PL209786B1 - Przeciwciało zawierające wariant regionu Fc ludzkiej IgG1, przeciwciało wiążące czynnik wzrostu śródbłonka naczyń oraz immunoadhezyna - Google Patents

Przeciwciało zawierające wariant regionu Fc ludzkiej IgG1, przeciwciało wiążące czynnik wzrostu śródbłonka naczyń oraz immunoadhezyna

Info

Publication number
PL209786B1
PL209786B1 PL388183A PL38818300A PL209786B1 PL 209786 B1 PL209786 B1 PL 209786B1 PL 388183 A PL388183 A PL 388183A PL 38818300 A PL38818300 A PL 38818300A PL 209786 B1 PL209786 B1 PL 209786B1
Authority
PL
Poland
Prior art keywords
region
variant
binding
polypeptide
antibody
Prior art date
Application number
PL388183A
Other languages
English (en)
Inventor
Leonard G. Presta
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genentech Inc filed Critical Genentech Inc
Publication of PL209786B1 publication Critical patent/PL209786B1/pl

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/42Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins
    • C07K16/4283Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig
    • C07K16/4291Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against immunoglobulins against an allotypic or isotypic determinant on Ig against IgE
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/734Complement-dependent cytotoxicity [CDC]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/021Uses of viruses as vector for the expression of a heterologous nucleic acid
    • C12N2799/022Uses of viruses as vector for the expression of a heterologous nucleic acid where the vector is derived from an adenovirus

