.
- The SK-BR-3 cell line, an adherent cell line derived from a human breast adenocarcinoma, which overexpress the HER2/neu receptor can be used to compare the antiproliferative properties of modRNA generated Trastuzumab. Varying concentrations of purified Trastuzumab generated from modRNA and trastuzumab can be added to cell cultures, and their effects on cell growth can be assessed in triplicate cytotoxicity and viability assays.
- SKOV-3 Tumor Model
- The anti-cancer effects of modRNA generated Trastuzumab can be determined by consecutive injections of 1) modRNA Trastuzumab, 2) trastuzumab, and 3) modRNA Trastuzumab+modRNA GCSF over a period of 28 days in SKOV-3 xenograft mice. The reduction in tumor growth size can be monitored over time.
- An antibody producing CHO cell line (CHO DG44) secreting a humanized therapeutic IgG antibody is transfected a single time with lipid cationic delivery agent alone (control) or a synthetic mRNA transcript encoding wild type ceramide transfer protein (CERT) or a non-phosphorylation competent Ser132A CERT mutant. CERT is an essential cytosolic protein in mammalian cells that transfers the sphingolipid ceramide from the endoplasmic reticulum to the Golgi complex where it is converted to sphingomyelin (Hanada et al., 2003). Overexpression of CERT significantly enhances the transport of secreted proteins to the plasma membrane and improves the production of proteins that are transported via the secretory pathway from eukaryotic cells thereby enhancing secretion of proteins in the culture medium. Synthetic mRNA transcripts are pre-mixed with a lipid cationic delivery agent at a 2-5:1 carrier:RNA ratio. The initial seeding density is about 2×105 viable cells/mL. The synthetic mRNA transcript is delivered after initial culture seeding during the exponential culture growth phase to achieve a final synthetic mRNA copy number between 10×102 and 10×103 per cell. The basal cell culture medium used for all phases of cell inoculum generation and for growth of cultures in bioreactors is modified CD-CHO medium containing glutamine, sodium bicarbonate, insulin and methotrexate. The pH of the medium is adjusted to 7.0 with 1 N HCl or 1N NaOH after addition of all components. Culture run times end on days 7, 14, 21 or 28+. Production-level 50 L scale reactors (stainless steel reactor with two marine impellers) may be used and are scalable to >10,000 L stainless steel reactors (described in commonly-assigned patent application U.S. Ser. No. 60/436,050, filed Dec. 23, 2002, and U.S. Ser. No. 10/740,645). A data acquisition system (Intellution Fix 32) records temperature, pH, and dissolved oxygen (DO) throughout runs. Gas flows are controlled via rotameters. Air is sparged into the reactor via a submerged frit (5 μm pore size) and through the reactor head space for CO2 removal. Molecular oxygen is sparged through the same frit for DO control. CO2 is sparged through same frit as used for pH control. Samples of cells are removed from the reactor on a daily basis. A sample used for cell counting is stained with trypan blue (Sigma, St. Louis, Mo.). Cell count and cell viability determination are performed via hemocytometry using a microscope. For analysis of metabolites, additional samples are centrifuged for 20 minutes at 2000 rpm (4° C.) for cell separation. Supernatant is analyzed for the following parameters: titer, sialic acid, glucose, lactate, glutamine, glutamate, pH, pO2, pCO2, ammonia, and, optionally, lactate dehydrogenase (LDH). Additional back-up samples are frozen at −20° C. To measure secreted humanized IgG antibody titers, supernatant is taken from seed-stock cultures of all stable cell pools, the IgG titer is determined by ELISA and divided by the mean number of cells to calculate the specific productivity. The highest values are the cell pools with the Ser132A CERT mutant (SEQ ID No.14), followed by wild type CERT (SEQ ID No.12. In both, IgG expression is markedly enhanced compared to carrier-alone or untransfected cells.
- An antibody producing CHO cell line (CHO DG44) secreting humanized IgG antibody is transfected with lipid cationic delivery agent alone (control) or a synthetic mRNA transcript encoding wild type ceramide transfer protein or a non-phosphorylation competent Ser132A CERT mutant. Synthetic mRNA transcripts are pre-mixed with a lipid cationic delivery agent at a 2-5:1 carrier:RNA ratio. The initial seeding density was about 2×105 viable cells/mL. Synthetic mRNA transcript is delivered after initial culture seeding during the exponential culture growth phase to achieve a final synthetic mRNA copy number between 10×102 and 10×103 per cell. The basal cell culture medium used for all phases of cell inoculum generation and for growth of cultures in bioreactors was modified CD-CHO medium containing glutamine, sodium bicarbonate, insulin and methotrexate. The pH of the medium is adjusted to 7.0 with 1 N HCl or 1N NaOH after addition of all components. Bioreactors of 5 L scale (glass reactor with one marine impeller) are used to obtain maximum CERT protein production and secreted humanized IgG antibody curves. For continuous or fed-batch cultures, the culturing run time is increased by supplementing the culture medium one or more times daily (or continuously) with fresh medium during the run. In the a continuous and fed-batch feeding regimens, the cultures receive feeding medium as a continuously-supplied infusion, or other automated addition to the culture, in a timed, regulated, and/or programmed fashion so as to achieve and maintain the appropriate amount of synthetic mRNA:carrier in the culture. The typical method is a feeding regimen of a once per day bolus feed with feeding medium containing synthetic mRNA:carrier on each day of the culture run, from the beginning of the culture run to the day of harvesting the cells. The daily feed amount is recorded on batch sheets. Production-level 50 L scale reactors (stainless steel reactor with two marine impellers) were used and are scalable to >10,000 L stainless steel reactors. A data acquisition system (Intellution Fix 32) record temperature, pH, and dissolved oxygen (DO) throughout runs. Gas flows are controlled via rotameters. Air is sparged into the reactor via a submerged frit (5 μm pore size) and through the reactor head space for CO2 removal. Molecular oxygen was sparged through the same frit for DO control. CO2 is sparged through same frit as used for pH control. Samples of cells are removed from the reactor on a daily basis. A sample used for cell counting is typically stained with trypan blue (Sigma, St. Louis, Mo.). Cell count and cell viability determination are performed via hemocytometry using a microscope. For analysis of metabolites, additional samples are centrifuged for 20 minutes at 2000 rpm (4° C.) for cell separation. Supernatant is analyzed for the following parameters: titer, sialic acid, glucose, lactate, glutamine, glutamate, pH, pO2, pCO2, ammonia, and, optionally, lactate dehydrogenase (LDH). Additional back-up samples are frozen at −20° C. To measure secreted humanized IgG antibody titers, supernatant is taken from seed-stock cultures of all stable cell pools, the IgG titer is determined by ELISA and divided by the mean number of cells to calculate the specific productivity. The highest values are the cell pools with the Ser132A CERT mutant (SEQ ID NO: 14), followed by wild type CERT (SEQ ID NO: 10 or 12). In both, IgG expression is markedly enhanced compared to carrier-alone or untransfected cells.
- Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments, described herein. The scope of the present disclosure is not intended to be limited to the above Description, but rather is as set forth in the appended claims.
- Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments in accordance with the disclosure described herein. The scope of the present disclosure is not intended to be limited to the above Description, but rather is as set forth in the appended claims.
- In the claims articles such as “a,” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The disclosure includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The disclosure includes embodiments in which more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process. Furthermore, it is to be understood that the disclosure encompasses all variations, combinations, and permutations in which one or more limitations, elements, clauses, descriptive terms, etc., from one or more of the listed claims is introduced into another claim. For example, any claim that is dependent on another claim can be modified to include one or more limitations found in any other claim that is dependent on the same base claim. Furthermore, where the claims recite a composition, it is to be understood that methods of using the composition for any of the purposes disclosed herein are included, and methods of making the composition according to any of the methods of making disclosed herein or other methods known in the art are included, unless otherwise indicated or unless it would be evident to one of ordinary skill in the art that a contradiction or inconsistency would arise.
- Where elements are presented as lists, e.g., in Markush group format, it is to be understood that each subgroup of the elements is also disclosed, and any element(s) can be removed from the group. It should it be understood that, in general, where the disclosure, or aspects of the disclosure, is/are referred to as comprising particular elements, features, etc., certain embodiments of the disclosure or aspects of the disclosure consist, or consist essentially of, such elements, features, etc. For purposes of simplicity those embodiments have not been specifically set forth in haec verba herein. It is also noted that the term “comprising” is intended to be open and permits the inclusion of additional elements or steps.
- Where ranges are given, endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value or subrange within the stated ranges in different embodiments of the disclosure, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise.
- In addition, it is to be understood that any particular embodiment of the present disclosure that falls within the prior art may be explicitly excluded from any one or more of the claims. Since such embodiments are deemed to be known to one of ordinary skill in the art, they may be excluded even if the exclusion is not set forth explicitly herein. Any particular embodiment of the compositions of the disclosure (e.g., any protein; any nucleic acid; any method of production; any method of use; etc.) can be excluded from any one or more claims, for any reason, whether or not related to the existence of prior art.
- All cited sources, for example, references, publications, databases, database entries, and art cited herein, are incorporated into this application by reference, even if not expressly stated in the citation. In case of conflicting statements of a cited source and the instant application, the statement in the instant application shall control.
- Other embodiments are in the claims.
Claims (31)
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/252,049 US20120237975A1 (en) | 2010-10-01 | 2011-10-03 | Engineered nucleic acids and methods of use thereof |
| US13/897,363 US20130244282A1 (en) | 2010-10-01 | 2013-05-18 | Method of producing antibodies |
| US14/535,484 US9701965B2 (en) | 2010-10-01 | 2014-11-07 | Engineered nucleic acids and methods of use thereof |
| US15/611,490 US20180112221A1 (en) | 2010-10-01 | 2017-06-01 | Engineered Nucleic Acids and Methods of Use Thereof |
| US16/930,720 US20210236655A1 (en) | 2010-10-01 | 2020-07-16 | Engineered Nucleic Acids and Methods of Use Thereof |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US40441310P | 2010-10-01 | 2010-10-01 | |
| US13/252,049 US20120237975A1 (en) | 2010-10-01 | 2011-10-03 | Engineered nucleic acids and methods of use thereof |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/897,363 Continuation US20130244282A1 (en) | 2010-10-01 | 2013-05-18 | Method of producing antibodies |
| US14/535,484 Continuation US9701965B2 (en) | 2010-10-01 | 2014-11-07 | Engineered nucleic acids and methods of use thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20120237975A1 true US20120237975A1 (en) | 2012-09-20 |
Family
ID=45893552
Family Applications (12)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/252,049 Abandoned US20120237975A1 (en) | 2010-10-01 | 2011-10-03 | Engineered nucleic acids and methods of use thereof |
| US13/481,127 Abandoned US20130102034A1 (en) | 2010-10-01 | 2012-05-25 | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US13/739,212 Active 2031-12-18 US9334328B2 (en) | 2010-10-01 | 2013-01-11 | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US13/897,363 Abandoned US20130244282A1 (en) | 2010-10-01 | 2013-05-18 | Method of producing antibodies |
| US14/535,484 Active US9701965B2 (en) | 2010-10-01 | 2014-11-07 | Engineered nucleic acids and methods of use thereof |
| US15/143,364 Active US9657295B2 (en) | 2010-10-01 | 2016-04-29 | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US15/493,829 Active US10064959B2 (en) | 2010-10-01 | 2017-04-21 | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US15/611,490 Abandoned US20180112221A1 (en) | 2010-10-01 | 2017-06-01 | Engineered Nucleic Acids and Methods of Use Thereof |
| US16/047,574 Abandoned US20190160185A1 (en) | 2010-10-01 | 2018-07-27 | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US16/930,720 Abandoned US20210236655A1 (en) | 2010-10-01 | 2020-07-16 | Engineered Nucleic Acids and Methods of Use Thereof |
| US18/045,805 Pending US20240033379A1 (en) | 2010-10-01 | 2022-10-11 | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US18/820,804 Active US12357708B2 (en) | 2010-10-01 | 2024-08-30 | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
Family Applications After (11)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/481,127 Abandoned US20130102034A1 (en) | 2010-10-01 | 2012-05-25 | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US13/739,212 Active 2031-12-18 US9334328B2 (en) | 2010-10-01 | 2013-01-11 | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US13/897,363 Abandoned US20130244282A1 (en) | 2010-10-01 | 2013-05-18 | Method of producing antibodies |
| US14/535,484 Active US9701965B2 (en) | 2010-10-01 | 2014-11-07 | Engineered nucleic acids and methods of use thereof |
| US15/143,364 Active US9657295B2 (en) | 2010-10-01 | 2016-04-29 | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US15/493,829 Active US10064959B2 (en) | 2010-10-01 | 2017-04-21 | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US15/611,490 Abandoned US20180112221A1 (en) | 2010-10-01 | 2017-06-01 | Engineered Nucleic Acids and Methods of Use Thereof |
| US16/047,574 Abandoned US20190160185A1 (en) | 2010-10-01 | 2018-07-27 | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US16/930,720 Abandoned US20210236655A1 (en) | 2010-10-01 | 2020-07-16 | Engineered Nucleic Acids and Methods of Use Thereof |
| US18/045,805 Pending US20240033379A1 (en) | 2010-10-01 | 2022-10-11 | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US18/820,804 Active US12357708B2 (en) | 2010-10-01 | 2024-08-30 | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
Country Status (27)
| Country | Link |
|---|---|
| US (12) | US20120237975A1 (en) |
| EP (8) | EP2857499A1 (en) |
| JP (1) | JP2013543381A (en) |
| CN (3) | CN104531812A (en) |
| AU (2) | AU2011308496A1 (en) |
| BR (1) | BR112013007862A2 (en) |
| CA (3) | CA2821992A1 (en) |
| CY (1) | CY1125421T1 (en) |
| DE (1) | DE19177059T1 (en) |
| DK (2) | DK3590949T3 (en) |
| ES (4) | ES2925251T3 (en) |
| FI (1) | FI4108671T3 (en) |
| HR (2) | HRP20220796T1 (en) |
| HU (2) | HUE069586T2 (en) |
| IL (1) | IL225493A0 (en) |
| LT (2) | LT4108671T (en) |
| MX (1) | MX2013003681A (en) |
| NZ (1) | NZ608972A (en) |
| PL (2) | PL4108671T3 (en) |
| PT (2) | PT4108671T (en) |
| RS (2) | RS63430B1 (en) |
| RU (1) | RU2013120302A (en) |
| SG (2) | SG10201508149TA (en) |
| SI (2) | SI4108671T1 (en) |
| SM (2) | SMT202400513T1 (en) |
| WO (2) | WO2012045082A2 (en) |
| ZA (2) | ZA201303161B (en) |
Cited By (70)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8664194B2 (en) | 2011-12-16 | 2014-03-04 | Moderna Therapeutics, Inc. | Method for producing a protein of interest in a primate |
| US8710200B2 (en) | 2011-03-31 | 2014-04-29 | Moderna Therapeutics, Inc. | Engineered nucleic acids encoding a modified erythropoietin and their expression |
| WO2014093924A1 (en) | 2012-12-13 | 2014-06-19 | Moderna Therapeutics, Inc. | Modified nucleic acid molecules and uses thereof |
| US8822663B2 (en) | 2010-08-06 | 2014-09-02 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| WO2014152774A1 (en) | 2013-03-14 | 2014-09-25 | Shire Human Genetic Therapies, Inc. | Methods and compositions for delivering mrna coded antibodies |
| US8853377B2 (en) | 2010-11-30 | 2014-10-07 | Shire Human Genetic Therapies, Inc. | mRNA for use in treatment of human genetic diseases |
| US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
| US8999380B2 (en) | 2012-04-02 | 2015-04-07 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
| US9012219B2 (en) | 2005-08-23 | 2015-04-21 | The Trustees Of The University Of Pennsylvania | RNA preparations comprising purified modified RNA for reprogramming cells |
| US9107886B2 (en) | 2012-04-02 | 2015-08-18 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding basic helix-loop-helix family member E41 |
| US9181321B2 (en) | 2013-03-14 | 2015-11-10 | Shire Human Genetic Therapies, Inc. | CFTR mRNA compositions and related methods and uses |
| US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
| US9308281B2 (en) | 2011-06-08 | 2016-04-12 | Shire Human Genetic Therapies, Inc. | MRNA therapy for Fabry disease |
| US9334328B2 (en) | 2010-10-01 | 2016-05-10 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US9371544B2 (en) | 2009-12-07 | 2016-06-21 | The Trustees Of The University Of Pennsylvania | Compositions and methods for reprogramming eukaryotic cells |
| US9376669B2 (en) | 2012-11-01 | 2016-06-28 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US9422577B2 (en) | 2011-12-05 | 2016-08-23 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US9428535B2 (en) | 2011-10-03 | 2016-08-30 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| US9512456B2 (en) | 2012-08-14 | 2016-12-06 | Modernatx, Inc. | Enzymes and polymerases for the synthesis of RNA |
| US9522176B2 (en) | 2013-10-22 | 2016-12-20 | Shire Human Genetic Therapies, Inc. | MRNA therapy for phenylketonuria |
| US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
| US9597380B2 (en) | 2012-11-26 | 2017-03-21 | Modernatx, Inc. | Terminally modified RNA |
| US9629804B2 (en) | 2013-10-22 | 2017-04-25 | Shire Human Genetic Therapies, Inc. | Lipid formulations for delivery of messenger RNA |
| US9668980B2 (en) | 2014-07-02 | 2017-06-06 | Rana Therapeutics, Inc. | Encapsulation of messenger RNA |
| US9751925B2 (en) | 2014-11-10 | 2017-09-05 | Modernatx, Inc. | Alternative nucleic acid molecules containing reduced uracil content and uses thereof |
| US9770489B2 (en) | 2014-01-31 | 2017-09-26 | Factor Bioscience Inc. | Methods and products for nucleic acid production and delivery |
| US9850269B2 (en) | 2014-04-25 | 2017-12-26 | Translate Bio, Inc. | Methods for purification of messenger RNA |
| US9872900B2 (en) | 2014-04-23 | 2018-01-23 | Modernatx, Inc. | Nucleic acid vaccines |
| US9943595B2 (en) | 2014-12-05 | 2018-04-17 | Translate Bio, Inc. | Messenger RNA therapy for treatment of articular disease |
| US9957499B2 (en) | 2013-03-14 | 2018-05-01 | Translate Bio, Inc. | Methods for purification of messenger RNA |
| US20180126003A1 (en) * | 2016-05-04 | 2018-05-10 | Curevac Ag | New targets for rna therapeutics |
| US10022455B2 (en) | 2014-05-30 | 2018-07-17 | Translate Bio, Inc. | Biodegradable lipids for delivery of nucleic acids |
| US10023626B2 (en) | 2013-09-30 | 2018-07-17 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
| US10106800B2 (en) | 2005-09-28 | 2018-10-23 | Biontech Ag | Modification of RNA, producing an increased transcript stability and translation efficiency |
| US10130649B2 (en) | 2013-03-15 | 2018-11-20 | Translate Bio, Inc. | Synergistic enhancement of the delivery of nucleic acids via blended formulations |
| US10137206B2 (en) | 2016-08-17 | 2018-11-27 | Factor Bioscience Inc. | Nucleic acid products and methods of administration thereof |
| US10138213B2 (en) | 2014-06-24 | 2018-11-27 | Translate Bio, Inc. | Stereochemically enriched compositions for delivery of nucleic acids |
| US10144942B2 (en) | 2015-10-14 | 2018-12-04 | Translate Bio, Inc. | Modification of RNA-related enzymes for enhanced production |
| US10143758B2 (en) | 2009-12-01 | 2018-12-04 | Translate Bio, Inc. | Liver specific delivery of messenger RNA |
| US10155031B2 (en) | 2012-11-28 | 2018-12-18 | Biontech Rna Pharmaceuticals Gmbh | Individualized vaccines for cancer |
| US10172924B2 (en) | 2015-03-19 | 2019-01-08 | Translate Bio, Inc. | MRNA therapy for pompe disease |
| US10245229B2 (en) | 2012-06-08 | 2019-04-02 | Translate Bio, Inc. | Pulmonary delivery of mRNA to non-lung target cells |
| US10258698B2 (en) | 2013-03-14 | 2019-04-16 | Modernatx, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
| US10266843B2 (en) | 2016-04-08 | 2019-04-23 | Translate Bio, Inc. | Multimeric coding nucleic acid and uses thereof |
| US10323076B2 (en) | 2013-10-03 | 2019-06-18 | Modernatx, Inc. | Polynucleotides encoding low density lipoprotein receptor |
| US10485884B2 (en) | 2012-03-26 | 2019-11-26 | Biontech Rna Pharmaceuticals Gmbh | RNA formulation for immunotherapy |
| US10501404B1 (en) | 2019-07-30 | 2019-12-10 | Factor Bioscience Inc. | Cationic lipids and transfection methods |
| US10738355B2 (en) | 2011-05-24 | 2020-08-11 | Tron-Translationale Onkologie An Der Universitätsmedizin Der Johannes Gutenberg-Universität Mainz Ggmbh | Individualized vaccines for cancer |
| US10780052B2 (en) | 2013-10-22 | 2020-09-22 | Translate Bio, Inc. | CNS delivery of MRNA and uses thereof |
| US10835583B2 (en) | 2016-06-13 | 2020-11-17 | Translate Bio, Inc. | Messenger RNA therapy for the treatment of ornithine transcarbamylase deficiency |
| US10849920B2 (en) | 2015-10-05 | 2020-12-01 | Modernatx, Inc. | Methods for therapeutic administration of messenger ribonucleic acid drugs |
| US11156617B2 (en) | 2015-02-12 | 2021-10-26 | BioNTech RNA Pharmaceuticals GbmH | Predicting T cell epitopes useful for vaccination |
| US11167043B2 (en) | 2017-12-20 | 2021-11-09 | Translate Bio, Inc. | Composition and methods for treatment of ornithine transcarbamylase deficiency |
| US11173190B2 (en) | 2017-05-16 | 2021-11-16 | Translate Bio, Inc. | Treatment of cystic fibrosis by delivery of codon-optimized mRNA encoding CFTR |
| US11174500B2 (en) | 2018-08-24 | 2021-11-16 | Translate Bio, Inc. | Methods for purification of messenger RNA |
| US11173120B2 (en) | 2014-09-25 | 2021-11-16 | Biontech Rna Pharmaceuticals Gmbh | Stable formulations of lipids and liposomes |
| US11222711B2 (en) | 2013-05-10 | 2022-01-11 | BioNTech SE | Predicting immunogenicity of T cell epitopes |
| US11224642B2 (en) | 2013-10-22 | 2022-01-18 | Translate Bio, Inc. | MRNA therapy for argininosuccinate synthetase deficiency |
| US11241505B2 (en) | 2015-02-13 | 2022-02-08 | Factor Bioscience Inc. | Nucleic acid products and methods of administration thereof |
| US11253605B2 (en) | 2017-02-27 | 2022-02-22 | Translate Bio, Inc. | Codon-optimized CFTR MRNA |
| US11254936B2 (en) | 2012-06-08 | 2022-02-22 | Translate Bio, Inc. | Nuclease resistant polynucleotides and uses thereof |
| US11298426B2 (en) | 2003-10-14 | 2022-04-12 | BioNTech SE | Recombinant vaccines and use thereof |
| US11390899B2 (en) * | 2016-09-26 | 2022-07-19 | SOLA Biosciences, LLC | Cell-associated secretion-enhancing fusion proteins |
| WO2022155404A1 (en) * | 2021-01-14 | 2022-07-21 | Translate Bio, Inc. | Methods and compositions for delivering mrna coded antibodies |
| US11492628B2 (en) | 2015-10-07 | 2022-11-08 | BioNTech SE | 3′-UTR sequences for stabilization of RNA |
| US12195505B2 (en) | 2018-11-21 | 2025-01-14 | Translate Bio, Inc. | Treatment of cystic fibrosis by delivery of nebulized mRNA encoding CFTR |
| US12227768B2 (en) | 2011-12-05 | 2025-02-18 | Factor Bioscience Inc. | Methods and products for transfection |
| US12270813B2 (en) | 2017-06-09 | 2025-04-08 | BioNTech SE | Methods for predicting the usefulness of disease specific amino acid modifications for immunotherapy |
| US12344572B2 (en) | 2019-07-03 | 2025-07-01 | Factor Bioscience Inc. | Cationic lipids and transfection methods |
Families Citing this family (171)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9006417B2 (en) | 2010-06-30 | 2015-04-14 | Protiva Biotherapeutics, Inc. | Non-liposomal systems for nucleic acid delivery |
| CA2804396C (en) | 2010-07-06 | 2021-06-29 | Novartis Ag | Liposomes with lipids having an advantageous pka-value for rna delivery |
| DK2591114T3 (en) | 2010-07-06 | 2016-08-29 | Glaxosmithkline Biologicals Sa | Immunization of large mammals with low doses of RNA |
| PT3243526T (en) | 2010-07-06 | 2020-03-04 | Glaxosmithkline Biologicals Sa | DISTRIBUTION OF RNA TO DISPOLISH MULTIPLE IMMUNITY ROUTES |
| RS63329B1 (en) | 2010-08-31 | 2022-07-29 | Glaxosmithkline Biologicals Sa | Pegylated liposomes for delivery of immunogen-encoding rna |
| ES2716243T3 (en) | 2010-10-11 | 2019-06-11 | Glaxosmithkline Biologicals Sa | Antigen Supply Platforms |
| EP3235508B1 (en) * | 2011-03-16 | 2020-12-30 | Sanofi | Compositions comprising a dual v region antibody-like protein |
| WO2013006838A1 (en) | 2011-07-06 | 2013-01-10 | Novartis Ag | Immunogenic combination compositions and uses thereof |
| AU2012352455B2 (en) | 2011-12-12 | 2016-01-21 | The Trustees Of The University Of Pennsylvania | Proteins comprising MRSA PBP2a and fragments thereof, nucleic acids encoding the same, and compositions and their use to prevent and treat MRSA infections |
| CA2897941A1 (en) | 2013-01-17 | 2014-07-24 | Moderna Therapeutics, Inc. | Signal-sensor polynucleotides for the alteration of cellular phenotypes |
| WO2014124457A1 (en) * | 2013-02-11 | 2014-08-14 | University Of Louisville Research Foundation, Inc. | Methods for producing antibodies |
| WO2014159813A1 (en) | 2013-03-13 | 2014-10-02 | Moderna Therapeutics, Inc. | Long-lived polynucleotide molecules |
| EP4279610A3 (en) | 2013-03-15 | 2024-01-03 | ModernaTX, Inc. | Ribonucleic acid purification |
| WO2014152027A1 (en) | 2013-03-15 | 2014-09-25 | Moderna Therapeutics, Inc. | Manufacturing methods for production of rna transcripts |
| WO2014144767A1 (en) | 2013-03-15 | 2014-09-18 | Moderna Therapeutics, Inc. | Ion exchange purification of mrna |
| US10077439B2 (en) | 2013-03-15 | 2018-09-18 | Modernatx, Inc. | Removal of DNA fragments in mRNA production process |
| DE102013005361A1 (en) | 2013-03-28 | 2014-10-02 | Eberhard Karls Universität Tübingen Medizinische Fakultät | polyribonucleotide |
| PT3019619T (en) | 2013-07-11 | 2021-11-11 | Modernatx Inc | COMPOSITIONS COMPRISING SYNTHETIC POLYNUCLEOTIDES ENCODING SYNTHETIC CRISPR AND SGARN-RELATED PROTEINS AND METHODS OF USE |
| US20160194368A1 (en) * | 2013-09-03 | 2016-07-07 | Moderna Therapeutics, Inc. | Circular polynucleotides |
| WO2015051169A2 (en) | 2013-10-02 | 2015-04-09 | Moderna Therapeutics, Inc. | Polynucleotide molecules and uses thereof |
| JP2017500865A (en) | 2013-12-19 | 2017-01-12 | ノバルティス アーゲー | Compositions and formulations of leptin mRNA |
| US10286086B2 (en) | 2014-06-19 | 2019-05-14 | Modernatx, Inc. | Alternative nucleic acid molecules and uses thereof |
| AU2015289656A1 (en) | 2014-07-16 | 2017-02-16 | Modernatx, Inc. | Circular polynucleotides |
| GB201418965D0 (en) * | 2014-10-24 | 2014-12-10 | Ospedale San Raffaele And Fond Telethon | |
| WO2016130943A1 (en) | 2015-02-13 | 2016-08-18 | Rana Therapeutics, Inc. | Hybrid oligonucleotides and uses thereof |
| WO2016180430A1 (en) | 2015-05-08 | 2016-11-17 | Curevac Ag | Method for producing rna |
| DE202016009003U1 (en) | 2015-05-29 | 2021-05-28 | Curevac Real Estate Gmbh | Composition comprising in vitro transcribed RNA obtainable by a method for the production and purification of RNA with at least one step with a tangential flow filtration |
| ES2937963T3 (en) | 2015-07-21 | 2023-04-03 | Modernatx Inc | Infectious disease vaccines |
| US11364292B2 (en) | 2015-07-21 | 2022-06-21 | Modernatx, Inc. | CHIKV RNA vaccines |
| HK1256498A1 (en) | 2015-07-30 | 2019-09-27 | Modernatx, Inc. | Concatemeric peptide epitope rnas |
| WO2017031232A1 (en) | 2015-08-17 | 2017-02-23 | Modernatx, Inc. | Methods for preparing particles and related compositions |
| ES2908449T3 (en) | 2015-09-17 | 2022-04-29 | Modernatx Inc | Polynucleotides that contain a stabilizing tail region |
| WO2017049286A1 (en) | 2015-09-17 | 2017-03-23 | Moderna Therapeutics, Inc. | Polynucleotides containing a morpholino linker |
| EP4349405A3 (en) | 2015-10-22 | 2024-06-19 | ModernaTX, Inc. | Respiratory virus vaccines |
| JP6925688B2 (en) | 2015-10-22 | 2021-08-25 | モデルナティーエックス, インコーポレイテッド | Nucleic acid vaccine for varicella-zoster virus (VZV) |
| EP3364950A4 (en) | 2015-10-22 | 2019-10-23 | ModernaTX, Inc. | VACCINES AGAINST TROPICAL DISEASES |
| JP2018531290A (en) | 2015-10-22 | 2018-10-25 | モデルナティーエックス, インコーポレイテッド | Sexually transmitted disease vaccine |
| WO2017070613A1 (en) | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Human cytomegalovirus vaccine |
| EP3368089A4 (en) | 2015-10-26 | 2019-05-29 | Translate Bio Ma, Inc. | NANOPARTICLE FORMULATIONS FOR ADMINISTRATION OF NUCLEIC ACID COMPLEXES |
| WO2017098468A1 (en) | 2015-12-09 | 2017-06-15 | Novartis Ag | Label-free analysis of rna capping efficiency using rnase h, probes and liquid chromatography/mass spectrometry |
| CA3007955A1 (en) | 2015-12-10 | 2017-06-15 | Modernatx, Inc. | Lipid nanoparticles for delivery of therapeutic agents |
| US10465190B1 (en) | 2015-12-23 | 2019-11-05 | Modernatx, Inc. | In vitro transcription methods and constructs |
| US20210206818A1 (en) | 2016-01-22 | 2021-07-08 | Modernatx, Inc. | Messenger ribonucleic acids for the production of intracellular binding polypeptides and methods of use thereof |
| TW201738256A (en) * | 2016-04-04 | 2017-11-01 | 日產化學工業股份有限公司 | Production method of protein |
| EP3241905A1 (en) * | 2016-05-06 | 2017-11-08 | Miltenyi Biotec GmbH | Method for introducing nucleic acids into a cell |
| CN115837014A (en) | 2016-05-18 | 2023-03-24 | 摩登纳特斯有限公司 | Polynucleotide encoding relaxin |
| EP3458107B1 (en) | 2016-05-18 | 2024-03-13 | ModernaTX, Inc. | Polynucleotides encoding jagged1 for the treatment of alagille syndrome |
| WO2017223176A1 (en) | 2016-06-24 | 2017-12-28 | Modernatx, Inc. | Methods and apparatus for filtration |
| US20190161730A1 (en) | 2016-07-07 | 2019-05-30 | Rubius Therapeutics, Inc. | Compositions and methods related to therapeutic cell systems expressing exogenous rna |
| WO2018035380A1 (en) | 2016-08-17 | 2018-02-22 | Solstice Biologics, Ltd. | Polynucleotide constructs |
| EP4166666A1 (en) | 2016-09-14 | 2023-04-19 | ModernaTX, Inc. | High purity rna compositions and methods for preparation thereof |
| MA46584A (en) | 2016-10-21 | 2019-08-28 | Modernatx Inc | HUMAN CYTOMEGALOVIRUS VACCINE |
| AU2017347837A1 (en) | 2016-10-26 | 2019-06-06 | Modernatx, Inc. | Messenger ribonucleic acids for enhancing immune responses and methods of use thereof |
| MA46766A (en) | 2016-11-11 | 2019-09-18 | Modernatx Inc | INFLUENZA VACCINE |
| EP3551193A4 (en) | 2016-12-08 | 2020-08-19 | Modernatx, Inc. | NUCLEIC ACID VACCINES AGAINST RESPIRATORY VIRUS |
| WO2018111967A1 (en) | 2016-12-13 | 2018-06-21 | Modernatx, Inc. | Rna affinity purification |
| AU2018207440B2 (en) | 2017-01-11 | 2022-06-02 | The Board Of Trustees Of The Leland Stanford Junior University | R-spondin (RSPO) surrogate molecules |
| CN110234662A (en) | 2017-01-26 | 2019-09-13 | 瑟罗泽恩公司 | Tissue specificity WNT signal enhancing molecule and its purposes |
| US10093706B2 (en) | 2017-01-30 | 2018-10-09 | Indiana University Research And Technology Corporation | Dominant positive hnRNP-E1 polypeptide compositions and methods |
| US20190351039A1 (en) | 2017-02-01 | 2019-11-21 | Modernatx, Inc. | Immunomodulatory therapeutic mrna compositions encoding activating oncogene mutation peptides |
| WO2018151816A1 (en) | 2017-02-16 | 2018-08-23 | Modernatx, Inc. | High potency immunogenic compositions |
| TW201842921A (en) | 2017-02-28 | 2018-12-16 | 法商賽諾菲公司 | Therapeutic rna |
| US11464848B2 (en) | 2017-03-15 | 2022-10-11 | Modernatx, Inc. | Respiratory syncytial virus vaccine |
| WO2018170270A1 (en) | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Varicella zoster virus (vzv) vaccine |
| WO2018170256A1 (en) | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Herpes simplex virus vaccine |
| WO2018170245A1 (en) | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Broad spectrum influenza virus vaccine |
| EP3595676A4 (en) | 2017-03-17 | 2021-05-05 | Modernatx, Inc. | Zoonotic disease rna vaccines |
| US11905525B2 (en) | 2017-04-05 | 2024-02-20 | Modernatx, Inc. | Reduction of elimination of immune responses to non-intravenous, e.g., subcutaneously administered therapeutic proteins |
| CN106929513A (en) * | 2017-04-07 | 2017-07-07 | 东南大学 | The nano antibody of mRNA codings and its application |
| EP3625345B1 (en) | 2017-05-18 | 2023-05-24 | ModernaTX, Inc. | Modified messenger rna comprising functional rna elements |
| WO2018217897A1 (en) * | 2017-05-23 | 2018-11-29 | David Weiner | Compositions and method for inducing an immune response |
| US11786607B2 (en) | 2017-06-15 | 2023-10-17 | Modernatx, Inc. | RNA formulations |
| WO2019006455A1 (en) | 2017-06-30 | 2019-01-03 | Solstice Biologics, Ltd. | Chiral phosphoramidite auxiliaries and methods of their use |
| WO2019010224A1 (en) * | 2017-07-03 | 2019-01-10 | Torque Therapeutics, Inc. | Fusion molecules targeting immune regulatory cells and uses thereof |
| EP3668979A4 (en) | 2017-08-18 | 2021-06-02 | Modernatx, Inc. | METHOD OF HPLC ANALYSIS |
| US11866696B2 (en) | 2017-08-18 | 2024-01-09 | Modernatx, Inc. | Analytical HPLC methods |
| CN111212905A (en) | 2017-08-18 | 2020-05-29 | 摩登纳特斯有限公司 | RNA polymerase variants |
| US11744801B2 (en) | 2017-08-31 | 2023-09-05 | Modernatx, Inc. | Methods of making lipid nanoparticles |
| MA50253A (en) | 2017-09-14 | 2020-07-22 | Modernatx Inc | ZIKA VIRUS RNA VACCINES |
| WO2019087113A1 (en) | 2017-11-01 | 2019-05-09 | Novartis Ag | Synthetic rnas and methods of use |
| EP3735270A1 (en) | 2018-01-05 | 2020-11-11 | Modernatx, Inc. | Polynucleotides encoding anti-chikungunya virus antibodies |
| US11911453B2 (en) | 2018-01-29 | 2024-02-27 | Modernatx, Inc. | RSV RNA vaccines |
| EP3746052A1 (en) | 2018-01-30 | 2020-12-09 | Modernatx, Inc. | Compositions and methods for delivery of agents to immune cells |
| WO2019200171A1 (en) | 2018-04-11 | 2019-10-17 | Modernatx, Inc. | Messenger rna comprising functional rna elements |
| CN119286871A (en) | 2018-04-19 | 2025-01-10 | 查美特制药公司 | Synthetic RIG-I-like receptor agonists |
| JP7450945B2 (en) | 2018-08-30 | 2024-03-18 | テナヤ セラピューティクス, インコーポレイテッド | Cardiac cell reprogramming using myocardin and ASCL1 |
| US20230081530A1 (en) | 2018-09-14 | 2023-03-16 | Modernatx, Inc. | Methods and compositions for treating cancer using mrna therapeutics |
| CA3113025A1 (en) | 2018-09-19 | 2020-03-26 | Modernatx, Inc. | Peg lipids and uses thereof |
| AU2019345067A1 (en) | 2018-09-19 | 2021-04-08 | Modernatx, Inc. | High-purity peg lipids and uses thereof |
| EP3852728B1 (en) | 2018-09-20 | 2024-09-18 | ModernaTX, Inc. | Preparation of lipid nanoparticles and methods of administration thereof |
| US12331320B2 (en) | 2018-10-10 | 2025-06-17 | The Research Foundation For The State University Of New York | Genome edited cancer cell vaccines |
| US20220001026A1 (en) | 2018-11-08 | 2022-01-06 | Modernatx, Inc. | Use of mrna encoding ox40l to treat cancer in human patients |
| US11351242B1 (en) | 2019-02-12 | 2022-06-07 | Modernatx, Inc. | HMPV/hPIV3 mRNA vaccine composition |
| US11851694B1 (en) | 2019-02-20 | 2023-12-26 | Modernatx, Inc. | High fidelity in vitro transcription |
| AU2020224103A1 (en) | 2019-02-20 | 2021-09-16 | Modernatx, Inc. | Rna polymerase variants for co-transcriptional capping |
| US12070495B2 (en) | 2019-03-15 | 2024-08-27 | Modernatx, Inc. | HIV RNA vaccines |
| JP2022531461A (en) | 2019-05-07 | 2022-07-06 | モデルナティエックス インコーポレイテッド | Polynucleotides that disrupt immune cell activity and how to use them |
| US20230086537A1 (en) | 2019-05-07 | 2023-03-23 | Modernatx, Inc. | Differentially expressed immune cell micrornas for regulation of protein expression |
| EP3986480A1 (en) | 2019-06-24 | 2022-04-27 | ModernaTX, Inc. | Messenger rna comprising functional rna elements and uses thereof |
| MA56539A (en) | 2019-06-24 | 2022-04-27 | Modernatx Inc | ENDONUCLEASE RESISTANT MESSENGER RNA AND USES THEREOF |
| US20230137971A1 (en) | 2019-07-11 | 2023-05-04 | Tenaya Therapeutics Inc. | Cardiac cell reprogramming with micrornas and other factors |
| WO2021050986A1 (en) | 2019-09-11 | 2021-03-18 | Modernatx, Inc. | Lnp-formulated mrna therapeutics and use thereof for treating human subjects |
| CA3155202A1 (en) | 2019-10-23 | 2021-04-29 | Arthur M. Krieg | Synthetic rig-i-like receptor agonists |
| US11241493B2 (en) | 2020-02-04 | 2022-02-08 | Curevac Ag | Coronavirus vaccine |
| US12194089B2 (en) | 2020-02-04 | 2025-01-14 | CureVac SE | Coronavirus vaccine |
| EP4114421A1 (en) | 2020-03-02 | 2023-01-11 | Tenaya Therapeutics, Inc. | Gene vector control by cardiomyocyte-expressed micrornas |
| BR112022017713A2 (en) * | 2020-03-04 | 2022-11-16 | Flagship Pioneering Innovations Vi Llc | METHODS AND COMPOSITIONS TO MODULATE A GENOME |
| EP4132478A1 (en) | 2020-04-09 | 2023-02-15 | Finncure Oy | Mimetic nanoparticles for preventing the spreading and lowering the infection rate of novel coronaviruses |
| US12194157B2 (en) | 2020-04-09 | 2025-01-14 | Finncure Oy | Carrier for targeted delivery to a host |
| TW202508622A (en) | 2020-04-22 | 2025-03-01 | 德商拜恩迪克公司 | Coronavirus vaccine |
| WO2021243207A1 (en) | 2020-05-28 | 2021-12-02 | Modernatx, Inc. | Use of mrnas encoding ox40l, il-23 and il-36gamma for treating cancer |
| CA3187138A1 (en) * | 2020-06-26 | 2021-12-30 | Carisma Therapeutics Inc. | Mrna transfection of immune cells |
| BR112023001955A2 (en) | 2020-08-06 | 2023-04-11 | Modernatx Inc | COMPOSITIONS FOR THE DELIVERY OF PAYLOAD MOLECULES TO THE AIRWAY EPITHELIUM |
| US11406703B2 (en) | 2020-08-25 | 2022-08-09 | Modernatx, Inc. | Human cytomegalovirus vaccine |
| US12419948B2 (en) | 2020-08-31 | 2025-09-23 | The Broad Institute, Inc. | Immunogenic compositions and use thereof |
| KR20230109668A (en) | 2020-11-16 | 2023-07-20 | 서로젠 오퍼레이팅, 인크. | Liver-Specific Wnt Signaling Enhancer Molecules and Uses Thereof |
| CA3200234A1 (en) | 2020-11-25 | 2022-06-02 | Daryl C. Drummond | Lipid nanoparticles for delivery of nucleic acids, and related methods of use |
| IL303457A (en) | 2020-12-09 | 2023-08-01 | BioNTech SE | Production of RNA |
| KR20230164648A (en) | 2020-12-22 | 2023-12-04 | 큐어백 에스이 | RNA vaccines against SARS-CoV-2 variants |
| EP4274607A1 (en) | 2021-01-11 | 2023-11-15 | ModernaTX, Inc. | Seasonal rna influenza virus vaccines |
| AU2021421391A1 (en) | 2021-01-24 | 2023-07-20 | Michael David FORREST | Inhibitors of atp synthase - cosmetic and therapeutic uses |
| US12343375B2 (en) | 2021-02-09 | 2025-07-01 | University Of Louisville Research Foundation, Inc. | Spray dried formulation of a cholera toxin B subunit variant |
| US11524023B2 (en) | 2021-02-19 | 2022-12-13 | Modernatx, Inc. | Lipid nanoparticle compositions and methods of formulating the same |
| AU2022242828A1 (en) | 2021-03-23 | 2023-10-12 | Recode Therapeutics, Inc. | Polynucleotide compositions, related formulations, and methods of use thereof |
| WO2022212191A1 (en) * | 2021-04-01 | 2022-10-06 | Modernatx, Inc. | Mucosal expression of antibody structures and isotypes by mrna |
| US20220363937A1 (en) | 2021-05-14 | 2022-11-17 | Armstrong World Industries, Inc. | Stabilization of antimicrobial coatings |
| TW202320736A (en) | 2021-07-26 | 2023-06-01 | 美商現代公司 | Processes for preparing lipid nanoparticle compositions |
| CN118019526A (en) | 2021-07-26 | 2024-05-10 | 摩登纳特斯有限公司 | Methods for preparing lipid nanoparticle compositions for delivering payload molecules to airway epithelium |
| CN113736768B (en) * | 2021-08-18 | 2023-06-23 | 新发药业有限公司 | Pseudo uridine synthetase mutant, mutant gene and application thereof in preparation of vitamin B2 |
| CN117999355A (en) | 2021-08-24 | 2024-05-07 | 生物技术欧洲股份公司 | In vitro transcription technology |
| WO2023064469A1 (en) | 2021-10-13 | 2023-04-20 | Modernatx, Inc. | Compositions of mrna-encoded il15 fusion proteins and methods of use thereof |
| US20240417805A1 (en) | 2021-10-21 | 2024-12-19 | Curevac Netherlands B.V. | Cancer neoantigens |
| JP2024539512A (en) | 2021-10-22 | 2024-10-28 | セイル バイオメディシンズ インコーポレイテッド | MRNA Vaccine Compositions |
| US20250049727A1 (en) | 2021-11-12 | 2025-02-13 | Modernatx, Inc. | Compositions for the delivery of payload molecules to airway epithelium |
| CA3238764A1 (en) | 2021-11-23 | 2023-06-01 | Siddharth Patel | A bacteria-derived lipid composition and use thereof |
| US12186387B2 (en) | 2021-11-29 | 2025-01-07 | BioNTech SE | Coronavirus vaccine |
| JP2025500373A (en) | 2021-12-20 | 2025-01-09 | セイル バイオメディシンズ インコーポレイテッド | Composition for MRNA treatment |
| TW202345863A (en) | 2022-02-09 | 2023-12-01 | 美商現代公司 | Mucosal administration methods and formulations |
| WO2023196898A1 (en) | 2022-04-07 | 2023-10-12 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Beta globin mimetic peptides and their use |
| WO2023196988A1 (en) | 2022-04-07 | 2023-10-12 | Modernatx, Inc. | Methods of use of mrnas encoding il-12 |
| IL316370A (en) | 2022-04-15 | 2024-12-01 | Smartcella Solutions Ab | Compositions and methods for exosome-mediated delivery of messenger RNA factors |
| IL317109A (en) | 2022-05-25 | 2025-01-01 | Akagera Medicines Inc | Lipid nanoparticles for delivery of nucleic acids and methods of use thereof |
| WO2024002985A1 (en) | 2022-06-26 | 2024-01-04 | BioNTech SE | Coronavirus vaccine |
| WO2024010841A2 (en) | 2022-07-06 | 2024-01-11 | Molecular Axiom, Llc | Compositions and methods for treating pancreatic cancer |
| EP4577553A2 (en) * | 2022-08-26 | 2025-07-02 | TriLink BioTechnologies, LLC | Efficient method for making highly purified 5'-capped oligonucleotides |
| WO2024083345A1 (en) | 2022-10-21 | 2024-04-25 | BioNTech SE | Methods and uses associated with liquid compositions |
| EP4608442A1 (en) | 2022-10-28 | 2025-09-03 | GlaxoSmithKline Biologicals S.A. | Nucleic acid based vaccine |
| WO2024102434A1 (en) | 2022-11-10 | 2024-05-16 | Senda Biosciences, Inc. | Rna compositions comprising lipid nanoparticles or lipid reconstructed natural messenger packs |
| WO2024107827A1 (en) | 2022-11-16 | 2024-05-23 | The Broad Institute, Inc. | Therapeutic exploitation of sting channel activity |
| CN120380160A (en) * | 2022-12-23 | 2025-07-25 | 赛诺菲巴斯德有限公司 | Optimized tailing of messenger RNA |
| WO2024158824A1 (en) | 2023-01-23 | 2024-08-02 | Yale University | Antibody oligonucleotide conjugates |
| WO2024159172A1 (en) | 2023-01-27 | 2024-08-02 | Senda Biosciences, Inc. | A modified lipid composition and uses thereof |
| WO2024178305A1 (en) | 2023-02-24 | 2024-08-29 | Modernatx, Inc. | Compositions of mrna-encoded il-15 fusion proteins and methods of use thereof for treating cancer |
| WO2024189583A1 (en) | 2023-03-15 | 2024-09-19 | Kyoto Prefectural Public University Corporation | Peptide expression constructs and uses thereof |
| WO2024197307A1 (en) | 2023-03-23 | 2024-09-26 | Modernatx, Inc. | Peg targeting compounds for delivery of therapeutics |
| WO2024197309A1 (en) | 2023-03-23 | 2024-09-26 | Modernatx, Inc. | Peg targeting compounds for delivery of therapeutics |
| WO2024197310A1 (en) | 2023-03-23 | 2024-09-26 | Modernatx, Inc. | Peg targeting compounds for delivery of therapeutics |
| WO2024220712A2 (en) | 2023-04-19 | 2024-10-24 | Sail Biomedicines, Inc. | Vaccine compositions |
| WO2024220752A2 (en) | 2023-04-19 | 2024-10-24 | Sail Biomedicines, Inc. | Rna therapeutic compositions |
| WO2024220625A1 (en) | 2023-04-19 | 2024-10-24 | Sail Biomedicines, Inc. | Delivery of polynucleotides from lipid nanoparticles comprising rna and ionizable lipids |
| WO2024238726A1 (en) | 2023-05-16 | 2024-11-21 | Omega Therapeutics, Inc. | Methods and compositions for modulating methylation of a target gene |
| WO2024238723A1 (en) | 2023-05-16 | 2024-11-21 | Omega Therapeutics, Inc. | Methods and compositions for modulating pcsk9 expression |
| WO2025019742A1 (en) | 2023-07-19 | 2025-01-23 | Omega Therapeutics, Inc. | Methods and compositions for modulating ctnnb1 expression |
| WO2025059215A1 (en) | 2023-09-12 | 2025-03-20 | Aadigen, Llc | Methods and compositions for treating or preventing cancer |
| WO2025072383A1 (en) | 2023-09-25 | 2025-04-03 | The Broad Institute, Inc. | Viral open reading frames, uses thereof, and methods of detecting the same |
| WO2025068553A1 (en) | 2023-09-28 | 2025-04-03 | Universität Basel | Catalytic moieties for treating cancer |
| WO2025076013A1 (en) | 2023-10-01 | 2025-04-10 | Vaccine Company, Inc. | Engineered middle east respiratory syndrome proteins and related methods |
| WO2025097055A2 (en) | 2023-11-02 | 2025-05-08 | The Broad Institute, Inc. | Compositions and methods of use of t cells in immunotherapy |
| WO2025129158A1 (en) | 2023-12-15 | 2025-06-19 | The Broad Institute, Inc. | Engineered arc delivery vesicles and uses thereof |
| WO2025144938A1 (en) | 2023-12-26 | 2025-07-03 | Emmune, Inc. | Systems for nucleic acid transfer |
| WO2025194138A1 (en) | 2024-03-14 | 2025-09-18 | Tessera Therapeutics, Inc. | St1cas9 compositions and methods for modulating a genome |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007024708A2 (en) * | 2005-08-23 | 2007-03-01 | The Trustees Of The University Of Pennsylvania | Rna containing modified nucleosides and methods of use thereof |
| WO2008083949A2 (en) * | 2007-01-09 | 2008-07-17 | Curevac Gmbh | Rna-coded antibody |
| EP1964922A1 (en) * | 2007-03-02 | 2008-09-03 | Boehringer Ingelheim Pharma GmbH & Co. KG | Improvement of protein production |
Family Cites Families (1159)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2008526A (en) | 1932-11-03 | 1935-07-16 | Wappler Frederick Charles | Method and means for treating living tissue |
| US3467096A (en) | 1966-04-12 | 1969-09-16 | Ferrell S Horn | Multiple hypodermic syringe arrangement |
| BE757653A (en) | 1969-10-21 | 1971-04-16 | Ugine Kuhlmann | NEW DRUGS DERIVED FROM NUCLEIC ACIDS AND METHODS FOR THEIR PREPARATION |
| BE786542A (en) | 1971-07-22 | 1973-01-22 | Dow Corning | SUCTION DEVICE ALLOWING TO OBTAIN CELL SAMPLES |
| US3906092A (en) | 1971-11-26 | 1975-09-16 | Merck & Co Inc | Stimulation of antibody response |
| US4270537A (en) | 1979-11-19 | 1981-06-02 | Romaine Richard A | Automatic hypodermic syringe |
| US4399216A (en) | 1980-02-25 | 1983-08-16 | The Trustees Of Columbia University | Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials |
| US5132418A (en) | 1980-02-29 | 1992-07-21 | University Patents, Inc. | Process for preparing polynucleotides |
| US4458066A (en) | 1980-02-29 | 1984-07-03 | University Patents, Inc. | Process for preparing polynucleotides |
| US4500707A (en) | 1980-02-29 | 1985-02-19 | University Patents, Inc. | Nucleosides useful in the preparation of polynucleotides |
| US4411657A (en) | 1980-05-19 | 1983-10-25 | Anibal Galindo | Hypodermic needle |
| US4668777A (en) | 1981-03-27 | 1987-05-26 | University Patents, Inc. | Phosphoramidite nucleoside compounds |
| US4973679A (en) | 1981-03-27 | 1990-11-27 | University Patents, Inc. | Process for oligonucleo tide synthesis using phosphormidite intermediates |
| US4415732A (en) | 1981-03-27 | 1983-11-15 | University Patents, Inc. | Phosphoramidite compounds and processes |
| US4401796A (en) | 1981-04-30 | 1983-08-30 | City Of Hope Research Institute | Solid-phase synthesis of polynucleotides |
| US4373071A (en) | 1981-04-30 | 1983-02-08 | City Of Hope Research Institute | Solid-phase synthesis of polynucleotides |
| US4474569A (en) | 1982-06-28 | 1984-10-02 | Denver Surgical Developments, Inc. | Antenatal shunt |
| US4588585A (en) | 1982-10-19 | 1986-05-13 | Cetus Corporation | Human recombinant cysteine depleted interferon-β muteins |
| US4737462A (en) | 1982-10-19 | 1988-04-12 | Cetus Corporation | Structural genes, plasmids and transformed cells for producing cysteine depleted muteins of interferon-β |
| US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
| US4579849A (en) | 1984-04-06 | 1986-04-01 | Merck & Co., Inc. | N-alkylguanine acyclonucleosides as antiviral agents |
| US4957735A (en) | 1984-06-12 | 1990-09-18 | The University Of Tennessee Research Corporation | Target-sensitive immunoliposomes- preparation and characterization |
| US4959314A (en) | 1984-11-09 | 1990-09-25 | Cetus Corporation | Cysteine-depleted muteins of biologically active proteins |
| US5036006A (en) | 1984-11-13 | 1991-07-30 | Cornell Research Foundation, Inc. | Method for transporting substances into living cells and tissues and apparatus therefor |
| US5116943A (en) | 1985-01-18 | 1992-05-26 | Cetus Corporation | Oxidation-resistant muteins of Il-2 and other protein |
| CA1288073C (en) | 1985-03-07 | 1991-08-27 | Paul G. Ahlquist | Rna transformation vector |
| US4596556A (en) | 1985-03-25 | 1986-06-24 | Bioject, Inc. | Hypodermic injection apparatus |
| EP0204401A1 (en) | 1985-04-09 | 1986-12-10 | Biogen, Inc. | Method of improving the yield of polypeptides produced in a host cell by stabilizing mRNA |
| US5017691A (en) | 1986-07-03 | 1991-05-21 | Schering Corporation | Mammalian interleukin-4 |
| US5153319A (en) | 1986-03-31 | 1992-10-06 | University Patents, Inc. | Process for preparing polynucleotides |
| US4879111A (en) | 1986-04-17 | 1989-11-07 | Cetus Corporation | Treatment of infections with lymphokines |
| CA1283827C (en) | 1986-12-18 | 1991-05-07 | Giorgio Cirelli | Appliance for injection of liquid formulations |
| GB8704027D0 (en) | 1987-02-20 | 1987-03-25 | Owen Mumford Ltd | Syringe needle combination |
| US4941880A (en) | 1987-06-19 | 1990-07-17 | Bioject, Inc. | Pre-filled ampule and non-invasive hypodermic injection device assembly |
| US4940460A (en) | 1987-06-19 | 1990-07-10 | Bioject, Inc. | Patient-fillable and non-invasive hypodermic injection device assembly |
| US4790824A (en) | 1987-06-19 | 1988-12-13 | Bioject, Inc. | Non-invasive hypodermic injection device |
| US6090591A (en) | 1987-07-31 | 2000-07-18 | The Board Of Trustees Of The Leland Stanford Junior University | Selective amplification of target polynucleotide sequences |
| IE72468B1 (en) | 1987-07-31 | 1997-04-09 | Univ Leland Stanford Junior | Selective amplification of target polynucleotide sequences |
| WO1989006700A1 (en) | 1988-01-21 | 1989-07-27 | Genentech, Inc. | Amplification and detection of nucleic acid sequences |
| CA1340807C (en) | 1988-02-24 | 1999-11-02 | Lawrence T. Malek | Nucleic acid amplification process |
| JP2650159B2 (en) | 1988-02-24 | 1997-09-03 | アクゾ・ノベル・エヌ・ベー | Nucleic acid amplification method |
| WO1989007947A1 (en) | 1988-03-04 | 1989-09-08 | Cancer Research Campaign Technology Limited | Improvements relating to antigens |
| US5339163A (en) | 1988-03-16 | 1994-08-16 | Canon Kabushiki Kaisha | Automatic exposure control device using plural image plane detection areas |
| FI895955A7 (en) | 1988-04-15 | 1989-12-13 | Protein Design Labs Inc | IL-2 receptor-specific "chimeric" antibodies |
| US5168038A (en) | 1988-06-17 | 1992-12-01 | The Board Of Trustees Of The Leland Stanford Junior University | In situ transcription in cells and tissues |
| US5021335A (en) | 1988-06-17 | 1991-06-04 | The Board Of Trustees Of The Leland Stanford Junior University | In situ transcription in cells and tissues |
| US5130238A (en) | 1988-06-24 | 1992-07-14 | Cangene Corporation | Enhanced nucleic acid amplification process |
| US5759802A (en) | 1988-10-26 | 1998-06-02 | Tonen Corporation | Production of human serum alubumin A |
| FR2638359A1 (en) | 1988-11-03 | 1990-05-04 | Tino Dalto | SYRINGE GUIDE WITH ADJUSTMENT OF DEPTH DEPTH OF NEEDLE IN SKIN |
| US5262530A (en) | 1988-12-21 | 1993-11-16 | Applied Biosystems, Inc. | Automated system for polynucleotide synthesis and purification |
| US5047524A (en) | 1988-12-21 | 1991-09-10 | Applied Biosystems, Inc. | Automated system for polynucleotide synthesis and purification |
| US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
| US6867195B1 (en) | 1989-03-21 | 2005-03-15 | Vical Incorporated | Lipid-mediated polynucleotide administration to reduce likelihood of subject's becoming infected |
| US5693622A (en) | 1989-03-21 | 1997-12-02 | Vical Incorporated | Expression of exogenous polynucleotide sequences cardiac muscle of a mammal |
| AU5344190A (en) | 1989-03-21 | 1990-10-22 | Vical, Inc. | Expression of exogenous polynucleotide sequences in a vertebrate |
| US6214804B1 (en) | 1989-03-21 | 2001-04-10 | Vical Incorporated | Induction of a protective immune response in a mammal by injecting a DNA sequence |
| US5703055A (en) | 1989-03-21 | 1997-12-30 | Wisconsin Alumni Research Foundation | Generation of antibodies through lipid mediated DNA delivery |
| US6673776B1 (en) | 1989-03-21 | 2004-01-06 | Vical Incorporated | Expression of exogenous polynucleotide sequences in a vertebrate, mammal, fish, bird or human |
| US5012818A (en) | 1989-05-04 | 1991-05-07 | Joishy Suresh K | Two in one bone marrow surgical needle |
| IE66597B1 (en) | 1989-05-10 | 1996-01-24 | Akzo Nv | Method for the synthesis of ribonucleic acid (RNA) |
| US5332671A (en) | 1989-05-12 | 1994-07-26 | Genetech, Inc. | Production of vascular endothelial cell growth factor and DNA encoding same |
| US5240855A (en) | 1989-05-12 | 1993-08-31 | Pioneer Hi-Bred International, Inc. | Particle gun |
| CA2020958C (en) | 1989-07-11 | 2005-01-11 | Daniel L. Kacian | Nucleic acid sequence amplification methods |
| US5545522A (en) | 1989-09-22 | 1996-08-13 | Van Gelder; Russell N. | Process for amplifying a target polynucleotide sequence using a single primer-promoter complex |
| FR2740360B1 (en) | 1995-10-25 | 1997-12-26 | Rhone Poulenc Chimie | WATER REDISPERSABLE GRANULES COMPRISING AN ACTIVE MATERIAL IN LIQUID FORM |
| NO904633L (en) | 1989-11-09 | 1991-05-10 | Molecular Diagnostics Inc | AMPLIFICATION OF NUCLEIC ACIDS BY TRANSCRIPABLE HAIRNEL PROBE. |
| US5312335A (en) | 1989-11-09 | 1994-05-17 | Bioject Inc. | Needleless hypodermic injection device |
| US5215899A (en) | 1989-11-09 | 1993-06-01 | Miles Inc. | Nucleic acid amplification employing ligatable hairpin probe and transcription |
| US5064413A (en) | 1989-11-09 | 1991-11-12 | Bioject, Inc. | Needleless hypodermic injection device |
| US5633076A (en) | 1989-12-01 | 1997-05-27 | Pharming Bv | Method of producing a transgenic bovine or transgenic bovine embryo |
| US5697901A (en) | 1989-12-14 | 1997-12-16 | Elof Eriksson | Gene delivery by microneedle injection |
| US5194370A (en) | 1990-05-16 | 1993-03-16 | Life Technologies, Inc. | Promoter ligation activated transcription amplification of nucleic acid sequences |
| AU649066B2 (en) | 1990-07-25 | 1994-05-12 | Syngene, Inc. | Circular extension for generating multiple nucleic acid complements |
| US5489677A (en) | 1990-07-27 | 1996-02-06 | Isis Pharmaceuticals, Inc. | Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms |
| US5190521A (en) | 1990-08-22 | 1993-03-02 | Tecnol Medical Products, Inc. | Apparatus and method for raising a skin wheal and anesthetizing skin |
| US6140496A (en) | 1990-10-09 | 2000-10-31 | Benner; Steven Albert | Precursors for deoxyribonucleotides containing non-standard nucleosides |
| US5527288A (en) | 1990-12-13 | 1996-06-18 | Elan Medical Technologies Limited | Intradermal drug delivery device and method for intradermal delivery of drugs |
| US6100024A (en) | 1991-02-08 | 2000-08-08 | Promega Corporation | Methods and compositions for nucleic acid detection by target extension and probe amplification |
| EP0610201B2 (en) | 1991-03-18 | 2007-09-26 | New York University | Monoclonal and chimeric antibodies specific for human tumor necrosis factor |
| US5426180A (en) | 1991-03-27 | 1995-06-20 | Research Corporation Technologies, Inc. | Methods of making single-stranded circular oligonucleotides |
| ES2134212T3 (en) | 1991-04-25 | 1999-10-01 | Chugai Pharmaceutical Co Ltd | HUMAN ANTIBODY RECONSTITUTED AGAINST THE RECEIVER OF INTERLEUKIN 6 HUMAN. |
| US5169766A (en) | 1991-06-14 | 1992-12-08 | Life Technologies, Inc. | Amplification of nucleic acid molecules |
| US5199441A (en) | 1991-08-20 | 1993-04-06 | Hogle Hugh H | Fine needle aspiration biopsy apparatus and method |
| GB9118204D0 (en) | 1991-08-23 | 1991-10-09 | Weston Terence E | Needle-less injector |
| SE9102652D0 (en) | 1991-09-13 | 1991-09-13 | Kabi Pharmacia Ab | INJECTION NEEDLE ARRANGEMENT |
| US5298422A (en) | 1991-11-06 | 1994-03-29 | Baylor College Of Medicine | Myogenic vector systems |
| US5824307A (en) | 1991-12-23 | 1998-10-20 | Medimmune, Inc. | Human-murine chimeric antibodies against respiratory syncytial virus |
| JPH07503372A (en) | 1992-01-23 | 1995-04-13 | バイカル・インコーポレイテッド | In vitro gene transfer |
| US5328483A (en) | 1992-02-27 | 1994-07-12 | Jacoby Richard M | Intradermal injection device with medication and needle guard |
| JP3368603B2 (en) | 1992-02-28 | 2003-01-20 | オリンパス光学工業株式会社 | Gene therapy treatment device |
| US6174666B1 (en) | 1992-03-27 | 2001-01-16 | The United States Of America As Represented By The Department Of Health And Human Services | Method of eliminating inhibitory/instability regions from mRNA |
| US6132419A (en) | 1992-05-22 | 2000-10-17 | Genetronics, Inc. | Electroporetic gene and drug therapy |
| US5514545A (en) | 1992-06-11 | 1996-05-07 | Trustees Of The University Of Pennsylvania | Method for characterizing single cells based on RNA amplification for diagnostics and therapeutics |
| US6670178B1 (en) | 1992-07-10 | 2003-12-30 | Transkaryotic Therapies, Inc. | In Vivo production and delivery of insulinotropin for gene therapy |
| US5383851A (en) | 1992-07-24 | 1995-01-24 | Bioject Inc. | Needleless hypodermic injection device |
| WO1994003637A1 (en) | 1992-07-31 | 1994-02-17 | Syntex (Usa) Inc. | Method for introducing defined sequences at the 3' end of polynucleotides |
| US5273525A (en) | 1992-08-13 | 1993-12-28 | Btx Inc. | Injection and electroporation apparatus for drug and gene delivery |
| US5240885A (en) | 1992-09-21 | 1993-08-31 | Corning Incorporated | Rare earth-doped, stabilized cadmium halide glasses |
| US5569189A (en) | 1992-09-28 | 1996-10-29 | Equidyne Systems, Inc. | hypodermic jet injector |
| US5334144A (en) | 1992-10-30 | 1994-08-02 | Becton, Dickinson And Company | Single use disposable needleless injector |
| WO1994009838A1 (en) | 1992-11-04 | 1994-05-11 | Denver Biomaterials, Inc. | Apparatus for removal of pleural effusion fluid |
| EP0752248B1 (en) | 1992-11-13 | 2000-09-27 | Idec Pharmaceuticals Corporation | Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma |
| US5736137A (en) | 1992-11-13 | 1998-04-07 | Idec Pharmaceuticals Corporation | Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma |
| EP0678122B1 (en) | 1993-01-12 | 1999-07-28 | Biogen, Inc. | Recombinant anti-vla4 antibody molecules |
| FR2703253B1 (en) | 1993-03-30 | 1995-06-23 | Centre Nat Rech Scient | APPLICATOR OF ELECTRIC PULSES FOR TREATING BIOLOGICAL TISSUES. |
| US7135312B2 (en) | 1993-04-15 | 2006-11-14 | University Of Rochester | Circular DNA vectors for synthesis of RNA and DNA |
| US5773244A (en) | 1993-05-19 | 1998-06-30 | Regents Of The University Of California | Methods of making circular RNA |
| US5851829A (en) | 1993-07-16 | 1998-12-22 | Dana-Farber Cancer Institute | Method of intracellular binding of target molecules |
| US5672491A (en) | 1993-09-20 | 1997-09-30 | The Leland Stanford Junior University | Recombinant production of novel polyketides |
| US6432711B1 (en) | 1993-11-03 | 2002-08-13 | Diacrin, Inc. | Embryonic stem cells capable of differentiating into desired cell lines |