Description

Przedmiotem wynalazku jest przeciwciało zawierające wariant regionu Fc ludzkiej IgG1 niebędący natywną sekwencją regionu Fc, przeciwciało wiążące czynnik wzrostu śródbłonka naczyń (VEGF) zawierające wariant regionu Fc ludzkiej IgG1 niebędący natywną sekwencją regionu Fc oraz immunoadhezyna zawierająca wariant regionu Fc ludzkiej IgG1 niebędący natywną sekwencją regionu Fc.
Dziedzina wynalazku
Niniejszy wynalazek dotyczy polipeptydów zawierających wariant regionu Fc. W szczególności niniejszy wynalazek dotyczy polipeptydów zawierających region Fc o zmienionej funkcji efektorowej, wynikającej z modyfikacji jednej lub więcej reszt aminokwasowych w obrębie regionu Fc tych polipeptydów.
Opis stanu techniki
Przeciwciała są białkami wykazującymi swoiste powinowactwo do wiązania ze specyficznym antygenem. Natywne przeciwciała są zazwyczaj heterotetramerycznymi glikoproteinami o masie około 150000 daltonów, składającymi się z dwóch identycznych łańcuchów lekkich (L) i dwóch identycznych łańcuchów ciężkich (H). Każdy z łańcuchów lekkich połączony jest z łańcuchem ciężkim za pomocą jednego kowalencyjnego wiązania disiarczkowego, natomiast liczba wiązań disiarczkowych pomiędzy łańcuchami ciężkimi jest zmienna dla różnych odmian izotypowych immunoglobulin. Każdy łańcuch ciężki i lekki posiada również regularnie rozmieszczone wewnątrzłańcuchowe wiązania disiarczkowe. Każdy łańcuch ciężki posiada na jednym końcu domenę zmienną (VH), poprzedzoną licznymi domenami stałymi. Każdy łańcuch lekki posiada na jednym końcu domenę zmienną (VL) oraz na drugim swym końcu pewną liczbę domen stałych, domena stała łańcucha lekkiego jest położona równolegle w stosunku do pierwszej domeny stałej łańcucha ciężkiego, natomiast domena zmienna łańcucha lekkiego jest położona równolegle w stosunku do domeny zmiennej łańcucha ciężkiego. Uważa się, że za powstanie powierzchni styku pomiędzy domenami zmiennymi łańcucha lekkiego i ciężkiego odpowiedzialne są szczególne reszty aminokwasowe.
Termin „zmienny odnosi się do faktu, że w różnych przeciwciałach pewne fragmenty domen zmiennych różnią się znacznie sekwencją i warunkują swoistość wiązania specyficznego antygenu przez specyficzne przeciwciało. Jednakże, zmienność nie jest rozmieszczona równomiernie w obrębie domen zmiennych przeciwciał. Skupia się ona w trzech segmentach, zwanych regionami determinującymi dopasowanie (CDR), zarówno w domenach zmiennych łańcuchów lekkich, jak i ciężkich. Najbardziej konserwatywne części domen zmiennych, zwane są regionami zrębowymi (FR). Każda z domen zmiennych natywnych łańcuchów lekkich i ciężkich obejmuje cztery FR, przyjmujące głównie strukturę harmonijki β, połączone poprzez trzy CDR, tworzące pętle łączące, a w pewnych przypadkach stanowiące fragment, o konformacji harmonijki β. W obrębie każdego z łańcuchów CDR znajdują się w bliskim sąsiedztwie FR i, wraz z CDR innego łańcucha, uczestniczą w formowaniu miejsca wiązania antygenu przeciwciała (patrz Kabat i wsp.. Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)).
Domeny stale nie uczestniczą bezpośrednio w wiązaniu przeciwciała z antygenem, jednakże wykazują różne funkcje efektorowe. W zależności od sekwencji aminokwasowej regionu stałego łańcuchów ciężkich przeciwciała lub immunoglobuliny podlegają podziałowi na różne klasy. Istnieje pięć głównych klas immunoglobulin: IgA, IgD, IgE, IgG i IgM oraz kilka podklas (odmiany izotypowe), wynikających z podziału klas głównych, np. IgG1, IgG2, IgG3 oraz IgG4; IgA1 oraz IgA2. Regiony stałe łańcucha ciężkiego odpowiadające różnym klasom immunoglobulin nazywane są odpowiednio, α, β, ε, γ oraz μ. Spośród różnych klas ludzkich immunoglobulin, jedynie ludzkie IgG1, IgG2, IgG3 oraz IgM s ą zdolne do aktywacji dopełniacza, przy czym ludzkie IgG1 i IgG3 pośredniczą w ADCC skuteczniej niż IgG2 i IgG4.
Na Figurze 1 schematycznie przedstawiono strukturę natywnej IgG1 i wskazano różne fragmenty natywnego przeciwciała. Trawienie przeciwciała papaina skutkuje powstaniem dwóch identycznych fragmentów wiążących antygen, zwanych fragmentami Fab, przy czym, każdy zawiera pojedyncze miejsce wiązania antygenu oraz pozostały fragment „Fc, którego nazwa wywodzi się z jego łatwej krystalizacji. Określono strukturę krystaliczną regionu Fc ludzkiej IgG (Deisenhofer, Biochemistry 20: 2361-2370 (1981)). W cząsteczkach ludzkich IgG region Fc otrzymywany jest w wyniku cięcia papainą od N-końca do reszty Cys 226. Fragment Fc jest kluczowy dla funkcji efektorowych przeciwciał.
PL 209 786 B1
Zależne od regionu Fc funkcje efektorowe przeciwciał można podzielić na dwie kategorie: (1) funkcje efektorowe występujące po związaniu antygenu przez przeciwciało (funkcje te obejmują udział w kaskadzie dopeł niacza lub wiązanie się z receptorami Fc przeciwciał (komórki z FcR); oraz (2) funkcje efektorowe występujące niezależnie od wiązania antygenu (funkcje te zapewniają ciągłość działania i zdolność przenoszenia przez bariery komórkowe w wyniku transcytozy). Ward i Ghetie, Therapeutic Immunology 2:77-94 (1995).
Podczas gdy wiązanie przeciwciała z wymaganym antygenem wywiera efekt neutralizujący, który może chronić przed wiązaniem obcego antygenu z endogenną cząsteczką docelową (np. receptorem lub ligandem), samo wiązanie nie usuwa obcego antygenu. W celu skutecznego usunięcia i/lub zniszczenia obcych antygenów, przeciwciało powinno wykazywać zarówno wysokie powinowactwo do swoistego antygenu, jak i skuteczne funkcje efektorowe.
Wiązanie receptora Fc (FcR)
Oddziaływania przeciwciał i kompleksów przeciwciało-antygen z komórkami układu immunologicznego wywołuje różnego typu odpowiedzi, włączając cytotoksyczność komórkową zależną od przeciwciał (ADCC) oraz cytotoksyczność zależną od dopełniacza (CDC) (praca przeglądowa, Daeron, Annu. Rev. Immunol. 15:203-234 (1997); Ward i Ghetie, Therapeutic Immunol. 2: 77-94 (1995); jak również Ravetch i Knet, Annu. Rev.Immunol. 9: 457-492 (1991)).
W kilku funkcjach efektorowych przeciwciał uczestniczą receptory Fc (FcR), wiążące region Fc przeciwciała. FcR definiowane są na podstawie ich specyficzności względem poszczególnych odmian izotypowych immunoglobulin; receptory Fc dla przeciwciał IgG to FcyR, dla IgE - FcεR, dla IgA - FcaR, ltd. Zidentyfikowano trzy podklasy FcyR: FcyRI (CD64), FcyRII (CD32) oraz FcyRIII (CD16). Ze względu na to, że każda podklasa FcyR kodowana jest przez dwa lub trzy geny, a alternatywne składanie RNA prowadzi do powstania różnorodnych transkryptów, występuje duże zróżnicowanie pomiędzy odmianami izotypowymi FcyR. Trzy geny kodujące podklasę FcyRI (FcyRIA, FcyRIB i FcyRIC) skupione są w regionie 1q21.1 długiego ramienia chromosomu 1; geny kodujące odmiany izotypowe FcyRII (FcyRIIA, FcyRIIB i FcyRIIC) oraz geny kodujące FcyRIII (FcyRIIIA i FcyRIIIB) skupiają się w regionie 1q22. Te różne podtypy FcR ulegają ekspresji na różnych typach komórek (praca przeglądowa, Ravetch i Kinet, Annu. Rev. Immunol. 9: 457-492 (1991)). Przykładowo FcyRIIIB występuje u ludzi tylko na neutrofilach, natomiast FcyRIIIA występuje na makrofagach, monocytach, komórkach naturalnych zabójców (NK) i w subpopulacji komórek T. W szczególności, FcyRIIIA jest jedynym FcR obecnym na komórkach NK, jednym z typów komórek uczestniczących w ADCC.
FcyRI, FcyRII oraz FcyRIII należą do nadrodziny receptorów immunoglobulinowych (IgSF); FcyRI posiada trzy domeny IgSF w obszarze domeny zewnątrzkomórkowej, podczas gdy FcyRII i FcyRIII posiadają jedynie dwa fragmenty IgSF w swych domenach zewnątrzkomórkowych.
Innym typem receptora Fc jest noworodkowy receptor Fc (FcRn). FcRn wykazuje podobieństwo strukturalne do głównego układu zgodności tkankowej i składa się z łańcucha α niekowalencyjnie związanego z mikroglobuliną β2.
Miejsce wiązania FcyR na ludzkich i mysich przeciwciałach zostało uprzednio zmapowane do tzw. „dolnego regionu zawiasowego składającego się z reszt 233-239 (indeks EU według Kabat i wsp., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)). Woof i wsp., Molec. Immunol. 23: 319-330 (1986); Duncan i wsp., Nature 332: 563 (1988); Canfield i Morrison, J.Exp.Med. 173: 1483-1491 (1991); Chappel i wsp.. Proc.Natl.Acad.Sci. USA 88: 9036-9040 (1991). Region obejmujący reszty 233-239, P238 i S239 był brany pod uwagę jako mogący uczestniczyć w wiązaniu, ale rola tych dwóch reszt nie była nigdy oceniana drogą substytucji lub delecji.
Inne opisane wcześniej obszary prawdopodobnie zaangażowane w wiązanie z FcyR to: G316-K338 (ludzka IgG) dla ludzkiego FcyRI (jedynie na podstawie porównania sekwencji, nie analizowano żadnych mutantów substytucyjnych) (Woof i wsp., Molec.Immunol. 23: 319-330 (1986)); K274-R301 (ludzka IgG1) dla ludzkiego FcyRIII (w oparciu o peptydy) (Sarmay i wsp., Molec.Immunol. 21: 43-51 (1984)); Y407-R416 (ludzka IgG) dla ludzkiego FcyRIII (w oparciu o peptydy) (Gergely i wsp., Biochem.Soc.Trans. 12:739-743 (1984)); jak również N297 i E318 (mysie IgG2b) dla mysiego FcyRII (Lund i wsp., Molec.Immunol., 29:53-59 (1992)).
Pro331 w IgG3 zastąpiono Ser i analizowano powinowactwo tego wariantu względem komórek docelowych. Powinowactwo to było sześciokrotnie niższe od powinowactwa obserwowanego dla niezmutowanej IgG3, co wskazało na udział Pro331 w wiązaniu FcyRI. Morrison i wsp., Immunologist, 2:119-124 (1994); oraz Canfield i Morrison, J.Exp.Med. 173:1433-91 (1991).
PL 209 786 B1
Wiązanie C1q
C1q oraz dwie proteazy serynowe, C1r i C1s, tworzą kompleks C1, pierwszy składnik szlaku cytotoksyczności zależnej od dopełniacza (CDC). C1q jest sześciowartościową cząsteczką o masie cząsteczkowej w przybliżeniu 460000 i strukturze przypominającej bukiet tulipanów, w którym sześć kolagenowych „łodyg jest połączonych z sześcioma regionami globularnych główek. Burton i Woof, Advances in Immunol., 51:1-84 (1992). Do aktywacji kaskady dopełniacza niezbędne jest związanie z C1q przy najmniej dwóch czą steczek IgG1, IgG2 lub IgG3 (istnieje zgoda co do tego, ż e IgG4 nie aktywuje dopełniacza), natomiast tylko jednej cząsteczki IgM, przyłączonej do docelowego antygenu. Ward i Ghetie, Therapeutic Immunology, 2: 77-94 (1995), str. 80.
W oparciu o wyniki uzyskane na podstawie modyfikacji chemicznych i analizy krystalograficznej Burton i wsp., (Nature, 288: 338-344, (1980)) zaproponowali, że miejsce wiązania dla jednego ze składników dopełniacza C1q na IgG, obejmuje przynajmniej dwie (C-końcowe) nici β domeny CH2.
Burton następnie zasugerował (Molec.Immunol., 22(3): 161-206 (1985)), że region zawierający reszty aminokwasowe 318 do 337 może uczestniczyć w wiązaniu dopełniacza.
Duncan i Winter (Nature 332: 738-40 (1988)), stosując mutagenezę ukierunkowaną, odkryli, że Glu318, Lys320 i Lys322 tworzą miejsce wiązania C1q. Dane dostarczone przez Duncan'a i Winter'a pochodzą z testów wiązania mysiej odmiany izotypowej IgG2b z pochodzącym ze świnki morskiej C1q. Znaczenie reszt Glu318, Lys320 i Lys322 w wiązaniu C1q zostało potwierdzone na podstawie zdolności jaką wykazywał krótki, syntetyczny peptyd zawierający te reszty do hamowania zależnej od dopełniacza lizy. Podobne rezultaty ujawniono w Patencie USA Nr 5,648,260, wydanym 15 lipca, 1997 r. oraz Patencie USA Nr 5, 624,821, wydanym 29 kwietnia, 1997 r.
Na podstawie analizy zdolności podklasy ludzkiej IgG do uczestniczenia w zależnej od dopełniacza lizie komórkowej, wykazano, że reszta Pro331 jest zaangażowana w wiązanie C1q. Mutacja reszty Ser331 do reszty Pro331 w IgG nadaje zdolność aktywacji dopełniacza. (Tao i wsp., J.Exp.Med., 178: 661-667 (1993); Brekke i wsp., Eur.J.Immunol., 24: 2542-47 (1994)).
Ward i Ghetie zaprezentowali w swoim artykule przeglądowym, na podstawie porównania wyników otrzymanych przez zespół Winter'a i Tao i wsp. oraz Brekke i wsp., twierdzenie, że istnieją przynajmniej dwa różne regiony zaangażowane w wiązanie C1q: jeden w obrębie nici β domeny CH2, zawierającej reszty Glu318, Lys320 i Lys322 oraz drugi, w obszarze skrętu, w bliskim sąsiedztwie tej samej nici β, zawierający kluczową resztę aminokwasową w pozycji 331.
Inne doniesienia literaturowe sugerowały, że reszty Leu235 i Gly237 ludzkiego białka IgG1, zlokalizowane w dolnym regionie zawiasowym, odgrywają krytyczną rolę w wiązaniu i aktywacji dopełniacza. Xu i wsp., Immunol. 150:15A (Streszczenie) (1993). WO94/29351, wydany 2 grudnia, 1994 r. donosi, że reszty aminokwasowe niezbędne do wiązania C1q i FcR ludzkiej IgG1 zlokalizowane są w N-koń cowym regionie domeny CH2, tj. reszty 231-238.
Ponadto zaproponowano, że zdolność IgG do wiązania C1q i aktywacji kaskady dopełniacza zależy również od obecności, braku lub modyfikacji, ugrupowania węglowodanowego znajdującego się pomiędzy dwiema domenami CH2 (zazwyczaj zakotwiczonego przy reszcie Asn297). Ward i Ghetie, Therapeutic Immunology 2: 77-04 (1995), str. 81.
Streszczenie wynalazku
Przedmiotem wynalazku jest przeciwciało zawierające wariant regionu Fc ludzkiej IgG1 niebędący natywną sekwencją regionu Fc i zawierające substytucję aminokwasową w pozycji aminokwasowej 434 regionu Fc, przy czym numeracja reszt w regionie Fc jest zgodna z indeksem EU według Kabat, i przy czym wariant regionu Fc wiąże ludzki noworodkowy receptor Fc (FcRn) ze zwiększonym powinowactwem wiązania w porównaniu z natywną sekwencją regionu Fc ludzkiej IgG1.
Korzystnie przeciwciało to zawiera substytucję aminokwasową tylko w pozycji 434 w regionie Fc.
Korzystnie przeciwciało to zawiera substytucję N434A.
Przedmiotem wynalazku jest ponadto przeciwciało wiążące czynnik wzrostu śródbłonka naczyń (VEGF), zawierające wariant regionu Fc ludzkiej IgG1 niebędący natywną sekwencją regionu Fc i zawierające substytucję aminokwasową w pozycji aminokwasowej 434 regionu Fc, przy czym numeracja reszt w regionie Fc jest zgodna z indeksem EU według Kabat, i przy czym wariant regionu Fc wiąże ludzki noworodkowy receptor Fc (FcRn) ze zwiększonym powinowactwem wiązania w porównaniu z natywną sekwencją regionu Fc ludzkiej IgG1.
Przedmiotem wynalazku jest ponadto immunoadhezyna, charakteryzująca się tym, że zawiera wariant regionu Fc ludzkiej IgG1 niebędący natywną sekwencją regionu Fc i zawiera substytucję aminokwasową w pozycji aminokwasowej 434 regionu Fc, przy czym numeracja reszt w regionie Fc jest
PL 209 786 B1 zgodna z indeksem EU według Kabat, i przy czym wariant regionu Fc wiąże ludzki noworodkowy receptor Fc (FcRn) ze zwiększonym powinowactwem wiązania w porównaniu z natywną sekwencją regionu Fc ludzkiej IgG1.
Korzystnie zawiera substytucję aminokwasową tylko w pozycji 434 w regionie Fc.
Korzystnie zawiera substytucję N434A.
Zgodnie z wynalazkiem opisano wariant macierzystego polipeptydu zawierający region Fc, uczestniczący w procesie cytotoksyczności komórkowej zależnej od przeciwciał (ADCC) w obecności ludzkich komórek efektorowych skuteczniej, lub wiążący receptor gamma Fc (FcyR) z wyższym powinowactwem niż macierzysty polipeptyd i zawierający przynajmniej jedną modyfikację aminokwasową w regionie Fc. Taki wariant polipeptydu może, na przykład, zawierać przeciwciało lub immunoadhezynę. Taki region Fc macierzystego polipeptydu dogodnie zawiera ludzki region Fc, np. region Fc ludzkiej IgG1, IgG2, IgG3 lub IgG4. Taki wariant polipeptydu zawiera dogodnie modyfikację aminokwasową (np. substytucję) w jakiejkolwiek jednej lub więcej pozycji 256, 290, 298, 312, 326, 330, 333, 334, 360, 378 lub 430 regionu Fc, którego reszty aminokwasowe oznaczone są zgodnie z indeksem EU według Kabat.
Ponadto, zgodnie z wynalazkiem opisano polipeptyd zawierający wariant regionu Fc o zmienionym powinowactwie wiązania receptora Fc gamma (FcyR), który to polipeptyd zawiera modyfikację reszty aminokwasowej w jakiejkolwiek, jednej lub więcej, pozycji 238, 239, 248, 249, 252, 254, 255,
256, 258, 265, 267, 268, 269, 270, 272, 276, 278, 280, 283, 285, 286, 289, 290, 292, 293, 294, 295,
296, 298, 301, 303, 305, 307, 309, 312, 315, 320, 322, 324, 326, 327, 329, 330, 331, 333, 334, 335, 337, 338, 340, 360, 373, 376, 378, 382, 388, 389, 398, 414, 416, 419, 430, 434, 435, 437, 438 lub 439 regionu Fc, przy czym numeracja reszt jest zgodna z indeksem EU według Kabat. Wariant regionu Fc dogodnie zawiera wariant regionu Fc ludzkiej IgG, np. wariant regionu ludzkiej IgG1, IgG2, IgG3 lub IgG4. Zauważono, że w powyżej cytowanych pracach z tej dziedziny, dotyczących macierzystego polipeptydu posiadającego niepochodzący od ludzi mysi region Fc, wymienionym powyżej resztom przypisywano udział w wiązaniu Fc. Na przykład, w układzie mysia IgG2b/mysi FcyRII, wykazano, że IgGE318 jest istotna w procesie wiązania (Lund i wsp., Molec.Immunol. 27(1): 53-59 (1992)), podczas gdy E318A nie wywierała żadnego wpływu w układzie ludzka IgG/ludzki FcyRII (Tabela 6, poniżej).
W jednym z rozwiązań wariant polipeptydu o zmienionej aktywności wiązania FcyR charakteryzuje się zredukowanym wiązaniem z FcyR i zawiera modyfikację reszty aminokwasowej w jakiejkolwiek, jednej lub więcej, pozycji 238, 239, 248, 249, 252, 254, 265, 268, 269, 270, 272, 278, 289, 292, 293, 294, 295, 296, 298, 301, 303, 322, 324, 327, 329, 333, 335, 338, 340, 373, 376, 382, 388, 389, 414, 416, 419, 434, 435, 437, 438 lub 439 regionu Fc, przy czym numeracja reszt jest zgodna z indeksem EU według Kabat.
Na przykład, wariant polipeptydu może wykazywać zredukowane wiązanie z FcyRI oraz zawierać modyfikację aminokwasu w jakiejkolwiek, jednej lub więcej, pozycji 238, 265, 269, 270, 327 lub 329 regionu Fc, przy czym numeracja reszt jest zgodna z indeksem EU według Kabat.
Wariant polipeptydu może wykazywać zredukowane wiązanie z FcyRII oraz zawierać modyfikację aminokwasu w jakiejkolwiek, jednej lub więcej, pozycji 238, 265, 269, 270, 292, 294, 295, 298, 303, 324, 327, 329, 333, 335, 338, 373, 376, 414, 416, 419, 435, 438 lub 439 regionu Fc, przy czym numeracja reszt jest zgodna z indeksem EU według Kabat.
Będący przedmiotem zainteresowania wariant polipeptydu może wykazywać zredukowane wiązanie z FcyRIII oraz zawierać modyfikację aminokwasu w jakiejkolwiek, jednej lub więcej, pozycji 238, 239, 248, 249, 252, 254, 265, 268, 269, 270, 272, 278, 289, 293, 294, 295, 296, 301, 303, 322, 327, 329, 338, 340, 373, 376, 382, 388, 389, 416, 434, 435 lub 437 regionu Fc, przy czym numeracja reszt jest zgodna z indeksem EU według Kabat.
W innym rozwiązaniu, wariant polipeptydu o zmienionym powinowactwie wiązania FcyR wykazuje zwiększone wiązanie FcyR i zawiera modyfikację aminokwasową w jakiejkolwiek, jednej lub więcej, pozycji 255, 256, 258, 267, 268, 272, 276, 280, 283, 285, 286, 290, 298, 301, 305, 307, 309, 312, 315, 320, 322, 326, 330, 331, 333, 334, 337, 340, 360, 378, 398 lub 430 regionu Fc, przy czym numeracja reszt jest zgodna z indeksem EU według Kabat.
Na przykład, wariant polipeptydu może wykazywać zwiększone wiązanie FcyRIII oraz, ewentualnie, może dodatkowo wykazywać zredukowane wiązanie FcyRII. Przykładowo, taki wariant zawiera modyfikację lub modyfikacje reszty aminokwasowej lub reszt aminokwasowych w pozycji 298 i/lub 333 regionu Fc, przy czym numeracja reszt jest zgodna z indeksem EU według Kabat.
PL 209 786 B1
Wariant polipeptydu może wykazywać silniejsze wiązanie z FcyRII oraz zawierać modyfikację aminokwasową w jakiejkolwiek, jednej lub więcej, pozycji 255, 256, 258, 267, 268, 272, 276, 280, 283,
285, 286, 290, 301, 305, 307, 309, 312, 315, 320, 322, 326, 330, 331, 337, 340, 378, 398 lub 430 regionu Fc, przy czym numeracja reszt jest zgodna z indeksem EU według Kabat. Takie warianty polipeptydu o zwiększonym wiązaniu FcyRII mogą, ewentualnie, dodatkowo charakteryzować się zredukowanym wiązaniem FcyRIII i mogą, na przykład, zawierać modyfikację reszty aminokwasowej w jakiejkolwiek, jednej lub więcej, pozycji 268, 272, 298, 301, 322 lub 340 regionu Fc, przy czym numeracja reszt jest zgodna z indeksem EU według Kabat.
Zgodnie z wynalazkiem opisano też polipeptyd zawierający wariant regionu Fc o zmienionym powinowactwie wiązania noworodkowego receptora Fc (FcRn), który to polipeptyd zawiera modyfikację aminokwasową w jakiejkolwiek, jednej lub więcej, pozycji 238, 252, 253, 254, 255, 256, 265, 272,
286, 288, 303, 305, 307, 309, 311, 312, 317, 340, 356, 360, 362, 376, 378, 380, 382, 386, 388, 400,
413, 415, 424, 433, 435, 436, 439 lub 447 regionu Fc, przy czym numeracja reszt jest zgodna z indeksem EU według Kabat. Takie warianty polipeptydu o zredukowanym wiązaniu FcRn mogą zawierać modyfikację aminokwasową w jakiejkolwiek, jednej lub więcej, pozycji 252, 253, 254, 255, 288, 309, 386, 388, 400, 415, 433, 435, 436, 439 lub 447 regionu Fc, przy czym numeracja reszt jest zgodna z indeksem EU według Kabat. Wyżej wymienione warianty polipeptydu mogą, alternatywnie, wykazywać silniejsze wiązanie FcRn i zawierać modyfikację aminokwasu w jakiejkolwiek, jednej lub więcej, pozycji 238, 256, 265, 272, 286, 303, 305, 307, 311, 312, 317, 340, 356, 360, 362, 376, 378, 380, 382, 413, 424 lub 434 regionu Fc, przy czym numeracja reszt jest zgodna z indeksem EU według Kabat.
Zgodnie z wynalazkiem opisano też kompozycję zawierającą wariant polipeptydu i fizjologicznie lub farmaceutycznie akceptowany nośnik lub rozpuszczalnik. Kompozycja ta, służąca do potencjalnego zastosowania terapeutycznego, jest sterylna i może być liofilizowana.
Rozważano diagnostyczne i terapeutyczne zastosowanie zawartych w niniejszym opisie wariantów polipeptydu. W jednym z zastosowań diagnostycznych zgodnie w wynalazkiem opisano sposób określenia obecności antygenu będącego przedmiotem zainteresowania, obejmujący kontaktowanie próbki przypuszczalnie zawierającej antygen z wariantem polipeptydu i określanie wiązania wariantu polipeptydu z tą próbką. W jednym z zastosowań terapuetycznych zgodnie z wynalazkiem opisano sposób leczenia ssaków dotkniętych chorobą lub zaburzeniem, lub predysponowanych do wystąpienia takiej choroby lub zaburzenia, obejmujący podawanie ssakom terapeutycznie skutecznej ilości wariantu opisywanego polipeptydu, lub kompozycji zawierającej wariant polipeptydu i farmaceutycznie akceptowany nośnik.
Zgodnie z wynalazkiem opisano również: wyizolowany kwas nukleinowy kodujący wariant polipeptydu; wektor zawierający kwas nukleinowy, ewentualnie operacyjnie połączony z sekwencją rozpoznawaną przez transformowane wektorem komórki kontrolną gospodarza; komórki gospodarza zawierające wektor; sposób otrzymywania wariantu polipeptydu obejmujący hodowlę tych komórek gospodarza w celu osiągnięcia w nich ekspresji kwasu nukleinowego, i ewentualnie odzyskanie wariantu polipeptydu z hodowli komórek gospodarza (np. z pożywki hodowlanej komórek gospodarza).
Zgodnie z wynalazkiem opisano również sposób otrzymywania wariantu regionu Fc o zmienionym powinowactwie wiązania receptora (FcR) lub o zmienionej cytotoksyczności komórkowej zależnej od przeciwciał (ADCC), który to sposób obejmuje:
(a) wprowadzanie jednej lub więcej modyfikacji aminokwasowych w regionie Fc macierzystego polipeptydu w celu uzyskania wariantu regionu Fc;
(b) określanie wiązania wariantu regionu Fc z FcR lub określanie aktywności ADCC regionu Fc wariantu polipeptydu.
Etap (b) sposobu może obejmować określanie wiązania in vitro regionu Fc wariantu polipeptydu z jednym lub więcej FcR. Ponadto, sposób może pozwalać na identyfikację regionu Fc wariantu polipeptydu o zwiększonym powinowactwie wiązania z FcR lub o zwiększonej aktywności ADCC w etapie (b). Etap (b) obejmuje określanie wiązania regionu Fc z FcR, który na przykład, może być ludzkim receptorem III Fc gamma (FcyRIII). Gdy etap (b) dotyczy określania wiązania wariantu regionu Fc z przynajmniej dwoma różnymi FcR, to testowane FcR dogodnie zawierają ludzki receptor II Fc gamma (FcyRII) oraz ludzki receptor III Fc gamma (FcyRIII).
Krótki opis Rysunków
Na Figurze 1 przedstawiono schematycznie natywną IgG. Wiązania disiarczkowe zaznaczono grubą linią pomiędzy domenami CH1 a CL oraz dwiema domenami CG2. V jest domeną zmienną; C jest domeną stałą; literą L oznaczono łańcuch lekki, zaś literą H łańcuch ciężki.
PL 209 786 B1
Na Figurze 2 przedstawiono wiązanie C1q przeciwciała dzikiego typu (wt) C2B8; przeciwciała C2B8 zawierającego region stały ludzkiej IgG2 (IgG2) oraz warianty K322A, K320A i K318A.
Na Figurze 3 zaprezentowano wiązanie C1q wariantów P331A, P329A i K322A.
Na Figurze 4A oraz 4B przedstawiono sekwencje aminokwasowe łańcucha lekkiego (Fig. 4A; SEQ ID NO:1) oraz łańcucha ciężkiego (Fig. 4B; SEQ ID NO:2) przeciwciała E27 skierowanego przeciwko IgE.
Na Figurze 5 zaprezentowano schematyczny diagram „kompleksu immunologicznego przygotowanego do zastosowania w analizie FcR opisanej w Przykładzie 1. Przedstawiono heksamer zawierający trzy cząsteczki przeciwciała skierowanego przeciwko IgE (polipeptyd zawierający region Fc) oraz trzy cząsteczki IgE („pierwsza cząsteczka docelowa). IgE posiada dwa „miejsca wiązania przeciwciała skierowanego przeciwko IgE (E27) w regionie Fc tego białka. Każda cząsteczka IgE w tym kompleksie jest ponadto zdolna do wiązania dwóch cząsteczek VEGF („drugi polipeptyd docelowy). VEGF posiada dwa „miejsca wiązania IgE.
Na Figurze 6 zademonstrowano wyniki wiązania C1q otrzymanego dla wariantów D270K oraz D270V, w porównaniu z wynikami uzyskanymi dla dzikiego typu C2B8.
Na Figurze 7 przedstawiono wyniki dotyczące cytotoksyczności zależnej od dopełniacza (CDC) wariantów D270K i D270V w porównaniu do wyników uzyskanych dla dzikiego typu C2B8.
Na Figurze 8 zawarto wyniki testu ELISA dotyczące wiązania C1q dla dzikiego typu przeciwciała C2B8 produkowanego przez komórki 293 (293-Wt-C2B8), dzikiego typu przeciwciała C2B8 produkowanego przez CHO (CHO-Wt-C2B8) oraz różnych typów przeciwciał.
Na Figurze 9 przedstawiono wyniki testu ELISA dotyczące wiązania C1q dla dzikiego typu (wt) C2B8 oraz różnych wariantów przeciwciał, zgodnie z tym jak określono w Przykładzie 3.
Na Figurze 10 zamieszczono strukturę trójwymiarową regionu Fc ludzkiego białka IgG, zaznaczono reszty aminokwasowe: Asp270, Lys326, Pro329, Pro331, Lys322 oraz Glu333.
Na Figurze 11 zawarto wyniki testu ELISA wiązania C1q, uzyskane dla dzikiego typu C2B8 oraz różnych wariantów przeciwciał, zgodnie z tym jak określono w Przykładzie 3.
Na Figurze 12 przedstawiono wyniki testu ELISA wiązania C1q uzyskane dla dzikiego typu C2B8 oraz podwójnych wariantów, K326M-E333S i K326A-E333A.
Na Figurze 13 przedstawiono CDC dzikiego typu C2B8 oraz podwójnych wariantów, K326ME333S i K326A-E333A.
Na Figurze 14 zawarto wyniki testu ELISA wiązania C1q, uzyskane dla C2B8 z ludzką IgG4 (IgG4), dzikiego typu C2B8 (Wt-C2B8), C2B8 z regionem stałym ludzkiej IgG2 (IgG2) oraz dla wariantów przeciwciał, zgodnie z opisem w Przykładzie 3.
Na Figurze 15A i 15B pokazano wzorce wiązania uzyskane dla macierzystego przeciwciała (E27) z FcyRIIB oraz FcyRIIIA. Na Figurze 15A przedstawiono wzorce wiązania dla humanizowanego przeciwciała IgG1, E27, skierowanego przeciwko IgE, w postaci monomeru (okręgi), heksameru (pełne kwadraty) oraz kompleksu immunologicznego składającego się z wielu heksamerów (pełne trójkąty), z rekombinowanym białkiem fuzyjnym GST podjednostki α ludzkiego receptora FcyRIIB (CD32). Heksameryczny kompleks (pełne kwadraty) utworzono poprzez zmieszanie równych stężeń molarnych E27 (wiążącego się z regionem Fc ludzkiej IgE) oraz IgE ludzkiego szpiczaka. Heksamer jest stabilnym, 1.1 kDa kompleksem, składającym się z 3 cząsteczek IgG (każda o masie 150 kDa) oraz 3 cząsteczek IgE (każda o masie 200 kDa). Kompleks immunologiczny (pełne trójkąty) utworzono kolejno łącząc równe stężenia molarne E27 oraz rekombinowanej IgE, skierowanej przeciwko VEGF (ludzka IgE z domenami zmiennymi wiążącymi ludzki VEGF) z utworzeniem heksameru. Następnie, w celu utworzenia kompleksu immunologicznego, heksamery łączono z 2x stężeniem molarnym ludzkiego VEGF, homodimeru 44kDa, posiadającego dwa miejsca wiązania dla IgE skierowanej przeciwko VEGF na mol VEGF. Na Figurze 15B pokazano przebieg wiązania z rekombinowanym białkiem fuzyjnym GST podjednostki α ludzkiego receptora FcyRIIIA (CD16).
Na Figurze 16A przedstawiono wiązanie kompleksów immunologicznych z wykorzystaniem różnych par typu antygen-przeciwciało w reakcji z rekombinowanym białkiem fuzyjnym GST podjednostki α receptora FcyRIIA. Na Figurze 16B pokazano wiązanie tych samych par antygen-przeciwciało z fuzyjnym białkiem GST podjednostki α receptora FcyRIIIA. Wiązanie ludzkiego IgE:anty-IgE E27 IgG1 zaznaczono za pomocą pełnych kółek; wiązanie ludzkiego VEGF:humanizowane anty-VEGF IgG1 zaznaczono za pomocą pustych kółek.
Na Figurze 17 podsumowano różnice w selektywności wiązania pomiędzy pewnymi wariantami alaninowymi różnych FcyR. Wiązanie wariantów alaninowych w miejscu reszt domeny CH2 IgG1 anty8
PL 209 786 B1
-IgE, E27, przedstawiono dla FcyRIIA, FcyRIIB oraz dla FcyRIIIA. Typ 1 nie wykazuje wiązania z żadnym z trzech receptorów: D278A (265 według indeksu EU). Typ 2 cechuje się zwiększonym wiązaniem z FcyRIIA i FcyRIIB, podczas gdy wiązanie z FcyRIIIA nie ulega zmianie: S280A (267 według indeksu EU). Typ 3 wykazuje zwiększone wiązanie z FcyRIIA i FcyRIIB, natomiast zredukowane wiązanie z FcyRIIIA: H281A (268 według indeksu EU). Typ 4 cechuje się zmniejszonym wiązaniem z FcyRIIA i FcyRIIB, ale zwiększonym wiązaniem z FcyRIIIA: S317A (298 według indeksu EU). Typ 5 wykazuje zwiększone wiązanie z FcyRIIIA, natomiast wiązanie z FcyRIIA i FcyRIIB nie ulega zmianie: E352A, K353A (333 i 334 według indeksu EU).
Na Figurze 18A i 18B porównano wyniki uzyskane, odpowiednio, w wyniku analizy typu białko FcyRIIIA/białko oraz analizy wykonanej w oparciu o komórki CHO GPI-FcyRIIIA. Na Figurze 18A przedstawiono wiązanie wybranych wariantów alaninowych z białkiem fuzyjnym FcyRIIIA-GST. S317A (298 według indeksu EU) oraz S317A/K353A (298 i 334 według indeksu EU) wykazywały się lepszym wiązaniem niż dzikiego typu E27, podczas gdy D278A (265 według indeksu EU) utracił niemal całkowicie zdolność wiązania. Na Figurze 18B wykazano, że podobny wzorzec wiązania występuje w przypadku komórek CHO, wykazujących ekspresję rekombinowanej postaci FcyRIIIA związanej z GPI.
Na Figurze 19A i 19B porównano wyniki uzyskane, odpowiednio, w wyniku analizy typu białko FcyRIIB/białko oraz analizy wykonanej w oparciu o komórki CHO GPI-FcyRIIB. Na Figurze 19A przedstawiono wiązanie wybranych wariantów alaninowych z białkiem fuzyjnym FcyRIIB-GST. H281A (268 według indeksu EU) wykazał się lepszym wiązaniem niż dziki typ E27, podczas gdy dla S317A (298 według indeksu EU) odnotowano zredukowane wiązanie. Na Figurze 19B pokazano, że podobny wzorzec wiązania występuje w przypadku komórek CHO wykazujących ekspresję rekombinowanego FcyRIIB związanego z błoną.
Na Figurze 20 zademonstrowano pojedyncze substytucje alaniny w domenie CH2 przeciwciała IgG1 skierowanego przeciwko HER2 (HERCEPTIN®), które wpływają na wiązanie FcyRIIIA w obu analizach, typu białko-białko i analizie opartej na wykorzystaniu komórek, zmieniając zdolność wiązania z FcyRIIIA na efektorowych jednojądrzastych komórkach krwi obwodowej (PBMC). Rekombinowane humanizowane przeciwciała anty-HER2 (HERCEPTIN®), które wiążą się z eksprymującymi HER-2 komórkami raka sutka SK-BR-3, inkubowano wstępnie ze znakowanymi 51Cr komórkami SK-BR-3 przez 30 min (opsonizacja), stosując stężenie 100 ng/ml (pełne kółka) i 1,25 ng/ml (pełne kwadraty). Stosując stałe stężenie docelowych komórek nowotworowych, zwiększano stosunek komórek efektorowych od 0 do 100. Poziom spontanicznej cytotoksyczności przy braku przeciwciała (przekreślone kwadraty) wynosił 20%, przy stosunku komórka efektorowa:komórka docelowa wynoszącym 100:1. Pojedyncza mutacja alaninowa, niewywierająca wpływu na wiązanie z FcyRIIIA, wariant G31=R309A (292 według indeksu EU), nie wpływała na ADCC (pełne trójkąty). Pojedyncza mutacja alaninowa, zwiększająca jedynie nieznacznie wiązanie z FcyRIIIA, wariant G30=K307A (290 według indeksu EU), również powodowała niewielki wzrost ADCC (tj. 1,1-krotne zwiększenie aktywności ADCC, obliczonej na podstawie obszaru pod krzywą) w stężeniu 1,25 ng/ml dla stosunków komórka efektorowa:komórka docelowa (pełne romby) porównywanych do przeciwciała dzikiego typu w stężeniu 1,25 ng/ml (pełne kwadraty). Pojedyncza mutacja alaninowa obniżająca wiązanie z FcyRIIIA, wariant G34=Q312A (295 według indeksu EU), również powodowała obniżenie aktywności ADCC (pełne, odwrócone trójkąty).
Na Figurze 21 pokazano, że pojedyncza mutacja alaninowa, powodująca wzmocnienie wiązania z FcyRIIIA, wariant G36=S317A (298 według indeksu EU), w analizie typu białko-białko i analizie opartej na zastosowaniu komórek również powoduje wzrost ADCC (pełne trójkąty), obserwowany wśród wariantów porównywanych z dzikim typem (pełne kwadraty), w stężeniu 1,25 ng/ml. Zastosowanie G36 powodowało 1,7-krotny wzrost aktywności ADCC, wyrażony jako obszar pod krzywą. Oba warianty, G17=E282A (269 według indeksu EU) oraz G18=D283A (270 według indeksu EU), wykazywały zredukowane wiązanie z FcyRIIIA, jak również obniżoną skuteczność ADCC. Komórkami efektorowymi były PBMC.
Na Figurze 22A przedstawiono przyrównania natywnych sekwencji regionów Fc IgG. Przedstawiono natywną sekwencję regionu Fc ludzkiej IgG, humlgG1 (allotypy nie-A i A) (odpowiednio SEQ ID NO: 3 i 4), humIgG2 (SEQ ID NO: 5), humIgG3 (SEQ ID NO: 6) oraz humIgG4 (SEQ ID NO: 7). Sekwencja ludzkiej IgG1 jest allotypem nie-A, a różnice pomiędzy tą sekwencją a allotypem A (w pozycjach 356 i 358; zgodnie z indeksem EU) pokazano poniżej sekwencji ludzkiej IgG1. Przedstawiono również natywne sekwencje regionu Fc mysiej IgG, murlgG1 (SEQ ID NO: 8), murIgG2A (SEQ ID NO: 9), murIgG2B (SEQ ID NO: 10) oraz murIgG3 (SEQ ID NO: 11). Na Figurze 22B pokazano procent identyczności pomiędzy sekwencjami regionu Fc przedstawionymi na Figurze 22A.
PL 209 786 B1
Na Figurze 23 pokazano przyrównania natywnych sekwencji regionu Fc ludzkiej IgG, humlgG1 (allotypu nie-A i A; odpowiednio SEQ ID NO: 3 i 4), humIgG2 (SEQ ID NO: 5), humIgG3 (SEQ ID NO: 6) oraz humIgG4 (SEQ ID NO: 7, przy czym różnice pomiędzy sekwencjami zaznaczono za pomocą gwiazdek.
Na Figurze 24 przedstawiono obszar pod krzywą (AUC) dla wybranych wariantów w porównaniu z IgG1 anty-HER2 (HERCEPTIN®) w 4-godzinnej analizie ADCC. Komórkami efektorowymi były P3MC (N=5). Wariant G36 (S317A; 298 według indeksu EU) o zwiększonym wiązaniu FcyRIIIA wykazywał zwiększoną aktywność ADCC; wariant G31 (R309A; 292 według indeksu EU), niewykazujący zmiany wiązania FcyRIIIA, również nie posiadał zmienionej aktywności ADCC, a G14 (D265A; 278 według indeksu EU) cechujący się zredukowanym wiązaniem FcyRIIIA, także posiadał obniżoną aktywność ADCC.
Szczegółowy opis zalecanych wykonań
I. Definicje
W niniejszym opisie i zastrzeżeniach numeracja reszt w łańcuchu ciężkim immunoglobuliny jest zgodna z indeksem EU według Kabat i wsp., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991), wyraźnie włączonym tu przez odesłanie. „Indeks EU według Kabat dotyczy numeracji reszt ludzkiego przeciwciała IgG1 EU.
„Macierzysty polipeptyd jest polipeptydem o sekwencji aminokwasowej bez ujawnionych tu, jednej lub więcej, modyfikacji w regionie Fc, różniącym się od ujawnionego tu wariantu polipeptydu funkcją efektorową. Polipeptyd macierzysty może zawierać natywną sekwencję regionu Fc lub regionu Fc obejmującego istniejące pierwotnie modyfikacje sekwencji aminokwasowej (takie jak addycje, delecje i/lub substytucje).
Termin „region Fc'' stosowany jest w celu zdefiniowania C-końcowego regionu łańcucha ciężkiego immunoglobuliny, np. jak przedstawiono na Figurze 1. „Region Fc może być natywną sekwencją regionu Fc lub wariantem regionu Fc. Mimo, że granice regionu Fc łańcucha ciężkiego immunoglobuliny mogą różnić się, region Fc łańcucha ciężkiego ludzkiej immunoglobuliny IgG rozciąga się od reszty aminokwasowej w pozycji Cys226, lub od Pro230, do jego karboksylowego końca. Region Fc immunoglobuliny, ogólnie, obejmuje dwie domeny stałe, CH2 i CH3, jak przedstawiono na Figurze 1.
„Domena CH2 regionu Fc ludzkiej IgG (również nazywana domeną „Cy2) obejmuje zazwyczaj obszar od reszty aminokwasowej 231 do około aminokwasu 340. Domena CH2 jest jedynym fragmentem, który nie jest połączony ściśle z inną domeną. Dwa rozgałęzione, połączone wiązaniem przez atom N, łańcuchy węglowodanowe umieszczone są pomiędzy dwiema domenami CH2 we wnętrzu nienaruszonej natywnej cząsteczki IgG. Przypuszcza się, że te węglowodany zastępują łączenia pomiędzy domenami i pomagają stabilizować domenę CH2. Burton, Molec. Immunol., 22: 161-206 (1985).
„Domena CH3 obejmuje obszar reszt od C-końcowych do domeny CH2 regionu Fc (tj. od około reszty aminokwasowej 341 do około reszty aminokwasowej 447 IgG).
„Funkcjonalny region Fc posiada „funkcję efektorową natywnej sekwencji regionu Fc. Przykładowe, „funkcje efektorowe obejmują wiązanie C1q; cytotoksyczność zależną od dopełniacza; wiązanie receptora Fc, cytotoksyczność komórkową zależną od przeciwciał (ADCC); fagocytozę; inhibicję receptorów powierzchniowych komórki (np. receptora komórki B, BCR), itp. Takie funkcje efektorowe wymagają połączenia regionu Fc z domeną wiążącą (np. domeną zmienną przeciwciała) oraz mogą być oceniane za pomocą różnych analiz, np. opisanych w niniejszym wynalazku.
„Natywna sekwencja regionu Fc obejmuje sekwencję aminokwasową identyczną z sekwencją aminokwasową regionu Fc występującą w naturze. Natywne sekwencje ludzkich regionów Fc przedstawiono na Figurze 23 i obejmują one natywną sekwencję regionu Fc ludzkiej IgG1 (allotypu nie-A i allotypu A); natywną sekwencję regionu Fc ludzkiej IgG2; natywną sekwencję regionu Fc ludzkiej IgG3 oraz natywną sekwencję regionu Fc ludzkiej IgG4, jak również ich warianty występujące w naturze. Na Figurze 22A przedstawiono natywną sekwencję mysiego regionu Fc.
„Wariant regionu Fc obejmuje sekwencję aminokwasową różniącą się od natywnej sekwencji regionu Fc tym, że zawiera przynajmniej jedną, zgodnie z niniejszym opisem, „modyfikację aminokwasową. Dogodnie wariant regionu Fc posiada przynajmniej jedną substytucję aminokwasu innym aminokwasem, w porównaniu z natywną sekwencją regionu Fc lub regionu Fc macierzystego polipeptydu, np. od około jednej do około dziesięciu substytucji aminokwasowych, i dogodnie, od około jednej do około pięciu substytucji aminokwasowych w obrębie natywnej sekwencji regionu Fc lub regionu Fc macierzystego polipeptydu. Wariant regionu Fc dogodnie wykazuje przynajmniej około 80% homologii
PL 209 786 B1 z natywną sekwencją regionu Fc i/lub z regionem Fc macierzystego polipeptydu, a dogodniej okoł o 90% homologii z tymi regionami, a zwłaszcza przynajmniej około 95% homologii z tymi regionami.
„Homologia definiowana jest jako procent reszt sekwencji aminokwasowej wariantu, które są identyczne po przyrównaniu sekwencji i, w razie konieczności, wstawieniu odpowiednich przerw celem uzyskania maksymalnego procentu homologii. Metody i programy komputerowe do przyrównywania sekwencji są dobrze znane w dziedzinie. Jednym z takich programów jest program komputerowy „Align 2, Genetech, Inc., złożony wraz z dokumentacją dla użytkownika w the United States Copyright Office, Washington, DC 20559, 10 grudnia, 1991.
Termin „polipeptyd zawierający region Fc odnosi się do polipeptydu, takiego jak przeciwciało lub immunoadhezyna (patrz definicje poniżej), który zawiera region Fc.
Terminy „receptor Fc lub „FcR stosowane są w celu określenia receptora wiążącego region Fc przeciwciała. Zalecany FcR jest natywną sekwencją ludzkiego FcR. Ponadto, zalecany FcR posiada zdolność wiązania przeciwciała IgG (receptor gamma) i obejmuje receptory podklasy FcyRI, FcyRII i FcyRIII, włączając warianty alleliczne i warianty alternatywnego składania tych receptorów. Receptory FcyRII obejmują receptory FcyRIIA (receptor aktywujący) oraz FcyRIIB (receptor hamujący), które posiadają podobne sekwencje aminokwasowe, różniące się głównie w obszarze ich domen cytoplazmatycznych. Receptor aktywujący FcyRIIA zawiera w swojej domenie cytoplazmatycznej immunoreceptorowy motyw aktywujący (ITAM) obejmujący resztę tyrozyny. Receptor hamujący FcyRIIB zawiera w swej domenie cytoplazmatycznej immunoreceptorowy motyw hamujący (ITIM) obejmujący resztę tyrozyny. (Patrz praca przeglądowa M. Daeron, Annu.Rev.Immunol. 15: 203-234 (1997)). FcR opisane są w Raveth i Kinet, Annu.Rev.Immunol. 9: 457-92 (1991); Capel i wsp., Immunomethods 4:25-34 (1994) oraz de Haas i wsp., J.Lab.Clin.Med. 126: 330-41 (1995). Inne FcR, w tym również te które zostaną zidentyfikowane w przyszłości, nazywane są w niniejszym opisie „FcR. Termin ten obejmuje również receptor noworodkowy, FcRn, odpowiedzialny za przeniesienie matczynych IgG do płodu (Guyer i wsp., J. Immunol. 117: 587 (1976) oraz Kim i wsp., J.Immunol. 24: 249 (1994)).
„Cytotoksyczność komórkowa zależna od przeciwciał i „ADCC odnosi się do zależnej od komórek reakcji, w której niespecyficzne, cytotoksyczne komórki ekspresjonujące FcR (np. komórki zwane naturalnymi zabójcami (NK), neutrofile i makrofagi) rozpoznają przeciwciało związane z komórką docelową, a następnie powodują lizę tej komórki. Główne komórki uczestniczące w ADCC, komórki NK, ekspresjonują jedynie FcyRIII, podczas gdy monocyty ekspresjonują FcyRI, FcyRII i FcyRIII. Ekspresję FcR na komórkach uczestniczących w hematopoezie podsumowano w Tabeli 3, na stronie 464, Ravetch i Kinet, Annu.Rev.Immunol 9: 457-92, (1991).
„Ludzkie komórki efektorowe są leukocytami eksprymującymi jeden lub więcej FcR i wykazującymi funkcję efektorową. Zalecane komórki eksprymują przynajmniej FcyRIII i wykazują funkcję efektorową ADCC. Przykładami ludzkich leukocytów uczestniczących w ADCC są jednojądrzaste komórki krwi obwodowej (PBMC), komórki zwane naturalnymi zabójcami (NK), monocyty, cytotoksyczne komórki T i neutrofile; przy czym zalecane są komórki PBMC i NK. Komórki efektorowe mogą być izolowane ze źródła natywnego np. z krwi lub komórek PBMC, zgodnie z niniejszym opisem.
Wariant polipeptydu o „zmienionym powinowactwie wiązania FcR lub aktywności ADCC jest polipeptydem o zwiększonej lub zmniejszonej aktywności wiązania FcR i/lub aktywności ADCC, w porównaniu z polipeptydem macierzystym lub z polipeptydem zawierającym natywną sekwencję regionu Fc. Wariant polipeptydu, który „wykazuje zwiększone wiązanie z FcR wiąże przynajmniej jeden FcR z większym powinowactwem niż macierzysty polipeptyd. Wariant polipeptydu, który „wykazuje zmniejszone wiązanie z FcR, wiąże przynajmniej jeden FcR z mniejszym powinowactwem niż macierzysty polipeptyd. Takie warianty, wykazujące osłabione wiązanie FcR, mogą posiadać małą lub nie posiadać żadnej znaczącej zdolności wiązania FcR, np. 0-20% wiązania z FcR, w porównaniu z natywną sekwencją regionu Fc IgG, np. jak określono w załączonych Przykładach.
Wariant polipeptydu, który wiąże FcR z „lepszym powinowactwem niż macierzysty polipeptyd, wykazuje zdolność wiązania jakiegokolwiek, jednego lub więcej, z powyżej wymienionych FcR z istotnie lepszym powinowactwem wiązania niż macierzyste przeciwciało, w przypadku gdy zastosowane w analizie wiązania ilości wariantu polipeptydu i polipeptydu macierzystego są zasadniczo takie same. Na przykład, wariant polipeptydu o lepszym powinowactwie wiązania FcR może wykazywać od około 1,15-krotną do około 100-krotnej, np. od około 1,2-krotną do około 50-krotną poprawę powinowactwa wiązania FcR niż polipeptyd macierzysty, przy czym powinowactwo wiązania jest określane, na przykład, zgodnie z opisem w załączonych Przykładach.
PL 209 786 B1
Wariant polipeptydu, który „uczestniczy w cytotoksyczności komórkowej zależnej od przeciwciał (ADCC) w obecności ludzkich komórek efektorowych skuteczniej„ niż przeciwciało macierzyste jest polipeptydem, który jest in vitro lub in vivo zasadniczo skuteczniejszy w procesie ADCC, przy czym zastosowane w analizie ilości wariantu polipeptydu i przeciwciała macierzystego są zasadniczo takie same. Ogólnie, takie warianty są identyfikowane za pomocą analizy ADCC in vitro, zgodnie z niniejszym opisem. Jednakże, rozważa się zastosowanie również innych analiz i metod służących wykrywaniu aktywności ADCC, np. w doświadczeniu na zwierzętach itp. Zalecany wariant jest około 1,5-krotnie do około 100-krotnie, np. od około dwukrotnie do około pięciokrotnie, bardziej skuteczny w procesie ADCC niż macierzysty polipeptyd, np. w opisanej tu analizie in vitro.
„Modyfikacja aminokwasowa odnosi się do zmiany sekwencji aminokwasowej w stosunku do określonej uprzednio sekwencji aminokwasowej. Przykładowe modyfikacje obejmują substytucję aminokwasowa, insercję i/lub delecję. Zalecaną modyfikacją aminokwasową jest substytucja.
„Modyfikacja aminokwasowa w specyficznej pozycji, np. regionu Fc, odnosi się do substytucji lub delecji specyficznej reszty, lub wstawienia przynajmniej jednej reszty aminokwasowej w sąsiedztwie specyficznej reszty. Przez wstawienie „w sąsiedztwie specyficznej reszty rozumie się wstawienie w tym miejscu jednej lub dwóch reszt aminokwasowych. Wstawienie może dotyczyć wstawienia reszty od N-końca lub C-końca względem specyficznej reszty.
„Substytucja aminokwasowa odnosi się do zastąpienia przynajmniej jednej istniejącej reszty aminokwasowej w pierwotnie określonej sekwencji aminokwasowej, inną, odmienną „zastępczą resztą aminokwasową. Zastępcza reszta lub reszty mogą być „naturalnie występującymi resztami aminokwasowymi (tj. kodowanymi przez kod genetyczny) i wybranymi z grupy istniejących reszt, takich jak: alanina (Ala); arginina (Arg); aspargina (Asn); kwas asparaginowy (Asp); cysteina (Cys); glutamina (Gln); kwas glutaminowy (Glu); glicyna (Gly); histydyna (His); izoleucyna (Ile); leucyna (Leu); lizyna (Lys); metionina (Met); fenyloalanina (Phe); prolina (Pro); seryna (Ser); treonina (thr); tryptofan (Trp); tyrozyna (Tyr) i walina (Val). Zaleca się jednak, żeby reszta zastępcza nie była cysteiną. Definicja obejmuje również substytucję jedną lub więcej niewystępującymi naturalnie resztami aminokwasowymi. „Niewystępująca naturalnie reszta aminokwasowa odnosi się do reszty innej niż wymienione powyżej naturalnie występujące reszty aminokwasowe, zdolnej do kowalencyjnego wiązania z sąsiednią resztą aminokwasowąa (sąsiednimi resztami aminokwasowymi w łańcuchu polipeptydowym). Przykłady niewystępujących naturalnie reszt aminokwasowych obejmują norleucynę, ornitynę, homoserynę oraz inne analogi reszt aminokwasowych, takie jak opisane przez Ellman i wsp., Meth. Enzym. 202: 301-336 (1991). W celu uzyskania takich niewystępujących naturalnie reszt aminokwasowych można zastosować procedury według Noren i wsp., Science 244: 182 (1989) i Ellman i wsp., jak wyżej. W skrócie, procedury te obejmują chemiczną aktywację supresorowego tRNA z niewystępującą naturalnie resztą aminokwasowa, a następnie transkrypcją in vitro i translacją RNA.
„Wstawienie aminokwasu (insercja) odnosi się do wbudowania przynajmniej jednego aminokwasu do określonej uprzednio sekwencji aminokwasowej. Podczas gdy insercja dotyczy zazwyczaj wstawienia jednej lub dwóch reszt aminokwasowych, w niniejszym zgłoszeniu brane są pod uwagę większe „insercje peptydowe, np. wstawienie około trzech do około pięciu lub nawet do około dziesięciu reszt aminokwasowych. Wstawiona reszta lub reszty mogą być resztami występującymi naturalnie lub niewystępującymi naturalnie, jak opisano powyżej.
„Delecja aminokwasu odnosi się do usunięcia przynajmniej jednej reszty aminokwasowej z określonej uprzednio sekwencji aminokwasowej.
„Region zawiasowy jest ogólnie zdefiniowany jako obszar od Glu216 do Pro230 ludzkiej IgG1 (Burton, Molec.Immunol. 22: 161-206 (1985)). Regiony zawiasowe innych postaci izotypowych IgG mogą być porównane z sekwencją IgG1 poprzez umieszczenie w tych samych pozycjach pierwszej i ostatniej reszty cysteiny, tworzących wiązania disiarczkowe S-S pomiędzy łańcuchami ciężkimi.
„Niższy region zawiasowy regionu Fc jest zazwyczaj zdefiniowany jako obszar rozciągający się od reszt następujących bezpośrednio od C-końca do regionu zawiasowego, tj. od reszty 233 do reszty 239 regionu Fc. W badaniach wykonanych wcześniej niż niniejszy wynalazek stwierdzono, że wiązanie FcyR było ogólnie związane z resztami aminokwasowymi niższego regionu zawiasowego w regionie Fc białka IgG.
„C1q jest polipeptydem zawierającym miejsce wiązania regionu Fc immunoglobuliny. C1q wraz z dwiema proteazami serynowymi, C1r i C1s, tworzy kompleks C1, pierwszy składnik szlaku cytotoksyczności (CDC) zależnej od dopełniacza. Ludzki polipeptyd C1q można zakupić np. w Quidel, San Diego, CA.
PL 209 786 B1
Termin „domena wiążąca odnosi się do regionu polipeptydu, który wiąże inną cząsteczkę. W przypadku FcR, domena wiążąca może obejmować fragment jego łańcucha polipeptydowego np. jego łańcuch α, który jest odpowiedzialny za wiązanie regionu Fc. Jedną z użytecznych domen wiążących jest zewnątrzkomórkowa domena łańcucha α FcR.
Termin „przeciwciało stosowane jest w najszerszym możliwym znaczeniu, a specyficznie dotyczy przeciwciałmonoklonalnych (włączając pełnej długości przeciwciała monoklonalne), przeciwciał poliklonalnych, przeciwciał wielospecyficznych (np. bispecyficzne) oraz fragmentów przeciwciał pod warunkiem, że wykazują aktywność biologiczną.
„Fragmenty przeciwciała zdefiniowane są dla potrzeb niniejszego wynalazku jako zawierające część nienaruszonego przeciwciała, ogólnie włączając region wiązania antygenu lub region zmienny nienaruszonego przeciwciała, lub też zachowujący zdolność wiązania FcR region Fc przeciwciała. Przykłady fragmentów przeciwciała obejmują przeciwciała liniowe; jednołańcuchowe cząsteczki przeciwciał oraz, utworzone z fragmentów przeciwciał, przeciwciała wielospecyficzne. Zalecane fragmenty przeciwciał posiadają przynajmniej część regionu zawiasowego i, ewentualnie, region CH1 łańcucha ciężkiego IgG. Bardziej zalecane fragmenty przeciwciał obejmują cały region stały łańcucńa ciężkiego IgG i zawierają łańcuch lekki IgG.
Stosowany tu termin „przeciwciało monoklonalne odnosi się do przeciwciała otrzymanego z populacji zasadniczo homogennych przeciwciał, tj. poszczególne przeciwciała wchodzące w skład populacji są identyczne, za wyjątkiem różnic wynikających z możliwych, naturalnie występujących mutacji, które mogą pojawiać się w nieznacznych ilościach. Przeciwciała monoklonalne są wysoce swoiste i skierowane są przeciwko pojedynczemu miejscu antygenowemu. Ponadto, w przeciwieństwie do konwencjonalnych preparatów przeciwciał (poliklonalnych), zawierających zazwyczaj różne przeciwciała skierowane przeciwko różnym determinantom (epitopom), każde przeciwciało monoklonalne jest skierowane przeciwko pojedynczej determinancie na antygenie. Modyfikacje „monoklonalne wskazują na charakter przeciwciała wynikający z otrzymania go z zasadniczo homogennej populacji przeciwciał i nie wymagają wytwarzania jakąkolwiek szczególną metodą. Na przykład, według niniejszego wynalazku, przeciwciała monoklonalne mogą być otrzymane metodą z użyciem hybrydom, opisaną po raz pierwszy przez Kohler i wsp., Nature 256: 495 (1975), lub metodami rekombinacji DNA (patrz, np. Patent USA Nr 4, 816, 567). „Przeciwciała monoklonalne mogą być również wyizolowane z fagowej biblioteki przeciwciał, za pomocą technik opisanych, na przykład, przez Clackson i wsp., Nature 352: 624-628 (1991) oraz Marks i wsp., J.Mol.Biol. 222: 581-594 (1991).
Opisane tu przeciwciała monoklonalne specyficznie obejmują przeciwciała (immunoglobuliny) „chimerowe, których fragment łańcucha ciężkiego i/lub lekkiego jest identyczny lub homologiczny z odpowiadającymi mu sekwencjami przeciwciał pochodzących z poszczególnych gatunków, lub należącymi do poszczególnej klasy lub podklasy, przy czym pozostały łańcuch (lub łańcuchy) jest identyczny lub homologiczny z odpowiadającymi mu sekwencjami przeciwciał pochodzących z innego gatunku lub należącymi do innej klasy lub podklasy, jak również obejmują fragmenty takich przeciwciał pod warunkiem, że wykazują one aktywność biologiczną (Patent USA Nr 4, 816, 567; oraz Morrison i wsp., Proc. Natl. Acad. Sci. USA 81: 6851-6855 (1984)).
Postaci „humanizowane przeciwciał niepochodzących od ludzi (np. mysich) to chimerowe przeciwciała, które zawierają minimalnej długości sekwencję niepochodzącą od immunoglobuliny człowieka. W większości, humanizowane przeciwciała są ludzkimi immunoglobulinami (przeciwciało biorcy), w których reszty regionu hiperzmiennego biorcy są zastąpione resztami z regionu hiperzmiennego innego gatunku (przeciwciało dawcy), takiego jak mysz, szczur, królik lub Naczelny inny niż człowiek, posiadające pożądaną swoistość, powinowactwo i zdolność wiązania. W pewnych przypadkach, reszty regionu zrębowego (FR) Fv ludzkiej immunoglobuliny są zastąpione odpowiadającymi im resztami innych gatunków. Ponadto, przeciwciała humanizowane mogą zawierać reszty niewystępujące w przeciwciele biorcy lub w przeciwciele dawcy. Modyfikacje te służą dalszemu udoskonaleniu przeciwciała. Ogólnie, przeciwciało humanizowane obejmuje zasadniczo każdą z przynajmniej jednej, a zazwyczaj dwóch domen zmiennych, w których wszystkie lub zasadnicza większość pętli hiperzmiennych odpowiada pętlom immunoglobulin z gatunku innego niż człowiek, a wszystkie lub zasadnicza większość regionów FR pochodzi z sekwencji immunoglobuliny ludzkiej. Humanizowane przeciwciało może, ewentualnie, zawierać również przynajmniej fragment regionu stałego immunoglobuliny (Fc), zazwyczaj ludzkiej immunoglobuliny. Bardziej szczegółowo omówiono to zagadnienie w Jones i wsp., Nature 321: 522-525 (1986); Riechmann i wsp., Nature 332: 323-329 (1988) oraz Presta, Curr.Op.Struct.Biol. 2: 593-596 (1992).
PL 209 786 B1
Termin „region hiperzmienny dotyczy reszt aminokwasowych przeciwciała odpowiedzialnych za wiązanie antygenu. Region hiperzmienny zawiera reszty aminokwasowe z „regionu determinującego dopasowanie lub „CDR (tj. reszty 24-34 (L1), 50-56 (L2) oraz 89-97 (L3) domeny zmiennej łańcucha lekkiego; Kabat i wsp., Sequences of Proteins of Immunological Interest, 5th Ed.Public Health Service, National Institutes of Health, Bethesda, MD.(1991)) i/lub reszty „pętli hiperzmiennej (tj. reszty 26-32 (L1), 50-52 (L2) i 91-96 (L3) domeny zmiennej łańcucha lekkiego oraz reszty 26-32 (H1), 53-55 (H2) i 96-101 (H3) domeny zmiennej łańcucha ciężkiego; Chothia i Lesk, J.Mol.Biol. 196: 901-917 (1987)). Reszty „regionu zrębowego lub „FR są resztami domeny zmiennej, innymi niż zdefiniowane w niniejszym opisie reszty regionu hiperzmiennego.
Stosowany tu termin „immunoadhezyna określa cząsteczkę podobną do przeciwciała, której struktura stanowi połączenie „domeny wiążącej heterologicznego białka o właściwościach „adhezyjnych (np. receptora, ligandu lub enzymu) z domeną stałą immnoglobuliny. Strukturalnie immunoadhezyna obejmuje fuzję sekwencji aminokwasowej adhezyny z sekwencją o pożądanej swoistości wiązania, inną niż miejsce rozpoznawania i wiązania antygenu (miejsce łączenia antygenu) przeciwciała (tj. jest „hetrologiczna) oraz z sekwencją domeny stałej immunoglobuliny.
Stosowany tu termin „domena wiążąca ligand odnosi się do jakiegokolwiek natywnego receptora powierzchniowego komórki lub jakiegokolwiek regionu, lub jego pochodnej, zachowującego przynajmniej jakościowo w stosunku do odpowiadającego mu natywnego receptora zdolność wiązania ligandu. W specyficznym wykonaniu receptor pochodzi z polipeptydu powierzchni komórki, posiadającego domenę komórkową homologiczną z domeną kodowaną przez nadrodzinę genów immunoglobulin. Inne receptory, nienależące do nadrodziny genów immunoglobulin, lecz objęte niniejszą definicją, należą do nadrodzin receptorów cytokin i, w szczególności, receptorów cechujących się aktywnością kinazy tyrozynowej (receptory kinaz tyrozynowych), nadrodzin receptorów hematopoetyny oraz nadrodzin czynnika wzrostu nerwów, i cząsteczek adhezji komórkowej, np. selektyn (E-, L-i P-selektyny).
Termin „domena wiążąca receptor stosowany jest w celu określenia jakiegokolwiek natywnego ligandu receptora, włączając cząsteczki adhezji komórkowej, lub jakikolwiek region lub pochodną takiego natywnego ligandu o zachowanej, przynajmniej jakościowo, względem natywnego ligandu, zdolności wiązania receptora. Definicja ta, między innymi, dotyczy specyficznie sekwencji wiążących ligandów dla wyżej wymienionych receptorów.
„Chimera przeciwciało-immunoadhezyna obejmuje cząsteczkę stanowiącą połączenie przynajmniej jednej domeny wiążącej przeciwciała (zgodnie z niniejszą definicją) z przynajmniej jedną immunoadhezyną (zgodnie z niniejszą definicją). Przykładowymi chimerami przeciwciało-immunoadhezyna są bispecyficzne chimery CD4-IgG, opisane przez Berg i wsp., PNAS (USA), 88: 4723-4727 (1991) oraz Chamów i wsp., J.Immunol. 153: 4268 (1994).
„Wyizolowany polipeptyd jest zidentyfikowanym i wydzielonym i/lub odzyskanym polipeptydem ze składnika jego naturalnego środowiska. Składnikami stanowiącymi zanieczyszczenie naturalnego środowiska polipeptydu są materiały, mogące kolidować z diagnostycznym lub terapeutycznym zastosowaniem polipeptydu, i mogą one obejmować enzymy, hormony i inne białkowe lub niebiałkowe substancje rozpuszczone. W zalecanych wykonaniach polipeptyd podlega oczyszczeniu (1) na poziomie ponad 95% wagowo, określonym metodą Lowry'ego i w szczególności, ponad 99% wagowo, (2) w stopniu wystarczającym do uzyskania, za pomocą sekwentatora (spinning cup sequentator), co najmniej 15 reszt z N-końca lub wewnętrznej sekwencji aminokwasowej, lub (3) do homogenności, w warunkach redukującej i nieredukującej elektroforezy SDS-PAGE z wykorzystaniem Coomassie blue lub, dogodnie, barwiona srebrem. Wyizolowany polipeptyd obejmuje polipeptyd in situ w komórkach rekombinowanych, ponieważ nie będzie obecny przynajmniej jeden składnik naturalnego środowiska polipeptydu. Jednakże, zazwyczaj, wyizolowany polipeptyd otrzymywany jest w wyniku co najmniej jednego etapu oczyszczania.
„Leczenie odnosi się zarówno do leczenia terapeutycznego, jak i środków profilaktycznych lub zapobiegawczych. Osobniki potrzebujące leczenia obejmują zarówno osobniki chore, jak i osobniki, u których należy zapobiegać zaburzeniu.
„Zaburzenie jest dowolnym stanem, w którym leczenie za pomocą wariantu polipeptydu może spowodować poprawę. Obejmuje to przewlekłe i ostre zaburzenia lub choroby, włączając stany patologiczne predysponujące do pojawienia się rozważanego zaburzenia u ssaka. W jednym z wykonań zaburzenie jest nowotworem.
Termin „nowotwór i „nowotworowy odnosi się do, lub opisuje, stan fizjologiczny organizmu ssaka zazwyczaj cechujący się niekontrolowanym wzrostem komórek. Przykłady nowotworów obejmu14
PL 209 786 B1 ją, lecz bez ograniczenia, raka, chłoniaka, blastomę, mięsaka i białaczkę. Bardziej szczegółowe przykłady takich nowotworów obejmują raka płaskokomórkowego, raka drobnokomórkowego płuc, raka niedrobnokomórkowego płuc, gruczolakoraka płuc, raka płaskonabłonkowego płuc, raka otrzewnej, raka komórek wątroby, raka żołądkowo-jelitowego, raka trzustki, glejaka, raka szyjki macicy, raka jajników, raka wątroby, raka pęcherza, wątrobiaka, raka piersi, raka okrężnicy, raka jelita grubego, raka śluzówki macicy lub macicy, raka ślinianek, raka nerek, raka prostaty, raka sromu, raka tarczycy, raka wątrobowego oraz różnych typów nowotworów głowy i szyi.
„Rak z ekspresją HER2 jest nowotworem zawierającym komórki posiadające białko receptora HER2 (Semba i wsp., PNAS (USA) 82: 6497-6501 (1985) oraz Yamamoto i wsp., Nature 319: 230-234 (1986) (Genebank, numer dostępu X03363)) obecne na powierzchni tych komórek, co powoduje, że możliwe jest wiązanie z tymi komórkami przeciwciała skierowanego przeciwko HSR2.
Słowo „znacznik odnosi się do wykrywalnego związku lub kompozycji, połączonych bezpośrednio lub pośrednio z polipeptydem. Znacznik może być sam w sobie wykrywalny (np. znaczniki radioizotopowe lub znaczniki fluoroscencyjne) lub, w przypadku znacznika enzymatycznego, może katalizować chemiczne zmiany w obrębie wykrywanego związku substratu lub kompozycji.
„Wyizolowana cząsteczka kwasu nukleinowego jest cząsteczką kwasu nukleinowego zidentyfikowaną i oddzieloną od przynajmniej jednej będącej zanieczyszczeniem cząsteczki kwasu nukleinowego, z którą jest zazwyczaj związana w naturalnym źródle kwasu nukleinowego polipeptydu. Wyizolowana cząsteczka kwasu nukleinowego jest inną cząsteczką niż w postaci lub zestawie występującym w naturze. Wyizolowane cząsteczki kwasu nukleinowego są zatem inne niż cząsteczki kwasu nukleinowego występujące w naturalnych warunkach. Jednakże, wyizolowana cząsteczka kwasu nukleinowego obejmuje cząsteczkę kwasu nukleinowego znajdującą się w komórkach, które zazwyczaj ekspresjonują polipeptyd, na przykład, cząsteczka kwasu nukleinowego znajduje się w lokalizacji chromosomowej innej niż w naturalnych komórkach.