| US6096503A (en) | 1993-11-12 | 2000-08-01 | The Scripps Research Institute | Method for simultaneous identification of differentially expresses mRNAs and measurement of relative concentrations |
| US7435802B2 (en) | 1994-01-25 | 2008-10-14 | Elan Pharaceuticals, Inc. | Humanized anti-VLA4 immunoglobulins |
| US5840299A (en) | 1994-01-25 | 1998-11-24 | Athena Neurosciences, Inc. | Humanized antibodies against leukocyte adhesion molecule VLA-4 |
| DE69533295T3 (en) | 1994-02-16 | 2009-07-16 | The Government Of The United States Of America, As Represented By The Secretary, The Department Of Health And Human Services | Melanoma-associated antigens, epitopes thereof and melanoma-containing vaccines |
| IL112820A0 (en) | 1994-03-07 | 1995-05-26 | Merck & Co Inc | Coordinate in vivo gene expression |
| WO1995024176A1 (en) | 1994-03-07 | 1995-09-14 | Bioject, Inc. | Ampule filling device |
| US5466220A (en) | 1994-03-08 | 1995-11-14 | Bioject, Inc. | Drug vial mixing and transfer device |
| AU704549B2 (en) | 1994-03-18 | 1999-04-29 | Lynx Therapeutics, Inc. | Oligonucleotide N3'-P5' phosphoramidates: synthesis and compounds; hybridization and nuclease resistance properties |
| WO1995026204A1 (en) | 1994-03-25 | 1995-10-05 | Isis Pharmaceuticals, Inc. | Immune stimulation by phosphorothioate oligonucleotide analogs |
| US5457041A (en) | 1994-03-25 | 1995-10-10 | Science Applications International Corporation | Needle array and method of introducing biological substances into living cells using the needle array |
| US6074642A (en) | 1994-05-02 | 2000-06-13 | Alexion Pharmaceuticals, Inc. | Use of antibodies specific to human complement component C5 for the treatment of glomerulonephritis |
| US6265635B1 (en) | 1994-05-18 | 2001-07-24 | Plantec Biotechnologie Gmbh Forschung & Entwicklung | DNA sequences coding for enzymes capable of facilitating the synthesis of linear α-1,4 glucans in plants, fungi and microorganisms |
| JPH10501136A (en) | 1994-06-02 | 1998-02-03 | カイロン コーポレイション | Nucleic acid immunization using a virus-based infection / transfection system |
| GB9412230D0 (en) | 1994-06-17 | 1994-08-10 | Celltech Ltd | Interleukin-5 specific recombiant antibodies |
| US6239116B1 (en) | 1994-07-15 | 2001-05-29 | University Of Iowa Research Foundation | Immunostimulatory nucleic acid molecules |
| EP0771208B1 (en) | 1994-08-12 | 2005-10-19 | Immunomedics, Inc. | Immunoconjugates and humanized antibodies specific for b-cell lymphoma and leukemia cells |
| US5641665A (en) | 1994-11-28 | 1997-06-24 | Vical Incorporated | Plasmids suitable for IL-2 expression |
| US5665545A (en) | 1994-11-28 | 1997-09-09 | Akzo Nobel N.V. | Terminal repeat amplification method |
| US5588960A (en) | 1994-12-01 | 1996-12-31 | Vidamed, Inc. | Transurethral needle delivery device with cystoscope and method for treatment of urinary incontinence |
| US5807718A (en) | 1994-12-02 | 1998-09-15 | The Scripps Research Institute | Enzymatic DNA molecules |
| US6057494A (en) | 1995-01-06 | 2000-05-02 | Centrum Voor Plantenveredelings-En Reproduktieonderzoek | DNA sequences encoding carbohydrate polymer synthesizing enzymes and method for producing transgenic plants |
| US5599302A (en) | 1995-01-09 | 1997-02-04 | Medi-Ject Corporation | Medical injection system and method, gas spring thereof and launching device using gas spring |
| US5795587A (en) | 1995-01-23 | 1998-08-18 | University Of Pittsburgh | Stable lipid-comprising drug delivery complexes and methods for their production |
| US5824497A (en) | 1995-02-10 | 1998-10-20 | Mcmaster University | High efficiency translation of mRNA molecules |
| DE69629326D1 (en) | 1995-02-15 | 2003-09-11 | Joseph Eldor | Spinal needle with several holes |
| EP0735144B1 (en) | 1995-03-28 | 2002-06-05 | Japan Science and Technology Corporation | Method for molecular indexing of genes using restriction enzymes |
| US5869230A (en) | 1995-03-30 | 1999-02-09 | Beth Israel Hospital Association | Gene transfer into the kidney |
| US5986054A (en) | 1995-04-28 | 1999-11-16 | The Hospital For Sick Children, Hsc Research And Development Limited Partnership | Genetic sequences and proteins related to alzheimer's disease |
| FR2733762B1 (en) | 1995-05-02 | 1997-08-01 | Genset Sa | METHOD FOR THE SPECIFIC COUPLING OF THE HAIR OF THE 5 'END OF A RNAM FRAGMENT AND PREPARATION OF RNAM AND COMPLETE DNA |
| US5700642A (en) | 1995-05-22 | 1997-12-23 | Sri International | Oligonucleotide sizing using immobilized cleavable primers |
| US5730723A (en) | 1995-10-10 | 1998-03-24 | Visionary Medical Products Corporation, Inc. | Gas pressured needle-less injection device and method |
| US6111095A (en) | 1995-06-07 | 2000-08-29 | Merck & Co., Inc. | Capped synthetic RNA, analogs, and aptamers |
| US6051429A (en) | 1995-06-07 | 2000-04-18 | Life Technologies, Inc. | Peptide-enhanced cationic lipid transfections |
| US5889136A (en) | 1995-06-09 | 1999-03-30 | The Regents Of The University Of Colorado | Orthoester protecting groups in RNA synthesis |
| US5766903A (en) | 1995-08-23 | 1998-06-16 | University Technology Corporation | Circular RNA and uses thereof |
| US6265389B1 (en) | 1995-08-31 | 2001-07-24 | Alkermes Controlled Therapeutics, Inc. | Microencapsulation and sustained release of oligonucleotides |
| WO1997011085A1 (en) | 1995-09-19 | 1997-03-27 | University Of Massachusetts | Inhibited biological degradation of oligodeoxynucleotides |
| US5830879A (en) | 1995-10-02 | 1998-11-03 | St. Elizabeth's Medical Center Of Boston, Inc. | Treatment of vascular injury using vascular endothelial growth factor |
| US6265387B1 (en) | 1995-10-11 | 2001-07-24 | Mirus, Inc. | Process of delivering naked DNA into a hepatocyte via bile duct |
| US6132988A (en) | 1995-10-27 | 2000-10-17 | Takeda Chemical Industries, Ltd. | DNA encoding a neuronal cell-specific receptor protein |
| CU22584A1 (en) | 1995-11-17 | 1999-11-03 | Centro Inmunologia Molecular | PHARMACEUTICAL COMPOSITIONS CONTAINING A MONOCLONAL ANTIBODY THAT RECOGNIZES THE CD6 HUMAN LEUKOCYTARY DIFFERENTIATION ANTIGEN AND ITS USES FOR THE DIAGNOSIS AND TREATMENT OF PSORIASIS |
| US6090382A (en) | 1996-02-09 | 2000-07-18 | Basf Aktiengesellschaft | Human antibodies that bind human TNFα |
| US5962271A (en) | 1996-01-03 | 1999-10-05 | Cloutech Laboratories, Inc. | Methods and compositions for generating full-length cDNA having arbitrary nucleotide sequence at the 3'-end |
| US5893397A (en) | 1996-01-12 | 1999-04-13 | Bioject Inc. | Medication vial/syringe liquid-transfer apparatus |
| US6395292B2 (en) | 1996-02-02 | 2002-05-28 | Alza Corporation | Sustained delivery of an active agent using an implantable system |
| US6261584B1 (en) | 1996-02-02 | 2001-07-17 | Alza Corporation | Sustained delivery of an active agent using an implantable system |
| AU1874397A (en) | 1996-02-16 | 1997-09-02 | Stichting Rega Vzw | Hexitol containing oligonucleotides and their use in antisense strategies |
| US6534312B1 (en) | 1996-02-22 | 2003-03-18 | Merck & Co., Inc. | Vaccines comprising synthetic genes |
| US6090391A (en) | 1996-02-23 | 2000-07-18 | Aviron | Recombinant tryptophan mutants of influenza |
| US6300487B1 (en) | 1996-03-19 | 2001-10-09 | Cell Therapuetics, Inc. | Mammalian lysophosphatidic acid acyltransferase |
| SE9601245D0 (en) | 1996-03-29 | 1996-03-29 | Pharmacia Ab | Chimeric superantigens and their use |
| TW517061B (en) | 1996-03-29 | 2003-01-11 | Pharmacia & Amp Upjohn Ab | Modified/chimeric superantigens and their use |
| GB9607549D0 (en) | 1996-04-11 | 1996-06-12 | Weston Medical Ltd | Spring-powered dispensing device |
| US5712127A (en) | 1996-04-29 | 1998-01-27 | Genescape Inc. | Subtractive amplification |
| US5853719A (en) | 1996-04-30 | 1998-12-29 | Duke University | Methods for treating cancers and pathogen infections using antigen-presenting cells loaded with RNA |
| US7329741B2 (en) | 1996-06-05 | 2008-02-12 | Chiron Corporation | Polynucleotides that hybridize to DP-75 and their use |
| WO1997046680A1 (en) | 1996-06-05 | 1997-12-11 | Chiron Corporation | Dna encoding dp. 75 and a process for its use |
| EP0912607A2 (en) | 1996-06-21 | 1999-05-06 | Merck & Co., Inc. | Vaccines comprising synthetic genes |
| EP0925088A2 (en) | 1996-06-28 | 1999-06-30 | Sontra Medical, L.P. | Ultrasound enhancement of transdermal transport |
| US5677124A (en) | 1996-07-03 | 1997-10-14 | Ambion, Inc. | Ribonuclease resistant viral RNA standards |
| US5939262A (en) | 1996-07-03 | 1999-08-17 | Ambion, Inc. | Ribonuclease resistant RNA preparation and utilization |
| US7288266B2 (en) | 1996-08-19 | 2007-10-30 | United States Of America As Represented By The Secretary, Department Of Health And Human Services | Liposome complexes for increased systemic delivery |
| US5849546A (en) | 1996-09-13 | 1998-12-15 | Epicentre Technologies Corporation | Methods for using mutant RNA polymerases with reduced discrimination between non-canonical and canonical nucleoside triphosphates |
| US6114148C1 (en) | 1996-09-20 | 2012-05-01 | Gen Hospital Corp | High level expression of proteins |
| US6433155B1 (en) | 1996-09-24 | 2002-08-13 | Tanox, Inc. | Family of genes encoding apoptosis-related peptides, peptides encoded thereby and methods of use thereof |
| US6214966B1 (en) | 1996-09-26 | 2001-04-10 | Shearwater Corporation | Soluble, degradable poly(ethylene glycol) derivatives for controllable release of bound molecules into solution |
| EP0930893B1 (en) | 1996-10-11 | 2005-04-13 | The Regents of The University of California | Immunostimulatory polynucleotide/immunomodulatory molecule conjugates |
| EP0839912A1 (en) | 1996-10-30 | 1998-05-06 | Instituut Voor Dierhouderij En Diergezondheid (Id-Dlo) | Infectious clones of RNA viruses and vaccines and diagnostic assays derived thereof |
| GB9623051D0 (en) | 1996-11-06 | 1997-01-08 | Schacht Etienne H | Delivery of DNA to target cells in biological systems |
| US5980887A (en) | 1996-11-08 | 1999-11-09 | St. Elizabeth's Medical Center Of Boston | Methods for enhancing angiogenesis with endothelial progenitor cells |
| US6143559A (en) * | 1996-11-18 | 2000-11-07 | Arch Development Corporation | Methods for the production of chicken monoclonal antibodies |
| US5759179A (en) | 1996-12-31 | 1998-06-02 | Johnson & Johnson Medical, Inc. | Needle and valve assembly for use with a catheter |
| ES2268763T3 (en) | 1997-01-21 | 2007-03-16 | The General Hospital Corporation | SELECTION OF PROTEINS USING ARN-PROTEIN FUSIONS. |
| EP0855184A1 (en) | 1997-01-23 | 1998-07-29 | Grayson B. Dr. Lipford | Pharmaceutical composition comprising a polynucleotide and an antigen especially for vaccination |
| US6696291B2 (en) | 1997-02-07 | 2004-02-24 | Merck & Co., Inc. | Synthetic HIV gag genes |
| US6228640B1 (en) | 1997-02-07 | 2001-05-08 | Cem Cezayirli | Programmable antigen presenting cell of CD34 lineage |
| JP2001512308A (en) | 1997-02-07 | 2001-08-21 | メルク エンド カンパニー インコーポレーテッド | Synthetic HIV GAG gene |
| US6251665B1 (en) | 1997-02-07 | 2001-06-26 | Cem Cezayirli | Directed maturation of stem cells and production of programmable antigen presenting dentritic cells therefrom |
| US6406705B1 (en) | 1997-03-10 | 2002-06-18 | University Of Iowa Research Foundation | Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant |
| US6306393B1 (en) | 1997-03-24 | 2001-10-23 | Immunomedics, Inc. | Immunotherapy of B-cell malignancies using anti-CD22 antibodies |
| US6261281B1 (en) | 1997-04-03 | 2001-07-17 | Electrofect As | Method for genetic immunization and introduction of molecules into skeletal muscle and immune cells |
| US5914269A (en) | 1997-04-04 | 1999-06-22 | Isis Pharmaceuticals, Inc. | Oligonucleotide inhibition of epidermal growth factor receptor expression |
| AU6972798A (en) | 1997-04-18 | 1998-11-13 | University Of Medicine And Dentistry Of New Jersey | Inhibition of hiv-1 replication by a tat rna-binding domain peptide analog |
| US5958688A (en) | 1997-04-28 | 1999-09-28 | The Trustees Of The University Of Pennsylvania | Characterization of mRNA patterns in neurites and single cells for medical diagnosis and therapeutics |
| US6235883B1 (en) | 1997-05-05 | 2001-05-22 | Abgenix, Inc. | Human monoclonal antibodies to epidermal growth factor receptor |
| US5989911A (en) | 1997-05-09 | 1999-11-23 | University Of Massachusetts | Site-specific synthesis of pseudouridine in RNA |
| US5993412A (en) | 1997-05-19 | 1999-11-30 | Bioject, Inc. | Injection apparatus |
| US6124091A (en) | 1997-05-30 | 2000-09-26 | Research Corporation Technologies, Inc. | Cell growth-controlling oligonucleotides |
| EP0986572B2 (en) | 1997-06-06 | 2007-06-13 | Dynavax Technologies Corporation | Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof |
| US6589940B1 (en) | 1997-06-06 | 2003-07-08 | Dynavax Technologies Corporation | Immunostimulatory oligonucleotides, compositions thereof and methods of use thereof |
| WO1999001579A1 (en) | 1997-07-01 | 1999-01-14 | Isis Pharmaceuticals, Inc. | Compositions and methods for the delivery of oligonucleotides via the alimentary canal |
| US5994511A (en) | 1997-07-02 | 1999-11-30 | Genentech, Inc. | Anti-IgE antibodies and methods of improving polypeptides |
| WO1999004820A2 (en) | 1997-07-21 | 1999-02-04 | Pharmacia & Upjohn Ab | Cytolysis of target cells by superantigen conjugates inducing t-cell activation |
| WO1999006073A1 (en) | 1997-07-31 | 1999-02-11 | St. Elizabeth's Medical Center Of Boston, Inc. | Method for the treatment of grafts |
| PT2044950E (en) | 1997-09-18 | 2012-09-18 | Univ Pennsylvania | Attenuated vif dna immunization cassettes for genetic vaccines |
| US20030083272A1 (en) | 1997-09-19 | 2003-05-01 | Lahive & Cockfield, Llp | Sense mrna therapy |
| US6004573A (en) | 1997-10-03 | 1999-12-21 | Macromed, Inc. | Biodegradable low molecular weight triblock poly(lactide-co-glycolide) polyethylene glycol copolymers having reverse thermal gelation properties |
| CA2305785A1 (en) | 1997-10-07 | 1999-04-15 | University Of Maryland Biotechnology Institute | Method for introducing and expressing rna in animal cells |
| CN1179048C (en) | 1997-10-20 | 2004-12-08 | Gtc生物治疗学公司 | Modified MSP-1 nucleic acid sequences and methods for increasing mRNA levels and protein expression in cellular systems |
| US6019747A (en) | 1997-10-21 | 2000-02-01 | I-Flow Corporation | Spring-actuated infusion syringe |
| JP2001520889A (en) | 1997-10-24 | 2001-11-06 | バレンティス,インコーポレイティド | Methods for preparing polynucleotide transfection complexes |
| JP2001523480A (en) | 1997-11-20 | 2001-11-27 | バイカル インコーポレイテッド | Treatment of cancer with cytokine-expressed polynucleotides and their compositions |
| US7655777B2 (en) | 1997-11-24 | 2010-02-02 | Monsanto Technology Llc | Nucleic acid molecules associated with the tocopherol pathway |
| US6517869B1 (en) | 1997-12-12 | 2003-02-11 | Expression Genetics, Inc. | Positively charged poly(alpha-(omega-aminoalkyl)lycolic acid) for the delivery of a bioactive agent via tissue and cellular uptake |
| WO1999029758A1 (en) | 1997-12-12 | 1999-06-17 | Samyang Corporation | Positively-charged poly[alpha-(omega-aminoalkyl)glycolic acid] for the delivery of a bioactive agent via tissue and cellular uptake |
| JP2002500010A (en) | 1997-12-23 | 2002-01-08 | カイロン コーポレイション | Human Genes and Gene Expression Products I |
| US6383811B2 (en) | 1997-12-30 | 2002-05-07 | Mirus Corporation | Polyampholytes for delivering polyions to a cell |
| US6835393B2 (en) | 1998-01-05 | 2004-12-28 | University Of Washington | Enhanced transport using membrane disruptive agents |
| JP2002500075A (en) | 1998-01-08 | 2002-01-08 | ソントラ メディカル, インコーポレイテッド | Transdermal transport enhanced by ultrasound transmission |
| US8287483B2 (en) | 1998-01-08 | 2012-10-16 | Echo Therapeutics, Inc. | Method and apparatus for enhancement of transdermal transport |
| IT1298087B1 (en) | 1998-01-08 | 1999-12-20 | Fiderm S R L | DEVICE FOR CHECKING THE PENETRATION DEPTH OF A NEEDLE, IN PARTICULAR APPLICABLE TO A SYRINGE FOR INJECTIONS |
| US6365346B1 (en) | 1998-02-18 | 2002-04-02 | Dade Behring Inc. | Quantitative determination of nucleic acid amplification products |
| US5955310A (en) | 1998-02-26 | 1999-09-21 | Novo Nordisk Biotech, Inc. | Methods for producing a polypeptide in a bacillus cell |
| US6432925B1 (en) | 1998-04-16 | 2002-08-13 | John Wayne Cancer Institute | RNA cancer vaccine and methods for its use |
| US6429301B1 (en) | 1998-04-17 | 2002-08-06 | Whitehead Institute For Biomedical Research | Use of a ribozyme to join nucleic acids and peptides |
| GB9808327D0 (en) | 1998-04-20 | 1998-06-17 | Chiron Spa | Antidiotypic compounds |
| US6395253B2 (en) | 1998-04-23 | 2002-05-28 | The Regents Of The University Of Michigan | Microspheres containing condensed polyanionic bioactive agents and methods for their production |
| EP2116600B1 (en) | 1998-04-23 | 2013-09-18 | Takara Bio Inc. | Method for synthesizing DNA |
| US20020064517A1 (en) | 1998-04-30 | 2002-05-30 | Stewart A. Cederholm-Williams | Fibrin sealant as a transfection/transformation vehicle for gene therapy |
| US20090208418A1 (en) | 2005-04-29 | 2009-08-20 | Innexus Biotechnology Internaltional Ltd. | Superantibody synthesis and use in detection, prevention and treatment of disease |
| CA2329147A1 (en) | 1998-05-20 | 1999-11-25 | Feng Liu | A hepatocyte targeting polyethylene glyco-grafted poly-l-lysine polymeric gene carrier |
| US6503231B1 (en) | 1998-06-10 | 2003-01-07 | Georgia Tech Research Corporation | Microneedle device for transport of molecules across tissue |
| US7091192B1 (en) | 1998-07-01 | 2006-08-15 | California Institute Of Technology | Linear cyclodextrin copolymers |
| EP1117720A4 (en) | 1998-07-13 | 2001-11-14 | Expression Genetics Inc | Polyester analogue of poly-l-lysine as a soluble, biodegradable gene delivery carrier |
| US6222030B1 (en) | 1998-08-03 | 2001-04-24 | Agilent Technologies, Inc. | Solid phase synthesis of oligonucleotides using carbonate protecting groups and alpha-effect nucleophile deprotection |
| KR101023367B1 (en) | 1998-08-11 | 2011-03-18 | 바이오겐 아이덱 인크. | Drugs Comprising Anti-CD20 Antibodies for Treating Cell-Cell Lymphomas |
| GB9817662D0 (en) | 1998-08-13 | 1998-10-07 | Crocker Peter J | Substance delivery |
| US20090148906A1 (en) | 1998-09-29 | 2009-06-11 | Shire Human Genetic Therapies, Inc. A Delaware Corporation | Optimized messenger rna |
| US6924365B1 (en) | 1998-09-29 | 2005-08-02 | Transkaryotic Therapies, Inc. | Optimized messenger RNA |
| EP1133513A4 (en) | 1998-11-03 | 2002-07-03 | Univ Yale | MOLECULAR SENSORS CONSISTING OF SEVERAL DOMAINS OF POLYNUCLEOTIDES |
| ES2338287T3 (en) | 1998-11-09 | 2010-05-05 | Biogen Idec Inc. | TREATMENT OF ANTI-CD20 PATIENTS ANTIBODIES RECEIVING TRANSPLANTS OF OSEA MEDULA GRAFT OR MOTHER PERIPHERAL BLOOD CELLS. |
| EP2055313B1 (en) | 1998-11-09 | 2015-04-29 | Biogen Idec Inc. | Treatment of hematologic malignancies associated with circulating tumor cells using chimeric anti-CD20 antibody |
| WO2000027340A2 (en) | 1998-11-12 | 2000-05-18 | The Children's Medical Center Corporation | USE OF t-RNA AND FRAGMENTS FOR INHIBITING ANGIOGENESIS AND COMPOSITIONS THEREOF |
| US6210931B1 (en) | 1998-11-30 | 2001-04-03 | The United States Of America As Represented By The Secretary Of Agriculture | Ribozyme-mediated synthesis of circular RNA |
| US20040171980A1 (en) | 1998-12-18 | 2004-09-02 | Sontra Medical, Inc. | Method and apparatus for enhancement of transdermal transport |
| WO2000039327A1 (en) | 1998-12-23 | 2000-07-06 | Human Genome Sciences, Inc. | Peptidoglycan recognition proteins |
| CA2364921A1 (en) | 1999-02-22 | 2000-08-31 | European Molecular Biology Laboratory | Translation system |
| US6255476B1 (en) | 1999-02-22 | 2001-07-03 | Pe Corporation (Ny) | Methods and compositions for synthesis of labelled oligonucleotides and analogs on solid-supports |
| US7629311B2 (en) | 1999-02-24 | 2009-12-08 | Edward Lewis Tobinick | Methods to facilitate transmission of large molecules across the blood-brain, blood-eye, and blood-nerve barriers |
| JP2002537102A (en) | 1999-02-26 | 2002-11-05 | カイロン コーポレイション | Microemulsion with adsorbed polymer and fine particles |
| WO2000029561A2 (en) | 1999-03-29 | 2000-05-25 | Statens Serum Institut | Nucleotide construct with optimised codons for an hiv genetic vaccine based on a primary, early hiv isolate and synthetic envelope |
| US7217762B1 (en) | 1999-04-09 | 2007-05-15 | Invitrogen Corporation | Process for the preparation of monodisperse polymer particles |
| EP1637160A3 (en) | 1999-05-07 | 2006-05-03 | Genentech, Inc. | Treatment of autoimmune diseases with antagonists which bind to B cell surface markers |
| KR20020011985A (en) | 1999-05-07 | 2002-02-09 | 파르마솔 게엠베하 | Lipid particles on the basis of mixtures of liquid and solid lipids and method for producing same |
| US6346382B1 (en) | 1999-06-01 | 2002-02-12 | Vanderbilt University | Human carbamyl phosphate synthetase I polymorphism and diagnostic methods related thereto |
| US6743211B1 (en) | 1999-11-23 | 2004-06-01 | Georgia Tech Research Corporation | Devices and methods for enhanced microneedle penetration of biological barriers |
| US6611707B1 (en) | 1999-06-04 | 2003-08-26 | Georgia Tech Research Corporation | Microneedle drug delivery device |
| WO2000075356A1 (en) | 1999-06-04 | 2000-12-14 | Lin Shi Lung | Rna polymerase chain reaction |
| US6303573B1 (en) | 1999-06-07 | 2001-10-16 | The Burnham Institute | Heart homing peptides and methods of using same |
| AU776268B2 (en) | 1999-06-08 | 2004-09-02 | Aventis Pasteur | Immunostimulant oligonucleotide |
| EP2289551A1 (en) | 1999-06-09 | 2011-03-02 | Immunomedics, Inc. | Immunotherapy of autoimmune disorders using antibodies which target B-cells |
| US6949245B1 (en) | 1999-06-25 | 2005-09-27 | Genentech, Inc. | Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies |
| BR0012099A (en) | 1999-06-30 | 2003-07-29 | Advanced Cell Tech Inc | Cytoplasmic transfer to de-differentiate recipient cells |
| US6514948B1 (en) | 1999-07-02 | 2003-02-04 | The Regents Of The University Of California | Method for enhancing an immune response |
| BR0012325A (en) | 1999-07-09 | 2002-05-21 | American Home Prod | Methods and compositions for preventing the formation of abnormal RNA during the transcription of a plasmid sequence |
| US8557244B1 (en) | 1999-08-11 | 2013-10-15 | Biogen Idec Inc. | Treatment of aggressive non-Hodgkins lymphoma with anti-CD20 antibody |
| KR20020047132A (en) | 1999-08-24 | 2002-06-21 | 메다렉스, 인코포레이티드 | Human ctla-4 antibodies and their uses |
| US20050112141A1 (en) | 2000-08-30 | 2005-05-26 | Terman David S. | Compositions and methods for treatment of neoplastic disease |
| US20040106567A1 (en) | 1999-09-07 | 2004-06-03 | Hagstrom James E. | Intravascular delivery of non-viral nucleic acid |
| EP1818409A1 (en) | 1999-09-09 | 2007-08-15 | CureVac GmbH | Transfer of mRNAusing polycationic compounds |
| AU7398200A (en) | 1999-09-17 | 2001-04-24 | Aventis Pasteur Limited | Chlamydia antigens and corresponding dna fragments and uses thereof |
| US6623457B1 (en) | 1999-09-22 | 2003-09-23 | Becton, Dickinson And Company | Method and apparatus for the transdermal administration of a substance |
| WO2002064799A2 (en) | 1999-09-28 | 2002-08-22 | Transkaryotic Therapies, Inc. | Optimized messenger rna |
| IL148922A0 (en) | 1999-10-06 | 2002-09-12 | Quark Biotech Inc | Method for enrichment of natural antisense messenger rna |
| US7060291B1 (en) | 1999-11-24 | 2006-06-13 | Transave, Inc. | Modular targeted liposomal delivery system |
| US6613026B1 (en) | 1999-12-08 | 2003-09-02 | Scimed Life Systems, Inc. | Lateral needle-less injection apparatus and method |
| US6277974B1 (en) | 1999-12-14 | 2001-08-21 | Cogent Neuroscience, Inc. | Compositions and methods for diagnosing and treating conditions, disorders, or diseases involving cell death |
| US6245929B1 (en) | 1999-12-20 | 2001-06-12 | General Electric Company | Catalyst composition and method for producing diaryl carbonates, using bisphosphines |
| JP4758583B2 (en) | 1999-12-22 | 2011-08-31 | バセル テクノロジー カンパニー ビー.ブイ. | Alpha-olefin polymerization catalyst system containing aromatic silane compound |
| WO2001051092A2 (en) | 2000-01-07 | 2001-07-19 | University Of Washington | Enhanced transport of agents using membrane disruptive agents |
| WO2001051661A2 (en) | 2000-01-13 | 2001-07-19 | Amsterdam Support Diagnostics B.V. | A universal nucleic acid amplification system for nucleic acids in a sample |
| AU2001231245A1 (en) | 2000-01-31 | 2001-08-07 | The Regents Of The University Of California | Immunomodulatory polynucleotides in treatment of an infection by an intracellular pathogen |
| CA2395811A1 (en) | 2000-01-31 | 2001-08-02 | Human Genome Sciences, Inc. | Nucleic acids, proteins, and antibodies |
| WO2001062827A2 (en) | 2000-02-22 | 2001-08-30 | Shearwater Corporation | N-maleimidyl polymer derivatives |
| WO2001062801A2 (en) | 2000-02-24 | 2001-08-30 | Washington University | Humanized antibodies that sequester amyloid beta peptide |
| BR0108962A (en) | 2000-03-03 | 2002-12-24 | Valentis Inc | Nucleic acid formulations for gene distribution and methods of use |
| WO2001075166A2 (en) | 2000-03-31 | 2001-10-11 | Genentech, Inc. | Compositions and methods for detecting and quantifying gene expression |
| BR0109705A (en) | 2000-03-31 | 2005-01-11 | Idec Pharma Corp | Combined use of anti-cytokine and anticd20 antibodies or antagonists for the treatment of B-cell lymphoma |
| US6565572B2 (en) | 2000-04-10 | 2003-05-20 | Sdgi Holdings, Inc. | Fenestrated surgical screw and method |
| US6368801B1 (en) | 2000-04-12 | 2002-04-09 | Molecular Staging, Inc. | Detection and amplification of RNA using target-mediated ligation of DNA by RNA ligase |
| JP2003530838A (en) | 2000-04-12 | 2003-10-21 | ヒューマン ゲノム サイエンシズ インコーポレイテッド | Albumin fusion protein |
| US20010046496A1 (en) | 2000-04-14 | 2001-11-29 | Brettman Lee R. | Method of administering an antibody |
| US6375972B1 (en) | 2000-04-26 | 2002-04-23 | Control Delivery Systems, Inc. | Sustained release drug delivery devices, methods of use, and methods of manufacturing thereof |
| US7871598B1 (en) | 2000-05-10 | 2011-01-18 | Novartis Ag | Stable metal ion-lipid powdered pharmaceutical compositions for drug delivery and methods of use |
| US20040229271A1 (en) | 2000-05-19 | 2004-11-18 | Williams Richard B. | Compositions and methods for the identification and selection of nucleic acids and polypeptides |
| WO2001092523A2 (en) | 2000-05-30 | 2001-12-06 | Curagen Corporation | Human polynucleotides and polypeptides encoded thereby |
| JP2004530629A (en) | 2000-06-07 | 2004-10-07 | バイオシネクサス インコーポレーテッド | Immunostimulatory RNA / DNA hybrid molecule |
| ATE343589T1 (en) | 2000-06-23 | 2006-11-15 | Wyeth Corp | MODOFIED MORBILLIVIRUS V PROTEINS |
| US20040005667A1 (en) | 2000-07-03 | 2004-01-08 | Giuloi Ratti | Immunisation against chlamydia pneumoniae |
| US6440096B1 (en) | 2000-07-14 | 2002-08-27 | Becton, Dickinson And Co. | Microdevice and method of manufacturing a microdevice |
| BR0112637A (en) | 2000-07-21 | 2003-06-10 | Glaxo Group Ltd | Codon-optimized Papilloma Virus Sequences |
| US6902734B2 (en) | 2000-08-07 | 2005-06-07 | Centocor, Inc. | Anti-IL-12 antibodies and compositions thereof |
| US6696038B1 (en) | 2000-09-14 | 2004-02-24 | Expression Genetics, Inc. | Cationic lipopolymer as biocompatible gene delivery agent |
| US20040142474A1 (en) | 2000-09-14 | 2004-07-22 | Expression Genetics, Inc. | Novel cationic lipopolymer as a biocompatible gene delivery agent |
| AU2001290078A1 (en) | 2000-09-20 | 2002-04-02 | Ruggero Della Bitta | Stem cell therapy |
| US6733994B2 (en) | 2000-10-04 | 2004-05-11 | The Trustees Of The University Of Pennsylvania | Highly expressible genes |
| US6998115B2 (en) | 2000-10-10 | 2006-02-14 | Massachusetts Institute Of Technology | Biodegradable poly(β-amino esters) and uses thereof |
| US7202226B2 (en) | 2000-10-23 | 2007-04-10 | Detroit R & D | Augmentation of wound healing by elF-4E mRNA and EGF mRNA |
| US20030077604A1 (en) | 2000-10-27 | 2003-04-24 | Yongming Sun | Compositions and methods relating to breast specific genes and proteins |
| US20020132788A1 (en) | 2000-11-06 | 2002-09-19 | David Lewis | Inhibition of gene expression by delivery of small interfering RNA to post-embryonic animal cells in vivo |
| US7521054B2 (en) | 2000-11-17 | 2009-04-21 | The United States Of America As Represented By The Department Of Health And Human Services | Reduction of the nonspecific animal toxicity of immunotoxins by mutating the framework regions of the Fv to lower the isoelectric point |
| AU2002227365A1 (en) | 2000-12-07 | 2002-06-18 | Chiron Corporation | Endogenous retroviruses up-regulated in prostate cancer |
| US7708915B2 (en) | 2004-05-06 | 2010-05-04 | Castor Trevor P | Polymer microspheres/nanospheres and encapsulating therapeutic proteins therein |
| US20020130430A1 (en) | 2000-12-29 | 2002-09-19 | Castor Trevor Percival | Methods for making polymer microspheres/nanospheres and encapsulating therapeutic proteins and other products |
| EP1224943A1 (en) | 2001-01-19 | 2002-07-24 | Crucell Holland B.V. | Fibronectin as a tumor marker detected by phage antibodies |
| CN101921732A (en) | 2001-01-19 | 2010-12-22 | 维洛诺瓦蒂夫公司 | A virus causing respiratory tract illness in susceptible mammals |
| US20040110191A1 (en) | 2001-01-31 | 2004-06-10 | Winkler Matthew M. | Comparative analysis of nucleic acids using population tagging |
| CA2437737A1 (en) | 2001-02-14 | 2002-08-22 | Stephen D. Ginsberg | Methods and compositions of amplifying rna |
| US6652886B2 (en) | 2001-02-16 | 2003-11-25 | Expression Genetics | Biodegradable cationic copolymers of poly (alkylenimine) and poly (ethylene glycol) for the delivery of bioactive agents |
| DE10109897A1 (en) | 2001-02-21 | 2002-11-07 | Novosom Ag | Optional cationic liposomes and their use |
| US7232425B2 (en) | 2001-03-02 | 2007-06-19 | Sorenson Development, Inc. | Apparatus and method for specific interstitial or subcutaneous diffusion and dispersion of medication |
| KR100917939B1 (en) | 2001-03-09 | 2009-09-21 | 진 스트림 피티와이 리미티드 | Novel expression vectors |
| JP2002262882A (en) | 2001-03-12 | 2002-09-17 | Nisshinbo Ind Inc | RNA amplification method |
| FR2822164B1 (en) | 2001-03-19 | 2004-06-18 | Centre Nat Rech Scient | POLYPEPTIDES DERIVED FROM POLYMERASE RNAS, AND USES THEREOF |