Termin „sekwencje kontrolne odnosi się do sekwencji DNA niezbędnych do ekspresji operacyjnie połączonej sekwencji kodującej w organizmie szczególnego gospodarza. Odpowiednie dla organizmów prokariotycznych sekwencje kontrolne, na przykład, zawierają promotor, ewentualnie, sekwencję operatorową i miejsce wiązania rybosomu. Wiadomo, że komórki eukariotyczne wykorzystują promotory, sygnały poliadenylacji i sekwencje wzmacniaczy.
Kwas nukleinowy jest „operacyjnie połączony gdy umieszczony jest w funkcjonalnej zależności z inną sekwencją kwasu nukleinowego. Na przykład, DNA presekwencji lub liderowej sekwencji wydzielniczej jest operacyjnie połączony z DNA polipeptydu jeśli ten DNA ekspresjonowany jest jako białko uczestniczące w wydzielaniu tego polipeptydu; promotor lub wzmacniacz jest operacyjnie połączony z sekwencją kodującą jeżeli oddziałuje na transkrypcję tej sekwencji; lub miejsce wiązania rybosomu jest operacyjnie połączone z sekwencją kodującą jeśli jego lokalizacja ułatwia translację. Ogólnie, „operacyjnie połączony oznacza, że związane sekwencje DNA są ciągłe, a w przypadku liderowej sekwencji wydzielniczej ciągłe i w ramce odczytu. Jednakże, wzmacniacze nie muszą być ciągłe. Łączenie przeprowadza się poprzez ligację w odpowiednich miejscach restrykcyjnych. W przypadku gdy takie miejsca nie istnieją, stosuje się, zgodnie z przyjętymi metodami, syntetyczne oligonukleotydowe sekwencje adaptorowe lub łączniki.
Wyrażenie „komórka, „linia komórkowa i „hodowla komórkowa stosowane są w niniejszym opisie zamiennie i wszystkie te określenia obejmują potomstwo. Zatem, termin „transformanty i „komórki transformowane obejmuje pierwotne komórki i pochodzące z nich hodowle, bez względu na liczbę pasaży. Przyjmuje się też, że, na skutek zaplanowanych i przypadkowych mutacji, nie całe potomstwo musi posiadać dokładnie identyczną zawartość DNA. Objęte tą definicją jest potomstwo, które posiada taką samą funkcję lub aktywność biologiczną jak pierwotnie transformowane komórki. W przypadku stosowania odmiennych znaczeń, ich znaczenie jest zrozumiałe z kontekstu opisu.
Stosowany tu termin „kompleks molekularny odnosi się do względnie stabilnej struktury utworzonej w wyniku wiązania dwóch lub więcej heterologicznych cząsteczek (np. polipeptydów) (dogodnie połączonych wiązaniem niekowalencyjnym). Zalecanym tu kompleksem molekularnym jest kompleks immunologiczny.
„Kompleks immunologiczny odnosi się do względnie stabilnej struktury utworzonej w wyniku połączenia przynajmniej jednej docelowej cząsteczki i przynajmniej jednego polipeptydu zawierającego region Fc. Takie połączenie powoduje powstanie kompleksu o wyższej masie cząsteczkowej. Przykładami kompleksów immunologicznych są agregaty antygen-przeciwciało i agregaty cząsteczka docelowa-immunoadhezyna. Stosowany tu termin „kompleks immunologiczny w wypadku jeśli nie został
PL 209 786 B1 określony inaczej, odnosi się do kompleksu ex vivo (tj. różnego od postaci lub ułożenia występującego w naturze). Jednakże, kompleks immunologiczny może być podawany ssakom, np. w celu oszacowania klirensu kompleksu immunologicznego u ssaka.
Termin „cząsteczka docelowa odnosi się do cząsteczki, zazwyczaj polipeptydu, zdolnej do wiązania przez cząsteczkę heterologiczną, i posiadającej jedno lub więcej miejsc wiążących dla cząsteczki hetrologicznej. Termin „miejsce wiążące odnosi się do regionu cząsteczki, z którym możliwe jest związanie innej cząsteczki. „Pierwsza cząsteczka docelowa obejmuje przynajmniej dwa różne miejsca wiążące (na przykład, dwa do pięciu oddzielnych miejsc wiążących) dla analizowanej cząsteczki (np. polipeptyd zawierający region Fc), takie, że przynajmniej dwie analizowane cząsteczki mogą ulec związaniu z pierwszą cząsteczką docelową. W zalecanym wykonaniu, dwa lub więcej miejsc wiążących jest identycznych (np. posiadający taką samą sekwencję aminokwasową, gdy cząsteczka docelowa jest polipeptydem). W poniżej zamieszczonym Przykładzie 1 pierwszą cząsteczką docelową jest IgE, posiadająca dwa oddzielne miejsca wiążące w jej regionie Fc, z którymi może ulec związaniu polipeptyd posiadający region Fc (przeciwciało skierowane przeciwko IgE, E27). Inne pierwsze cząsteczki docelowe obejmują dimery składające się z zasadniczo identycznych monomerów (np. neurotrofiny, IL8 i VEGF) lub są polipeptydami zawierającymi dwa lub więcej zasadniczo identycznych łańcuchów polipeptydowych (np. przeciwciała lub immunoadhezyny). „Druga cząsteczka docelowa obejmuje przynajmniej dwa oddzielne miejsca wiążące (na przykład, dwa do pięciu oddzielnych miejsc wiążących) dla pierwszej cząsteczki docelowej, takie, że przynajmniej dwie pierwsze cząsteczki docelowe mogą ulec związaniu z drugą cząsteczką docelową. Dogodnie dwa lub więcej miejsca wiążące są identyczne (np. posiadają taką samą sekwencję aminokwasową, gdy docelowa cząsteczka jest polipeptydem). W Przykładzie 2, drugą cząsteczką docelową jest VEGF, posiadająca parę oddzielnych miejsc wiążących, do których może ulec przyłączeniu domena zmienna przeciwciała IgE. Innymi drugimi cząsteczkami docelowymi są np. inne dimery składające się z zasadniczo identycznych monomerów (np. neurotrofiny lub IL8) lub polipeptydy zawierające dwa lub więcej zasadniczo identycznych domen (np. przeciwciała lub immunoadhezyny).
„Analit jest substancją poddawaną analizie. Zalecanym analitem jest polipeptyd zawierający region Fc, który ma być analizowany pod kątem jego zdolności do wiązania receptora Fc.
„Receptor jest polipeptydem zdolnym do wiązania przynajmniej jednego ligandu. Zalecanym receptorem jest receptor powierzchni komórkowej, posiadający zewnątrzkomórkową domenę wiążącą ligand i, ewentualnie, inne domeny (np. domenę przezbłonową, domenę wewnątrzkomórkową i/lub domenę zakotwiczoną w błonie komórkowej). Oceniany w tym teście receptor może być stosowany w całości lub jako jego fragment, lub też pochodna (np. białko fuzyjne zawierające domenę wiążącą receptora połączone z jednym lub więcej heterologicznym polipeptydem). Ponadto, receptor oceniany pod kątem właściwości wiązania może być obecny w komórce lub w postaci wyizolowanej i, ewentualnie, analizowany na płytkach lub innych stałych fazach.
Wyrażenie „receptor o niskim powinowactwie dotyczy receptora o słabym powinowactwie wiązania badanego ligandu, np. posiadającego stałą wiązania wynoszącą około 50 nM lub słabsze powinowactwo. Przykłady receptorów o niskim powinowactwie obejmują FcyRII i FcyRIII.
II. Sposoby wykonania wynalazku
Zgodnie z wynalazkiem opisano sposób otrzymywania wariantu polipeptydu. „Macierzysty, „wyjściowy lub „niezmieniony polipeptyd wytwarza się za pomocą znanych w dziedzinie technik wytwarzania polipeptydów zawierających region Fc. W zalecanym wykonaniu polipeptyd macierzysty jest przeciwciałem, a przykładowe sposoby otrzymywania przeciwciał opisano bardziej szczegółowo w kolejnych podrozdziałach. Polipeptyd macierzysty może, jednakże, być jakimkolwiek polipeptydem zawierającym region Fc, np. cząsteczką immunoadhezyny. Sposoby otrzymywania immunoadhezyny omówiono szczegółowo poniżej.
W alternatywnym wykonaniu wariant regionu Fc może być otrzymany zgodnie ze sposobami zawartymi w niniejszym opisie i taki „wariant regionu Fc może być poddany fuzji z wybranym heterologicznym polipeptydem, takim jak domena zmienna przeciwciała lub domena wiążąca receptora lub ligandu.
Polipeptyd macierzysty zawiera region Fc. Ogólnie, region Fc macierzystego polipeptydu zawiera natywną sekwencję regionu Fc i dogodnie, ludzką natywną sekwencję regionu Fc. Jednakże, region Fc macierzystego polipeptydu może posiadać jedną lub więcej istniejących wcześniej zmian w sekwencji aminokwasowej lub modyfikacji w stosunku do natywnego regionu Fc. Na przykład, aktywność wiążąca C1q regionu Fc może być uprzednio zmieniona (inne rodzaje modyfikacji regionu Fc
PL 209 786 B1 opisano bardziej szczegółowo poniżej). W kolejnym rozwiązaniu region Fc macierzystego polipeptydu istnieje na poziomie „koncepcyjnym, podczas gdy region ten fizycznie nie istnieje, projektant przeciwciała może zdecydować co do wyboru pożądanej sekwencji aminokwasowej regionu Fc i otrzymać polipeptyd zawierający sekwencję lub DNA kodujący pożądaną sekwencję aminokwasową wariantu regionu Fc.
Jednakże w zalecanym rozwiązaniu kwas nukleinowy kodujący region Fc macierzystego polipeptydu jest dostępny i, w celu uzyskania wariantu sekwencji kwasu nukleinowego kodującego wariant regionu Fc, sekwencja tego kwasu jest poddawana zmianie.
DNA kodujący wariant sekwencji aminokwasowej wyjściowego polipeptydu otrzymywany jest w wyniku zastosowania różnych, znanych w dziedzinie, sposobów. Sposoby te obejmują, lecz bez ograniczenia, ukierunkowaną (lub zależną od oligonukleotydu) mutagenezę, mutagenezę PCR i mutagenezę kasetową uprzednio otrzymanego DNA kodującego polipeptyd.
Mutageneza ukierunkowana jest zalecanym sposobem otrzymywania wariantów substytucyjnych. Technika ta jest dobrze znana w dziedzinie (patrz np. Carter i wsp., Nucleic Acids Res. 13: 4431-4443 (1935) oraz Kunkel i wsp., Proc.Natl.Acad.Sci. USA 82: 488 (1987)). W skrócie, podczas mutagenezy ukierunkowanej DNA zmianie ulega najpierw wyjściowy DNA, na drodze hybrydyzacji oligonukleotydu kodującego pożądaną mutację z pojedynczą nicią tego wyjściowego DNA. Po hybrydyzacji, stosowana jest polimeraza DNA, służąca syntezie całości drugiej nici, przy pomocy przyłączonego na etapie hybrydyzacji oligonukleotydu jako startera i pojedynczej nici wyjściowego DNA jako matrycy. Zatem, w rezultacie, oligonukleotyd kodujący pożądaną mutację zostaje wbudowany w uzyskany w ten sposób dwuniciowy DNA.
Mutageneza PCR jest również odpowiednia w celu uzyskania wariantów sekwencji aminokwasowej wyjściowego polipeptydu. Patrz, Higuchi, PCR Protocols, str. 177-183 (Academic Press, 1990) oraz Vallette i wsp., Nucl.Acids Res. 17: 723-733 (1989). W skrócie, w przypadku zastosowania małych ilości matrycowego DNA jako materiału wyjściowego w PCR, w celu uzyskania względnie dużych ilości specyficznego fragmentu DNA, różniącego się od sekwencji matrycy jedynie w pozycjach, w których startery różnią się od matrycy, stosuje się startery o jedynie nieznacznie zmienionej sekwencji, w stosunku do odpowiadającego im regionu na matrycy DNA.
Innym sposobem otrzymywania wariantów jest mutageneza kasetowa, oparta na technice opisanej przez Wells i wsp., Gene 34: 315-323 (1985). Wyjściowy materiał jest plazmidem (lub innym wektorem) zawierającym poddawany mutagenezie wyjściowy polipeptyd DNA. W poddawanym mutagenezie wyjściowym DNA identyfikowany jest kodon lub kodony. Po obu stronach wskazanego miejsca lub miejsc mutacji powinno znajdować się unikalne miejsce dla endonukleazy restrykcyjnej. W przypadku gdy takie miejsca nie istnieją, można je utworzyć za pomocą opisanych powyżej metod mutagenezy zależnej od oligonukleotydu, pozwalających na wprowadzenie takich miejsc w odpowiednim położeniu w wyjściowym polipeptydzie DNA. Następnie, w celu linearyzacji, plazmidowy DNA jest w tych miejscach poddawany trawieniu. Dwuniciowy oligonukleotyd kodujący sekwencję DNA znajdującą się pomiędzy miejscami restrykcyjnymi, lecz również zawierający pożądaną mutację lub mutacje syntetyzowany jest za pomocą standardowych procedur, w których dwie nici oligonukleotydu syntetyzowane są oddzielnie, a następnie poddawane wzajemnej hybrydyzacji za pomocą standardowych technik. Dwuniciowy oligonukleotyd określany jest jako kaseta. Kaseta ta zaprojektowana jest w taki sposób, żeby zawierała końce 5' i 3' kompatybilne z końcami zlinearyzowanego plazmidu, co pozwala na bezpośrednie włączenie jej do plazmidu. W rezultacie plazmid zawiera zmutowaną sekwencję DNA.
Alternatywnie, lub dodatkowo, możliwe jest określenie pożądanej sekwencji aminokwasowej, kodującej wariant polipeptydu i otrzymanie na drodze syntezy sekwencji kwasu nukleinowego kodującej wariant takiej sekwencji aminokwasowej.
W celu otrzymania wariantu regionu Fc o zmienionym powinowactwie wiązania receptora Fc lub aktywności in vitro i/lub in vivo i/lub zmienionej aktywności cytotoksyczności komórkowej zależnej od przeciwciał (ADCC) in vitro i/lub in vivo, sekwencję aminokwasową macierzystego polipeptydu poddaje się modyfikacji.
Ogólnie, modyfikacja obejmuje jedną lub więcej substytucji aminokwasowych. W jednym z rozwiązań zastąpiona reszta nie odpowiada żadnej reszcie w tej samej pozycji w jakimkolwiek z regionów Fc o natywnej sekwencji przedstawionych na Figurze 22A. Na przykład, zgodnie z tym rozwiązaniem, Pro331 z regionu ludzkiej IgG3 lub IgG1, zastąpiona jest inną niż seryna resztą (odpowiadająca jej przyrównana reszta w natywnej sekwencji ludzkiej IgG4). W jednym z rozwiązań reszta z polipeptydu
PL 209 786 B1 macierzystego, która zastąpiona jest inną resztą jest inna niż alanina i/lub nie jest resztą Ala339 z regionu Fc. W przypadku substytucji aminokwasowej zalecane jest by reszta macierzystego polipeptydu zastąpiona była resztą alaniny. Jednakże, zgodnie z niniejszym wynalazkiem brana jest pod uwagę substytucja reszty macierzystego polipeptydu jakąkolwiek inną resztą aminokwasową. Substytucja może, na przykład, mieć charakter „substytucji konserwatywnej. Takie konserwatywne substytucje zaprezentowano w Tabeli 1, pod nagłówkiem „zalecane substytucje. Bardziej istotne zmiany mogą być uzyskane w wyniku jednego lub więcej „przykładowych substytucji, które nie należą do zalecanych podstawień zawartych w Tabeli 1.
T a b e l a 1
Pierwotna reszta Przykładowe substytucje Zalecane substytucje
Ala (A) val; leu; ile val
Arg (R) lys; gln; asn lys
Asn (N) gln; his; lys; arg gln
Asp (D) glu glu
Cys (C) ser ser
Gln (Q) asn asn
Glu (E) asp asp
Gly (G) pro; ala ala
His (H) asn; gln; lys; arg arg
Ile (I) leu, val, met; ala; phe; norleucyna leu
Leu (L) norleucyna; ile; val; met, ala, phe ile
Lys (K) arg; gln; asn arg
Met (M) leu; phe; ile leu
Phe (F) leu; val; ile, ala; tyr leu
Pro (P) ala ala
Ser (S) thr thr
Thr (T) ser ser
Trp (W) tyr; phe tyr
Tyr (Y) trp; phe; thr; ser phe
Val (V) ile; leu; met; phe; ala; norleucyna leu
Istotne modyfikacje właściwości biologicznych regionu Fc można uzyskać w wyniku selekcji substytucji wywołujących silnie zróżnicowany efekt na utrzymanie (a) struktury szkieletu polipeptydu w obszarze substytucji, na przykład, konformacji harmonijki lub struktury helisy, (b) ładunku lub hydrofobowości cząsteczki w miejscu docelowym, lub (c) objętości łańcuchów bocznych. Naturalnie występujące reszty aminokwasowe podzielono na grupy w oparciu o wspólne właściwości łańcucha bocznego.
(1) hydrofobowe: norleucyna, met, ala, val, leu, ile;
(2) obojętne hydrofilowe: cys, ser, thr;
(3) kwaśne: asp, glu;
(4) zasadowe: asn, gln, his, lys, arg;
PL 209 786 B1 (5) reszty wpływające na ułożenie łańcucha: gly, pro, i (6) aromatyczne: trp, tyr, phe.
Substytucje o charakterze niekonserwatywnym dotyczą wymiany reszty należącej do jednej z tych klas na resztę należącą do innej klasy. Przykłady konserwatywnych i niekonserwatywnych substytucji aminokwasowych przedstawiono poniżej w Tabeli 8.
Jak pokazano w Przykładzie 4, możliwe jest utworzenie wariantu regionu Fc o zmienionym powinowactwie wiązania jednego lub więcej FcR. Jak zademonstrowano w tym Przykładzie, możliwe jest uzyskanie różnych klas wariantów regionu Fc, np. przedstawionych w poniższej tabeli. W przypadku gdy wariant regionu Fc posiada więcej niż jedną substytucję aminokwasową, ogólnie, lecz niekoniecznie, łączy się substytucje aminokwasowe w tych samych klasach w celu uzyskania pożądanego efektu.
T a b e l a 2
Klasy wariantów regionu Fc
Klasa Właściwość wiązania FcR Pozycja substytucji w regionie Fc
1A zredukowane wiązanie wszystkich FcyR 238, 265, 269, 270, 297*, 327, 329
1B zredukowane wiązanie zarówno FcyRII, jak i FcyRIII 239, 294, 295, 303, 338, 373, 376, 416, 435
2 wzmocnione wiązanie zarówno FcyRII, jak i FcyRIII 256, 290, 312, 326, 330, 339#, 378, 430
3 wzmocnione wiązanie FcyRII oraz brak efektu na wiązanie FcyRIII 255, 258, 267, 276, 280, 283, 285, 286, 305, 307, 309, 315, 320, 331, 337, 398
4 wzmocnione wiązanie FcyRII oraz zredukowane wiązanie dla FcyRIII 268, 272, 301, 322, 340
5 zredukowane wiązanie FcyRII oraz brak efektu na wiązanie FcyRIII 292, 324, 335, 414, 419, 438, 439
6 zredukowane wiązanie FcyRII oraz wzmocnione wiązanie FcyRIII 298, 333
7 brak efektu na wiązanie FcyRII oraz zredukowane wiązanie FcyRIII 248, 249, 252, 254, 278, 289, 293, 296, 338, 382, 388, 389, 434, 437
8 brak efektu na wiązanie FcyRII oraz wzmocnione wiązanie FcyRIII 334, 360
* wersja deglikozylowana # Zalecane połączenie z inną lub innymi modyfikacjami regionu Fc (np. ujawnionymi w niniejszym opisie)
Zgodnie z niniejszym wynalazkiem oprócz substytucji aminokwasowych opisano inne modyfikacje sekwencji aminokwasowej macierzystego regionu Fc, które służą do otrzymania wariantów regionu Fc o zmienionej funkcji efektorowej.
W celu zredukowania wiązania z FcR możliwe jest, na przykład, usunięcie jednej lub więcej reszt aminokwasowych regionu Fc. Ogólnie, w celu stworzenia wariantu regionu Fc możliwe jest wycięcie jednej lub więcej reszt regionu Fc, zidentyfikowanych tu jako reszty wpływające na wiązanie FcR (patrz poniżej, Przykład 4). Ogólnie, w takim wykonaniu można wyciąć nie więcej niż jedną do dziesięciu reszt regionu Fc. Opisywany tu region Fc, z delecją jednej lub więcej reszt aminokwasowych, zachowuje dogodnie przynajmniej 80%, i w szczególności przynajmniej 90%, a zwłaszcza przynajmniej 95% sekwencji macierzystego regionu Fc lub natywnej sekwencji ludzkiego regionu Fc.
Możliwe jest również otrzymanie wariantów regoinu Fc o zmienionej funkcji efektorowej poprzez insercje aminokwasowe. Na przykład, możliwe jest wprowadzenie przynajmniej jednej reszty aminokwasowej (np. jednej do dwóch reszt aminokwasowych, ogólnie nie więcej niż dziesięciu reszt), w sąsiedztwie jednej lub więcej reszt regionu Fc, zidentyfikowanych tu jako wpływające na wiązanie FcR. Terminem „w sąsiedztwie określa się położenie w odległości jednej do dwóch reszt aminokwasowych od zidentyfikowanych tu reszt regionu Fc. Takie warianty regionu Fc mogą wykazywać wzmocnione lub osłabione wiązanie FcR i/lub aktywność ADCC. W celu otrzymania takich wariantów insercyjnych i racjonalnego zaprojektowania wariantu regionu Fc, np. o wzmocnionym wiązaniu FcR, można dokonać oceny struktury krystalicznej polipeptydu zawierającego region wiążący FcR (np. zewnątrzkomórkowej domeny FcR) będącego przedmiotem zainteresowań i regionu Fc, do którego ma być wstawiona reszta lub reszty aminokwasowe (patrz, na przykład, Deisenhofer, Biochemistry 20(9):
PL 209 786 B1
2361-2370 (1981) oraz Burmeister i wsp., Nature 342: 379-383, (1994)). Taką insercję lub insercje, ogólnie, wprowadza się w obszarze pętli regionu Fc, a nie w obrębie struktur drugorzędowych (tj. w strukturze nici β regionu Fc.
W wyniku wprowadzenia odpowiednich modyfikacji sekwencji aminokwasowej macierzystego regionu Fc możliwe jest otrzymanie wariantu regionu Fc, który (a) skuteczniej uczestniczy w cytotoksyczności komórkowej zależnej od przeciwciał (ADCC) w obecności ludzkich komórek efektorowych i/lub (b) wiąże receptor gamma Fc (FcyR) z wyższym powinowactwem niż macierzysty polipeptyd. Takie warianty regionu Fc, ogólnie, zawierają przynajmniej jedną modyfikację aminokwasową w regionie Fc. Uważa się, że szczególnie zalecane jest połączenie modyfikacji aminokwasowych. Na przykład, wariant regionu Fc może obejmować dwie, trzy, cztery, pięć, itd. substytucji, np. w specyficznych, zidentyfikowanych tu pozycjach regionu Fc.
Zalecany region Fc macierzystego polipeptydu jest ludzkim regionem Fc, np. natywną sekwencją ludzkiego regionu Fc ludzkiej IgG1 (aliotypy A i nie-A), regionu Fc IgG2, IgG3 lub IgG4. Sekwencje te przedstawiono na Figurze 23.
W celu uzyskania regionu Fc o wzmocnionej aktywności ADCC, polipeptyd macierzysty powinien, dogodnie, wykazywać już wcześniej aktywność ADCC, np. posiadać region Fc ludzkiej IgG1 lub ludzkiej IgG3. W jednym rozwiązaniu wariant o wzmocnionej ADCC uczestniczy w ADCC istotnie skuteczniej niż przeciwciało o natywnej sekwencji regionu Fc IG1 lub IgG3 i regionu wiążącego antygen wariantu. Dogodnie, wariant zawiera substytucje dwóch lub trzech reszt w pozycjach 298, 333 i 334 regionu Fc, dogodniej mogą to być jedyne substytucje. Dogodnie substytucji poddaje się reszty w pozycjach 298, 333 i 334 (np. resztami alaniny). Ponadto, w celu otrzymania wariantu regionu Fc o wzmocnionej aktywności ADCC, możliwe jest ogólnie, otrzymanie wariantu regionu Fc o wzmocnionym powinowactwie wiązania FcyRIII, który uważany jest za istotny FcR w procesie ADCC. Na przykład, w celu otrzymania takiego wariantu, możliwe jest wprowadzenie modyfikacji aminokwasowej (np. substytucji) w obrębie macierzystego regionu Fc w jakiejkolwiek jednej lub więcej pozycjach aminokwasowych 256, 290, 298, 312, 326, 330, 333, 334, 360, 378 lub 430. Wariant o wzmocnionym powinowactwie wiązania FcyRIII może ponadto wykazywać zredukowane powinowactwo wiązania FcyRII, w szczególności zredukowane powinowactwo dla hamującego receptora FcyRIIB.
Modyfikację lub modyfikacje aminokwasowe dogodnie wprowadza się w domenie CH2 regionu Fc, ponieważ ujawnione tu doświadczenia wskazują, że domena CH2 jest istotna dla aktywności wiązania FcR. Ponadto, odmiennie niż w cytowanej powyżej literaturze, w niniejszym zgłoszeniu rozważane jest wprowadzanie modyfikacji w części regionu FC innej niż niższy region zawiasowy.
Użyteczne do modyfikacji celem otrzymania wariantu regionu Fc IgG o zmienionym powinowactwie wiązania receptora gamma (FcyR) lub aktywności pozycje aminokwasowe obejmują jedną lub więcej spośród następujących pozycji aminokwasowych: 238, 239, 248, 249, 252, 254, 255, 256, 258, 265, 267, 268, 269, 270, 272, 276, 278, 280, 283, 285, 286, 289, 290, 292, 293, 294, 295, 296, 298, 301, 303, 305, 307, 309, 312, 315, 320, 322, 324, 326, 327, 329, 330, 331, 333, 334, 335, 337, 338, 340, 360, 373, 376, 378, 382, 388, 389, 398, 414, 416, 419, 430, 434, 435, 437, 438 lub 439 regionu Fc. W celu otrzymania takich wariantów, stosowany jako matryca region macierzysty Fc dogodnie zawiera region Fc ludzkiej IgG. W przypadku substytucji reszty 331, region macierzysty Fc, dogodnie, nie jest natywną sekwencją ludzkiej IgG3, lub gdy wariant regionu Fc zawiera substytucję w pozycji 331, dogodnie wykazuje on wzrost wiązania FcR, np. FcyRII.
W celu otrzymania wariantu regionu Fc o zredukowanym wiązaniu FcyR możliwe jest wprowadzenie modyfikacji aminokwasowej w jakiejkolwiek, jednej lub więcej, pozycji aminokwasowej spośród 238, 239, 248, 249, 252, 254, 265, 268, 269, 270, 272, 278, 289, 292, 293, 294, 295, 296, 298, 301, 303, 322, 324, 327, 329, 333, 335, 338, 340, 373, 376, 382, 388, 389, 414, 416, 419, 434, 435, 437, 438 lub 439 regionu Fc.
Warianty cechujące się zredukowanym wiązaniem FcyRI, obejmują te warianty, które zawierają modyfikację aminokwasową regoinu FC w jakiejkolwiek, jednej lub więcej, spośród pozycji aminokwasowych 238, 265, 269, 270, 327 lub 329.
Warianty wykazujące zredukowane wiązanie FcyRII obejmują te warianty, które zawierają modyfikację aminokwasową regionu Fc w jakiejkolwiek, jednej lub więcej, spośród pozycji aminokwasowych 238, 265, 269, 270, 292, 294, 295, 298, 303, 324, 327, 329, 333, 335, 338, 373, 376, 414, 416, 419, 435, 438 lub 439.
Warianty regionu Fc wykazujące zredukowane wiązanie FcyRIII obejmują te warianty, które zawierają modyfikację aminokwasową regionu FC w jakiejkolwiek, jednej lub więcej, spośród pozycji
PL 209 786 B1 aminokwasowych 238, 239, 248, 249, 252, 254, 265, 268, 269, 270, 272, 278, 289, 293, 294, 295, 296, 301, 303, 322, 327, 329, 338, 340, 373, 376, 382, 388, 389, 416, 434, 435 lub 437.
Możliwe jest również otrzymanie wariantów o wzmocnionym wiązaniu jednego lub więcej FcyR. Takie warianty regionu Fc mogą zawierać, modyfikację aminokwasową w jakiejkolwiek, jednej lub więcej, spośród pozycji aminokwasowych 255, 256, 258, 267, 268, 272, 276, 280, 283, 285, 286, 290, 298, 301, 305, 307, 309, 312, 315, 320, 322, 326, 330, 331, 333, 334, 337, 340, 360, 378, 398 lub 430 regionu Fc.
Na przykład, wariant o wzmocnionej aktywności wiązania FcyR może wykazywać silniejsze wiązanie z FcyRIII i, ewentualnie, może również cechować się zredukowanym wiązaniem z FcyRII; np. wariant może zawierać modyfikację aminokwasową w pozycji 298 i/lub 333 regionu Fc.
Warianty wykazujące wzmocnione wiązanie FcyRII obejmują te warianty, które zawierają modyfikację aminokwasową w jakiejkolwiek, jednej lub więcej, spośród pozycji aminokwasowych 255, 256, 258, 267, 268, 272, 276, 280, 283, 235, 286, 290, 301, 305, 307, 309, 312, 315, 320, 322, 326, 330, 331, 337, 340, 378, 398 lub 430 regionu Fc. Takie warianty mogą również cechować się zredukowanym wiązaniem FcyRIII. Na przykład, mogą one zawierać modyfikację aminokwasową regionu Fc w jakiejkolwiek, jednej lub więcej, spośród pozycji aminokwasowych 268, 272, 298, 301, 322 lub 340.
Chociaż zmiana wiązania FcyR jest zalecana, to rozważa się tu również warianty regionu Fc o zmienionym powinowactwie wiązania noworodkowego receptora (FcRn). Uważa się, że warianty regionu Fc o zwiększonym powinowactwie wiązania FcRn posiadają dłuższy okres półtrwania w surowicy i takie cząsteczki są użyteczne w sposobach leczenia ssaków, gdzie pożądany jest długi okres półtrwania podawanego polipeptydu, np. w leczeniu przewlekłych chorób lub zaburzeń. Przeciwnie, oczekuje się, że warianty regionów Fc o zredukowanym powinowactwie wiązania FcRn posiadają krótszy okres półtrwania, i tego typu cząsteczki mogą, na przykład, być podawane ssakom w sytuacjach gdy zalecany jest skrócony okres półtrwania w krążeniu, np. w celu obrazowania diagnostycznego in vivo lub w przypadku polipeptydów wywołujących toksyczne skutki uboczne podczas krążenia przez dłuższy czas w krwioobiegu, itp. W wypadku wariantów regionu Fc o obniżonym powinowactwie wiązania FcRn jest mniej prawdopodobne, że przekroczą one łożysko i mogą być zatem użyteczne w leczeniu chorób i zaburzeń u kobiet w ciąży.
Warianty regionu Fc o zmienionym powinowactwie wiązania FcRn obejmują te warianty, które posiadają modyfikację aminokwasową w jakiejkolwiek, jednej lub więcej, spośród pozycji aminokwasowych 238, 252, 253, 254, 255, 256, 265, 272, 286, 288, 303, 305, 307, 309, 311, 312, 317, 340, 356, 360, 362, 376, 378, 380, 382, 386, 388, 400, 413, 415, 424, 433, 434, 435, 436, 439 lub 447. Te, które wykazują zredukowane wiązanie FcRn obejmują ogólnie modyfikację aminokwasową regionu Fc w jakiejkolwiek, jednej lub więcej, spośród pozycji aminokwasowych 252, 253, 254, 255, 288, 309, 386, 388, 400, 415, 433, 435, 436, 439 lub 447, natomiast te, które cechują się wzmocnionym wiązaniem FcRn obejmują zazwyczaj modyfikację aminokwasową regionu Fc w jakiejkolwiek, jednej lub więcej, spośród pozycji aminokwasowych 238, 256, 265, 272, 286, 303, 305, 307, 311, 312, 317, 340, 356, 360, 362, 376, 378, 380, 282, 413, 424 lub 434.
Wariant lub warianty polipeptydu otrzymane zgodnie z powyższym opisem mogą być poddane dalszym modyfikacjom, często zależnym od przewidywanego zastosowania polipeptydu. Modyfikacje te mogą obejmować dalsze zmiany sekwencji aminokwasowej (substytucję, insercję i/lub delecję reszt aminokwasowych), fuzję z heterologicznym polipeptydem lub polipeptydami heterologicznymi i/lub modyfikacje kowalencyjne. Takie „dalsze modyfikacje mogą być wprowadzane wcześniej, równolegle lub po opisanej powyżej modyfikacji lub modyfikacjach aminokwasowych, w których efekcie następuje zmiana wiązania receptora Fc i/lub aktywności ADCC. W jednym rozwiązaniu możliwe jest połączenie opisywanej tu modyfikacji regionu Fc z substytucjami w regionie Fc, ujawnionymi w cytowanych publikacjach w opisie stanu techniki niniejszego zgłoszenia.
Alternatywnie, lub dodatkowo, użyteczne może być połączenie powyższych modyfikacji aminokwasowych z jedną lub więcej dalszych modyfikacji aminokwasowych, zmieniających wiązanie C1q i/lub funkcję cytotoksyczności zależnej od dopełniacza regionu Fc.
Wyjściowym polipeptydem będącym tu przedmiotem zainteresowania jest zazwyczaj polipeptyd, który wiąże się z C1q i wykazuje cytotoksyczność zależną od dopełniacza (CDC). Dalsze, ujawnione powyżej, substytucje aminokwasowe służą ogólnie zmianie zdolności wyjściowego polipeptydu wiązania C1q i/lub modyfikacji jego funkcji cytotoksyczności zależnej od dopełniacza, np. w celu zredukowania, a w szczególności zniesienia, tych funkcji efektorowych. Jednakże, rozważane są tu również polipeptydy zawierające substytucje w jednej lub więcej spośród opisanych pozycji i wykazujące
PL 209 786 B1 wzmocnione wiązanie C1q i/lub funkcję cytotoksyczności zależnej od dopełniacza (CDC). Na przykład, wyjściowy polipeptyd może być niezdolny do wiązania C1q i/lub uczestniczenia w CDC a w wyniku zastosowania opisywanych tu modyfikacji możliwe jest nadanie mu tych funkcji efektorowych. Ponadto, polipeptydy posiadające wcześniej aktywność wiązania C1q, i, ewentualnie, zdolność uczestniczenia w CDC, mogą zostać poddane modyfikacjom, w wyniku których jedna, lub obie, z tych funkcji ulegną wzmocnieniu.
W celu otrzymania regionu Fc o zmienionym wiązaniu C1q i/lub funkcji cytotoksyczności zależnej od dopełniacza (CDC) do modyfikacji wybiera się ogólnie reszty aminokwasowe spośród pozycji łańcucha ciężkiego 270, 322, 326, 327, 329, 331, 333 i 334, przy czym numeracja w łańcuchu ciężkim IgG jest zgodna z indeksem EU według Kabat i wsp., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD (1991). W jednym rozwiązaniu w celu otrzymania wariantu polipeptydu o zmienionym wiązaniu C1q i/lub funkcji cytotoksyczności zależnej od dopełniacza (CDC) zmianie poddawana jest jedynie jedna z ośmiu wymienionych powyżej pozycji. W tym przypadku, zmianie podlega dogodnie jedynie reszta 270, 329 lub 322. Alternatywnie, modyfikowane mogą być dwie lub więcej spośród wymienionych reszt. W przypadku gdy substytucje mają być połączone, ogólnie łączy się substytucje zwiększające wiązanie ludzkiego C1q (np. reszty w pozycjach 326, 327, 333 i 334) lub osłabiające wiązanie ludzkiego C1q (np. reszty w pozycjach 270, 322, 329 i 331). W kolejnym rozwiązaniu możliwa jest substytucja wszystkich czterech pozycji (tj. 270, 322, 329 i 331). W celu otrzymania polipeptydu o zwiększonej zdolności wiązania ludzkiego C1q, a zwłaszcza wyższej aktywności CDC in vitro lub in vivo, dogodnie łączy się dalsze substytucje w dwóch, trzech lub wszystkich pozycji spośród 326, 327, 333 lub 334, ewentualnie z innymi substytucjami w regionie Fc.
Prolina w pozycji 329 jest konserwatywna w ludzkich IgG. Reszta ta jest dogodnie zastępowana alaniną, jednakże brana jest również pod uwagę substytucja jakimkolwiek innym aminokwasem, np. seryną, treoniną, asparaginą, glicyną lub waliną.
Prolina w pozycji 331 jest konserwatywna w ludzkiej IgG1, IgG2 i IgG3, lecz nie w IgG4 (w której w pozycji 331 występuje seryna). Reszta 331 jest dogodnie zastępowana alaniną lub innym aminokwasem, np. seryną (dla regionów IgG innych niż IgG4), glicyną lub waliną.
Lizyna 322 jest konserwatywna w ludzkich IgG i reszta ta jest dogodnie zastępowana resztą alaniny, brana jest również pod uwagę substytucja jakąkolwiek inną resztą aminokwasową, np. seryną, treoniną, glicyną lub waliną.
D270 jest konserwatywna w ludzkich IgG i reszta ta może być zastąpiona inną resztą aminokwasową, np. alaniną, seryną, treoniną, glicyną, waliną lub lizyną.
K326 jest również resztą konserwatywną w ludzkich IgG. Reszta ta może być podstawiona przez inną resztę, w tym, lecz bez ograniczenia, walinę, kwas glutaminowy, alaninę, glicynę, kwas asparaginowy, metioninę lub tryptofan, przy czym zalecany jest tryptofan.
Podobnie, E333 jest również konserwatywna w ludzkich IgG. E333 jest dogodnie zastępowana resztą aminokwasową o mniejszym łańcuchu bocznym, taką jak walina, glicyna, alanina lub seryna, przy czym zalecana jest seryna.
K334 jest resztą konserwatywną w ludzkich IgG, i która może być podstawiona inną resztą, taką jak alanina lub inną resztą.
W ludzkich IgG1 i IgG3 resztą 327 jest alanina. W celu otrzymania wariantu o zwiększonym wiązaniu C1q ta reszta alaniny może być podstawiona inną resztą, taką jak glicyna. W IgG2 i IgG4 resztą 327 jest glicyna, która, w celu osłabienia wiązania C1q, może być zastąpiona alaniną (lub inną resztą).
Jak ujawniono powyżej, możliwe jest zaprojektowanie regionu Fc o zmienionej funkcji efektorowej, np. poprzez modyfikację wiązania C1q i/lub wiązania FcR, a przez to zmianę aktywności CDC i/lub aktywności ADCC. Na przykład, możliwe jest otrzymanie wariantu regionu Fc o wzmocnionym wiązaniu C1q i wzmocnionym wiązaniu FcyRIII; np. wykazującego zarówno podwyższoną aktywność ADCC, jak i podwyższoną aktywność CDC. Alternatywnie, w celu zredukowania lub zniesienia funkcji efektorowych, możliwe jest otrzymanie wariantu regionu Fc o zredukowanej aktywności CDC i/lub zredukowanej aktywności ADCC. W innych rozwiązaniach, możliwe jest nasilenie jedynie jednej z tych aktywności i, ewentualnie, również obniżenie innej aktywności, np. w celu otrzymania wariantu regionu Fc o podwyższonej aktywności ADCC, lecz obniżonej aktywności CDC, i odwrotnie.
W odniesieniu do dalszych zmian sekwencji aminokwasowej, możliwe jest podstawienie jakiejkolwiek reszty cysteiny, która nie jest zaangażowana w utrzymanie odpowiedniej konformacji polipep22
PL 209 786 B1 tydu, ogólnie seryną, w celu zwiększenia stabilności wobec utleniania cząsteczki i zapobiegnięcia powstawania nieprawidłowego sieciowania.
Inny typ substytucji aminokwasowej służy do zmiany wzorca glikozylacji polipeptydu. Można ją uzyskać poprzez delecję jednej lub więcej jednostek węglowodanowych polipeptydu i/lub dodania jednego lub więcej miejsc glikozylacji, nieobecnych uprzednio w polipeptydzie. Glikozylacja polipeptydów związana jest zazwyczaj z powstaniem wiązań poprzez atom N lub atom O. Wiązanie poprzez atom N dotyczy przyłączenia jednostki węglowodanowej do łańcucha bocznego reszty asparaginy. Sekwencje trójpeptydowe, obejmujące reszty takie jak asparagina-X-seryna oraz asparagina-X-treonina, gdzie X jest jakimkolwiek aminokwasem za wyjątkiem proliny, są sekwencjami rozpoznawanymi do enzymatycznego przyłączenia jednostki węglowodanowej do łańcucha bocznego asparaginy. Zatem, obecność dowolnej z tych sekwencji trójpeptydowych w polipeptydzie stwarza potencjalne miejsce glikozylacji. Glikozylacja poprzez wiązanie przez atom O odnosi się do przyłączenia jednego z cukrów N-acetylogalaktozoaminy, galaktozy lub ksylozy do hydroksyaminokwasu, najczęściej seryny lub treoniny, jednakże do tego celu mogą być także wykorzystane 5-hydroksyprolina lub 5-hydroksylizyna. Wprowadzenie miejsc glikozylacji do polipeptydu przeprowadza się dogodnie poprzez zmianę sekwencji aminokwasowej, w wyniku której zawiera ona jedną lub więcej powyżej wymienionych sekwencji trójpeptydowych (dla miejsc N-glikozylacji). Zmiana ta może być dokonana również poprzez dodanie lub substytucję, jednej lub więcej reszt seryny lub treoniny, w pierwotnej sekwencji polipeptydu (dla miejsc O-glikozylacji). Przykładowy wariant glikozylacji posiada substytucję aminokwasową reszty Asn297 łańcucha ciężkiego.
Ponadto, w wyniku jednej lub więcej dalszych substytucji aminokwasowych możliwa jest zmiana klasy, podklasy lub allotypu regionu Fc, co prowadzi, w razie potrzeby, do otrzymania regionu Fc o sekwencji aminokwasowej o wyższej homologii względem innej klasy, podklasy lub allotypu. Na przykład, możliwa jest zmiana mysiego regionu Fc, dająca w rezultacie sekwencję aminokwasową bardziej homologiczną względem ludzkiego regionu Fc; możliwe jest zmodyfikowanie ludzkiego regionu Fc, allotypu nie-A, prowadzące do otrzymania ludzkiego regionu Fc IgG1 allotypu A, itp. W jednym rozwiązaniu w regionie Fc przeprowadza się modyfikację lub modyfikacje aminokwasowe w domenie CH2, które zmieniają wiązanie FcR i/lub aktywność ADCC oraz poddaje się delecji domenę CH3, lub zastępuje się ją inną domeną dimeryzacji. Dogodnie jednak domena CH3 pozostaje (oprócz ujawnionych tu modyfikacji aminokwasowych, wywołujących zmianę funkcji efektorowej).
Wariant polipeptydu może być poddany jednej lub więcej analizom pozwalającym na oszacowanie jakiejkolwiek zmiany aktywności biologicznej w porównaniu do aktywności wyjściowego polipeptydu.
Wariant polipeptydu dogodnie zachowuje zasadniczo zdolność wiązania antygenu w porównaniu do polipeptydu niezmienionego, tj. zdolność wiązania nie ulega więcej niż 23-krotnemu obniżeniu, np. nie ulega obniżeniu większemu niż około 5-krotnemu w porównaniu do polipeptydu niezmienionego. Zdolność wiązania wariantu polipeptydu może być określona za pomocą takich technik jak np. sortowanie fluorescencyjnie aktywowanych komórek (FACS) lub radioimmunoprecypitacja (RIA).
Możliwe jest określenie zdolności wariantu polipeptydu do wiązania FcR. W przypadku gdy receptor FcR jest receptorem Fc o wysokim powinowactwie FR, takim jak FcyRI, FcRn lub FcyRIIIAV158, wiązanie to może być mierzone poprzez miareczkowanie monomeru wariantu polipeptydu i pomiar związanego wariantu polipeptydu za pomocą specyficznie łączącego się z wariantem polipeptydu w standardowym teście ELISA przeciwciała (patrz, poniżej, Przykład 2). Inną analizę wiązania FcR w przypadku FcR o niskim powinowactwie opisano w Przykładach 1 i 4.
W celu określenia aktywności ADCC wariantu polipeptydu analizę ADCC in vitro, taką jak w Przykładzie 4, można przeprowadzić z użyciem różnych stosunków komórka efektorowa: komórka docelowa. Użytecznymi do takich analiz komórkami efektorowymi:komórkami docelowymi są jednojądrzaste komórki krwi obwodowej (PBMC) oraz komórki NK. Alternatywnie, lub dodatkowo, aktywność ADCC wariantu polipeptydu można oceniać in vivo, np. w analizie modelu zwierzęcego opisanego przez Clynes i wsp., PNAS (USA) 95: 652-656 (1998).
Możliwa jest również ocena zdolności wiązania wariantu z C1q oraz jego udziału w cytotoksyczności zależnej od dopełniacza (CDC).
W celu określenia wiązania C1q możliwe jest wykonanie analizy wiązania C1q w teście ELISA. W skrócie, płytki do analizy można pokrywać wariantem polipeptydu lub wyjściowym polipeptydem (kontrola) w buforze do pokrywania w temperaturze 4°C przez noc. Następnie płytki można płukać i blokować. Po płukaniu do każdej studzienki można dodać porcję C1q i inkubować w temperaturze
PL 209 786 B1 pokojowej przez 2 godziny. Po kolejnym płukaniu do każdej studzienki można dodać 100 μl owczego przeciwciała skoniugowanego z peroksydazą, skierowanego przeciwko dopełniaczowi C1q, a następnie płytki można inkubować w temperaturze pokojowej przez godzinę. Płytki można ponownie płukać buforem do płukania i do każdej studzienki można dodawać 100 μl buforu substratowego, zawierającego OPD (dichlorowodorek O-fenylenodiaminy (Sigma)). Reakcja utleniania, obserwowana na podstawie pojawienia się żółtego koloru, może być prowadzona przez 30 minut, a następnie zatrzymana przez dodanie 100 μl 4,5 N H2SO4. Absorbancję można następnie odczytywać przy długości fali (492-405) nm.
Przykładowy wariant polipeptydu w takiej analizie cechuje się „znaczną redukcję wiązania C1q. Oznacza to, że około 100 Lil/ml wariantu polipeptydu wykazuje około 50-krotną, lub większą, redukcję wiązania C1q w porównaniu do kontrolnego przeciwciała posiadającego niezmutowany region Fc IgG1. W najbardziej zalecanym rozwiązaniu wariant polipeptydu „nie wiąże C1q, tj. 100 L l/ml wariantu polipeptydu wykazuje około 100-krotną, lub większą, redukcję wiązania C1q w porównaniu do 100 L l/ml kontrolnego przeciwciała.
Innym przykładem wariantu jest wariant „posiadający wyższe powinowactwo wiązania ludzkiego C1q niż macierzysty polipeptyd. Cząsteczka taka może cechować się, na przykład, około dwukrotnym lub wyższym, a zwłaszcza około pięciokrotnym, lub wyższym, wiązaniem ludzkiego C1q, w porównaniu do macierzystego polipeptydu (np. określonym dla IC50 tych cząsteczek). Na przykład, wiązanie ludzkiego C1q może być około dwukrotnie do około 500-krotnie, a zwłaszcza od około dwukrotnie lub od około pięciokrotnie do około 1000-krotnie wyższe w porównaniu do macierzystego polipeptydu.
W celu określenia aktywacji dopełniacza można zmierzyć cytotoksyczność zależną od dopełniacza (CDC), np. zgodnie z Gazzano-Santoro i wsp., J.Immunol.Methods 202: 1633 (1996). W skrócie, poprzez wykonanie odpowiednich rozcieńczeń w buforze otrzymać można różne stężenia wariantu polipeptydu i ludzkiego dopełniacza. Komórki eksprymujące antygen, z którym wiąże się wariant polipeptydu, można rozcieńczyć do gęstości ~1x106 kom./ml. Mieszaninę wariantu polipeptydu, rozcieńczonego ludzkiego dopełniacza i komórek eksprymujących antygen można przenosić do płaskodennej, 96-studzienkowej płytki do hodowli tkankowej i inkubować przez 2 godziny w 37°C i w atmosferze 5% CO2, celem ułatwienia zależnej od dopełniacza lizy komórek. Następnie, do każdej studzienki można dodać 50 L l alamar blue (Accumed International) i inkubować przez noc w temperaturze 37°C. Absorbancję mierzy się za pomocą 96-studzienkowego fluorometru ze wzbudzeniem przy 530 nm i emisją przy 590 nm. Wyniki można wyrazić we względnych jednostkach fiuorescencji (RFU). Stężenia próbek można obliczyć na podstawie krzywej standardowej, a następnie dla wariantu polipeptydu podaje się procent aktywności w porównaniu do polipeptydu niezmienionego.
Jeszcze innym przykładem jest wariant „nieaktywujący dopełniacza. Na przykład, w analizie tej 0,6 L g/ml wariantu polipeptydu wykazuje około 0-10% aktywności CDC w porównaniu do aktywności 0,6 L g/ml przeciwciała kontrolnego z niezmutowanym regionionem Fc IgG1. W powyższej analizie CDC wariant nie przejawia żadnej aktywności CDC.
Zgodnie z wynalazkiem opisano również wariant polipeptydu o podwyższonej CDC w porównaniu do polipeptydu macierzystego, np. wykazującego, in vitro lub in vivo, około dwukrotnie do około 100-krotnie wyższą aktywność CDC (np. dla wartości IC50 każdej porównywanej cząsteczki).
A. Analiza wiązania receptora i kompleksu immunologicznego
Opracowana zgodnie z niniejszym wynalazkiem analiza wiązania receptora jest szczególnie użyteczna do określania wiązania badanej cząsteczki będącej przedmiotem zainteresowania (analitu) z receptorem w przypadku gdy powinowactwo wiązania receptora dla badanej cząsteczki jest relatywnie słabe, np. rzędu mikromoli, jak w przypadku FcyRIIA, FcyRIIB, FcyRIIIA i FcyRIIIB. W sposobie tym dochodzi do tworzenia kompleksu molekularnego o zwiększonej zachłanności wiązania receptora będącego przedmiotem zainteresowania w porównaniu do badanej cząsteczki w postaci nieskompleksowanej. Zalecany kompleks molekularny jest kompleksem immunologicznym zawierającym: (a) polipeptyd zawierający region Fc (taki jak przeciwciało lub immunoadhezyna); (b) pierwszą cząsteczkę docelową, która posiada przynajmniej dwa miejsca wiążące polipeptyd zawierający region Fc i (c) drugą cząsteczkę docelową, posiadającą przynajmniej dwa miejsca wiążące pierwszą cząsteczkę docelową.
W poniżej przedstawionym Przykładzie 1, polipeptydem zawierającym region Fc jest przeciwciało skierowane przeciwko IgE, takie jak przeciwciało E27 (Figury 4A-4B). E27, po zmieszaniu z ludzką IgE w stosunku molowym 1:1, tworzy stabilny heksamer, składający się z trzech cząsteczek E27 i trzech cząsteczek IgE. W poniższym Przykładzie 1, „pierwszą cząsteczką docelową jest chimerowa
PL 209 786 B1 postać IgE, w której fragment Fab skierowanego przeciwko VEGF przeciwciała jest połączony z fragmentem Fc ludzkiej IgE, a „drugą cząsteczką docelową jest antygen, z którym wiąże się Fab (tj. VEGF). Każda cząsteczka IgE wiąże dwie cząsteczki VEGF. VEGF również wiąże dwie cząsteczki IgE na cząsteczkę VEGF. Po dodaniu rekombinowanego ludzkiego VEGF w stosunku molowym 2:1 do heksamerów IgE:E27, heksamery ulegały połączeniu z utworzeniem postaci kompleksów o wyższej masie cząsteczkowej poprzez interakcję IgE:VEGF (Fig. 5). Region Fc przeciwciała skierowanego przeciwko IgE (anty-IgE) otrzymanego w ten sposób kompleksu immunologicznego wiąże FcR z wyższą zachłannością wiązania niż zarówno nieskompleksowane anty-IgE, jak i heksamery anty-IgE:IgE.
Również inne formy kompleksów molekularnych mogą być zastosowane w analizie wiązania receptora. Przykłady, obejmujące jedynie połączenie polipeptyd zawierający region Fc: pierwsza cząsteczka docelowa, obejmują połączenie immunoadhezyna:ligand, takie jak receptor VEGF (KDR)immunoadhezyna:VEGF oraz pełnej długości przeciwciało bispecyficzne (bsAb): pierwsza cząsteczka docelowa. Kolejny przykład połączenia polipeptyd zawierający region Fc: pierwsza cząsteczka docelowa: druga cząsteczka docelowa, obejmuje połączenie przeciwciało nieblokujące:rozpuszczalny receptor:ligand, takie jak przeciwciało any-Trk:rozpuszczalny receptor Trk:neutrofina (Urfer i wsp., J.Biol.Chem. 273 (10): 5829-5840 (1998)).
Oprócz zastosowania w analizie wiązania receptora, opisane powyżej kompleksy immunologiczne posiadają inne zastosowania, włączając ocenę funkcji polipeptydu zawierającego region Fc oraz klirensu kompleksu immunologicznego in vivo. Zatem, kompleksy immunologiczne mogą być podawane ssakom (np. w przedklinicznej fazie badań na zwierzętach) i oceniane pod kątem ich okresu półtrwania, itp.
W celu określenia wiązania receptora, polipeptyd zawierający przynajmniej domenę wiążącą receptor będący przedmiotem zainteresowania (np. zewnątrzkomórkowa domena podjednostki α FcR) może być umieszczony na fazie stałej, takiej jak płytka do analizy. Sama domena wiążąca receptor, albo białko fuzyjne receptora mogą być rozmieszczane na płytce za pomocą standardowych procedur. Przykłady białek fuzyjnych receptora obejmują białko fuzyjne receptor-transferaza S glutationu (GST), białko fuzyjne receptor-domena wiążąca chitynę, białko fuzyjne receptor-znacznik heksahistydynowy, (umieszczone na płytkach pokrytych, odpowiednio, glutationem, chityną i niklem). Alternatywnie, możliwe jest pokrywanie płytek do analizy cząsteczką wychwytującą i wiązanie białka fuzyjnego receptora poprzez fragment niereceptorowy białka fuzyjnego. Przykłady obejmują pokrycie płytki do analizy F(ab') anty-heksaHis, w celu wychwycenia fuzji receptora z końcem heksaHis lub pokrycie płytki do analizy przeciwciałem skierowanym przeciwko GST (anty- GST), w celu wychwycenia białka fuzyjnego receptor-GST. W innych rozwiązaniach, oceniane może być wiązanie komórek eksprymujących przynajmniej domenę wiążącą receptora. Komórki mogą być naturalnie występującymi komórkami hematopoetycznymi eksprymującymi FcR będący przedmiotem zainteresowania lub komórkami transformowanymi kwasem nukleinowym kodującym FcR lub jego domenę wiążącą, przy czym taka domena wiążąca ulega ekspresji na powierzchni komórek do analizy.
Następnie, opisany powyżej kompleks immunologiczny dodawany jest do płytek pokrytych receptorem i całość inkubowana jest przez czas wystarczający do związania receptora przez badaną cząsteczkę. Płytki można następnie płukać w celu usunięcia nie związanych kompleksów, po czym wiązanie badanej cząsteczki można wykrywać za pomocą znanych metod. Na przykład, wiązanie można wykrywać za pomocą reagenta (np. przeciwciała lub jego fragmentu) specyficznie wiążącego się z badaną cząsteczką, i, ewentualnie, sprężonego z wykrywalnym znacznikiem (wykrywalne znaczniki i metody sprzęgania polipeptydami opisano poniżej, w rozdziale zatytułowanym „Nieterapeutyczne zastosowania wariantu polipeptydu).
Dogodnie, reagenty mogą znajdować się w zestawie do analizy, tj. opakowana kombinacja reagentów do połączenia z badaną cząsteczką przy analizie zdolności badanej cząsteczki do wiązania receptora będącego przedmiotem zainteresowania. Zestawy takie powinny zawierać składniki w określonych wcześniej stosunkach. Zestaw może zawierać pierwszą cząsteczkę docelową i/lub drugą cząsteczkę docelową, ewentualnie obie w kompleksie ze sobą. Zestaw może również zawierać płytki do analizy, pokryte receptorem lub jego domeną wiążącą (np. zewnątrzkomórkową domeną podjednostki α FcR). Zazwyczaj, w skład zestawu wchodzą również inne reagenty, takie jak przeciwciało wiążące się swoiście z badaną cząsteczką do analizy, bezpośrednio lub pośrednio znakowane za pomocą znacznika enzymatycznego. W przypadku gdy znacznikiem wykrywalnym jest enzym, zestaw zawiera także wymagane przez enzym substraty i kofaktory (np. prekursor substratu dostarczający wykrywalny chromofor lub fluorofor). Ponadto, mogą być zawarte inne dodatki, takie jak stabilizatory,
PL 209 786 B1 bufory (np. bufor do analizy i/lub bufor do płukania i lizaty) itp. Względne ilości różnych reagentów mogą podlegać szerokim zmianom, po to by zapewnić stężenia reagentów w roztworze, które pozwalają na zasadnicze zoptymalizowanie czułości analizy. Szczególnie, reagenty mogą być udostępniane w postaci suchych proszków, zazwyczaj liofilizowanych, zawierających zaróbki, które po rozpuszczeniu zapewniają odpowiednie stężenie reagentu w roztworze. Zestaw zawiera również odpowiednie instrukcje do przeprowadzenia analizy.
B. Otrzymywanie przeciwciała
W zalecanym rozwiązaniu polipeptyd zawierający region Fc, modyfikowany zgodnie z niniejszym opisem, jest przeciwciałem. Techniki otrzymywania przeciwciał obejmują:
(i) Selekcję i otrzymywanie antygenu
W przypadku gdy polipeptyd jest przeciwciałem, skierowany jest on przeciwko antygenowi będącemu przedmiotem zainteresowania. Zalecany antygen jest polipeptydem istotnym biologicznie, a podawanie przeciwciała dotkniętym chorobą i zaburzeniem ssakom może przynieść im korzyść terapeutyczną. Jednakże brane są również pod uwagę przeciwciała skierowane przeciwko antygenom niepolipeptydowym (takim jak antygeny glikolipidowe związane z guzem nowotworowym; patrz Patent USA nr 5,091,178).
W przypadku, gdy antygen jest polipeptydem może on być cząsteczką przezbłonową (np. receptorem) lub ligandem, takim jak czynnik wzrostu. Przykładowe antygeny obejmują cząsteczki, takie jak renina; hormon wzrostu, włączając ludzki hormon wzrostu i wołowy hormon wzrostu; czynnik uwalniający hormon wzrostu; hormon przytarczyczny; hormon stymulujący tarczycę; lipoproteiny; alfa-1-antytrypsynę; łańcuch A insuliny; łańcuch B insuliny; proinsulinę, hormon folikulotropowy; kalcytoninę; hormon lutenizujący; glukagon; czynniki krzepnięcia, takie jak czynnik VIIIC, czynnik IX, czynnik tkankowy (TF) oraz czynnik von Wilebrand'a; czynniki przeciwkrzepliwe, takie jak Białko C; przedsionkowy czynnik natriuretyczny; surfaktant płucny; aktywator plazminogenu, taki jak urokinaza lub ludzki aktywator plazminogenu moczu, lub też tkankowy aktywator plazminogenu (t-PA); bombezynę; trombinę; hemopoetyczny czynnik wzrostu; czynnik martwicy nowotworu alfa i beta; enkefalinazę; RANTES (czynnik regulowany przez aktywację, zazwyczaj ekspresjonowany i wydzielany przez komórki T); ludzkie makrofagowe białko zapalne (MIP-1-alfa); albuminę surowicy krwi, taką jak ludzka albumina surowicy; substancję hamującą Muellerian; łańcuch A relaksyny; łańcuch B relaksyny; prorelaksynę; mysi peptyd związany z gonadotropiną; białko drobnoustrojowe, takie jak beta-laktamaza; DNaza; IgE; antygen związany z cytotoksycznym limfocytem T (CTLA), takie jak CTLA-4; inhibinę; aktywinę; czynnik wzrostu śródbłonka naczyniowego (VEGF); receptory hormonów lub czynników wzrostu; białko A lub D; czynniki reumatoidalne; czynnik neurotroficzny, taki jak kościopochodny czynnik neurotroficzny (BDNF), neutrofina 3, 4, 5 lub 6 (NT-3, NT-4, NT-5 lub NT-6); lub czynnik wzrostu nerwów, taki jak NGF-β; płytkopochodny czynnik wzrostu (PDGF); czynnik wzrostu fibroblastów, taki jak aFGF i bFGF; czynnik wzrostu naskórka (EGF); transformujący czynnik wzrostu (TGF), taki jak TGF-alfa i TGF-beta, włączając TGF-e1, TGF-e2, TGF-e3, TGF-e4 lub TGF-e5; insulinopodobny czynnik wzrostu I i II (IGF-I i IGF-II); des(1-3)-IGF (mózgowy IGF-I), białka wiążące insulinopodobny czynnik wzrostu; białka CD, takie jak CD3, CD4, CD8, CD19 i CD20; erytropoetynę; czynniki osteoindukcyjne; immunotoksyny; białko morfogenetyczne kości (BMP); interferon, taki jak interferon alfa, beta i gamma; czynniki stymulujące powstawanie kolonii (CSF), np. M-CSF, GM-CSF i G-CSF; interleukiny (IL), np. IL-1 do IL-10; dysmutazę nadtlenkową; receptory komórek T; białka powierzchniowo-błonowe; czynnik przyspieszający rozkład, antygen wirusowy, taki jak np. fragment otoczki AIDS; białka transportowe; receptory zasiedlania; adresyny; białka regulatorowe; integryny, takie jak CD11a, CD11b, CD11c, CD18, ICAM, VLA-4 i VCAM; antygen związany z guzem nowotworowym, taki jak receptor HER-2, HER3 lub KER4; oraz fragmenty jakiegokolwiek z wyżej wymienionych polipeptydów.
Zalecanymi cząsteczkami docelowymi dla przeciwciał tu opisanych są białka CD, takie jak CD3, CD4, CD8, CD19, CD20 i CD34; białka wchodzące w skład rodziny receptora ErbB, takie jak receptor EGF, receptor HER2, HER3 lub HER4; cząsteczki adhezji komórkowej, takie jak LFA-1, Mac1, p150.95, VLA-4, ICAM-1, VCAM, integryna α4/β7 oraz integryna αν/β3, zawierająca albo jej podjednostkę α albo β (np. przeciwciała antyCD11a, anty-CD18 lub anty-CD11b); czynniki wzrostu, takie jak VEGF); czynnik tkankowy (TF); interferon alfa (α-lFN); interleukinę, taką jak IL-8; IgE; antygeny grupowe krwi; receptor flk2/flt3; receptor otyłości OB; receptor mpl; CTLA-4; białko C, itp.
Rozpuszczalne antygeny lub ich fragmenty, ewentualnie sprężone z innymi cząsteczkami, mogą być stosowane jako immunogeny do produkcji przeciwciał. W przypadku cząsteczek przezbłonowych, takich jak receptory, możliwe jest zastosowanie jako immunogenów ich fragmentów (np. ze26
PL 209 786 B1 wnątrzkomórkowej domeny receptora). Alternatywnie, rolę immunogenów mogą odgrywać cząsteczki ekspresjonujące cząsteczki przezbłonowe. Komórki te mogą pochodzić z naturalnego źródła (np. linie komórek nowotworowych) lub mogą być otrzymane drogą transformacji z zastosowaniem technik rekombinacji, mających na celu uzyskanie ekspresji cząsteczki przezbłonowej. Inne antygeny i ich postacie, użyteczne do otrzymywania przeciwciał są oczywiste dla specjalistów w dziedzinie.
(ii) Przeciwciała poliklonalne
Przeciwciała poliklonalne są wzbudzane dogodnie w organizmach zwierzęcych poprzez podskórne (sc) lub wewnątrzotrzewne (ip) wstrzyknięcia odpowiedniego antygenu i adiuwantu. Użyteczne może być sprzęganie odpowiednio wybranego antygenu z białkiem o właściwościach immunogennych w immunizowanym gatunku, np. hemocyjaniną ze skałoczepa, albuminą surowicy, tyroglobuliną wołową lub inhibitorem trypsyny z soi z użyciem czynnika dwufunkcyjnego lub derywatyzującego, na przykład, estru maleimidobenzoilowego sukcynoimidu (sprzęganie przez reszty cysteiny), N-hydroksysukcynoimidu (przez reszty lizyny), glutaraldehydu, bezwodnika bursztynowego, SOCl2 lub R1N=C=NR, gdzie R i R1 są różnymi grupami alkilowymi.
Zwierzęta immunizuje się przeciwko antygenowi, koniugatom immunogennym lub pochodnym poprzez łączenie, np. 100 μg lub 5 μg, białka lub koniugatu (odpowiednio dla królików lub myszy) z trzema objętościami kompletnego adiuwanta Freunda i wstrzykuje się śródskórnie w wielu miejscach. Miesiąc później zwierzęta szczepione są dawką przypominającą, poprzez podskórne wstrzyknięcie w wielu miejscach 1/5 do 1/10 pierwotnej ilości peptydu lub koniugatu w kompletnym adiuwancie Freunda. 7 do 14 dni później, zwierzęta skrwawia się i oznacza się miano przeciwciała w surowicy. Zwierzętom podaje się dawki przypominające aż do uzyskania maksymalnego miana. Dogodne dawki przypominające zawierają koniugat tego samego antygenu, lecz połączony z innym białkiem i/lub za pomocą innego reagenta sieciującego. Koniugaty można także otrzymać w hodowli komórek rekombinowanych jako białka fuzyjne. Również czynniki agregujące, takie jak ałun, mogą być odpowiednie do zastosowannia w celu wzmacniania odpowiedzi immunologicznej.
(iii) Przeciwciała monoklonalne
Przeciwciała monoklonalne mogą być otrzymane przy użyciu metody z zastosowaniem hybrydom, opisanej po raz pierwszy przez Kohler i wsp., Nature, 256:495 (1975) lub metody rekombinacji DNA (Patent U.S.A. Nr 4,816,567).
W metodzie z zastosowaniem hybrydom, myszy lub inne organizmy zwierzęce gospodarza, takie jak chomiki lub małpy makaki, szczepi się (jak opisano powyżej), w celu otrzymania limfocytów produkujących lub zdolnych do produkcji przeciwciał swoiście wiążących białko zastosowane do immunizacji. Alternatywnie, możliwa jest immunizacja in vitro limfocytów. Następnie limfocyty poddaje się fuzji z komórkami szpiczaka, za pomocą odpowiedniego czynnika fuzyjnego, takiego jak glikol polietylenowy, co pozwala na uzyskanie komórek hybrydoma (Goding, Monoclonal Antibodies: Principles and Practice, str. 59-103 (Academic Press, 1986)).
Tak otrzymane komórki hybrydoma wysiewa się i hoduje w odpowiedniej pożywce hodowlanej, zawierającej dogodnie jedną lub więcej substancji hamujących wzrost lub przeżycie macierzystych komórek szpiczaka, jakie nie uległy fuzji. Na przykład, jeżeli macierzyste komórki szpiczaka nie posiadają enzymu fosforybozylotransferazy hipoksantyno-guaninowej (HGPRT lub HPRT), pożywka hodowlana dla hybrydom zazwyczaj będzie zawierała hipoksantynę, aminopterynę i tymidynę (pożywka HAT), które to substancje zapobiegają wzrostowi komórek nieposiadających HGPRT.
Zalecanymi komórkami szpiczaka są komórki wydajnie ulegające fuzji, wspomagające stabilną produkcję na wysokim poziomie przeciwciała przez wyselekcjonowane komórki produkujące przeciwciało oraz wrażliwe na pożywkę typu HAT. Wśród tych komórek, zalecanymi liniami komórkowymi szpiczaka są linie komórkowe pochodzące z mysich guzów MOPC-21 i MPC-11, dostępne w Salk Institute Cell Distribution Center, San Diego, California USA oraz komórki SP-2 lub X63-Ag8-653, dostępne w American Type Culture Collection, Rockville, Maryland, USA. Ludzkie linie komórkowe szpiczaka i mysio-ludzkie linie komórkowe hetero-szpiczkowe zostały również opisane jako odpowiednie do produkcji ludzkich przeciwciał monoklonalnych (Kozbor, J.Immunol., 133: 3001 (1984); Brodeur i wsp., Monoclonal Antibody Production Techniques and Applications, str. 51-63 (Marcel Dekker, Inc., New York, 1987)).
Pożywkę hodowlaną, w której rosną komórki hybrydoma analizuje się pod kątem produkcji przeciwciał monoklonalnych skierowanych przeciwko antygenowi. Dogodnie, określa się swoistość wiązania wyprodukowanego przez komórki hybrydoma przeciwciała monoklonalnego, na drodze imPL 209 786 B1 munoprecypitacji lub analizy wiązania in vitro, takiej jak test radioimmunologiczny (RIA) lub test immunoenzymatyczny (ELISA).
Po dokonaniu identyfikacji komórek hybrydoma produkujących przeciwciało o pożądanej swoistości, powinowactwie i/lub aktywności klony te można subklonować metodą ograniczających rozcieńczeń i hodować według standardowych metod (Goding, Monoclonal Antibodies: Principles and Practoce, str. 59-103 (Academic Press, 1986)). Odpowiednie do tego celu pożywki hodowlane obejmują, na przykład, D-MEM lub RPMI-1640. Ponadto, komórki hybrydoma można hodować in vivo w postaci wysięku nowotworowego u zwierząt.
Wydzielane przez subklony przeciwciała monoklonalne odpowiednio oddziela się od pożywki hodowlanej, płynu wysiękowego lub surowicy konwencjonalnymi metodami oczyszczania immunoglobulin, takimi jak chromatografia na sefarozie z białkiem A, chromatografia na hydroksylacie, elektroforeza żelowa, dializa lub chromatografia powinowactwa.
DNA kodujący przeciwciała monoklonalne izoluje się i sekwencjonuje za pomocą konwencjonalnych procedur (np. poprzez zastosowanie sond oligonukleotydowych, zdolnych do specyficznego wiązania genów kodujących łańcuchy ciężkie i lekkie przeciwciał monoklonalnych). Komórki hybrydoma stanowią zalecane źródło takiego DNA. W celu uzyskania syntezy przeciwciał monoklonalnych w rekombinowanych komórkach gospodarza wyizolowany DNA można umieszczać w wektorach ekspresyjnych, którymi transfekuje się następnie komórki gospodarza, takie jak komórki E.coli, małpie komórki COS, komórki jajnika chomika chińskiego (CHO) lub komórki szpiczaka, które w inny sposób nie produkują białka immunoglobuliny. Rekombinowaną produkcję przeciwciał opisano bardziej szczegółowo poniżej.