| US6520949B2 (en) | 2001-04-02 | 2003-02-18 | Martin St. Germain | Method and apparatus for administering fluid to animals subcutaneously |
| DE10119005A1 (en) | 2001-04-18 | 2002-10-24 | Roche Diagnostics Gmbh | Process for protein expression starting from stabilized linear short DNA in cell-free in vitro transcription / translation systems with exonuclease-containing lysates or in a cellular system containing exonucleases |
| US20030171253A1 (en) | 2001-04-19 | 2003-09-11 | Averil Ma | Methods and compositions relating to modulation of A20 |
| ATE278796T1 (en) | 2001-04-23 | 2004-10-15 | Amaxa Gmbh | BUFFER SOLUTION FOR ELECTROPORATION AND METHOD COMPRISING THE USE OF THE SAME |
| US7560424B2 (en) | 2001-04-30 | 2009-07-14 | Zystor Therapeutics, Inc. | Targeted therapeutic proteins |
| US6777187B2 (en) | 2001-05-02 | 2004-08-17 | Rubicon Genomics, Inc. | Genome walking by selective amplification of nick-translate DNA library and amplification from complex mixtures of templates |
| WO2002090225A2 (en) | 2001-05-08 | 2002-11-14 | Magnatech International, L.P. | Electronic length control wire pay-off system and method |
| US20050137155A1 (en) | 2001-05-18 | 2005-06-23 | Sirna Therapeutics, Inc. | RNA interference mediated treatment of Parkinson disease using short interfering nucleic acid (siNA) |
| US8137911B2 (en) | 2001-05-22 | 2012-03-20 | Cellscript, Inc. | Preparation and use of single-stranded transcription substrates for synthesis of transcription products corresponding to target sequences |
| CA2449054C (en) | 2001-05-30 | 2011-01-04 | The Scripps Research Institute | Integrin targeting liposome for nucleic acid delivery |
| EP1903054A3 (en) | 2001-06-05 | 2008-07-23 | CureVac GmbH | Pharmaceutical compound containing a stabilised mRNA which is optimised for translation in its coded areas |
| EP1402035A2 (en) | 2001-06-18 | 2004-03-31 | Novartis AG | G-protein coupled receptors and dna sequences thereof |
| US7547551B2 (en) | 2001-06-21 | 2009-06-16 | University Of Antwerp. | Transfection of eukaryontic cells with linear polynucleotides by electroporation |
| US7785610B2 (en) | 2001-06-21 | 2010-08-31 | Dynavax Technologies Corporation | Chimeric immunomodulatory compounds and methods of using the same—III |
| EP1404716A2 (en) | 2001-06-26 | 2004-04-07 | Novartis AG | Novel g protein-coupled receptors and dna sequences thereof |
| SE0102327D0 (en) | 2001-06-28 | 2001-06-28 | Active Biotech Ab | A novel engineered superantigen for human therapy |
| US20040236092A1 (en) | 2001-07-13 | 2004-11-25 | Roman Dziarski | Peptidologlycan recognition protein encoding nucleic acids and methods of use thereof |
| US6586524B2 (en) | 2001-07-19 | 2003-07-01 | Expression Genetics, Inc. | Cellular targeting poly(ethylene glycol)-grafted polymeric gene carrier |
| ATE481497T1 (en) | 2001-08-01 | 2010-10-15 | Univ Utah | N-TERMINUS TRUNCATED ISOFORMS OF CYCLIC PHOSPHODIESTERASES PDE3A |
| JP2005502344A (en) | 2001-08-27 | 2005-01-27 | ノバルティス アクチエンゲゼルシャフト | Novel G protein coupled receptor and DNA sequence thereof |
| US20040142325A1 (en) | 2001-09-14 | 2004-07-22 | Liat Mintz | Methods and systems for annotating biomolecular sequences |
| AR045702A1 (en) | 2001-10-03 | 2005-11-09 | Chiron Corp | COMPOSITIONS OF ASSISTANTS. |
| DE10148886A1 (en) | 2001-10-04 | 2003-04-30 | Avontec Gmbh | Inhibition of STAT-1 |
| US7276489B2 (en) | 2002-10-24 | 2007-10-02 | Idera Pharmaceuticals, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends |
| ATE427992T1 (en) | 2001-11-14 | 2009-04-15 | Toyo Boseki | DNA SYNTHESIS PROMOTORS, DNA POLYMERASE ASSOCIATED FACTORS AND USE THEREOF |
| WO2003044482A2 (en) | 2001-11-16 | 2003-05-30 | The University Of Tennessee Research Corporation | Recombinant antibody fusion proteins and methods for detection of apoptotic cells |
| EP1454145A2 (en) | 2001-11-29 | 2004-09-08 | Novartis AG | Method for the assessment and prognosis of sarcoidosis |
| CA2409775C (en) | 2001-12-03 | 2010-07-13 | F. Hoffmann-La Roche Ag | Reversibly modified thermostable enzymes for dna synthesis and amplification in vitro |
| EP2208736A3 (en) | 2001-12-07 | 2010-10-27 | Novartis Vaccines and Diagnostics, Inc. | Endogenous retrovirus up-regulated in prostate cancer |
| CA2469049A1 (en) | 2001-12-07 | 2003-06-19 | Chiron Corporation | Endogenous retrovirus polypeptides linked to oncogenic transformation |
| US20060275747A1 (en) | 2001-12-07 | 2006-12-07 | Hardy Stephen F | Endogenous retrovirus up-regulated in prostate cancer |
| AU2002361429A1 (en) | 2001-12-17 | 2003-06-30 | Novartis Ag | Novel g-protein coupled receptors and dna sequences thereof |
| DE10162480A1 (en) | 2001-12-19 | 2003-08-07 | Ingmar Hoerr | The application of mRNA for use as a therapeutic agent against tumor diseases |
| US20050003014A1 (en) | 2001-12-21 | 2005-01-06 | Ketelson Howard Allen | Use of synthetic inorganic nanoparticles as carriers for ophthalmic and otic drugs |
| AU2003235707A1 (en) | 2002-01-18 | 2003-07-30 | Curevac Gmbh | Immunogenic preparations and vaccines on the basis of mrna |
| AU2003203079B9 (en) | 2002-02-04 | 2009-01-15 | Oncothyreon Inc. | Immunostimulatory, covalently lipidated oligonucleotides |
| CA2473144C (en) | 2002-02-05 | 2013-05-28 | Genentech, Inc. | Protein purification |
| FR2835749B1 (en) | 2002-02-08 | 2006-04-14 | Inst Nat Sante Rech Med | PHARMACEUTICAL COMPOSITION IMPROVING IN VIVO GENE TRANSFER |
| DE10207178A1 (en) | 2002-02-19 | 2003-09-04 | Novosom Ag | Components for the production of amphoteric liposomes |
| AR038568A1 (en) | 2002-02-20 | 2005-01-19 | Hoffmann La Roche | ANTI-A BETA ANTIBODIES AND ITS USE |
| US7354742B2 (en) | 2002-02-22 | 2008-04-08 | Ortho-Mcneil Pharmaceutical, Inc. | Method for generating amplified RNA |
| CA2481479C (en) | 2002-02-26 | 2012-12-11 | Maxygen, Inc. | Novel flavivirus antigens |
| WO2003075840A2 (en) | 2002-03-04 | 2003-09-18 | Imclone Systems Incorporated | Human antibodies specific to kdr and uses thereof |
| WO2003075892A1 (en) | 2002-03-13 | 2003-09-18 | Novartis Ag | Pharmaceutical microparticles |
| US7074596B2 (en) | 2002-03-25 | 2006-07-11 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Synthesis and use of anti-reverse mRNA cap analogues |
| AU2003230806B2 (en) | 2002-04-04 | 2009-05-07 | Zoetis Belgium S.A. | Immunostimulatory G,U-containing oligoribonucleotides |
| US7399583B2 (en) | 2002-04-17 | 2008-07-15 | Novartis Ag | Method for the identification of inhibitors of the binding of ARE-containing mRNA and a HuR protein |
| GB0209539D0 (en) | 2002-04-26 | 2002-06-05 | Avecia Ltd | Monomer Polymer and process |
| EP1361277A1 (en) | 2002-04-30 | 2003-11-12 | Centre National De La Recherche Scientifique (Cnrs) | Optimization of transgene expression in mammalian cells |
| PL224150B1 (en) | 2002-05-02 | 2016-11-30 | Wyeth Corp | Composition containing drug conjugate including the calicheamicin derivatives and the antibody, and the pharmaceutical composition containing it |
| US7374930B2 (en) | 2002-05-21 | 2008-05-20 | Expression Genetics, Inc. | GLP-1 gene delivery for the treatment of type 2 diabetes |
| US20040018525A1 (en) | 2002-05-21 | 2004-01-29 | Bayer Aktiengesellschaft | Methods and compositions for the prediction, diagnosis, prognosis, prevention and treatment of malignant neoplasma |
| DE10224200C1 (en) | 2002-05-31 | 2003-08-21 | Artus Ges Fuer Molekularbiolog | Replicating RNA, useful, after reverse transcription, for analysis on microarrays, comprises conversion to cDNA then reverse transcription of this to form antisense sequences |
| US7198899B2 (en) | 2002-06-03 | 2007-04-03 | Chiron Corporation | Use of NRG4, or inhibitors thereof, in the treatment of colon and pancreatic cancers |
| SE0201907D0 (en) | 2002-06-19 | 2002-06-19 | Atos Medical Ab | Patches for tracheostoma valves |
| WO2004002453A1 (en) | 2002-06-28 | 2004-01-08 | Protiva Biotherapeutics Ltd. | Method and apparatus for producing liposomes |
| US20040122216A1 (en) | 2002-07-01 | 2004-06-24 | Jacob Nielsen | Recombinant tissue protective cytokines and encoding nucleic acids thereof for protection, restoration, and enhancement of responsive cells, tissues, and organs |
| DE10229872A1 (en) | 2002-07-03 | 2004-01-29 | Curevac Gmbh | Immune stimulation through chemically modified RNA |
| GB0215509D0 (en) | 2002-07-04 | 2002-08-14 | Novartis Ag | Marker genes |
| AR040575A1 (en) | 2002-07-16 | 2005-04-13 | Advisys Inc | OPTIMIZED SYNTHETIC PLASMIDS IN EXPRESSION CODONS IN MAMMERS |
| CA2493808A1 (en) | 2002-07-24 | 2004-01-29 | Ptc Therapeutics, Inc. | Methods for identifying small molecules that modulate premature translation termination and nonsense mediated mrna decay |
| EP1393745A1 (en) | 2002-07-29 | 2004-03-03 | Hybridon, Inc. | Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5'ends |
| EP1386925A1 (en) | 2002-07-31 | 2004-02-04 | Girindus AG | Method for preparing oligonucleotides |
| US6653468B1 (en) | 2002-07-31 | 2003-11-25 | Isis Pharmaceuticals, Inc. | Universal support media for synthesis of oligomeric compounds |
| EP1873180B1 (en) | 2002-08-14 | 2014-05-07 | Novartis AG | Ophthalmic device made from a radiation-curable prepolymer |
| KR101476067B1 (en) | 2002-09-06 | 2014-12-23 | 인설트 테라페틱스, 인코퍼레이티드 | Cyclodextrin-based polymers for delivering the therapeutic agents covalently bound thereto |
| CA2497980C (en) | 2002-09-09 | 2011-06-21 | Nektar Therapeutics Al, Corporation | Method for preparing water-soluble polymer derivatives bearing a terminal carboxylic acid |
| US7534872B2 (en) | 2002-09-27 | 2009-05-19 | Syngen, Inc. | Compositions and methods for the use of FMOC derivatives in DNA/RNA synthesis |
| KR20110140142A (en) | 2002-10-17 | 2011-12-30 | 젠맵 에이/에스 | Human monoclonal antibodies against CD20 |
| EP1561814B1 (en) | 2002-10-22 | 2010-12-22 | Eisai R&D Management Co., Ltd. | Gene specifically expressed in postmitotic dopaminergic neuron precursor cells |
| AU2003297557B2 (en) | 2002-11-21 | 2009-02-26 | Cellscript, Inc. | Methods for using primers that encode one strand of a double-stranded promoter |
| US7491234B2 (en) | 2002-12-03 | 2009-02-17 | Boston Scientific Scimed, Inc. | Medical devices for delivery of therapeutic agents |
| EP2301966A1 (en) | 2002-12-16 | 2011-03-30 | Genentech, Inc. | Immunoglobulin variants and uses thereof |
| AU2003302743B2 (en) | 2002-12-23 | 2008-09-04 | Dynavax Technologies Corporation | Branched immunomodulatory compounds and methods of using the same |
| US7169892B2 (en) | 2003-01-10 | 2007-01-30 | Astellas Pharma Inc. | Lipid-peptide-polymer conjugates for long blood circulation and tumor specific drug delivery systems |
| WO2004067728A2 (en) | 2003-01-17 | 2004-08-12 | Ptc Therapeutics | Methods and systems for the identification of rna regulatory sequences and compounds that modulate their function |
| US9068234B2 (en) | 2003-01-21 | 2015-06-30 | Ptc Therapeutics, Inc. | Methods and agents for screening for compounds capable of modulating gene expression |
| US8460864B2 (en) | 2003-01-21 | 2013-06-11 | Ptc Therapeutics, Inc. | Methods for identifying compounds that modulate untranslated region-dependent gene expression and methods of using same |
| US8426194B2 (en) | 2003-01-21 | 2013-04-23 | Ptc Therapeutics, Inc. | Methods and agents for screening for compounds capable of modulating VEGF expression |
| US20040147027A1 (en) | 2003-01-28 | 2004-07-29 | Troy Carol M. | Complex for facilitating delivery of dsRNA into a cell and uses thereof |
| PT2236154T (en) | 2003-02-10 | 2018-06-26 | Biogen Ma Inc | Immunoglobulin formulation and method of preparation thereof |
| US20040167090A1 (en) | 2003-02-21 | 2004-08-26 | Monahan Sean D. | Covalent modification of RNA for in vitro and in vivo delivery |
| CA2450289A1 (en) | 2003-03-20 | 2005-05-19 | Imclone Systems Incorporated | Method of producing an antibody to epidermal growth factor receptor |
| US7320961B2 (en) | 2003-03-24 | 2008-01-22 | Abbott Laboratories | Method for treating a disease, disorder or adverse effect caused by an elevated serum concentration of an UGT1A1 substrate |
| ATE459710T1 (en) | 2003-03-25 | 2010-03-15 | Stratagene California | DNA POLYMERASE FUSIONS AND USES THEREOF |
| WO2004092329A2 (en) | 2003-04-08 | 2004-10-28 | Galenica Pharmaceuticals, Inc. | Semi-synthetic saponin analogs with carrier and immune stimulatory activities for dna and rna vaccines |
| UA91961C2 (en) | 2003-04-09 | 2010-09-27 | Дженентек, Инк. | Therapy of autoimmune disease in a patient with an inadequate response to a tnf-alpha inhibitor |
| JP2006525405A (en) | 2003-05-05 | 2006-11-09 | ベン‐グリオン ユニバーシティ オブ ザ ネゲヴ リサーチ アンド デベロップメント オーソリティ | Injectable cross-linked polymer preparations and their use |
| US7348004B2 (en) | 2003-05-06 | 2008-03-25 | Syntonix Pharmaceuticals, Inc. | Immunoglobulin chimeric monomer-dimer hybrids |
| EP3552627A1 (en) | 2003-05-06 | 2019-10-16 | Bioverativ Therapeutics Inc. | Clotting factor-fc chimeric proteins to treat hemophilia |
| TWI353991B (en) | 2003-05-06 | 2011-12-11 | Syntonix Pharmaceuticals Inc | Immunoglobulin chimeric monomer-dimer hybrids |
| US9567591B2 (en) | 2003-05-15 | 2017-02-14 | Mello Biotechnology, Inc. | Generation of human embryonic stem-like cells using intronic RNA |
| GB0313132D0 (en) | 2003-06-06 | 2003-07-09 | Ich Productions Ltd | Peptide ligands |
| EP1636385A4 (en) | 2003-06-24 | 2010-06-02 | Mirus Bio Corp | Inhibition of gene function by delivery of polynucleotide-based gene expression inhibitors to mammalian cells in vivo |
| GB0316089D0 (en) | 2003-07-09 | 2003-08-13 | Xo Bioscience Ltd | Differentiation method |
| US8592197B2 (en) | 2003-07-11 | 2013-11-26 | Novavax, Inc. | Functional influenza virus-like particles (VLPs) |
| US7575572B2 (en) | 2003-07-15 | 2009-08-18 | Spinal Generations, Llc | Method and device for delivering medicine to bone |
| US20050013870A1 (en) | 2003-07-17 | 2005-01-20 | Toby Freyman | Decellularized extracellular matrix of conditioned body tissues and uses thereof |
| DK1648998T3 (en) | 2003-07-18 | 2015-01-05 | Amgen Inc | Specific binding agents for hepatocyte growth factor |
| DE10335833A1 (en) | 2003-08-05 | 2005-03-03 | Curevac Gmbh | Transfection of blood cells with mRNA for immune stimulation and gene therapy |
| US20050048112A1 (en) | 2003-08-28 | 2005-03-03 | Jorg Breitenbach | Solid pharmaceutical dosage form |
| US8668926B1 (en) | 2003-09-15 | 2014-03-11 | Shaker A. Mousa | Nanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations thereof |
| US7135010B2 (en) | 2003-09-30 | 2006-11-14 | Damage Control Surgical Technologies, Inc. | Method and apparatus for rapid deployment chest drainage |
| JP2007507460A (en) | 2003-10-06 | 2007-03-29 | ノバルティス アクチエンゲゼルシャフト | Use of genetic polymorphisms associated with therapeutic efficacy in inflammatory diseases |
| US20050130201A1 (en) | 2003-10-14 | 2005-06-16 | Dharmacon, Inc. | Splint-assisted enzymatic synthesis of polyribounucleotides |
| DE10347710B4 (en) | 2003-10-14 | 2006-03-30 | Johannes-Gutenberg-Universität Mainz | Recombinant vaccines and their use |
| DE602004026470D1 (en) | 2003-11-05 | 2010-05-20 | Roche Glycart Ag | FC RECEPTOR AND EFFECTOR FUNCTION |
| WO2005047536A2 (en) | 2003-11-13 | 2005-05-26 | Novartis Ag | Detection of genomic amplification and deletion in cancer |
| US20070054278A1 (en) | 2003-11-18 | 2007-03-08 | Applera Corporation | Polymorphisms in nucleic acid molecules encoding human enzyme proteins, methods of detection and uses thereof |
| US7699852B2 (en) | 2003-11-19 | 2010-04-20 | Zimmer Spine, Inc. | Fenestrated bone tap and method |
| WO2007062495A1 (en) | 2005-11-30 | 2007-06-07 | Roy Rabindranauth Sooknanan | Selective terminal tagging of nucleic acids |
| US20050153333A1 (en) | 2003-12-02 | 2005-07-14 | Sooknanan Roy R. | Selective terminal tagging of nucleic acids |
| EP1691746B1 (en) | 2003-12-08 | 2015-05-27 | Gel-Del Technologies, Inc. | Mucoadhesive drug delivery devices and methods of making and using thereof |
| US7674884B2 (en) | 2003-12-10 | 2010-03-09 | Novimmune S.A. | Neutralizing antibodies and methods of use thereof |
| US8372966B2 (en) | 2003-12-19 | 2013-02-12 | University Of Cincinnati | Oligonucleotide decoys and methods of use |
| JP4851944B2 (en) | 2003-12-23 | 2012-01-11 | ジェネンテック, インコーポレイテッド | Novel anti-IL13 antibody and use thereof |
| EP1713514B1 (en) | 2004-01-28 | 2021-11-24 | Johns Hopkins University | Drugs and gene carrier particles that rapidly move through mucous barriers |
| ES2329807T3 (en) | 2004-01-30 | 2009-12-01 | Maxygen Holdings Ltd. | REGULATED TRANSLECTURE OF TERMINATION CODONS. |
| US7309487B2 (en) | 2004-02-09 | 2007-12-18 | George Inana | Methods and compositions for detecting and treating retinal diseases |
| CA2556027C (en) | 2004-02-12 | 2015-11-24 | Morphotek, Inc. | Monoclonal antibodies that specifically block biological activity of a tumor antigen |
| US20070265220A1 (en) * | 2004-03-15 | 2007-11-15 | City Of Hope | Methods and compositions for the specific inhibition of gene expression by double-stranded RNA |
| EP3269738A1 (en) | 2004-03-24 | 2018-01-17 | Chugai Seiyaku Kabushiki Kaisha | Subtypes of humanized antibody against interleukin-6 receptor |
| WO2005098433A2 (en) | 2004-04-01 | 2005-10-20 | Novartis Ag | Diagnostic assays for alzheimer’s disease |
| JP5848861B2 (en) | 2004-04-20 | 2016-01-27 | ジェンマブ エー/エスGenmab A/S | Human monoclonal antibody against CD20 |
| ES2246694B1 (en) | 2004-04-29 | 2007-05-01 | Instituto Cientifico Y Tecnologico De Navarra, S.A. | PEGILATED NANOPARTICLES. |
| WO2005108411A2 (en) | 2004-05-05 | 2005-11-17 | Isis Pharmaceuticals, Inc. | Substituted pixyl protecting groups for oligonucleotide synthesis |
| ES2313350T3 (en) | 2004-05-12 | 2009-03-01 | Baxter International Inc. | MICROSPHERAS OF NUCLEIC ACID, PRODUCTION AND SUPPLY OF THE SAME. |
| US8012747B2 (en) | 2004-06-01 | 2011-09-06 | San Diego State University Foundation | Expression system |
| ATE536418T1 (en) | 2004-06-07 | 2011-12-15 | Protiva Biotherapeutics Inc | LIPID ENCAPSULATED INTERFERENCE RNA |
| US7745651B2 (en) | 2004-06-07 | 2010-06-29 | Protiva Biotherapeutics, Inc. | Cationic lipids and methods of use |
| CA3075158A1 (en) | 2004-06-11 | 2005-12-29 | Trustees Of Tufts College | Silk-based drug delivery system |
| WO2006046978A2 (en) | 2004-06-28 | 2006-05-04 | Argos Therapeutics, Inc. | Cationic peptide-mediated transformation |
| WO2006005058A2 (en) | 2004-06-30 | 2006-01-12 | Nektar Therapeutics Al, Corporation | Polymer-factor ix moiety conjugates |
| DE102004035227A1 (en) | 2004-07-21 | 2006-02-16 | Curevac Gmbh | mRNA mixture for vaccination against tumor diseases |
| AU2005328382C1 (en) | 2004-07-21 | 2013-01-24 | Alnylam Pharmaceuticals, Inc. | Oligonucleotides comprising a modified or non-natural nucleobase |
| US7603349B1 (en) | 2004-07-29 | 2009-10-13 | Yahoo! Inc. | User interfaces for search systems using in-line contextual queries |
| GB0417487D0 (en) | 2004-08-05 | 2004-09-08 | Novartis Ag | Organic compound |
| SE0402025D0 (en) | 2004-08-13 | 2004-08-13 | Active Biotech Ab | Treatment of hyperproliferative disease with superantigens in combination with another anticancer agent |
| US7291208B2 (en) | 2004-08-13 | 2007-11-06 | Gore Enterprise Holdings, Inc. | Grooved active and passive adsorbent filters |
| CA2478458A1 (en) | 2004-08-20 | 2006-02-20 | Michael Panzara | Treatment of pediatric multiple sclerosis |
| DK2386640T3 (en) | 2004-08-26 | 2015-04-27 | Engeneic Molecular Delivery Pty Ltd | The making of functional nucleic acids into mammalian cells via bacterially derived intact minicells |
| DE102004042546A1 (en) | 2004-09-02 | 2006-03-09 | Curevac Gmbh | Combination therapy for immune stimulation |
| US7501486B2 (en) | 2004-09-07 | 2009-03-10 | Burnham Institute For Medical Research | Peptides that selectively home to heart vasculature and related conjugates and methods |
| US8663599B1 (en) | 2004-10-05 | 2014-03-04 | Gp Medical, Inc. | Pharmaceutical composition of nanoparticles |
| EP1811018A4 (en) | 2004-10-12 | 2007-11-28 | Tissue Targeting Japan Inc | Brain disposition marrow progenitor |
| EP2311455B1 (en) | 2004-10-13 | 2015-07-15 | PTC Therapeutics, Inc. | Compounds for nonsense suppression, and methods for their use |
| US8057821B2 (en) | 2004-11-03 | 2011-11-15 | Egen, Inc. | Biodegradable cross-linked cationic multi-block copolymers for gene delivery and methods of making thereof |
| EP1812569A2 (en) | 2004-11-08 | 2007-08-01 | K.U. Leuven Research and Development | Modified nucleosides for rna interference |
| US8946444B2 (en) | 2004-11-23 | 2015-02-03 | Ptc Therapeutics, Inc. | Tetrahydrocarbazoles as active agents for inhibiting VEGF production by translational control |
| US7964571B2 (en) | 2004-12-09 | 2011-06-21 | Egen, Inc. | Combination of immuno gene therapy and chemotherapy for treatment of cancer and hyperproliferative diseases |
| EP1856179B1 (en) | 2004-12-10 | 2013-05-15 | Kala Pharmaceuticals, Inc. | Functionalized poly (ether-anhydride) block copolymers |
| US9068969B2 (en) | 2004-12-28 | 2015-06-30 | Ptc Therapeutics, Inc. | Cell based methods and systems for the identification of RNA regulatory sequences and compounds that modulate their functions |
| US8535702B2 (en) | 2005-02-01 | 2013-09-17 | Boston Scientific Scimed, Inc. | Medical devices having porous polymeric regions for controlled drug delivery and regulated biocompatibility |
| EP2287608B1 (en) | 2005-03-11 | 2014-01-08 | Firalis SAS | Biomarkers for cardiovascular side-effects induced by cox-2 inhibitory compounds |
| US8415325B2 (en) | 2005-03-31 | 2013-04-09 | University Of Delaware | Cell-mediated delivery and targeted erosion of noncovalently crosslinked hydrogels |
| EP2083088A3 (en) | 2005-04-07 | 2009-10-14 | Novartis Vaccines and Diagnostics, Inc. | Cancer-related genes |
| AU2006235276A1 (en) | 2005-04-07 | 2006-10-19 | Novartis Vaccines And Diagnostics Inc. | CACNA1E in cancer diagnosis, detection and treatment |
| EP1885403B1 (en) | 2005-04-12 | 2013-05-08 | Nektar Therapeutics | Poly(ethyleneglycol) conjugates of Lysostaphin |
| EP2295466A3 (en) | 2005-04-25 | 2011-08-17 | Pfizer Inc. | Antibodies to myostatin |
| CA2609788A1 (en) | 2005-04-26 | 2006-11-02 | Coley Pharmaceutical Gmbh | Modified oligoribonucleotide analogs with enhanced immunostimulatory activity |
| CA3151350A1 (en) | 2005-05-09 | 2006-11-16 | E. R. Squibb & Sons, L.L.C. | Human monoclonal antibodies to programmed death 1 (pd-1) and methods for treating cancer using anti-pd-1 antibodies alone or in combination with other immunotherapeutics |
| US20070072175A1 (en) | 2005-05-13 | 2007-03-29 | Biogen Idec Ma Inc. | Nucleotide array containing polynucleotide probes complementary to, or fragments of, cynomolgus monkey genes and the use thereof |
| US20060265771A1 (en) | 2005-05-17 | 2006-11-23 | Lewis David L | Monitoring microrna expression and function |
| DE102005023170A1 (en) | 2005-05-19 | 2006-11-23 | Curevac Gmbh | Optimized formulation for mRNA |
| MX2007015107A (en) | 2005-06-03 | 2008-02-15 | Genentech Inc | Method of producing antibodies with modified fucosylation level. |
| US7550264B2 (en) | 2005-06-10 | 2009-06-23 | Datascope Investment Corporation | Methods and kits for sense RNA synthesis |
| KR101304157B1 (en) | 2005-06-16 | 2013-09-06 | 넥타르 테라퓨틱스 | Conjugates having a degradable linkage and polymeric reagents useful in preparing such conjugates |
| AU2006282042B2 (en) | 2005-06-17 | 2011-12-22 | The University Of North Carolina At Chapel Hill | Nanoparticle fabrication methods, systems, and materials |
| US8202835B2 (en) | 2005-06-17 | 2012-06-19 | Yitzchak Hillman | Disease treatment via antimicrobial peptides or their inhibitors |
| US8101385B2 (en) | 2005-06-30 | 2012-01-24 | Archemix Corp. | Materials and methods for the generation of transcripts comprising modified nucleotides |
| CA2613442C (en) | 2005-06-30 | 2016-08-23 | Archemix Corp. | Materials and methods for the generation of fully 2'-modified nucleic acid transcripts |
| US20080220471A1 (en) | 2005-07-27 | 2008-09-11 | Genentech, Inc. | Vectors and Methods Using Same |
| US7612181B2 (en) | 2005-08-19 | 2009-11-03 | Abbott Laboratories | Dual variable domain immunoglobulin and uses thereof |
| US9012219B2 (en) | 2005-08-23 | 2015-04-21 | The Trustees Of The University Of Pennsylvania | RNA preparations comprising purified modified RNA for reprogramming cells |
| US20070048741A1 (en) | 2005-08-24 | 2007-03-01 | Getts Robert C | Methods and kits for sense RNA synthesis |
| HRP20110348T1 (en) | 2005-09-01 | 2011-07-31 | Celgene Corporation | IMMUNOLOGICAL APPLICATIONS OF IMMUNOMODULATORY COMPOUNDS FOR THE VACCINE AND FOR THE TREATMENT OF INFECTIVE DISEASES |
| AU2006286228A1 (en) | 2005-09-01 | 2007-03-08 | Novartis Vaccines And Diagnostics Gmbh & Co Kg | Multiple vaccination including serogroup C meningococcus |
| US8420605B2 (en) | 2005-09-07 | 2013-04-16 | The University Of Strathclyde | Hydrogel compositions |
| US20120021042A1 (en) | 2005-09-15 | 2012-01-26 | Steffen Panzner | Efficient Method For Loading Amphoteric Liposomes With Nucleic Acid Active Substances |
| DE102005046490A1 (en) | 2005-09-28 | 2007-03-29 | Johannes-Gutenberg-Universität Mainz | New nucleic acid molecule comprising promoter, a transcriptable nucleic acid sequence, a first and second nucleic acid sequence for producing modified RNA with transcriptional stability and translational efficiency |
| US20070087437A1 (en) | 2005-10-14 | 2007-04-19 | Jifan Hu | Methods for rejuvenating cells in vitro and in vivo |
| ATE539765T1 (en) | 2005-11-04 | 2012-01-15 | Novartis Vaccines & Diagnostic | FLU VACCINES WITH PARTICLE ADJUVANTS AND IMMUNE BOOSTERS COMBINATIONS |
| US20070105124A1 (en) | 2005-11-08 | 2007-05-10 | Getts Robert C | Methods and kits for nucleic acid amplification |
| WO2007057167A2 (en) | 2005-11-18 | 2007-05-24 | Bioline Limited | A method for enhancing enzymatic dna polymerase reactions |
| SG10201600950TA (en) | 2005-11-28 | 2016-03-30 | Genmab As | Recombinant monovalent antibodies and methods for production thereof |
| TWI389709B (en) | 2005-12-01 | 2013-03-21 | Novartis Ag | Transdermal therapeutic system |
| US8603457B2 (en) | 2005-12-02 | 2013-12-10 | University Of Rochester | Nonsense suppression and genetic codon alteration by targeted modification |
| WO2008051245A2 (en) | 2005-12-02 | 2008-05-02 | Novartis Ag | Nanoparticles for use in immunogenic compositions |
| US7579318B2 (en) | 2005-12-06 | 2009-08-25 | Centre De La Recherche De La Scientifique | Cell penetrating peptides for intracellular delivery of molecules |
| EP1969000A2 (en) | 2005-12-06 | 2008-09-17 | Centre National de la Recherche Scientifique | Cell penetrating peptides for intracellular delivery of molecules |
| AU2006321602B2 (en) | 2005-12-08 | 2012-03-08 | Novartis Ag | Effects of inhibitors of FGFR3 on gene transcription |
| PT1970446E (en) | 2005-12-13 | 2011-09-01 | Univ Kyoto | Nuclear reprogramming factor |
| JP2009519033A (en) | 2005-12-16 | 2009-05-14 | ディアト | Cell penetrating peptide conjugates for delivering nucleic acids to cells |
| WO2007077042A1 (en) | 2006-01-06 | 2007-07-12 | Topotarget Switzerland Sa | New method for the treatment of gout or pseudogout |
| KR101421745B1 (en) | 2006-01-13 | 2014-07-22 | 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 | Vaccines and immunotherapeutics using codon-optimized IL-15, and methods of using the same |
| US20070178103A1 (en) | 2006-01-30 | 2007-08-02 | Fey Georg H | CD19-specific immunotoxin and treatment method |
| US8476234B2 (en) | 2006-02-03 | 2013-07-02 | Prolor Biotech Inc. | Long-acting coagulation factors and methods of producing same |
| US9458444B2 (en) | 2006-02-03 | 2016-10-04 | Opko Biologics Ltd. | Long-acting coagulation factors and methods of producing same |
| US8946155B2 (en) | 2006-02-03 | 2015-02-03 | Opko Biologics Ltd. | Long-acting polypeptides and methods of producing and administering same |
| DE102006007433A1 (en) | 2006-02-17 | 2007-08-23 | Curevac Gmbh | Adjuvant in the form of a lipid-modified nucleic acid |
| JP5295785B2 (en) | 2006-02-20 | 2013-09-18 | エファ・ユニバーシティ・インダストリー・コラボレイション・ファウンデイション | Cell membrane permeable peptide |
| JP5312050B2 (en) | 2006-02-21 | 2013-10-09 | ネクター セラピューティクス | Split-type degradable polymers and composites produced therefrom |
| CA2643322C (en) | 2006-02-24 | 2015-07-21 | Novartis Ag | Microparticles containing biodegradable polymer and cationic polysaccharide for use in immunogenic compositions |
| US20080038278A1 (en) | 2006-02-24 | 2008-02-14 | Jingsong Cao | GPAT3 encodes a mammalian, microsomal acyl-coa:glycerol 3- phosphate acyltransferase |
| WO2007100770A2 (en) | 2006-02-28 | 2007-09-07 | Elan Pharmaceuticals, Inc. | Methods of treating inflammatory and autoimmune diseases with natalizumab |
| US7910152B2 (en) | 2006-02-28 | 2011-03-22 | Advanced Cardiovascular Systems, Inc. | Poly(ester amide)-based drug delivery systems with controlled release rate and morphology |
| GB0605217D0 (en) | 2006-03-15 | 2006-04-26 | Novartis Ag | Method and compositions for assessing acute rejection |
| EP2012751A4 (en) | 2006-03-21 | 2010-11-24 | Morehouse School Of Medicine | NEW NANOPARTICLES FOR THE ACTIVE COMPOSITION |
| EP2007435B1 (en) | 2006-03-31 | 2019-12-18 | Massachusetts Institute Of Technology | System for targeted delivery of therapeutic agents |
| US8257685B2 (en) | 2006-04-04 | 2012-09-04 | Stc.Unm | Swellable particles for drug delivery |
| AU2007238624B2 (en) | 2006-04-14 | 2012-05-31 | Cellscript, Llc | Kits and methods for generating 5' capped RNA |
| EP1852127A1 (en) | 2006-05-02 | 2007-11-07 | Charité - Universitätsmedizin Berlin | Use of a B-cell-depleting antibody for treatment of polyoma virus infections |
| CA2652280C (en) | 2006-05-15 | 2014-01-28 | Massachusetts Institute Of Technology | Polymers for functional particles |
| MX2008014971A (en) | 2006-05-24 | 2008-12-05 | Serono Lab | CLADRIBINE REGIME TO TREAT MULTIPLE SCLEROSIS. |
| WO2007143574A1 (en) | 2006-06-02 | 2007-12-13 | President And Fellows Of Harvard College | Protein surface remodeling |
| CA2656620C (en) | 2006-07-04 | 2018-03-13 | Genmab A/S | Cd20 binding molecules for the treatment of copd |
| DE602007013559D1 (en) | 2006-07-07 | 2011-05-12 | Univ Aarhus | NANOTEILES FOR THE DISTRIBUTION OF NUCLEIC ACID |
| JP5271902B2 (en) | 2006-07-12 | 2013-08-21 | ノバルティス アーゲー | Actinic crosslinkable copolymers for contact lens manufacture |