W kolejnym rozwiązaniu, przeciwciała lub ich fragmenty, mogą zostać wyizolowane z biblioteki fagowej przeciwciał, utworzonej za pomocą technik opisanych w McCafferty i wsp., Nature, 348: 552-554 (1990). Clackson i wsp., Nature, 352: 624-628 (1991) oraz Marks i wsp., J.Mol.Biol., 222: 581-597 (1991) opisali izolację, odpowiednio, mysich i ludzkich przeciwciał przy użyciu bibliotek fagowych. Kolejne publikacje opisują produkcję ludzkich przeciwciał o wysokim powinowactwie (rzędu nM) za pomocą tasowania łańcuchów (Marks i wsp., Bio/Technology, 10: 779-783 (1992)) oraz kombinatorycznego zakażenia, jak również rekombinacji in vivo, jako strategii pozwalającej na otrzymanie bardzo dużych bibliotek fagowych (Waterhouse i wsp., Nuc.Acids.Res., 21: 2265-2266 (1993)). Techniki te są zatem alternatywnymi, względem tradycyjnej metody z zastosowaniem hybrydom, sposobami izolacji przeciwciał monoklonalnych.
DNA może również podlegać modyfikacjom, na przykład przez substytucję sekwencji kodującej ludzkie domeny stałe łańcucha ciężkiego i lekkiego w miejscu homologicznych mysich sekwencji (Patent USA nr 4,816,567; Morrison i wsp., Proc.Natl. Acad.Sci. USA, 81: 6351 (1984)) lub przez kowalencyjne łączenie sekwencji kodującej immunoglobulinę z całą lub częścią sekwencji kodującej polipeptyd nie-immunoglobulinowy.
Zazwyczaj, takie polipeptydy nie-immunoglobulinowe podstawiane są za domeny stałe przeciwciała lub za domeny zmienne jednego miejsca przyłączającego antygen przeciwciała, w celu otrzymania chimerowych, biwalentnych przeciwciał, zawierających jedno miejsce przełączania antygenu o swoistości wobec jednego antygenu i drugie miejsce przyłączania antygenu, wykazujące swoistość dla innego antygenu.
(iv) Przeciwciała humanizowane i ludzkie
Humanizowane przeciwciało posiada jedną lub więcej reszt aminokwasowych wprowadzonych z organizmu innego niż ludzki. Takie niepochodzące z organizmu człowieka reszty aminokwasowe określane są często jako reszty „importowane, zazwyczaj pobierane z „importowanej domeny zmiennej. Humanizacja może być przeprowadzona zasadniczo zgodnie z metodą Winter i wsp., (Jones i wsp., Nature, 321: 522-525 (1986), Riechmann i wsp., Nature, 332: 323-327 (1988); Verhoeyen i wsp., Sciene, 239: 1534-1536 (1988)), przez substytucję sekwencji CDR gryzoni lub sekwencji CDR dla odpowiednich sekwencji ludzkiego przeciwciała. Zatem, takie „humanizowane przeciwciała są przeciwciałami chimerowymi (Patent USA nr 4,816,567), w których zasadniczo mniej niż całość ludzkiej domeny zmiennej została podstawiona odpowiadającą temu obszarowi sekwencją pochodzącą z innego niż człowiek gatunku. W praktyce, przeciwciała humanizowane są zazwyczaj ludzkimi przeciwciałami, w obrębie których pewne reszty CDR i, ewentualnie, pewne reszty FR, podstawiono resztami pochodzącymi z analogicznych miejsc w przeciwciałach gryzoni.
Wybór ludzkich domen zmiennych, zarówno łańcucha lekkiego, jak i ciężkiego, do zastosowania w metodzie otrzymywania przeciwciał humanizowanych jest bardzo istotny ze względu na obniże28
PL 209 786 B1 nie ich antygenności. Zgodnie z tzw. metodą best-fit, sekwencja domeny zmiennej przeciwciała gryzonia podlega przeszukiwaniu wobec całej biblioteki znanych ludzkich sekwencji domeny zmiennej. Ludzka sekwencja, najbliższa sekwencji gryzonia, przyjmowana jest jako ludzki region zrębowy przeciwciała humanizowanego (Sims i wsp., J.Immunol., 151: 2296 (1993); Chothia i wsp., J.Mol.Biol., 196: 901 (1987)). W innej metodzie wykorzystywany jest szczególny region zrębowy, pochodzący z sekwencji najwyż szej zgodnoś ci wszystkich ludzkich przeciwciał należących do danej podgrupy łańcuchów lekkich lub ciężkich. Ten sam region zrębowy może być zastosowany do otrzymania kilku różnych przeciwciał humanizowanych (Carter i wsp., Proc.Natl.Acad.Sci.USA, 89: 4285 (1992); Presta i wsp., J.Immunol., 151: 2623 (1993)).
Istotne jest również, żeby przeciwciała były humanizowane z zachowaniem wysokiego powinowactwa do antygenu i innych zalecanych właściwości biologicznych. W celu osiągnięcia takiego rezultatu, zgodnie z zalecanym sposobem, przeciwciała humanizowane otrzymuje się w wyniku analizy sekwencji i różnych zaprojektowanych produktów humanizowanych, za pomocą trójwymiarowych modeli wyjściowych i sekwencji humanizowanych. Trójwymiarowe modele immunoglobulin są powszechnie dostępne i znane specjalistom w dziedzinie. Dostępne są również programy komputerowe prezentujące i wykazujące prawdopodobną konformację trójwymiarowej struktury wybranych sekwencji immunoglobulin. Analiza ich pozwala na określenie prawdopodobnej roli reszt w funkcjonowaniu badanej sekwencji immunoglobuliny, tj. określenie wpływu tych reszt na zdolność badanej immunoglobuliny do wiązania antygenu. W ten sposób, możliwe jest dokonanie wyboru reszt FR i połączenie z sekwencjami biorcy i importowanymi w sposób pozwalający na uzyskanie pożądanych właściwości przeciwciała, takich jak zwiększone powinowactwo względem docelowego antygenu lub antygenów. Ogólnie, reszty CDR bezpośrednio i istotnie uczestniczą w wiązaniu antygenu.
Alternatywnie, możliwe jest obecnie otrzymanie zwierząt transgenicznych (np. myszy) zdolnych, po immunizacji, do produkcji pełnego zestawu ludzkich przeciwciał, przy braku produkcji immunoglobulin endogennych. Na przykład, opisano, że homozygotyczna delecja regionu genu łączącego łańcuch ciężki przeciwciała (JH) w chimerowych i zarodkowych mysich mutantach skutkuje całkowitym zahamowaniem produkcji endogennych przeciwciał. Przeniesienie macierzy genów immunoglobulin ludzkiej linii zarodkowej do takiej zmutowanej linii zarodkowej myszy wywołuje po prowokacji antygenem produkcję przeciwciał ludzkich. Patrz np., Jakobovits i wsp., Proc.Natl.Acad.Sci.USA, 90: 2551 (1993); Jakobovits i wsp., Nature, 362: 255-258 (1993); Bruggermann i wsp., Year in Immuno., 7:33 (1993) oraz Duchosal i wsp., Nature, 355: 258 (1992). Ludzkie przeciwciała mogą również być otrzymane z bibliotek prezentacji na fagach (Hoogenboom i wsp., J.Mol.Biol., 227: 381 (1991); Marks i wsp., J.Mol.Biol., 222: 581-597 (1991); Vaughan i wsp., Nature Biotech, 14:309 (1996)).
(v) Przeciwciała wieloswoiste
Przeciwciała wieloswoiste wykazują specyficzność wiązania względem przynajmniej dwóch różnych antygenów. Cząsteczki takie zazwyczaj wiążą jedynie dwa antygeny (tj. są przeciwciałami biswoistymi, BsAb), jednak pojęcie to obejmuje przeciwciała o dodatkowych swoistościach, takie jak przeciwciała o potrójnej swoistości. Przykłady BsAb obejmują przeciwciała posiadające jedno ramię skierowane przeciwko antygenowi komórki nowotworowej, a drugie skierowane przeciwko cytotoksycznej cząsteczce wzbudzającej, takiej jak anty-FcYRI/anty-CD15, anty-p185HER2/FcYRIII (CD16), anty-CD3/anty-uzłośliwione komórki B (1D10), anty-CD3/anty185HER2, anty-CD3/anty-p97, antyCD3/przeciwko komórce raka nerki, anty-CD3/anty-OVCAR-3, antyCD3/L-D1 (przeciwko rakowi jelita grubego), anty-CD3/anty-analog czynnika stymulującego melanocyty, anty-receptor EGF/anty-CD3, anty-CD3/anty-CAMA1, anty-CD3/anty-CD19, anty-CD3/moV18, anty-cząsteczka adhezji komórek nerwowych (NCAM)/anty-CD3, białko wiążące folian(FBP)/anty-CD3, związany z rakiem anty-antygen AMOC-31 (ang. anti-pan carcinoma associated antigen)(AMOC-31)/anty-CD3; BsAb o jednym ramieniu wiążącym swoiście antygen rakowy i drugim, wiążącym toksynę, takie jak anty-saporyna/anty-Id-1, anty-CD22/anty-saporyna, anty-CD7/anty-saporyna, anty-CD38/anty-saporyna, anty-CEA/przeciwko łańcuchowi A rycyny, anty-interferon-a(IFN-a)/przeciwko idiotypowi hybrydomu, anty-CEA/anty-alkaloid winka; BsAb do konwersji enzymatycznie aktywowanych proleków, takich jak anty-CD30/anty-alkaliczna fosfataza (która katalizuje zamianę proleku fosforanu mitomycyny do alkoholu mitomycynowego); BsAb, które mogą być stosowane jako czynniki fibrynolityczne, takie jak antyfibryna/anty-tkankowy aktywator plazminogenu (tPA), anty-fibryna/anty-aktywator plazminogenu typu urokinazy (uPA); BsAb do kierowania kompleksów immunologicznych do receptorów powierzchniowo-komórkowych, takie jak anty-lipoproteina o niskiej gęstości (LDL)/anty-receptor Fc (np. FcyRI, FcyRII lub FcyRIII); BsAb do zastosowania w terapii chorób zakaźnych, takie jak anty-CD3/anty-wirus
PL 209 786 B1 opryszczki (HSV), anty-receptor komórek T:kompleks CD3/anty-wirus grypy, anty-FcyR/anty-HIV; BsAb do wykrywania nowotworów in vitro lub in vivo, takie jak anty-CEA/anty-EOTUBE, antyCEA/anty-DPTA, anty-p185HER”/anty-hapten; BsAb jako adiuwanty szczepionkowe; oraz BsAb jako narzędzia diagnostyczne, takie jak anty-królicza IgG/anty-ferrytyna, anty-peroksydaza chrzanowa (HRP)/anty-hormon, anty-somatostatyna/anty-substancja P, anty-HRP/anty-FITC, anty-CEA/anty-β-galaktozydaza. Przykłady przeciwciał o potrójnej swoistości obejmują anty-CD3/anty-CD4/anty-CD37, anty-CD3/anty-CD5/anty-CD37 oraz anty-CD3/anty-Cd8/anty-CD37. Przeciwciała o podwójnej swoistości można otrzymywać w postaci pełnej długości przeciwciał lub fragmentów przeciwciał (np. przeciwciała o podwójnej swoistości F(ab')2).
Metody otrzymywania przeciwciał o podwójnej swoistości są znane w dziedzinie. Tradycyjne wytwarzanie pełnej długości przeciwciał o podwójnej swoistości opiera się na koekspresji dwóch par łańcucha ciężkiego-łańcucha lekkiego immunoglobulin, w których dwa łańcuchy posiadają różną swoistość (Millstein i wsp., Nature, 305: 537-539 (1983)). Z powodu losowego doboru łańcuchów ciężkich i lekkich hybrydomy te (kwadromy) wytwarzają potencjalnie mieszaninę 10 różnych cząsteczek przeciwciał, z których jedynie jedna posiada właściwą strukturę o podwójnej swoistości. Oczyszczenie tej właściwej cząsteczki, zazwyczaj drogą chromatografii powinowactwa, jest niewygodne, a wydajność procesu jest niska. Podobne procedury opisano w WO 93/08829 i w Traunecker i wsp., EM30 J., 10:3655-3659 (1991).
Zgodnie z innym podejściem, domeny zmienne przeciwciała o pożądanej swoistości wiązania (miejsca połączenia przeciwciało-antygen) poddaje się fuzji z sekwencjami domeny stałej immunoglobuliny. Fuzja ta dogodnie zachodzi z domeną stałą łańcucha ciężkiego immunoglobuliny, zawierającą przynajmniej część regionu zawiasowego, regionów CH2 i CH3. Dogodnie przynajmniej jeden z produktów fuzji obejmuje pierwszy region stały z łańcucha ciężkiego (CH1), zawierający miejsce niezbędne do wiązania łańcucha lekkiego. DNA kodujące fuzje łańcuchów ciężkich immunoglobuliny oraz, w razie potrzeby, łańcuchów lekkich immunoglobuliny, wstawia się do oddzielnych wektorów ekspresyjnych, którymi następnie kotransfekuje się odpowiednie komórki gospodarza. Pozwala to na dużą elastyczność dostosowywania wzajemnych proporcji trzech fragmentów polipeptydów w przypadku rozwiązań, w których stosuje się nierówne proporcje trzech łańcuchów polipeptydowych, celem zapewnienia optymalnej wydajności. Możliwe jest, jednakże, wstawienie sekwencji kodujących dwa lub trzy łańcuchy polipeptydowe w jednym wektorze ekspresyjnym, gdy ekspresja przynajmniej dwóch łańcuchów polipeptydowych w równych proporcjach zapewnia wysoką wydajność, lub gdy proporcje te nie mają żadnego szczególnego znaczenia.
W zalecanym tego rodzaju rozwiązaniu, przeciwciała o podwójnej swoistości składają się z hybrydowego łańcucha ciężkiego immunoglobuliny o pierwszej swoistości wiązania w obszarze jednego ramienia, i pary hybrydowych łańcuchów, ciężkiego i lekkiego immunoglobuliny (dostarczającej drugą swoistość wiązania) na drugim ramieniu. Zaobserwowano, że taka asymetryczna struktura ułatwia rozdzielanie pożądanego składnika o podwójnej swoistości od niepożądanych połączeń łańcuchów immunoglobulin, ponieważ oddzielanie cząsteczek jest łatwiejsze, gdy łańcuch lekki immunoglobuliny obecny jest jedynie w połowie struktury cząsteczki o podwójnej swoistości. Obserwację tę ujawniono w WO 94/04690. Więcej szczegółów na temat otrzymywania przeciwciał o podwójnej swoistości można znaleźć, na przykład, w Suresh i wsp., Methods in Enzymology, 121: 210 (1986). Zgodnie z innym podejściem zaprezentowanym w WO96/27011, powierzchnia pomiędzy parą cząsteczek przeciwciał może zostać zaprojektowana tak, by procent heterodimerów odzyskiwanych z hodowli komórek rekombinowanych był maksymalny. Zalecana powierzchnia obejmuje przynajmniej część domeny CH3 domeny stałej przeciwciała. W prezentowanym sposobie, jeden, lub więcej małych, aminokwasowych łańcuchów bocznych z powierzchni pierwszej cząsteczki przeciwciała zastępuje się większymi łańcuchami bocznymi (np. tyrozyną lub tryptofanem). Kompensujące „jamy, o rozmiarach identycznych lub zbliżonych do rozmiarów większego łańcucha lub łańcuchów bocznych tworzy się na powierzchni drugiej cząsteczki przeciwciała poprzez zastąpienie dużych aminokwasowych łańcuchów bocznych mniejszymi (np. alaniny lub treoniny). Sposób ten zapewnia wzrost wydajności otrzymywania heterodimerów w stosunku do niepożądanych produktów końcowych, takich jak homodimery.
Przeciwciała o podwójnej swoistości obejmują przeciwciała sieciowane lub „heterokoniugatowe. Na przykład, jedno z przeciwciał heterokoniugatu może być sprzęgnięte z awidyną, drugie z biotyną. Zastosowanie takich przeciwciał zaproponowano do nakierowywania, na przykład, komórek układu immunologicznego na komórki niepożądane (Patent USA nr 4,676,980) oraz do leczenia infekcji HIV (WO 91/00360, WO 92/200373 oraz EP 03089). Przeciwciała heterokoniugatowe można
PL 209 786 B1 otrzymać za pomocą jakiejkolwiek metody sieciowania. Odpowiednie czynniki umożliwiające takie sieciowanie są znane w dziedzinie i ujawnione w Patencie USA nr 4,676,930, wraz z licznymi technikami sieciowania.
Bierze się również pod uwagę przeciwciała o więcej niż dwóch swoistościach. Na przykład, można otrzymywać przeciwciała o potrójnej swoistości. Tutt i wsp., J.Immunol.147: 60 (1991).
Chociaż polipeptyd będący przedmiotem zainteresowania stanowi dogodnie przeciwciało, to bierze się tu również pod uwagę inne polipeptydy zawierające region Fc, które można modyfikować, zgodnie z opisanymi tu sposobami. Przykładem takiej cząsteczki jest immunoadhezyna.
C. Otrzymywanie immunoadhezyny.
Najprostsza immunoadhezyna zawiera domenę lub domeny wiążące adhezyny (np. zewnątrzkomórkową domenę receptora (EDC)) wraz z regionem Fc łańcucha ciężkiego immunoglobuliny. Zwykle, w celu otrzymania immunoadhezyny według wynalazku, kwas nukleinowy, kodujący domenę wiążącą tej adhezyny jest poddawany fuzji od strony C-końca z kwasem nukleinowym kodującym N-koniec sekwencji domeny stałej immunoglobuliny, możliwe są, jednakże, również fuzje od strony N-końca.
Zazwyczaj w takich fuzjach kodowany chimerowy polipeptyd zachowuje przynajmniej funkcjonalnie aktywny zawias, domeny CH2 i CH3 regionu stałego łańcucha ciężkiego immunoglobuliny. Fuzje przeprowadza się także od strony C-końca fragmentu Fc domeny stałej, lub bezpośrednio, od N-końca CH1 łańcucha ciężkiego lub odpowiadającego temu obszarowi regionu łańcucha lekkiego. Dokładne miejsce przeprowadzenia fuzji nie jest krytyczne; poszczególne miejsca są dobrze znane i można je tak wybrać, żeby zoptymalizować aktywność biologiczną, wydzielanie lub właściwości wiązania immunoadhezyny.
W zalecanym rozwiązaniu sekwencja adhezyny poddawana jest fuzji z N-końcem regionu Fc immunoglobuliny G1 (IgG1). Możliwa jest przy tym fuzja całego regionu stałego łańcucha ciężkiego z sekwencją adhezyny. Jednakże, dogodniej fuzji poddaje się sekwencję rozpoczynającą się w regionie zawiasowym, tuż powyżej miejsca cięcia papainą, które określa chemicznie Fc IgG (np. reszta 216, przyjmując resztę 114 za pierwszą resztę regionu stałego łańcucha ciężkiego), lub w analogicznych miejscach innych immunoglobulin. W szczególnie zalecanym rozwiązaniu sekwencję aminokwasową adhezyny poddaje się fuzji z (a) regionem zawiasowym oraz CH2 i CH3 lub (b) CH1, regionem zawiasowym, domeną CH2 oraz CH3 łańcucha ciężkiego IgG.
W przypadku immunoadhezyn o podwójnej swoistości, immunoadhezyny tworzą multimery, a w szczególności heterodimery lub heterotetramery. Ogólnie, takie multimetryczne immunoglobuliny będą w postaci znanych jednostek strukturalnych. Podstawowa, czterołańcuchowa, jednostka strukturalna jest postacią, w jakiej występuje IgG, IgD oraz IgE. Jednostka czterołańcuchowa powtarzana jest w immunoglobulinach o wyższej masie cząsteczkowej; IgM ogólnie występuje w postaci pentameru, składającego się z czterech podstawowych jednostek połączonych ze sobą wiązaniami disiarczkowymi. W postaci multimeru w surowicy może występować również globulina IgA i czasem, globulina IgG. W przypadku postaci multimetru, każda z czterech jednostek może być taka sama lub inna.
Poniżej, przedstawiono schematycznie różne przykłady złożonych immunoadhezyn, według wynalazku:
(a) ACL-ACL;
(b) ACH-(ACH, ACL-ACH, ACL-VHCH lub VLCL-ACH);
(c) ACL-ACH-(ACL-ACH, ACL-VHCH, VLCL-ACH lub VLCL-VHCH);
(d) ACL-VHCH-(ACH lub ACL-VHCH lub VLCL-ACH);
(e) VLCL-ACH-(ACL-VHCH lub VLCL-ACH); oraz (f) (A-Y)n-(VLCL-VHCH)2, gdzie każda litera A oznacza identyczne lub różne sekwencje aminokwasowe adhezyn;
VL oznacza domeną zmienną łańcucha lekkiego immunoglobuliny;
VH oznacza domeną zmienną łańcucha ciężkiego immunoglobuliny;
CL oznacza domeną stałą łańcucha lekkiego immunoglobuliny;
CH oznacza domeną stałą łańcucha ciężkiego immunoglobuliny; n oznacza liczbę całkowitą większą niż 1;
Y oznacza resztę czynnika sieciującego.
Dla zwięzłości w powyższych strukturach zaznaczono jedynie kluczowe cechy; nie wskazano w nich ani domeny łączącej (J) lub innych domen immunoglobulin, ani też wiązań disiarczkowych.
PL 209 786 B1
Jednakże, gdy domeny te wymagane są do przejawienia aktywności biologicznej, należy przyjąć, że występują one w typowych lokalizacjach występowania w cząsteczkach immunoglobulin.
Alternatywnie, sekwencje adhezyn można wstawić pomiędzy sekwencje łańcucha ciężkiego i lekkiego immunoglobuliny, w taki sposób, że immunoglobulina zawiera chimerowy łańcuch ciężki. W takim rozwiązaniu sekwencje adhezyny poddaje się fuzji z 3' końcem łańcucha ciężkiego immunoglobuliny w każdym ramieniu, albo pomiędzy regionem zawiasowym a domeną CH2, albo pomiędzy domenami CH2 a CH3. Podobne struktury opisane zostały przez Hoogenboom i wsp., Mol.Immunol. 28: 1027-1037 (1991).
Chociaż w immunoadhezynach według niniejszego wynalazku nie jest wymagana obecność łańcucha lekkiego immunoglobuliny, to łańcuch ten może być obecny w strukturze, albo w postaci kowalencyjnie związanej z polipeptydem fuzyjnym adhezyna-łańcuch ciężki immunoglobuliny, albo w postaci fuzji bezpośrednio z adhezyną. W ostatnim przypadku, DNA kodujący łańcuch lekki immunoglobuliny ulega zazwyczaj koekspresji z DNA kodującym białko fuzyjne adhezyna-łańcuch ciężki immunoglobuliny. Po wydzieleniu hybrydowy łańcuch ciężki i łańcuch lekki będą miały postać kowalencyjnie związaną celem uzyskania struktury immunoglobulino-podobnej, zawierającej dwie połączone za pomocą wiązań disiarczkowych pary łańcuchów: ciężkich i lekkich. Odpowiednie sposoby, pozwalające na otrzymanie takich struktur ujawniono, na przykład, w Patencie USA nr 4,816,567, wydanym 23 marca 1989 r.
Immunoadhezyny zazwyczaj otrzymuje się poprzez fuzję sekwencji cDNA kodującej fragment adhezyny w ramce odczytu z sekwencją cDNA immunoglobuliny. Jednakże, zastosować można również fuzję z genomowymi fragmentami immunoglobuliny (patrz, np. Aruffo i wsp., Cell 61: 1303-1313 (1990) oraz Stamenkovic i wsp., Cell 66: 1133-1144 (1991)). W przypadku ostatniego typu fuzji do ekspresji wymagana jest obecność sekwencji regulatorowych Ig. cDNA kodujące regiony stałe łańcucha ciężkiego IgG można wyizolować w oparciu o opublikowane sekwencje pochodzące z bibliotek cDNA pochodzących z limfocytów ze śledziony lub krwi obwodowej, z zastosowaniem technik hybrydyzacji lub łańcuchowej reakcji polimerazy (PCR). cDNA kodujący części „adhezyny i immunoglobuliny cząsteczki immunoadhezyny wstawia się razem do wektora plazmidowego, wywołującego wydajną ekspresję w wybranych komórkach gospodarza.
C. Wektory, komórki gospodarza i sposoby rekombinacji
Zgodnie z wynalazkiem opisano wyizolowany kwas nukleinowy kodujący ujawniony tu wariant polipeptydu, wektory i komórki gospodarza oraz techniki rekombinacji, pozwalające na otrzymanie wariantu polipeptydu.
W celu otrzymania wariantu polipeptydu za pomocą techniki rekombinacji kodujący go kwas nukleinowy izoluje się, a następnie wstawia do odpowiedniego wektora do replikacji w celu dalszego klonowania (amplifikacji DNA) lub ekspresji. DNA kodujący wariant polipeptydu łatwo izoluje się i sekwencjonuje za pomocą konwencjonalnych procedur (np. z zastosowaniem sond oligonukleinowych zdolnych do specyficznego wiązania genów kodujących wariant polipeptydu). Dostępnych jest wiele wektorów. Wektor składa się, ogólnie, lecz bez ograniczenia, z jednego lub więcej spośród następujących elementów: sekwencji sygnałowej, miejsca początku replikacji, jednego lub więcej genów markerowych, elementu wzmacniającego (enhancer), promotora i sekwencji terminacji transkrypcji.
(i) Element sekwencji sygnałowej
Opisany tu wariant polipeptydu może być otrzymany drogą rekombinacji, nie tylko bezpośrednio, ale również jako polipeptyd fuzyjny z polipeptydem heterologicznym, który dogodnie jest sekwencją sygnałową lub innym polipeptydem posiadającym specyficzne miejsce cięcia na N-końcu dojrzałego białka lub polipeptydu. Dogodnie wybraną sekwencją sygnałową jest sekwencja rozpoznawana i przekształcana przez komórki gospodarza (tj. cięta przez peptydazę sygnałową). W przypadku prokariotycznych komórek gospodarza, nie rozpoznających i nie przekształcających natywnej sekwencji sygnałowej wariantu polipeptydu, sekwencją tą zastąpuje się odpowiednią prokariotyczną sekwencją sygnałową wybraną, na przykład, z grupy sekwencji liderowych alkalicznej fosfatazy, penicylinazy, lpp lub termostabilnej enterotoksyny II. W przypadku wydzielania przez komórki drożdży natywną sekwencję sygnałową można podstawić, np. drożdżową sekwencją liderową inwertazy, czynnika α (włączając sekwencje liderowe czynników α Saccharomyces i Kluyveromyces) lub kwaśnej fosfatazy, glukoamylazy z C.albicans lub sekwencji sygnałowych opisanych w WO 90/13646. W przypadku ekspresji w komórkach ssaczych dostępne są ssacze sekwencje sygnałowe, jak również wirusowe wydzielnicze sekwencje liderowe, na przykład, sekwencja sygnałowa gD wirusa opryszczki.
PL 209 786 B1
DNA takiego regionu prekursorowego poddaje się ligacji w ramce odczytu z DNA kodującym wariant polipeptydu.
(II) Element miejsca początku replikacji
Zarówno wektory ekspresyjne, jak i wektory do klonowania, zawierają sekwencję kwasu nukleinowego, pozwalającą na replikację wektora w jednej lub więcej wybranych komórkach gospodarza. Ogólnie, w wektorach do klonowania sekwencją tą jest sekwencja, która umożliwia niezależną od chromosowego DNA gospodarza replikację wektora oraz zawiera miejsce początku replikacji lub autonomicznie replikujące sekwencje. Sekwencje te są dobrze znane dla wielu bakterii, drożdży i wirusów. Miejsce początku replikacji plazmidu pBR322 jest odpowiednie dla większości bakterii Gram-ujemnych, miejsce początku replikacji plazmidu 2 μ jest odpowiednie dla drożdży, natomiast dla wektorów do klonowania w komórkach ssaczych odpowiednie są miejsca początku replikacji różnych wirusów (SV40, polioma, adenowirus, VSV lub BPV). Ogólnie, element miejsca początku replikacji nie jest niezbędny w ssaczych wektorach ekspresyjnych (miejsce początku replikacji z SV40 stosowane jest zazwyczaj jedynie z tego powodu, że zawiera wczesny promotor).
(iii) Element genu selekcyjnego
Wektory do klonowania i wektory ekspresyjne mogą zawierać gen selekcji, zwany również markerem selekcyjnym. Zazwyczaj geny selekcyjne kodują białka, które (a) nadają oporność na antybiotyki lub inne toksyny, np. ampicylinę, metotreksat lub tetracyklinę, (b) uzupełniają auksotroficzne niedobory, lub (c) dostarczają istotnych składników odżywczych, niedostępnych w pożywkach złożonych, np. gen kodujący racemazę D-alaniny dla Bacilli.
W jednym z przykładów schematu selekcji w celu zahamowania wzrostu komórek gospodarza wykorzystuje się lek. Te komórki, które zostały skutecznie transformowane heterologicznym genem, wytwarzają białko nadające oporność na lek, i przeżywają zatem w warunkach schematu selekcji. Przykładem takiej selekcji dominującej jest zastosowanie leków, takich jak neomycyna, kwas mykofenolowy i higromycyna.
Innym przykładem odpowiednich markerów selekcyjnych dla komórek ssaczych są markery, które pozwalają na identyfikację komórek, które są kompetentne do pobrania kwasu nukleinowego kodującego wariant polipeptydu, takie jak DHFR, kinaza tymidynowa, metalotioneina I i II, zwłaszcza geny metalotioneiny naczelnych, deaminazy adenozynowej, dekarboksylazy ornitynowej, itp.
Na przykład, komórki transformowane genem selekcyjnym DHFR najpierw identyfikuje się poprzez hodowlę wszystkich transformantów w pożywce hodowlanej zawierającej metotreksat (Mtx), antagonistę kompetycyjnego DHFR. W przypadku dzikiego typu DHFR odpowiednią komórką gospodarza jest linia komórkowa komórek jajnika chomika chińskiego (CHO), bez aktywności DHFR.
Alternatywnie, komórki gospodarza (szczególnie dzikiego typu zawierające endogenną DHFR), transformowane lub kotransformowane sekwencjami DNA kodującymi wariant polipeptydu, białka DHFR dzikiego typu i inny marker selekcyjny, taki jak 3'-fosfotransferaza aminoglikozydowa (APH), mogą być poddawane selekcji poprzez wzrost komórek w pożywce zawierającej czynnik selekcyjny dla markera selekcyjnego, taki jak antybiotyk aminoglikozydowy, np. kanamycyna, neomycyna lub G418. Patrz Patent USA nr 4,965,199.
Odpowiednim genem selekcyjnym do zastosowania w przypadku drożdży jest gen trp1 obecny w plazmidzie drożdżowym Yrp7 (Stinchcomb i wsp., Nature, 282:39 (1979)). Gen trp1 dostarcza markera selekcyjnego dla zmutowanego szczepu drożdży, pozbawionego zdolności do wzrostu na tryptofanie, na przykład, ATCC Nr 44076 lub PEP4-1. Jones, Genetics, 85:12 (1977). Obecność uszkodzonego trp1 w genomie drożdżowych komórek gospodarza zapewnia skuteczne warunki do wykrywania transformacji poprzez hodowlę bez tryptofanu. Podobnie, zdolność do wzrostu szczepów drożdży nie posiadających Leu2 (ATCC 20,622 lub 38,626) jest uzupełniana za pomocą plazmidów dostarczających gen Leu2.
Ponadto, wektory pochodzące z 1,6 μm, kolistego plazmidu pKD1 mogą być wykorzystane do transformacji drożdży Kluyveromyces. Alternatywnie, dla K.lactis opisano system ekspresji do wytwarzania na dużą skalę rekombinowanej chymozyny cielęcej. Van den Berg, Bio/Technology, 8: 135 (1990). Ujawniono również stabilne, wielokopijne wektory ekspresyjne służące do wydzielania dojrzałej, rekombinowanej, ludzkiej albuminy przez szczepy drożdży przemysłowych Kluyveromyces. Fleer i wsp., Bio/Technology, 9: 968-975 (1991).
(iv) Element promotora
Wektory ekspresyjne i wektory do klonowania zazwyczaj posiadają rozpoznawany przez organizm gospodarza promotor, operacyjnie przyłączony do kwasu nukleinowego wariantu polipeptydu.
PL 209 786 B1
Odpowiednie do zastosowania w prokariotycznych komórkach gospodarza promotory obejmują układy promotora phoA, β-laktamazy i laktozy, układ promotora alkalicznej fosfatazy, tryptofanu (trp) oraz promotory hybrydowe, takie jak promotor tac. Jednakże, odpowiednie są również inne znane promoto -ry bakteryjne. Promotory do zastosowania w układach bakteryjnych zawierają także sekwencję Shine-Dalgarno, połączoną operacyjnie z DNA kodującym wariant polipeptydu.
Znane są sekwencje promotorowe dla Eukariotów. Prawie wszystkie geny eukariotyczne posiadają region bogaty w reszty AT, zlokalizowany w przybliżeniu 25 do 30 reszt powyżej miejsca, gdzie rozpoczyna się transkrypcja. Inną sekwencją występującą w wielu genach 70 do 80 reszt powyżej miejsca rozpoczęcia transkrypcji jest region CNCAAT, gdzie N jest dowolnym nukleotydem. Przy 3'-końcu większości genów eukariotycznych znajduje się sekwencja AATAAA, która może stanowić sygnał do dodania ogona poli-A do 3'-końca sekwencji kodującej. Wszystkie te sekwencje odpowiednio wstawia się do eukariotycznych wektorów ekspresyjnych.
Przykładami odpowiednich sekwencji promotorowych do zastosowania w drożdżowych komórkach gospodarza są kinaza 3-fosfoglicerynianowa lub inne enzymy glikolityczne, takie jak enolaza, dehydrogenaza gliceroaldehyd-3-fosforanowa, heksokinaza, dekarboksylaza pirogronianowa, fosfofruktokinaza, izomeraza glukozo-6-fosforanowa, mutaza 3-fosfoglicerynianowa, kinaza pirogronianowa, izomeraza triozofosforanowa, izomeraza fosfoglukozowa i glukokinaza.
Innymi promotorami drożdżowymi są promotory indukowalne, pozwalające na dogodną kontrolę transkrypcji poprzez warunki wzrostu, takie jak regiony promotorowe dla dehydrogenazy alkoholowej 2, izocytochromu C, kwaśnej fosfatazy, enzymów degradacyjnych związanych z metabolizmem azotu, metalotioneiny, dehydrogenazy gliceroaldehyd-3-fosforanowej oraz enzymów odpowiedzialnych za wykorzystanie maltozy i galaktozy. Odpowiednie wektory i promotory do zastosowania w przypadku ekspresji u drożdży opisano ponadto w EP 73,657. Wraz z promotorami drożdżowymi dogodnie stosuje się drożdżowe sekwencje wzmacniające.
Transkrypcja wariantu polipeptydu z wektorów w ssaczych komórkach gospodarza jest kontrolowana, na przykład, przez promotory otrzymane z genomu wirusów, takich jak wirus polioma, wirus ospy ptasiej, adenowirus (taki jak Adenowirus 2), wirus brodawczaka wołowego, wirus mięsaka ptaków, cytomegalowirus, retrowirus, wirus zapalenia wątroby typu B i w szczególności, Małpi Wirus 40 (SV40), z heterologicznych promotorów ssaczych, np. promotor aktyny lub promotor immunoglobuliny, z promotorów genów szoku cieplnego, pod warunkiem że, promotory te są kompatybilne z układem komórek gospodarza.
Wczesne i późne promotory wirusa SV40 otrzymuje się zazwyczaj z fragmentu restrykcyjnego SV40, zawierającego również miejsce początku replikacji wirusa SV40. Bardzo wczesny promotor ludzkiego cytomegalowirusa dogodnie otrzymuje się w postaci fragmentu restrykcyjnego HindlllE. Układ do ekspresji DNA w ssaczych komórkach gospodarza wykorzystujący jako wektor wirus brodawczaka wołowego ujawniono w Patencie USA nr 4,601,978. Patrz również Reyes i wsp., Nature 297: 598-601 (1982), gdzie omówiono ekspresję cDNA ludzkiego interferonu β w mysich komórkach pod kontrolą promotora kinazy tymidynowej z wirusa opryszczki. Alternatywnie, w funkcji promotora może być zastosowane długie końcowe powtórzenie z wirusa mięsaka Rous'a.
(v) Element wzmacniający
Transkrypcję DNA kodującego opisany tu wariant polipeptydu u wyższych Eukariotów często zwiększa się poprzez wstawienie sekwencji wzmacniających do wektora. Znanych jest wiele sekwencji wzmacniających, pochodzących z genów ssaczych (globina, elastaza, albumina, α-fetoproteina oraz insulina). Jednakże zazwyczaj możliwe jest zastosowanie sekwencji wzmacniającej pochodzącej z wirusa komórek eukariotycznych. Przykłady obejmują sekwencje wzmacniające SV40, po stronie późnej miejsca początku replikacji (100-270 pz), sekwencje wzmacniające wczesnego promotora cytomegalowirusa, sekwencje wzmacniające wirusa polioma po stronie późnej miejsca początku replikacji i sekwencje wzmacniające adenowirusa. Patrz również, Yaniv, Nature 297: 17-18 (1982), gdzie opisano elementy wzmacniające aktywację promotorów eukariotycznych. Sekwencja wzmacniająca może być wstawiona do wektora w pozycji 5' lub 3' względem sekwencji kodującej wariant polipeptydu, lecz zalecaną lokalizacją jest położenie 5' od promotora.
(vi) Element terminacji transkrypcji
Wektory ekspresyjne stosowane w eukariotycznych komórkach gospodarza (drożdże, grzyby, owady, rośliny, zwierzęta, ludzie lub komórki jądrowe innych organizmów wielokomórkowych) obejmują również sekwencje niezbędne do terminacji transkrypcji i stabilizacji mRNA. Sekwencje te powszechnie występują od 5' końca, czasami końca 3', niepodlegających translacji regionów DNA lub
PL 209 786 B1 cDNA eukariotycznego lub wirusowego. Regiony te zawierają segmenty nukleotydowe transkrybowane w postaci poliadenylowanych fragmentów w niepodlegającym translacji regionie mRNA kodującego wariant polipeptydu. Jednym z użytecznych elementów terminacji transkrypcji jest region poliadenylacji wołowego hormonu wzrostu. Patrz WO94/11026 i zawarty tam opis wektora ekspresyjnego.
(vii) Selekcja i transformacja komórek gospodarza
Odpowiednimi komórkami gospodarza do klonowania lub ekspresji DNA w wektorach są opisane powyżej komórki prokariotyczne, drożdżowe lub komórki wyższych Eukariotów. Odpowiednie do tego celu komórki prokariotyczne obejmują eubacteria, takie jak mikroorganizmy Gram-ujemne lub Gram-dodatnie, na przykład, Enterobacteriaceae, takie jak Escherichia, np. E.coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, np. Salmonella typhimurium, Serratia, np. Serratia marcescans oraz Shigella, jak również Bacillus, np. B. subtilis i B. lichaniformis (np. B. lichaniformis 41P, zawarty w DD 266,710, opublikowany 12 kwietnia 1989), Pseudomonas, np. P. aeruginosa i Streptomyces. Jednymi z zalecanych komórek gospodarza E.coli do klonowania są komórki E.coli29A (ATCC 31,446), jednak odpowiednie są również inne szczepy, takie jak E.coliB, E.coliX1776 (ATCC 31,537) i E.coliW3110 (ATCC 27,325). Wymienione tu szczepy nie służą ograniczeniu, ale podane zostały jedynie przykładowo.
Oprócz mikroorganizmów prokariotycznych, również mikroorganizmy eukariotyczne, takie jak grzyby strzępkowate lub drożdże, są odpowiednie do klonowania i ekspresji gospodarzami dla wektorów kodujących wariant polipeptydu. Spośród niższych Eukariotów najpowszechniej stosowanymi mikroorganizmami gospodarza są drożdże Saccharomyces cerevisiaa, lub powszechnie znane drożdże piekarskie. Jednakże, powszechnie dostępne są i użyteczne w niniejszym wynalazku liczne inne rodzaje, gatunki i szczepy, takie jak Schizosaccharomyces pombe: Kluyveromyces, tak jak np., K.lactis, K.fragilis (ATCC 12,424), K.bulgaricus (ATCC 16,045), K.wickeramii (ATCC 24,178), K.waltii (ATCC 56,500), K.drosophilarum (ATCC 36,906), K. thermotolerans i K.marxianus; Yarrowia (EP 402,226); Pichia pastoris (EP 183,070); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa; Schwanniomyces, tak jak Schwanniomyces occidentalis i grzyby strzępkowe, takie jak, np., Neurospora, Penicillium, Tolypocladium oraz Aspergillus, takie jak A.nidulans i A.niger.
Odpowiednie komórki gospodarza do ekspresji glikozylowanego wariantu polipeptydu pochodzą, z organizmów wielokomórkowych. Przykłady komórek bezkręgowców obejmują komórki roślinne i owadzie. Zidentyfikowano liczne szczepy i warianty bakulowirusowe oraz odpowiednie permisywne owadzie komórki gospodarza, z gospodarzy takich jak Spodoptera frugiperda (gąsienica), Aades aegypti (komar), Aadas albopictus (komar), Drosophila melanogaster (muszka owocowa) oraz Bombyx mori. Dostępnych jest wiele szczepów wirusowych do transfekcji, np. wariant L-1 Autographa californica NPV oraz szczep Bm-5 Bombyx mori NPV i wirusy te mogą być stosowane zgodnie z niniejszym wynalazkiem, w szczególności do transfekcji komórek Spodoptara frugiparda.
Jako organizmy gospodarza mogą być również wykorzystane hodowle komórek roślinnych bawełny, kukurydzy, ziemniaka, soi, petunii, pomidora i tytoniu.
Jednakże, bardziej interesujące były komórki kręgowców, i dlatego namnażanie komórek kręgowców w hodowli (hodowle tkankowe) stało się powszechnie stosowaną procedurą. Przykładami użytecznych ssaczych linii komórek gospodarza są linia komórek nerki małpy transformowana SV40 (COS-7, ATCC CRL 1651); linia komórek embrionalnych nerki człowieka (komórki 293 lub 293 subklonowane do wzrostu w zawiesinie, Graham i wsp., J.Gen Virol. 36:59 (1977); komórki nerki młodego chomika (BHK, ATCC CCL10); komórki jajnika chomika chińskiego/-DHFR (CHO, Urlaub i wsp., Proc.Natl.Acad.Sci. USA 77: 4216 (1980)); komórki Sertoliego myszy (TM4, Mather, Biol.Reprod. 23: 243-251 (1980)); komórki nerki małpy (CV1 ATCC CCL 70); komórki nerki afrykańskiej małpy zielonej (VERO-76, ATCC CRL-1587); ludzkie komórki raka szyjki macicy (HELA, ATCC CCL2); komórki nerki psa (MDCK, ATCC CCL 34); komórki wątroby szczura (Buffalo) (3RL 3A, ATCC CRL 1442); komórki płuca człowieka (W138, ATCC CCL 75); komórki wątroby człowieka (Hep G2, HB 8065); komórki raka sutka myszy (MMT 060562, ATCC CCL51); komórki TRI (Mather i wsp., Annals N. Y.Acad.Sci. 383:44-68 (1932)); komórki MRC5; komórki FS4 oraz linia komórek ludzkiego wątrobiaka (Hep G2).
W celu otrzymania wariantu polipeptydu komórki gospodarza poddaje się transformacji za pomocą wyżej wymienionych wektorów ekspresyjnych lub do klonowania, i hodowli w konwencjonalnych pożywkach odżywczych, zmodyfikowanych odpowiednio do indukcji promotorów, selekcji transformantów lub amplifikacji genów kodujących pożądane sekwencje.
PL 209 786 B1 (viii) Hodowla komórek gospodarza
Komórki gospodarza stosowane do produkcji opisanego tu wariantu polipeptydu mogą być hodowane w rozmaitych pożywkach. Do hodowli takich komórek gospodarza odpowiednie są dostępne handlowo pożywki, takie jak pożywka Ham'a F10 (Sigma), Minimal Essential Medium ((MEM), (Sigma), RPMI-1640 (Sigma) oraz Dulbecco's Modified Eagle's Medium ((DMEM), Sigma). Ponadto, jako pożywki hodowlane dla komórek gospodarza może być zastosowana jakakolwiek pożywka opisana w Ham i wsp., Meth.Enz. 58: 44 (1979), Barnes i wsp., A102: 255 (1980), U.S. Patent No. 4,767,704; 4,657,866; 4,927,762; 4,560,655 lub 5,122,469; WO 90/03430; WO 87/00195 lub U.S. Patent Re. 30,985. Jakakolwiek z tych pożywek może być, w razie potrzeby, uzupełniona hormonami i/lub innymi czynnikami wzrostu (takimi jak insulina, transferyna lub naskórkowy czynnik wzrostu), solami (takimi jak chlorek sodu, wapnia, magnezu i fosforan), buforami (takimi jak HEPES), nukleotydami (takimi jak adenozyna i tymidyna), antybiotykami (takimi jak GENTAMYCYNA™), pierwiastkami śladowymi (zdefiniowanymi jako związki nieorganiczne obecne zazwyczaj w końcowych stężeniach rzędu mikromola) oraz glukozą lub równoważnym źródłem energii. Do pożywki można dodać jakiekolwiek inne dodatki w odpowiednich stężeniach, znanych specjalistom w dziedzinie. Warunki hodowli, takie jak temperatura, pH itp., są takie jak stosowano już uprzednio do selekcji komórek gospodarza do ekspresji, i są znane specjalistom w dziedzinie.
(ix) Oczyszczanie wariantu polipeptydu
W przypadku stosowania technik rekombinacyjnych wariant polipeptydu można otrzymywać wewnątrzkomórkowo, w przestrzeni peryplazmatycznej, lub w postaci bezpośrednio wydzielanej do pożywki. Jeżeli wariant polipeptydu wytwarza się wewnątrzkomórkowo, to w pierwszym etapie usuwa się szczątki, albo komórek gospodarza albo fragmentów poddanych lizie, na przykład drogą wirowania lub ultrafiltracji. Carter i wsp., Bio/Technology 10:163-167 (1992) opisali procedurę izolacji przeciwciał wydzielanych do przestrzeni peryplazmatycznej E.coli. W skrócie, pastę komórkową rozmraża się w obecności octanu sodu (pH 3,5), EDTA i fluorku fenylometylosulfonylu (PMSF) przez około 30 min. Szczątki można usunąć drogą wirowania. W przypadku gdy wariant polipeptydu wydzielany jest do podłoża, supernatanty z takich układów ekspresyjnych zazwyczaj zatęża się za pomocą dostępnych handlowo filtrów odpowiednich do zatężania białek, na przykład, Amicon lub Millipore Pellicon ultrafiltration unit. W celu zahamowania proteolizy na jakimkolwiek etapie można dodać inhibitor proteazy, taki jak PMSF, jak również antybiotyki, zapobiegające wzrostowi przypadkowej mikroflory zanieczyszczającej.
Kompozycja wariantu polipeptydu otrzymana z komórek może być poddana oczyszczaniu za pomocą, na przykład, chromatografii na hydroksyapatycie, elektroforezy żelowej, dializy i chromatografii powinowactwa, przy czym ta ostatnia technika jest zalecaną techniką oczyszczania. Skuteczność białka A jako liganda powinowactwa zależy od gatunku i odmiany izotypowej jakiegokolwiek regionu Fc immunoglobuliny, obecnego w wariancie polipeptydu. Białko A może być stosowane do oczyszczania wariantów polipeptydów opartych na ludzkich łańcuchach ciężkich y1, y2 lub y4 (Lidmark i wsp., J.Immunol.Meth. 62: 1-13 (1983)). Białko G jest polecane w przypadku wszystkich mysich odmian izotypowych oraz w przypadku ludzkiego y3 (Guss i wsp., EMBO J. 5:1567-1575 (1936)). W większości przypadków macierzą, do której przyłączony jest ligand jest agaroza, lecz dostępne również są inne macierze. Macierze mechanicznie stabilne, takie jak szkło o kontrolowanej porowatości lub poli(styrenodiwynylo) benzen, pozwalają osiągnąć szybszy przepływ i krótszy czas oczyszczania niż w przypadku zastosowania agarozy. W przypadku oczyszczania wariantu polipeptydu zawierającego domenę CH3 użyteczna jest żywica Bakerbond ABX™ (J.T.Baker, Phillipsburg, NJ). W zależności od oczyszczanego wariantu polipeptydu mogą być zastosowane także inne techniki oczyszczania białka, takie jak frakcjonowanie na kolumnie do chromatografii jonowymiennej, wytrącanie etanolem, HPLC z odwróconą fazą, chromatografia na krzemionce, chromatografia na SEPHAROSE™ z heparyną, chromatografia kationowymienna lub anionowymienna na żywicy (taka jak na kolumnie z kwasem poliasparaginowym), ogniskowanie chromatograficzne, SDS-PAGE oraz wytrącanie siarczanem amonu.
Po jakimkolwiek z etapów oczyszczania mieszaninę wariantu polipeptydu będącego przedmiotem zainteresowania i zanieczyszczeń można poddać chromatografii oddziaływań hydrofobowych w niskim pH, z wykorzystaniem buforu elucyjnego w pH 2,5-4,5, dogodnie przy niskich stężeniach soli (np. od około 0-0,25 M soli).
PL 209 786 B1
E. Preparaty farmaceutyczne
Preparaty terapeutyczne wariantu polipeptydu przygotowuje się do przechowywania poprzez wymieszanie wariantu polipeptydu o pożądanym stopniu czystości z dowolnymi, farmaceutycznie akceptowanymi, nośnikami, zaróbkami lub substancjami stabilizującymi (Remington's Pharmaceutical Sciences 16th Ed., Osol, A.Ed. (1980)), w postaci preparatów liofilizowanych lub roztworów wodnych. Akceptowalne nośniki, zaróbki lub substancje stabilizujące są nietoksyczne dla przyjmujących lek w stosowanych dawkach i stężeniach, i obejmują bufory, takie jak fosforanowy, cytrynianowy i bufory innych kwasów organicznych; antyutleniacze, włączając kwas askorbinowy i metioninę; konserwanty (takie jak chlorek oktadecylodimetylobenzyloamonu; chlorek heksametonium; chlorek benzalkonium; chlorek benzetonium; fenol, alkohol butylowy lub benzylowy; parabeny alkilowe, takie jak paraben metylu lub propylu; katechol; rezorcynol; cykloheksanol; 3-pentanol oraz m-krezol); polipeptyd o niskiej masie cząsteczkowej (krótszy niż około 10 reszt); białka, takie jak albumina surowicy, żelatyna lub immunoglobuliny; hydrofilowe polimery, takie jak poliwinylopirolidon; aminokwasy, takie jak glicyna, glutamina, asparagina, histydyna, arginina lub lizyna; monosacharydy, dwusacharydy i inne węglowodany, włączając glukozę, mannozę lub dekstryny; czynniki chelatujące, takie jak EDTA; cukry, takie jak sacharoza, mannitol, trehaloza lub sorbitol, tworzące sole przeciwjony, takie jak sód,; kompleksy z jonami metali (np. kompleksy Zn-białko) i/iub surfaktanty niejonowe, takie jak TWEEN™, PLURONICS™ lub glikol polietylenowy (PEG).
Opisywany tu preparat może również zawierać więcej niż jeden związek czynny, jeżeli jest to niezbędne w przypadku danego wskazania terapeutycznego, dogodnie takie, które mają komplementarne aktywności, i które nie wpływają niekorzystnie na siebie. Cząsteczki te występują dogodnie w połączeniach, w ilościach odpowiednich dla zamierzonego celu.
Składniki czynne mogą również być zawarte w mikrokapsułkach otrzymanych, na przykład, techniką koacerwacji lub polimeryzacji międzyfazowej, na przykład, odpowiednio mikrokapsułkach hydroksymetylocelulozowych lub żelatynowych oraz z polimetakrylanu metylu, w koloidalnych układach dostarczania leku (na przykład liposomy, mikrosfery albuminowe, mikroemulsje, nano-cząsteczki i nanokapsułki) lub makroemulsje. Techniki te opisano w Remington's Pharmaceutical Sciences, 16th ed., Osol, A.Ed. (1980).
Preparaty do podawania in vivo muszą być sterylne. Można to łatwo uzyskać poprzez filtrację przez sterylne błony do filtracji.
Możliwe jest przygotowanie preparatów o przedłużonym uwalnianiu. Odpowiednie przykłady preparatów o przedłużonym uwalnianiu obejmują półprzepuszczalne matryce ze stałych polimerów hydrofobowych zawierających wariant polipeptydu, przy czym matryce te mają różną postać, np. warstwy lub mikrokapsułki. Przykładami matryc o przedłużonym uwalnianiu są poliestry, hydrożele (na przykład, poli(2-hydroksyetylometakrylan) lub alkohol poliwinylowy, polilaktydy (Patent USA nr 3,773,919), kopolimery kwasu L-glutaminowego i Y-etylo'L-glutaminianu, niedegradowalny octan etyleno-winylu, degradowalne kopolimery kwasu mlekowego i kwasu glikolowego, takie jak LUPRON DEPOT™ (wstrzykiwalne mikrosfery składające się z kopolimeru kwasu mlekowego i kwasu glikolowego oraz octanu leuprolidu), oraz kwas poli-D-(-)-3-hydroksymasłowy. Podczas gdy polimery, takie jak octan etyleno-winylu i kwas mlekowy-kwas glikolowy, pozwalają na uwalnianie cząsteczek przez ponad 100 dni, to pewne hydrożele uwalniają białka przez krótsze okresy czasu. W przypadku gdy znajdujące się w kapsułkach przeciwciała pozostają w organizmie przez dłuższy czas, mogą one ulegać denaturacji lub agregacji na skutek panujących warunków wilgotności w temperaturze 37°C, powodujących brak aktywności biologicznej i możliwe zmiany immunogenności. W zależności od mechanizmu działania opracować można racjonalne strategie. Na przykład, w przypadku wystąpienia procesu agregacji, przebiegającego w wyniku powstawania międzycząsteczkowych wiązań disiarczkowych S-S poprzez wymianę grup tio-disiarczkowych, stabilizację można uzyskać poprzez modyfikację reszt sulfhydrylowych, liofilizację z kwaśnych roztworów, kontrolę wilgotności, zastosowanie odpowiednich dodatków i opracowanie specyficznych kompozycji matrycy polimerowej.
F. Nieterapeutyczne zastosowania wariantu polipeptydu
Opisany tu wariant polipeptydu może być zastosowany jako czynnik do oczyszczania przez powinowactwo. W procesie tym, wariant polipeptydu immobilizuje się jest na fazie stałej, takiej jak żywica Sephadex lub papier filtracyjny, za pomocą dobrze znanych w dziedzinie metod. Immobilizowany wariant polipeptydu kontaktuje się z próbką zawierającą oczyszczany antygen, a następnie nośnik płucze się odpowiednim rozpuszczalnikiem, usuwającym zasadniczo wszystkie składniki z próbki, za wyjątkiem oczyszczanego antygenu związanego z immobilizowanym wariantem polipeptydu. Ostatecznie,
PL 209 786 B1 nośnik płucze się odpowiednim innym rozpuszczalnikiem, takim jak bufor glicynowy, pH 5,0, który uwalnia oczyszczany antygen od wariantu polipeptydu.
Wariant polipeptydu może być również użyteczny w testach diagnostycznych, np. do wykrywania ekspresji antygenu będącego przedmiotem zainteresowania w specyficznych komórkach, tkankach lub surowicy.
Do celów diagnostycznych wariant polipeptydu zazwyczaj będzie znakowany za pomocą wykrywalnych ugrupowań. Dostępne są liczne znaczniki, które ogólnie można podzielić na następujące grupy:
(a) radioizotopy, takie jak 35S, 14C, 125I, 3H i 131I.
Wariant polipeptydu może byc znakowany izotopowo przykładowo za pomocą technik opisanych w Current Protocols in Immunology, tom 1 i 2, Coligen i wsp., Ed. Wiley-Interscience, New York, New York Pubs. (1991), a radioaktywność można mierzyć za pomocą licznika scyntylacyjnego.
(b) znaczniki fluorescencyjne, które można zastosować to chelaty metali ziem rzadkich (chelaty europu) lub fluoresceina i jej pochodne, rodamina i jej pochodne, dansyl, lissamina, fikoerytryna i barwnik Texas Red. Znaczniki fluorescencyjne można sprzęgać z wariantem polipeptydu za pomocą technik ujawnionych, na przykład, w Current Protocols in Immunology, jak powyżej. Fluorescencję można oceniać częściowo za pomocą fluorymetru.
(c) różne znaczniki typu enzym-substrat, z których część opisano w Patencie USA nr 4,257,149. Enzym, ogólnie, katalizuje chemiczną zmianę substratu chromogennego, którą można mierzyć za pomocą różnych technik. Na przykład, enzym może katalizować zmianę koloru substratu, którą można mierzyć spektrofotometrycznie. Alternatywnie, enzym może zmieniać fluorescencję lub chemiluminescencję substratu. Techniki oceny ilościowej zmian fluorescencji opisano powyżej. Substrat chemiluminescencyjny zostaje elektronowo wzbudzony w wyniku reakcji chemicznej, i może emitować następnie światło, które można mierzyć (na przykład za pomocą chemiluminometru) lub przekazuje energię na akceptor fluorescencyjny. Przykłady znaczników enzymatycznych obejmują lucyferazy (np. lucyferazę ze świetlika i lucyferazę bakteryjną; Patent USA nr 4,737,456), lucyferynę, 2,3-dihydroftalazynodiony, dehydrogenazę jabłczanową, ureazę, peroksydazę, taką jak peroksydaza chrzanowa (HRPO), alkaliczną fosfatazę, β-galaktozydazę, glukoamylazę, lizozym, oksydazy sacharydów (np. oksydazę glukozy, oksydazę galaktozy i dehydrogenazę glukozo-6-fosforanową) oraz heterocykliczne oksydazy (takie jak urykaza i oksydaza ksantynowa), laktoperoksydaza, mikroperoksydaza, itp. Techniki sprzęgania enzymów z przeciwciałami opisano w O'Sullivan i wsp., Methods for the Preparation of Enzyme-Antybody Conjugates for use in Enzyme Immunoassay, Methods in Enzym, (ed J.Langone&H.Van Vunakis), Academic Press, New York, 73: 147-166 (1981).
Przykłady połączeń enzym-substrat obejmują, na przykład:
(i) Peroksydazę chrzanową (HRPO) i peroksydazę wodorową jako substrat, przy czym peroksydaza wodorowa utlenia prekursor barwnika (np. diaminę ortofenylenu (OPD) lub chlorowodorek 3,3',5,5'-tetrametylobenzydyny (TMB));
(ii) Alkaliczną fosfatazę (AP) i fosforan paranitrofenylu jako substrat chromogenny; i (iii) β-D-galaktozydazę (β-D-Gal) i substrat chromogenny (np. p-nitrofenylo-e-D-galaktozydaza) lub substrat fluorogenny (4-metylolumbelliferylo-e-D-galaktozydaza).
Istnieją również liczne inne połączenia enzym-substrat, znane specjalistom w dziedzinie. Ogólny ich przegląd można znaleźć w Patencie USA nr 4,257,149 i 4,318,980.
Znacznik może być czasami sprzęgany z wariantem polipeptydu w sposób pośredni. Specjalistom w dziedzinie znane są liczne techniki odpowiednie do tego celu. Na przykład, wariant polipeptydu może być sprzęgany z biotyną, a jakikolwiek z trzech wymienionych powyżej grup znaczników może być sprzęgany z awidyną i odwrotnie. Biotyna ulega selektywnemu wiązaniu z awidyną, co powoduje, że znacznik może być sprzęgany z wariantem polipeptydu w sposób pośredni. Alternatywnie, w celu sprzęgania pośredniego znacznika z wariantem polipeptydu, wariant polipeptydu sprzęga się z małym haptenem (np. digoksyną), a jeden z wymienionych powyżej znaczników sprzęga się ze skierowanym przeciwko cząsteczce haptenu wariantem polipeptydu (np. przeciwciałem przeciwko digoksynie). Zatem, można przez to uzyskać pośrednie sprzęganie znacznika z wariantem polipeptydu.
W innym rozwiązaniu nie jest konieczne znakowanie wariantu polipeptydu, a jego obecność wykrywa się z użyciem znakowanego przeciwciała wiążącego się z wariantem polipeptydu.
Opisany tu wariant polipeptydu może być wykorzystany w jakiejkolwiek znanej metodzie analizy, takiej jak analiza wiązania kompetycyjnego, bezpośrednie i pośrednie analizy kanapkowe i immu38
PL 209 786 B1 noprecypitacyjne. Zola, Monoclonal Antibodies: A Manual of Techniques, 147-158 (CRC Press, Inc. 1987).
Wariant polipeptydu może być także wykorzystany w testach diagnostycznych in vivo. Ogólnie, wariant polipeptydu jest znakowany radioizotopowo (tak jak 111ln, 99Tc, 14C, 131I, 125I, 3H, 32P lub 35S), co pozwala na zlokalizowanie antygenu lub eksprymującej go komórki za pomocą immunoscyntygrafii.
G. Zastosowania wariantu polipeptydu in vivo
Opisany tu wariant polipeptydu może być wykorzystany w leczeniu ssaków, np. pacjentów cierpiących na choroby lub zaburzenia lub predysponowanych do takich chorób lub zaburzeń, gazie podawanie wariantu polipeptydu mogłoby przynieść korzyść. Wiele stanów można leczyć z zastosowaniem wariantu polipeptydu i obejmują one raka (np. gdzie wariant polipeptydu wiąże się z receptorem HSR2, CD20 lub czynnik wzrostu śródłonka naczyniowego (VEGF)); alergie, takie jak astma (przeciwciało anty-IgE) oraz zaburzenia zależne od LFA1 (np. gdzie wariantem polipeptydu jest przeciwciało anty-LFA-1 lub anty-ICAM-1), itp.
W przypadku gdy przeciwciało wiąże się z receptorem HER2, zalecanym zaburzeniem jest rak z ekspresją HER2, np. łagodny lub złośliwy guz wykazujący nadekspresję receptora HER2. Raki te obejmują, lecz bez ograniczenia, raka sutka, raka płaskokomórkowego, raka drobnokomórkowego płuc, raka niedrobnokomórkowego płuc, raka przewodu żołądkowo-jelitowego, raka trzustki, glejaka, raka szyjki, raka jajników, raka pęcherza, wątrobiaka, raka okrężnicy, raka jelita grubego, raka śluzówki macicy, raka ślinianek, raka nerki, raka wątroby, raka prostaty, raka sromu, raka tarczycy, raka wątroby i różnych typów nowotworów głowy i szyi.
Zgodnie z niniejszym opisem możliwe jest otrzymanie polipeptydu zawierającego wariant regionu Fc o udoskonalonej lub zredukowanej aktywności ADCC. Cząsteczki takie znajdą zastosowanie w leczeniu różnorodnych zaburzeń.
Na przykład, wariant polipeptydu o wzmocnionej aktywności ADCC może być zastosowany do leczenia chorób lub zaburzeń, gdzie pożądane jest zniszczenie lub wyeliminowanie tkanki lub obcego mikroorganizmu. Na przykład, taki polipeptyd może znaleźć zastosowanie w leczeniu raka, zaburzeń zapalnych, zakażeń (np. bakteryjnych, wirusowych, grzybowych lub drożdżowych) lub innych stanów (takich jak wole), gdzie pożądane jest usunięcie tkanki, itp.
W przypadku gdy wariant polipeptydu wykazuje zredukowaną aktywność ADCC, może on być wykorzystany do leczenia chorób lub zaburzeń, gdzie pożądane jest zastosowanie polipeptydu zawierającego region Fc o dłuższym okresie półtrwania, przy czym dogodnie polipeptyd nie wykazuje niepożądanych funkcji efektorowych. Na przykład, polipeptyd zawierający region Fc może być przeciwciałem skierowanym przeciwko czynnikowi tkankowemu (TF); przeciwciałem skierowanym przeciwko IgE i przeciwciałem skierowanym przeciwko integrynie (np. przeciwciałem anty-a4e7). Pożądanym mechanizmem działania takich polipeptydów zawierających region Fc może być blokowanie par wiążących ligand-receptor. Ponadto, polipeptyd zawierający region Fc o zredukowanej aktywności ADCC może być agonistą przeciwciała.
Wariant polipeptydu podaje się za pomocą dowolnych w jakikolwiek możliwch środków, włączając podawanie pozajelitowe, podskórne, dootrzewnowe, dopłucne i donosowe, a w razie potrzeby miejscowego leczenia immunosupresyjnego podawanie w obrębie zmiany. Wlewy pozajelitowe obejmują podawanie domięśniowe, dożylne, dotętnicze, dootrzewnowe lub podskórne.
Ponadto, wariant polipeptydu podaje się odpowiednio drogą wlewu pulsowego, szczególnie w malejących dawkach wariantu polipeptydu. Dawkę podaje się dogodnie przez wstrzyknięcia, a w szczególności wstrzyknięcia dożylne lub podskórne, co częściowo zależy od tego czy czas podawania jest krótki czy przewlekły.
W przypadku profilaktyki lub leczenia choroby odpowiednie dawki wariantu polipeptydu bedą zależały od typu leczonej choroby, stopnia jej ciężkości i przebiegu, od tego czy podawanie wariantu polipeptydu ma charakter profilaktyczny czy terapeutyczny, poprzednio stosowanej terapii, historii choroby pacjenta i odpowiedzi na wariant polipeptydu oraz decyzji lekarza prowadzącego. Wariant polipeptydu podaje się pacjentowi jednorazowo lub w seriach.
W zależności od typu i ciężkości choroby wstępną dawkę do podania pacjentowi stanowi około 1 μg/kg do 15 mg/kg (np. 0,1-20 mg/kg) wariantu polipeptydu w zależności przykładowo od tego czy podawanie jest jednokrotne czy w kilku oddzielnych dawkach lub przez wlew ciągły. Typowa dzienna dawka wynosi w zakresie od około 1 μg/kg do 100 mg/kg lub więcej, zależnie od wymienionych powyżej czynników. W przypadku podawania wielokrotnego przez okres kilku dni lub dłuższy, w zależności od stanu, leczenie kontynuuje się aż do momentu zahamowania występowania objawów choroboPL 209 786 B1 wych. Jednakże użyteczne są również inne schematy dawkowania. Postęp terapii łatwo monitoruje się za pomocą konwencjonalnych technik i analiz.
Kompozycję wariantu polipeptydu otrzymuje się, dawkuje i podaje w zgodzie z dobrą praktyką lekarską. Czynniki, które należy rozważyć w tym kontekście to szczególnie choroba do leczenia, szczególny ssak do leczenia, stan kliniczny poszczególnego pacjenta, przyczyna zaburzenia, miejsce dostarczenia czynnika, sposób podawania, schemat podawania i inne czynniki znane lekarzom.
„Terapeutycznie skuteczna ilość wariantu polipeptydu, którą należy podać będzie ustalana ogólnie na podstawie wymienionych czynników, i stanowi minimalną ilość niezbędną do zapobiegnięcia, złagodzenia lub wyleczenia choroby lub zaburzenia. Wariant polipeptydu nie musi być, ale może być otrzymany wraz z jednym lub więcej czynnikami stosowanymi obecnie do zapobiegania lub leczenia danego zaburzenia. Skuteczna ilość takich dodatkowych czynników uzależniona będzie od ilości wariantu polipeptydu obecnego w preparacie, typu zaburzenia lub leczenia i innych dyskutowanych powyżej czynników. Stosuje się je, ogólnie, w takich samych dawkach i w taki sam sposób, jak wcześniej to opisano, lub stosuje się około od 1 do 99% opisanych powyżej dawek.
Wynalazek będzie bardziej zrozumiały w kontekście zamieszczonych poniżej przykładów. Przykładów tych nie należy jednak interpretować jako ograniczających zakres wynalazku. Wszystkie odnośniki literaturowe i odwołania do patentów włączone są tu przez odesłanie.
P r z y k ł a d 1
Analiza wiązania receptora o niskim powinowactwie
Analiza ta określa wiązanie regionu Fc IgG z rekombinowanymi podjednostkami α FcyRIIA, FcyRIIB i FcyRIIA, ekspres jonowanymi jako białko fuzyjne ze znakowaną His6 S transferazą glutationu (GST). Ze względu na to, że powinowactwo regionu Fc IgG1 względem FcyRI jest rzędu nanomoli, wiązanie wariantów Fc IgG1 można mierzyć za pomocą miareczkowania monomeru IgG i pomiaru wiązania IgG z przeciwciałem poliklonalnym anty-IgG w standardowym teście ELISA (Przykład 2, poniżej). Jednakże powinowactwo pozostałych członków rodziny FcyR, tj. FcyRIIA, FcyRIIB i FcyRIIIA względem IgG jest rzędu mikromolarnego i wiązania tych receptorów z monomerem IgG1 nie można mierzyć za pomocą testu ELISA.
W poniższej analizie wykorzystuje się warianty Fc rekombinowanego przeciwciała anty-IgE E27 (Figury 4A i 4B), które po wymieszaniu z ludzką IgE w stosunku molowym 1:1, tworzą stabilny heksamer, składający się z trzech cząsteczek anty-IgE i trzech cząsteczek IgE. Otrzymano rekombinowaną chimerową postać IgE (chimerową IgE), składającą się z regionu Fc ludzkiej IgE i Fab przeciwciała anty-VEGF, (Presta i wsp. Cancer Research 57: 4593-4599(1997)), która wiąże się z dwiema cząsteczkami VEGF na mol przeciwciała anty-VEGF. Po dodaniu ludzkiego VEGF w stosunku molowym 2:1 do chimerowych heksamerów IgE:E27, heksamery łączą się w kompleksy o większej masie cząsteczkowej poprzez oddziaływanie chimerowe IgE:VEGF. Składnik E27 tego kompleksu wiąże się z podjednostkami α FcyRIIA, FcyRIIB i FcyRIIIA z silniejszą zachłannością wiązania, co umożliwia ich wykrycie w teście ELISA.
Materiały i metody
Pokrywanie receptorem: Podjednostki α receptora Fcy eksprymowane były jako białka fuzyjne GST domen zewnątrzkomórkowych (ECD) znakowanych His6 w komórkach 293, dzięki czemu otrzymano białko fuzyjne ECD-6His-GST (Graham i wsp., J.Gen.Virol. 36: 59-74 (1977) i Gorman i wsp., DNA Prot.Eng.Tech. 2:3-10 (1990)), które oczyszczono na kolumnie chromatograficznej Ni-NTA (Qiagen, Australia) i przez wymianę buforu na buforowany fosforanem roztwór soli fizjologicznej (PBS). Stężenia określano na podstawie absorpcji przy 280 nm, z użyciem współczynników ekstynkcji ustalonych w analizie składu aminokwasowego. Płytki Nunc F96 maxisorb pokrywano receptorami (Nr kat. 439454) w ilości 100 ng na studzienkę poprzez dodanie 100 μl białka fuzyjnego receptor-GST w stężeniu 1 μg/ml w PBS i inkubowano przez 48 godzin w 4°C. Przed analizą płytki płukano 250 μl 3x buforu do płukania (PBS, pH 7,4 zawierającego 0,5% TWEEN 20TM) i blokowano za pomocą 250 μl buforu do analizy (50 mM buforowanego Tris roztworu soli fizjologicznej, 0,05% TWEEN 20™, 0,5% albumina wołowa klasy odpowiedniej do RIA (Sigma A7888) oraz 2 mM EDTA, pH 7,4).