| KR20090039748A (en) | 2006-07-20 | 2009-04-22 | 노파르티스 아게 | AMBI-2 inhibitors for the treatment, diagnosis or detection of cancer |
| EP2054036B1 (en) | 2006-07-24 | 2019-12-18 | Singh-Broemer and Company, Inc. | Solid nanoparticle formulation of water insoluble pharmaceutical substances with reduced ostwald ripening |
| JP2009544754A (en) | 2006-07-28 | 2009-12-17 | アプライド バイオシステムズ, エルエルシー | Dinucleotide MRNA cap analog |
| WO2008014979A2 (en) | 2006-07-31 | 2008-02-07 | Curevac Gmbh | NUCLEIC ACID OF FORMULA (I): GIXmGn, OR (II): CIXmCn, IN PARTICULAR AS AN IMMUNE-STIMULATING AGENT/ADJUVANT |
| DE102006035618A1 (en) | 2006-07-31 | 2008-02-07 | Curevac Gmbh | New nucleic acid useful as immuno-stimulating adjuvant for manufacture of a composition for treatment of cancer diseases e.g. colon carcinomas and infectious diseases e.g. influenza and malaria |
| RU2009108289A (en) | 2006-08-07 | 2010-09-20 | Джензим Корпорейшн (Us) | COMBINED THERAPY |
| CA2661093A1 (en) | 2006-08-18 | 2008-02-21 | Nastech Pharmaceutical Company Inc. | Dicer substrate rna peptide conjugates and methods for rna therapeutics |
| US8658211B2 (en) | 2006-08-18 | 2014-02-25 | Arrowhead Madison Inc. | Polyconjugates for in vivo delivery of polynucleotides |
| CN101511382B (en) | 2006-09-06 | 2013-11-13 | 加利福尼亚大学董事会 | Selectively targeted antimicrobial peptides and the use thereof |
| US8192927B2 (en) | 2006-09-07 | 2012-06-05 | Crucell Holland B.V. | Human bind molecules capable of neutralizing influenza virus h5n1 and uses thereof |
| JP2010502713A (en) | 2006-09-08 | 2010-01-28 | ザ・ジョンズ・ホプキンス・ユニバーシティー | Compositions and methods for enhancing transport through mucus |
| US8454948B2 (en) | 2006-09-14 | 2013-06-04 | Medgenics Medical Israel Ltd. | Long lasting drug formulations |
| GB0619182D0 (en) | 2006-09-29 | 2006-11-08 | Leuven K U Res & Dev | Oligonucleotide arrays |
| CA2927045A1 (en) | 2006-10-03 | 2008-04-10 | Muthiah Manoharan | Lipid containing formulations |
| BRPI0715299A2 (en) | 2006-10-05 | 2013-07-23 | The Johns Hopkins University | Method for preparing polymeric nanoparticles, Method for preparing a micellar cup, Reconstitutable polymer micelles, Bioactive polymeric nanoparticle composition, Method for providing a patient a medicament and Method for preparing polymeric nanoparticle compositions |
| DE102006051516A1 (en) * | 2006-10-31 | 2008-05-08 | Curevac Gmbh | (Base) modified RNA to increase the expression of a protein |
| US8414927B2 (en) | 2006-11-03 | 2013-04-09 | Boston Scientific Scimed, Inc. | Cross-linked polymer particles |
| US7999087B2 (en) | 2006-11-15 | 2011-08-16 | Agilent Technologies, Inc. | 2′-silyl containing thiocarbonate protecting groups for RNA synthesis |
| US8242258B2 (en) | 2006-12-03 | 2012-08-14 | Agilent Technologies, Inc. | Protecting groups for RNA synthesis |
| US8399007B2 (en) | 2006-12-05 | 2013-03-19 | Landec Corporation | Method for formulating a controlled-release pharmaceutical formulation |
| PL2121011T3 (en) | 2006-12-06 | 2014-10-31 | Novartis Ag | Vaccines including antigen from four strains of influenza virus |
| US9034348B2 (en) | 2006-12-11 | 2015-05-19 | Chi2Gel Ltd. | Injectable chitosan mixtures forming hydrogels |
| WO2008076437A2 (en) | 2006-12-18 | 2008-06-26 | Acceleron Pharma Inc. | Activin-actrii antagonists and uses for increasing red blood cell levels |
| EP2104739B1 (en) | 2006-12-21 | 2013-06-19 | Novozymes Inc. | Modified messenger rna stabilizing sequences for expressing genes in bacterial cells |
| EP2120859B1 (en) | 2006-12-21 | 2013-11-20 | Stryker Corporation | Sustained-release formulations comprising bmp-7 crystals |
| WO2008078180A2 (en) | 2006-12-22 | 2008-07-03 | Archemix Corp. | Materials and methods for the generation of transcripts comprising modified nucleotides |
| DE102006061015A1 (en) | 2006-12-22 | 2008-06-26 | Curevac Gmbh | Process for the purification of RNA on a preparative scale by HPLC |
| US8338166B2 (en) | 2007-01-04 | 2012-12-25 | Lawrence Livermore National Security, Llc | Sorting, amplification, detection, and identification of nucleic acid subsequences in a complex mixture |
| WO2008091799A2 (en) | 2007-01-22 | 2008-07-31 | The Trustees Of Columbia University In The City Of New York | Cell-based methods for identifying inhibitors of parkinson's disease-associated lrrk2 mutants |
| EP2450368A1 (en) | 2007-01-30 | 2012-05-09 | Epivax, Inc. | Regulatory t cell epitopes, compositions and uses thereof |
| TWI432449B (en) | 2007-02-02 | 2014-04-01 | Acceleron Pharma Inc | Variants derived from ActRIIB and their uses |
| US8859229B2 (en) | 2007-02-02 | 2014-10-14 | Yale University | Transient transfection with RNA |
| WO2008096370A2 (en) | 2007-02-05 | 2008-08-14 | Natco Pharma Limited | An efficient and novel purification method of recombinant hg-csf |
| US8333799B2 (en) | 2007-02-12 | 2012-12-18 | C. R. Bard, Inc. | Highly flexible stent and method of manufacture |
| US8242087B2 (en) | 2007-02-27 | 2012-08-14 | K.U.Leuven Research & Development | Phosphate modified nucleosides useful as substrates for polymerases and as antiviral agents |
| PL2126093T3 (en) * | 2007-03-02 | 2013-03-29 | Boehringer Ingelheim Pharma | Improvement of protein production |
| EP2120876B1 (en) | 2007-03-05 | 2015-03-04 | Washington University | Nanoparticle delivery systems for membrane-integrating peptides |
| EP2125892A2 (en) | 2007-03-20 | 2009-12-02 | Millennium Pharmaceuticals, Inc. | Nucleic acids encoding humanized immunoglobulin that binds a4b7 integrin |
| CA2685423C (en) | 2007-04-27 | 2014-02-18 | Echo Therapeutics, Inc. | Skin permeation device for analyte sensing or transdermal drug delivery |
| DK2152290T3 (en) | 2007-04-30 | 2014-08-18 | Glaxosmithkline Llc | PROCEDURES FOR ADMINISTRATION OF ANTI-IL-5 ANTIBODIES |
| WO2008135855A2 (en) | 2007-05-03 | 2008-11-13 | Pfizer Products Inc. | Nanoparticles comprising a cholesteryl ester transfer protein inhibitor and a nonionizable polymer |
| US7682789B2 (en) | 2007-05-04 | 2010-03-23 | Ventana Medical Systems, Inc. | Method for quantifying biomolecules conjugated to a nanoparticle |
| DK2494993T3 (en) | 2007-05-04 | 2018-11-12 | Marina Biotech Inc | Amino acid lipids and uses thereof |
| US8728491B2 (en) | 2007-05-07 | 2014-05-20 | Alba Therapeutics Corporation | Transcutaneous delivery of therapeutic agents |
| JP5296328B2 (en) | 2007-05-09 | 2013-09-25 | 独立行政法人理化学研究所 | Single-stranded circular RNA and method for producing the same |
| PL2476689T3 (en) | 2007-05-10 | 2016-04-29 | Agilent Technologies Inc | Thiocarbon-protecting groups for RNA synthesis |
| SI3072525T1 (en) | 2007-05-14 | 2018-06-29 | Astrazeneca Ab | Methods of reducing basophil levels |
| WO2008144365A2 (en) | 2007-05-17 | 2008-11-27 | Novartis Ag | Method for making dry powder compositions containing ds-rna based on supercritical fluid technology |
| BRPI0812384A2 (en) | 2007-05-22 | 2014-12-02 | Novartis Ag | TREATMENT, DIAGNOSTIC AND DISEASE TREATMENT METHODS ASSOCIATED WITH FGF21 |
| EP2826863B1 (en) | 2007-05-30 | 2017-08-23 | Northwestern University | Nucleic acid functionalized nanoparticles for therapeutic applications |
| EP2164951A2 (en) | 2007-05-30 | 2010-03-24 | The General Hospital Corporation | Methods of generating pluripotent cells from somatic cells |
| PT2167523E (en) | 2007-06-19 | 2014-09-22 | Univ Louisiana State | Synthesis and use of anti-reverse phosphorothioate analogs of the messenger rna cap |
| WO2009006438A2 (en) | 2007-06-29 | 2009-01-08 | Epicentre Technologies Corporation | Copy dna and sense rna |
| WO2009015071A1 (en) | 2007-07-23 | 2009-01-29 | Dharmacon, Inc. | Screening of micro-rna cluster inhibitor pools |
| US20090042825A1 (en) | 2007-08-06 | 2009-02-12 | Majed Matar | Composition, method of preparation & application of concentrated formulations of condensed nucleic acids with a cationic lipopolymer |
| US9144546B2 (en) | 2007-08-06 | 2015-09-29 | Clsn Laboratories, Inc. | Nucleic acid-lipopolymer compositions |
| EP2183390A1 (en) | 2007-08-23 | 2010-05-12 | Novartis Ag | Methods for detecting oligonucleotides |
| WO2009030368A1 (en) | 2007-09-05 | 2009-03-12 | F. Hoffmann-La Roche Ag | Combination therapy with type i and type ii anti-cd20 antibodies |
| WO2009030254A1 (en) | 2007-09-04 | 2009-03-12 | Curevac Gmbh | Complexes of rna and cationic peptides for transfection and for immunostimulation |
| US8506928B2 (en) | 2007-09-07 | 2013-08-13 | The Regents Of The University Of California | Methods and compounds for targeting tissues |
| US20110086904A1 (en) | 2007-09-17 | 2011-04-14 | The Trustees Of The University Of Pennsylvania | GENERATION OF HYPERSTABLE mRNAs |
| US8394763B2 (en) | 2007-09-26 | 2013-03-12 | Oregon Health & Science University | Cyclic undecapeptides and derivatives as multiple sclerosis therapies |
| EP2205618B1 (en) | 2007-09-26 | 2016-11-09 | Intrexon Corporation | Synthetic 5'utrs, expression vectors, and methods for increasing transgene expression |
| EP2042193A1 (en) | 2007-09-28 | 2009-04-01 | Biomay AG | RNA Vaccines |
| PL2644192T3 (en) | 2007-09-28 | 2017-09-29 | Pfizer Inc. | Cancer Cell Targeting Using Nanoparticles |
| US8470560B2 (en) | 2007-10-03 | 2013-06-25 | The United States Of America As Represented By The Secretary Of The Army | CR-2 binding peptide P28 as molecular adjuvant for DNA vaccines |
| WO2009046738A1 (en) | 2007-10-09 | 2009-04-16 | Curevac Gmbh | Composition for treating lung cancer, particularly of non-small lung cancers (nsclc) |
| WO2009046739A1 (en) | 2007-10-09 | 2009-04-16 | Curevac Gmbh | Composition for treating prostate cancer (pca) |
| CA2917512A1 (en) | 2007-10-12 | 2009-04-23 | Massachusetts Institute Of Technology | Vaccine nanotechnology |
| US20090098118A1 (en) | 2007-10-15 | 2009-04-16 | Thomas Friess | Combination therapy of a type ii anti-cd20 antibody with an anti-bcl-2 active agent |
| US20110091473A1 (en) | 2007-10-22 | 2011-04-21 | Genmab A/S | Novel antibody therapies |
| BRPI0818913A2 (en) | 2007-11-01 | 2015-05-12 | Univ Rochester | Recombinant factor viii having high stability |
| CA2705263A1 (en) | 2007-11-09 | 2009-05-14 | Novartis Ag | Combination therapy with an antagonist anti-cd 40 antibody and cyclophosphamide, doxorubicin, vincristine and prednisone (chop) for treatment of b-cell malignancies |
| US8470771B2 (en) | 2007-11-14 | 2013-06-25 | Institute Of Microbiology, Chinese Academy Of Sciences | Method and medicament for inhibiting the infection of influenza virus |
| CA2706419A1 (en) | 2007-11-30 | 2009-06-04 | Glaxo Group Limited | Antigen-binding constructs binding il-13 |
| AU2008335202A1 (en) | 2007-12-10 | 2009-06-18 | Alnylam Pharmaceuticals, Inc. | Compositions and methods for inhibiting expression of Factor VII gene |
| EP2610340B1 (en) | 2007-12-11 | 2014-10-01 | The Scripps Research Institute | Compositions and methods related to mRNA translational enhancer elements |
| EP2229459B1 (en) | 2007-12-13 | 2014-08-27 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for prevention or treatment of RSV infection |
| EP2072618A1 (en) | 2007-12-14 | 2009-06-24 | Johannes Gutenberg-Universität Mainz | Use of RNA for reprogramming somatic cells |
| WO2009086072A2 (en) | 2007-12-21 | 2009-07-09 | Genentech, Inc. | Therapy of rituximab-refractory rheumatoid arthritis patients |
| WO2009093703A1 (en) | 2008-01-23 | 2009-07-30 | Ajinomoto Co., Inc. | Method of producing l-amino acid |
| JPWO2009093384A1 (en) | 2008-01-24 | 2011-05-26 | 独立行政法人産業技術総合研究所 | Polynucleotide, polynucleotide analogue and gene expression control method using the same |
| RU2545701C2 (en) | 2008-01-31 | 2015-04-10 | Куревак Гмбх | NUCLEIC ACIDS OF FORMULA (I) (NuGlXmGnNv)a AND DERIVATIVES THEREOF AS IMMUNOSTIMULATING AGENTS/ADJUVANTS |
| US20100330677A1 (en) | 2008-02-11 | 2010-12-30 | Cambridge Enterprise Limited | Improved Reprogramming of Mammalian Cells, and Cells Obtained |
| WO2009102467A2 (en) | 2008-02-13 | 2009-08-20 | Intarcia Therapeutics, Inc. | Devices, formulations, and methods for delivery of multiple beneficial agents |
| DE102008009920A1 (en) | 2008-02-15 | 2009-08-20 | Aj Innuscreen Gmbh | Mobile device for nucleic acid isolation |
| US20120027813A1 (en) | 2008-02-22 | 2012-02-02 | Novartis Vaccines And Diagnostics Srl | Adjuvanted influenza vaccines for pediatric use |
| US8506966B2 (en) | 2008-02-22 | 2013-08-13 | Novartis Ag | Adjuvanted influenza vaccines for pediatric use |
| WO2009108891A2 (en) | 2008-02-29 | 2009-09-03 | Egen, Inc. | Modified poloxamers for gene expression and associated methods |
| DK2993186T3 (en) | 2008-03-14 | 2019-11-25 | Biocon Ltd | A monoclonal antibody and a method thereof |
| WO2009114854A1 (en) | 2008-03-14 | 2009-09-17 | Egen, Inc. | Biodegradable cross-linked branched poly (alkylene imines) |
| CN102026660A (en) | 2008-03-28 | 2011-04-20 | 葛兰素史密斯克莱有限责任公司 | Methods of treatment |
| NZ588583A (en) | 2008-04-15 | 2012-08-31 | Protiva Biotherapeutics Inc | Novel lipid formulations for nucleic acid delivery |
| WO2009127230A1 (en) * | 2008-04-16 | 2009-10-22 | Curevac Gmbh | MODIFIED (m)RNA FOR SUPPRESSING OR AVOIDING AN IMMUNOSTIMULATORY RESPONSE AND IMMUNOSUPPRESSIVE COMPOSITION |
| EP2288336B8 (en) | 2008-04-25 | 2017-03-22 | Northwestern University | Nanostructures suitable for sequestering cholesterol |
| AU2009243187C1 (en) | 2008-04-28 | 2015-12-24 | President And Fellows Of Harvard College | Supercharged proteins for cell penetration |
| BRPI0913012B1 (en) | 2008-04-30 | 2021-12-14 | The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention | CHIMERA NUCLEIC ACID CHIMERA, METHODS FOR DETECTING A DENGUE VIRUS ANTIBODY IN A PATIENT SAMPLE, AND FOR PRODUCING VIRAL PARTICLES THAT EXPRESS PRM AND DENGUE VIRUS PROTEINS, USE OF CHIMERIC VIRUS AND FLAVIVIRUSES OR VIRAL PARTICLES |
| US9394538B2 (en) | 2008-05-07 | 2016-07-19 | Shi-Lung Lin | Development of universal cancer drugs and vaccines |
| US8486278B2 (en) | 2008-05-08 | 2013-07-16 | Minipumps, Llc | Drug-delivery pumps and methods of manufacture |
| US8697098B2 (en) | 2011-02-25 | 2014-04-15 | South Dakota State University | Polymer conjugated protein micelles |
| CA2724105C (en) | 2008-05-13 | 2017-09-05 | University Of Washington | Diblock copolymers and polynucleotide complexes thereof for delivery into cells |
| EP2297323A1 (en) | 2008-05-21 | 2011-03-23 | Hartmann, Gunther | 5' triphosphate oligonucleotide with blunt end and uses thereof |
| FR2931824B1 (en) | 2008-05-29 | 2014-11-28 | Centre Nat Rech Scient | PROCESS FOR RNA SYNTHESIS THROUGH CHEMICAL. |
| JP2011520472A (en) | 2008-05-29 | 2011-07-21 | ハナル バイオファーマ カンパニー リミテッド | Modified erythropoietin (EPO) polypeptide exhibiting increased proteolytic enzyme resistance and pharmaceutical composition thereof |
| US20100086922A1 (en) | 2008-05-30 | 2010-04-08 | Millennium Pharmaceuticals, Inc. | Assessment of chromosomal alterations to predict clinical outcome of bortezomib treatment |
| PL215513B1 (en) | 2008-06-06 | 2013-12-31 | Univ Warszawski | New borane phosphate analogs of dinucleotides, their application, RNA particle, method of obtaining RNA and method of obtaining peptides or protein |
| TWI451876B (en) | 2008-06-13 | 2014-09-11 | Lilly Co Eli | Pegylated insulin lispro compounds |
| US20100104645A1 (en) | 2008-06-16 | 2010-04-29 | Bind Biosciences, Inc. | Methods for the preparation of targeting agent functionalized diblock copolymers for use in fabrication of therapeutic targeted nanoparticles |
| AU2009268923B2 (en) | 2008-06-16 | 2015-09-17 | Pfizer Inc. | Drug loaded polymeric nanoparticles and methods of making and using same |
| WO2010005726A2 (en) | 2008-06-16 | 2010-01-14 | Bind Biosciences Inc. | Therapeutic polymeric nanoparticles with mtor inhibitors and methods of making and using same |
| US20100009424A1 (en) | 2008-07-14 | 2010-01-14 | Natasha Forde | Sonoporation systems and methods |
| WO2010009065A2 (en) | 2008-07-15 | 2010-01-21 | Novartis Ag | Amphipathic peptide compositions |
| US20110250237A1 (en) | 2008-07-15 | 2011-10-13 | O'hagan Derek | Immunogenic amphipathic peptide compositions |
| EP2331561A4 (en) | 2008-09-03 | 2013-02-27 | Xenome Ltd | Libraries of peptide conjugates and methods for making them |
| WO2010027512A2 (en) | 2008-09-06 | 2010-03-11 | Chemgenes Corporation | Rna synthesis - phosphoramidites for synthetic rna in the reverse direction, and application in convenient introduction of ligands, chromophores and modifications of synthetic rna at the 3' - end |
| US20120100558A1 (en) | 2008-09-08 | 2012-04-26 | Hanash Samir M | Lung cancer diagnosis |
| WO2010030763A2 (en) | 2008-09-10 | 2010-03-18 | Bind Biosciences, Inc. | High throughput fabrication of nanoparticles |
| TW201438738A (en) | 2008-09-16 | 2014-10-16 | Genentech Inc | Method for treating progressive multiple sclerosis |
| US20120021519A1 (en) | 2008-09-19 | 2012-01-26 | Presidents And Fellows Of Harvard College | Efficient induction of pluripotent stem cells using small molecule compounds |
| WO2010037408A1 (en) | 2008-09-30 | 2010-04-08 | Curevac Gmbh | Composition comprising a complexed (m)rna and a naked mrna for providing or enhancing an immunostimulatory response in a mammal and uses thereof |
| WO2010042490A1 (en) | 2008-10-06 | 2010-04-15 | Boston Medical Center Corporation | A single lentiviral vector system for induced pluripotent (ips) stem cells derivation |
| PL2350043T3 (en) | 2008-10-09 | 2014-09-30 | Tekmira Pharmaceuticals Corp | Improved amino lipids and methods for the delivery of nucleic acids |
| US8535655B2 (en) | 2008-10-10 | 2013-09-17 | Polyactiva Pty Ltd. | Biodegradable polymer—bioactive moiety conjugates |
| US8343498B2 (en) | 2008-10-12 | 2013-01-01 | Massachusetts Institute Of Technology | Adjuvant incorporation in immunonanotherapeutics |
| US8603532B2 (en) | 2008-10-20 | 2013-12-10 | Massachusetts Institute Of Technology | Nanostructures for drug delivery |
| US20120015899A1 (en) | 2008-10-25 | 2012-01-19 | Plant Bioscience, Limited | Modified plant virus particles and uses therefor |
| CN104910025B (en) | 2008-11-07 | 2019-07-16 | 麻省理工学院 | Alkamine lipid and its purposes |
| CN105709229B (en) | 2008-11-10 | 2020-07-28 | 阿布特斯生物制药公司 | Novel lipids and compositions for delivery of therapeutic agents |
| CA2780482A1 (en) | 2008-11-17 | 2010-05-10 | Anil K. Sood | Hdl particles for delivery of nucleic acids |
| EP2191840A1 (en) | 2008-11-28 | 2010-06-02 | Sanofi-Aventis | Antitumor combinations containing antibodies recognizing specifically CD38 and melphalan |
| CA2746514C (en) | 2008-12-10 | 2018-11-27 | Alnylam Pharmaceuticals, Inc. | Gnaq targeted dsrna compositions and methods for inhibiting expression |
| EP2196476A1 (en) | 2008-12-10 | 2010-06-16 | Novartis Ag | Antibody formulation |
| EP2376091A4 (en) | 2008-12-12 | 2012-08-01 | Univ California | NEW TARGETS FOR THE TREATMENT OF HYPERCHOLESTEROLEMIA |
| WO2010068866A2 (en) | 2008-12-12 | 2010-06-17 | Bind Biosciences | Therapeutic particles suitable for parenteral administration and methods of making and using same |
| JP2012512175A (en) | 2008-12-15 | 2012-05-31 | バインド バイオサイエンシズ インコーポレイテッド | Long-circulating nanoparticles for sustained release of therapeutic agents |
| EP2405937A4 (en) | 2009-01-16 | 2012-06-20 | Glaxosmithkline Llc | Treatment of a cancer using a combination of bendamustine and an anti-cd20 antibody |
| WO2010084371A1 (en) | 2009-01-26 | 2010-07-29 | Mitoprod | Novel circular interfering rna molecules |
| AU2010208035B2 (en) | 2009-01-29 | 2016-06-23 | Arbutus Biopharma Corporation | Improved lipid formulation for the delivery of nucleic acids |
| WO2010088927A1 (en) | 2009-02-09 | 2010-08-12 | Curevac Gmbh | Use of pei for the improvement of endosomal release and expression of transfected nucleic acids, complexed with cationic or polycationic compounds |
| US20140141089A1 (en) | 2009-02-11 | 2014-05-22 | Colorado School Of Mines | Nanoparticles, Compositions Thereof, and Methods of Use, and Methods of Making the Same |
| JP5735927B2 (en) | 2009-02-24 | 2015-06-17 | ザ スクリプス リサーチ インスティテュート | Re-engineering the primary structure of mRNA to enhance protein production |
| MX2011009362A (en) | 2009-03-05 | 2011-09-26 | Abbott Lab | Il-17 binding proteins. |
| WO2010102065A1 (en) | 2009-03-05 | 2010-09-10 | Bend Research, Inc. | Pharmaceutical compositions of dextran polymer derivatives |
| WO2010141135A2 (en) | 2009-03-05 | 2010-12-09 | Trustees Of Boston University | Bacteriophages expressing antimicrobial peptides and uses thereof |
| JP2012520085A (en) | 2009-03-13 | 2012-09-06 | エーゲン、インコーポレイテッド | Compositions and methods for delivery of bioactive RNA |
| WO2010108108A2 (en) | 2009-03-20 | 2010-09-23 | Egen, Inc. | Polyamine derivatives |
| US20120095077A1 (en) | 2009-03-23 | 2012-04-19 | University Of Utah Research Foundation | Methods and compositions related to modified guanine bases for controlling off-target effects in rna interference |
| JP5622254B2 (en) | 2009-03-31 | 2014-11-12 | 国立大学法人東京大学 | Double-stranded ribonucleic acid polyion complex |
| KR101773368B1 (en) | 2009-04-03 | 2017-08-31 | 유니버시티 오브 시카고 | Compositions and methods related to Protein A (SpA) variants |
| CA2795906C (en) | 2009-04-13 | 2019-02-26 | Inserm, Institut National De La Sante Et De La Recherche Medicale | Hpv particles and uses thereof |
| CN102573907A (en) | 2009-04-17 | 2012-07-11 | 比奥根艾迪克Ma公司 | Compositions and methods to treat acute myelogenous leukemia |
| US20100273220A1 (en) | 2009-04-22 | 2010-10-28 | Massachusetts Institute Of Technology | Innate immune suppression enables repeated delivery of long rna molecules |
| AR076402A1 (en) | 2009-04-27 | 2011-06-08 | Novartis Ag | COMPOSITIONS AND METHODS TO INCREASE MUSCLE GROWTH |
| WO2010129033A2 (en) | 2009-04-29 | 2010-11-11 | Calmune Corporation | Modified antibodies for passive immunotherapy |
| US8287910B2 (en) | 2009-04-30 | 2012-10-16 | Intezyne Technologies, Inc. | Polymeric micelles for polynucleotide encapsulation |
| US8715736B2 (en) | 2009-04-30 | 2014-05-06 | Florida Agricultural And Mechanical University | Nanoparticle formulations for skin delivery |
| KR20210031549A (en) | 2009-05-05 | 2021-03-19 | 알닐람 파마슈티칼스 인코포레이티드 | Lipid compositions |
| DE202009007116U1 (en) | 2009-05-18 | 2010-10-14 | Amoena Medizin-Orthopädie-Technik GmbH | Anti decubitus cushions |
| US8574835B2 (en) | 2009-05-29 | 2013-11-05 | Life Technologies Corporation | Scaffolded nucleic acid polymer particles and methods of making and using |
| KR102374518B1 (en) | 2009-06-10 | 2022-03-16 | 알닐람 파마슈티칼스 인코포레이티드 | Improved lipid formulation |
| EP2440556A1 (en) | 2009-06-10 | 2012-04-18 | Vertex Pharmaceuticals Incorporated | Inhibitors of phosphatidylinositol 3-kinase |
| WO2010148013A2 (en) | 2009-06-15 | 2010-12-23 | Alnylam Pharmaceuticals, Inc. | Lipid formulated dsrna targeting the pcsk9 gene |
| US20110097329A1 (en) | 2009-06-26 | 2011-04-28 | Massachusetts Institute Of Technology | Compositions and methods for treating cancer and modulating stress granule formation |
| CA2767127A1 (en) | 2009-07-01 | 2011-01-06 | Protiva Biotherapeutics, Inc. | Novel lipid formulations for delivery of therapeutic agents to solid tumors |
| US8569256B2 (en) | 2009-07-01 | 2013-10-29 | Protiva Biotherapeutics, Inc. | Cationic lipids and methods for the delivery of therapeutic agents |
| US20110300205A1 (en) | 2009-07-06 | 2011-12-08 | Novartis Ag | Self replicating rna molecules and uses thereof |
| KR20120097484A (en) | 2009-07-31 | 2012-09-04 | 에트리스 게엠베하 | Rna with a combination of unmodified and modified nucleotides for protein expression |
| EP2281579A1 (en) | 2009-08-05 | 2011-02-09 | BioNTech AG | Vaccine composition comprising 5'-Cap modified RNA |
| US20110053829A1 (en) | 2009-09-03 | 2011-03-03 | Curevac Gmbh | Disulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids |
| US20110070227A1 (en) | 2009-09-18 | 2011-03-24 | Anna-Marie Novotney-Barry | Treatment of Autoimmune and Inflammatory Diseases |
| US8859284B2 (en) | 2009-10-22 | 2014-10-14 | The United States Of America, As Represented By The Secretary Of The Navy | Delivery of nanoparticles to neurons |
| US8449916B1 (en) | 2009-11-06 | 2013-05-28 | Iowa State University Research Foundation, Inc. | Antimicrobial compositions and methods |
| WO2011060250A1 (en) | 2009-11-13 | 2011-05-19 | Bend Research, Inc. | Cationic dextran polymer derivatives |
| WO2011062965A2 (en) | 2009-11-18 | 2011-05-26 | University Of Washington Through Its Center For Commercialization | Targeting monomers and polymers having targeting blocks |
| US8530429B2 (en) | 2009-11-24 | 2013-09-10 | Arch Cancer Therapeutics, Inc. | Brain tumor targeting peptides and methods |
| HUE038039T2 (en) | 2009-12-01 | 2018-09-28 | Translate Bio Inc | Delivery of mrna for the augmentation of proteins and enzymes in human genetic diseases |
| US20110245756A1 (en) | 2009-12-03 | 2011-10-06 | Rishi Arora | Devices for material delivery, electroporation, sonoporation, and/or monitoring electrophysiological activity |
| DE102009056884B4 (en) | 2009-12-03 | 2021-03-18 | Novartis Ag | Vaccine Adjuvants and Improved Methods for Making Same |
| EP3326643B1 (en) | 2009-12-06 | 2021-04-07 | Bioverativ Therapeutics Inc. | Factor viii-fc chimeric and hybrid polypeptides, and methods of use thereof |
| US20130189741A1 (en) | 2009-12-07 | 2013-07-25 | Cellscript, Inc. | Compositions and methods for reprogramming mammalian cells |
| AU2010328336B2 (en) | 2009-12-07 | 2017-03-02 | Arbutus Biopharma Corporation | Compositions for nucleic acid delivery |
| HUE047165T2 (en) | 2009-12-07 | 2020-04-28 | Univ Pennsylvania | Rna preparations comprising purified modified rna for reprogramming cells |
| WO2011069529A1 (en) | 2009-12-09 | 2011-06-16 | Curevac Gmbh | Mannose-containing solution for lyophilization, transfection and/or injection of nucleic acids |
| WO2011069528A1 (en) | 2009-12-09 | 2011-06-16 | Curevac Gmbh | Lyophilization of nucleic acids in lactate-containing solutions |
| EP2509634B1 (en) | 2009-12-11 | 2019-03-06 | Pfizer Inc | Stable formulations for lyophilizing therapeutic particles |
| WO2011084518A2 (en) | 2009-12-15 | 2011-07-14 | Bind Biosciences, Inc. | Therapeutic polymeric nanoparticles comprising corticosteroids and methods of making and using same |
| WO2011084513A2 (en) | 2009-12-15 | 2011-07-14 | Bind Biosciences, Inc. | Therapeutic polymeric nanoparticle compositions with high glass transition temperature or high molecular weight copolymers |
| DE102009058769A1 (en) | 2009-12-16 | 2011-06-22 | MagForce Nanotechnologies AG, 10589 | Temperature-dependent activation of catalytic nucleic acids for controlled drug release |
| JP2013514977A (en) | 2009-12-16 | 2013-05-02 | ザ ブリガム アンド ウィメンズ ホスピタル インコーポレイテッド | Particles for delivery of multiple substances |
| AU2010330814B2 (en) | 2009-12-18 | 2017-01-12 | Acuitas Therapeutics Inc. | Methods and compositions for delivery of nucleic acids |
| EP2338520A1 (en) | 2009-12-21 | 2011-06-29 | Ludwig Maximilians Universität | Conjugate with targeting ligand and use of same |
| CN102905763B (en) | 2009-12-23 | 2015-06-17 | 诺华股份有限公司 | Lipids, lipid compositions, and methods of using them |
| US8846631B2 (en) | 2010-01-14 | 2014-09-30 | Regulus Therapeutics Inc. | MicroRNA compositions and methods |
| PT2539451E (en) | 2010-02-24 | 2016-03-28 | Arrowhead Res Corp | Compositions for targeted delivery of sirna |
| US8889193B2 (en) | 2010-02-25 | 2014-11-18 | The Johns Hopkins University | Sustained delivery of therapeutic agents to an eye compartment |
| US20130133483A1 (en) | 2010-03-08 | 2013-05-30 | University Of Rochester | Synthesis of Nanoparticles Using Reducing Gases |
| CN102892809A (en) | 2010-03-16 | 2013-01-23 | 犹他大学研究基金会 | Cleavable modifications to reducible poly (amido ethylenimines)s to enhance nucleotide delivery |
| WO2011116072A1 (en) | 2010-03-16 | 2011-09-22 | Escape Therapeutics, Inc. | Hybrid hydrogel scaffold compositions and methods of use |
| US20110230816A1 (en) | 2010-03-18 | 2011-09-22 | Tyco Healthcare Group Lp | Gels for Transdermal Delivery |
| US9149432B2 (en) | 2010-03-19 | 2015-10-06 | Massachusetts Institute Of Technology | Lipid vesicle compositions and methods of use |
| GB201005005D0 (en) | 2010-03-25 | 2010-05-12 | Angeletti P Ist Richerche Bio | New vaccine |
| JP2013528665A (en) | 2010-03-26 | 2013-07-11 | メルサナ セラピューティックス, インコーポレイテッド | Modified polymers for delivery of polynucleotides, methods for their production, and methods of their use |
| WO2011119262A1 (en) | 2010-03-26 | 2011-09-29 | Cerulean Pharma Inc. | Methods and systems for generating nanoparticles |
| US20110247090A1 (en) | 2010-04-02 | 2011-10-06 | Intrexon Corporation | Synthetic 5'UTRs, Expression Vectors, and Methods for Increasing Transgene Expression |
| EP2555794A4 (en) | 2010-04-05 | 2014-01-15 | Univ Chicago | PROTEIN A (SPA) ANTIBODY COMPOSITIONS AND METHODS AS AN IMMUNE RESPONSE AMPLIFIER |
| BR112012025364A2 (en) | 2010-04-07 | 2015-09-22 | Novartis Ag | parvovirus b19 virus-like particle generation method |
| EP2558074B1 (en) | 2010-04-08 | 2018-06-06 | The Trustees of Princeton University | Preparation of lipid nanoparticles |
| JP6043278B2 (en) | 2010-04-09 | 2016-12-14 | パシラ ファーマシューティカルズ インコーポレーテッド | Method for making multivesicular liposomes, method for preparing large diameter synthetic membrane vesicles, and evaporation apparatus |
| WO2011125469A1 (en) | 2010-04-09 | 2011-10-13 | 国立大学法人東京大学 | Micro-rna-regulated recombinant vaccinia virus and utilization thereof |
| KR101196667B1 (en) | 2010-04-15 | 2012-11-02 | 포항공과대학교 산학협력단 | A DELEVERY SYSTEM OF ANTI-CANCER AGENT USING pH SENSITIVE METAL NANOPARTICLE |
| DK2558577T3 (en) | 2010-04-16 | 2019-04-01 | Nuevolution As | Bi-functional complexes and methods for the preparation and use of such complexes |
| EP3072961A1 (en) | 2010-04-16 | 2016-09-28 | Children's Medical Center Corporation | Sustained polypeptide expression from synthetic, modified rnas and uses thereof |
| EP2377938A1 (en) | 2010-04-16 | 2011-10-19 | Eukarys | Capping-prone RNA polymerase enzymes and their applications |
| US20130260460A1 (en) | 2010-04-22 | 2013-10-03 | Isis Pharmaceuticals Inc | Conformationally restricted dinucleotide monomers and oligonucleotides |
| MX2012012567A (en) | 2010-04-28 | 2012-11-21 | Kimberly Clark Co | Method for increasing permeability of an epithelial barrier. |