Tworzenie kompleksów immunologicznych: równe molowe ilości (1:1) E27 i rekombinowanej chimerowej IgE, które wiążą dwa mole rekombinowanego ludzkiego VEGE na mol chimerowej IgE dodano do próbki polipropylenowej 12 x 75 mm w PBS i zmieszano przez obracanie przez 30 minut w temperaturze 25°C. Heksamery E27 (anty-IgE)/chimerowa IgE (IGE) powstają w czasie inkubacji. Rekombinowany ludzki VEGF (postać 165, MW 44000) dodano w ilości molowej 2:1 względem stężenia IgE i zmieszano przez obracanie przez dodatkowe 30 minut w 25°C. Wiązanie VEGF-chimerowa
PL 209 786 B1
IgE łączy heksamery E27:chimerowa IgE w kompleksy o większej masie cząsteczkowej, które wiążą podjednostki FcyR α ECD na powleczonych płytkach poprzez regiony Fc przeciwciała E27.
Kompleksy E27:chimerowa IgE:VEGF: (stosunek molowy 1:1:2) dodano do powleczonych podjednostek α FcyR płytek w stężeniu E27 wynoszącym 5 μq i 1 μg wszystkich IgG w czterech powtórzeniach w buforze do analizy i inkubowano przez 120 minut w temp. 25°C na wytrząsarce rotacyjnej.
Wykrywanie kompleksów: Płytki płucze się pięciokrotnie buforem do płukania w celu usunięcia niezwiązanych kompleksów a wiązanie IgG wykrywa się przez dodanie 100 μl koniugatu peroksydazy HRP z kozią anty-ludzką IgG (γ) specyficzną wobec łańcucha ciężkiego (Boehringer Mannheim 1814249) w stosunku 1: 10000 w buforze do analizy i inkubuje przez 90 minut w temp. 25°C na wytrząsarce rotacyjnej. Płytki płucze się pięciokrotnie buforem do płukania w celu usunięcia niezwiązanej HRP koziej anty-ludzkiej IgG, a związane anty-IgG wykrywa się przez dodanie 100 μl roztworu substratu (0,4 mg/ml dichlowodorku o-fenylenodiaminy, Sigma P6912, 6 mM H2O2 w PBS) i inkubowano przez 8 minut w temp. 25°C. Reakcję enzymatyczną zatrzymuje się przez dodanie 100 μl 4,5 N H2SO4 a produkty barwne mierzy się w 490 nm na 96 studzienkowym densytometrze płytkowym (Molecular Devices). Związanie kompleksów wariant-E27 przedstawiono jako procent kompleksu zawierającego E27 dzikiego typu.
P r z y k ł a d 2
Identyfikacja unikalnych miejsc wiązania C1q w ludzkim przeciwciale IgG
W prezentowanym badaniu zidentyfikowano mutacje w domenie CH2 ludzkiego przeciwciała IgG1, C2B8 (Reff i inni, Blood 83:435 (1994)), które znoszą wiązanie przeciwciała C1q, ale ani nie zmieniają konformacji przeciwciała, ani nie wpływają na wiązanie każdego z FcyR. Poprzez mutagenezę z użyciem skanowania alaniny zidentyfikowano pięć wariantów IgG1, D270K, D270V, K322A, P329A oraz P331, które nie były lityczne i które zmniejszyły wiązanie C1q. Wyniki sugerowały, że rdzeniowe miejsca wiązania C1q w ludzkiej IgG1 są różne od miejsc w mysich IgG2b. Dodatkowo stwierdzono, że K322A, P329A oraz P331A wiążą się normalnie z antygenem CD20 i czterema receptorami Fc, FcyRI, FcyRII, FcyRIII oraz FcYRn.
Materiały i metody
Tworzenie wariantów C2B8: Użyto chimerowe łańcuchy ciężkie i lekkie przeciwciała anty-CD20, C2B8, (Reff i inni, Blood 83:435 (1994)), subklonowane oddzielnie do wcześniej opisanych wektorów PRK (Gorman i inni, DNA Protein Eng. Tech. 2:3 (1990). Poprzez mutagenezę ukierunkowaną (Kunkel i inni, Proc. Natl. Acad. Sci. USA 82: 488 (1937)) skonstruowano warianty otrzymane przez skanowanie alaniny regionów Fc w łańcuchu ciężkim. Plazmidy łańcucha ciężkiego oraz lekkiego kotransfekowano do transformowanej adenowirusem linii komórek embrionalnych nerki człowieka jak to wcześniej opisano (Werther i inni, J. Immunol. 157:4986 (1996)). Pożywki zmieniano na wolne od surowicy 24 godzinny po transfekcji, a po 5 dniach zebrano wydzielone przeciwciało. Przeciwciała oczyszczano przy użyciu Protein A-SEPHAROSE CL-4B™ (Pharmacia), zmieniono bufor i zatężono do 0,5 ml z PBS przy użyciu Centricon-30 (Amicon) i przechowywano w 4°C. Stężenie przeciwciał określono przy użyciu ELISA z wiązaniem wszystkich Ig.
ELISA z wiązaniem C1q: 96 studzienkowe płytki Costar pokrywano przez noc C2B8 w temp. 4°C w znanych stężeniach w buforze do pokrywania (0,05 M bufor z węglanem sodu), pH 9. Następnie płytki płukano trzykrotnie PBS/ 0,05% TWEEN 20™, pH 7,4 i blokowano 200 μl rozcieńczalnika do ELISA bez timerosalu (0,1 M NaPO4/0,1 M NaCl/ 0,1% żelatyna/ 0,05% Tween 20™/ 0,05% Proclin 300) przez jedną godzinę w temperaturze pokojowej. Płytki płukano trzykrotnie buforem do płukania, do każdej studzienki dodano 100 μl z 2 μg/ml C1q (Quidel, San Diego, CA) i inkubowano przez 2 godziny w temperaturze pokojowej. Płytkę następnie płukano sześciokrotnie buforem do płukania, do każdej studzienki dodano 100 μl rozcieńczonego 1:1000 koniugatu peroksydazy z przeciwciałem owczym przeciwko C1q (Biodesign) i inkubowano w temperaturze pokojowej przez jedną godzinę. Płytki ponownie sześciokrotnie płukano buforem do płukania i dodano 100 μl buforu substratu (PBS/ 0,012% H2O2) zawierającego OPD (dichlorowodorek o-fenylenodiaminy) (Sigma). Reakcja utleniania, obserwowana dzięki wystąpieniu żółtego koloru, przebiegała przez 30 minut i zatrzymano ją przez dodanie 100 μl 4,5 N H2SO4. Następnie odczytano absorbancję przy (492-405)nm przy użyciu czytnika mikropłytek (SPCTRA MAX 250™, Molecular Devices Corp.). Równolegle analizowano odpowiednie kontrole (tj. test ELISA przeprowadzono bez C1q dla każdego użytego stężenia C2B8 a ponadto przeprowadzono ELISA bez C233). W przypadku każdego wariantu mierzono wiązanie C1q przez naniesienie na wykres absorbancji (492-405) nm względem stężenia C2B8 w μg/ml przy użyciu
PL 209 786 B1
4-parametrowego programu do dopasowywania do krzywych (KALEIDAGRAPH™) i porównanie z wartością EC50.
Analiza cytotoksycznosci zależnej od dopełniacza (CDC). Analizę tę przeprowadzono jak opisano to wcześniej (Gazzano-Santoro i inni, J. Immunol. Methods 202:163 (1996)). Różne stężenia C2B8 (0,08-20 pg/ml) rozcieńczono buforem RHB (RPMI 1640/ 20 mM HEPES (pH 7,2)/2 mM Glutamina 0,1% BSA/ 100 pg/ m. gentamycyna). Ludzki dopełniacz (Quidel) rozcieńczono w stosunku 1:3 w buforze RHB, a komórki WIL2-S (dostępne z ATCC, Manassas, VA), które eksprymują antygen CD20, rozcieńczono do gęstości 1x106 komórek/ml buforem RHB. 150 pl mieszaniny zawierające równe objętości C2B8, rozcieńczonego ludzkiego dopełniacza oraz komórek WIL2-S dodano do płaskodennej 96-studzienkowej płytki do hodowli tkankowej i inkubowano przez 2 godziny w temp. 37°C i 5% CO2 w celu ułatwienia lizy komórek zależnej od dopełniacza. 50 pl barwnika alamar blue (Accumed International) dodano do każdej studzienki i inkubowano przez noc w temperaturze 37°C. Następnie zmierzono absorbancję przy użyciu 96-studzienkowego fluorometru z wzbudzeniem przy 530 nm i emisją przy 590 nm. Jak opisał to Gazzano-Santoro i inni, wyniki wyrażono we względnych jednostkach fluoroscencji (RFU). Stężenie próbek obliczano z krzywej standardowej dla C2B8 a procent aktywności w porównaniu do dzikiego typu C2B8 opisano dla każdego wariantu.
Siła wiązania CD20 wariantów C2B8: Wiązanie C2B8 oraz wariantów do antygenu CD20 testowano przy użyciu wcześniej opisanej metody (Reff i inni, (1994) supra, Gazzano - Santoro i inni, (1996), supra). Komórki WIL2-S hodowano przez 3-4 dni do gęstości komórkowej wynoszącej 1x 106 kom./ml. Komórki płukano i wirowano dwa razy w buforze FACS (PBS/0,1% BSA/ 0,02% NaN3) i zawieszono ponownie do gęstości komórkowej wynoszącej 5x 106 komórek/ml. 200 pl komórek (5 x 106 kom/ml) oraz 20 pl rozcieńczonych próbek C2B8 dodano do 5 ml probówek i inkubowano w temperaturze pokojowej przez 30 minut z wytrząsaniem. Następnie mieszaninę płukano 2 ml zimnego buforu FAC3, wirowano i powtórnie zawieszono w 200 pl zimnego buforu FACS. Do zawiesiny dodano 10 pl koziego anty-ludzkiego IgG-FITC (American Qualex Labs.) i mieszaninę inkubowano w ciemności w temperaturze pokojowej przez 30 minut z wytrząsaniem. Po inkubacji mieszaninę płukano 2 ml buforu FACS, wirowano i ponownie zawieszono w 1 ml zimnego buforu utrwalającego (1% formaldehyd w PBS). Próbki analizowano na cytometrze przepływowym a wyniki wyrażono jako względne jednostki fiuoroscencji (RFU) i przedstawiono na wykresie względem stężeń przeciwciał przy użyciu 4 parametrowego programu do dopasowywania do krzywych (KALEIDAGRAPH™). Wartości dla EC50 są wyrażone jako procent wartości dla referencyjnego materiału CD28.
Test ELISA wiązania FcyRI: fuzję GST- podjednostka α FcyRI przeniesiono na płytki Nunc F96 maxisorb (nr kat. 439454) przez dodanie 100 pl fuzji receptor-GST w stężeniu 1 pg/ml w PBS i inkubowano przez 48 godzin w temp. 4°C. Przed testem płytki trzykrotnie płukano 250 pl buforu do płukania (PBS, pH 7,4, zawierający 0,5% TWEEN 20™) i blokowano 250 pl buforu do analizy (sól fizjologiczna buforowana 50 mM Tris, 0,05% TWEEN 20™, 0,5% albumina wołowa klasy odpowiedniej do RIA (Sigma A7888) i 2 mM EDTA o pH 7,4). Próbki rozcieńczono do 10 pg/ml w 1 ml buforu do analizy i dodano do płytek pokrytych podjednostką α FcyRI i inkubowano przez 120 minut w temp. 25°C na wytrząsarce rotacyjnej. Płytki płukano pięciokrotnie buforem do płukania w celu usunięcia niezwiązanych kompleksów a wiązanie IgG wykrywano przez dodanie 100 pl peroksydazy HRP sprzęgniętej z kozim anty-ludzkim przeciwciałem IgG (γ) specyficznym dla łańcucha ciężkiego (Boehringer Mannheim 1814249) w 1:10000 w buforze do analizy i inkubowano przez 90 minut w temperaturze 25°C na wytrząsarce rotacyjnej. Płytki płukano pięciokrotnie buforem do płukania w celu usunięcia niezwiązanych HRP kozich anty-ludzkich IgG, a związane anty-IgG wykrywano przez dodanie 100 pl roztworu substratu (0,4 mg/ml o-dichlorowodorek fenylenodiaminy, Sigma P6912, 6 mM H2O2 w PBS) inkubując przez 8 minut w temperaturze 25°C. Reakcję enzymatyczną zatrzymano przez dodanie 100 pl 4,5 N H2SO4 a barwne produkty oznaczono przy 490 nm na 96-studzienkowym densytometrze płytkowym (Molecular Device). Wiązanie wariantu wyrażono jako procent cząsteczki dzikiego typu.
Analizę ELISA wiązania FcyRII oraz III przeprowadzono jak opisano w przykładzie 1 powyżej.
Aby zmierzyć zdolność wiązana FcRn wariantów IgG płytki ELISA pokryto 2 pg/ml streptawidyny (Zymed, South San Francisco) w 50 mM buforu węglanowego, pH 9,6 w temperaturze 4°C przez noc, i blokowano za pomocą PBS-0,5% BSA, pH 7,2 w temperaturze pokojowej przez jedną godzinę. Biotynylowane FcRn (wytwarzane z użyciem biotyno-X-NHS, z Research Organics, Cleveland, OH i użyte w ilości 1-2 pg/ml) w PBS-0,5% BSA, 0,05% polisorbatu 20, pH 7,2, dodano do płytki i inkubowano przez jedną godzinę. Do płytki dodano dwukrotne rozcieńczenia seryjne standardu IgG (1,6-100 ng/ml) lub wariantów w PBS-0,5% BSA, 0,05% polisorbatu 20, pH 6,0 i inkubowano przez
PL 209 786 B1 dwie godziny. Związane IgG wykrywano za pomocą znakowanego peroksydazą koziego F(ab)' antyludzki IgG F(ab)'2 w powyższym buforze o pH 6,0 (Jackson ImmunoResearch, West Grove, PA), a następnie dodano 3,3',5,5'-tetrametylobenzydynę (Kirgaard & Perry Laboratories) jako substrat. Płytki płukano pomiędzy etapami PBS-0,05% polisorbatu 20 w pH albo 7,2 albo 6,0. Absorbancję odczytywano przy 450 nm na czytniku płytek Vmax (Molecular Devices, Menlo Park, CA). Krzywą miareczkowania dopasowano za pomocą czteroparametrowego programu do dopasowywania krzywych wykorzystującego regresję nieliniową (KaleidaGraph, Synergy software, Reading, PA). Obliczono stężenia wariantów IgG odpowiadające środkowemu punktowi absorbancji krzywej miareczkowania standardu a następnie podzielono przez stężenie standardu odpowiadające środkowemu punktowi absorbacji krzywej miareczkowania standardu.
Wyniki oraz dyskusja
Dzięki mutagenezie skanowania alaniny skonstruowano kilka pojedynczych mutacji punktowych w domenie CH2 C2B8, rozpoczynając od E318A, K320A i K322A. Wszystkie skonstruowane warianty normalnie wiązały się do antygenu CD20 (Tabela 3).
T a b e l a 3
wt E318A K320A K322A P329A P331A
FcRn + + + +
CD20 + + + + + +
FcyRI + + + + + +
FcyRII + + + + + +
FcyRIII + + + + + +
*C1q + + + + + + + + - - -
CDC + + + - - -
(+) oznacza wiązanie a (-) oznacza zniesione wiązanie * w przypadku wiązania C1q każ dy + jest równoważny w przybliżeniu 33% wiązania.
Tam gdzie analizowano ludzki dopełniacz względem przeciwciała z ludzkim Fc zdolność E318A oraz K320A do aktywowania dopełniacza była zasadniczo jednakowa jak w przypadku C2B8 typu dzikiego (Tabela 3). W przypadku porównania do C2B8 typu dzikiego wydaje się, iż istnieje niewielka różnica w wiązaniu E318A i K320A do C1q. Zauważono tylko 10% zmniejszenie wiązania K320A i około 30% zmniejszenie wiązania E318A do C1q (Figura 2). Wyniki te wskazują, że wpływ substytucji E318A oraz K320A na aktywację dopełniacza i wiązanie C1q jest minimalny. Ludzką IgG1 z C2B8 zastąpiono ludzką IgG2 i użyto jako kontrolę ujemną w badaniach wiązania C1q. Wariant IgG2 wydaje się posiadać o wiele mniejsze powinowactwo do C1q niż warianty E318A i K320A (Figura 2). Zatem wyniki wykazują, że E318 oraz K320A nie stanowią rdzeniowych miejsc wiązania C1q dla ludzkiej IgG1. Odwrotnie substytucja K322A znacząco wpłynęła na zarówno aktywność dopełniacza, jak i wiązanie C1q. Wariant K322A nie posiadał aktywności CDC podczas analizy w powyższym teście CDC, wykazywał ponad 100-krotnie niższe wiązanie z C1q niż C2B8 typu dzikiego (figura 2). W układzie ludzkim K322 jest jedyną resztą spośród zaproponowanych rdzeniowych miejsc wiązania C1q, która wydawała się posiadać znaczący wpływ na aktywację dopełniacza i wiązanie C1q.
Ze względu na to, że badania Duncan'a oraz Winter'a przeprowadzono przy użyciu mysiej IgG2b a powyższe rezultaty ujawniły, że K320 oraz E318 w ludzkiej IgG1 nie są zaangażowane w wiązanie C1q, nie wiążąc się przy tym z żadną teorią, powyższe wyniki sugerują, iż region wiązania C1q w mysich IgG jest inny niż w ludzkich. Aby zbadać to bardziej, a również aby zidentyfikować dodatkowe warianty, które nie wiążą z C1q a zatem nie aktywują dopełniacza, skonstruowano kilka innych mutacji punktowych w sąsiedztwie K322, co oceniono na podstawie struktury trójwymiarowej Fc C2B8. Uzyskane warianty K274A, N276A, Y278A, S324A, P329A, P331A, K334A oraz T335A oceniano pod kątem ich zdolności do wiązania z C1q, a także aktywacji dopełniacza. Wiele z tych substytucji miało mały wpływ na wiązanie C1q lub aktywację dopełniacza, lub nie miało żadnego wpływu na takie wiązanie lub aktywację. W powyższych testach warianty P329A oraz P331A nie aktywowały dopełniacza i obniżały wiązanie C1q. Wariant P331A nie aktywował dopełniacza i wykazywał około 60-krotnie
PL 209 786 B1 słabsze wiązanie z C1q (Figura 3) w porównaniu do C2B8 typu dzikiego (Figura 2). Zakres stężenia wariantów przeciwciał użyty na Figurze 3 rozszerzono do 100 μg/ml w celu zaobserwowania wysycenia wiązania C1q z wariantem P331A. Mutacja P329A powoduje, że przeciwciało nie aktywuje dopełniacza i wykazuje ponad stukrotne obniżenie wiązania z C1q (figura 3) w porównaniu do C2B8 typu dzikiego (Figura 2).
Warianty, które nie wiązały się z C1q a zatem nie aktywowały dopełniacza badano pod kątem ich zdolności do wiązania receptorów Fc: FcyRI, FcyRIIA, FcyRIIB, FcyRIIIA oraz FcRn. To szczególne badanie przeprowadzono przy zastosowaniu przeciwciała humanizowanego anty-IgE, przeciwciała IgG1 z tymi mutacjami (zobacz przykład 1 powyżej). Wyniki ujawniły, że warianty K322A oraz P329A wiążą się ze wszystkimi receptorami Fc w tym samym stopniu co białko typu dzikiego (Tabela 4). Jednakże zauważono niewielkie obniżenie wiązania P331A z FcyRIIB.
Podsumowując, zidentyfikowano dwie substytucje aminokwasowe w końcowym regionie COOH domeny CH2 ludzkiej IgG1, K322A oraz P329A, które powodują ponad 100-krotne obniżenie wiązania z C1q, i które nie aktywują szlaku CDC. Te dwa warianty, K322A oraz P329A, wiążą się z wszystkimi receptorami Fc z takim samym powinowactwem jak przeciwciało typu dzikiego. Bazując na wynikach przedstawionych w Tabeli 4, i nie wiążąc się z żadną teorią, proponuje się, iż epicentrum wiązania C1q ludzkiej IgG1 jest umiejscowione wokół K322, P329 oraz P331 i jest inne niż epicentrum mysiej
IgG2b, które składa się z E318, K320 oraz K322.
T a b e l a 4
wt E318A K320A K322A P329A P331A
CD20 100 89 102 86 112 103
aFcyRI 100 93 102 90 104 74
aFcyRIIA 100 113 94 109 111 86
aFcyRIIB 100 106 83 101 96 58
aFcyRIII 100 104 72 90 85 73
CDC 100 108 108 brak brak brak
a
W przypadku wiązania z FcyR warianty utworzono z wykorzystaniem tła E27 (anty-IgE).
Wyniki przedstawiono jako procent dzikiego typu.
Przy zastosowaniu sposobów opisanych w prezentowanym przykładzie zidentyfikowano ponadto inną resztę zaangażowaną w wiązanie z ludzkim C1q. Resztę D270 zastąpiono lizyną i waliną w celu wytworzenia odpowiednio wariantów D270K i D270V. Warianty wykazywały zarówno mniejsze wiązanie z ludzkim C1q (Figura 6), jak również były nielityczne (Figura 7). Oba te warianty wiązały się z antygenem CD20 normalnie i wywoływały ADCC.
P r z y k ł a d 3
Warianty o zwiększonym wiązaniu C1q
Następujące badanie pokazuje, że substytucja reszt w pozycjach K326, A327, E333 oraz K334 skutkowała powstaniem wariantów o zwiększonym o co najmniej 30% wiązaniu z C1q w porównaniu do przeciwciała typu dzikiego. Wskazane reszty K326, A327, E333 oraz K334 są potencjalnymi miejscami do poprawy skuteczności przeciwciał ze szlaku CDC. Celem tego badania była poprawa aktywności CDC przeciwciała przez wzrost wiązania z C1q. Poprzez mutagenezę ukierunkowaną na reszty K326 oraz E333 skonstruowano kilka wariantów o zwiększonym wiązaniu z C1q. Reszty, w porządku zwiększonego wiązania w przypadku K326 to K<V<E<A<G<D<M<W, a reszty w porządku zwiększonego wiązania w przypadku E333 to E<Q<D<V<G<A<S. Skonstruowano cztery warianty K326M, K326D, K326D, K326E oraz E333S, które wykazywały co najmniej dwukrotny wzrost wiązania C1q w porównaniu do typu dzikiego. Wariant K326W wykazywał co najmniej pięciokrotny wzrost wiązania z C1q.
Warianty przeciwciała C2B8 typu dzikiego otrzymano jak opisano to w przykładzie 2. Kolejne przeciwciało kontrolne, C2B8 typu dzikiego wytworzone w komórkach jajnika chomika chińskiego (CHO) zasadniczo tak jak opisano w Patencie USA nr 5,736,134, zawarto w teście ELISA wiązania C1q w celu potwierdzenia czy wt CdB8 produkowane w linii komórek nerki 293 wykazują taką samą
PL 209 786 B1 aktywność wiązania C1q jak przeciwciało wytwarzane w CHO (zobacz CHO- wt- CDB8 na Figurze 8). Testy ELISA wiązania C1q, CDC oraz potencjału wiązania CD20 w tym przykładzie przeprowadzono tak jak opisano w przykładzie 2 powyżej.
Jak pokazano na Figurze 8 substytucja alaniny przy K326 i E333 w C2B8 skutkowała powstaniem wariantów, które wykazywały około 30% wzrost wiązania z C1q.
Skonstruowano kilka innych pojedynczych wariantów z mutacjami punktowymi przy K326 i E333, i przetestowano je pod kątem ich zdolności wiązania z C1q i aktywacji dopełniacza. Wszystkie skonstruowane warianty normalnie wiązały się z antygenem CD20.
W przypadku K326, inne wytworzone warianty z pojedynczymi mutacjami punktowymi to K326A, K326D, K326E, K326G, K326V, K326M oraz K326W. Jak pokazano to na Figurze 9 wszystkie te warianty wiązały się z C1q z lepszym powinowactwem niż przeciwciało typu dzikiego. K326W, K326M, K326D oraz K326E wykazywały co najmniej dwukrotny wzrost wiązania z C1q (Tabela 5). Spośród wariantów K326, wariant K326W wykazywał najlepsze powinowactwo do C1q.
T a b e l a 5
Wariant wartość EC50
typ dziki 1,53
K326V 1,30
K326A 1,03
K326E 1,08
K326G 0,95
K326D 0,76
K326M 0,67
K326W 0,47
E333S 0,81
E333A 0,98
E333G 1,14
E333V 1,18
E333D 1,22
E333Q 1,52
K334A 1,07
Substytucje resztami hydrofobowymi, jak również resztami naładowanymi skutkują powstaniem wariantów o podwyższonym wiązaniu z C1q. Nawet substytucja glicyną, która jak wiadomo nadaje łańcuchowi elastyczności i jest dobrze konserwowana w naturze, skutkowała powstania wariantów o wyższym powinowactwie do C1q w porównaniu do typu dzikiego. Wydawałoby się, że dowolna substytucja aminokwasowa w tym rejonie będzie powodowała powstanie wariantu o wyższym powinowactwie do C1q. Na podstawie struktury trójwymiarowej stwierdzono, że K326 oraz E333 znajdują się w sąsiedztwie miejsc wiązania C1q (Figura 10).
Oprócz alaniny E333 podstawiono także innymi resztami aminokwasowymi. Warianty te, E333S, E333G, E333V, E333D, i E333Q, wykazywały zwiększone wiązanie z C1q w porównaniu do typu dzikiego (Figura 11). Jak pokazano w Tabeli 5, porządek powinowactwa wiązania z C1q przedstawiał się następująco: E3333>E333A>E333G>E333V>E333D>E333Q. Substytucja resztami aminokwasowymi z łańcuchami bocznymi o małej objętości tj. seryną, alaniną i glicyną skutkuje powstaniem wariantów o wyższym powinowactwie do C1q w porównaniu do innych wariantów, E333V, E333D oraz E333Q o łańcuchach bocznych o większej objętości. Wariant E333S wykazywał najwyższe powiPL 209 786 B1 nowactwo do C1q, i wykazał dwukrotny wzrost w porównaniu do typu dzikiego. Bez związku z jakąkolwiek teorią pokazuje to, że wpływ na wiązanie C1 w pozycji 333 może być również wynikiem po części polarności reszty.
Wytworzono także warianty podwójne. Jak pokazano na Figurach 12 oraz 13 podwójne warianty K326M-E333S oraz K326A-E333A wykazywały około trzykrotnie lepsze wiązanie z ludzkim C1q niż C2B8 typu dzikiego (Figura 12) i co najmniej dwukrotnie lepsze pośredniczenie w CDC w porównaniu do C2B8 typu dzikiego (Figura 13). Addytywność pokazuje, że są to warianty o niezależnej aktywności.
Jak pokazano na Figurze 14, skonstruowano inny wariant o poprawionym wiązaniu z C1q (50% wzrost) przez zamianę A327 w regionie stałym na glicynę. Odwrotnie, w regionie stałym ludzkiej IgG2, zamiana G327 na alaninę zmniejsza wiązanie z C1q przeciwciała IgG2.
P r z y k ł a d 4
Identyfikacja miejsc wiązania FcR ludzkich przeciwciał IgG
W prezentowanym badaniu oceniano wpływ mutacji różnych regionów reszt regionu Fc przeciwciała IgG1 pod względem wiązania z FcyRI, FcyRIIA, FcyRIIB oraz FcyRIIIA jak również FcRn. Zidentyfikowano warianty przeciwciał o zwiększonym, jak również o zmniejszonym wiązaniu FcR.
Materiały i metody
Konstrukcja wariantów IgG1: Rekombinowane E27 anty- IgE posiadające sekwencje łańcucha lekkiego oraz ciężkiego przedstawione na Figurach 4A oraz 4B odpowiednio użyto jako przeciwciało macierzyste w następujących eksperymentach. Przeciwciało to wiąże antygen IgE i posiada region Fc allotypu nie-A IgG1. Poprzez mutagenezę ukierunkowaną (Kunkel i inni, Proc. Natl. Acad. Sci. USA 82: 488 (1987)) utworzono warianty regionu Fc łańcucha ciężkiego powyższego przeciwciała macierzystego. Plazmidy łańcucha ciężkiego oraz lekkiego ko-transfekowano do transformowanej adenowirusem ludzkiej zarodkowej linii komórki nerki jak to opisano wcześniej (Werther i inni, J. Immunol. 157: 4986 (1996)). Pożywkę zmieniono na wolną od surowicy 24 godziny po transfekacji, a wydzielone przeciwciało zebrano po pięciu dniach. Przeciwciała oczyszczono przy użyciu SEPHAROSE® z białkiem G (Pharmacia), bufor zmieniono i zatężono do 0,5 ml przy użyciu PBS stosując Centricon-30 (Amicon) i przechowywano w 4°C. Stężenie określono przez adsorpcję przy 280 nm przy użyciu współczynników ekstynkcji pochodzących z analizy składu aminokwasowego.
Analiza ELISA wiązania FcyRIA o wysokim stopniu powinnowactwa: FcyRIA eksprymowano jako fuzję GST ze znakowaną His6 zewnątrzkomórkową domeną w komórkach 293 i oczyszczono za pomocą chromatografii kolumnowej Ni-NTA.
Aby oczyścić FcyRIA po trzech dniach usunięto supernatant znad transfekowanych komórek 293. Dodano inhibitory proteaz: 50 μl aprotyniny (Sigma)/ 50 ml supernatantu oraz PMSF (1 mM). Supernatanty zatężono do 10 ml w probówkach (Amicon) i dializowano przez noc w temperaturze 4°C w jednym litrze buforu kolumnowego (50 mM Tris, pH 8,0, 20 mM imidazol, 300 mM NaCl). Dodatkową dializę przeprowadzono następnego ranka wobec świeżego buforu kolumnowego przez 4 godziny w 4°C. Roztwór nałożono na 1 ml kolumny Ni++ (NTA super flow resin, Qiagen), zrównoważone wcześniej 10 ml buforu kolumnowego. Kolumny płukano 10 ml buforu kolumnowego a białko eluowano 2,5 ml buforu elucyjnego (50 mM Tris pH 8,0, 250 mM imidazol, 300 mM NaCl). Białko zatężono do 0,5 ml oraz wymieniono bufor na PBS. Stężenia określono za pomocą adsorpcji przy 280 nm stosując współczynniki ekstynkcji pochodzące z analizy składu aminokwasowego.
Oczyszczonymi receptorami pokryto płytki Nunc F96 maxisorb (nr kat. 439545) w ilości średnio 150 ng na studzienkę przez dodanie 100 μl receptora w 1,5 μg/ml PBS i inkubowano przez 24 godziny w 4°C. Przed testem płytki płukano trzykrotnie 250 μl buforu do płukania (buforowana 50 mM Tris sól fizjologiczna, zawierająca TWEEN 20®, 0,5% albuminy wołowej klasy RIA (Sigma A7888) i 2 mM EDTA, pH 7,4).
100 μl E27 dodano do pierwszych czterech studzienek płytek pokrytych podjednostką FCyRIA w stężeniu 10 μg/ml. 80 μl buforu do analizy dodano do następnych czterech studzienek a następnie 20 μl z 10 μg/ml IgG E27 tak, aby otrzymać końcowe stężenie 2 μg/ml. Płytki inkubowano w 25°C przez dwie godziny na wytrząsarce rotacyjnej.
Do detekcji płytki płukano pięciokrotnie buforem do płukania w celu usunięcia niezwiązanego przeciwciała. Wiązanie IgG do GST- FCyRIA wykrywano przez dodanie 100 μl białka G (BIORAD) sprzężonego z peroksydazą HRP, w stosunku 1: 5000. Koniugaty HRP inkubowano przez 1,5 godziny w temp. 25°C na wytrząsarce rotacyjnej. Płytki płukano pięciokrotnie buforem do płukania w celu usunięcia niezwiązanego koniugatu HRP. Wiązanie wykrywano przez dodanie 100 μl roztworu substratu
PL 209 786 B1 (0,4 mg/ml dichlorowodorku o-fenylenodiaminy, Sigma p6912, 6 mM H2O2 w PBS) i inkubację przez 10 minut w temp. 25°C. Reakcję enzymatyczną zatrzymano przez dodanie 100 μl 4,5 N H2SO4 a produkt barwny mierzono w 490 nm na 96-studzienkowym densytometrze (Molecular Devices).
Wiązanie wariantów E27 w stężeniu IgG wynoszącym 2 pg/l wyrażono w stosunku do E27 typu dzikiego.
Test FcyRIA THP-1: 100 μl E27 dodano do pierwszych trzech studzienek płytki typu seracluster (Costar) w ilości 20 μg/ml w buforze do analizy (1X PBS, 0,1% BSA, 0,01% NaN3). 92,5 μl buforu do analizy dodano do następnych trzech studzienek a następnie po 7,5 μl z 20 μg/ml IgG E27, tak aby otrzymać końcowe stężenie 1,5 μg/ml. Do każdej studzienki dodano 100 μl komórek THP-1 w stężeniu 5 milionów komórek/ml w buforze do analizy FACS. Płytkę inkubowano na lodzie przez 30 minut.
Do detekcji komórki płukano dwukrotnie buforem do analizy w celu usunięcia niezwiązanego przeciwciała. Wiązanie IgG z FcyRIA wykrywano przez dodanie 100 μl sprzężonego z FITC fragmentu F(ab)' koziej IgG specyficznej przeciwko ludzkiemu łańcuchowi ciężkiemi (Jackson Immunoresearch) w stosunku 1:200. Koniugaty FITC inkubowano z komórkami przez 30 minut na lodzie. Komórki płukano trzykrotnie buforem do analizy tak, aby usunąć niezwiązany koniugat FITC. Komórki wybarwiono P.I. (SIGMA) w stężeniu 2,5 μg/ml i analizowano przez cytometrię przepływową.
Wiązanie wariantów E27 w stężeniu IgG wynoszącym 1,5 μg/ml wyrażono w stosunku do E27 typu dzikiego.
Otrzymane wyniki z testów płytkowych (FcyRIA ELISA) oraz testów komórkowych (test FcyRIA THP-1) uśredniono, aby otrzymać aktywność wiązania FcyRIA.
Test ELISA wiązania FcyR o niskim stopniu powinowactwa: testy ELISA FcyRIIA, FcyRIIB oraz FcyRIIIA przeprowadzono tak jak w przykładzie 1 powyżej, wraz z detekcją cząsteczek stabilnego heksameru (składającego się z trzech anty-IgG i trzech cząsteczek IgE).
Test ELISA wiązania FcRn: w celu zmierzenia aktywności wiązania FcRn wariantów IgG płytki ELISA pokryto 2 μg/ml sterptawidyny (Zymed, South San Francisco) w 50 mM buforu węglanowego, pH 9,6, w 4°C przez noc i blokowano przy użyciu PBS-0,5% BSA, pH 7,2 w temperaturze pokojowej przez jedną godzinę. Biotynylowany FcRn (wytworzany z użyciem z biotyno-X-NHS z Research Organics, Cleveland, OH i użyty w stężeniu 1-2 pg/pl) w PBS-0,5% BSA, 0,05% polisorbat 20, pH 7,2 dodano do płytki i inkubowano przez godzinę. Dwukrotne seryjne rozcieńczenia standardu IgG (1,6-100 ng/ml) lub wariantów w PBS-0,5% BSA, 0,05% polisorbatu 20, pH 6,0 dodano do płytki i inkubowano przez dwie godziny. Związaną IgG wykrywano przy użyciu znakowanego perdydazą koziego F(ab)' przeciwko F(ab)' ludzkiej IgG w powyższym buforze o pH 6,0 (Jackson ImmunoResearch, West Grove, PA) a następnie dodano 3,3',5,5'-tetrametylobenzydynę (Kirgaard & Perry Laboratories) jako substrat. Płytki płukano między etapami postępowania przy użyciu PB3- 0,05% TWEEN 20® w pH 7,2 lub 6,0. Absorbancję odczytano przy 450 nm na czytniku płytek Vmax (Molecular Devices, Menlo Park, CA). Krzywe miareczkowania dopasowano przy pomocy cztero-parametrowego programu do dopasowywania do krzywych wykorzystującego regresję nieliniową (KaleidaGraph, Synergy software, Reading, PA). Obliczono stężenia wariantów IgG odpowiadające środkowemu punktowi absorbancji miareczkowania dla krzywej standardu i podzielono przez stężenie standardu odpowiadającego środkowemu punktowi absorbancji krzywej miareczkowania dla standardu.
Analiza ADCC in vitro. W celu otrzymania znakowanych chromem51 komórek docelowych, linie komórek rakowych hodowano na płytkach do hodowli tkankowej i zbierano przy użyciu sterylnego 10 mM EDTA w PBS. Jako komórki docelowe we wszystkich testach zastosowano komórki SK-BR-3, ludzką linię komórkową raka sutka wykazującą nadekspresję 3+ HER2-. Komórki płukano dwukrotnie pożywką do hodowli komórkowej. Komórki (5x106) znakowano 200 μ Ci chromu31 (New England Nuclear/ Du Pont) w temp. 37°C przez jedną godzinę z mieszaniem co pewien czas. Znakowane komórki płukano trzykrotnie pożywką do hodowli komórkowej, a następnie zawieszono ponownie do stężenia 1 x 103 komórek/ml. Komórki stosowano bez opsonizacji lub opsonizowano je przed analizą przez inkubację z rhuMAb HSR2 dzikiego typu (HERCEPTIN®) lub siedmioma mutantami Fc (G14, G13, G17, G36, G30, G31 oraz G34) w ilości 100 ng/ml i 1,25 ng/pl w analizie PBMC lub 20 ng/ml i 1 ng/ml w analizie NK.
Komórki jednojądrzaste krwi obwodowej przygotowano przez zebranie krwi na heparynę od normalnych zdrowych dawców i rozcieńczono równą objętością buforowanej fosforanem soli fizjologicznej (PBS). Krew następnie rozwarstwiono na LYMPHOCYTE SEPARATION MEDIUM® (LSM: Organon Teknika) i wirowano zgodnie z zaleceniami producenta. Komórki jednojądrzaste zebrano
PL 209 786 B1 z powierzchni LSM-osocza i płukano trzykrotnie PBS. Komórki efektorowe zawieszano ponownie w pożywce hodowlanej do końcowego stężenia 1 x 107 komórek/ml.
Po oczyszczeniu przez LSM, z PBMC wyizolowano komórki naturalnych zabójców (NK) przez negatywną selekcję przy użyciu zestawu do izolacji komórek NK oraz kolumny magnetycznej (Miltenyi Biotech) zgodnie z instrukcjami producenta. Wizolowane komórki NK zebrano, płukano i powtórnie zawieszono w pożywce hodowlanej do stężenia 2 x 106 komórek/ml. Identyfikację komórek NK potwierdzono przez analizę cytometrii przepływowej.
Przez dwukrotne seryjne rozcieńczanie komórek efektorowych (albo PBMC albo NK) wzdłuż rzędów płytki do mikromiareczkowania otrzymano różne stosunki komórek efektorowych i docelowych (100 μl objętości końcowej) w podłożu do hodowli. Stężenie komórek efektorowych wahało się od 1,0 x 107/ml do 2,0 x 104/ml dla PBMC i od 2,0 x 105/ml do 3,9 x 103/ml dla NK. Po miareczkowaniu komórek efektorowych do każdej studzienki płytki dodano 100 μl komórek docelowych znakowanych chromem 51 (opsonizowanych lub nie) w ilości 1 x 105 komórek/ml. Dzięki temu wyjściowy stosunek komórek efektorowych: komórek docelowych wynosił 100:1 dla PBMC i 20:1 dla komórek NK. Wszystkie analizy przeprowadzono w dwóch powtórzeniach, a każda płytka zawierała kontrole dla zarówno lizy spontanicznej (bez komórek efektorowych), jak i lizy całkowitej (komórki docelowe plus 100 μl 1% dodecylu sodu, 1 N wodorotlenku sodu). Płytki inkubowano w 37°C przez 18 godzin a następnie supernatanty hodowli komórkowej zebrano przy użyciu układu do zbierania supernatantów (Skatron Instrument, Inc.) i zliczano w liczniku Minaxi auto-gamma serii 5000 gamma (Packard) przez jedną minutę. Wyniki przedstawiono następnie jako procent cytotoksyczności przy użyciu wzoru:
% cytotoksyczności = (próbka cpm - spontaniczna liza)/(całkowita liza - spontaniczna liza) x 100.
Następnie w celu analizy danych zastosowano czteroparametrowe dopasowanie do krzywych (KaleidaGraph 3.0.5).
Wyniki
Wytworzono różne warianty przeciwciał, które cechowały się inną aktywnością wiązania FcR niż przeciwciało macierzyste. Wyniki wiązania FcR dla różnych uzyskanych wariantów pokazano w Tabelach 6 i 7 poniżej. Dodatkowy wariant, T307Q, wykazywał także poprawione wiązanie FcR w porównaniu do przeciwciała macierzystego E27.
PL 209 786 B1
WARIANTY DOMENY CH2
PL 209 786 B1
Τ307Α(326) 1.81 ¢0.32) 6 0.99 {0-14) 4 1.19 (0.37) 1.35 (0.33) 1.12 (0.18) η=12
PL 209 786 B1
L309A(328) 0.63 (0.18) 4 0.93 (0.18) 6 1.13 (0.08) 1.26 (0.12) 1.07 (0.20)
(0.18)
PL 209 786 B1
PL 209 786 B1
TABELA 7
WARIANTY DOMENY CH3
<H'O)
PL 209 786 B1
Β17 A378(401)Q 1.32 (0.13) 3 1.06 (0.05) 3 1.40 (0.17} 1.45 (0.17) 1.19 (0.17)
LO 1 CD i cd i i co 1 <h 1 CM f SP i 00 1 r-ł 1 co i UD 1 σ\ 1 LO f <-4 *r 1 en 1 I sp i-H } CM
o 1 1 O J 1 o i 1 o 1 1 o 1 1 o Ϊ O i O i o 1 1 o 1 o · i—ł t o 1 Γ-Τ 1 o j o ί o 1 o 1 o j O
o 1 o i o 1 o 1 o 1 o Ϊ o i o t o 1 o t o ! o i o 1 o i o } o i f o i o 1 J o { O
1 | 1 | 1 l 1 1 1 1 1 1 i 1 1 —' ł *—* I *“* 1 i i ł 1 w
Sp 1 LO s CD ł o 1 sp 1 1 o i LO 1 o 1 o 1 rH ! co 1 o 1 co 1 o O 1 ·*τ f LO i 2 ! r-
O I I O I i o i 1 o 1 1 ł-4 1 1 r~l 1 1 o ł o i o ( o ł o j T-4 I rH I r-< r o ; o i O I cn 1 σ, J <h
r-i i 1 I—< 1 i r—ł 1 I «—< 1 1 r-4 1 1 «—4 f 1 <—ł t 1 r~ł 1 1 f—ł 1 1 rH ί ł—i i i ł—I I i <—ł 1 1 r-4 i i ł-ł ł 1 o 1 1 o J o
LO S? ] Ί ί o j - i sr : Si o J ( r-t , m ; sp r* .88 CM O r—ł O O Γ*·
CM j r-ł o t i O ϊ 1 o
rt ! < i f { i < 1 1 *£,
I •O
ud i C' 00 ł o sp
o o o 1 1 F—1 I r—4
sp i sp ( sp ST I SP
·—· 1 —- ’ —-
o ! CM ! cd 1 I sy 1 I LO
00 CO 00 I 00 00
cd CD cd 1 CD CD
ω j ω ; ω f Z 1 o
1 00 1 f Ch i o i i t—( 1 1 CM
r-t | τ-M ( CM i CM l CM
CD 1 CQ r CD i fQ i ω
CM ί 04
1 1 1 1 Λ
CM ! ! ! ! °
rH J 1 *“*
O ' ! ! o
-=p 1 CD 1 r- 1 ST τ—i
LO 1 r* 1 co 1 r—4 1 co
O 1 I o 1 1 o 1 1 r~4 1 1 o
1 t I < 1 1 | < i l t 1 1 I [*4
—* | j cn | <n
LO r- a> t |
r-4 ł r-ί | r-4 sp | ST
sr sr sp j —-
.—, *—·
00 1 j UD i i O 1 | Ch 1 | σ>
00 J oo Ch j CD | CD
CD | CD co X1 | ><
ω f 1 Z 1 1 z ł ! < 1 1 CO
CD 1 «53» f UD ł LO 1 LO
CM f CM 1 CM 1 CM 1 CM
co 1 co J CQ ί CD 1 (Q
CM I 00 CD <N
i i λ 1
SP ! ! UL r-
O ! ° ! O o
« ł ’ *
O ! ° 1 o o
*-* 1 1 ł
Sp 1 O i r-ł
Ch J Ch v-f CM
O i t o 1 1 o 1 1 <~4 ł 1 r~4
< l f < 1 1 < 1 1 < 1 i
o ί LO 1 00 1 o 1 <3*
CM CM CM CD SP
M1 i ΧΓ 1 sp 1 SP 1 SP
CM 1 00 I o i T~ł 1 CD
Ch en O O r—4
ΓΟ CD sp sr ST
u: i J 1 ω t i Q } Q
Γ* i 1 co f 1 Ch f i O 1
CM i CM 1 CM i CD i CD
1 CQ 1 CQ f CD i CD
1 t 1 t 1 1 <M 1 1 CM
1 t 1 1
1 1 CD 1 i
1 1 1 1 1 O 1 O
1 1 1 O i o
l f ] i 1 i —-
CM i sp 1 GO ! Γ* 1 | LO
O i sp 1 1 O j r- t c-
r—4 1 i O 1 1 e—) o 1 t o
< 1 i j 1 1 | < ! 1 ( <
.—« -—·
UD 1 LO 1 Γ'*· 1 Ch 1 1 o
ip sp 1 1 sp | UD
sp xr 1 sp sp | Sp
•—· «—· 1 1 —*
sp 1 in 1 LO 00 1 I <h
«-1 »—( l f—ł rH I T—i
Sp sr Sp SP sP
1 1 ω 1 i oa j o 1 1 O
CM 1 1 fD 1 1 1 sp [ UD 1 1 LO
CD 1 CD 1 CD t CD 1 CD
aa 1 co 1 CQ l ffl 1 03
PL 209 786 B1
Β37 Ν421(452)Α 0.98 0.99 (0.01) 3 0.90 (0.03)
Oprócz wariantów alaninowych otrzymano różne warianty z substytucją nie-alaninową, których aktywność wiązania FcR podsumowano w kolejnej tabeli.
PL 209 786 B1
WARIANTY NIEALANINOWF,
PL 209 786 B1
I
I
I
I
I
I
I <
I (
I
I
CU ! z ! ω ] o ! w ! z Q i 01! <Z> ’ Q ! σ ί w ! ω [ 05 j o j ! ί o ! z ! ° ! α
-«w -—Ι- z-s. -— i t z—. z-**·
σ\ ! ΚΠ ! un ' o J O ! o o ! ! en ! en Ο' ! c- ! > ! c~ o ! en en a\ ! o ! o
00 1 cn o O o o θ ! o o O 1 o ; O o o o r—(
CM OJ en i 2 01 <n 1 en [ en i en en J en en J en en I ! ί en
·.—» 1 1 _ —* »—·» . * —*
KO ! o ! o ! en i co ! ΓΟ ! ! KO [ KO J o o ! o o ! CM ! nj ! Oj ! en i en
00 GO CD f 00 <D 00 <D 05 en en en en en en en
CM CM CM OM OM CM CM CM CM f* CM CM CM OM CM CM
Z [ Q ! O J ω i ! ω ω 1 z i Z J Z J & j 1 1 *S 1 1 ! ! Oi 1 & 1 ω 1 CJ
en 1 1 1 1 1 cn f mo t t ο- 1 | <D <n 1 1 1 ( t O* 1 1 CO 1 i 1 i i 1 i 1 1 1 r~ i 1 I i i i 1 1 1 1 <r 1 on
cn 1 <T\ 1 TT f CM ί CM 1 04 OJ 1 en f en i en i en i lo i r~ ł 00 1 o* t O i w t CM i m 1 1 *?
CM i o- t rM i CM i OJ ! CM CM 1 CM 1 CM 1 CM 1 i o- i θ' f O- I r-M t 00 i 00 1 00 i CO t r-4 I r-t
147 E293(310)K 1.13 (0.04) 1.31 ¢0.17) 0.72 (0.08)
PL 209 786 B1
PL 209 786 B1
214 S324(343)Q 0-82 0.83
PL 209 786 B1
Kolejna tabela przedstawia aktywność wiązania z FcR różnych wariantów łączonych.
PL 209 786 B1
TABELA 9
WARIANTY ŁĄCZONE
PL 209 786 B1
1 < < · <
ο UD 1 I o UD 1 o O
OO σ. 1 1 co CO 1 co rM
CM cm 1 I CM CM i 1 CM cd
1 1 ·'—* *-«··
r- o 1 r*** CM 1 i r- CD
KD OO t 1 <o r- 1 i MO σ
CM OJ 1 1 CM CM 1 1 CM CM
W o 1 t ω U 1 1 cn Łd
co 1 ( o 1 t t-4
I ud 1 UD
<M 1 CM 1 CM
} CO J
I ł 1
l I Tj. 1 I
l 1 O 1 1 r-
1 f o 1 f *—1
i 1 I
i t UD i | <o
I 1 UD i |
1 I « 1 1 CM
1 1 CO i i r-4
«c *c < 1 1 i 1 1 | «£.
x—w χ·-. i X—s «
o «—ł UD co 1 1 UD UD 1 1 uD
co r- cn co t * O VD i 1 O
CM CM CM CM i 1 ! i
·—- —* 1 * **· 1 ·«—-
r- CO o UD i i o 1 f O
C0 UD 00 UD 1 1 00 CD 1 I 00
CM CM CM CM 1 CD ł cd
ω ω Q 1 1 ω z i l ω
*T 1 1 cn i 1 o
co i co r
CM 1 CM 1 CM
j CM j CM
i 1 I .—.
i | i—t 1 CM
1 i o i ł
t o i « O
1 t —' I 1
1 r—< 1 UD
1 1 o 1 1 c-ł
1 1 rH i 1 CD
< fi ! < ! < <
x— X-,
UD co UD co UD UD
MD CM O CM ί kO O
XT CD -ęjt CD CD
——* *—·
r- ! O σ ! 00
CD o 00 o CD co
VJ< CD CD CD 04
Z e-< ’ ω u ; Z
1 1 r—ł » 1 cm
1 Γ 1 r
1 CM I CM
PL 209 786 B1
Dyskusja
Badanie to obejmuje całkowite mapowanie ludzkiej IgG1 względem FcyRI, FcyRIIA, FcyRIIB, FcyRIIIA oraz FcRn. Przedstawiono skanowanie alaniny dla wszystkich aminokwasów ludzkiego Fc IgG1 (CH2 i CH3 domen) eksponowanych na rozpuszczalnik, w oparciu o strukturę krystaliczną ludzkiego Fc (Deisenhofer, Biochemistry 20: 2361-2370 (1981)). Każdy eksponowany aminokwas w CH2 oraz CH3 został indywidualnie zamieniony na alaninę, a wariant IgG testowano względem wszystkich 5 ludzkich receptorów; oceniano wszystkie warianty przy użyciu humanizowanej IgG1 anty-IgE, E27, jako polipeptydu macierzystego. FcyRI oraz FcRn to receptory o wysokim powinowactwie, a monomer IgG mógł być oceniany w tych analizach dla dwóch z tych dwóch receptorów. FcyRIIA, FcyRIIB oraz FcyRIIIA to receptory o niskim powinowactwie i wymagają zastosowania kompleksu immunologicznego. Zatem w przypadku FcyRIIA, FcyRIIB oraz FcyRIIIA zastosowano test ELISA, w którym wstępnie utworzone heksamery, złożone z trzech cząsteczek E27 anty-IgE oraz trzech cząsteczek IgE, związano do FcyR, i jako reagent do detekcji użyto anty- ludzkie Fc IgG -HRP, albo lub białko G-HRP. Aby zwiększyć wiązanie heksamery te można połączyć w multimery przez dodanie ludzkiego VEGF (używając IgE anty-VEGF). Heksamery wiążą się do FcyR o niskim powinowactwie znacząco lepiej niż monomery IgG, multimery wiążą lepiej niż heksamery (Figury 15A oraz 15B). Zastosowano kompleksy heksametryczne, ponieważ zapewniały one wystarczające wiązanie i wymagały mniej IgG. Innymi reagentami, które można zastosować są kompleksy wytworzone przy użyciu innych kombinacji przeciwciało: antygen pod warunkiem, że w przypadku przeciwciała antygen będzie zawierał dwa identyczne miejsca wiązania na cząsteczkę. Przykładowo, VEGF zawiera dwa miejsca wiązania na dimer VEGF dla anty-VEGF A.4.6.1 (Kim i inni, Growth Factors 7:53(1992) oraz Kim i inni, Nature 362: 841 (1993)). Multimery VEGF: anty-VEGF wiązały się także do FcyRIIA oraz FcyRIIIA o niskim powinowactwie (Figury 16A i 16B).
Po przeprowadzeniu kompletnego skanowania alaniny stwierdzono występowanie kilku klas wariantów alaninowych. Niektóre warianty wykazywały obniżone wiązanie z wszystkimi FcyR (G14, Figura 17), podczas gdy inne warianty wykazywały zredukowane wiązanie tylko z jednym FcyR (G36, Figura 17), poprawione wiązanie tylko z jednym FcyR (G15, G54, G55, Figura 17), albo równoczesną redukcję wiązania z jednym FcyR wraz z poprawą wiązania z innym (G16, Figura 17).
Pojedyncze warianty alaninowe łączono ponadto z pojedynczymi wariantami regionu Fc, np. połączenie S298(317)A z K334(353)A poprawiało wiązanie z FcyRIIIA bardziej niż sama S298(317)A lub K334(353)A (Figury 18A oraz B, porównaj warianty 36, 55 oraz 109 w Tabeli 6 i 9) (numery reszt w nawiasie są numerami według indeksu EU zgodnie z Kabat). Podobnie, przez połączenie S298(317)A z E333(352)A poprawiono wiązanie z FcyRIIIA w porównaniu do samej S298(317)A lub E333(352) (porównaj warianty 36, 53 i 107 w Tabelach 6 i 9).
Wyselekcjownowane warianty IgG testowano także pod kątem wiązania FcyR transfekowanych do komórek ssaczych. Zewnątrzkomórkową cześć łańcucha α ludzkiego FcyRIIIA transfekowano do komórek CHO przy użyciu łącznika GPI, podczas gdy pełnej długości ludzki receptor FcyRIIB transfekowano do komórek CHO. Dla testowanych wariantów wzorzec wiązania do komórek był taki sam jak wzorzec wiązania białko: białko w analizie ELISA (Figury 18A-B i 19A-B).
Jednym z zastosowań tych wariantów jest poprawa funkcji efektorowych ADCC przeciwciała. Można to osiągniąć przez modyfikację aminokwasów regionu Fc jednej czy większej ilości reszt, prowadzącej do poprawy wiązania do FcyRIIIA. Poprawione wiązanie do FcyRIIIA doprowadziłoby do poprawy wiązania przez komórki NK, które mają tylko FcyRIIIA i mogą pośredniczyć w ADCC. Wyselekcjonowane warianty alaninowe, które miały albo zredukowane wiązanie z FcyRIIIA (warianty 17, 18, 34; Tabela 6), albo nie miały wpływu na wiązanie FcyRIIIA (odmiana 31, Tabela 6), albo które miały zwiększone wiązanie z FcyRIIIA (wariant 30, 36; Tabela 6) testowano w analizach in vitro przy użyciu ludzkich PBMC jako komórek efektorowych. Ze względu na to, że komórki docelowe były komórkami SKBR3 z nadekspresją HER2, to warianty Fc IgG użyte w tej analizie wytworzono przez substytucję domen VH/VL E27 anty-IgE odpowiednimi domenami z przeciwciała anty-HER2; HERCEPTIN® (ludzkie Ab4D5-8 w Tabeli 1 z Carter i inni, PNAS (USA) 89:4285 (1992)). Wzorzec ADCC wykazywany przez warianty był skorelowany z wzorcami wiązania z FcyRIIIA (Figury 20 oraz 21). W szczególności wariant wykazujący większą poprawę wiązania z FcyRIIIA w analizach białko:białko, wariant 36S298(317)A, wykazywał również poprawę ADCC w porównaniu do dzikiego typu HERCEPTIN® w ilości 1,25 ng/ml (Figura 21).
PL 209 786 B1
P r z y k ł a d 5
Wiązanie wariantów Fc do polimorficznych receptorów Fc
W populacji ludzkiej stwierdzono występowanie wariantów allelicznych kilku ludzkich FcyR. Warianty te wykazywały różnice w wiązaniu ludzkiej oraz mysiej IgG, a wiele badań skorelowało wyniki z obecnością specyficznych wariantów allelicznych (dla przeglądu zobacz LehrnBecher i inni, Blood 94 (12): 4220-4232(1999)). W kilku badaniach badano dwie postaci FcyRIIA, R131 oraz H131, oraz ich związek z wynikami klinicznymi (Hatta i inni, Genes and Immunity 1:53-60 (1999); Yap i inni Lupus 8:305-310(1999); jak również Lorenz i inni European J. Immunogenetics 22:397-401 (1995)). Obecnie badane są dwie postaci alleliczne FcyRIIIA, F158 oraz V158 (Lehrebecher i inni, supra; i Wu i inni. J. Clin. Invest. 100(5):1059-1070)). W przykładzie tym wyselekcjonowane warianty IgG testowano względem tych obu postaci allelicznych FcyRIIA i FcyRIIIA. Analizy wiązania receptora Fc przeprowadzono zasadniczo tak jak w powyższych przykładach. Jednakże dla FcyRIIIA- V158 przeprowadzono zarówno (a) test wiązania receptora o niskim powinowactwie z przykładu 1 (w którym analizowano wiązanie kompleksu IgG do FcyRIIIA- V158); oraz (b) test wiązania FcyR o wysokim stopniu powinowactwa z przykładu 4 (w którym analizowano wiązanie monomeru IgG do FcyRIIIA-V158). Wyniki badań podsumowano w tabeli 10 poniżej.
PL 209 786 B1
WIĄZANIE WARIANTÓW Z RECEPTORAMI POLIMORFICZNYMI FcyRIIA I FcyRIIlA
177 K290(307)G
PL 209 786 B1
! cO ] CM co co CM UO i-i 1 t-4 1 1 CM i •O1
1 1 i-i |
.—- I | |
Γ i <Ti CM to j co CTi CO I r-
i—ł j -1 ' o rH i—1 ! o t—1 1 1 O 1 <—i
o ! o ’ o O ° ! o O 1 1 1 | O 1 f o
| 1 1 -— I 1 1
Ή ! »—1 Γ T i (O r- i—♦ i 1 Γ' 1 | o 1 f r-
CM Γ- I CM θ’ UO 00 <x> O t co 1 •<r l co
O ’ o ! o O o ! o o ł—1 i l o 1 1 O t ł o
21) 3 01) 2 co i y> ! ° 12) 3 ł 1 1 1 1 1 ,12) 4 CM τ—1 Γ CO 1 1 1 1 1 ł ,06) 5 1 1 1 1 1 1 .05)' 4 I ł 1 i i J ! i i-l { iH J O r-ł CM «—i
O j O J o J O 1 O o t O 1 O 1 O J O
I 1 1 1 1 1 < 1
<-< i 00 ! r-{ 1 CM σ\ 1 uo 1 co i ™ i CM
rr 1 o { rH c—1 1 t—1 1—1 1 i—1 1 T-l i i-i ; <Fi
o ! o ! o ! »—i 1 1 i-i r-4 1 i—< ł i—1 1 1 ι-l ! O
R292(309)A
bi i s: ' Ο» [ 2 ! o Ol 1 ° 1 < I °
1 1 1 1
S? ! CD ) en ! ON o 1 T—1 1-1 . ł_
o O o o »—1 «—i f ** 1 1
co ' co ; co [ co j co CO ! 1
•— *-* t
CM cm ; CM ! CM ! co 1 : vr 03 03
CTi ΟΊ σ ! οί σ\ σι I
CM CM CM ! CM CM <CM CM 1 CM 04
od [ f£ 1 cd J cd ’ ω ί ω 1 ω ! ω 1 °° i ω
1 i 1 1 1 1 1 1 xr i i 1 1 co 1
O 1 <—1 1 CM 1 CO 1 ! CO 1 r- i r- I 1 o
00 1 00 1 OO 1 GO 1 r-i 1 CO 1 i“S 1 t—· 1 co 1 Γ-
H ! 2 ! > ! ! < J o: ! ! I I
! „—. -—' a ---a —. : y—s 1
r- Γ**- ! I \o
ł~1 r-1 <”< a CM CM cO
CO ] CO j CO CO j CO j co co 1 m
'—’ 1
O0 ! <» ! a? ! 00 ! U0 ] c- ! i r- ! ° z
(Tl σ> σ\ <T\ o o r-4 £
CM CM CM CM CO co co CO CO
co ; ω ] σ> J <O J > ! H ! 12 ! ! i u:
1 1 l 1 1 oo I 1 | 1 1 1 1 1 ł 1 i 1 1
i-i 1 CM l «-f 1 ι-l 1 O f (—i 1 LT) i <0 1 00 i xr
r- 1 r~- i CM | CM 1 ςτ t ST 1 ST 1 •ST 1 1 MO
PL 209 786 B1
141 E333(352)Q 0.70 (0.05) 2 1.10 (0.03) 2 1.05 1 1.00
221 K334(353)L 1.05 1 1.38 1 0.96 1 3.59
PL 209 786 B1
PL 209 786 B1
W przypadku FcyRIIIA wzorzec wiązania wyselekcjonowanych wariantów IgG1 z FcyRIIIA-V158 o stosunkowo wysokim powinowactwie był taki sam jak do FcyRIIIA-F158 o stosunkowo niższym powinowactwie (postać F158 stosowano w analizie wszystkich wariantów). Warianty IgG1, które wykazywały poprawione wiązanie z FcyRIIIA-F158 wykazywały także poprawione wiązanie z FcyRIIIA-V158, chociaż poprawa nie była tak wyraźna. W przypadku FcyRIIA-R131 (stosowanego do analizy wszystkich wariantów) oraz FcyRIIA-H131 wzór wiązania wyselekcjonowanych wariantów IgG1 nie wykazywał wyraźnych różnic. S267(280)A, H268(231)A oraz S267(280)A/H268(281)A wykazywały poprawione wiązanie z FcyRIIA-R131 w porównaniu do natywnej IgG1, ale nie z FcyRIIA-H131. Przeciwnie S267(280)G wykazywał poprawione wiązanie z FcyRIIA-R131, ale zmniejszone wiązanie z FcyRIIA-H131 (Tabela 10). Inne warianty wiązały się podobnie z następującymi postaciami allelicznymi FcyRIIA: V305(324)A, T307(326)A, N315(324)A, K317(336)A oraz K320(339)A.
PL 209 786 B1 <1.10 <! 20 <13O>
S <141>
<150 < 151 >
”% 1 O —i <2 lfi>
<210 <212> <2l3>
<220> <22 0 <220 <223>
<400>
Lista sekwencji
Genenceeh, Inc.
Przeciwciało zawierające wariant regionu Fc ludzkiej IgGl.
przeciwciało wiążące czynnik wzrostu sródbłonka naczyń orazimmunoadhezyna
P1726R1PCT
2000-01-14
US 60/116,023
I999-C1-15
213
PRT $ek*«nq· «tacraa
Sekwencja srtucrHa 1-213
Sekwencja ,est w ca<ośm «syntetyzowana
Aop 1 Ile Gi-h Ceu Thr 5 Gin <£?*«IC Pro Ser Ser 10 Leu Ser Ala Ser Val 15
20 Gly Asp Arg V3l Thr Ile Thr Cys Ar$ Ala Ser Lys Fz<? Val Asp
20 25 30
Gly Glu Gly Asp Ser Tyr Met Asn Trp Tyr Gin Glrs Lys Pro Gly
33 40 45
LyYS Ala Pro L/3 Leu Leu 11® Tyr A i <i Ala Ser Tyr y> GO Ser
25 SC 55 60
Gly val Pro ser Arg Phe Ser Gly Ser ui y Ser Gly Thr Asp Phe
65 70 75
Thr Leu Thr 11« Ser Ser Leu Gin Pro Glu Asp Phe Ala Thr Tvr
80 as 90
30 Tyr Cys Gin Gin Ser His <.,i u ASp Pro Tyr Thr Phe Gly Gin Gly
95 100 135
Tb r Lys Val 'j — u Ile Lys Ar g Thr Vai Ala Ala Pro 3er yal Phe
110 115 120
Ile Phe Pro Pro Se r A3p Glu Gin Leu Lys Ser Gly Thr Ala Ser
35 125 13C 135
Val Val Cys Lec Leu Asn Asa Phe Tyr Pro Acg L*X\2 Ala Lys Val
140 145 150
Gir; Trp Lys Val Asp Asn Ala Leu Gin Ser Gly Asn Ser Gin Glu
1SS ISO 165
43 Ser Val Thr G1 u Gin Asp Ser Lys ASp Se r Thr Tyr Ser Leu Ser
170 175 190
S>3 r Thr Lłiti <1 Thr Leu Ser Lys Ala Asu Tyr Glu Lys His Lys Va*
IBS 190 195
PL 209 786 B1
Tyr Ala Cys Glu Val Thr His Gin Gly Leu Ser Ser Pro Val Thr 200 205 210
Lys Ser Phe Asn Arg Gly Glu Cys 215 218 <210> 2 <211> 451 <212> PRT <213> Sekwencja sztuczna
Sekwencja sztuczna <221>
<222> 1-451
Sekwencja jest w całości zsyntetyzowana <400> 2
15 Glu 1 Gly Ser Val Ser Gly Gin Leu Tyr Leu Val Glu Ser Gly Gly Gly Leu Val Gin 10 Pro Gly 15 Ile Thr 30 Lys Gly 45
Arg Ser 5
Leu 20 Trp 35 Ser Asn Cys Ala Val Ser Gly Tyr Ser
Trp Ile Arg 25 Gly
Gin 40 Ala Pro
20 I.eu Glu Trp Val Ala Ser Ile Lys Tyr Ser Gly Glu Thr Lys Tyr
50 55 60
Asn Pro Ser Val Lys Gly Arg Ile Thr Ile Ser Arg Asp Asp Ser
65 70 75
Lys Asn Thr Phe Tyr Leu Gin Met Asn Ser Leu Arg Ala Glu Asp
25 80 85 90
Thr Ala Val Tyr Tyr Cys Ala Arg Gly Ser His Tyr Phe Gly His
95 100 105
Trp His Phe Ala Val Trp Gly Gin Gly Thr Leu Val Thr Val Ser
110 115 120
30 Ser Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser
125 130 135
Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val
140 145 150
Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly
35 155 160 165
Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gin Ser
170 175 180
Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser
185 190 195
40 Ser Leu Gly Thr Gin Thr Tyr Ile Cys Asn Val Asn His Lys Pro
200 205 210
Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp
215 220 225
Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly
45 230 235 240
PL 209 786 B1
Gly Ket Pro Ile Ser Val Phe Leu 245 Phe Glu Pro Val Pro Lys Pro Val Lys Asp Thr Leu 255 Val 270
Ser Arg Thr 250 Cys 265 Val Val Asp
Thr 260 Pro
5 Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly
275 280 285
Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gin Tyr
290 295 300
Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gin
10 305 310 315
Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
320 325 330
Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly
335 340 345
15 Gin Pro Arg Glu Pro Gin Val Tyr Thr Leu Pro Pro Ser Arg Glu
350 355 360
Glu Met Thr Lys Asn Gin Val Ser Leu Thr Cys Leu Val Lys Gly
365 370 375
Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gin
20 380 385 390
Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp
395 400 405
Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg
410 415 420
25 Trp Gin Gin Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala
425 430 4 35
Leu His Asn His Tyr Thr Gin Lys Ser Leu Ser Leu Ser Pro Gly
440 445 450
Lys
30 451
<210 3
<211> • 218
<212> • PRT
<213> • homo sapiens
35 <400 3
Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro
1 5 10 15
Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val
20 25 30
40 Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys
35 40 45
Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
50 55 60
Lys Pio Arg Glu Glu Gin Tyr Asn Ser Thr Tyr Arg Val Val Ser
PL 209 786 B1
70 75
Val Lys Leu Thr Val Leu His Gin Asp Trp Leu Asn Gly 85 Lys Ile Glu Glu Tyr 90 Lys
Cys Lys Val 80
Ser Asn Lys Ala Leu Pro Ala Pro
5 95 100 105
Thr Ile Ser Lys Ala Lys Gly Gin Pro Arg Glu Pro Gin Val Tyr
110 115 120
Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gin Val Ser
125 130 135
10 Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val
140 145 150
Glu Trp Glu Ser Asn Gly Gin Pro Glu Asn Asn Tyr Lys Thr Thr
155 160 165
Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys
15 170 175 180
Leu Thr Val Asp Lys Ser Arg Trp Gin Gin Gly Asn Val Phe Ser
185 190 195
Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gin Lys
200 205 210
20 Ser Leu Ser Leu Ser Pro Gly Lys
215 218 <210 4 <211> 218 <212> PRT
25 <213> homo sapiens
<400 4
Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro
1 5 10 15
Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val·
30 20 25 30
Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys
35 40 45
Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
50 55 60
35 Lys Pro Arg Glu Glu Gin Tyr Asn Ser Thr Tyr Arg Val Val Ser
65 70 75
Val Leu Thr Val Leu His Gin Asp Trp Leu Asn Gly Lys Glu Tyr
80 85 90
Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys
40 95 100 105
Thr Ile Ser Lys Ala Lys Gly Gin Pro Arg Glu Pro Gin Val Tyr
110 115 120
Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gin Val Ser
125 130 135
PL 209 786 B1
Leu Glu Thr Cys Leu Val Lys Gly Gly Phe Tyr Pro Ser Asp Ile Ala Val 150 Thr 165
Ser 140 Asn 155 145 Asn 160 Asn Tyr Lys Thr
Trp Glu Gin Pro Glu
5 Pro Pro Val Leu Asp 170 Ser Asp Gly Ser Phe 175 Phe Leu Tyr Ser Lys 180
Leu Thr Val Asp Lys 185 Ser Arg Trp Gin Gin 190 Gly Asn Val Phe Ser 195
10 Cys Ser Val Met His 200 Glu Ala Leu His Asn 205 His Tyr Thr Gin Lys 210
Ser Leu Ser Leu Ser Pro Gly Lys
215 218 <210> 5 <211> 217
15 <212> PRT · <213> homo sapiens Leu Phe Pro Pro 15
<400> 5 Pro Pro Val 5 Ala Gly Pro Ser Val 10 Phe
Pro 1 Ala
20 Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr
20 25 30
Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Gin Phe
35 40 45
Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys
25 50 55 60
Pro Arg Glu Glu Gin Phe Asn Ser Thr Phe Arg Val Val Ser Val
65 70 75
Leu Thr Val Val His Gin Asp Trp Leu Asn Gly Lys Glu Tyr Lys
80 85 90
30 Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr
95 100 105
Ile Ser Lys Thr Lys Gly Gin Pro Arg Glu Pro Gin Val Tyr Thr
110 115 120
Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gin Val Ser Leu
35 125 130 135
Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu
140 145 150
Trp Glu Ser Asn Gly Gin Pro Glu Asn Asn Tyr Lys Thr Thr Pro
155 160 165
40 Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu
170 175 180
Thr Val Asp Lys Ser Arg Trp Gin Gin Gly Asn Val Phe Ser Cys
185 190 195
Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gin Lys Ser
PL 209 786 B1
200 205 210
Leu Ser Leu Ser Pro Gly Lys 215 217 <210> 6 5 <213> 218 <212> PRT <213> homo sapiens <400> 6
10 Pro 1 Ala Pro Glu Leu 5 Leu Gly Gly Pro Ser 10 Val Phe Leu Phe Pro 15
Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val
20 25 30
Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Gin
35 40 45
15 Phe Lys Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
50 55 60
Lys Pro Arg Glu Glu Gin Phe Asn Ser Thr Phe Arg Val Val Ser
65 70 75
Val Leu Thr Val Leu His Gin Aap Trp Leu Asn Gly Lys Glu Tyr
20 80 85 90
Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys
95 100 105
Thr Ile Ser Lys Thr Lys Gly Gin Pro Arg Glu Pro Gin Val Tyr
110 115 120
25 Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gin Val Ser
125 130 135
Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val
140 145 150
Glu Trp Glu Ser Ser Gly Gin Pro Glu Asn Asn Tyr Asn Thr Thr
30 155 160 165
Pro Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys
170 175 180
Leu Thr Val Asp Lys Ser Arg Trp Gin Gin Gly Asn Ile Phe Ser
185 190 195
35 Cys Ser Val Met His Glu Ala Leu His Asn Arg Phe Thr Gin Lys
200 205 210
Ser Leu Ser Leu Ser Pro Gly Lys
215 218
<210> 7
40 <21i> 218
<212> PRT
<213> homo sapiens
<400> 7
Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe Pro
45 1 5 10 15
PL 209 786 B1
Pro Lys Pro Lys Asp Thr 20 Leu Met Ile Ser 25 Arg Thr Pro Glu Val 30
Thr Cys Val Val Val Asp Val Ser Gin Glu Asp Pro Glu Val Gin
35 40 45
Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
50 55 60
Lys Pro Arg Glu Glu Gin Phe Asn Ser Thr Tyr Arg Val Val Ser
65 70 75
Val Leu Thr Val Leu His Gin Asp Trp Leu Asn Gly Lys Glu Tyr
80 85 90
Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys
95 100 105
Thr Ile Ser Lys Ala Lys Gly Gin Pro Arg Glu Pro Gin Val Tyr
110 115 120
Thr Leu Pro Pro Ser Gin Glu Glu Met Thr Lys Asn Gin Val Ser
125 130 135
Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val
140 145 150
Glu Trp Glx Ser Asn Gly Gin Pro Glu Asn Asn Tyr Lys Thr Thr
155 160 165
Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg
170 175 180
Leu Thr Val Asp Lys Ser Arg Trp Gin Glu Gly Asn Val Phe Ser
185 190 195
Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gin Lys
200 205 210
Ser Leu Ser Leu Ser Leu Gly Lys
215 218 <210> 8 <211> 215 <212> PRT
<213> Mus musculus
<400> 8
Thr Val Pro Glu Val Ser Ser Val Phe Ile Phe Pro Pro Lys Pro
1 5 10 15
Lys Asp Val Leu Thr Ile Thr Leu Thr Pro Lys Val Thr Cys Val
20 25 30
Val Val Asp ile Ser Lys Asp Asp Pro Glu Val Gin Phe Ser Trp
35 40 45
Phe Val Asp Asp Val Glu Val His Thr Ala Gin Thr Gin Pro Arg
50 55 60
Glu Glu Gin Phe Asn Ser Thr Phe Arg Ser Val Ser Glu Leu Pro
65 70 75
Ile Met His Gin Asp Cys Leu Asn Gly Lys Glu Phe Lys Cys Arg
PL 209 786 B1
85 90
Val Asn Ser Ala Ala 95 Phe Pro Ala Pro Ile 100 Glu Lys Thr Ile Ser 105
Lys Thr Lys Gly Arg Pro Lys Ala Pro Gin Val Tyr Thr Ile Pro
110 115 120
Pro Pro Lys Glu Gin Met Ala Lys Asp Lys Val Ser Leu Thr Cys
125 130 135
Met Ile Thr Asp Phe Phe Pro Glu Asp Ile Thr Val Glu Trp Gin
140 145 150
Trp Asn Gly Gin Pro Ala Glu Asn Tyr Lys Asn Thr Gin Pro Ile
155 160 165
Met Asp Thr Asp Gly Ser Tyr Phe Val Tyr Ser Lys Leu Asn Val
170 175 180
Gin Lys Ser Asn Trp Glu Ala Gly Asn Thr Phe Thr Cys Ser Val
185 190 195
Leu His Glu Gly Leu His Asn His His Thr Glu Lys Ser Leu Ser
200 205 210
His Ser Pro Gly Lys 215 <210> 9 <211> 218 <212> PRT <213> Mus musculus
<400> 9 Leu Gly Gly Pro Ser 10 Val Phe Ile Phe Pro 15
Pro 1 Ala Pro Asn Leu 5
Pro Lys Ile Lys Asp 20 Val Leu Met Ile Ser 25 Leu Ser Pro Ile Val 30
Thr Cys Val Val Val 35 Asp Val Ser Glu Asp 40 Asp Pro Asp Val Gin 45
Ile Ser Trp Phe Val 50 Asn Asn Val Glu Val 55 His Thr Ala Gin Thr 60
Gin Thr His Arg Glu 65 Asp Tyr Asn Ser Thr 70 Leu Arg Val Val Ser 75
Ala Leu Pro Ile Gin 80 His Gin Asp Trp Met 85 Ser Gly Lys Glu Phe 90
Lys Cys Lys Val Asn 95 Asn Lys Asp Leu Pro 100 Ala Pro Ile Glu Arg 105
Thr Ile Ser Lys Pro 110 Lys Gly Ser val Arg 115 Ala Pro Gin Val Tyr 120
Val Leu Pro Pro Pro 125 Glu Glu Glu Met Thr 130 Lys Lys Gin Val Thr 135
Leu Thr Cys Met Val 140 Thr Asp Phe Met Pro 145 Glu Asp Ile Tyr Val 150
PL 209 786 B1
Glu Trp Thr Asn Asn 155 Gly
Glu Pro Val Leu Asp 170 Ser
Leu Arg Val Glu Lys 185 Lys
Cys Ser Val Val His 200 Glu
Ser Phe Ser Arg Thr 215 Pro
Lys Thr Glu Leu Asn Tyr Lys Asn Thr
160 165
Asp Gly Ser Tyr Phe Met Tyr Ser Lys
175 180
Asn Trp Val Glu Arg Asn Ser Tyr Ser
190 195
Gly Leu His Asn His His Thr Thr Lys
205 210
Gly Lys
218 <210> 10 <211> 218 <212> PRT <213> Mus musculus <400> 10
Pro 1 Ala Pro Asn Leu 5 Glu Gly
Pro Asn Ile Lys Asp 20 Val Leu
Thr Cys Val Val Val 35 Asp Val
Ile Ser Trp Phe Val Asn Asn
Gin Thr His Arg Glu Asp Tyr
65
His Leu Pro Ile Gin 80 His Gin
Lys Cys Lys Val Asn 95 Asn Lys
Thr Ile Ser Lys Pro 110 Lys Gly
Thr Leu Pro Pro Pro 125 Ala Glu
Leu Thr Cys Leu Val 140 Val Gly
Glu Trp Thr Ser Asn 155 Gly His
Ala Pro Val Leu Asp 170 Ser Asp
Leu Asn Met Lys Thr 185 Ser Lys
Cys Asn Val Arg His 200 Glu Gly
Thr Ile Ser Arg Ser Pro Gly
Lys
Gly Pro Ser 10 Val Phe Ile Phe Pro 15
Met Ile Ser 25 Leu Thr Pro Lys Val 30
Ser Glu Asp 40 Asp Pro Asp Val Gin 45
Val Glu Val 55 His Thr Ala Gin Thr 60
Asn Ser Thr 70 Ile Arg Val Val Ser 75
Asp Trp Met Ser Gly Lys Glu Phe
90
Asp Leu Pro Ser Pro Ile Glu Arg 100 105
Leu Val Arg Ala Pro Gin Val Tyr 115 120
Gin Leu Ser Arg Lys Asp Val Ser 130 135
Phe Asn Pro Gly Asp Ile Ser Val
145 150
Thr Glu Glu Asn Tyr Lys Asp Thr
160 165
Gly Ser Tyr Phe Ile Tyr Ser Lys
175 180
Trp Glu Lys Thr Asp Ser Phe Ser
190 195
Leu Lys Asn Tyr Tyr Leu Lys Lys
205 210
PL 209 786 B1
215 218 <210> 11 <211> 218 <212> PRT <213> Mus musculus <400> 11
Pro Pro Gly Asn 1 Ile 5 Leu Gly Gly Pro Ser 10 Val Phe Ile Phe Pro 15
Pro Lys Pro Lys Asp Ala Leu Met Ile Ser Leu Thr Pro Lys Val
10 20 25 30
Thr Cys Val Val Val Asp Val Ser Glu Asp Asp Pro Asp Val His
35 40 45
Val Ser Trp Phe Val Asp Asn Lys Glu Val His Thr Ala Trp Thr
50 55 60
15 Gin Pro Arg Glu Ala Gin Tyr Asn Ser Thr Phe Arg Val Val Ser
65 70 75
Ala Leu Pro Ile Gin His Gin Asp Trp Met Arg Gly Lys Glu Phe
80 85 90
Lys Cys Lys Val Asn Asn Lys Ala Leu Pro Ala Pro Ile Glu Arg
20 95 100 105
Thr Ile Ser Lys Pro Lys Gly Arg Ala Gin Thr Pro Gin Val Tyr
110 115 120
Thr Ile Pro Pro Pro Arg Glu Gin Met Ser Lys Lys Lys Val Ser
125 130 135
25 Leu Thr Cys Leu Val Thr Asn Phe Phe Ser Glu Ala Ile Ser Val
140 145 150
Glu Trp Glu Arg Asn Gly Glu Leu Glu Gin Asp Tyr Lys Asn Thr
155 160 165
Pro Pro Ile Leu Asp Ser Asp Gly Thr Tyr Phe Leu Tyr Ser Lys
30 170 175 180
Leu Thr Val Asp Thr Asp Ser Trp Leu Gin Gly Glu Ile Phe Thr
185 190 195
Cys Ser Val Val His Glu Ala Leu His Asn His His Thr Gin Lys
200 205 210
35 Asn Leu Ser Arg Ser Pro Gly Lys
215 218
PL 209 786 B1

Claims (7)

  1. Zastrzeżenia patentowe
    1. Przeciwciało zawierające wariant regionu Fc ludzkiej IgG1 niebędący natywną sekwencją regionu Fc, i zawierające substytucję aminokwasową w pozycji aminokwasowej 434 regionu Fc, przy czym numeracja reszt w regionie Fc jest zgodna z indeksem EU według Kabat, i przy czym wariant regionu Fc wiąże ludzki noworodkowy receptor Fc (FcRn) ze zwiększonym powinowactwem wiązania w porównaniu z natywną sekwencją regionu Fc ludzkiej IgG1.
  2. 2. Przeciwciało według zastrz. 1, znamienne tym, że zawiera substytucję aminokwasową tylko w pozycji 434 w regionie Fc.
  3. 3. Przeciwciało według zastrz. 1, znamienne tym, że zawiera substytucję N434A.
  4. 4. Przeciwciało wiążące czynnik wzrostu śródbłonka naczyń (VEGF), zawierające wariant regionu Fc ludzkiej IgG1 niebędący natywną sekwencją regionu Fc i zawierające substytucję aminokwasową w pozycji aminokwasowej 434 regionu Fc, przy czym numeracja reszt w regionie Fc jest zgodna z indeksem EU wedł ug Kabat, i przy czym wariant regionu Fc wiąże ludzki noworodkowy receptor Fc (FcRn) ze zwiększonym powinowactwem wiązania w porównaniu z natywną sekwencją regionu Fc ludzkiej IgG1.
  5. 5. Immunoadhezyna, znamienna tym, że zawiera wariant regionu Fc ludzkiej IgG1 niebędący natywną sekwencją regionu Fc i zawiera substytucję aminokwasową w pozycji aminokwasowej 434 regionu Fc, przy czym numeracja reszt w regionie Fc jest zgodna z indeksem EU według Kabat, i przy czym wariant regionu Fc wiąże ludzki noworodkowy receptor Fc (FcRn) ze zwiększonym powinowactwem wiązania w porównaniu z natywną sekwencją regionu Fc ludzkiej IgG1.
  6. 6. Immunoadhezyna według zastrz. 5, znamienna tym, że zawiera substytucję aminokwasową tylko w pozycji 434 w regionie Fc.
  7. 7. Immunoadhezyna według zastrz. 5, znamienna tym, że zawiera substytucję N434A.
PL388183A 1999-01-15 2000-01-14 Przeciwciało zawierające wariant regionu Fc ludzkiej IgG1, przeciwciało wiążące czynnik wzrostu śródbłonka naczyń oraz immunoadhezyna PL209786B1 (pl)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11602399P 1999-01-15 1999-01-15