| WO2011139911A2 (en) | 2010-04-29 | 2011-11-10 | Isis Pharmaceuticals, Inc. | Lipid formulated single stranded rna |
| PE20130213A1 (en) | 2010-04-30 | 2013-03-19 | Novartis Ag | USEFUL PREDICTIVE MARKERS IN THE TREATMENT OF FRAGILE X SYNDROME (FXS) |
| US9254327B2 (en) | 2010-05-10 | 2016-02-09 | Alnylam Pharmaceuticals, Inc. | Methods and compositions for delivery of active agents |
| US10077232B2 (en) | 2010-05-12 | 2018-09-18 | Arbutus Biopharma Corporation | Cyclic cationic lipids and methods of use |
| WO2011141705A1 (en) | 2010-05-12 | 2011-11-17 | Protiva Biotherapeutics, Inc. | Novel cationic lipids and methods of use thereof |
| EP2387999A1 (en) | 2010-05-21 | 2011-11-23 | CureVac GmbH | Histidine-containing solution for transfection and/or injection of nucleic acids and uses thereof |
| WO2011149733A2 (en) | 2010-05-24 | 2011-12-01 | Merck Sharp & Dohme Corp. | Novel amino alcohol cationic lipids for oligonucleotide delivery |
| JP5957646B2 (en) | 2010-06-04 | 2016-07-27 | サーナ・セラピューティクス・インコーポレイテッドSirna Therapeutics,Inc. | Novel low molecular weight cationic lipids for oligonucleotide delivery |
| WO2011157715A1 (en) | 2010-06-14 | 2011-12-22 | F. Hoffmann-La Roche Ag | Cell-penetrating peptides and uses therof |
| WO2011163121A1 (en) | 2010-06-21 | 2011-12-29 | Alnylam Pharmaceuticals, Inc. | Multifunctional copolymers for nucleic acid delivery |
| WO2011161653A1 (en) | 2010-06-25 | 2011-12-29 | Novartis Ag | Combinations of meningococcal factor h binding proteins |
| CN103079592B (en) | 2010-07-01 | 2015-10-21 | 浦项工科大学校产学协力团 | Methods of treating and diagnosing cancer using microvesicles derived from cells |
| CN103037885B (en) | 2010-07-02 | 2015-08-26 | 芝加哥大学 | The composition relevant to albumin A (SpA) variant and method |
| CA2804396C (en) | 2010-07-06 | 2021-06-29 | Novartis Ag | Liposomes with lipids having an advantageous pka-value for rna delivery |
| RU2625546C2 (en) | 2010-07-06 | 2017-07-14 | Новартис Аг | Cationic emulsions "oil-in-water" |
| DK2591114T3 (en) | 2010-07-06 | 2016-08-29 | Glaxosmithkline Biologicals Sa | Immunization of large mammals with low doses of RNA |
| PT2590676T (en) | 2010-07-06 | 2016-11-04 | Glaxosmithkline Biologicals Sa | Virion-like delivery particles for self-replicating rna molecules |
| US9192661B2 (en) | 2010-07-06 | 2015-11-24 | Novartis Ag | Delivery of self-replicating RNA using biodegradable polymer particles |
| PT3243526T (en) | 2010-07-06 | 2020-03-04 | Glaxosmithkline Biologicals Sa | DISTRIBUTION OF RNA TO DISPOLISH MULTIPLE IMMUNITY ROUTES |
| US9770463B2 (en) | 2010-07-06 | 2017-09-26 | Glaxosmithkline Biologicals Sa | Delivery of RNA to different cell types |
| EP3508573A1 (en) | 2010-07-09 | 2019-07-10 | Bioverativ Therapeutics Inc. | Systems for factor viii processing and methods thereof |
| KR20220097518A (en) | 2010-07-09 | 2022-07-07 | 바이오버라티브 테라퓨틱스 인크. | Factor ix polypeptides and methods of use thereof |
| US20130177523A1 (en) | 2010-07-13 | 2013-07-11 | University Of Utah Research Foundation | Gold particles and methods of making and using the same in cancer treatment |
| GB201012410D0 (en) | 2010-07-23 | 2010-09-08 | Medical Res Council | Intracellular immunity |
| CA2801523C (en) | 2010-07-30 | 2021-08-03 | Curevac Gmbh | Complexation of nucleic acids with disulfide-crosslinked cationic components for transfection and immunostimulation |
| CA2807552A1 (en) | 2010-08-06 | 2012-02-09 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| WO2012021516A2 (en) | 2010-08-09 | 2012-02-16 | The Trustees Of The University Of Pennsylvania | Nanoparticle-oligonucletide hybrid structures and methods of use thereof |
| WO2012019630A1 (en) | 2010-08-13 | 2012-02-16 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded protein |
| AU2011291582A1 (en) | 2010-08-20 | 2013-03-07 | Cerulean Pharma Inc. | Conjugates, particles, compositions, and related methods |
| EP2605816B1 (en) | 2010-08-20 | 2019-01-23 | University Of Washington | Circumferential aerosol device for delivering drugs to olfactory epithelium and brain |
| ES2531577T3 (en) | 2010-08-20 | 2015-03-17 | Novartis Ag | Needle sets for administration of soluble flu vaccine |
| LT4066819T (en) | 2010-08-31 | 2023-04-11 | Glaxosmithkline Biologicals Sa | Small liposomes for delivery of immunogen-encoding rna |
| RS63329B1 (en) | 2010-08-31 | 2022-07-29 | Glaxosmithkline Biologicals Sa | Pegylated liposomes for delivery of immunogen-encoding rna |
| ES2920140T3 (en) | 2010-08-31 | 2022-08-01 | Theraclone Sciences Inc | Human immunodeficiency virus (HIV) neutralizing antibodies |
| US20130189351A1 (en) | 2010-08-31 | 2013-07-25 | Novartis Ag | Lipids suitable for liposomal delivery of protein coding rna |
| KR20130100278A (en) | 2010-08-31 | 2013-09-10 | 머크 샤프 앤드 돔 코포레이션 | Novel single chemical entities and methods for delivery of oligonucleotides |
| WO2012031205A2 (en) | 2010-09-03 | 2012-03-08 | The Brigham And Women's Hospital, Inc. | Lipid-polymer hybrid particles |
| WO2012034077A2 (en) | 2010-09-09 | 2012-03-15 | The University Of Chicago | Compositions and methods related to attenuated staphylococcal strains |
| JP5793194B2 (en) | 2010-09-09 | 2015-10-14 | ザ・ユニバーシティ・オブ・シカゴThe University Of Chicago | Methods and compositions involving protective staphylococcal antigens |
| US10307372B2 (en) | 2010-09-10 | 2019-06-04 | The Johns Hopkins University | Rapid diffusion of large polymeric nanoparticles in the mammalian brain |
| US8466122B2 (en) | 2010-09-17 | 2013-06-18 | Protiva Biotherapeutics, Inc. | Trialkyl cationic lipids and methods of use thereof |
| EP3144015B1 (en) | 2010-09-20 | 2021-06-02 | Sirna Therapeutics, Inc. | Low molecular weight cationic lipids for oligonucleotide delivery |
| WO2012038448A1 (en) | 2010-09-21 | 2012-03-29 | Riboxx Gmbh | Method for synthesizing rna using dna template |
| US20130280334A1 (en) | 2010-09-24 | 2013-10-24 | Massachusetts Institute Of Technology | Nanostructured Gels Capable of Controlled Release of Encapsulated Agents |
| WO2012050975A2 (en) | 2010-09-29 | 2012-04-19 | The University Of North Carolina At Chapel Hill | Novel circular mammalian rna molecules and uses thereof |
| WO2012044638A1 (en) | 2010-09-30 | 2012-04-05 | Merck Sharp & Dohme Corp. | Low molecular weight cationic lipids for oligonucleotide delivery |
| PL4108671T3 (en) | 2010-10-01 | 2025-02-24 | Modernatx, Inc. | MODIFIED NUCLEOSIDES, NUCLEOTIDES AND NUCLEIC ACIDS AND THEIR USES |
| US10078075B2 (en) | 2011-12-09 | 2018-09-18 | Vanderbilt University | Integrated organ-on-chip systems and applications of the same |
| ES2716243T3 (en) | 2010-10-11 | 2019-06-11 | Glaxosmithkline Biologicals Sa | Antigen Supply Platforms |
| US9492884B2 (en) | 2010-10-19 | 2016-11-15 | Mitsubishi Electric Corporation | Control device and control method for laser processing machine |
| CA2813024A1 (en) | 2010-10-21 | 2012-04-26 | Merck Sharp & Dohme Corp. | Novel low molecular weight cationic lipids for oligonucleotide delivery |
| EP2632485A4 (en) | 2010-10-29 | 2014-05-28 | Merck Sharp & Dohme | RECOMBINANT SUBUNIT VACCINE AGAINST DENGUE VIRUS |
| CA2816977C (en) | 2010-11-05 | 2019-10-29 | The Johns Hopkins University | Compositions and methods relating to reduced mucoadhesion |
| CN103201386A (en) | 2010-11-09 | 2013-07-10 | 加利福尼亚大学董事会 | Skin-penetrating and cell-entry (SPACE) peptides and methods of use thereof |
| KR102557275B1 (en) | 2010-11-12 | 2023-07-19 | 더 트러스티스 오브 더 유니버시티 오브 펜실바니아 | Consensus prostate antigens nucleic acid molecule encoding the same and vaccine and uses comprising the same |
| BR112013012195A2 (en) | 2010-11-16 | 2018-07-10 | Selecta Biosciences Inc | immunostimulatory oligonucleotide |
| WO2012068360A1 (en) | 2010-11-17 | 2012-05-24 | Aduro Biotech | Methods and compositions for inducing an immune response to egfrviii |
| AU2011329668B2 (en) | 2010-11-19 | 2016-07-28 | Idera Pharmaceuticals, Inc. | Immune regulatory oligonucleotide (IRO) compounds to modulate toll-like receptor based immune response |
| WO2012075040A2 (en) | 2010-11-30 | 2012-06-07 | Shire Human Genetic Therapies, Inc. | mRNA FOR USE IN TREATMENT OF HUMAN GENETIC DISEASES |
| WO2012072096A1 (en) | 2010-12-03 | 2012-06-07 | Biontech Ag | Method for cellular rna expression |
| WO2012103985A2 (en) | 2010-12-16 | 2012-08-09 | Steve Pascolo | Pharmaceutical composition consisting of rna having alkali metal as counter ion and formulated with dications |
| US8501930B2 (en) | 2010-12-17 | 2013-08-06 | Arrowhead Madison Inc. | Peptide-based in vivo siRNA delivery system |
| CA2825370A1 (en) | 2010-12-22 | 2012-06-28 | President And Fellows Of Harvard College | Continuous directed evolution |
| EP3147367A1 (en) | 2010-12-29 | 2017-03-29 | F. Hoffmann-La Roche AG | Small molecule conjugates for intracellular delivery of nucleic acids |
| WO2012089225A1 (en) | 2010-12-29 | 2012-07-05 | Curevac Gmbh | Combination of vaccination and inhibition of mhc class i restricted antigen presentation |
| EP2661255B1 (en) | 2011-01-04 | 2021-03-10 | Brown University | Nanotubes as carriers of nucleic acids into cells |
| WO2012094574A2 (en) | 2011-01-06 | 2012-07-12 | The Johns Hopkins University | Stabilized polyribonucleotide nanoparticles |
| US20140080766A1 (en) | 2011-01-07 | 2014-03-20 | Massachusetts Institute Of Technology | Compositions and methods for macromolecular drug delivery |
| DK2663548T3 (en) | 2011-01-11 | 2017-07-24 | Alnylam Pharmaceuticals Inc | PEGYLED LIPIDS AND THEIR USE FOR PHARMACEUTICAL SUPPLY |
| WO2012099805A2 (en) | 2011-01-19 | 2012-07-26 | Ocean Nanotech, Llc | Nanoparticle based immunological stimulation |
| WO2012101235A1 (en) | 2011-01-26 | 2012-08-02 | Cenix Bioscience Gmbh | Delivery system and conjugates for compound delivery via naturally occurring intracellular transport routes |
| US10363309B2 (en) | 2011-02-04 | 2019-07-30 | Case Western Reserve University | Targeted nanoparticle conjugates |
| US20140066363A1 (en) | 2011-02-07 | 2014-03-06 | Arun K. Bhunia | Carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide |
| WO2012116715A1 (en) | 2011-03-02 | 2012-09-07 | Curevac Gmbh | Vaccination in newborns and infants |
| US20120207840A1 (en) | 2011-02-10 | 2012-08-16 | Aura Biosciences, Inc. | Virion Derived Protein Nanoparticles For Delivering Diagnostic Or Therapeutic Agents For The Treatment Of Non-Melanoma Skin Cancer |
| AU2012217788A1 (en) | 2011-02-14 | 2013-08-29 | Swift Biosciences, Inc. | Polynucleotide primers and probes |
| WO2012112689A1 (en) | 2011-02-15 | 2012-08-23 | The University Of North Carolina At Chapel Hill | Nanoparticle, liposomes, polymers, agents and proteins modified with reversible linkers |
| EP2675918B1 (en) | 2011-02-15 | 2017-11-08 | Merrimack Pharmaceuticals, Inc. | Compositions and methods for delivering nucleic acid to a cell |
| EP2489371A1 (en) | 2011-02-18 | 2012-08-22 | Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria | Carrier peptides for drug delivery |
| WO2012113413A1 (en) | 2011-02-21 | 2012-08-30 | Curevac Gmbh | Vaccine composition comprising complexed immunostimulatory nucleic acids and antigens packaged with disulfide-linked polyethyleneglycol/peptide conjugates |
| WO2012115980A1 (en) | 2011-02-22 | 2012-08-30 | California Institute Of Technology | Delivery of proteins using adeno-associated virus (aav) vectors |
| US8696637B2 (en) | 2011-02-28 | 2014-04-15 | Kimberly-Clark Worldwide | Transdermal patch containing microneedles |
| WO2012116714A1 (en) | 2011-03-02 | 2012-09-07 | Curevac Gmbh | Vaccination in elderly patients |
| ES2681698T3 (en) | 2011-03-02 | 2018-09-14 | Glaxosmithkline Biologicals Sa | Combination vaccines with lower doses of antigen and / or adjuvant |
| EP2683812A4 (en) | 2011-03-07 | 2014-12-03 | Massachusetts Inst Technology | METHODS FOR TRANSFECTING CELLS WITH NUCLEIC ACIDS |
| WO2012125680A1 (en) | 2011-03-16 | 2012-09-20 | Novartis Ag | Methods of treating vasculitis using an il-17 binding molecule |
| US20140212503A1 (en) | 2011-03-17 | 2014-07-31 | Hyukjin Lee | Delivery system |
| RU2013146242A (en) | 2011-03-17 | 2015-04-27 | Новартис Аг | FGFR AND ITS LIGANDS AS BREAST CANCER BIOMARKERS IN HR-POSITIVE INDIVIDUALS |
| US10357568B2 (en) | 2011-03-24 | 2019-07-23 | Glaxosmithkline Biologicals S.A. | Adjuvant nanoemulsions with phospholipids |
| EP2691443B1 (en) | 2011-03-28 | 2021-02-17 | Massachusetts Institute of Technology | Conjugated lipomers and uses thereof |
| CN103476949A (en) | 2011-03-28 | 2013-12-25 | 诺瓦提斯公司 | Markers associated with cyclin-dependent kinase inhibitors |
| DE12722942T1 (en) | 2011-03-31 | 2021-09-30 | Modernatx, Inc. | RELEASE AND FORMULATION OF MANIPULATED NUCLEIC ACIDS |
| JP2014511694A (en) | 2011-04-03 | 2014-05-19 | ザ ジェネラル ホスピタル コーポレーション ドゥーイング ビジネス アズ マサチューセッツ ジェネラル ホスピタル | Efficient in vivo protein expression using modified RNA (MOD-RNA) |
| ES2587512T3 (en) | 2011-04-04 | 2016-10-25 | The U.S.A. As Represented By The Secretary, Department Of Health And Human Services | 2'-O-aminooxymethyl nucleoside derivatives for use in the synthesis and modification of nucleosides, nucleotides and oligonucleotides |
| WO2012142132A1 (en) | 2011-04-11 | 2012-10-18 | Life Technologies Corporation | Polymer particles and methods of making and using same |
| US11135174B2 (en) | 2011-04-13 | 2021-10-05 | The Trustees Of The University Of Pennsylvania | Coated mesoporous nanoparticles |
| WO2013158127A1 (en) | 2012-04-16 | 2013-10-24 | Molecular Transfer, Inc. | Agents for improved delivery of nucleic acids to eukaryotic cells |
| US20140178894A1 (en) | 2011-04-20 | 2014-06-26 | Novartis Forschungsstiftung, Zweigniederlassung | Culture medium suitable for the culture of undifferentiated cells |
| EA034702B1 (en) | 2011-04-26 | 2020-03-10 | Молекулар Экспресс, Инк. | Liposomal compositions |
| CA2834365A1 (en) | 2011-04-28 | 2012-11-01 | Sandia Corporation | Porous nanoparticle-supported lipid bilayers (protocells) for targeted delivery and methods of using same |
| US20160272697A2 (en) | 2011-04-28 | 2016-09-22 | The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. | Neutralizing Antibodies to Nipah and Hendra Virus |
| WO2012149246A1 (en) | 2011-04-29 | 2012-11-01 | Novartis Ag | Methods of treating squamous cell carcinoma related applications |
| CA3182519A1 (en) | 2011-04-29 | 2012-11-01 | Selecta Biosciences, Inc. | Tolerogenic synthetic nanocarriers for antigen-specific deletion of t effector cells |
| UA116189C2 (en) | 2011-05-02 | 2018-02-26 | Мілленніум Фармасьютікалз, Інк. | COMPOSITION OF ANTI-α4β7 ANTIBODY |
| EP3777538B1 (en) | 2011-05-02 | 2023-06-28 | Wayne State University | A protein-induced pluripotent cell technology and uses thereof |
| US8945588B2 (en) | 2011-05-06 | 2015-02-03 | The University Of Chicago | Methods and compositions involving protective staphylococcal antigens, such as EBH polypeptides |
| US9650745B2 (en) | 2011-05-10 | 2017-05-16 | Basf Se | Oil-in-water emulsions |
| US9283279B2 (en) | 2011-05-11 | 2016-03-15 | Ramot At Tel-Aviv University Ltd. | Targeted polymeric conjugates and uses thereof |
| EP2706983A1 (en) | 2011-05-12 | 2014-03-19 | Helmut Vockner | Novel pharmaceutical formulation |
| EP2706988B1 (en) | 2011-05-12 | 2019-12-04 | Yissum Research Development Company of the Hebrew University of Jerusalem Ltd. | Liposomes comprising polymer-conjugated lipids and related uses |
| LT3275892T (en) | 2011-05-13 | 2020-04-10 | Glaxosmithkline Biologicals S.A. | Pre-fusion rsv f antigens |
| CN103687957A (en) | 2011-05-17 | 2014-03-26 | 现代治疗公司 | Engineered nucleic acids and methods for their use in non-human vertebrates |
| US8691750B2 (en) | 2011-05-17 | 2014-04-08 | Axolabs Gmbh | Lipids and compositions for intracellular delivery of biologically active compounds |
| CN103052757B (en) | 2011-05-20 | 2015-02-25 | 科勒公司 | Toilet installation system and method |
| HUE046152T2 (en) | 2011-05-24 | 2020-02-28 | Biontech Rna Pharmaceuticals Gmbh | Individualized vaccines for cancer |
| CA2836844A1 (en) | 2011-05-25 | 2012-11-29 | Novartis Ag | Biomarkers for lung cancer |
| US20140308363A1 (en) | 2011-05-31 | 2014-10-16 | Bind Therapeutics, Inc. | Drug loaded polymeric nanoparticles and methods of making and using same |
| ES2685333T3 (en) | 2011-06-02 | 2018-10-08 | The Regents Of The University Of California | Membrane encapsulated nanoparticles and method of use |
| CA2837852A1 (en) | 2011-06-02 | 2012-12-06 | Novartis Ag | Biomarkers for hedgehog inhibitor therapy |
| US9181553B2 (en) | 2011-06-06 | 2015-11-10 | Novartis Forschungsstiftung Zweigniederlassung Friedrich Miescher Institute For Biomedical Research | Method of treatment of breast cancers over-expressing the SHP2 signature genes |
| DK3336082T3 (en) | 2011-06-08 | 2020-04-27 | Translate Bio Inc | SPLITLY LIPIDS |
| PL2717893T3 (en) † | 2011-06-08 | 2019-12-31 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
| WO2012168491A1 (en) | 2011-06-10 | 2012-12-13 | Novartis Ag | Pharmaceutical formulations of pcsk9 antagonists |
| US8636696B2 (en) | 2011-06-10 | 2014-01-28 | Kimberly-Clark Worldwide, Inc. | Transdermal device containing microneedles |
| WO2012170607A2 (en) | 2011-06-10 | 2012-12-13 | Novartis Ag | Use of pcsk9 antagonists |
| WO2012170753A2 (en) | 2011-06-10 | 2012-12-13 | Novartis Ag | Bovine vaccines and methods |
| US8916696B2 (en) | 2011-06-12 | 2014-12-23 | City Of Hope | Aptamer-mRNA conjugates for targeted protein or peptide expression and methods for their use |
| WO2012172495A1 (en) | 2011-06-14 | 2012-12-20 | Novartis Ag | Compositions and methods for antibodies targeting tem8 |
| CN103717249B (en) | 2011-06-15 | 2017-03-22 | 克洛恩泰克制药股份公司 | Injection needle and device |
| US20140193408A1 (en) | 2011-06-16 | 2014-07-10 | Novartis Ag | Soluble proteins for use as therapeutics |
| RU2612900C2 (en) | 2011-06-20 | 2017-03-13 | Юниверсити Оф Питтсбург - Оф Зе Коммонвэлс Систем Оф Хайе Эдьюкейшн | H1n1 influenza virus antigens with wide spectrum of activity, optimized using computer tools |
| US9862926B2 (en) | 2011-06-27 | 2018-01-09 | Cellscript, Llc. | Inhibition of innate immune response |
| ES2992120T3 (en) | 2011-06-28 | 2024-12-09 | Inovio Pharmaceuticals Inc | A minimally invasive dermal electroporation device |
| ES2692519T3 (en) | 2011-07-01 | 2018-12-04 | Novartis Ag | Method to treat metabolic disorders |
| WO2013003887A1 (en) | 2011-07-04 | 2013-01-10 | Commonwealth Scientific And Industrial Research Organisation | Nucleic acid complex |
| EP2729126B1 (en) | 2011-07-06 | 2020-12-23 | GlaxoSmithKline Biologicals SA | Liposomes having useful n:p ratio for delivery of rna molecules |
| JP2014520807A (en) | 2011-07-06 | 2014-08-25 | ノバルティス アーゲー | Immunogenic compositions and uses thereof |
| US9655845B2 (en) | 2011-07-06 | 2017-05-23 | Glaxosmithkline Biologicals, S.A. | Oil-in-water emulsions that contain nucleic acids |
| RU2649133C2 (en) | 2011-07-06 | 2018-03-29 | Новартис Аг | Cationic oil-in-water emulsions |
| WO2013006838A1 (en) | 2011-07-06 | 2013-01-10 | Novartis Ag | Immunogenic combination compositions and uses thereof |
| US8975302B2 (en) | 2011-07-07 | 2015-03-10 | Life Technologies Corporation | Polymer particles, nucleic acid polymer particles and methods of making and using the same |
| US20130012566A1 (en) | 2011-07-10 | 2013-01-10 | Aura Biosciences, Inc. | Virion Derived Protein Nanoparticles For Delivering Diagnostic Or Therapeutic Agents For The Treatment of Alopecia |
| US9617392B2 (en) | 2011-07-10 | 2017-04-11 | President And Fellows Of Harvard College | Compositions and methods for self-assembly of polymers with complementary macroscopic and microscopic scale units |
| WO2013009717A1 (en) | 2011-07-10 | 2013-01-17 | Elisabet De Los Pinos | Virion derived protein nanoparticles for delivering diagnostic or therapeutic agents for the treatment of skin-related diseases |
| GB2492999A (en) | 2011-07-20 | 2013-01-23 | Univ Central Lancashire | Neutron detector |
| US20140148503A1 (en) | 2011-07-20 | 2014-05-29 | University Of Iowa Research Foundation | Nucleic acid aptamers |
| CN103732211B (en) | 2011-07-21 | 2017-03-01 | 禾大国际股份公开有限公司 | Branched polyether block polyamides copolymer and its manufacture and use method |
| US9493549B2 (en) | 2011-07-25 | 2016-11-15 | The Rockefeller University | Antibodies directed toward the HIV-1 GP120 CD4 binding site with increased potency and breadth |
| ES2687129T3 (en) | 2011-07-25 | 2018-10-23 | Glaxosmithkline Biologicals Sa | Compositions and methods to evaluate the functional immunogenicity of parvovirus vaccines |
| WO2013019648A1 (en) | 2011-07-29 | 2013-02-07 | Selecta Biosciences, Inc. | Control of antibody responses to synthetic nanocarriers |
| WO2013025834A2 (en) | 2011-08-15 | 2013-02-21 | The University Of Chicago | Compositions and methods related to antibodies to staphylococcal protein a |
| CN104024328A (en) | 2011-08-26 | 2014-09-03 | 箭头研究公司 | Poly(vinyl ester) polymers for in vivo nucleic acid delivery |
| HRP20190032T1 (en) | 2011-08-31 | 2019-02-22 | Glaxosmithkline Biologicals Sa | PEGILATED LIPOSOMS, INTENDED FOR RNA IMPROVEMENT, CODING IMMUNOGEN |
| EP2750712A2 (en) | 2011-08-31 | 2014-07-09 | Mallinckrodt LLC | Nanoparticle peg modification with h-phosphonates |
| US9126966B2 (en) | 2011-08-31 | 2015-09-08 | Protiva Biotherapeutics, Inc. | Cationic lipids and methods of use thereof |
| JP2014525462A (en) | 2011-09-01 | 2014-09-29 | アイアールエム・リミテッド・ライアビリティ・カンパニー | Compounds and compositions as PDGFR kinase inhibitors |
| EP2751272A2 (en) | 2011-09-02 | 2014-07-09 | Novartis AG | Organic compositions to treat hsf1-related diseases |
| EP2755986A4 (en) | 2011-09-12 | 2015-05-20 | Moderna Therapeutics Inc | MODIFIED NUCLEIC ACIDS AND METHODS OF USE |
| US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| WO2013039861A2 (en) | 2011-09-12 | 2013-03-21 | modeRNA Therapeutics | Engineered nucleic acids and methods of use thereof |
| WO2013038375A2 (en) | 2011-09-14 | 2013-03-21 | Novartis Ag | Methods for making saccharide-protein glycoconjugates |
| SG11201400527XA (en) | 2011-09-16 | 2014-04-28 | Univ Pennsylvania | Rna engineered t cells for the treatment of cancer |
| EP2747761A1 (en) | 2011-09-22 | 2014-07-02 | Bind Therapeutics, Inc. | Methods of treating cancers with therapeutic nanoparticles |
| WO2013072929A2 (en) | 2011-09-23 | 2013-05-23 | Indian Institute Of Technology | Nanop article based cosmetic composition |
| US9458214B2 (en) | 2011-09-26 | 2016-10-04 | Novartis Ag | Dual function fibroblast growth factor 21 proteins |
| JO3476B1 (en) | 2011-09-26 | 2020-07-05 | Novartis Ag | Fusion proteins for treating metabolic disorders |
| AU2012315965A1 (en) | 2011-09-27 | 2014-04-03 | Alnylam Pharmaceuticals, Inc. | Di-aliphatic substituted PEGylated lipids |
| WO2013045505A1 (en) | 2011-09-28 | 2013-04-04 | Novartis Ag | Biomarkers for raas combination therapy |
| KR102014061B1 (en) | 2011-10-03 | 2019-08-28 | 모더나 세라퓨틱스, 인코포레이티드 | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| WO2013055971A1 (en) | 2011-10-11 | 2013-04-18 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Polymers for delivering a substance into a cell |
| WO2013055905A1 (en) | 2011-10-11 | 2013-04-18 | Novartis Ag | Recombinant self-replicating polycistronic rna molecules |
| WO2013055331A1 (en) | 2011-10-12 | 2013-04-18 | The Curators Of The University Of Missouri | Pentablock polymers |
| WO2014066811A1 (en) | 2012-10-25 | 2014-05-01 | The Johns Hopkins University | Bioreducible poly (b-amino ester)s for sirna delivery |
| CA2852064A1 (en) | 2011-10-14 | 2013-04-18 | Stc.Unm | Porous nanoparticle-supported lipid bilayers (protocells) for targeted delivery including transdermal delivery of cargo and methods thereof |
| WO2013054307A2 (en) | 2011-10-14 | 2013-04-18 | Novartis Ag | Antibodies and methods for wnt pathway-related diseases |
| ES2745373T3 (en) | 2011-10-18 | 2020-03-02 | Dicerna Pharmaceuticals Inc | Cationic amine lipids and their use |
| CN104093445B (en) | 2011-10-18 | 2016-09-07 | 米歇尔技术公司 | drug delivery medical device |
| AU2012324398A1 (en) | 2011-10-20 | 2014-05-01 | Seqirus UK Limited | Adjuvanted influenza B virus vaccines for pediatric priming |
| EP2768507B1 (en) | 2011-10-20 | 2019-12-11 | Novartis AG | Biomarkers predictive of responsiveness to alpha 7 nicotinic acetylcholine receptor activator treatment |
| CA2853316C (en) | 2011-10-25 | 2018-11-27 | The University Of British Columbia | Limit size lipid nanoparticles and related methods |
| US20130110043A1 (en) | 2011-10-26 | 2013-05-02 | Nanopass Technologies Ltd. | Microneedle Intradermal Drug Delivery Device with Auto-Disable Functionality |
| WO2013063468A1 (en) | 2011-10-27 | 2013-05-02 | Massachusetts Institute Of Technology | Amino acid derivates functionalized on the n- terminal capable of forming drug incapsulating microspheres |
| KR102388880B1 (en) | 2011-10-27 | 2022-04-22 | 소렌토 쎄라퓨틱스, 인코포레이티드 | Transdermal delivery of high viscosity bioactive agents |
| US9364542B2 (en) | 2011-10-28 | 2016-06-14 | Excelse Bio, Inc. | Protein formulations containing amino acids |
| WO2013062140A1 (en) | 2011-10-28 | 2013-05-02 | Kyoto University | Method for efficiently inducing differentiation of pluripotent stem cells into hepatic lineage cells |
| SG10201508662SA (en) | 2011-10-28 | 2015-11-27 | Presage Biosciences Inc | Methods for drug delivery |
| LT3091029T (en) | 2011-10-31 | 2023-02-27 | F. Hoffmann-La Roche Ag | Anti-il13 antibody formulations |
| CN104023793B (en) | 2011-10-31 | 2017-11-24 | 马林克罗特有限公司 | Joint liposome composition for treating cancer |
| CA2853689C (en) | 2011-11-04 | 2020-06-30 | Nitto Denko Corporation | Method of producing lipid nanoparticles for drug delivery |
| US9579338B2 (en) | 2011-11-04 | 2017-02-28 | Nitto Denko Corporation | Method of producing lipid nanoparticles for drug delivery |
| US10449257B2 (en) | 2011-11-04 | 2019-10-22 | Agency For Science, Technology And Research | Self-assembled composite ultrasmall peptide-polymer hydrogels |
| WO2013067537A1 (en) | 2011-11-04 | 2013-05-10 | Univertiy Of Notre Dame Du Lac | Nanoparticle-based drug delivery |
| JP2015502741A (en) | 2011-11-04 | 2015-01-29 | ノバルティス アーゲー | Low density lipoprotein related protein 6 (LRP6)-half-life extended construct |
| US20130115247A1 (en) | 2011-11-05 | 2013-05-09 | Aura Biosciences, Inc. | Virion Derived Protein Nanoparticles For Delivering Radioisotopes For The Diagnosis And Treatment Of Malignant And Systemic Disease And The Monitoring Of Therapy |
| US20130116408A1 (en) | 2011-11-05 | 2013-05-09 | Aura Biosciences, Inc. | Virion Derived Protein Nanoparticles For Delivering Radioisotopes For The Diagnosis And Treatment Of Malignant And Systemic Disease And The Monitoring Of Therapy |
| WO2013068431A1 (en) | 2011-11-08 | 2013-05-16 | Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical Research | New treatment for neurodegenerative diseases |
| US20140287510A1 (en) | 2011-11-08 | 2014-09-25 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute | Rod cell-specific promoter |
| EP2776838A1 (en) | 2011-11-08 | 2014-09-17 | Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical Research | Early diagnostic of neurodegenerative diseases |
| US9849087B2 (en) | 2011-11-08 | 2017-12-26 | The Board Of Trustees Of The University Of Arkansas | Methods and compositions for X-ray induced release from pH sensitive liposomes |
| US10203325B2 (en) | 2011-11-09 | 2019-02-12 | Board Of Trustees Of Michigan State University | Metallic nanoparticle synthesis with carbohydrate capping agent |
| KR102301463B1 (en) | 2011-11-11 | 2021-09-14 | 배리에이션 바이오테크놀로지스 아이엔씨. | Compositions and methods for treatment of cytomegalovirus |
| WO2013071047A1 (en) | 2011-11-11 | 2013-05-16 | Children's Medical Center Corporation | Compositions and methods for in vitro transcription of rna |
| AU2012340035A1 (en) | 2011-11-14 | 2014-04-17 | Susan W. Barnett | Immunogenic complexes of polyanionic carbomers and Env polypeptides and methods of manufacture and use thereof |
| CA2855619A1 (en) | 2011-11-15 | 2013-05-23 | Novartis Ag | Combination of a phosphoinositide 3-kinase inhibitor and a modulator of the janus kinase 2 - signal transducer and activator of transcription 5 pathway |
| PL2790681T5 (en) | 2011-11-18 | 2024-02-05 | Regeneron Pharmaceuticals, Inc. | Method of manufacturing an extended release pharmaceutical formulation comprising polymer coated protein microparticles using spray-drying |
| CA2856252A1 (en) | 2011-11-21 | 2013-05-30 | Novartis Ag | Methods of treating psoriatic arthritis (psa) using il-17 antagonists and psa response or non-response alleles |
| WO2013078199A2 (en) | 2011-11-23 | 2013-05-30 | Children's Medical Center Corporation | Methods for enhanced in vivo delivery of synthetic, modified rnas |
| WO2013082111A2 (en) | 2011-11-29 | 2013-06-06 | The University Of North Carolina At Chapel Hill | Geometrically engineered particles and methods for modulating macrophage or immune responses |
| US9364549B2 (en) | 2011-11-30 | 2016-06-14 | Andreas Voigt | Hydrophobic drug-delivery material, method for manufacturing thereof and methods for delivery of a drug-delivery composition |
| CA2857502C (en) | 2011-11-30 | 2019-08-13 | 3M Innovative Properties Company | Microneedle device including a peptide therapeutic agent and an amino acid and methods of making and using the same |
| US20130142781A1 (en) | 2011-12-02 | 2013-06-06 | Invivo Therapeutics Corporation | Peg based hydrogel for peripheral nerve injury applications and compositions and method of use of synthetic hydrogel sealants |
| WO2013082529A1 (en) | 2011-12-02 | 2013-06-06 | Yale University | Enzymatic synthesis of poly(amine-co-esters) and methods of use thereof for gene delivery |
| AU2012345726B2 (en) | 2011-12-02 | 2017-04-13 | Pegasus Laboratories, Inc. | Amphipathic lipid-based sustained release compositions |
| US8497124B2 (en) | 2011-12-05 | 2013-07-30 | Factor Bioscience Inc. | Methods and products for reprogramming cells to a less differentiated state |
| MX382822B (en) | 2011-12-05 | 2025-03-13 | Factor Bioscience Inc | METHODS AND PRODUCTS FOR CELL TRANSFECTION. |
| CN103998536B (en) | 2011-12-05 | 2017-09-15 | 纳诺精密医疗有限公司 | The device with titania nanotube film for medicine delivery |
| GB201121070D0 (en) | 2011-12-07 | 2012-01-18 | Isis Innovation | composition for delivery of biotherapeutics |
| US9463247B2 (en) | 2011-12-07 | 2016-10-11 | Alnylam Pharmaceuticals, Inc. | Branched alkyl and cycloalkyl terminated biodegradable lipids for the delivery of active agents |
| JP6305344B2 (en) | 2011-12-07 | 2018-04-04 | アルニラム・ファーマシューティカルズ・インコーポレーテッド | Biodegradable lipids for delivery of active agents |
| US20140308304A1 (en) | 2011-12-07 | 2014-10-16 | Alnylam Pharmaceuticals, Inc. | Lipids for the delivery of active agents |
| WO2013086486A1 (en) | 2011-12-09 | 2013-06-13 | President And Fellows Of Harvard College | Integrated human organ-on-chip microphysiological systems |
| US10087422B2 (en) | 2011-12-09 | 2018-10-02 | President And Fellows Of Harvard College | Organ chips and uses thereof |
| EP2787977A4 (en) | 2011-12-09 | 2015-05-06 | Univ California | LIPOSOMAL ENCAPSULATION OF MEDICAMENTS |
| JP6182457B2 (en) | 2011-12-12 | 2017-08-16 | 協和発酵キリン株式会社 | Lipid nanoparticles for drug delivery systems containing cationic lipids |
| AU2012352455B2 (en) | 2011-12-12 | 2016-01-21 | The Trustees Of The University Of Pennsylvania | Proteins comprising MRSA PBP2a and fragments thereof, nucleic acids encoding the same, and compositions and their use to prevent and treat MRSA infections |
| US20140045913A1 (en) | 2011-12-12 | 2014-02-13 | Kyowa Hakko Kirin Co., Ltd. | Lipid nano particles comprising combination of cationic lipid |
| US20150000936A1 (en) | 2011-12-13 | 2015-01-01 | Schlumberger Technology Corporation | Energization of an element with a thermally expandable material |
| SG10201601349XA (en) | 2011-12-13 | 2016-03-30 | Engeneic Molecular Delivery Pty Ltd | Bacterially derived, intact minicells for delivery of therapeutic agents to brain tumors |
| EP2604253A1 (en) | 2011-12-13 | 2013-06-19 | Otto Glatter | Water-in-oil emulsions and methods for their preparation |
| EP2791364A4 (en) | 2011-12-14 | 2015-11-11 | Moderna Therapeutics Inc | METHODS OF RESPONSE TO A BIOLOGICAL THREAT |
| US20140343129A1 (en) | 2011-12-14 | 2014-11-20 | Moderna Therapeutics, Inc. | Modified nucleic acids, and acute care uses thereof |
| US20140349320A1 (en) | 2011-12-15 | 2014-11-27 | The Trustees Of The University Of Pennsylvania | Using Adaptive Immunity to Detect Drug Resistance |
| WO2013087083A1 (en) | 2011-12-15 | 2013-06-20 | Biontech Ag | Particles comprising single stranded rna and double stranded rna for immunomodulation |
| CA3018046A1 (en) | 2011-12-16 | 2013-06-20 | Moderna Therapeutics, Inc. | Modified nucleoside, nucleotide, and nucleic acid compositions |
| EP2791172B1 (en) | 2011-12-16 | 2017-07-19 | Synthon Biopharmaceuticals B.V. | Compounds and methods for treating inflammatory diseases |
| RU2014129268A (en) | 2011-12-16 | 2016-02-10 | Аллерган, Инк. | OPHTHALMIC COMPOSITIONS THAT CONTAIN GRAVITY POLYVINYL POLYVINYL PROCALT-POLYVINYL ACETATE-POLYETHYLENE Glycol copolymers |
| EP2790761B1 (en) | 2011-12-16 | 2022-05-11 | Novartis AG | Passive powder aerosolization apparatus |
| IN2014DN05912A (en) | 2011-12-16 | 2015-06-05 | Massachusetts Inst Technology | |
| WO2013090601A2 (en) | 2011-12-16 | 2013-06-20 | Massachusetts Institute Of Technology | Compact nanoparticles for biological applications |
| WO2013091001A1 (en) | 2011-12-19 | 2013-06-27 | The University Of Sydney | A peptide-hydrogel composite |
| US9241829B2 (en) | 2011-12-20 | 2016-01-26 | Abbott Medical Optics Inc. | Implantable intraocular drug delivery apparatus, system and method |
| RU2014129863A (en) | 2011-12-21 | 2016-02-10 | Модерна Терапьютикс, Инк. | WAYS TO INCREASE VITALITY OR INCREASE THE LIFE OF A BODY OR EXPLANATE BODY |
| EP2793941A1 (en) | 2011-12-23 | 2014-10-29 | F.Hoffmann-La Roche Ag | Articles of manufacture and methods for co-administration of antibodies |
| KR101963230B1 (en) | 2011-12-26 | 2019-03-29 | 삼성전자주식회사 | Protein complex comprising multi-specific monoclonal antibodies |
| WO2013101908A1 (en) | 2011-12-27 | 2013-07-04 | Massachusetts Institute Of Technology | Microneedle devices and uses thereof |
| EP2797624A1 (en) | 2011-12-29 | 2014-11-05 | Novartis AG | Adjuvanted combinations of meningococcal factor h binding proteins |
| EP2797634A4 (en) | 2011-12-29 | 2015-08-05 | Moderna Therapeutics Inc | MODIFIED mRNA ENCODING POLYPEPTIDES PENETRATING IN CELLS |
| CA2862377A1 (en) | 2011-12-30 | 2013-07-04 | Cellscript, Llc | Making and using in vitro-synthesized ssrna for introducing into mammalian cells to induce a biological or biochemical effect |
| HK1201452A1 (en) | 2012-01-06 | 2015-09-04 | Gemphire Therapeutics Inc. | Methods of reducing risk of cardiovascular disease |
| WO2013106496A1 (en) | 2012-01-10 | 2013-07-18 | modeRNA Therapeutics | Methods and compositions for targeting agents into and across the blood-brain barrier |
| CN104245925A (en) | 2012-01-26 | 2014-12-24 | 生命科技公司 | Method for increasing viral infectivity |
| KR20140128966A (en) | 2012-01-26 | 2014-11-06 | 라이프 테크놀로지스 코포레이션 | Methods for increasing the infectivity of viruses |
| WO2013113325A1 (en) | 2012-01-31 | 2013-08-08 | Curevac Gmbh | Negatively charged nucleic acid comprising complexes for immunostimulation |
| WO2013113326A1 (en) | 2012-01-31 | 2013-08-08 | Curevac Gmbh | Pharmaceutical composition comprising a polymeric carrier cargo complex and at least one protein or peptide antigen |
| EP2623121A1 (en) | 2012-01-31 | 2013-08-07 | Bayer Innovation GmbH | Pharmaceutical composition comprising a polymeric carrier cargo complex and an antigen |
| US9243085B2 (en) | 2012-02-09 | 2016-01-26 | Life Technologies Corporation | Hydrophilic polymeric particles and methods for making and using same |
| HK1205751A1 (en) | 2012-02-22 | 2015-12-24 | Cerulean Pharma Inc. | Conjugates, particles, compositions, and related methods |
| US20130243867A1 (en) | 2012-02-23 | 2013-09-19 | University Of South Florida (A Florida Non-Profit Corporation) | Micelle compositions and methods for their use |
| US20130224268A1 (en) | 2012-02-27 | 2013-08-29 | Newgen Biopharma Corp. | Topical delivery of hormonal and non hormonal nano formulations, methods of making and using the same |
| EP2820047B1 (en) | 2012-03-01 | 2018-04-25 | Amgen Research (Munich) GmbH | Long life polypeptide binding molecules |
| DE112013001457T5 (en) | 2012-03-13 | 2014-12-04 | University Of Kwazulu-Natal | Transdermal application system |
| US10322089B2 (en) | 2012-03-14 | 2019-06-18 | The Board Of Trustees Of The Leland Stanford Junior University | Nanoparticles, nanoparticle delivery methods, and systems of delivery |
| MX354811B (en) | 2012-03-16 | 2018-03-22 | Merck Patent Gmbh | Targeting aminoacid lipids. |
| EP2825207B1 (en) | 2012-03-16 | 2020-08-19 | The Johns Hopkins University | Non-linear multiblock copolymer-drug conjugates for the delivery of active agents |
| US8962577B2 (en) | 2012-03-16 | 2015-02-24 | The Johns Hopkins University | Controlled release formulations for the delivery of HIF-1 inhibitors |
| US9610346B2 (en) | 2012-03-23 | 2017-04-04 | International Aids Vaccine Initiative | Recombinant viral vectors |
| WO2013142349A1 (en) | 2012-03-23 | 2013-09-26 | University Of Chicago | Compositions and methods related to staphylococcal sbi |
| WO2013148186A1 (en) | 2012-03-26 | 2013-10-03 | President And Fellows Of Harvard College | Lipid-coated nucleic acid nanostructures of defined shape |
| WO2013143555A1 (en) | 2012-03-26 | 2013-10-03 | Biontech Ag | Rna formulation for immunotherapy |
| SG10201607966UA (en) | 2012-03-27 | 2016-11-29 | Curevac Ag | Artificial nucleic acid molecules comprising a 5'top utr |
| CA2859452C (en) | 2012-03-27 | 2021-12-21 | Curevac Gmbh | Artificial nucleic acid molecules for improved protein or peptide expression |
| AU2013242403B2 (en) | 2012-03-27 | 2018-10-18 | Curevac Ag | Artificial nucleic acid molecules |
| EP2830594B1 (en) | 2012-03-27 | 2018-05-09 | Sirna Therapeutics, Inc. | DIETHER BASED BIODEGRADABLE CATIONIC LIPIDS FOR siRNA DELIVERY |
| WO2013149141A1 (en) | 2012-03-29 | 2013-10-03 | Shire Human Genetic Therapies, Inc. | Lipid-derived neutral nanoparticles |
| US20150050354A1 (en) | 2012-04-02 | 2015-02-19 | Moderna Therapeutics, Inc. | Modified polynucleotides for the treatment of otic diseases and conditions |
| HK1206636A1 (en) | 2012-04-02 | 2016-01-15 | Modernatx, Inc. | Modified polynucleotides for the production of oncology-related proteins and peptides |
| US20140275229A1 (en) | 2012-04-02 | 2014-09-18 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding udp glucuronosyltransferase 1 family, polypeptide a1 |
| HK1206612A1 (en) | 2012-04-02 | 2016-01-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of secreted proteins |
| US9303079B2 (en) | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
| WO2013151650A1 (en) | 2012-04-05 | 2013-10-10 | University Of Florida Research Foundation, Inc. | Neurophilic nanoparticles |
| US9107904B2 (en) | 2012-04-05 | 2015-08-18 | Massachusetts Institute Of Technology | Immunostimulatory compositions and methods of use thereof |
| WO2013152351A2 (en) | 2012-04-06 | 2013-10-10 | The Trustees Of Columbia University In The City Of New York | Fusion polypeptides and methods of use thereof |
| WO2013153550A2 (en) | 2012-04-08 | 2013-10-17 | Theracoat Ltd | Reverse thermal hydrogel preparations for use in the treatment of disorders of the urothelium |
| US9078930B2 (en) | 2012-04-11 | 2015-07-14 | Intezyne Technologies, Inc. | Block copolymers for stable micelles |
| WO2013155493A1 (en) | 2012-04-12 | 2013-10-17 | Yale University | Methods of treating inflammatory and autoimmune diseases and disorders |
| WO2013154766A1 (en) | 2012-04-13 | 2013-10-17 | New York University | Microrna control of ldl receptor pathway |
| WO2013155513A1 (en) | 2012-04-13 | 2013-10-17 | President And Fellows Of Harvard College | Devices and methods for in vitro aerosol delivery |
| MX2014001965A (en) | 2012-04-18 | 2014-03-31 | Arrowhead Res Corp | Poly(acrylate) polymers for in vivo nucleic acid delivery. |
| AU2013249548A1 (en) | 2012-04-19 | 2014-11-06 | Sirna Therapeutics, Inc. | Novel diester and triester based low molecular weight, biodegradable cationic lipids for oligonucleotide delivery |
| WO2013163234A1 (en) | 2012-04-23 | 2013-10-31 | Massachusetts Institute Of Technology | Stable layer-by-layer coated particles |
| UA117098C2 (en) | 2012-04-25 | 2018-06-25 | Рег'Юлес Терап'Ютікс Інк. | A COMPOUND CONTAINING MODIFIED OLIGONUCLEOTIDE |
| KR102310775B1 (en) | 2012-05-03 | 2021-10-07 | 칼라 파마슈티컬스, 인크. | Pharmaceutical nanoparticles showing improved mucosal transport |
| JP6392209B2 (en) | 2012-05-04 | 2018-09-19 | ザ・ジョンズ・ホプキンス・ユニバーシティー | Lipid-based drug carriers for rapid permeation through the mucus lining |
| WO2013173657A1 (en) | 2012-05-16 | 2013-11-21 | Micell Technologies, Inc. | Low burst sustained release lipophilic and biologic agent compositions |
| WO2013173582A1 (en) | 2012-05-17 | 2013-11-21 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Hepatitis c virus neutralizing antibody |
| WO2013173693A1 (en) | 2012-05-18 | 2013-11-21 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Nanoparticles with enhanced entry into cancer cells |
| BR112014027834A2 (en) | 2012-05-23 | 2017-08-08 | Univ Ohio State | lipid nanoparticle compositions for antisense oligonucleotide delivery |
| ES2719598T3 (en) | 2012-05-25 | 2019-07-11 | Curevac Ag | Reversible immobilization and / or controlled release of nucleic acids contained in nanoparticles by polymeric coatings (biodegradable) |
| NZ702283A (en) | 2012-06-06 | 2016-09-30 | Loma Vista Medical Inc | Inflatable medical devices |
| CN104349794B (en) | 2012-06-08 | 2019-01-04 | 埃泽瑞斯公司 | The lung of mRNA delivers |
| HUE056014T2 (en) | 2012-06-08 | 2022-01-28 | Nitto Denko Corp | Lipids for pharmaceutical preparations |
| JP6561378B2 (en) | 2012-06-08 | 2019-08-21 | トランスレイト バイオ, インコーポレイテッド | Transpulmonary delivery of mRNA to non-pulmonary target cells |
| US20150218252A1 (en) | 2012-06-20 | 2015-08-06 | President And Fellows Of Harvard College | Self-assembling peptides, peptide nanostructures and uses thereof |
| CN104507458B (en) | 2012-06-20 | 2018-05-22 | 滑铁卢大学 | Mucoadhesive nano particle delivery system |
| EP2866833B1 (en) | 2012-06-27 | 2019-05-15 | Merck Sharp & Dohme Corp. | Crystalline anti-human il-23 antibodies |
| US9150841B2 (en) | 2012-06-29 | 2015-10-06 | Shire Human Genetic Therapies, Inc. | Cells for producing recombinant iduronate-2-sulfatase |
| US9415109B2 (en) | 2012-07-06 | 2016-08-16 | Alnylam Pharmaceuticals, Inc. | Stable non-aggregating nucleic acid lipid particle formulations |
| US9956291B2 (en) | 2012-07-10 | 2018-05-01 | Shaker A. Mousa | Nanoformulation and methods of use of thyroid receptor beta1 agonists for liver targeting |
| WO2014014890A1 (en) | 2012-07-16 | 2014-01-23 | Nanoderm Sciences, Inc. | Targeted therapeutic nanoparticles |
| EP2687252A1 (en) | 2012-07-17 | 2014-01-22 | Sanofi-Aventis Deutschland GmbH | Drug delivery device |
| EP2687251A1 (en) | 2012-07-17 | 2014-01-22 | Sanofi-Aventis Deutschland GmbH | Drug delivery device |
| CN112587671A (en) | 2012-07-18 | 2021-04-02 | 博笛生物科技有限公司 | Targeted immunotherapy for cancer |
| WO2014015334A1 (en) | 2012-07-20 | 2014-01-23 | Brown University | System and methods for nanostructure protected delivery of treatment agent and selective release thereof |
| KR20160073936A (en) | 2012-07-24 | 2016-06-27 | 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 | Self-assembly of nucleic acid nanostructures |
| WO2014015422A1 (en) | 2012-07-27 | 2014-01-30 | Ontario Institute For Cancer Research | Cellulose-based nanoparticles for drug delivery |
| GB201213624D0 (en) | 2012-07-27 | 2012-09-12 | Univ Ulster The | Method and system for production of conjugated nanoparticles |
| WO2014025795A1 (en) | 2012-08-07 | 2014-02-13 | Northeastern University | Compositions for the delivery of rna and drugs into cells |
| WO2014024193A1 (en) | 2012-08-07 | 2014-02-13 | Prodel Pharma Ltd. | Compositions and methods for rapid transmucosal delivery of pharmaceutical ingredients |
| SG11201500188YA (en) | 2012-08-08 | 2015-02-27 | Univ Nanyang Tech | Methods of manufacturing hydrogel microparticles having living cells, and compositions for manufacturing a scaffold for tissue engineering |
| AU2013299537A1 (en) | 2012-08-08 | 2015-02-19 | Presage Biosciences, Inc. | Extrusion methods and devices for drug delivery |
| JP2015525799A (en) | 2012-08-10 | 2015-09-07 | ユニバーシティ・オブ・ノース・テキサス・ヘルス・サイエンス・センターUniversity of North Texas Health Science Center | Drug delivery vehicle comprising conjugate of targeting polyamino acid and fatty acid |
| WO2014027006A1 (en) | 2012-08-13 | 2014-02-20 | Edko Pazarlama Tanitim Ticaret Limited Sirketi | Bioadhesive formulations for use in drug delivery |
| CA2884870C (en) | 2012-08-13 | 2022-03-29 | Massachusetts Institute Of Technology | Amine-containing lipidoids and uses thereof |
| EP2884965B1 (en) | 2012-08-14 | 2018-08-08 | Froese, Aaron | Internal structured self assembling liposomes |
| WO2014028209A1 (en) | 2012-08-14 | 2014-02-20 | The Trustees Of The University Of Pennsylvania | Stabilizing shear-thinning hydrogels |
| WO2014028429A2 (en) | 2012-08-14 | 2014-02-20 | Moderna Therapeutics, Inc. | Enzymes and polymerases for the synthesis of rna |
| AU2013302526B2 (en) | 2012-08-15 | 2018-03-22 | The University Of Chicago | Exosome-based therapeutics against neurodegenerative disorders |
| US10179134B2 (en) | 2012-09-05 | 2019-01-15 | Creighton University | Polymeric nanoparticles in a thermosensitive gel for coital-independent vaginal prophylaxis of HIV |
| US8703197B2 (en) | 2012-09-13 | 2014-04-22 | International Business Machines Corporation | Branched polyamines for delivery of biologically active materials |
| NZ705812A (en) | 2012-09-17 | 2018-08-31 | Pfizer | Process for preparing therapeutic nanoparticles |
| WO2014047649A1 (en) | 2012-09-24 | 2014-03-27 | The Regents Of The University Of California | Methods for arranging and packing nucleic acids for unusual resistance to nucleases and targeted delivery for gene therapy |
| WO2014052634A1 (en) | 2012-09-27 | 2014-04-03 | The University Of North Carolina At Chapel Hill | Lipid coated nanoparticles containing agents having low aqueous and lipid solubilities and methods thereof |
| US20150307542A1 (en) | 2012-10-03 | 2015-10-29 | Moderna Therapeutics, Inc. | Modified nucleic acid molecules and uses thereof |
| WO2014053881A1 (en) | 2012-10-04 | 2014-04-10 | Centre National De La Recherche Scientifique | Cell penetrating peptides for intracellular delivery of molecules |
| US20140100178A1 (en) | 2012-10-04 | 2014-04-10 | Aslam Ansari | Composition and methods for site-specific drug delivery to treat malaria and other liver diseases |
| WO2014054026A1 (en) | 2012-10-04 | 2014-04-10 | University Of The Witwatersrand, Johannesburg | Liposomal drug delivery system |
| WO2014053882A1 (en) | 2012-10-04 | 2014-04-10 | Centre National De La Recherche Scientifique | Cell penetrating peptides for intracellular delivery of molecules |
| EP2716655A1 (en) | 2012-10-04 | 2014-04-09 | Institut Pasteur | Neutralizing antibodies directed against Hepatitis C virus ectodomain glycoprotein E2 |
| WO2014053879A1 (en) | 2012-10-04 | 2014-04-10 | Centre National De La Recherche Scientifique | Cell penetrating peptides for intracellular delivery of molecules |
| WO2014053880A1 (en) | 2012-10-04 | 2014-04-10 | Centre National De La Recherche Scientifique | Cell penetrating peptides for intracellular delivery of molecules |
| EP2716689A1 (en) | 2012-10-05 | 2014-04-09 | National University of Ireland, Galway | Polymer comprising a plurality of branches having at least one disulfide group and/or at least one vinyl group |
| WO2014064534A2 (en) | 2012-10-05 | 2014-05-01 | Chrontech Pharma Ab | Injection needle, device, immunogenic compositions and method of use |
| US9931410B2 (en) | 2012-10-09 | 2018-04-03 | The Brigham And Women's Hospital, Inc. | Nanoparticles for targeted delivery of multiple therapeutic agents and methods of use |
| US20140106260A1 (en) | 2012-10-11 | 2014-04-17 | The Trustees Of The University Of Pennsylvania | Core-shell nanoparticulate compositions and methods |
| MX2015004757A (en) | 2012-10-16 | 2015-07-17 | Endocyte Inc | Drug delivery conjugates containing unnatural amino acids and methods for using. |
| EA035012B1 (en) | 2012-10-18 | 2020-04-17 | Рокфеллер Юниверсити (Дзе) | Broadly-neutralizing anti-hiv antibodies |
| AU2013336237A1 (en) | 2012-10-22 | 2015-06-11 | Sabag-Rfa Ltd | A system for delivering therapeutic agents into living cells and cells nuclei |
| WO2014066912A1 (en) | 2012-10-26 | 2014-05-01 | Vanderbilt University | Polymeric nanoparticles |
| MX2015005328A (en) | 2012-10-26 | 2015-09-25 | Nlife Therapeutics S L | COMPOSITIONS AND METHODS FOR SELECTIVE ADMINISTRATION OF OLIGONUCLEOTID MOLECULES TO TYPES OF CELLS. |
| US20150272900A1 (en) | 2012-10-26 | 2015-10-01 | The Johns Hopkins University | Layer-By-Layer Approach to Co-Deliver DNA and siRNA via AuNPs: A Potential Platform for Modifying Release Kinetics |
| WO2014067551A1 (en) | 2012-10-29 | 2014-05-08 | Technische Universität Dortmund | T7 rna polymerase variants and methods of using the same |
| BR122019025681B1 (en) | 2012-11-01 | 2023-04-18 | Factor Bioscience Inc | METHOD FOR INSERTING A NUCLEIC ACID SEQUENCE INTO A SECURE LOCATION OF A GENOME OF A CELL |
| WO2014071072A2 (en) | 2012-11-02 | 2014-05-08 | Pungente Michael D | Novel cationic carotenoid-based lipids for cellular nucleic acid uptake |
| WO2014068542A1 (en) | 2012-11-05 | 2014-05-08 | Fondazione Centro San Raffaele | Novel targets in multiple myeloma and other disorders |
| BR112015010253A2 (en) | 2012-11-06 | 2017-07-11 | Rochal Ind Llc | delivery of biologically active agents using hydrophobic and volatile solvents |
| WO2014074597A1 (en) | 2012-11-06 | 2014-05-15 | President And Fellows Of Harvard College | Compositions and methods relating to complex nucleic acid nanostructures |
| WO2014072997A1 (en) | 2012-11-07 | 2014-05-15 | Council Of Scientific & Industrial Research | Nanocomplex containing amphipathic peptide useful for efficient transfection of biomolecules |
| US9572893B2 (en) | 2012-11-07 | 2017-02-21 | Council Of Scientific And Industrial Research | Nanocomplex containing cationic peptide for biomolecule delivery |
| JP6487328B2 (en) | 2012-11-08 | 2019-03-20 | アルブミディクス リミティド | Albumin variant |
| KR20210133321A (en) | 2012-11-08 | 2021-11-05 | 클리어사이드 바이오메디컬, 인코포레이드 | Methods and devices for the treatment of ocular disease in human subjects |
| HK1211599A1 (en) | 2012-11-08 | 2016-05-27 | Eleven Biotherapeutics, Inc. | Il-6 antagonists and uses thereof |
| TW201428101A (en) | 2012-11-08 | 2014-07-16 | Inviragen Inc | Compositions, methods and uses for dengue virus serotype-4 constructs |
| TR201809547T4 (en) | 2012-11-09 | 2018-07-23 | Biontech Rna Pharmaceuticals Gmbh | Method for cellular RNA expression. |
| WO2014072468A1 (en) | 2012-11-09 | 2014-05-15 | Velin-Pharma A/S | Compositions for pulmonary delivery |
| WO2014071963A1 (en) | 2012-11-09 | 2014-05-15 | Biontech Ag | Method for cellular rna expression |
| US9200119B2 (en) | 2012-11-09 | 2015-12-01 | Momentive Performance Materials Inc. | Silicon-containing zwitterionic linear copolymer composition |
| WO2014074218A1 (en) | 2012-11-12 | 2014-05-15 | Redwood Bioscience, Inc. | Compounds and methods for producing a conjugate |
| US9833502B2 (en) | 2012-11-12 | 2017-12-05 | Genvec, Inc. | Malaria antigens and methods of use |
| GB201220354D0 (en) | 2012-11-12 | 2012-12-26 | Medpharm Ltd | Dermal compositions |
| US9943608B2 (en) | 2012-11-13 | 2018-04-17 | Baylor College Of Medicine | Multi-arm biodegradable polymers for nucleic acid delivery |
| WO2014078636A1 (en) | 2012-11-16 | 2014-05-22 | President And Fellows Of Harvard College | Nucleic acid hydrogel self-assembly |
| US9310374B2 (en) | 2012-11-16 | 2016-04-12 | Redwood Bioscience, Inc. | Hydrazinyl-indole compounds and methods for producing a conjugate |
| EP2919760A4 (en) | 2012-11-19 | 2016-08-03 | Technion Res & Dev Foundation | LIPOSOMES FOR DISTRIBUTION IN VIVO |
| EP2732825B1 (en) | 2012-11-19 | 2015-07-01 | Invivogen | Conjugates of a TLR7 and/or TLR8 agonist and a TLR2 agonist |
| WO2014081849A1 (en) | 2012-11-20 | 2014-05-30 | Phasebio Pharmaceuticals, Inc. | Formulations of active agents for sustained release |
| US20140141037A1 (en) | 2012-11-20 | 2014-05-22 | Novartis Ag | Rsv f prefusion trimers |
| WO2014081300A1 (en) | 2012-11-22 | 2014-05-30 | Tagworks Pharmaceuticals B.V. | Channel protein activatable liposomes |
| EP4245744A3 (en) | 2012-11-22 | 2024-05-01 | Tagworks Pharmaceuticals B.V. | Chemically cleavable group |
| WO2014081299A1 (en) | 2012-11-22 | 2014-05-30 | Tagworks Pharmaceuticals B.V. | Activatable liposomes |
| SMT202200337T1 (en) | 2012-11-26 | 2022-09-14 | Modernatx Inc | Terminally modified rna |
| EP2931914A4 (en) | 2012-12-13 | 2016-08-17 | Moderna Therapeutics Inc | MODIFIED POLYNUCLEOTIDES FOR MODIFYING CELL PHENOTYPE |
| RU2015132962A (en) | 2013-01-10 | 2017-02-14 | Новартис Аг | IMMUNOGENIC COMPOSITIONS BASED ON INFLUENZA VIRUS AND THEIR APPLICATION |
| CA2897941A1 (en) | 2013-01-17 | 2014-07-24 | Moderna Therapeutics, Inc. | Signal-sensor polynucleotides for the alteration of cellular phenotypes |
| HK1220122A1 (en) | 2013-03-09 | 2017-04-28 | Modernatx, Inc. | Heterologous untranslated regions for mrna |
| WO2014158795A1 (en) | 2013-03-12 | 2014-10-02 | Moderna Therapeutics, Inc. | Diagnosis and treatment of fibrosis |
| WO2014159813A1 (en) | 2013-03-13 | 2014-10-02 | Moderna Therapeutics, Inc. | Long-lived polynucleotide molecules |
| EP2971010B1 (en) | 2013-03-14 | 2020-06-10 | ModernaTX, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
| EP4279610A3 (en) | 2013-03-15 | 2024-01-03 | ModernaTX, Inc. | Ribonucleic acid purification |
| US20160032273A1 (en) | 2013-03-15 | 2016-02-04 | Moderna Therapeutics, Inc. | Characterization of mrna molecules |
| WO2014152027A1 (en) | 2013-03-15 | 2014-09-25 | Moderna Therapeutics, Inc. | Manufacturing methods for production of rna transcripts |
| US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
| US10077439B2 (en) | 2013-03-15 | 2018-09-18 | Modernatx, Inc. | Removal of DNA fragments in mRNA production process |
| WO2014144767A1 (en) | 2013-03-15 | 2014-09-18 | Moderna Therapeutics, Inc. | Ion exchange purification of mrna |
| WO2014144711A1 (en) | 2013-03-15 | 2014-09-18 | Moderna Therapeutics, Inc. | Analysis of mrna heterogeneity and stability |
| PT3019619T (en) | 2013-07-11 | 2021-11-11 | Modernatx Inc | COMPOSITIONS COMPRISING SYNTHETIC POLYNUCLEOTIDES ENCODING SYNTHETIC CRISPR AND SGARN-RELATED PROTEINS AND METHODS OF USE |
| US20160194625A1 (en) | 2013-09-03 | 2016-07-07 | Moderna Therapeutics, Inc. | Chimeric polynucleotides |
| US20160194368A1 (en) | 2013-09-03 | 2016-07-07 | Moderna Therapeutics, Inc. | Circular polynucleotides |
| US9925277B2 (en) | 2013-09-13 | 2018-03-27 | Modernatx, Inc. | Polynucleotide compositions containing amino acids |
| EP3052106A4 (en) | 2013-09-30 | 2017-07-19 | ModernaTX, Inc. | Polynucleotides encoding immune modulating polypeptides |
| BR112016007255A2 (en) | 2013-10-03 | 2017-09-12 | Moderna Therapeutics Inc | polynucleotides encoding low density lipoprotein receptor |
| EP3058082A4 (en) | 2013-10-18 | 2017-04-26 | ModernaTX, Inc. | Compositions and methods for tolerizing cellular systems |
| WO2015105926A1 (en) | 2014-01-08 | 2015-07-16 | Moderna Therapeutics, Inc. | Polynucleotides for the in vivo production of antibodies |
-
2011
- 2011-10-03 PL PL22173763.8T patent/PL4108671T3/en unknown
- 2011-10-03 PL PL19177059.3T patent/PL3590949T3/en unknown
- 2011-10-03 EP EP20140195388 patent/EP2857499A1/en not_active Withdrawn
- 2011-10-03 DE DE19177059.3T patent/DE19177059T1/en active Pending
- 2011-10-03 CN CN201410800005.2A patent/CN104531812A/en active Pending
- 2011-10-03 SM SM20240513T patent/SMT202400513T1/en unknown
- 2011-10-03 CN CN2011800575554A patent/CN103429606A/en active Pending
- 2011-10-03 SG SG10201508149TA patent/SG10201508149TA/en unknown
- 2011-10-03 EP EP18179157.5A patent/EP3431485B2/en active Active
- 2011-10-03 CA CA2821992A patent/CA2821992A1/en not_active Abandoned
- 2011-10-03 ES ES19177059T patent/ES2925251T3/en active Active
- 2011-10-03 EP EP11830067.2A patent/EP2625189B1/en active Active
- 2011-10-03 CA CA3162352A patent/CA3162352A1/en active Pending
- 2011-10-03 DK DK19177059.3T patent/DK3590949T3/en active
- 2011-10-03 EP EP24188375.0A patent/EP4435100A3/en active Pending
- 2011-10-03 SI SI201132122T patent/SI4108671T1/en unknown
- 2011-10-03 SM SM20220321T patent/SMT202200321T1/en unknown
- 2011-10-03 LT LTEP22173763.8T patent/LT4108671T/en unknown
- 2011-10-03 PT PT221737638T patent/PT4108671T/en unknown
- 2011-10-03 SI SI201132062T patent/SI3590949T1/en unknown
- 2011-10-03 NZ NZ608972A patent/NZ608972A/en not_active IP Right Cessation
- 2011-10-03 WO PCT/US2011/054636 patent/WO2012045082A2/en not_active Application Discontinuation
- 2011-10-03 RS RS20220707A patent/RS63430B1/en unknown
- 2011-10-03 EP EP11830061.5A patent/EP2622064B1/en active Active
- 2011-10-03 PT PT191770593T patent/PT3590949T/en unknown
- 2011-10-03 US US13/252,049 patent/US20120237975A1/en not_active Abandoned
- 2011-10-03 FI FIEP22173763.8T patent/FI4108671T3/en active
- 2011-10-03 HU HUE22173763A patent/HUE069586T2/en unknown
- 2011-10-03 BR BR112013007862A patent/BR112013007862A2/en not_active IP Right Cessation
- 2011-10-03 JP JP2013531955A patent/JP2013543381A/en active Pending
- 2011-10-03 WO PCT/US2011/054617 patent/WO2012045075A1/en active Application Filing
- 2011-10-03 RU RU2013120302/10A patent/RU2013120302A/en not_active Application Discontinuation
- 2011-10-03 MX MX2013003681A patent/MX2013003681A/en not_active Application Discontinuation
- 2011-10-03 RS RS20241417A patent/RS66304B1/en unknown
- 2011-10-03 ES ES18179157T patent/ES2862955T5/en active Active
- 2011-10-03 CA CA2813466A patent/CA2813466A1/en active Pending
- 2011-10-03 EP EP22173763.8A patent/EP4108671B1/en active Active
- 2011-10-03 HU HUE19177059A patent/HUE058896T2/en unknown
- 2011-10-03 HR HRP20220796TT patent/HRP20220796T1/en unknown
- 2011-10-03 DK DK22173763.8T patent/DK4108671T3/en active
- 2011-10-03 ES ES11830061T patent/ES2737960T3/en active Active
- 2011-10-03 CN CN201410798863.8A patent/CN104531671A/en active Pending
- 2011-10-03 HR HRP20241701TT patent/HRP20241701T1/en unknown
- 2011-10-03 EP EP20140195389 patent/EP2857413A1/en not_active Withdrawn
- 2011-10-03 EP EP19177059.3A patent/EP3590949B1/en active Active
- 2011-10-03 ES ES22173763T patent/ES3005233T3/en active Active
- 2011-10-03 AU AU2011308496A patent/AU2011308496A1/en not_active Abandoned
- 2011-10-03 LT LTEP19177059.3T patent/LT3590949T/en unknown
- 2011-10-03 SG SG2013023973A patent/SG190679A1/en unknown
-
2012
- 2012-05-25 US US13/481,127 patent/US20130102034A1/en not_active Abandoned
-
2013
- 2013-01-11 US US13/739,212 patent/US9334328B2/en active Active
- 2013-04-02 IL IL225493A patent/IL225493A0/en unknown
- 2013-04-30 ZA ZA2013/03161A patent/ZA201303161B/en unknown
- 2013-05-18 US US13/897,363 patent/US20130244282A1/en not_active Abandoned
-
2014
- 2014-05-20 ZA ZA2014/03666A patent/ZA201403666B/en unknown
- 2014-11-07 US US14/535,484 patent/US9701965B2/en active Active
-
2016
- 2016-04-29 US US15/143,364 patent/US9657295B2/en active Active
-
2017
- 2017-04-21 US US15/493,829 patent/US10064959B2/en active Active
- 2017-05-03 AU AU2017202958A patent/AU2017202958A1/en not_active Abandoned
- 2017-06-01 US US15/611,490 patent/US20180112221A1/en not_active Abandoned
-
2018
- 2018-07-27 US US16/047,574 patent/US20190160185A1/en not_active Abandoned
-
2020
- 2020-07-16 US US16/930,720 patent/US20210236655A1/en not_active Abandoned
-
2022
- 2022-07-29 CY CY20221100520T patent/CY1125421T1/en unknown
- 2022-10-11 US US18/045,805 patent/US20240033379A1/en active Pending
-
2024
- 2024-08-30 US US18/820,804 patent/US12357708B2/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007024708A2 (en) * | 2005-08-23 | 2007-03-01 | The Trustees Of The University Of Pennsylvania | Rna containing modified nucleosides and methods of use thereof |
| WO2008083949A2 (en) * | 2007-01-09 | 2008-07-17 | Curevac Gmbh | Rna-coded antibody |