Publications (1)

Publication Number Publication Date
PL209786B1 true PL209786B1 (pl) 2011-10-31

Family

ID=22364785

Family Applications (3)

Application Number Title Priority Date Filing Date
PL388183A PL209786B1 (pl) 1999-01-15 2000-01-14 Przeciwciało zawierające wariant regionu Fc ludzkiej IgG1, przeciwciało wiążące czynnik wzrostu śródbłonka naczyń oraz immunoadhezyna
PL349770A PL209392B1 (pl) 1999-01-15 2000-01-14 Przeciwciało, komórka gospodarza, sposób wytwarzania przeciwciała oraz zastosowanie przeciwciała
PL394232A PL220113B1 (pl) 1999-01-15 2000-01-14 Wariant macierzystego polipeptydu zawierającego region Fc, polipeptyd zawierający wariant regionu Fc o zmienionym powinowactwie wiązania receptora Fc gamma (FcγR), polipeptyd zawierający wariant regionu Fc o zmienionym powinowactwie wiązania noworodkowego receptora Fc (FcRn), kompozycja, wyizolowany kwas nukleinowy, wektor, komórka gospodarza, sposób otrzymywania wariantu polipeptydu, zastosowanie wariantu polipeptydu i sposób otrzymywania wariantu regionu Fc

Family Applications After (2)

Application Number Title Priority Date Filing Date
PL349770A PL209392B1 (pl) 1999-01-15 2000-01-14 Przeciwciało, komórka gospodarza, sposób wytwarzania przeciwciała oraz zastosowanie przeciwciała
PL394232A PL220113B1 (pl) 1999-01-15 2000-01-14 Wariant macierzystego polipeptydu zawierającego region Fc, polipeptyd zawierający wariant regionu Fc o zmienionym powinowactwie wiązania receptora Fc gamma (FcγR), polipeptyd zawierający wariant regionu Fc o zmienionym powinowactwie wiązania noworodkowego receptora Fc (FcRn), kompozycja, wyizolowany kwas nukleinowy, wektor, komórka gospodarza, sposób otrzymywania wariantu polipeptydu, zastosowanie wariantu polipeptydu i sposób otrzymywania wariantu regionu Fc

Country Status (17)

Country Link
US (4) US20060194290A1 (pl)
EP (4) EP2386574A3 (pl)
JP (4) JP2003512019A (pl)
KR (5) KR20060067983A (pl)
CN (2) CN1237076C (pl)
AU (2) AU778683B2 (pl)
BR (1) BR0008758A (pl)
CA (1) CA2359067C (pl)
ES (1) ES2694002T3 (pl)
HK (1) HK1090066A1 (pl)
HU (2) HU230769B1 (pl)
IL (5) IL144056A0 (pl)
MX (2) MX353234B (pl)
NZ (1) NZ539776A (pl)
PL (3) PL209786B1 (pl)
WO (1) WO2000042072A2 (pl)
ZA (1) ZA200105484B (pl)