| EP1964922A1 (en) * | 2007-03-02 | 2008-09-03 | Boehringer Ingelheim Pharma GmbH & Co. KG | Improvement of protein production |
Cited By (233)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11298426B2 (en) | 2003-10-14 | 2022-04-12 | BioNTech SE | Recombinant vaccines and use thereof |
| US9012219B2 (en) | 2005-08-23 | 2015-04-21 | The Trustees Of The University Of Pennsylvania | RNA preparations comprising purified modified RNA for reprogramming cells |
| US10106800B2 (en) | 2005-09-28 | 2018-10-23 | Biontech Ag | Modification of RNA, producing an increased transcript stability and translation efficiency |
| US12385049B2 (en) | 2005-09-28 | 2025-08-12 | BioNTech SE | Modification of RNA, producing an increased transcript stability and translation efficiency |
| US10576166B2 (en) | 2009-12-01 | 2020-03-03 | Translate Bio, Inc. | Liver specific delivery of messenger RNA |
| US10143758B2 (en) | 2009-12-01 | 2018-12-04 | Translate Bio, Inc. | Liver specific delivery of messenger RNA |
| US9371544B2 (en) | 2009-12-07 | 2016-06-21 | The Trustees Of The University Of Pennsylvania | Compositions and methods for reprogramming eukaryotic cells |
| US9937233B2 (en) | 2010-08-06 | 2018-04-10 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
| US8822663B2 (en) | 2010-08-06 | 2014-09-02 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| US9447164B2 (en) | 2010-08-06 | 2016-09-20 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| US9181319B2 (en) | 2010-08-06 | 2015-11-10 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| US10064959B2 (en) | 2010-10-01 | 2018-09-04 | Modernatx, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US9701965B2 (en) | 2010-10-01 | 2017-07-11 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
| US9657295B2 (en) | 2010-10-01 | 2017-05-23 | Modernatx, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US9334328B2 (en) | 2010-10-01 | 2016-05-10 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US9061021B2 (en) | 2010-11-30 | 2015-06-23 | Shire Human Genetic Therapies, Inc. | mRNA for use in treatment of human genetic diseases |
| US9956271B2 (en) | 2010-11-30 | 2018-05-01 | Translate Bio, Inc. | mRNA for use in treatment of human genetic diseases |
| US8853377B2 (en) | 2010-11-30 | 2014-10-07 | Shire Human Genetic Therapies, Inc. | mRNA for use in treatment of human genetic diseases |
| US11135274B2 (en) | 2010-11-30 | 2021-10-05 | Translate Bio, Inc. | MRNA for use in treatment of human genetic diseases |
| US9950068B2 (en) | 2011-03-31 | 2018-04-24 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
| US9533047B2 (en) | 2011-03-31 | 2017-01-03 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
| US8710200B2 (en) | 2011-03-31 | 2014-04-29 | Moderna Therapeutics, Inc. | Engineered nucleic acids encoding a modified erythropoietin and their expression |
| US10738355B2 (en) | 2011-05-24 | 2020-08-11 | Tron-Translationale Onkologie An Der Universitätsmedizin Der Johannes Gutenberg-Universität Mainz Ggmbh | Individualized vaccines for cancer |
| US11248264B2 (en) | 2011-05-24 | 2022-02-15 | Tron-Translationale Onkologie An Der Universitätsmedizin Der Johannes Gutenberg-Universität Mainz Ggmbh | Individualized vaccines for cancer |
| US11730825B2 (en) | 2011-06-08 | 2023-08-22 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
| US11185595B2 (en) | 2011-06-08 | 2021-11-30 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
| US12121592B2 (en) | 2011-06-08 | 2024-10-22 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
| US11951180B2 (en) | 2011-06-08 | 2024-04-09 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for MRNA delivery |
| US11951179B2 (en) | 2011-06-08 | 2024-04-09 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for MRNA delivery |
| US9597413B2 (en) | 2011-06-08 | 2017-03-21 | Shire Human Genetic Therapies, Inc. | Pulmonary delivery of mRNA |
| US11052159B2 (en) | 2011-06-08 | 2021-07-06 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
| US10888626B2 (en) | 2011-06-08 | 2021-01-12 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
| US10507249B2 (en) | 2011-06-08 | 2019-12-17 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
| US11291734B2 (en) | 2011-06-08 | 2022-04-05 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
| US11547764B2 (en) | 2011-06-08 | 2023-01-10 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for MRNA delivery |
| US10413618B2 (en) | 2011-06-08 | 2019-09-17 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
| US9308281B2 (en) | 2011-06-08 | 2016-04-12 | Shire Human Genetic Therapies, Inc. | MRNA therapy for Fabry disease |
| US11338044B2 (en) | 2011-06-08 | 2022-05-24 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
| US10350303B1 (en) | 2011-06-08 | 2019-07-16 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
| US10238754B2 (en) | 2011-06-08 | 2019-03-26 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for MRNA delivery |
| US11951181B2 (en) | 2011-06-08 | 2024-04-09 | Translate Bio, Inc. | Lipid nanoparticle compositions and methods for mRNA delivery |
| US10022425B2 (en) | 2011-09-12 | 2018-07-17 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
| US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
| US10751386B2 (en) | 2011-09-12 | 2020-08-25 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
| US9428535B2 (en) | 2011-10-03 | 2016-08-30 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| EP4015005A1 (en) | 2011-10-03 | 2022-06-22 | ModernaTX, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| EP3682905A1 (en) | 2011-10-03 | 2020-07-22 | ModernaTX, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
| US9422577B2 (en) | 2011-12-05 | 2016-08-23 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US10982229B2 (en) | 2011-12-05 | 2021-04-20 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US12391961B2 (en) | 2011-12-05 | 2025-08-19 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US11466293B2 (en) | 2011-12-05 | 2022-10-11 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US11708586B2 (en) | 2011-12-05 | 2023-07-25 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US12227768B2 (en) | 2011-12-05 | 2025-02-18 | Factor Bioscience Inc. | Methods and products for transfection |
| US10662410B1 (en) | 2011-12-05 | 2020-05-26 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US9605278B2 (en) | 2011-12-05 | 2017-03-28 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US9605277B2 (en) | 2011-12-05 | 2017-03-28 | Factor Bioscience, Inc. | Methods and products for transfecting cells |
| US11692203B2 (en) | 2011-12-05 | 2023-07-04 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US10829738B2 (en) | 2011-12-05 | 2020-11-10 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US10472611B2 (en) | 2011-12-05 | 2019-11-12 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US12227757B2 (en) | 2011-12-05 | 2025-02-18 | Factor Bioscience Inc. | Methods and products for transfecting cells |
| US8664194B2 (en) | 2011-12-16 | 2014-03-04 | Moderna Therapeutics, Inc. | Method for producing a protein of interest in a primate |
| US8680069B2 (en) | 2011-12-16 | 2014-03-25 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of G-CSF |
| US9186372B2 (en) | 2011-12-16 | 2015-11-17 | Moderna Therapeutics, Inc. | Split dose administration |
| US9271996B2 (en) | 2011-12-16 | 2016-03-01 | Moderna Therapeutics, Inc. | Formulation and delivery of PLGA microspheres |
| US9295689B2 (en) | 2011-12-16 | 2016-03-29 | Moderna Therapeutics, Inc. | Formulation and delivery of PLGA microspheres |
| US8754062B2 (en) | 2011-12-16 | 2014-06-17 | Moderna Therapeutics, Inc. | DLIN-KC2-DMA lipid nanoparticle delivery of modified polynucleotides |
| US10485884B2 (en) | 2012-03-26 | 2019-11-26 | Biontech Rna Pharmaceuticals Gmbh | RNA formulation for immunotherapy |
| US11559587B2 (en) | 2012-03-26 | 2023-01-24 | Tron-Translationale Onkologie An Der Universitätsmedizin Der Johannes Gutenberg-Universität Mainz Ggmbh | RNA formulation for immunotherapy |
| US9220792B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding aquaporin-5 |
| US9149506B2 (en) | 2012-04-02 | 2015-10-06 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding septin-4 |
| US9089604B2 (en) | 2012-04-02 | 2015-07-28 | Moderna Therapeutics, Inc. | Modified polynucleotides for treating galactosylceramidase protein deficiency |
| US9675668B2 (en) | 2012-04-02 | 2017-06-13 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding hepatitis A virus cellular receptor 2 |
| US9878056B2 (en) | 2012-04-02 | 2018-01-30 | Modernatx, Inc. | Modified polynucleotides for the production of cosmetic proteins and peptides |
| US9050297B2 (en) | 2012-04-02 | 2015-06-09 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding aryl hydrocarbon receptor nuclear translocator |
| US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
| US9216205B2 (en) | 2012-04-02 | 2015-12-22 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding granulysin |
| US10501512B2 (en) | 2012-04-02 | 2019-12-10 | Modernatx, Inc. | Modified polynucleotides |
| US8999380B2 (en) | 2012-04-02 | 2015-04-07 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
| US9095552B2 (en) | 2012-04-02 | 2015-08-04 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding copper metabolism (MURR1) domain containing 1 |
| US9192651B2 (en) | 2012-04-02 | 2015-11-24 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of secreted proteins |
| US9587003B2 (en) | 2012-04-02 | 2017-03-07 | Modernatx, Inc. | Modified polynucleotides for the production of oncology-related proteins and peptides |
| US9220755B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders |
| US9061059B2 (en) | 2012-04-02 | 2015-06-23 | Moderna Therapeutics, Inc. | Modified polynucleotides for treating protein deficiency |
| US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
| US9828416B2 (en) | 2012-04-02 | 2017-11-28 | Modernatx, Inc. | Modified polynucleotides for the production of secreted proteins |
| US9782462B2 (en) | 2012-04-02 | 2017-10-10 | Modernatx, Inc. | Modified polynucleotides for the production of proteins associated with human disease |
| US9301993B2 (en) | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding apoptosis inducing factor 1 |
| US9255129B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding SIAH E3 ubiquitin protein ligase 1 |
| US9303079B2 (en) | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
| US9827332B2 (en) | 2012-04-02 | 2017-11-28 | Modernatx, Inc. | Modified polynucleotides for the production of proteins |
| US9114113B2 (en) | 2012-04-02 | 2015-08-25 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding citeD4 |
| US9254311B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins |
| US9814760B2 (en) | 2012-04-02 | 2017-11-14 | Modernatx, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
| US9233141B2 (en) | 2012-04-02 | 2016-01-12 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders |
| US9107886B2 (en) | 2012-04-02 | 2015-08-18 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding basic helix-loop-helix family member E41 |
| US9221891B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | In vivo production of proteins |
| US11254936B2 (en) | 2012-06-08 | 2022-02-22 | Translate Bio, Inc. | Nuclease resistant polynucleotides and uses thereof |
| US11090264B2 (en) | 2012-06-08 | 2021-08-17 | Translate Bio, Inc. | Pulmonary delivery of mRNA to non-lung target cells |
| US10245229B2 (en) | 2012-06-08 | 2019-04-02 | Translate Bio, Inc. | Pulmonary delivery of mRNA to non-lung target cells |
| US9512456B2 (en) | 2012-08-14 | 2016-12-06 | Modernatx, Inc. | Enzymes and polymerases for the synthesis of RNA |
| US10752917B2 (en) | 2012-11-01 | 2020-08-25 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US9487768B2 (en) | 2012-11-01 | 2016-11-08 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US9447395B2 (en) | 2012-11-01 | 2016-09-20 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US9376669B2 (en) | 2012-11-01 | 2016-06-28 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US11339409B2 (en) | 2012-11-01 | 2022-05-24 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US12006508B2 (en) | 2012-11-01 | 2024-06-11 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US11339410B2 (en) | 2012-11-01 | 2022-05-24 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US10752918B2 (en) | 2012-11-01 | 2020-08-25 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US9464285B2 (en) | 2012-11-01 | 2016-10-11 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US11332759B2 (en) | 2012-11-01 | 2022-05-17 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US10415060B2 (en) | 2012-11-01 | 2019-09-17 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US9657282B2 (en) | 2012-11-01 | 2017-05-23 | Factor Bioscience, Inc. | Methods and products for expressing proteins in cells |
| US10752919B2 (en) | 2012-11-01 | 2020-08-25 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US11332758B2 (en) | 2012-11-01 | 2022-05-17 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US10767195B2 (en) | 2012-11-01 | 2020-09-08 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US10724053B2 (en) | 2012-11-01 | 2020-07-28 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US9758797B2 (en) | 2012-11-01 | 2017-09-12 | Factor Bioscience, Inc. | Methods and products for expressing proteins in cells |
| US10590437B2 (en) | 2012-11-01 | 2020-03-17 | Factor Bioscience Inc. | Methods and products for expressing proteins in cells |
| US9597380B2 (en) | 2012-11-26 | 2017-03-21 | Modernatx, Inc. | Terminally modified RNA |
| EP4074834A1 (en) | 2012-11-26 | 2022-10-19 | ModernaTX, Inc. | Terminally modified rna |
| US10155031B2 (en) | 2012-11-28 | 2018-12-18 | Biontech Rna Pharmaceuticals Gmbh | Individualized vaccines for cancer |
| US11504419B2 (en) | 2012-11-28 | 2022-11-22 | BioNTech SE | Individualized vaccines for cancer |
| WO2014093924A1 (en) | 2012-12-13 | 2014-06-19 | Moderna Therapeutics, Inc. | Modified nucleic acid molecules and uses thereof |
| US11820977B2 (en) | 2013-03-14 | 2023-11-21 | Translate Bio, Inc. | Methods for purification of messenger RNA |
| CN105209490A (en) * | 2013-03-14 | 2015-12-30 | 夏尔人类遗传性治疗公司 | Methods and compositions for delivering mRNA-encoded antibodies |
| US9181321B2 (en) | 2013-03-14 | 2015-11-10 | Shire Human Genetic Therapies, Inc. | CFTR mRNA compositions and related methods and uses |
| AU2019200803B2 (en) * | 2013-03-14 | 2021-02-18 | Translate Bio, Inc. | METHODS AND COMPOSITIONS FOR DELIVERING mRNA CODED ANTIBODIES |
| US9713626B2 (en) | 2013-03-14 | 2017-07-25 | Rana Therapeutics, Inc. | CFTR mRNA compositions and related methods and uses |
| US10420791B2 (en) | 2013-03-14 | 2019-09-24 | Translate Bio, Inc. | CFTR MRNA compositions and related methods and uses |
| EP3932947A1 (en) * | 2013-03-14 | 2022-01-05 | Translate Bio MA, Inc. | Methods and compositions for delivering mrna coded antibodies |
| US12234446B2 (en) | 2013-03-14 | 2025-02-25 | Translate Bio, Inc. | Methods for purification of messenger RNA |
| US10258698B2 (en) | 2013-03-14 | 2019-04-16 | Modernatx, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
| US9957499B2 (en) | 2013-03-14 | 2018-05-01 | Translate Bio, Inc. | Methods for purification of messenger RNA |
| US11510937B2 (en) | 2013-03-14 | 2022-11-29 | Translate Bio, Inc. | CFTR MRNA compositions and related methods and uses |
| AU2021202453B2 (en) * | 2013-03-14 | 2023-06-01 | Translate Bio, Inc. | Methods and compositions for delivering mrna coded antibodies |
| US11692189B2 (en) | 2013-03-14 | 2023-07-04 | Translate Bio, Inc. | Methods for purification of messenger RNA |
| US10584165B2 (en) | 2013-03-14 | 2020-03-10 | Translate Bio, Inc. | Methods and compositions for delivering mRNA coded antibodies |
| WO2014152774A1 (en) | 2013-03-14 | 2014-09-25 | Shire Human Genetic Therapies, Inc. | Methods and compositions for delivering mrna coded antibodies |
| US10087247B2 (en) | 2013-03-14 | 2018-10-02 | Translate Bio, Inc. | Methods and compositions for delivering mRNA coded antibodies |
| US10876104B2 (en) | 2013-03-14 | 2020-12-29 | Translate Bio, Inc. | Methods for purification of messenger RNA |
| EP2970456B1 (en) * | 2013-03-14 | 2021-05-19 | Translate Bio, Inc. | Methods and compositions for delivering mrna coded antibodies |
| US10899830B2 (en) | 2013-03-14 | 2021-01-26 | Translate Bio, Inc. | Methods and compositions for delivering MRNA coded antibodies |
| US10130649B2 (en) | 2013-03-15 | 2018-11-20 | Translate Bio, Inc. | Synergistic enhancement of the delivery of nucleic acids via blended formulations |
| US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
| US10646504B2 (en) | 2013-03-15 | 2020-05-12 | Translate Bio, Inc. | Synergistic enhancement of the delivery of nucleic acids via blended formulations |
| US11222711B2 (en) | 2013-05-10 | 2022-01-11 | BioNTech SE | Predicting immunogenicity of T cell epitopes |
| US10023626B2 (en) | 2013-09-30 | 2018-07-17 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
| US10815291B2 (en) | 2013-09-30 | 2020-10-27 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
| US10323076B2 (en) | 2013-10-03 | 2019-06-18 | Modernatx, Inc. | Polynucleotides encoding low density lipoprotein receptor |
| US10493031B2 (en) | 2013-10-22 | 2019-12-03 | Translate Bio, Inc. | Lipid formulations for delivery of messenger RNA |
| US11224642B2 (en) | 2013-10-22 | 2022-01-18 | Translate Bio, Inc. | MRNA therapy for argininosuccinate synthetase deficiency |
| US9522176B2 (en) | 2013-10-22 | 2016-12-20 | Shire Human Genetic Therapies, Inc. | MRNA therapy for phenylketonuria |
| US10959953B2 (en) | 2013-10-22 | 2021-03-30 | Translate Bio, Inc. | Lipid formulations for delivery of messenger RNA |
| US9629804B2 (en) | 2013-10-22 | 2017-04-25 | Shire Human Genetic Therapies, Inc. | Lipid formulations for delivery of messenger RNA |
| US11377642B2 (en) | 2013-10-22 | 2022-07-05 | Translate Bio, Inc. | mRNA therapy for phenylketonuria |
| US10208295B2 (en) | 2013-10-22 | 2019-02-19 | Translate Bio, Inc. | MRNA therapy for phenylketonuria |
| US10780052B2 (en) | 2013-10-22 | 2020-09-22 | Translate Bio, Inc. | CNS delivery of MRNA and uses thereof |
| US10052284B2 (en) | 2013-10-22 | 2018-08-21 | Translate Bio, Inc. | Lipid formulations for delivery of messenger RNA |
| US11890377B2 (en) | 2013-10-22 | 2024-02-06 | Translate Bio, Inc. | Lipid formulations for delivery of messenger RNA |
| US12016954B2 (en) | 2013-10-22 | 2024-06-25 | Translate Bio, Inc. | CNS delivery of mRNA and uses thereof |
| US10124042B2 (en) | 2014-01-31 | 2018-11-13 | Factor Bioscience Inc. | Methods and products for nucleic acid production and delivery |
| US9770489B2 (en) | 2014-01-31 | 2017-09-26 | Factor Bioscience Inc. | Methods and products for nucleic acid production and delivery |
| US12201675B2 (en) | 2014-01-31 | 2025-01-21 | Factor Bioscience Inc. | Methods and products for nucleic acid production and delivery |
| US9872900B2 (en) | 2014-04-23 | 2018-01-23 | Modernatx, Inc. | Nucleic acid vaccines |
| US10709779B2 (en) | 2014-04-23 | 2020-07-14 | Modernatx, Inc. | Nucleic acid vaccines |
| US12329812B2 (en) | 2014-04-23 | 2025-06-17 | Modernatx, Inc. | Nucleic acid vaccines |
| US12274743B2 (en) | 2014-04-23 | 2025-04-15 | Modernatx, Inc. | Nucleic acid vaccines |
| US10022435B2 (en) | 2014-04-23 | 2018-07-17 | Modernatx, Inc. | Nucleic acid vaccines |
| US11884692B2 (en) | 2014-04-25 | 2024-01-30 | Translate Bio, Inc. | Methods for purification of messenger RNA |
| US12060381B2 (en) | 2014-04-25 | 2024-08-13 | Translate Bio, Inc. | Methods for purification of messenger RNA |
| US10155785B2 (en) | 2014-04-25 | 2018-12-18 | Translate Bio, Inc. | Methods for purification of messenger RNA |
| US11059841B2 (en) | 2014-04-25 | 2021-07-13 | Translate Bio, Inc. | Methods for purification of messenger RNA |
| US9850269B2 (en) | 2014-04-25 | 2017-12-26 | Translate Bio, Inc. | Methods for purification of messenger RNA |
| US11433144B2 (en) | 2014-05-30 | 2022-09-06 | Translate Bio, Inc. | Biodegradable lipids for delivery of nucleic acids |
| US10022455B2 (en) | 2014-05-30 | 2018-07-17 | Translate Bio, Inc. | Biodegradable lipids for delivery of nucleic acids |
| US10286082B2 (en) | 2014-05-30 | 2019-05-14 | Translate Bio, Inc. | Biodegradable lipids for delivery of nucleic acids |
| US10493166B2 (en) | 2014-05-30 | 2019-12-03 | Translate Bio, Inc. | Biodegradable lipids for delivery of nucleic acids |
| US10912844B2 (en) | 2014-05-30 | 2021-02-09 | Translate Bio, Inc. | Biodegradable lipids for delivery of nucleic acids |
| US10293057B2 (en) | 2014-05-30 | 2019-05-21 | Translate Bio, Inc. | Biodegradable lipids for delivery of nucleic acids |
| US10286083B2 (en) | 2014-05-30 | 2019-05-14 | Translate Bio, Inc. | Biodegradable lipids for delivery of nucleic acids |
| US11104652B2 (en) | 2014-06-24 | 2021-08-31 | Translate Bio, Inc. | Stereochemically enriched compositions for delivery of nucleic acids |
| US10138213B2 (en) | 2014-06-24 | 2018-11-27 | Translate Bio, Inc. | Stereochemically enriched compositions for delivery of nucleic acids |
| US9668980B2 (en) | 2014-07-02 | 2017-06-06 | Rana Therapeutics, Inc. | Encapsulation of messenger RNA |
| US11173120B2 (en) | 2014-09-25 | 2021-11-16 | Biontech Rna Pharmaceuticals Gmbh | Stable formulations of lipids and liposomes |
| US12220484B2 (en) | 2014-09-25 | 2025-02-11 | BioNTech SE | Stable formulations of lipids and liposomes |
| US9751925B2 (en) | 2014-11-10 | 2017-09-05 | Modernatx, Inc. | Alternative nucleic acid molecules containing reduced uracil content and uses thereof |
| US10072057B2 (en) | 2014-11-10 | 2018-09-11 | Modernatx, Inc. | Alternative nucleic acid molecules containing reduced uracil content and uses thereof |
| US11998601B2 (en) | 2014-12-05 | 2024-06-04 | Translate Bio, Inc. | Messenger RNA therapy for treatment of articular disease |
| US10864267B2 (en) | 2014-12-05 | 2020-12-15 | Translate Bio, Inc. | Messenger RNA therapy for treatment of articular disease |
| US9943595B2 (en) | 2014-12-05 | 2018-04-17 | Translate Bio, Inc. | Messenger RNA therapy for treatment of articular disease |
| US11156617B2 (en) | 2015-02-12 | 2021-10-26 | BioNTech RNA Pharmaceuticals GbmH | Predicting T cell epitopes useful for vaccination |
| US11241505B2 (en) | 2015-02-13 | 2022-02-08 | Factor Bioscience Inc. | Nucleic acid products and methods of administration thereof |
| US11090368B2 (en) | 2015-03-19 | 2021-08-17 | Translate Bio, Inc. | MRNA therapy for Pompe disease |
| US10172924B2 (en) | 2015-03-19 | 2019-01-08 | Translate Bio, Inc. | MRNA therapy for pompe disease |
| US11712463B2 (en) | 2015-03-19 | 2023-08-01 | Translate Bio, Inc. | MRNA therapy for pompe disease |
| US10849920B2 (en) | 2015-10-05 | 2020-12-01 | Modernatx, Inc. | Methods for therapeutic administration of messenger ribonucleic acid drugs |
| US11590157B2 (en) | 2015-10-05 | 2023-02-28 | Modernatx, Inc. | Methods for therapeutic administration of messenger ribonucleic acid drugs |
| US12246030B2 (en) | 2015-10-05 | 2025-03-11 | Modernatx, Inc. | Methods for therapeutic administration of messenger ribonucleic acid drugs |
| US11492628B2 (en) | 2015-10-07 | 2022-11-08 | BioNTech SE | 3′-UTR sequences for stabilization of RNA |
| US10144942B2 (en) | 2015-10-14 | 2018-12-04 | Translate Bio, Inc. | Modification of RNA-related enzymes for enhanced production |
| US10995354B2 (en) | 2015-10-14 | 2021-05-04 | Translate Bio, Inc. | Modification of RNA-related enzymes for enhanced production |
| US10428349B2 (en) | 2016-04-08 | 2019-10-01 | Translate Bio, Inc. | Multimeric coding nucleic acid and uses thereof |
| US10266843B2 (en) | 2016-04-08 | 2019-04-23 | Translate Bio, Inc. | Multimeric coding nucleic acid and uses thereof |
| US11124804B2 (en) | 2016-04-08 | 2021-09-21 | Translate Bio, Inc. | Multimeric coding nucleic acid and uses thereof |
| US20180126003A1 (en) * | 2016-05-04 | 2018-05-10 | Curevac Ag | New targets for rna therapeutics |
| US10835583B2 (en) | 2016-06-13 | 2020-11-17 | Translate Bio, Inc. | Messenger RNA therapy for the treatment of ornithine transcarbamylase deficiency |
| US12201677B2 (en) | 2016-06-13 | 2025-01-21 | Translate Bio, Inc. | Messenger RNA therapy for the treatment of ornithine transcarbamylase deficiency |
| US10363321B2 (en) | 2016-08-17 | 2019-07-30 | Factor Bioscience Inc. | Nucleic acid products and methods of administration thereof |
| US10137206B2 (en) | 2016-08-17 | 2018-11-27 | Factor Bioscience Inc. | Nucleic acid products and methods of administration thereof |
| US11904023B2 (en) | 2016-08-17 | 2024-02-20 | Factor Bioscience Inc. | Nucleic acid products and methods of administration thereof |
| US10894092B2 (en) | 2016-08-17 | 2021-01-19 | Factor Bioscience Inc. | Nucleic acid products and methods of administration thereof |
| US10888627B2 (en) | 2016-08-17 | 2021-01-12 | Factor Bioscience Inc. | Nucleic acid products and methods of administration thereof |
| US10350304B2 (en) | 2016-08-17 | 2019-07-16 | Factor Bioscience Inc. | Nucleic acid products and methods of administration thereof |
| US10369233B2 (en) | 2016-08-17 | 2019-08-06 | Factor Bioscience Inc. | Nucleic acid products and methods of administration thereof |
| US10576167B2 (en) | 2016-08-17 | 2020-03-03 | Factor Bioscience Inc. | Nucleic acid products and methods of administration thereof |
| US11390899B2 (en) * | 2016-09-26 | 2022-07-19 | SOLA Biosciences, LLC | Cell-associated secretion-enhancing fusion proteins |
| US11253605B2 (en) | 2017-02-27 | 2022-02-22 | Translate Bio, Inc. | Codon-optimized CFTR MRNA |
| US11173190B2 (en) | 2017-05-16 | 2021-11-16 | Translate Bio, Inc. | Treatment of cystic fibrosis by delivery of codon-optimized mRNA encoding CFTR |
| US12270813B2 (en) | 2017-06-09 | 2025-04-08 | BioNTech SE | Methods for predicting the usefulness of disease specific amino acid modifications for immunotherapy |
| US12268754B2 (en) | 2017-12-20 | 2025-04-08 | Translate Bio, Inc. | Composition and methods for treatment of ornithine transcarbamylase deficiency |
| US11167043B2 (en) | 2017-12-20 | 2021-11-09 | Translate Bio, Inc. | Composition and methods for treatment of ornithine transcarbamylase deficiency |
| US11174500B2 (en) | 2018-08-24 | 2021-11-16 | Translate Bio, Inc. | Methods for purification of messenger RNA |
| US12084702B2 (en) | 2018-08-24 | 2024-09-10 | Translate Bio, Inc. | Methods for purification of messenger RNA |
| US12195505B2 (en) | 2018-11-21 | 2025-01-14 | Translate Bio, Inc. | Treatment of cystic fibrosis by delivery of nebulized mRNA encoding CFTR |
| US12344572B2 (en) | 2019-07-03 | 2025-07-01 | Factor Bioscience Inc. | Cationic lipids and transfection methods |
| US11242311B2 (en) | 2019-07-30 | 2022-02-08 | Factor Bioscience Inc. | Cationic lipids and transfection methods |
| US10556855B1 (en) | 2019-07-30 | 2020-02-11 | Factor Bioscience Inc. | Cationic lipids and transfection methods |
| US10501404B1 (en) | 2019-07-30 | 2019-12-10 | Factor Bioscience Inc. | Cationic lipids and transfection methods |
| US11814333B2 (en) | 2019-07-30 | 2023-11-14 | Factor Bioscience Inc. | Cationic lipids and transfection methods |
| US10752576B1 (en) | 2019-07-30 | 2020-08-25 | Factor Bioscience Inc. | Cationic lipids and transfection methods |
| US10611722B1 (en) | 2019-07-30 | 2020-04-07 | Factor Bioscience Inc. | Cationic lipids and transfection methods |
| US12384740B2 (en) | 2019-07-30 | 2025-08-12 | Factor Bioscience Inc. | Cationic lipids and transfection methods |
| WO2022155404A1 (en) * | 2021-01-14 | 2022-07-21 | Translate Bio, Inc. | Methods and compositions for delivering mrna coded antibodies |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20210236655A1 (en) | Engineered Nucleic Acids and Methods of Use Thereof | |
| JP2013543381A5 (en) | ||
| US20160022774A1 (en) | Diagnosis and treatment of fibrosis | |
| US20140371302A1 (en) | Modified mrnas encoding cell-penetrating polypeptides | |
| CN103687957A (en) | Engineered nucleic acids and methods for their use in non-human vertebrates |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: MODERNA THERAPEUTICS, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SCHRUM, JASON P.;REEL/FRAME:029398/0184 Effective date: 20101123 |
|
| AS | Assignment |
Owner name: MODERNA THERAPEUTICS, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ELBASHIR, SAYDA M.;REEL/FRAME:029509/0190 Effective date: 20121218 |
|
| AS | Assignment |
Owner name: MODERNA THERAPEUTICS, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EJEBE, KENECHI;REEL/FRAME:029813/0171 Effective date: 20110614 |
|
| AS | Assignment |
Owner name: MODERNA THERAPEUTICS, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIECZKIEWICZ, GREGORY J.;REEL/FRAME:029932/0758 Effective date: 20130214 |
|
| AS | Assignment |
Owner name: MODERNA THERAPEUTICS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FLAGSHIP VENTURES;REEL/FRAME:033245/0001 Effective date: 20140624 |
|
| AS | Assignment |
Owner name: MODERNA THERAPEUTICS, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EJEBE, KENECHI, DR.;REEL/FRAME:033846/0404 Effective date: 20140915 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: MODERNA THERAPEUTICS, INC., MASSACHUSETTS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY NAME PREVIOUSLY RECORDED AT REEL: 029932 FRAME: 0758. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:SIECZKIEWICZ, GREGORY J.;REEL/FRAME:034663/0697 Effective date: 20130214 Owner name: MODERNA THERAPEUTICS, INC., MASSACHUSETTS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY NAME PREVIOUSLY RECORDED AT REEL: 029509 FRAME: 0190. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:ELBASHIR, SAYDA M.;REEL/FRAME:034663/0638 Effective date: 20121218 |
|
| AS | Assignment |
Owner name: MODERNA THERAPEUTICS, INC., MASSACHUSETTS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY'S NAME PREVIOUSLY RECORDED AT REEL: 029398 FRAME: 0184. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:SCHRUM, JASON P.;REEL/FRAME:034679/0001 Effective date: 20101123 |
|
| AS | Assignment |
Owner name: MODERNATX, INC., MASSACHUSETTS Free format text: CHANGE OF NAME;ASSIGNOR:MODERNA THERAPEUTICS, INC.;REEL/FRAME:040520/0635 Effective date: 20160808 |