Families Citing this family (1599)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528624B1 (en) 1998-04-02 2003-03-04 Genentech, Inc. Polypeptide variants
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
PL209786B1 (pl) 1999-01-15 2011-10-31 Genentech Inc Przeciwciało zawierające wariant regionu Fc ludzkiej IgG1, przeciwciało wiążące czynnik wzrostu śródbłonka naczyń oraz immunoadhezyna
US7183387B1 (en) 1999-01-15 2007-02-27 Genentech, Inc. Polypeptide variants with altered effector function
MXPA01011279A (es) 1999-05-07 2002-07-02 Genentech Inc Tratamiento de enfermedades autoinmunes con antagonistas que se unene a los marcadores de superficie, de celulas b.
ES2649037T3 (es) 2000-12-12 2018-01-09 Medimmune, Llc Moléculas con semividas prolongadas, composiciones y usos de las mismas
US7658921B2 (en) 2000-12-12 2010-02-09 Medimmune, Llc Molecules with extended half-lives, compositions and uses thereof
US7754208B2 (en) 2001-01-17 2010-07-13 Trubion Pharmaceuticals, Inc. Binding domain-immunoglobulin fusion proteins
US20030133939A1 (en) 2001-01-17 2003-07-17 Genecraft, Inc. Binding domain-immunoglobulin fusion proteins
EP1395605B8 (en) * 2001-03-09 2014-12-17 Iterative Therapeutics, Inc. Polymeric immunoglobulin fusion proteins that target low-affinity fcgamma receptors
US20110045005A1 (en) 2001-10-19 2011-02-24 Craig Crowley Compositions and methods for the treatment of tumor of hematopoietic origin
WO2003035835A2 (en) * 2001-10-25 2003-05-01 Genentech, Inc. Glycoprotein compositions
US20040002587A1 (en) * 2002-02-20 2004-01-01 Watkins Jeffry D. Fc region variants
US7662925B2 (en) 2002-03-01 2010-02-16 Xencor, Inc. Optimized Fc variants and methods for their generation
US8188231B2 (en) 2002-09-27 2012-05-29 Xencor, Inc. Optimized FC variants
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
DE60334453D1 (de) 2002-05-30 2010-11-18 Macrogenics Inc Cd16a bindungsproteine und verwendung zur behandlung von immunkrankheiten
US7132100B2 (en) 2002-06-14 2006-11-07 Medimmune, Inc. Stabilized liquid anti-RSV antibody formulations
US8968730B2 (en) 2002-08-14 2015-03-03 Macrogenics Inc. FcγRIIB specific antibodies and methods of use thereof
ATE536188T1 (de) 2002-08-14 2011-12-15 Macrogenics Inc Fcgammariib-spezifische antikörper und verfahren zur verwendung davon
US8946387B2 (en) 2002-08-14 2015-02-03 Macrogenics, Inc. FcγRIIB specific antibodies and methods of use thereof
ATE541857T1 (de) 2002-09-27 2012-02-15 Xencor Inc Optimierte fc-varianten und herstellungsverfahren dafür
JP4768439B2 (ja) 2002-10-15 2011-09-07 アボット バイオセラピューティクス コーポレイション 変異誘発による抗体のFcRn結合親和力又は血清半減期の改変
US7365168B2 (en) 2002-10-15 2008-04-29 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
US7361740B2 (en) 2002-10-15 2008-04-22 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
US7217797B2 (en) 2002-10-15 2007-05-15 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
CN103833854B (zh) 2002-12-16 2017-12-12 健泰科生物技术公司 免疫球蛋白变体及其用途
JP2006524039A (ja) 2003-01-09 2006-10-26 マクロジェニクス,インコーポレーテッド 変異型Fc領域を含む抗体の同定および作製ならびにその利用法
US7960512B2 (en) 2003-01-09 2011-06-14 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
AU2011265460B2 (en) * 2003-01-09 2014-07-17 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
BRPI0406724A (pt) 2003-01-13 2005-12-20 Macrogenics Inc Proteìna de fusão dimérica, métodos de tratar, prevenir ou melhorar um ou mais sintomas de um distúrbio autoimune e um ou mais sintomas de púrpura trombocitopênica idiopática, composição farmacêutica, ácido nucleico, vetor, célula hospedeira, método de produzir recombinantemente o polipeptìdeo, polipeptìdeo isolado, fragmento de qualquer um dos polipeptìdeos, e, molécula de ácido nucleico isolada
US8084582B2 (en) 2003-03-03 2011-12-27 Xencor, Inc. Optimized anti-CD20 monoclonal antibodies having Fc variants
US8388955B2 (en) 2003-03-03 2013-03-05 Xencor, Inc. Fc variants
US20090010920A1 (en) 2003-03-03 2009-01-08 Xencor, Inc. Fc Variants Having Decreased Affinity for FcyRIIb
ZA200507805B (en) 2003-04-09 2006-12-27 Genentech Inc Therapy of autoimmune disease in a patient with an inadequate response to a TNF-alpha inhibitor
JP4685764B2 (ja) * 2003-04-10 2011-05-18 アボット バイオセラピューティクス コーポレイション 変異誘発による抗体のFcRn結合親和力又は血清半減期の改変
US9051373B2 (en) 2003-05-02 2015-06-09 Xencor, Inc. Optimized Fc variants
KR100973564B1 (ko) * 2003-05-02 2010-08-03 젠코어 인코포레이티드 최적화된 Fc 변이체 및 그의 제조 방법
TWI353991B (en) 2003-05-06 2011-12-11 Syntonix Pharmaceuticals Inc Immunoglobulin chimeric monomer-dimer hybrids
AR044388A1 (es) 2003-05-20 2005-09-07 Applied Molecular Evolution Moleculas de union a cd20
ES2538469T3 (es) 2003-06-05 2015-06-22 Genentech, Inc. Terapia de combinación para trastornos de células B
CN104645327A (zh) 2003-07-24 2015-05-27 依奈特制药公司 使用nk细胞增效化合物提高治疗性抗体功效的方法和组合物
US20050106667A1 (en) 2003-08-01 2005-05-19 Genentech, Inc Binding polypeptides with restricted diversity sequences
AU2004266159A1 (en) 2003-08-22 2005-03-03 Biogen Idec Ma Inc. Improved antibodies having altered effector function and methods for making the same
US9714282B2 (en) 2003-09-26 2017-07-25 Xencor, Inc. Optimized Fc variants and methods for their generation
US8101720B2 (en) * 2004-10-21 2012-01-24 Xencor, Inc. Immunoglobulin insertions, deletions and substitutions
CA2545539A1 (en) 2003-10-15 2005-04-28 Pdl Biopharma, Inc. Alteration of fc-fusion protein serum half-lives by mutagenesis of positions 250, 314 and/or 428 of the heavy chain constant region of ig
GB0324368D0 (en) * 2003-10-17 2003-11-19 Univ Cambridge Tech Polypeptides including modified constant regions
SI2380911T1 (en) 2003-11-05 2018-07-31 Roche Glycart Ag ANTIGEN-RELATED PATIENTS WITH INCREASED ATTENTION ON THE RECEPTOR FC AND EFFECTORAL FUNCTION
WO2005063815A2 (en) * 2003-11-12 2005-07-14 Biogen Idec Ma Inc. Fcϝ receptor-binding polypeptide variants and methods related thereto
WO2005047327A2 (en) 2003-11-12 2005-05-26 Biogen Idec Ma Inc. NEONATAL Fc RECEPTOR (FcRn)-BINDING POLYPEPTIDE VARIANTS, DIMERIC Fc BINDING PROTEINS AND METHODS RELATED THERETO
CA2546580A1 (en) * 2003-11-18 2005-06-09 Iconic Therapeutics, Inc. Homogeneous preparations of chimeric proteins
EP2221315A1 (en) 2003-12-04 2010-08-25 Xencor, Inc. Methods of generating variant proteins with increased host string content and compositions thereof
DK1691837T3 (da) 2003-12-10 2012-10-01 Medarex Inc IP-10-antistoffer og anvendelse heraf
CA2546054C (en) 2003-12-10 2014-05-13 Medarex, Inc. Interferon alpha antibodies and their uses
BRPI0506771A (pt) 2004-01-12 2007-05-22 Applied Molecular Evolution anticorpo, e, composição farmacêutica
CA2555820C (en) 2004-02-19 2016-01-19 Genentech, Inc. Cdr-repaired antibodies
CA2885854C (en) * 2004-04-13 2017-02-21 F. Hoffmann-La Roche Ag Anti-p-selectin antibodies
EP1761563A4 (en) 2004-05-10 2008-05-14 Macrogenics Inc HUMANIZED gamma RIIB SPECIFIC ANTIBODIES AND METHODS OF USE
KR100545720B1 (ko) * 2004-05-31 2006-01-24 메덱스젠 주식회사 당화된 면역글로불린 및 이를 포함하는 면역접합체
AR049200A1 (es) 2004-06-04 2006-07-05 Genentech Inc Metodo para tratar esclerosis multiple con una composicion que contiene un anticuerpo cd20
ES2643237T3 (es) 2004-06-21 2017-11-21 E. R. Squibb & Sons, L.L.C. Anticuerpos del receptor 1 de interferón alfa y sus usos
CN101189028B (zh) * 2004-07-12 2013-05-29 马克罗基因公司 具有变异Fc区的抗体的鉴定和工程化以及使用方法
EP3342782B1 (en) * 2004-07-15 2022-08-17 Xencor, Inc. Optimized fc variants
US20150010550A1 (en) 2004-07-15 2015-01-08 Xencor, Inc. OPTIMIZED Fc VARIANTS
RS20070027A (en) 2004-07-26 2008-11-28 Biogen Idec Ma Inc., Anti-cd154 antibodies
EA012464B1 (ru) 2004-08-04 2009-10-30 Эпплайд Молекьюлар Эволюшн, Инк. Антитело против cd20 и его применение
JP2008510007A (ja) * 2004-08-16 2008-04-03 メディミューン,インコーポレーテッド 抗体依存性細胞性細胞傷害活性が増強されたEph受容体Fc変異体
AU2005285347A1 (en) * 2004-08-19 2006-03-23 Genentech, Inc. Polypeptide variants with altered effector function
EP1812060A2 (en) 2004-10-05 2007-08-01 Genentech, Inc. Method for treating vasculitis
JO3000B1 (ar) 2004-10-20 2016-09-05 Genentech Inc مركبات أجسام مضادة .
AU2005335714B2 (en) * 2004-11-10 2012-07-26 Macrogenics, Inc. Engineering Fc antibody regions to confer effector function
US8546543B2 (en) 2004-11-12 2013-10-01 Xencor, Inc. Fc variants that extend antibody half-life
BRPI0517837A (pt) 2004-11-12 2008-10-21 Xencor Inc variantes fc com ligação alterada a fcrn
US20070135620A1 (en) * 2004-11-12 2007-06-14 Xencor, Inc. Fc variants with altered binding to FcRn
US8802820B2 (en) 2004-11-12 2014-08-12 Xencor, Inc. Fc variants with altered binding to FcRn
US8367805B2 (en) 2004-11-12 2013-02-05 Xencor, Inc. Fc variants with altered binding to FcRn
EA200701211A1 (ru) * 2004-12-31 2007-12-28 Дженентек, Инк. Полипептиды, которые связываются с br3, и их применение
EP3698807A1 (en) 2005-01-21 2020-08-26 Genentech, Inc. Fixed dosing of her antibodies
US8029783B2 (en) * 2005-02-02 2011-10-04 Genentech, Inc. DR5 antibodies and articles of manufacture containing same
US8444973B2 (en) 2005-02-15 2013-05-21 Duke University Anti-CD19 antibodies and uses in B cell disorders
ES2550621T3 (es) 2005-02-15 2015-11-11 Duke University Anticuerpos anti-CD19 y usos en oncología
EP2399605A1 (en) 2005-02-23 2011-12-28 Genentech, Inc. Extending time to disease progression or survival in cancer patients
ME03528B (me) 2005-03-23 2020-04-20 Genmab As Antitijela protiv cd38 za liječenje multiplog mijeloma
WO2006105062A2 (en) * 2005-03-29 2006-10-05 Verenium Corporation Altered antibody fc regions and uses thereof
AU2006230413B8 (en) * 2005-03-31 2011-01-20 Xencor, Inc Fc variants with optimized properties
US11254748B2 (en) 2005-04-15 2022-02-22 Macrogenics, Inc. Covalent diabodies and uses thereof
US9284375B2 (en) 2005-04-15 2016-03-15 Macrogenics, Inc. Covalent diabodies and uses thereof
US9963510B2 (en) 2005-04-15 2018-05-08 Macrogenics, Inc. Covalent diabodies and uses thereof
US9296816B2 (en) 2005-04-15 2016-03-29 Macrogenics, Inc. Covalent diabodies and uses thereof
PA8672101A1 (es) 2005-04-29 2006-12-07 Centocor Inc Anticuerpos anti-il-6, composiciones, métodos y usos
EP2221316A1 (en) 2005-05-05 2010-08-25 Duke University Anti-CD19 antibody therapy for autoimmune disease
CA2607147C (en) 2005-05-09 2018-07-17 Ono Pharmaceutical Co., Ltd. Human monoclonal antibodies to programmed death 1 (pd-1) and methods for treating cancer using anti-pd-1 antibodies alone or in combination with other immunotherapeutics
WO2006127517A2 (en) 2005-05-20 2006-11-30 Genentech, Inc. Pretreatment of a biological sample from an autoimmune disease subject
AU2006261920A1 (en) 2005-06-23 2007-01-04 Medimmune, Llc Antibody formulations having optimized aggregation and fragmentation profiles
JP2009501006A (ja) 2005-06-30 2009-01-15 セントカー・インコーポレーテツド 抗il−23抗体、組成物、方法および用途
JP5252635B2 (ja) 2005-07-01 2013-07-31 メダレックス インコーポレーティッド プログラム死リガンド1(pd−l1)に対するヒトモノクローナル抗体
ES2530265T3 (es) * 2005-07-21 2015-02-27 Genmab A/S Ensayos de potencia de unión de una sustancia medicamentosa de anticuerpo a un receptor FC
CA2616386A1 (en) 2005-07-25 2007-02-01 Trubion Pharmaceuticals Inc. Single dose use of cd20-specific binding molecules
CN101282745B (zh) 2005-07-25 2015-04-29 新兴产品开发西雅图有限公司 用cd37-特异性和cd20-特异性结合分子减少b-细胞
SI2573114T1 (sl) 2005-08-10 2016-08-31 Macrogenics, Inc. Identifikacija in inženiring protiteles z variantnimi fc regijami in postopki za njih uporabo
NO345919B1 (no) 2005-08-26 2021-10-18 Roche Glycart Ag Modifiserte antigen-bindende molekyler med endret celle-signaliseringsaktivitet
CA2624189A1 (en) * 2005-10-03 2007-04-12 Xencor, Inc. Fc variants with optimized fc receptor binding properties
US7973136B2 (en) 2005-10-06 2011-07-05 Xencor, Inc. Optimized anti-CD30 antibodies
CA2625664C (en) 2005-10-21 2016-01-05 Novartis Ag Human antibodies against il13 and therapeutic uses
HUE026423T2 (en) 2005-11-04 2016-05-30 Genentech Inc Use of complement biosynthetic pathway inhibitors for treating eye diseases
EP1957099B1 (en) 2005-11-07 2015-03-25 The Rockefeller University Reagents, methods and systems for selecting a cytotoxic antibody or variant thereof
WO2007056441A2 (en) 2005-11-07 2007-05-18 Genentech, Inc. Binding polypeptides with diversified and consensus vh/vl hypervariable sequences
MY149159A (en) 2005-11-15 2013-07-31 Hoffmann La Roche Method for treating joint damage
EP1952150B1 (en) 2005-11-23 2016-12-14 Genentech, Inc. Methods and compositions related to b cell assays
EP3006466B1 (en) 2005-12-02 2018-08-01 Genentech, Inc. Compositions and methods for the treatment of diseases and disorders associated with cytokine signaling involving antibodies that bind to il-22 and il-22r
AU2006338198B2 (en) 2005-12-02 2012-04-26 Genentech, Inc. Binding polypeptides and uses thereof
EA017491B1 (ru) 2005-12-08 2012-12-28 Медарекс, Инк. Человеческие моноклональные антитела к фукозил-gm1 и способы применения антифукозил-gm1 антител
US7981414B2 (en) 2005-12-20 2011-07-19 Cephalon Australia Pty Ltd Anti-inflammatory dAb
PL1971366T3 (pl) 2005-12-29 2015-01-30 Janssen Biotech Inc Ludzkie przeciwciała skierowane przeciw IL-23, kompozycje, sposoby i zastosowanie
PT1973950E (pt) 2006-01-05 2014-12-29 Genentech Inc Anticorpos anti-epbh4 e métodos que os utilizam
JP5368110B2 (ja) 2006-01-20 2013-12-18 ジェネンテック, インコーポレイテッド 抗エフリンb2抗体とその使用方法
NZ569988A (en) 2006-02-01 2011-09-30 Cephalon Australia Pty Ltd Domain antibody construct which binds to human TNF-alpha and contains a modified hinge region sequence and a truncated CH1 domain
EP2540741A1 (en) 2006-03-06 2013-01-02 Aeres Biomedical Limited Humanized anti-CD22 antibodies and their use in treatment of oncology, transplantation and autoimmune disease
AR059851A1 (es) 2006-03-16 2008-04-30 Genentech Inc Anticuerpos de la egfl7 y metodos de uso
WO2008060645A2 (en) 2006-03-21 2008-05-22 Genentech, Inc. Combinatorial therapy involving alpha5beta1 antagonists
EP4218801A3 (en) 2006-03-31 2023-08-23 Chugai Seiyaku Kabushiki Kaisha Antibody modification method for purifying bispecific antibody
WO2007114319A1 (ja) 2006-03-31 2007-10-11 Chugai Seiyaku Kabushiki Kaisha 抗体の血中動態を制御する方法
JP5242382B2 (ja) * 2006-04-14 2013-07-24 株式会社医学生物学研究所 エフェクター機能を有するポリペプチド変異体
RS54163B1 (en) 2006-05-30 2015-12-31 Genentech Inc. ANTI-CD22 ANTIBODIES, THEIR IMMUNCONJUGATES AND THEIR USE
AU2007319672B2 (en) 2006-06-06 2011-06-30 Genentech, Inc. Anti-DLL4 antibodies and methods using same
MX2008015524A (es) 2006-06-12 2009-01-13 Trubion Pharmaceuticals Inc Proteinas de union multivalentes monocatenarias con funcion efectora.
EP2032159B1 (en) 2006-06-26 2015-01-07 MacroGenics, Inc. Combination of fcgammariib antibodies and cd20-specific antibodies and methods of use thereof
EP2029173B1 (en) 2006-06-26 2016-07-20 MacroGenics, Inc. Fc riib-specific antibodies and methods of use thereof
CA2657681C (en) 2006-07-14 2019-03-19 Ac Immune S.A. Humanized antibodies against beta amyloid protein
US9683026B2 (en) 2006-07-19 2017-06-20 The Trustees Of The University Of Pennslyvania WSX-1/P28 as a target for anti-inflammatory responses
EP2059536B1 (en) 2006-08-14 2014-01-08 Xencor, Inc. Optimized antibodies that target cd19
EA200970250A1 (ru) 2006-09-05 2010-02-26 Медарекс, Инк. Антитела к костным морфогенетическим белкам и их рецепторам и способы их применения
PL2066349T3 (pl) 2006-09-08 2012-09-28 Medimmune Llc Humanizowane przeciwciała anty-CD19 i ich zastosowanie w leczeniu nowotworów, transplantacjach i leczeniu chorób autoimmunologicznych
ES2372217T3 (es) 2006-09-12 2012-01-17 Genentech, Inc. Procedimientos y composiciones para el diagnóstico y tratamiento del cáncer de pulmón utilizando el gen de pdgfra, kit o kdr como marcador genético.
US20100297103A1 (en) 2006-09-14 2010-11-25 Medical & Biological Laboratories Co., Ltd. Antibody having enhanced adcc activity and method for production thereof
AU2007299843B2 (en) 2006-09-18 2012-03-08 Xencor, Inc Optimized antibodies that target HM1.24
HUE027165T2 (en) 2006-10-02 2016-08-29 Squibb & Sons Llc Human antibodies that bind to CXCR4 and their uses
CA2665644A1 (en) * 2006-10-12 2008-05-29 Genentech, Inc. Antibodies to lymphotoxin-alpha
US20100143254A1 (en) * 2006-10-16 2010-06-10 Medimmune, Llc Molecules with reduced half-lives, compositions and uses thereof
WO2008060813A2 (en) 2006-10-19 2008-05-22 Merck & Co., Inc. High affinity antibody antagonists of interleukin-13 receptor alpha 1
JP2010507365A (ja) 2006-10-19 2010-03-11 メルク アンド カンパニー インコーポレイテッド 抗IL−13Rα1抗体およびその使用
PL2502938T3 (pl) 2006-10-27 2015-07-31 Genentech Inc Przeciwciała i immunokoniugaty oraz ich zastosowanie
US8618248B2 (en) 2006-10-31 2013-12-31 President And Fellows Of Harvard College Phosphopeptide compositions and anti-phosphopeptide antibody compositions and methods of detecting phosphorylated peptides
TWI472535B (zh) 2006-11-02 2015-02-11 Genentech Inc 人類化之抗-因子d抗體及其用途
WO2008076560A2 (en) 2006-11-15 2008-06-26 Medarex, Inc. Human monoclonal antibodies to btla and methods of use
US8067179B2 (en) 2006-11-30 2011-11-29 Research Development Foundation Immunoglobulin libraries
KR20150067395A (ko) 2006-12-01 2015-06-17 메다렉스, 엘.엘.시. 씨디22에 결합하는 인간 항체 및 이의 용도
US20080127996A1 (en) * 2006-12-04 2008-06-05 Weinhold Dennis G Method and apparatus to remediate an acid and/or liquid spill
US8652466B2 (en) 2006-12-08 2014-02-18 Macrogenics, Inc. Methods for the treatment of disease using immunoglobulins having Fc regions with altered affinities for FcγRactivating and FcγRinhibiting
CL2007003622A1 (es) 2006-12-13 2009-08-07 Medarex Inc Anticuerpo monoclonal humano anti-cd19; composicion que lo comprende; y metodo de inhibicion del crecimiento de celulas tumorales.
IN2009KN02404A (pl) 2006-12-14 2015-08-07 Medarex Inc
PL2101807T3 (pl) 2006-12-19 2016-11-30 Antagoniści specyficzni względem VEGF dla terapii adiuwantem i neoadiuwantem i leczenie wczesnych stadiów guzów
US20110236374A1 (en) 2007-01-24 2011-09-29 Kyowa Hakko Kirin Co., Ltd. Genetically recombinant antibody composition capable of binding specifically to ganglioside gm2
ES2538990T3 (es) 2007-01-24 2015-06-25 Kyowa Hakko Kirin Co., Ltd. Composición de anticuerpo genéticamente recombinante que tiene una actividad efectora mejorada
AR065271A1 (es) 2007-02-09 2009-05-27 Genentech Inc Anticuerpos anti-robo4 y sus usos
JP2010520225A (ja) 2007-03-02 2010-06-10 ジェネンテック, インコーポレイテッド 低her3発現に基づくher二量化インヒビターに対する応答を予測する方法
DK3199180T3 (da) 2007-03-08 2022-03-21 Humanigen Inc Epha3-antistoffer til behandlingen af faste tumorer
HUE041818T2 (hu) 2007-03-22 2019-05-28 Biogen Ma Inc Kötõ proteinek, beleértve az antitesteket, CD154-et specifikusan kötõ antitest származékokat és antitest fragmenseket is, és alkalmazásaik
WO2008118324A2 (en) 2007-03-26 2008-10-02 Macrogenics, Inc. Composition and method of treating cancer with an anti-uroplakin ib antibody
WO2008134046A1 (en) 2007-04-27 2008-11-06 Genentech, Inc. Potent, stable and non-immunosuppressive anti-cd4 antibodies
AU2008247819B2 (en) 2007-05-01 2013-02-14 Research Development Foundation Immunoglobulin Fc libraries
JP5575636B2 (ja) 2007-05-07 2014-08-20 メディミューン,エルエルシー 抗icos抗体ならびに、腫瘍、移植および自己免疫疾患の治療におけるその使用
WO2008141197A1 (en) * 2007-05-10 2008-11-20 Sea Lane Biotechnologies, Llc Chain reaction creating oligomers from repeat units of binding molecules
CN101720232B (zh) 2007-05-14 2013-07-10 诺维莫尼公司 具有修饰的效应器功能的fc受体结合型多肽
WO2008150494A1 (en) 2007-05-30 2008-12-11 Xencor, Inc. Methods and compositions for inhibiting cd32b expressing cells
CA2688275A1 (en) * 2007-05-31 2008-12-04 Genmab A/S Stable igg4 antibodies
EP1997830A1 (en) 2007-06-01 2008-12-03 AIMM Therapeutics B.V. RSV specific binding molecules and means for producing them
PE20090321A1 (es) 2007-06-04 2009-04-20 Genentech Inc Anticuerpos anti-notch1 nrr, metodo de preparacion y composicion farmaceutica
SI2171090T1 (sl) 2007-06-08 2013-07-31 Genentech, Inc. Markerji genskega izraĹľanja tumorske odpornosti na HER2 inhibitorsko zdravljenje
US8048420B2 (en) 2007-06-12 2011-11-01 Ac Immune S.A. Monoclonal antibody
US8613923B2 (en) 2007-06-12 2013-12-24 Ac Immune S.A. Monoclonal antibody
WO2008156622A1 (en) * 2007-06-12 2008-12-24 Ac Immune S.A. Humanized antibodies to amyloid beta
CN107226864A (zh) 2007-06-21 2017-10-03 宏观基因有限公司 共价双抗体及其用途
US20100254992A1 (en) * 2007-06-29 2010-10-07 Anuk Das Anti-mcp-1 antibodies, compositions, methods and uses
ES2751022T3 (es) 2007-07-09 2020-03-30 Genentech Inc Prevención de la reducción de enlaces disulfuro durante la producción recombinante de polipéptidos
US20110091992A1 (en) * 2007-07-10 2011-04-21 Medimmune, Llc CRYSTALS AND STRUCTURE OF HUMAN IgG Fc VARIANT
TWI439286B (zh) 2007-07-16 2014-06-01 Genentech Inc 抗-cd79b抗體及免疫共軛物及使用方法
ES2528922T3 (es) 2007-07-16 2015-02-13 Genentech, Inc. Anticuerpos anti-CD79b humanizados e inmunoconjugados y métodos de uso
JP2010535032A (ja) 2007-07-31 2010-11-18 メディミューン,エルエルシー 多重特異性エピトープ結合性タンパク質およびその用途
EP2190469B1 (en) 2007-09-04 2015-02-25 Compugen Ltd. Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
TWI464262B (zh) 2007-09-26 2014-12-11 中外製藥股份有限公司 抗體固定區的變異
JP5334319B2 (ja) 2007-09-26 2013-11-06 中外製薬株式会社 Cdrのアミノ酸置換により抗体の等電点を改変する方法
RS53174B (en) 2007-10-05 2014-06-30 Genentech Inc. USE OF ANTIAMYLOID BETA ANTIBODY IN THE EVENT OF ANY DISEASE
RU2571859C2 (ru) * 2007-10-05 2015-12-20 Дженентек, Инк. Применение антитела против амилоида-бета при глазных заболеваниях
AR068767A1 (es) 2007-10-12 2009-12-02 Novartis Ag Anticuerpos contra esclerostina, composiciones y metodos de uso de estos anticuerpos para tratar un trastorno patologico mediado por esclerostina
JP2011500715A (ja) 2007-10-16 2011-01-06 ザイモジェネティクス, インコーポレイテッド 自己免疫疾患の治療のためのBLyS阻害剤および抗CD20剤の組合せ
JP5620106B2 (ja) 2007-10-24 2014-11-05 株式会社糖鎖工学研究所 増強されたエフェクター機能を有するポリペプチド
PL2567709T3 (pl) 2007-11-02 2018-06-29 Novartis Ag Cząsteczki i sposoby modulowania białka związanego z receptorem dla lipoproteiny o niskiej gęstości 6 (LRP6)
PT2514436T (pt) 2007-11-07 2018-03-21 Genentech Inc Il-22 para utilização no tratamento de distúrbios microbianos
WO2015164330A1 (en) 2014-04-21 2015-10-29 Millennium Pharmaceuticals, Inc. Anti-psyk antibody molecules and use of same for syk-targeted therapy
TWI468417B (zh) 2007-11-30 2015-01-11 Genentech Inc 抗-vegf抗體
DK2222706T4 (en) 2007-12-14 2016-11-21 Novo Nordisk As Antibodies that bind to NKG2D and its use
US8795667B2 (en) 2007-12-19 2014-08-05 Macrogenics, Inc. Compositions for the prevention and treatment of smallpox
AU2008339576B2 (en) 2007-12-21 2014-05-22 Medimmune Limited Binding members for interleukin-4 receptor alpha (IL-4Ralpha)
EP4098661A1 (en) * 2007-12-26 2022-12-07 Xencor, Inc. Fc variants with altered binding to fcrn
US7914785B2 (en) 2008-01-02 2011-03-29 Bergen Teknologieverforing As B-cell depleting agents, like anti-CD20 antibodies or fragments thereof for the treatment of chronic fatigue syndrome
EP2077281A1 (en) 2008-01-02 2009-07-08 Bergen Teknologioverforing AS Anti-CD20 antibodies or fragments thereof for the treatment of chronic fatigue syndrome
CA2711736A1 (en) 2008-01-18 2009-07-23 Medimmune, Llc Cysteine engineered antibodies for site-specific conjugation
TWI472339B (zh) 2008-01-30 2015-02-11 Genentech Inc 包含結合至her2結構域ii之抗體及其酸性變異體的組合物
MY157403A (en) 2008-01-31 2016-06-15 Genentech Inc Anti-cd79b antibodies and immunoconjugates and methods of use
CA2714071A1 (en) 2008-02-05 2009-08-13 Bristol-Myers Squibb Company Alpha 5 - beta 1 antibodies and their uses
HUE028958T2 (en) 2008-02-08 2017-01-30 Medimmune Llc Anti-IFNAR1 antibodies with reduced Fc ligand affinity
AU2009231733B2 (en) * 2008-03-31 2015-12-24 Genentech, Inc. Compositions and methods for treating and diagnosing asthma
AU2009231991B2 (en) 2008-04-02 2014-09-25 Macrogenics, Inc. HER2/neu-specific antibodies and methods of using same
CN102046655B (zh) 2008-04-02 2016-09-14 宏观基因有限公司 Bcr-复合体-特异性抗体和其使用方法
PL2708558T3 (pl) 2008-04-11 2018-09-28 Chugai Seiyaku Kabushiki Kaisha Cząsteczka wiążąca antygen zdolna do wiązania dwóch lub więcej cząsteczek antygenu w sposób powtarzalny
SI2132228T1 (sl) 2008-04-11 2011-10-28 Emergent Product Dev Seatle CD37 imunoterapevtik in kombinacija z njegovim bifunkcionalnim kemoterapevtikom
CR20170001A (es) 2008-04-28 2017-08-10 Genentech Inc Anticuerpos anti factor d humanizados
KR20110014607A (ko) * 2008-04-29 2011-02-11 아보트 러보러터리즈 이원 가변 도메인 면역글로불린 및 이의 용도
TW201008580A (en) 2008-06-03 2010-03-01 Abbott Lab Dual variable domain immunoglobulin and uses thereof
BRPI0913366A8 (pt) 2008-06-03 2017-07-11 Abbott Lab Imunoglobulinas de domínio variável duplo e seus usos
ES2675730T3 (es) 2008-06-04 2018-07-12 Macrogenics, Inc. Anticuerpos con unión alterada a FcRn y métodos de uso de los mismos
US8822645B2 (en) 2008-07-08 2014-09-02 Abbvie Inc. Prostaglandin E2 dual variable domain immunoglobulins and uses thereof
TW201016233A (en) * 2008-07-15 2010-05-01 Genentech Inc Methods of treating autoimmune diseases using CD4 antibodies
RS54113B1 (en) 2008-08-05 2015-12-31 Novartis Ag COMPOSITIONS AND PROCEDURES FOR ANTIBODIES ON THE C5 COMPLEMENTARY PROTEIN
AR072999A1 (es) 2008-08-11 2010-10-06 Medarex Inc Anticuerpos humanos que se unen al gen 3 de activacion linfocitaria (lag-3) y los usos de estos
TW201438738A (zh) 2008-09-16 2014-10-16 Genentech Inc 治療進展型多發性硬化症之方法
US8192738B2 (en) 2008-09-19 2012-06-05 Medimmune, Llc Targeted antibodies directed to DLL4
KR102100066B1 (ko) * 2008-10-14 2020-04-10 제넨테크, 인크. 이뮤노글로불린 변이체 및 그의 용도
US8298533B2 (en) 2008-11-07 2012-10-30 Medimmune Limited Antibodies to IL-1R1
EP2358392B1 (en) 2008-11-12 2019-01-09 MedImmune, LLC Antibody formulation
JP6041489B2 (ja) 2008-11-22 2016-12-07 ジェネンテック, インコーポレイテッド 乳癌の治療のための化学療法と併用した抗vegf抗体の使用
CA2745492A1 (en) 2008-12-08 2010-06-17 Compugen Ltd. A polyclonal or monoclonal antibody or antibody binding fragment that binds to a tmem154 polypeptide
US8775090B2 (en) 2008-12-12 2014-07-08 Medimmune, Llc Crystals and structure of a human IgG Fc variant with enhanced FcRn binding
KR20110104032A (ko) 2008-12-19 2011-09-21 마크로제닉스, 인크. 공유결합형 디아바디 및 이의 용도
WO2010075249A2 (en) 2008-12-22 2010-07-01 Genentech, Inc. A method for treating rheumatoid arthritis with b-cell antagonists
CA2748158A1 (en) 2008-12-23 2010-07-01 Astrazeneca Ab Targeted binding agents directed to .alpha.5.beta.1 and uses thereof
AU2009334498A1 (en) 2008-12-31 2011-07-21 Biogen Idec Ma Inc. Anti-lymphotoxin antibodies
US8716448B2 (en) 2009-02-03 2014-05-06 Amunix Operating Inc. Coagulation factor VII compositions and methods of making and using same
US9238878B2 (en) 2009-02-17 2016-01-19 Redwood Bioscience, Inc. Aldehyde-tagged protein-based drug carriers and methods of use
WO2010095031A2 (en) 2009-02-23 2010-08-26 Glenmark Pharmaceuticals S.A. Humanized antibodies that bind to cd19 and their uses
WO2010102175A1 (en) 2009-03-05 2010-09-10 Medarex, Inc. Fully human antibodies specific to cadm1
EA201101241A1 (ru) 2009-03-06 2012-04-30 Калобайос Фармасьютиклз, Инк. Лечение лейкозов и хронических миелопролиферативных болезней антителами к ерна3
KR20110129935A (ko) 2009-03-16 2011-12-02 세파론 오스트레일리아 피티와이 엘티디 항종양 활성을 가진 인간화된 항체
EP2233500A1 (en) 2009-03-20 2010-09-29 LFB Biotechnologies Optimized Fc variants
SG174378A1 (en) 2009-03-20 2011-10-28 Genentech Inc Bispecific anti-her antibodies
CA2756197A1 (en) * 2009-03-24 2010-09-30 Bayer Healthcare Llc Factor viii variants and methods of use
LT3702371T (lt) 2009-03-25 2023-01-10 Genentech, Inc. Anti-fgfr3 antikūnai ir jų panaudojimo būdai
WO2010111254A1 (en) 2009-03-25 2010-09-30 Genentech, Inc. Novel anti-alpha5beta1 antibodies and uses thereof
WO2010112458A1 (en) 2009-03-31 2010-10-07 Novartis Ag Composition and methods of use for therapeutic antibodies specific for the il-12 receptore betal subunit
PE20121397A1 (es) 2009-04-20 2012-10-23 Oxford Biotherapeutics Ltd Anticuerpos especificos para cadherina-17
US9062116B2 (en) 2009-04-23 2015-06-23 Infinity Pharmaceuticals, Inc. Anti-fatty acid amide hydrolase-2 antibodies and uses thereof
CN104725512A (zh) 2009-04-27 2015-06-24 诺华股份有限公司 增加肌肉生长的组合物和方法
AU2010242840B2 (en) * 2009-05-01 2014-04-17 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
CN102686610A (zh) 2009-06-18 2012-09-19 辉瑞公司 抗刻缺蛋白-1抗体
CA2766405A1 (en) 2009-06-22 2011-01-13 Medimmune, Llc Engineered fc regions for site-specific conjugation
CA2766065C (en) * 2009-06-30 2020-07-21 Research Development Foundation Immunoglobulin fc polypeptides
AU2010273585B2 (en) 2009-07-13 2015-04-23 Genentech, Inc. Diagnostic methods and compositions for treatment of cancer
TW201106972A (en) 2009-07-27 2011-03-01 Genentech Inc Combination treatments
MX2012001417A (es) 2009-07-31 2012-07-03 Organon Nv Anticuerpos completamente humanos para atenuante de linfocitos b y t (btla).
WO2011014750A1 (en) 2009-07-31 2011-02-03 Genentech, Inc. Inhibition of tumor metastasis using bv8- or g-csf-antagonists
CN104059955A (zh) 2009-08-11 2014-09-24 弗·哈夫曼-拉罗切有限公司 在无谷氨酰胺的细胞培养基中的蛋白质生产
MX2012001716A (es) 2009-08-14 2012-04-02 Genentech Inc Marcadores biologicos para monitorizar la respuesta del paciente a los antagonistas vegf.
JP6088246B2 (ja) 2009-08-15 2017-03-01 ジェネンテック, インコーポレイテッド 以前に治療された乳癌の治療のための抗血管新生療法
WO2011021146A1 (en) 2009-08-20 2011-02-24 Pfizer Inc. Osteopontin antibodies
GB0914691D0 (en) * 2009-08-21 2009-09-30 Lonza Biologics Plc Immunoglobulin variants
US9321823B2 (en) 2009-09-02 2016-04-26 Genentech, Inc. Mutant smoothened and methods of using the same
US9493578B2 (en) 2009-09-02 2016-11-15 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
JP5996429B2 (ja) 2009-09-03 2016-09-21 ジェネンテック, インコーポレイテッド 関節リウマチの治療、診断及びモニターするための方法
WO2011029823A1 (en) 2009-09-09 2011-03-17 Novartis Ag Monoclonal antibody reactive with cd63 when expressed at the surface of degranulated mast cells
US20110064670A1 (en) 2009-09-11 2011-03-17 Genentech, Inc. Method to identify a patient with an increased likelihood of responding to an anti-cancer agent
ES2530732T3 (es) 2009-09-17 2015-03-05 Hoffmann La Roche Procedimientos de diagnóstico para el cáncer de pulmón
US8568726B2 (en) 2009-10-06 2013-10-29 Medimmune Limited RSV specific binding molecule
DK2486141T3 (en) 2009-10-07 2018-04-23 Macrogenics Inc FC-REGION-CONTAINING POLYPEPTIDES THAT PROVIDE IMPROVED EFFECTOR FUNCTION BASED ON CHANGES OF THE SCOPE OF FUCOSYLATION AND PROCEDURES FOR THEIR USE
EP2470569A1 (en) 2009-10-13 2012-07-04 Oxford Biotherapeutics Ltd. Antibodies against epha10
JP2013508292A (ja) 2009-10-14 2013-03-07 カロバイオス ファーマシューティカルズ インコーポレイティッド EphA3に対する抗体
CN102666875A (zh) * 2009-10-15 2012-09-12 雅培制药有限公司 双重可变结构域免疫球蛋白及其用途
EP2491059B1 (en) 2009-10-22 2015-02-25 F.Hoffmann-La Roche Ag Anti-hepsin antibodies and methods using same
CA2774032C (en) 2009-10-23 2019-03-26 Millennium Pharmaceuticals, Inc. Anti-gcc antibody molecules and related compositions and methods
WO2011056502A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Bone morphogenetic protein receptor type ii compositions and methods of use
WO2011056494A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Activin receptor-like kinase-1 antagonist and vegfr3 antagonist combinations
WO2011056497A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Activin receptor type iib compositions and methods of use
UY32979A (es) 2009-10-28 2011-02-28 Abbott Lab Inmunoglobulinas con dominio variable dual y usos de las mismas
MX341084B (es) 2009-11-02 2016-08-05 Univ Washington Composiciones de nucleasas terapéuticas y métodos.
AU2010315304B2 (en) 2009-11-04 2014-03-27 Merck Sharp & Dohme Llc Engineered anti-TSLP antibody
CN102933600B (zh) 2009-11-05 2015-11-25 弗·哈夫曼-拉罗切有限公司 分泌异源多肽的方法和组合物
WO2011054030A1 (en) 2009-11-05 2011-05-12 Cephalon Australia Pty Ltd Treatment of cancer involving mutated kras or braf genes
WO2011060015A1 (en) 2009-11-11 2011-05-19 Genentech, Inc. Methods and compositions for detecting target proteins
PT2504364T (pt) 2009-11-24 2017-11-14 Medimmune Ltd Agentes de ligação direcionados contra b7-h1
AU2010324684B2 (en) * 2009-11-30 2015-09-03 Janssen Biotech, Inc. Antibody Fc mutants with ablated effector functions
WO2011067711A2 (en) 2009-12-01 2011-06-09 Compugen Ltd Novel heparanase splice variant
US8722615B2 (en) 2009-12-02 2014-05-13 Acceleron Pharma, Inc. Compositions and methods for increasing serum half-life
US8486397B2 (en) 2009-12-11 2013-07-16 Genentech, Inc. Anti-VEGF-C antibodies and methods using same
KR20120107122A (ko) 2009-12-22 2012-09-28 노파르티스 아게 치료법에서 사용하기 위한 4가 cd47―항체 불변 영역 융합 단백질
HUE027713T2 (en) 2009-12-23 2016-10-28 Hoffmann La Roche Anti-BV8 antibodies and their use
WO2011091078A2 (en) 2010-01-19 2011-07-28 Xencor, Inc. Antibody fc variants with enhanced complement activity
JP2013519869A (ja) 2010-02-10 2013-05-30 ノバルティス アーゲー 筋肉成長のための方法および化合物
CN105001334A (zh) 2010-02-10 2015-10-28 伊缪诺金公司 Cd20抗体及其用途
DK2536748T3 (da) 2010-02-18 2014-10-13 Genentech Inc Neuregulin-antagonister og anvendelse deraf ved behandling af kræft
AU2011221229B2 (en) 2010-02-23 2015-06-18 F. Hoffmann-La Roche Ag Anti-angiogenesis therapy for the treatment of ovarian cancer
SG10201501285RA (en) 2010-02-23 2015-04-29 Sanofi Sa Anti-alpha2 integrin antibodies and their uses
US9260529B2 (en) 2010-02-24 2016-02-16 The University Of Washington Through Its Center For Commercialization Molecules that bind CD180, compositions and methods of use
EP2543727B1 (en) 2010-03-02 2016-08-31 Kyowa Hakko Kirin Co., Ltd. Modified antibody composition
JP5998060B2 (ja) 2010-03-04 2016-09-28 マクロジェニクス,インコーポレーテッド B7−h3と反応性のある抗体、その免疫学的に活性なフラグメントおよびその使用
US8802091B2 (en) 2010-03-04 2014-08-12 Macrogenics, Inc. Antibodies reactive with B7-H3 and uses thereof
SG184033A1 (en) 2010-03-24 2012-10-30 Genentech Inc Anti-lrp6 antibodies
US10745467B2 (en) 2010-03-26 2020-08-18 The Trustees Of Dartmouth College VISTA-Ig for treatment of autoimmune, allergic and inflammatory disorders
KR101882523B1 (ko) 2010-03-26 2018-07-26 트러스티스 오브 다트마우스 칼리지 Vista 조절 t 세포 매개 단백질, vista 결합제 및 그것의 용도
US20150231215A1 (en) 2012-06-22 2015-08-20 Randolph J. Noelle VISTA Antagonist and Methods of Use
JP2013523098A (ja) 2010-03-29 2013-06-17 ザイムワークス,インコーポレイテッド 強化又は抑制されたエフェクター機能を有する抗体
TWI667257B (zh) * 2010-03-30 2019-08-01 中外製藥股份有限公司 促進抗原消失之具有經修飾的FcRn親和力之抗體
EP2371860A1 (en) 2010-04-05 2011-10-05 Fundació Privada Institut d'Investigació Oncològica de Vall d'Hebron Antibody recognising human leukemia inhibitory factor (LIF) and use of anti-LIF antibodies in the treatment of diseases associated with unwanted cell proliferation
SG185416A1 (en) 2010-05-06 2012-12-28 Novartis Ag Compositions and methods of use for therapeutic low density lipoprotein -related protein 6 (lrp6) antibodies
EP2566894A1 (en) 2010-05-06 2013-03-13 Novartis AG Compositions and methods of use for therapeutic low density lipoprotein - related protein 6 (lrp6) multivalent antibodies
WO2011146568A1 (en) 2010-05-19 2011-11-24 Genentech, Inc. Predicting response to a her inhibitor
WO2011147834A1 (en) 2010-05-26 2011-12-01 Roche Glycart Ag Antibodies against cd19 and uses thereof
NZ603883A (en) 2010-05-27 2015-01-30 Merck Sharp & Dohme Method for preparing antibodies having improved properties
WO2011153224A2 (en) 2010-06-02 2011-12-08 Genentech, Inc. Diagnostic methods and compositions for treatment of cancer
WO2011153243A2 (en) 2010-06-02 2011-12-08 Genentech, Inc. Anti-angiogenesis therapy for treating gastric cancer
NZ602840A (en) 2010-06-03 2014-11-28 Genentech Inc Immuno-pet imaging of antibodies and immunoconjugates and uses therefor
EP3098240B1 (en) 2010-06-18 2021-04-07 F. Hoffmann-La Roche AG Anti-axl antibodies and methods of use
WO2011163401A2 (en) 2010-06-22 2011-12-29 Neogenix Oncology, Inc. Colon and pancreas cancer specific antigens and antibodies
WO2011161119A1 (en) 2010-06-22 2011-12-29 F. Hoffmann-La Roche Ag Antibodies against insulin-like growth factor i receptor and uses thereof
WO2011161189A1 (en) 2010-06-24 2011-12-29 F. Hoffmann-La Roche Ag Anti-hepsin antibodies and methods of use
SG186983A1 (en) 2010-07-09 2013-02-28 Genentech Inc Anti-neuropilin antibodies and methods of use
AU2011274423B2 (en) 2010-07-09 2016-02-11 Bioverativ Therapeutics Inc. Chimeric clotting factors
CA2805708A1 (en) 2010-07-19 2012-01-26 F. Hoffmann-La Roche Ag Method to identify a patient with an increased likelihood of responding to an anti-cancer therapy
EP2596362A1 (en) 2010-07-19 2013-05-29 F. Hoffmann-La Roche AG Method to identify a patient with an increased likelihood of responding to an anti-cancer therapy
WO2012010582A1 (en) 2010-07-21 2012-01-26 Roche Glycart Ag Anti-cxcr5 antibodies and methods of use
KR20130048242A (ko) 2010-07-22 2013-05-09 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 항-종양 항원 항체 및 이용 방법
EP3696195B1 (en) 2010-07-23 2024-02-14 Trustees of Boston University Anti-despr inhibitors as therapeutics for inhibition of pathological angiogenesis and tumor cell invasiveness and for molecular imaging and targeted delivery
ES2701405T3 (es) 2010-07-29 2019-02-22 Eleven Biotherapeutics Inc Agonistas y antagonistas del receptor tipo I de IL-1 quimérico
WO2012016173A2 (en) 2010-07-30 2012-02-02 Ac Immune S.A. Safe and functional humanized antibodies
MX339622B (es) 2010-08-02 2016-06-02 Macrogenics Inc Diacuerpos covalentes y sus usos.
BR112013002535A2 (pt) 2010-08-03 2019-09-24 Hoffmann La Roche biomarcadores de leucemia linfocítica crônica (cll)
CN103298834A (zh) 2010-08-03 2013-09-11 Abbvie公司 双重可变结构域免疫球蛋白及其用途
WO2012019061A2 (en) 2010-08-05 2012-02-09 Stem Centrx, Inc. Novel effectors and methods of use
WO2012017003A1 (en) 2010-08-05 2012-02-09 F. Hoffmann-La Roche Ag Anti-mhc antibody anti-viral cytokine fusion protein
PT2603530T (pt) 2010-08-13 2018-01-09 Roche Glycart Ag Anticorpos anti-fap e métodos de utilização
WO2012020038A1 (en) 2010-08-13 2012-02-16 Roche Glycart Ag Anti-tenascin-c a2 antibodies and methods of use
JP2013537416A (ja) 2010-08-13 2013-10-03 メディミューン リミテッド 変異型Fc領域を含むモノマーポリペプチド及び使用方法
WO2012022734A2 (en) 2010-08-16 2012-02-23 Medimmune Limited Anti-icam-1 antibodies and methods of use
PE20140230A1 (es) 2010-08-20 2014-02-26 Novartis Ag Anticuerpos para el receptor del factor de crecimiento epidermico 3(her3)
MX340555B (es) 2010-08-25 2016-07-14 F Hoffmann-La Roche Ag * Anticuerpos contra il-18r1 y usos de los mismos.
US9046513B2 (en) 2010-08-26 2015-06-02 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
CA2809369A1 (en) 2010-08-27 2012-03-01 Stem Centrx, Inc. Notum protein modulators and methods of use
EP2612151B1 (en) 2010-08-31 2017-08-09 Genentech, Inc. Biomarkers and methods of treatment
UY33578A (es) 2010-08-31 2012-03-30 Sanofi Sa PÉPTIDO O COMPLEJO PEPTÍDICO QUE SE UNE A INTEGRINA a(ALFA) Y MÉTODOS Y USOS QUE IMPLICAN A LOS MISMOS
US9150655B2 (en) 2010-09-03 2015-10-06 Academia Sinica Anti-C-met antibody and methods of use thereof
CN103476429B (zh) 2010-09-03 2016-08-24 施特姆森特克斯股份有限公司 新型调节剂及使用方法
WO2012032080A1 (en) 2010-09-07 2012-03-15 F-Star Biotechnologische Forschungs- Und Entwicklungsges.M.B.H Stabilised human fc
US8999335B2 (en) 2010-09-17 2015-04-07 Compugen Ltd. Compositions and methods for treatment of drug resistant multiple myeloma
US9068014B2 (en) 2010-09-23 2015-06-30 Precision Biologics, Inc. Colon and pancreas cancer peptidomimetics
RU2595839C2 (ru) 2010-09-27 2016-08-27 МорфоСис АГ Антитело к cd38 и леналидомид или бортезомиб для лечения множественной миеломы и nhl
ES2588981T3 (es) 2010-10-05 2016-11-08 Genentech, Inc. Smoothened mutante y métodos de uso de la misma
JP2013543384A (ja) 2010-10-05 2013-12-05 ノバルティス アーゲー 抗−il12rベータ1抗体ならびに自己免疫性および炎症性疾患の処置おけるその使用
BR112013009083B1 (pt) 2010-10-13 2021-08-10 Janssen Biotech, Inc. Anticorpos humanos para oncostatina m, seu processo de fabricação, fragmento de ligação a antígeno, composição farmacêutica, polinucleotídeo isolado, célula hospedeira recombinante estavelmente transformada ou transfectada
CA2815041A1 (en) * 2010-10-20 2012-04-26 Oxford Biotherapeutics Ltd. Antibodies
MX352929B (es) 2010-11-05 2017-12-13 Zymeworks Inc DISEÑO DE ANTICUERPOS HETERODIMÉRICOS ESTABLES CON MUTACIONES EN EL DOMINIO Fc.
KR20220070586A (ko) 2010-11-08 2022-05-31 제넨테크, 인크. 피하 투여용 항―il―6 수용체 항체
US8772457B2 (en) 2010-11-10 2014-07-08 Genentech, Inc. BACE1 antibodies
KR101947356B1 (ko) 2010-11-23 2019-02-12 글락소 그룹 리미티드 온코스타틴 m (osm)에 대한 항원 결합 단백질
EP2643016A2 (en) 2010-11-23 2013-10-02 Alder Biopharmaceuticals, Inc. Anti-il-6 antibodies for the treatment of anemia
CA2818621A1 (en) 2010-11-24 2012-05-31 Glaxo Group Limited Multispecific antigen binding proteins targeting hgf
LT2646470T (lt) 2010-11-30 2017-06-12 F. Hoffmann-La Roche Ag Mažo giminingumo antitransferino receptorių antikūnai ir jų panaudojimas pernešti gydomąjį vienos grandinės antikūną (scfv) per hematoencefalinį barjerą
WO2012073992A1 (ja) 2010-11-30 2012-06-07 中外製薬株式会社 複数分子の抗原に繰り返し結合する抗原結合分子
KR102244173B1 (ko) 2010-11-30 2021-04-26 추가이 세이야쿠 가부시키가이샤 세포상해 유도 치료제
AU2011360938B2 (en) 2010-12-08 2016-07-28 Abbvie Stemcentrx Llc Novel modulators and methods of use
CN103547594B (zh) 2010-12-15 2016-05-11 惠氏有限责任公司 抗缺刻蛋白1抗体
TWI666447B (zh) 2010-12-16 2019-07-21 建南德克公司 關於th2抑制作用之診斷及治療
BR112013014527A2 (pt) 2010-12-20 2017-03-07 Genentech Inc anticorpo isolado, ácido nucleico isolado, célula hospedeira, método para produzir um anticorpo, imunoconjugado, formulação farmacêutica, uso do imunoconjugado, método para tratamento de um indivíduo que tem um câncer positivo para mesotelina, para inibição de proliferação de uma célula positiva para mesotelina, para detecção de mesotelina humana em uma amostra biológica e para detectar um câncer positivo para mesotelina
WO2012088313A1 (en) 2010-12-22 2012-06-28 Genentech, Inc. Anti-pcsk9 antibodies and methods of use
HUE033205T2 (en) 2010-12-23 2017-11-28 Janssen Biotech Inc Active, protease-resistant antibody-FC mutant
WO2012092539A2 (en) 2010-12-31 2012-07-05 Takeda Pharmaceutical Company Limited Antibodies to dll4 and uses thereof
CN102128937B (zh) * 2010-12-31 2014-05-28 江苏华冠生物技术股份有限公司 用于脱敏治疗效果评价的过敏原特异性IgG4抗体检测试剂盒的制备方法
WO2012097333A2 (en) 2011-01-14 2012-07-19 Redwood Bioscience, Inc. Aldehyde-tagged immunoglobulin polypeptides and method of use thereof
US10689447B2 (en) 2011-02-04 2020-06-23 Genentech, Inc. Fc variants and methods for their production
CA2826467C (en) 2011-02-07 2019-11-12 Research Development Foundation Engineered immunoglobulin fc polypeptides
SA112330278B1 (ar) 2011-02-18 2015-10-09 ستيم سينتركس، انك. مواد ضابطة جديدة وطرق للاستخدام
CA2827923C (en) * 2011-02-25 2021-11-23 Chugai Seiyaku Kabushiki Kaisha Fc.gamma.riib-specific fc antibody
WO2012132067A1 (ja) 2011-03-30 2012-10-04 中外製薬株式会社 抗原結合分子の血漿中滞留性と免疫原性を改変する方法
JP5764677B2 (ja) 2011-02-28 2015-08-19 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト 抗原結合タンパク質
CA2824824A1 (en) 2011-02-28 2012-09-07 F. Hoffmann-La Roche Ag Monovalent antigen binding proteins
MX353143B (es) 2011-02-28 2017-12-20 Genentech Inc Marcadores biologicos y metodos para pronosticar respuesta a antagonistas de celulas b.
WO2012130831A1 (en) * 2011-03-29 2012-10-04 Roche Glycart Ag Antibody fc variants
EP3825325A3 (en) 2011-03-30 2021-10-13 Chugai Seiyaku Kabushiki Kaisha Retention of antigen-binding molecules in blood plasma and method for modifying immunogenicity
KR20240027154A (ko) 2011-03-30 2024-02-29 추가이 세이야쿠 가부시키가이샤 항원 결합 분자의 혈장 체류성과 면역원성을 개변하는 방법
AU2012236304C1 (en) 2011-03-31 2017-01-05 Genentech, Inc. Methods of administering beta7 integrin antagonists
WO2012138975A1 (en) 2011-04-07 2012-10-11 Genentech, Inc. Anti-fgfr4 antibodies and methods of use
WO2012142515A2 (en) 2011-04-13 2012-10-18 Bristol-Myers Squibb Company Fc fusion proteins comprising novel linkers or arrangements
BR112013026199A2 (pt) 2011-04-15 2017-11-07 Compugen Ltd polipeptídeo isolado, proteína de fusão, sequência de ácidos nucleicos, vetor de expressão ou um vírus, célula recombinante, método de produção de um polipeptídeo com ectodomínio solúvel lsr, ou seu fragmento ou proteína de fusão, composição farmacêutica, uso de um anticorpo monoclonal ou policlonal ou um seu fragmento de ligação ao antígeno, uso do anticorpo ou do fragmento de ligação ao antígeno, uso de qualquer um de um polipeptídeo isolado, método de regulação por cima de citocinas, indução da expansão de células t, promoção da imunidade de células t específica antigênica e promoção da ativação das células t cd4+ e/ou cd8+ em um sujeito, método para potenciação de uma resposta imune secundária a um antígeno em um paciente, método de uso de pelo menos um de: um polipeptídeo isolado, método para tratamento ou prevenção de uma condição relacionada com o sistema imune, método para tratamento ou prevenção de uma doença infecciosa, método para diagnóstico de uma doença em um sujeito, método de produção de um polipeptídeo com ectodomínio solúvel tmem25, vsig10, ly6g6f, ou seu fragmento ou proteína de fusão, anticorpo monoclonal ou policlonal ou um seu fragmento de ligação ao antígeno, método de imunoterapia em um paciente e método para combinação de vacinação terapêutica com um antígeno em conjunto com a administração de qualquer um de um polipeptídeo
CA2833636A1 (en) 2011-04-20 2012-10-26 Amplimmune, Inc. Antibodies and other molecules that bind b7-h1 and pd-1
US10654916B2 (en) 2011-04-21 2020-05-19 The Regents Of The University Of California, A California Corporation Compositions and methods for the treatment of neuromyelitis optica
GB201107170D0 (en) 2011-04-28 2011-06-15 Clark Michael Binding molecules with biased recognition
WO2012146630A1 (en) 2011-04-29 2012-11-01 F. Hoffmann-La Roche Ag N-terminal acylated polypeptides, methods for their production and uses thereof
EP2704737B1 (en) 2011-04-29 2018-01-10 University of Washington Therapeutic nuclease compositions and methods
KR101992502B1 (ko) 2011-05-12 2019-06-24 제넨테크, 인크. 프레임워크 시그너처 펩티드를 사용하여 동물 샘플에서 치료 항체를 검출하기 위한 다중 반응 모니터링 lc-ms/ms 방법
WO2012156309A1 (en) 2011-05-13 2012-11-22 Millegen Antibodies against her3
PL2710035T3 (pl) 2011-05-16 2017-09-29 F.Hoffmann-La Roche Ag Agoniści fgfr1 i sposoby stosowania
CA2836873C (en) 2011-05-21 2019-10-22 Macrogenics, Inc. Deimmunized serum-binding domains and their use for extending serum half-life
PL2714733T4 (pl) 2011-05-21 2019-08-30 Macrogenics, Inc. Cząsteczki wiążące CD3 zdolne do wiązania z ludzkim i nieludzkim CD3
DK2714738T3 (en) 2011-05-24 2019-01-28 Zyngenia Inc MULTIVALENT AND MONOVALENT MULTISPECIFIC COMPLEXES AND THEIR APPLICATIONS
US9328170B2 (en) 2011-05-25 2016-05-03 Merck Sharp & Dohme Corp. Method for preparing Fc containing polypeptides having improved properties
WO2012170740A2 (en) 2011-06-07 2012-12-13 University Of Hawaii Biomarker of asbestos exposure and mesothelioma
US9561274B2 (en) 2011-06-07 2017-02-07 University Of Hawaii Treatment and prevention of cancer with HMGB1 antagonists
EP3527218A1 (en) 2011-06-10 2019-08-21 Bioverativ Therapeutics Inc. Pro-coagulant compounds and methods of use thereof
WO2012172495A1 (en) 2011-06-14 2012-12-20 Novartis Ag Compositions and methods for antibodies targeting tem8
EP2721067B1 (en) 2011-06-15 2019-07-31 F.Hoffmann-La Roche Ag Anti-human epo receptor antibodies and methods of use
BR112013031762A2 (pt) 2011-06-16 2016-09-13 Novartis Ag proteínas solúveis para utilização como terapêuticos
CN103649125A (zh) 2011-06-22 2014-03-19 霍夫曼-拉罗奇有限公司 利用包含mhc i类的复合物通过循环中的病毒特异性细胞毒性t细胞清除靶细胞
KR20140104944A (ko) 2011-06-22 2014-08-29 인쎄름 (엥스띠뛰 나씨오날 드 라 쌍떼 에 드 라 흐쉐르슈 메디깔) 항-axl 항체 및 그의 용도
ES2677367T3 (es) 2011-06-22 2018-08-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Anticuerpos anti-Axl y usos de los mismos
EP2537864B1 (en) * 2011-06-24 2019-08-07 Laboratoire Français du Fractionnement et des Biotechnologies Fc variants with reduced effector functions
EP2726508B1 (en) 2011-06-28 2017-08-09 Oxford BioTherapeutics Ltd Antibodies to adp-ribosyl cyclase 2
US9428574B2 (en) 2011-06-30 2016-08-30 Compugen Ltd. Polypeptides and uses thereof for treatment of autoimmune disorders and infection
CN107090038A (zh) 2011-06-30 2017-08-25 霍夫曼-拉罗奇有限公司 抗c‑met抗体配制剂
CA2839539C (en) 2011-06-30 2021-06-08 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
ES2692519T3 (es) 2011-07-01 2018-12-04 Novartis Ag Método para tratar trastornos metabólicos
UA117901C2 (uk) * 2011-07-06 2018-10-25 Ґенмаб Б.В. Спосіб посилення ефекторної функції вихідного поліпептиду, його варіанти та їх застосування
WO2013012733A1 (en) 2011-07-15 2013-01-24 Biogen Idec Ma Inc. Heterodimeric fc regions, binding molecules comprising same, and methods relating thereto
WO2013010955A1 (en) 2011-07-15 2013-01-24 Morphosys Ag Antibodies that are cross-reactive for macrophage migration inhibitory factor (mif) and d-dopachrome tautomerase (d-dt)
GB201112429D0 (en) 2011-07-19 2011-08-31 Glaxo Group Ltd Antigen-binding proteins with increased FcRn binding
US20130022551A1 (en) 2011-07-22 2013-01-24 Trustees Of Boston University DEspR ANTAGONISTS AND AGONISTS AS THERAPEUTICS
US9499612B2 (en) 2011-07-27 2016-11-22 Glaxo Group Limited Antigen binding constructs
US9676854B2 (en) 2011-08-15 2017-06-13 Medimmune, Llc Anti-B7-H4 antibodies and their uses
KR20140068877A (ko) 2011-08-17 2014-06-09 제넨테크, 인크. 불응성 종양에서의 혈관신생의 억제
WO2013025853A1 (en) 2011-08-17 2013-02-21 Genentech, Inc. Neuregulin antibodies and uses thereof
JP2014534806A (ja) 2011-08-23 2014-12-25 ロシュ グリクアート アーゲー 抗mcsp抗体
US20130058947A1 (en) 2011-09-02 2013-03-07 Stem Centrx, Inc Novel Modulators and Methods of Use
UY34317A (es) 2011-09-12 2013-02-28 Genzyme Corp Anticuerpo antireceptor de célula T (alfa)/ß
US20130108641A1 (en) 2011-09-14 2013-05-02 Sanofi Anti-gitr antibodies
BR112014005720A2 (pt) 2011-09-15 2017-12-12 Genentech Inc método de seleção e/ou identificação de um antagonista de usp1, antagonista de uaf1 e/ou um antagonista de id que promove uma alteração no destino celular do dito método
WO2013043715A1 (en) 2011-09-19 2013-03-28 Genentech, Inc. Combination treatments comprising c-met antagonists and b-raf antagonists
KR102225422B1 (ko) 2011-09-30 2021-03-08 다나-파버 캔서 인스티튜트 인크. 치료 펩티드
TW201817744A (zh) * 2011-09-30 2018-05-16 日商中外製藥股份有限公司 具有促進抗原清除之FcRn結合域的治療性抗原結合分子
CN110627902A (zh) 2011-09-30 2019-12-31 中外制药株式会社 诱导针对靶抗原的免疫应答的抗原结合分子
EP3939996A1 (en) 2011-09-30 2022-01-19 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule promoting disappearance of antigens having plurality of biological activities
EP2762166B1 (en) * 2011-09-30 2019-09-18 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecules for promoting elimination of antigens
US20130089562A1 (en) 2011-10-05 2013-04-11 Genenthech, Inc. Methods of treating liver conditions using notch2 antagonists
EP3617313A1 (en) 2011-10-05 2020-03-04 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule for promoting clearance from plasma of antigen comprising saccharide chain receptor-binding domain
EP2766033B1 (en) 2011-10-14 2019-11-20 Novartis AG Antibodies and methods for wnt pathway-related diseases
PL2766393T3 (pl) 2011-10-14 2018-11-30 F.Hoffmann-La Roche Ag PRZECIWCIAŁA PRZECIW HtrA1 I SPOSOBY ZASTOSOWANIA
MX2014004426A (es) 2011-10-15 2014-07-09 Genentech Inc Metodos de uso de antagonistas de scd1.
WO2013059531A1 (en) 2011-10-20 2013-04-25 Genentech, Inc. Anti-gcgr antibodies and uses thereof
WO2013059885A2 (en) 2011-10-28 2013-05-02 Cephalon Australia Pty Ltd Polypeptide constructs and uses thereof
BR112014009953A2 (pt) 2011-10-28 2017-12-05 Genentech Inc método de inibição do crescimento de tumores, de tratamento de melanoma, artigo industrializado e uso
KR102168733B1 (ko) 2011-10-31 2020-10-23 추가이 세이야쿠 가부시키가이샤 중쇄와 경쇄의 회합이 제어된 항원 결합 분자
US10598653B2 (en) 2011-11-01 2020-03-24 Bionomics Inc. Methods of blocking cancer stem cell growth
WO2013067057A1 (en) 2011-11-01 2013-05-10 Bionomics, Inc. Anti-gpr49 antibodies
JP2014533247A (ja) 2011-11-01 2014-12-11 バイオノミクス インコーポレイテッド 抗体および癌を治療する方法
AU2012332593B2 (en) 2011-11-01 2016-11-17 Bionomics, Inc. Anti-GPR49 antibodies
WO2013063702A1 (en) 2011-11-04 2013-05-10 Zymeworks Inc. Stable heterodimeric antibody design with mutations in the fc domain
JP2014533249A (ja) 2011-11-07 2014-12-11 メディミューン,エルエルシー 多重特異性を持つ多価結合タンパク質およびその使用
MX2014005885A (es) 2011-11-21 2014-09-04 Genentech Inc Purificacion de anticuerpos anti-c-met.
CA2856873A1 (en) 2011-11-23 2013-05-30 Igenica, Inc. Anti-cd98 antibodies and methods of use thereof
JP6124800B2 (ja) 2011-11-30 2017-05-10 中外製薬株式会社 免疫複合体を形成する細胞内への運搬体(キャリア)を含む医薬
UY34487A (es) 2011-12-05 2013-07-31 Novartis Ag Anticuerpos para receptor de factor de crecimiento epidérmico 3(her3)
EP2788379B1 (en) 2011-12-05 2020-02-05 X-Body, Inc. Pdgf receptor beta binding polypeptides
TW201328707A (zh) 2011-12-05 2013-07-16 Novartis Ag 針對表皮生長因子受體3(her3)之區域ii之her3抗體
EP2788024A1 (en) 2011-12-06 2014-10-15 F.Hoffmann-La Roche Ag Antibody formulation
WO2013101509A2 (en) 2011-12-15 2013-07-04 Alternative Innovative Technologies Llc Hsp70 fusion protein conjugates and uses thereof
DK2794905T3 (da) 2011-12-20 2020-07-06 Medimmune Llc Modificerede polypeptider til bispecifikke antistofgrundstrukturer
US9051365B2 (en) 2011-12-21 2015-06-09 Novartis Ag Antibodies that bind factor P
EP2794653B1 (en) 2011-12-23 2019-03-13 Pfizer Inc Engineered antibody constant regions for site-specific conjugation and methods and uses therefor
WO2013096791A1 (en) 2011-12-23 2013-06-27 Genentech, Inc. Process for making high concentration protein formulations
TWI593705B (zh) 2011-12-28 2017-08-01 Chugai Pharmaceutical Co Ltd Humanized anti-epiregulin antibody and cancer therapeutic agent containing the antibody as an active ingredient
WO2013101771A2 (en) 2011-12-30 2013-07-04 Genentech, Inc. Compositions and method for treating autoimmune diseases
JP2015508994A (ja) 2011-12-30 2015-03-26 アッヴィ・インコーポレイテッド Il−13および/またはil−17に対する二重可変ドメイン免疫グロブリン
AU2013208007A1 (en) 2012-01-09 2014-07-31 The Scripps Research Institute Humanized antibodies with ultralong CDR3
US10774132B2 (en) 2012-01-09 2020-09-15 The Scripps Research Instittue Ultralong complementarity determining regions and uses thereof
NZ626945A (en) 2012-01-12 2016-10-28 Biogen Ma Inc Chimeric factor viii polypeptides and uses thereof
CA2862835A1 (en) 2012-01-13 2013-07-18 Genentech, Inc. Biological markers for identifying patients for treatment with vegf antagonists
US9200072B2 (en) 2012-01-18 2015-12-01 Genentech Inc. Anti-LRP5 antibodies and methods of use
RU2014133547A (ru) 2012-01-18 2016-03-10 Дженентек, Инк. Способы применения модуляторов fgf19
CN104185681A (zh) 2012-02-01 2014-12-03 卡姆普根有限公司 C1orf32抗体及其用于治疗癌症的用途
CA2862101A1 (en) 2012-02-07 2013-08-15 Innate Pharma Mica binding agents
JP6545959B2 (ja) 2012-02-11 2019-07-17 ジェネンテック, インコーポレイテッド Rスポンジン転位およびその使用方法
EP2814587B1 (en) 2012-02-15 2018-05-02 F.Hoffmann-La Roche Ag Fc-receptor based affinity chromatography
KR20190094480A (ko) 2012-02-15 2019-08-13 바이오버라티브 테라퓨틱스 인크. 재조합 인자 viii 단백질
PT3564260T (pt) 2012-02-15 2023-01-18 Bioverativ Therapeutics Inc Composições de fator viii e métodos de produção e utilização das mesmas
ES2812849T3 (es) 2012-02-24 2021-03-18 Abbvie Stemcentrx Llc Anticuerpos anti-DLL3 y procedimientos de utilización de los mismos
ES2795419T3 (es) 2012-02-24 2020-11-23 Chugai Pharmaceutical Co Ltd Molécula de unión al antígeno que promueve la desaparición del antígeno vía Fc RIIB
SG11201406079TA (en) 2012-03-27 2014-10-30 Genentech Inc Diagnosis and treatments relating to her3 inhibitors
UY34682A (es) 2012-03-28 2013-10-31 Sanofi Sa Anticuerpos frente a los ligandos del receptor b1 de bradicinina.
JP6280031B2 (ja) 2012-03-29 2018-02-14 中外製薬株式会社 抗lamp5抗体およびその利用
AR090549A1 (es) 2012-03-30 2014-11-19 Genentech Inc Anticuerpos anti-lgr5 e inmunoconjugados
CA2867588A1 (en) 2012-03-30 2013-10-03 Genentech, Inc. Diagnostic methods and compositions for treatment of cancer
KR102132041B1 (ko) 2012-04-05 2020-07-09 에이씨 이뮨 에스.에이. 인간화된 타우 항체
US9156915B2 (en) 2012-04-26 2015-10-13 Thomas Jefferson University Anti-GCC antibody molecules
AR090903A1 (es) 2012-05-01 2014-12-17 Genentech Inc Anticuerpos e inmunoconjugados anti-pmel17
WO2013166290A1 (en) 2012-05-04 2013-11-07 Abbvie Biotherapeutics Inc. P21 biomarker assay
EP2847216A1 (en) 2012-05-07 2015-03-18 Sanofi Methods for preventing biofilm formation
WO2013170191A1 (en) 2012-05-11 2013-11-14 Genentech, Inc. Methods of using antagonists of nad biosynthesis from nicotinamide
EP3427721A1 (en) 2012-05-18 2019-01-16 Genentech, Inc. High-concentration monoclonal antibody formulations
CN104520325A (zh) 2012-05-21 2015-04-15 霍夫曼-拉罗奇有限公司 用于提高血脑屏障转运的安全性的方法
WO2013174927A1 (en) 2012-05-23 2013-11-28 Novartis International Pharmaceutical Limited Production of fucosylated glycoproteins
WO2013175276A1 (en) 2012-05-23 2013-11-28 Argen-X B.V Il-6 binding molecules
JP6294311B2 (ja) 2012-05-23 2018-03-14 ジェネンテック, インコーポレイテッド 治療薬の選択方法
WO2013177386A1 (en) 2012-05-24 2013-11-28 Abbvie Biotherapeutics Inc. Biomarkers for predicting response to tweak receptor (tweakr) agonist therapy
ES2856272T3 (es) 2012-05-30 2021-09-27 Chugai Pharmaceutical Co Ltd Molécula de unión a antígenos para eliminar antígenos agregados
CN107964042B (zh) 2012-05-30 2022-04-19 中外制药株式会社 靶组织特异性抗原结合分子
EP2855520B1 (en) 2012-06-04 2018-09-26 Novartis AG Site-specific labeling methods and molecules produced thereby
EP4079316A1 (en) 2012-06-08 2022-10-26 Bioverativ Therapeutics Inc. Procoagulant compounds
AU2013273115B2 (en) 2012-06-08 2018-03-01 Ichnos Sciences SA Humanized anti-TrkA antibodies with amino acid substitutions
AU2013270683A1 (en) 2012-06-08 2014-12-11 Biogen Ma Inc. Chimeric clotting factors
WO2013187495A1 (ja) 2012-06-14 2013-12-19 中外製薬株式会社 改変されたFc領域を含む抗原結合分子
BR112014031310A2 (pt) 2012-06-15 2017-07-25 Genentech Inc anticorpos anti-pcsk9, formulações, dosagem e métodos de uso
MX2014015557A (es) * 2012-06-21 2015-02-24 Univ Indiana Res & Tech Corp Polipeptidos de fusion de region fc de polipeptido de ligando receptor de incretina y conjugados con función efectora fc alterada.
US9890215B2 (en) 2012-06-22 2018-02-13 King's College London Vista modulators for diagnosis and treatment of cancer
US9499634B2 (en) 2012-06-25 2016-11-22 Zymeworks Inc. Process and methods for efficient manufacturing of highly pure asymmetric antibodies in mammalian cells
AR091649A1 (es) 2012-07-02 2015-02-18 Bristol Myers Squibb Co Optimizacion de anticuerpos que se fijan al gen de activacion de linfocitos 3 (lag-3) y sus usos
EP3138580B1 (en) 2012-07-04 2021-03-03 F. Hoffmann-La Roche AG Covalently linked antigen-antibody conjugates
ES2600154T3 (es) 2012-07-04 2017-02-07 F. Hoffmann-La Roche Ag Anticuerpos antiteofilina y métodos de uso
BR112014030844A2 (pt) 2012-07-04 2019-10-15 Hoffmann La Roche anticorpo anti-biotina humanizado, formulação farmacêutica e uso do anticorpo
CA3188124A1 (en) 2012-07-05 2014-01-09 Genentech, Inc. Expression and secretion system
EP3632462A1 (en) 2012-07-06 2020-04-08 Genmab B.V. Dimeric protein with triple mutations
AU2013285355A1 (en) 2012-07-06 2015-01-29 Genmab B.V. Dimeric protein with triple mutations
EP2870250B2 (en) 2012-07-06 2022-06-29 Bioverativ Therapeutics Inc. Cell line expressing single chain factor viii polypeptides and uses thereof
PE20150325A1 (es) 2012-07-09 2015-03-05 Genentech Inc Inmunoconjugados que comprenden anticuerpos anti-cd22 y derivados de nemorrubicina.
MX2015000359A (es) 2012-07-09 2015-04-14 Genentech Inc Anticuerpos e inmunoconjugados anti-cd79b.
MX2015000357A (es) 2012-07-09 2015-05-12 Genentech Inc Anticuerpos e inmunoconjugados anti-cd22.
SG11201500096YA (en) 2012-07-09 2015-02-27 Genentech Inc Immunoconjugates comprising anti - cd79b antibodies
SG11201500045RA (en) 2012-07-11 2015-02-27 Amunix Operating Inc Factor viii complex with xten and von willebrand factor protein, and uses thereof
LT3495387T (lt) 2012-07-13 2021-11-25 Roche Glycart Ag Bispecifiniai anti-vegf / anti-ang-2 antikūnai ir jų panaudojimas akių kraujagyslių ligoms gydyti
EP2874658A1 (en) 2012-07-18 2015-05-27 Glycotope GmbH Novel therapeutic treatments with anti-her2 antibodies having a low fucosylation
KR102268351B1 (ko) 2012-07-25 2021-06-22 셀덱스 쎄라퓨틱스, 인크. 항-kit 항체 및 그의 용도
EP2888279A1 (en) 2012-08-22 2015-07-01 Glaxo Group Limited Anti lrp6 antibodies
DK2889377T3 (da) 2012-08-24 2020-03-30 Chugai Pharmaceutical Co Ltd Fc?RIIb-Specifik Fc-regionsvariant
US11236168B2 (en) 2012-08-24 2022-02-01 Chugai Seiyaku Kabushiki Kaisha Mouse FcγammaRII-specific Fc antibody
EP2890712B1 (en) 2012-08-29 2019-05-01 F.Hoffmann-La Roche Ag Blood brain barrier shuttle
CN109793893B (zh) 2012-09-07 2023-05-26 达特茅斯大学理事会 用于诊断和治疗癌症的vista调节剂
JOP20200308A1 (ar) 2012-09-07 2017-06-16 Novartis Ag جزيئات إرتباط il-18
US9790268B2 (en) 2012-09-12 2017-10-17 Genzyme Corporation Fc containing polypeptides with altered glycosylation and reduced effector function
EP4223783A3 (en) 2012-09-12 2023-11-15 Genzyme Corporation Fc containing polypeptides with altered glycosylation and reduced effector function
AU2013329311A1 (en) 2012-10-09 2015-04-30 Igenica Biotherapeutics, Inc. Anti-C16orf54 antibodies and methods of use thereof
RU2636043C2 (ru) 2012-11-01 2017-11-17 Эббви Инк. Анти-vegf/dll4-иммуноглобулины с двойными вариабельными доменами и их применения
AU2013337277B2 (en) 2012-11-05 2018-03-08 Foundation Medicine, Inc. Novel NTRK1 fusion molecules and uses thereof
EA201500502A1 (ru) 2012-11-08 2015-10-30 Ф.Хоффманн-Ля Рош Аг Связывающие антиген her3 белки, связывающиеся с бета-шпилькой her3
WO2014072876A1 (en) 2012-11-09 2014-05-15 Pfizer Inc. Platelet-derived growth factor b specific antibodies and compositions and uses thereof
EA201590731A1 (ru) 2012-11-13 2015-11-30 Дженентек, Инк. Антитела к гемагглютинину и способы применения
EP2733153A1 (en) 2012-11-15 2014-05-21 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the preparation of immunoconjugates and uses thereof
US9914785B2 (en) 2012-11-28 2018-03-13 Zymeworks Inc. Engineered immunoglobulin heavy chain-light chain pairs and uses thereof
WO2014084859A1 (en) 2012-11-30 2014-06-05 Novartis Ag Molecules and methods for modulating tmem16a activities
WO2014083379A1 (en) 2012-11-30 2014-06-05 Institut Pasteur Use of anti-fcyri and/or anti-fcyriia antibodies for treating arthritis, inflammation, thrombocytopenia and allergic shock
EP3851454A1 (en) 2012-12-05 2021-07-21 Novartis AG Compositions and methods for antibodies targeting epo
US9902775B2 (en) 2012-12-10 2018-02-27 Biogen Ma Inc. Anti-blood dendritic cell antigen 2 antibodies and uses thereof
JP2016505843A (ja) 2012-12-19 2016-02-25 アンプリミューン, インコーポレイテッド B7−h4特異的抗体、並びにその組成物及び使用方法
TWI693073B (zh) 2012-12-21 2020-05-11 日商中外製藥股份有限公司 對gpc3標的治療劑療法為有效之患者投與的gpc3標的治療劑
SG10201709290XA (en) 2012-12-21 2018-01-30 Medimmune Llc Anti-H7cr Antibodies
SG11201504414UA (en) 2012-12-21 2015-07-30 Hoffmann La Roche Disulfide-linked multivalent mhc class i comprising multi-function proteins
EP3557260B1 (en) 2012-12-21 2022-05-18 Chugai Seiyaku Kabushiki Kaisha Gpc3-targeting drug which is administered to patient responsive to gpc3-targeting drug therapy
US10766960B2 (en) 2012-12-27 2020-09-08 Chugai Seiyaku Kabushiki Kaisha Heterodimerized polypeptide
WO2014106176A1 (en) 2012-12-28 2014-07-03 Precision Biologics, Inc. Humanized monoclonal antibodies and methods of use for the diagnosis and treatment of colon and pancreas cancer
CA2896894A1 (en) 2013-01-02 2014-07-10 Glenmark Pharmaceuticals S.A. Antibodies that bind to tl1a and their uses
WO2014107739A1 (en) 2013-01-07 2014-07-10 Eleven Biotherapeutics, Inc. Antibodies against pcsk9
EA201500741A1 (ru) 2013-01-10 2016-01-29 Генмаб Б.В. ВАРИАНТЫ Fc-ОБЛАСТИ IGG1 ЧЕЛОВЕКА И ИХ ПРИМЕНЕНИЕ
WO2014113729A2 (en) 2013-01-18 2014-07-24 Foundation Mecicine, Inc. Methods of treating cholangiocarcinoma
WO2014116749A1 (en) 2013-01-23 2014-07-31 Genentech, Inc. Anti-hcv antibodies and methods of using thereof
RU2015130100A (ru) 2013-01-24 2017-03-03 Глаксосмитклайн Интеллекчуал Проперти Дивелопмент Лимитед TNF-альфа антиген-связывающие белки
TWI682941B (zh) 2013-02-01 2020-01-21 美商再生元醫藥公司 含嵌合恆定區之抗體
EP2953972B1 (en) 2013-02-05 2020-07-08 EngMab Sàrl Method for the selection of antibodies against bcma
EP2762496A1 (en) 2013-02-05 2014-08-06 EngMab AG Method for the selection of antibodies against BCMA
KR20150115000A (ko) 2013-02-08 2015-10-13 아이알엠 엘엘씨 면역접합체의 제조를 위한 항체의 변형에 사용되는 특정 부위
SG11201505330QA (en) 2013-02-08 2015-08-28 Novartis Ag Anti-il-17a antibodies and their use in treating autoimmune and inflammatory disorders
WO2015198217A2 (en) 2013-02-08 2015-12-30 Novartis Ag Compositions and methods for long-acting antibodies targeting il-17
WO2014124258A2 (en) 2013-02-08 2014-08-14 Irm Llc Specific sites for modifying antibodies to make immunoconjugates
EP2956468B1 (en) 2013-02-12 2020-06-10 Bristol-Myers Squibb Company Tangential flow filtration based protein refolding methods
EP2956467B1 (en) 2013-02-12 2017-09-27 Bristol-Myers Squibb Company High ph protein refolding methods
WO2014125041A1 (en) 2013-02-14 2014-08-21 Innate Pharma Treatment of peripheral t cell lymphoma
DK2956477T4 (da) 2013-02-15 2024-04-15 Bioverativ Therapeutics Inc Optimeret faktor viii-gen
JP6360077B2 (ja) 2013-02-20 2018-07-18 イナート・ファルマ・ソシエテ・アノニムInnate Pharma Pharma S.A. 末梢t細胞リンパ腫の処置における使用のためのkir3dl2に特異的に結合する化合物
ME03394B (me) 2013-02-22 2020-01-20 Medimmune Ltd Antidllз-antitelo-pbd konjugati i nihovа upotreba
WO2014128235A1 (en) 2013-02-22 2014-08-28 F. Hoffmann-La Roche Ag Methods of treating cancer and preventing drug resistance
BR112015020054A2 (pt) 2013-02-25 2017-08-29 Genentech Inc Método de detectar resistência aos efeitos terapêuticos de um inibidor de akt em uma célula cancerosa
CA2896259A1 (en) 2013-02-26 2014-09-04 Roche Glycart Ag Anti-mcsp antibodies
US9487587B2 (en) 2013-03-05 2016-11-08 Macrogenics, Inc. Bispecific molecules that are immunoreactive with immune effector cells of a companion animal that express an activating receptor and cells that express B7-H3 and uses thereof
KR20150123250A (ko) 2013-03-06 2015-11-03 제넨테크, 인크. 암 약물 내성의 치료 및 예방 방법
SG11201506088RA (en) 2013-03-11 2015-09-29 Genzyme Corp Hyperglycosylated binding polypeptides
US9498532B2 (en) 2013-03-13 2016-11-22 Novartis Ag Antibody drug conjugates
CN107693781B (zh) 2013-03-13 2021-11-09 巴扎德制药公司 用于眼部递送的嵌合细胞因子制剂
US9562099B2 (en) 2013-03-14 2017-02-07 Genentech, Inc. Anti-B7-H4 antibodies and immunoconjugates
WO2014159239A2 (en) 2013-03-14 2014-10-02 Novartis Ag Antibodies against notch 3
RU2721707C2 (ru) 2013-03-14 2020-05-21 Макродженикс, Инк. Биспецифичные молекулы, иммунореактивные с иммунными эффекторными клетками, экспрессирующими активирующий рецептор
CA2905070A1 (en) 2013-03-14 2014-09-25 Genentech, Inc. Methods of treating cancer and preventing cancer drug resistance
RU2015138576A (ru) 2013-03-14 2017-04-19 Дженентек, Инк. Комбинации соединения ингибитора мек с соединением ингибитором her3/egfr и способы применения
PE20151672A1 (es) 2013-03-14 2015-11-27 Genentech Inc Anticuerpos e inmunoconjugados anti-b7-h4
EP2968541A4 (en) 2013-03-15 2017-02-08 Zyngenia, Inc. Multivalent and monovalent multispecific complexes and their uses
MX2015011899A (es) 2013-03-15 2016-05-05 Genentech Inc Metodos para el tratamiento de cáncer y prevención de resistencia a los fármacos para el cáncer.
WO2014144466A1 (en) 2013-03-15 2014-09-18 Biogen Idec Ma Inc. Anti-alpha v beta 6 antibodies and uses thereof
US10280221B2 (en) 2013-03-15 2019-05-07 Glaxosmithkline Intellectual Property Development Limited Anti-LAG-3 binding proteins
CA2903546A1 (en) 2013-03-15 2014-09-25 Biogen Ma Inc. Treatment and prevention of acute kidney injury using anti-alpha v beta 5 antibodies
US10035860B2 (en) 2013-03-15 2018-07-31 Biogen Ma Inc. Anti-alpha V beta 6 antibodies and uses thereof
KR20150130349A (ko) 2013-03-15 2015-11-23 메르크 파텐트 게엠베하 4가 이중특이적 항체
CN105007950B (zh) 2013-03-15 2019-01-15 诺华股份有限公司 抗体药物缀合物
CN114717206A (zh) 2013-03-15 2022-07-08 Atyr 医药公司 组氨酰-trna合成酶-fc缀合物
AU2014227732A1 (en) 2013-03-15 2015-09-17 Abbvie Inc. Dual specific binding proteins directed against IL-1 beta and IL-17
CN105143265A (zh) 2013-03-15 2015-12-09 豪夫迈·罗氏有限公司 抗CRTh2抗体及其用途
TWI745671B (zh) 2013-03-15 2021-11-11 美商百歐維拉提夫治療公司 因子ix多肽調配物
SI2970422T1 (en) 2013-03-15 2018-07-31 F. Hoffmann-La Roche Ag IL-22 polypeptides and IL-22-Fc fusion proteins and procedures for use
PL2972373T3 (pl) 2013-03-15 2020-03-31 F. Hoffmann-La Roche Ag Biomarkery i sposoby leczenia stanów związanych z PD-1 i PD-L1
WO2014150877A2 (en) 2013-03-15 2014-09-25 Ac Immune S.A. Anti-tau antibodies and methods of use
FR3003171B1 (fr) * 2013-03-15 2015-04-10 Lab Francais Du Fractionnement Nouveaux medicaments comprenant une composition d'anticorps enrichie en isoforme de charge majoritaire
WO2014144791A2 (en) 2013-03-15 2014-09-18 Dana-Farber Cancer Institute, Inc. Therapeutic peptides
DK3611180T3 (da) 2013-03-15 2022-02-28 Biomolecular Holdings Llc Hybrid immunoglobulin indeholdende ikke-peptidyl-binding
CN105143264A (zh) 2013-03-15 2015-12-09 豪夫迈·罗氏有限公司 用于肝癌诊断和治疗的组合物和方法
CN105143876B (zh) 2013-03-27 2018-04-20 豪夫迈·罗氏有限公司 生物标志物用于评估用β7整联蛋白拮抗剂治疗胃肠炎性病症的用途
SG11201508170TA (en) 2013-04-02 2015-11-27 Chugai Pharmaceutical Co Ltd Fc REGION VARIANT
WO2014173886A1 (en) 2013-04-22 2014-10-30 Glycotope Gmbh Anti-cancer treatments with anti-egfr antibodies having a low fucosylation
CN110526971B (zh) 2013-04-29 2023-06-30 泰华制药澳大利亚公司 抗-CD38抗体和与致弱干扰素α-2B的融合体
US11117975B2 (en) 2013-04-29 2021-09-14 Teva Pharmaceuticals Australia Pty Ltd Anti-CD38 antibodies and fusions to attenuated interferon alpha-2B
CA2904805A1 (en) 2013-04-29 2014-11-06 F. Hoffmann-La Roche Ag Fc-receptor binding modified asymmetric antibodies and methods of use
KR20210094669A (ko) 2013-04-29 2021-07-29 에프. 호프만-라 로슈 아게 인간 fcrn-결합 변형된 항체 및 사용 방법
SG11201509566RA (en) 2013-05-20 2015-12-30 Genentech Inc Anti-transferrin receptor antibodies and methods of use
SG10201709715RA (en) 2013-05-24 2017-12-28 Medimmune Llc Anti-b7-h5 antibodies and their uses
US20160115237A1 (en) 2013-05-24 2016-04-28 The University Of British Columbia Cell senescence markers as diagnostic and therapeutic targets
DK3004174T3 (da) 2013-05-31 2019-07-22 Zymeworks Inc Heteromultimerer med reduceret eller nedreguleret effektorfunktion
UY35620A (es) 2013-06-21 2015-01-30 Novartis Ag Anticuerpos del receptor 1 de ldl oxidado similar a lectina y métodos de uso
AR096601A1 (es) 2013-06-21 2016-01-20 Novartis Ag Anticuerpos del receptor 1 de ldl oxidado similar a lectina y métodos de uso
US20160159919A1 (en) 2013-06-24 2016-06-09 Chugai Seiyaku Kabushiki Kaisha Therapeutic Agent Comprising Humanized Anti-Epiregulin Antibody as Active Ingredient for Non-Small-Cell Lung Carcinoma Excluding Adenocarcinoma
US20160168231A1 (en) 2013-07-18 2016-06-16 Fabrus, Inc. Antibodies with ultralong complementarity determining regions
CN105814074B (zh) 2013-07-18 2020-04-21 图鲁斯生物科学有限责任公司 具有超长互补决定区的人源化抗体
EP3875106A1 (en) 2013-08-08 2021-09-08 Bioverativ Therapeutics Inc. Purification of chimeric fviii molecules
US11384149B2 (en) 2013-08-09 2022-07-12 Macrogenics, Inc. Bi-specific monovalent Fc diabodies that are capable of binding CD32B and CD79b and uses thereof
UA116479C2 (uk) 2013-08-09 2018-03-26 Макродженікс, Інк. БІСПЕЦИФІЧНЕ МОНОВАЛЕНТНЕ Fc-ДІАТІЛО, ЯКЕ ОДНОЧАСНО ЗВ'ЯЗУЄ CD32B I CD79b, ТА ЙОГО ЗАСТОСУВАННЯ
JP6463359B2 (ja) 2013-08-12 2019-01-30 ジェネンテック, インコーポレイテッド 補体関連病態を治療するための組成物及び方法
KR20160035077A (ko) 2013-08-13 2016-03-30 사노피 플라스미노겐 활성인자 저해제-1(pai-1)에 대한 항체 및 그의 용도
TWI592426B (zh) 2013-08-13 2017-07-21 賽諾菲公司 胞漿素原活化素抑制劑-1(pai-1)之抗體及其用途
TWI667255B (zh) 2013-08-14 2019-08-01 美商生物化學醫療公司 因子viii-xten融合物及其用途
EP3033358A2 (en) 2013-08-14 2016-06-22 Novartis AG Methods of treating sporadic inclusion body myositis
EP2840091A1 (en) 2013-08-23 2015-02-25 MacroGenics, Inc. Bi-specific diabodies that are capable of binding gpA33 and CD3 and uses thereof
EP2839842A1 (en) 2013-08-23 2015-02-25 MacroGenics, Inc. Bi-specific monovalent diabodies that are capable of binding CD123 and CD3 and uses thereof
US20150093399A1 (en) 2013-08-28 2015-04-02 Bioasis Technologies, Inc. Cns-targeted conjugates having modified fc regions and methods of use thereof
AU2014312215B2 (en) 2013-08-28 2020-02-27 Abbvie Stemcentrx Llc Site-specific antibody conjugation methods and compositions
WO2015031541A1 (en) 2013-08-28 2015-03-05 Stem Centrx, Inc. Novel sez6 modulators and methods of use
CN112457403B (zh) 2013-09-13 2022-11-29 广州百济神州生物制药有限公司 抗pd1抗体及其作为治疗剂与诊断剂的用途
EP3046940B1 (en) 2013-09-17 2019-07-03 F.Hoffmann-La Roche Ag Methods of using anti-lgr5 antibodies
ES2900425T3 (es) 2013-09-25 2022-03-16 Bioverativ Therapeutics Inc Métodos de inactivación vírica en columna
US11124576B2 (en) 2013-09-27 2021-09-21 Chungai Seiyaku Kabushiki Kaisha Method for producing polypeptide heteromultimer
WO2015050959A1 (en) 2013-10-01 2015-04-09 Yale University Anti-kit antibodies and methods of use thereof
CN113667013B (zh) 2013-10-02 2024-04-09 免疫医疗有限责任公司 中和抗甲型流感抗体及其用途
KR20160044060A (ko) 2013-10-11 2016-04-22 에프. 호프만-라 로슈 아게 다중특이적 도메인 교환된 통상의 가변 경쇄 항체
CN105814078A (zh) 2013-10-11 2016-07-27 豪夫迈·罗氏有限公司 Nsp4抑制剂及其使用方法
CN105744954B (zh) 2013-10-18 2021-03-05 豪夫迈·罗氏有限公司 抗rspo2和/或抗rspo3抗体及其用途
WO2015061441A1 (en) 2013-10-23 2015-04-30 Genentech, Inc. Methods of diagnosing and treating eosinophilic disorders
US10988745B2 (en) 2013-10-31 2021-04-27 Resolve Therapeutics, Llc Therapeutic nuclease-albumin fusions and methods
WO2015069794A2 (en) 2013-11-06 2015-05-14 Stem Centrx, Inc. Novel anti-claudin antibodies and methods of use
CN104623637A (zh) 2013-11-07 2015-05-20 健能隆医药技术(上海)有限公司 Il-22二聚体在制备静脉注射药物中的应用
US10196455B2 (en) 2013-11-07 2019-02-05 Inserm (Institut National De La Sante Et De La Recherche Medicale) Neuregulin allosteric anti-HER3 antibody
EP3065769A4 (en) 2013-11-08 2017-05-31 Biogen MA Inc. Procoagulant fusion compound
US20160280787A1 (en) 2013-11-11 2016-09-29 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing modified antibody variable region
SG11201602671WA (en) 2013-11-13 2016-05-30 Pfizer Tumor necrosis factor-like ligand 1a specific antibodies and compositions and uses thereof
CN111499743B (zh) 2013-11-21 2024-01-12 豪夫迈·罗氏有限公司 抗-α-突触核蛋白抗体及使用方法
KR102284503B1 (ko) 2013-12-04 2021-07-30 추가이 세이야쿠 가부시키가이샤 화합물의 농도에 따라 항원 결합능이 변화되는 항원 결합 분자 및 그의 라이브러리
US10106611B2 (en) 2013-12-06 2018-10-23 Dana-Farber Cancer Institute, Inc. Antibodies that bind to MHC class I polypeptide-related sequence A
IL298470A (en) 2013-12-09 2023-01-01 Allakos Inc Anti-siglec-8 antibodies and methods of using them
JP2017505756A (ja) 2013-12-13 2017-02-23 ザ ジェネラル ホスピタル コーポレイション 可溶性高分子量(hmw)タウ種およびその用途
CN105814084B (zh) 2013-12-13 2019-09-24 基因泰克公司 抗cd33抗体和免疫缀合物
US8986691B1 (en) 2014-07-15 2015-03-24 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
AU2014364601A1 (en) 2013-12-17 2016-07-07 Genentech, Inc. Methods of treating HER2-positive cancers using PD-1 axis binding antagonists and anti-HER2 antibodies
BR112016013741A2 (pt) 2013-12-17 2017-10-03 Genentech Inc Usos de antagonistas de ligação de eixo de pd-1 e um anticorpo de anti-cd20, e kit compreendendo os mesmos
CA2934028A1 (en) 2013-12-17 2015-06-25 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
US8980273B1 (en) 2014-07-15 2015-03-17 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
PE20210107A1 (es) 2013-12-17 2021-01-19 Genentech Inc Anticuerpos anti-cd3 y metodos de uso
CR20160270A (es) * 2013-12-20 2016-09-05 Hoffmann La Roche ANTICUERPOS ANTI-TAU (pS422) HUMANIZADOS Y MÉTODOS DE UTILIZACIÓN
TWI728373B (zh) 2013-12-23 2021-05-21 美商建南德克公司 抗體及使用方法
PT3712174T (pt) 2013-12-24 2022-05-27 Janssen Pharmaceutica Nv Anticorpos e fragmentos anti-vista
PT3087095T (pt) 2013-12-24 2019-10-09 Argenx Bvba Antagonistas de fcrn e métodos de utilização
US11014987B2 (en) 2013-12-24 2021-05-25 Janssen Pharmaceutics Nv Anti-vista antibodies and fragments, uses thereof, and methods of identifying same
RU2694981C2 (ru) 2014-01-03 2019-07-18 Ф. Хоффманн-Ля Рош Аг Ковалентно связанные конъюгаты хеликар-антитело против хеликара и их применения
JP6521464B2 (ja) 2014-01-03 2019-05-29 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 共有結合で連結されたポリペプチド毒素−抗体コンジュゲート
KR20160104628A (ko) 2014-01-03 2016-09-05 에프. 호프만-라 로슈 아게 이중특이성 항-합텐/항-혈액뇌장벽 수용체 항체, 그의 복합체 및 혈액뇌장벽 셔틀로서 그의 용도
EP3851452A1 (en) 2014-01-06 2021-07-21 F. Hoffmann-La Roche AG Monovalent blood brain barrier shuttle modules
BR122023020301A2 (pt) 2014-01-10 2023-12-12 Bioverativ Therapeutics Inc. Uso de uma proteína quimérica compreendendo uma proteína fviii
JP6786392B2 (ja) 2014-01-15 2020-11-18 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft FcRn結合特性が改変され、プロテインA結合特性が保持されているFc領域変異体
WO2015109212A1 (en) 2014-01-17 2015-07-23 Pfizer Inc. Anti-il-2 antibodies and compositions and uses thereof
JP2017505305A (ja) 2014-01-24 2017-02-16 ジェネンテック, インコーポレイテッド 抗steap1抗体及びイムノコンジュゲートを使用する方法
SI3097122T1 (sl) 2014-01-24 2020-07-31 Ngm Biopharmaceuticals, Inc. Protitelesa, ki se vežejo v domeni beta klotho 2, in metode za njihovo uporabo
AU2015214264B2 (en) 2014-02-04 2018-12-20 Curis, Inc. Mutant Smoothened and methods of using the same
TWI769970B (zh) 2014-02-08 2022-07-11 美商建南德克公司 治療阿茲海默症之方法
MX2016010173A (es) 2014-02-08 2016-10-13 Genentech Inc Metodos de tratamiento de enfermedad de alzheimer.
KR102030891B1 (ko) 2014-02-12 2019-10-11 제넨테크, 인크. 항-재기드1 항체 및 사용 방법
CA2939556A1 (en) 2014-02-14 2015-08-20 Andrew S. Chi Improved methods for the treatment of vascularizing cancers
SG11201606870XA (en) 2014-02-21 2016-09-29 Genentech Inc Anti-il-13/il-17 bispecific antibodies and uses thereof
US10183996B2 (en) 2014-02-28 2019-01-22 Allakos Inc. Methods and compositions for treating Siglec-8 associated diseases
US9732154B2 (en) * 2014-02-28 2017-08-15 Janssen Biotech, Inc. Anti-CD38 antibodies for treatment of acute lymphoblastic leukemia
NZ711451A (en) 2014-03-07 2016-05-27 Alexion Pharma Inc Anti-c5 antibodies having improved pharmacokinetics
EP3129407A2 (en) 2014-03-12 2017-02-15 Novartis Ag Specific sites for modifying antibodies to make immunoconjugates
ES2747799T3 (es) 2014-03-14 2020-03-11 Innate Pharma Anticuerpos para KIR3DL2 humanizados
US10279021B2 (en) 2014-03-14 2019-05-07 Dana-Faber Cancer Institute, Inc. Vaccine compositions and methods for restoring NKG2D pathway function against cancers
JP6644717B2 (ja) 2014-03-14 2020-02-12 ジェネンテック, インコーポレイテッド 異種ポリペプチドを分泌させるための方法及び組成物
SG10201807877TA (en) 2014-03-14 2018-10-30 Daniel Capon Hybrid immunoglobulin containing non-peptidyl linkage
TWI701042B (zh) 2014-03-19 2020-08-11 美商再生元醫藥公司 用於腫瘤治療之方法及抗體組成物
RS64072B1 (sr) 2014-03-19 2023-04-28 Genzyme Corp Mesto-specifični glikoinženjering ciljnih delova
US20170107294A1 (en) 2014-03-21 2017-04-20 Nordlandssykehuset Hf Anti-cd14 antibodies and uses thereof
AU2015231155B2 (en) 2014-03-21 2020-11-12 X-Body, Inc. Bi-specific antigen-binding polypeptides
EP3122900A1 (en) 2014-03-24 2017-02-01 F. Hoffmann-La Roche AG Cancer treatment with c-met antagonists and correlation of the latter with hgf expression
SG11201607938UA (en) 2014-03-27 2016-10-28 Genentech Inc Methods for diagnosing and treating inflammatory bowel disease
RU2016142476A (ru) 2014-03-31 2018-05-07 Дженентек, Инк. Комбинированная терапия, включающая антиангиогенезные агенты и агонисты, связывающие ох40
SI3126394T1 (sl) 2014-03-31 2020-01-31 F. Hoffmann-La Roche Ag Protitelesa proti OX40 in postopki uporabe
WO2015153916A1 (en) 2014-04-04 2015-10-08 Bionomics, Inc. Humanized antibodies that bind lgr5
EP3130606B1 (en) 2014-04-07 2021-10-13 Chugai Seiyaku Kabushiki Kaisha Immunoactivating bispecific antibodies
EP3129055B1 (en) 2014-04-11 2020-07-01 MedImmune, LLC Bispecific her2 antibodies
TW201622746A (zh) 2014-04-24 2016-07-01 諾華公司 改善或加速髖部骨折術後身體復原之方法
WO2015164615A1 (en) 2014-04-24 2015-10-29 University Of Oslo Anti-gluten antibodies and uses thereof
UA119352C2 (uk) 2014-05-01 2019-06-10 Тева Фармасьютикалз Острейліа Пті Лтд Комбінація леналідоміду або помалідоміду і конструкції анти-cd38 антитіло-атенуйований інтерферон альфа-2b та спосіб лікування суб'єкта, який має cd38-експресуючу пухлину
BR112016025312A2 (pt) 2014-05-01 2017-10-17 Genentech Inc variantes de anticorpo, anticorpo anti-fator d, formulação farmacêutica, dispositivo de distribuição, utilização da formulação e de uma composição, composição e método de tratamento de uma desordem
AR100353A1 (es) 2014-05-08 2016-09-28 Chugai Pharmaceutical Co Ltd Droga de direccionamiento a glipicano 3 (gpc3) que se administra a un paciente que responde a la terapia con drogas de direccionamiento a gpc3
US11505605B2 (en) * 2014-05-13 2022-11-22 Chugai Seiyaku Kabushiki Kaisha T cell-redirected antigen-binding molecule for cells having immunosuppression function
KR20230145503A (ko) 2014-05-16 2023-10-17 아블린쓰 엔.브이. 개선된 면역글로불린 가변 도메인
BR112016027222A2 (pt) 2014-05-22 2018-01-30 Genentech Inc anticorpos isolados, ácido nucleico isolado, célula hospedeira, método de produção de um anticorpo, imunoconjugado, formulação farmacêutica, métodos de tratamento de um indivíduo com um câncer, de inibição da proliferação de uma célula, de detecção de gpc3 humano e de detecção de um câncer
EP3146071B1 (en) 2014-05-23 2020-09-02 F. Hoffmann-La Roche AG Mit biomarkers and methods using the same
IL293212B2 (en) 2014-05-28 2023-12-01 Memorial Sloan Kettering Cancer Center Anti-GITR antibodies and methods of using them
KR20220025917A (ko) 2014-05-29 2022-03-03 마크로제닉스, 인크. 삼중-특이적 결합 분자 및 그것의 사용 방법
PT3148581T (pt) 2014-05-30 2020-01-06 Henlix Biotech Co Ltd Anticorpos antirrecetor do fator de crescimento epidérmico (egfr)
KR101923326B1 (ko) 2014-06-06 2018-11-29 브리스톨-마이어스 스큅 컴퍼니 글루코코르티코이드-유도 종양 괴사 인자 수용체 (gitr)에 대한 항체 및 그의 용도
CN106459202A (zh) 2014-06-11 2017-02-22 豪夫迈·罗氏有限公司 抗LgR5抗体及其用途
MX2016016310A (es) 2014-06-11 2017-10-20 A Green Kathy Uso de agonistas y antagonistas vista para suprimir o aumentar la inmunidad humoral.
WO2015191986A1 (en) 2014-06-13 2015-12-17 Genentech, Inc. Methods of treating and preventing cancer drug resistance
EP3164419A1 (en) 2014-06-26 2017-05-10 F. Hoffmann-La Roche AG Anti-brdu antibodies and methods of use
AR100978A1 (es) 2014-06-26 2016-11-16 Hoffmann La Roche LANZADERAS CEREBRALES DE ANTICUERPO HUMANIZADO ANTI-Tau(pS422) Y USOS DE LAS MISMAS
CA2952532A1 (en) 2014-06-27 2015-12-30 Innate Pharma Multispecific antigen binding proteins
EP3161002A1 (en) 2014-06-27 2017-05-03 Innate Pharma MULTISPECIFIC NKp46 BINDING PROTEINS
US11008561B2 (en) 2014-06-30 2021-05-18 Bioverativ Therapeutics Inc. Optimized factor IX gene
CN106604742B (zh) 2014-07-03 2019-01-11 百济神州有限公司 抗pd-l1抗体及其作为治疗剂及诊断剂的用途
KR20170029490A (ko) 2014-07-11 2017-03-15 제넨테크, 인크. 노치 경로 억제
US20160009805A1 (en) 2014-07-11 2016-01-14 Genentech, Inc. Anti-pd-l1 antibodies and diagnostic uses thereof
KR102524920B1 (ko) 2014-07-22 2023-04-25 아폴로믹스 인코포레이티드 항-pd-1 항체
JP6909153B2 (ja) 2014-08-05 2021-07-28 アポロミクス インコーポレイテッド 抗pd−l1抗体
WO2016020791A1 (en) 2014-08-05 2016-02-11 Novartis Ag Ckit antibody drug conjugates
US9988443B2 (en) 2014-08-07 2018-06-05 Novartis Ag Angiopoetin-like 4 (ANGPTL4) antibodies and methods of use
PL3177642T3 (pl) 2014-08-07 2022-03-07 Novartis Ag Przeciwciała angiopoetynopodobne 4 i sposoby stosowania
AU2015302959B2 (en) 2014-08-12 2018-09-20 Novartis Ag Anti-CDH6 antibody drug conjugates
JO3663B1 (ar) 2014-08-19 2020-08-27 Merck Sharp & Dohme الأجسام المضادة لمضاد lag3 وأجزاء ربط الأنتيجين
TWI790593B (zh) 2014-08-19 2023-01-21 美商默沙東有限責任公司 抗tigit抗體
WO2016030488A1 (en) 2014-08-27 2016-03-03 Innate Pharma Treatment of celiac disease
JP7286267B2 (ja) 2014-08-28 2023-06-05 バイオアトラ インコーポレイテッド 修飾t細胞に対する条件的活性型キメラ抗原受容体
TW201617368A (zh) 2014-09-05 2016-05-16 史坦森特瑞斯公司 新穎抗mfi2抗體及使用方法
FR3025515B1 (fr) 2014-09-05 2016-09-09 Lab Francais Du Fractionnement Procede de purification d'un anticorps monoclonal
CA2957354A1 (en) 2014-09-12 2016-03-17 Genentech, Inc. Cysteine engineered antibodies and conjugates
TW201625689A (zh) 2014-09-12 2016-07-16 建南德克公司 抗-b7-h4抗體及免疫結合物
MA40579A (fr) 2014-09-12 2016-03-17 Genentech Inc Anticorps anti-cll-1 et immunoconjugués
EP3191135B1 (en) 2014-09-12 2020-08-19 Genentech, Inc. Anti-her2 antibodies and immunoconjugates
CN107124870A (zh) 2014-09-17 2017-09-01 基因泰克公司 包含抗her2抗体和吡咯并苯并二氮杂*的免疫缀合物
PL3262071T3 (pl) 2014-09-23 2020-08-10 F. Hoffmann-La Roche Ag Sposób stosowania immunokoniugatów anty-CD79b
PE20170702A1 (es) 2014-09-26 2017-06-24 Bayer Pharma AG Derivados estabilizados de adrenomedulina y uso de los mismos
MA40764A (fr) 2014-09-26 2017-08-01 Chugai Pharmaceutical Co Ltd Agent thérapeutique induisant une cytotoxicité
WO2016054101A1 (en) 2014-09-29 2016-04-07 Duke University Bispecific molecules comprising an hiv-1 envelope targeting arm
US20160108105A1 (en) * 2014-10-06 2016-04-21 Genexine, Inc. Human igg4 fc polypeptide variant
MA41044A (fr) 2014-10-08 2017-08-15 Novartis Ag Compositions et procédés d'utilisation pour une réponse immunitaire accrue et traitement contre le cancer
WO2016057769A2 (en) 2014-10-09 2016-04-14 Genzyme Corporation Glycoengineered antibody drug conjugates
CA2964317C (en) 2014-10-14 2021-10-05 Halozyme, Inc. Compositions of adenosine deaminase-2 (ada2), variants thereof and methods of using same
JP2017536102A (ja) 2014-10-16 2017-12-07 ジェネンテック, インコーポレイテッド 抗アルファ−シヌクレイン抗体及び使用方法
MA41480A (fr) 2014-10-17 2017-12-19 Glenmark Pharmaceuticals Sa Anticorps qui se lient au ccr6 et leurs utilisations
SG11201701388UA (en) 2014-10-23 2017-03-30 Innate Pharma Treatment of cancers using anti-nkg2a agents
US10544199B2 (en) 2014-10-29 2020-01-28 Teva Pharmaceuticals Australia Pty Ltd Interferon alpha 2B variants
CA2966507A1 (en) 2014-11-03 2016-05-12 Genentech, Inc. Methods and biomarkers for predicting efficacy and evaluation of an ox40 agonist treatment
US20160161485A1 (en) 2014-11-03 2016-06-09 Genentech, Inc. Assays for detecting t cell immune subsets and methods of use thereof
ES2819256T3 (es) 2014-11-05 2021-04-15 Genentech Inc Métodos para producir proteínas bicatenarias en bacterias
MX2017003478A (es) 2014-11-05 2018-02-01 Genentech Inc Anticuerpos anti-fgfr2/3 y metodos para su uso.
JP6875276B2 (ja) 2014-11-05 2021-05-19 ジェネンテック, インコーポレイテッド 細菌における2鎖タンパク質の生成方法
MX2017005929A (es) 2014-11-06 2017-11-20 Genentech Inc Terapia de combinacion con agonistas de unión ox40 e inhibidores de tigit.
KR20170078677A (ko) 2014-11-06 2017-07-07 에프. 호프만-라 로슈 아게 Fcrn-결합이 개질된 fc-영역 변이체 및 이의 사용 방법
WO2016073157A1 (en) 2014-11-06 2016-05-12 Genentech, Inc. Anti-ang2 antibodies and methods of use thereof
AR102522A1 (es) 2014-11-06 2017-03-08 Hoffmann La Roche Variantes de región fc con propiedades modificadas de unión a fcrn y proteína a
PE20170910A1 (es) 2014-11-10 2017-07-12 Genentech Inc Anticuerpos anti-interleucina-33 y sus usos
CN107001472B (zh) 2014-11-10 2020-12-11 免疫医疗有限公司 对cd73具有特异性的结合分子及其用途
EP3552488A1 (en) 2014-11-10 2019-10-16 F. Hoffmann-La Roche AG Animal model for nephropathy and agents for treating the same
US11154615B2 (en) 2014-11-11 2021-10-26 Chugai Seiyaku Kabushiki Kaisha Library of antigen-binding molecules including modified antibody variable region
EP3218407A1 (en) 2014-11-11 2017-09-20 Medimmune Limited Therapeutic combinations comprising anti-cd73 antibodies and a2a receptor inhibitor and uses thereof
TW201625692A (zh) 2014-11-14 2016-07-16 諾華公司 抗體藥物結合物
MX2017006312A (es) 2014-11-17 2017-08-21 Regeneron Pharma Metodos para el tratamiento tumoral utilizando el anticuerpo biespecifico cd3xcd20.
BR112017010198A2 (pt) 2014-11-17 2017-12-26 Genentech Inc terapia de combinação compreendendo agonistas de ligação a ox40 e antagonistas de ligação ao eixo de pd-1
ES2848376T3 (es) 2014-11-19 2021-08-09 Axon Neuroscience Se Anticuerpos de tau humanizados en la enfermedad de Alzheimer
EP3221362B1 (en) 2014-11-19 2019-07-24 F.Hoffmann-La Roche Ag Anti-transferrin receptor antibodies and methods of use
WO2016081639A1 (en) 2014-11-19 2016-05-26 Genentech, Inc. Antibodies against bace1 and use thereof for neural disease immunotherapy
EP3221361B1 (en) 2014-11-19 2021-04-21 Genentech, Inc. Anti-transferrin receptor / anti-bace1 multispecific antibodies and methods of use
CA2968382A1 (en) 2014-11-21 2016-05-26 Bristol-Myers Squibb Company Antibodies comprising modified heavy constant regions
UY36404A (es) 2014-11-21 2016-06-01 Bristol Myers Squibb Company Una Corporación Del Estado De Delaware ANTICUERPOS MONOCLONALES (Ab) COMO DETECTORES DE CD73 E INHIBIDORES DE SU ACTIVIDAD ENZIMÁTICA, Y COMPOSICIONES QUE LOS CONTIENEN
US9382321B2 (en) * 2014-11-26 2016-07-05 Adventis Health System/Sunbelt, Inc. Effector-deficient anti-CD32A antibodies
PL3227332T3 (pl) 2014-12-03 2020-06-15 F. Hoffmann-La Roche Ag Wielospecyficzne przeciwciała
CN107405398A (zh) 2014-12-05 2017-11-28 伊穆奈克斯特股份有限公司 鉴定vsig8作为推定vista受体及其用以产生vista/vsig8激动剂和拮抗剂的用途
JP6802158B2 (ja) 2014-12-05 2020-12-16 ジェネンテック, インコーポレイテッド 抗CD79b抗体及び使用方法
US10398774B2 (en) 2014-12-09 2019-09-03 INSERM (Institut National de la Santé et de la Recherche Médicale) Human monoclonal antibodies against AXL
KR20170085595A (ko) 2014-12-10 2017-07-24 제넨테크, 인크. 혈뇌 장벽 수용체 항체 및 사용 방법
WO2016094881A2 (en) 2014-12-11 2016-06-16 Abbvie Inc. Lrp-8 binding proteins
EP3234598B1 (en) 2014-12-18 2019-11-06 F.Hoffmann-La Roche Ag Assay and method for determining cdc eliciting antibodies
PE20221834A1 (es) 2014-12-19 2022-11-29 Chugai Pharmaceutical Co Ltd Anticuerpos antimiostatina
JP6738348B2 (ja) 2014-12-19 2020-08-12 リジェネサンス ベスローテン フェンノートシャップ ヒトc6に結合する抗体およびその使用
SI3233921T1 (sl) 2014-12-19 2022-01-31 Chugai Seiyaku Kabushiki Kaisha Protitelesa proti C5 in postopki za uporabo
UY36449A (es) 2014-12-19 2016-07-29 Novartis Ag Composiciones y métodos para anticuerpos dirigidos a bmp6
EP4249066A3 (en) 2014-12-23 2023-11-22 Bristol-Myers Squibb Company Antibodies to tigit
SG11201705721WA (en) 2015-01-14 2017-08-30 Brigham & Womens Hospital Inc Treatment of cancer with anti-lap monoclonal antibodies
EP3247723A1 (en) 2015-01-22 2017-11-29 Chugai Seiyaku Kabushiki Kaisha A combination of two or more anti-c5 antibodies and methods of use
RU2017129236A (ru) 2015-01-26 2019-03-07 Макродженикс, Инк. Мультивалентные молекулы, содержащие dr5-связывающие домены
CN107407677B (zh) 2015-01-28 2020-07-17 豪夫迈·罗氏有限公司 多发性硬化的基因表达标志和治疗
EP3253784B1 (en) 2015-02-04 2020-05-06 Genentech, Inc. Mutant smoothened and methods of using the same
CA2974547A1 (en) 2015-02-05 2016-08-11 Chugai Seiyaku Kabushiki Kaisha Antibodies comprising an ion concentration dependent antigen-binding domain, fc region variants, il-8-binding antibodies, and uses thereof
US10457737B2 (en) 2015-02-09 2019-10-29 Research Development Foundation Engineered immunoglobulin Fc polypeptides displaying improved complement activation
DK3259597T3 (da) 2015-02-19 2022-05-09 Compugen Ltd Pvrig-polypeptider og fremgangsmåder til behandling
CN115350275A (zh) 2015-02-19 2022-11-18 康姆普根有限公司 抗pvrig抗体和使用方法
MX2017010336A (es) 2015-02-26 2017-12-20 Genentech Inc Antagonistas de integrina beta7 y métodos para el tratamiento de la enfermedad de crohn.
WO2016135041A1 (en) 2015-02-26 2016-09-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Fusion proteins and antibodies comprising thereof for promoting apoptosis
EA038178B1 (ru) 2015-03-09 2021-07-20 Ардженкс Бвба СПОСОБЫ УМЕНЬШЕНИЯ УРОВНЯ Fc-СОДЕРЖАЩИХ АГЕНТОВ В СЫВОРОТКЕ С ПРИМЕНЕНИЕМ FcRn-АНТАГОНИСТОВ
MX2017011486A (es) 2015-03-16 2018-06-15 Genentech Inc Métodos de detección y cuantificación de il-13 y sus usos en el diagnóstico y tratamiento de enfermedades asociadas a th2.
WO2016146833A1 (en) 2015-03-19 2016-09-22 F. Hoffmann-La Roche Ag Biomarkers for nad(+)-diphthamide adp ribosyltransferase resistance
EP3277725B1 (en) 2015-03-30 2020-11-25 Regeneron Pharmaceuticals, Inc. Heavy chain constant regions with reduced binding to fc gamma receptors
FR3034420A1 (fr) 2015-03-31 2016-10-07 Lab Francais Du Fractionnement Anticorps monoclonaux anti-cd303
MX2017012352A (es) 2015-04-03 2018-01-26 Eureka Therapeutics Inc Construccion dirigida a complejos de peptido de alfa-fetoproteina/complejo principal de histocompatibilidad (afp/cph) y usos de los mismos.
AR104368A1 (es) 2015-04-03 2017-07-19 Lilly Co Eli Anticuerpos biespecíficos anti-cd20- / anti-baff
WO2016164480A1 (en) * 2015-04-07 2016-10-13 Genentech, Inc. Antigen binding complex having agonistic activity and methods of use
PT3283508T (pt) 2015-04-17 2021-06-21 Alpine Immune Sciences Inc Proteínas imuno modulatórias com afinidades afináveis
JP7044553B2 (ja) 2015-04-24 2022-03-30 ジェネンテック, インコーポレイテッド 結合ポリペプチドを含む細菌を特定する方法
EP3778640A1 (en) 2015-05-01 2021-02-17 Genentech, Inc. Masked anti-cd3 antibodies and methods of use
CA2984794A1 (en) 2015-05-07 2016-11-10 Agenus Inc. Anti-ox40 antibodies and methods of use thereof
EP3936524A3 (en) 2015-05-11 2022-06-15 F. Hoffmann-La Roche AG Compositions and methods of treating lupus nephritis
WO2016183326A1 (en) 2015-05-12 2016-11-17 Genentech, Inc. Therapeutic and diagnostic methods for cancer
JP6770533B2 (ja) 2015-05-22 2020-10-14 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Cath−Dの触媒活性と、そのLRP1レセプターへの結合との両方を阻害するヒトモノクローナル抗体フラグメント
EP3297673A4 (en) 2015-05-22 2019-05-08 Memorial Sloan-Kettering Cancer Center FOR A PRAME-PEPTIDE SPECIFIC T-CELL RECEPTOR-SIMILAR ANTIBODIES
MY188049A (en) 2015-05-29 2021-11-12 Bristol Myers Squibb Co Antibodies against ox40 and uses thereof
KR20180012753A (ko) 2015-05-29 2018-02-06 제넨테크, 인크. 암에 대한 치료 및 진단 방법
AR105618A1 (es) 2015-05-29 2017-10-25 Genentech Inc Metilación del promotor del ligando al receptor de muerte programada (pd-l1) en cáncer
EP3302563A1 (en) 2015-05-29 2018-04-11 H. Hoffnabb-La Roche Ag Humanized anti-ebola virus glycoprotein antibodies and methods of use
US20180258143A1 (en) 2015-05-30 2018-09-13 Molecular Templates, Inc. De-Immunized, Shiga Toxin A Subunit Scaffolds and Cell-Targeting Molecules Comprising the Same
JP2018516933A (ja) 2015-06-02 2018-06-28 ジェネンテック, インコーポレイテッド 抗il−34抗体を使用して神経学的疾患を治療するための組成物及び方法
PE20180041A1 (es) 2015-06-05 2018-01-09 Novartis Ag Anticuerpos dirigidos a la proteina morfogenetica osea (bmp9) y metodos a partir de estos
SG10201911349YA (en) 2015-06-05 2020-01-30 Genentech Inc Anti-tau antibodies and methods of use
MX2017014740A (es) 2015-06-08 2018-08-15 Genentech Inc Métodos de tratamiento del cáncer con anticuerpos anti-ox40.
TWI773646B (zh) 2015-06-08 2022-08-11 美商宏觀基因股份有限公司 結合lag-3的分子和其使用方法
US20170000885A1 (en) 2015-06-08 2017-01-05 Genentech, Inc. Methods of treating cancer using anti-ox40 antibodies and pd-1 axis binding antagonists
TW201710286A (zh) 2015-06-15 2017-03-16 艾伯維有限公司 抗vegf、pdgf及/或其受體之結合蛋白
AR104987A1 (es) 2015-06-15 2017-08-30 Genentech Inc Inmunoconjugados anticuerpo-fármaco unidos por enlazadores no peptídicos
MY189840A (en) 2015-06-16 2022-03-11 Genentech Inc Humanized and affinity matured antibodies to fcrh5 and methods of use
WO2016204966A1 (en) 2015-06-16 2016-12-22 Genentech, Inc. Anti-cd3 antibodies and methods of use
JP6996983B2 (ja) 2015-06-16 2022-02-21 ジェネンテック, インコーポレイテッド 抗cll-1抗体及び使用方法
WO2016205320A1 (en) 2015-06-17 2016-12-22 Genentech, Inc. Methods of treating locally advanced or metastatic breast cancers using pd-1 axis binding antagonists and taxanes
JP6846362B2 (ja) 2015-06-17 2021-03-24 アラコス インコーポレイテッド 線維性疾患を処置するための方法および組成物
AU2016280159A1 (en) 2015-06-17 2017-12-07 Genentech, Inc. Anti-HER2 antibodies and methods of use
EP3310813A1 (en) 2015-06-17 2018-04-25 Novartis AG Antibody drug conjugates
CA2990511A1 (en) 2015-06-23 2016-12-29 Innate Pharma Multispecific antigen binding proteins
WO2016207278A1 (en) 2015-06-23 2016-12-29 Innate Pharma Multispecific nk engager proteins
PL3313879T3 (pl) 2015-06-24 2022-04-11 F. Hoffmann-La Roche Ag Przeciwciała przeciwko receptorowi transferyny z dostosowanym powinowactwem
WO2016207245A1 (en) 2015-06-24 2016-12-29 F. Hoffmann-La Roche Ag Humanized anti-tau(ps422) antibodies and methods of use
DK3313882T3 (da) 2015-06-24 2020-05-11 Janssen Pharmaceutica Nv Anti-VISTA antistoffer og fragmenter
JOP20200312A1 (ar) 2015-06-26 2017-06-16 Novartis Ag الأجسام المضادة للعامل xi وطرق الاستخدام
WO2017001350A1 (en) 2015-06-29 2017-01-05 Ventana Medical Systems, Inc. Materials and methods for performing histochemical assays for human pro-epiregulin and amphiregulin
JP2018520153A (ja) 2015-06-29 2018-07-26 ジェネンテック, インコーポレイテッド 臓器移植における使用のためのii型抗cd20抗体
CA2991980A1 (en) 2015-07-13 2017-01-19 Compugen Ltd. Hide1 compositions and methods
CA2992509A1 (en) * 2015-07-22 2017-01-26 Inatherys Anti-tfr antibodies and their use in treating proliferative and inflammatory disorders
WO2017015619A1 (en) 2015-07-23 2017-01-26 The Regents Of The University Of California Antibodies to coagulation factor xia and uses thereof
EP3328427A4 (en) 2015-07-27 2018-12-12 The General Hospital Corporation Antibody derivatives with conditionally enabled effector function
GEP20227419B (en) 2015-07-30 2022-10-10 Macrogenics Inc Pd-1-binding molecules and methods of use thereof
EP3328994A4 (en) 2015-07-31 2019-04-17 Memorial Sloan-Kettering Cancer Center CD56 TARGETING ANTIGEN BINDING PROTEINS AND USES THEREOF
CA2992797A1 (en) 2015-08-03 2017-02-09 Engmab Sarl Monoclonal antibodies against bcma
WO2017024060A1 (en) 2015-08-03 2017-02-09 Biogen Ma Inc. Factor ix fusion proteins and methods of making and using same
AU2016303545B2 (en) 2015-08-03 2019-09-12 Novartis Ag Methods of treating FGF21-associated disorders
CN105384825B (zh) 2015-08-11 2018-06-01 南京传奇生物科技有限公司 一种基于单域抗体的双特异性嵌合抗原受体及其应用
EP3341415B1 (en) 2015-08-28 2021-03-24 H. Hoffnabb-La Roche Ag Anti-hypusine antibodies and uses thereof
KR20220131277A (ko) 2015-09-01 2022-09-27 아게누스 인코포레이티드 항-pd-1 항체 및 이를 이용하는 방법
RU2760582C2 (ru) 2015-09-02 2021-11-29 Иммутеп С.А.С. Анти-LAG-3 антитела
BR112018003326A2 (pt) 2015-09-09 2018-09-18 Novartis Ag anticorpos de ligação de linfopoietina estromal tímica (tslp) e métodos de uso dos anticorpos
TN2018000076A1 (en) 2015-09-09 2019-07-08 Novartis Ag Thymic stromal lymphopoietin (tslp)-binding molecules and methods of using the molecules
US20190022092A1 (en) 2015-09-15 2019-01-24 Acerta Pharma B.V. Therapeutic Combinations of a BTK Inhibitor and a GITR Binding Molecule, a 4-1BB Agonist, or an OX40 Agonist
US9862760B2 (en) 2015-09-16 2018-01-09 Novartis Ag Polyomavirus neutralizing antibodies
TWI703158B (zh) 2015-09-18 2020-09-01 美商希佛隆公司 特異性結合tl1a之抗體
WO2017046994A1 (en) 2015-09-18 2017-03-23 Chugai Seiyaku Kabushiki Kaisha Il-8-binding antibodies and uses thereof
UA126278C2 (uk) 2015-09-21 2022-09-14 Аптево Рісьорч Енд Девелопмент Ллс Поліпептиди, які зв'язують cd3
AU2016328357B2 (en) 2015-09-22 2023-03-02 Ventana Medical Systems, Inc. Anti-OX40 antibodies and diagnostic uses thereof
CN108137681A (zh) 2015-09-23 2018-06-08 豪夫迈·罗氏有限公司 抗-vegf抗体的优化的变体
MX2018003533A (es) 2015-09-24 2019-04-25 Abvitro Llc Composiciones de anticuerpo de virus de inmunodeficiencia humana (vih) y metodos de uso.
TWI747841B (zh) 2015-09-25 2021-12-01 美商建南德克公司 抗tigit抗體及使用方法
KR20180054824A (ko) 2015-09-29 2018-05-24 셀진 코포레이션 Pd-1 결합 단백질 및 이의 사용 방법
AR106188A1 (es) 2015-10-01 2017-12-20 Hoffmann La Roche Anticuerpos anti-cd19 humano humanizados y métodos de utilización
MX2018003630A (es) 2015-10-02 2018-08-01 F Hoffmann ­La Roche Ag Anticuerpos biespecificos para pd1 y tim3.
JP6654694B2 (ja) 2015-10-02 2020-02-26 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト 抗pd1抗体と使用方法
MX2018003822A (es) 2015-10-02 2018-06-22 Hoffmann La Roche Anticuerpos biespecificos contra el cd20 humano y el receptor de transferrina humano y metodos de uso.
EP3150636A1 (en) 2015-10-02 2017-04-05 F. Hoffmann-La Roche AG Tetravalent multispecific antibodies
AR106189A1 (es) 2015-10-02 2017-12-20 Hoffmann La Roche ANTICUERPOS BIESPECÍFICOS CONTRA EL A-b HUMANO Y EL RECEPTOR DE TRANSFERRINA HUMANO Y MÉTODOS DE USO
MA43345A (fr) 2015-10-02 2018-08-08 Hoffmann La Roche Conjugués anticorps-médicaments de pyrrolobenzodiazépine et méthodes d'utilisation
CA2992863A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Bispecific antibodies specific for a costimulatory tnf receptor
KR20180075537A (ko) 2015-10-06 2018-07-04 제넨테크, 인크. 다발성 경화증을 치료하기 위한 방법
AU2016334623A1 (en) 2015-10-07 2018-02-15 F. Hoffmann-La Roche Ag Bispecific antibodies with tetravalency for a costimulatory TNF receptor
MA43354A (fr) 2015-10-16 2018-08-22 Genentech Inc Conjugués médicamenteux à pont disulfure encombré
WO2017066714A1 (en) 2015-10-16 2017-04-20 Compugen Ltd. Anti-vsig1 antibodies and drug conjugates
MA45326A (fr) 2015-10-20 2018-08-29 Genentech Inc Conjugués calichéamicine-anticorps-médicament et procédés d'utilisation
US10604577B2 (en) 2015-10-22 2020-03-31 Allakos Inc. Methods and compositions for treating systemic mastocytosis
KR20180064541A (ko) 2015-10-23 2018-06-14 화이자 인코포레이티드 항-il-2 항체 및 조성물 및 이의 용도
MA44334A (fr) 2015-10-29 2018-09-05 Novartis Ag Conjugués d'anticorps comprenant un agoniste du récepteur de type toll
EP3184547A1 (en) 2015-10-29 2017-06-28 F. Hoffmann-La Roche AG Anti-tpbg antibodies and methods of use
JO3555B1 (ar) 2015-10-29 2020-07-05 Merck Sharp & Dohme جسم مضاد يبطل فعالية فيروس الالتهاب الرئوي البشري
CN114891102A (zh) 2015-10-29 2022-08-12 豪夫迈·罗氏有限公司 抗变体Fc区抗体及使用方法
EP3368579B1 (en) 2015-10-30 2021-11-24 F. Hoffmann-La Roche AG Hinge modified antibody fragments and methods of making
NZ741780A (en) 2015-10-30 2019-11-29 Genentech Inc Anti-htra1 antibodies and methods of use thereof
CN108289951A (zh) 2015-10-30 2018-07-17 豪夫迈·罗氏有限公司 抗-因子d抗体和缀合物
US10654932B2 (en) 2015-10-30 2020-05-19 Genentech, Inc. Anti-factor D antibody variant conjugates and uses thereof
EP3371217A1 (en) 2015-11-08 2018-09-12 H. Hoffnabb-La Roche Ag Methods of screening for multispecific antibodies
WO2017086367A1 (ja) 2015-11-18 2017-05-26 中外製薬株式会社 免疫抑制機能を有する細胞に対するt細胞リダイレクト抗原結合分子を用いた併用療法
JP6925278B2 (ja) 2015-11-18 2021-08-25 中外製薬株式会社 液性免疫応答の増強方法
EP3377532B1 (en) 2015-11-19 2022-07-27 Bristol-Myers Squibb Company Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof
KR102630475B1 (ko) 2015-11-30 2024-01-26 브리스톨-마이어스 스큅 컴퍼니 항 인간 ip-10 항체 및 이의 용도
CA3007233A1 (en) 2015-12-02 2017-06-08 Agenus Inc. Antibodies and methods of use thereof
CN109415437B (zh) 2015-12-02 2022-02-01 斯特库伯株式会社 与btn1a1免疫特异性结合的抗体和分子及其治疗用途
CN108925136B (zh) 2015-12-02 2022-02-01 斯特赛恩斯公司 特异于糖基化的btla(b和t淋巴细胞衰减因子)的抗体
MX2018006778A (es) 2015-12-04 2018-08-01 Novartis Ag Composiciones de anticuerpo injertado con citoquina y metodos para su uso en inmunorregulacion.
WO2017106061A1 (en) 2015-12-14 2017-06-22 Macrogenics, Inc. Bispecific molecules having immunoreactivity with pd-1 and ctla-4, and methods of use thereof
KR20180086502A (ko) 2015-12-16 2018-07-31 머크 샤프 앤드 돔 코포레이션 항-lag3 항체 및 항원-결합 단편
SG10201709415WA (en) 2015-12-18 2017-12-28 Chugai Pharmaceutical Co Ltd Anti-c5 antibodies and methods of use
KR20180089510A (ko) 2015-12-18 2018-08-08 노파르티스 아게 CD32b를 표적화하는 항체 및 그의 사용 방법
WO2017110981A1 (en) 2015-12-25 2017-06-29 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies and methods of use
US11649262B2 (en) 2015-12-28 2023-05-16 Chugai Seiyaku Kabushiki Kaisha Method for promoting efficiency of purification of Fc region-containing polypeptide
US10596257B2 (en) 2016-01-08 2020-03-24 Hoffmann-La Roche Inc. Methods of treating CEA-positive cancers using PD-1 axis binding antagonists and anti-CEA/anti-CD3 bispecific antibodies
CN109069627A (zh) 2016-01-14 2018-12-21 纪念斯隆-凯特琳癌症中心 对foxp3衍生肽特异性的t细胞受体样抗体
EP3405489A1 (en) 2016-01-20 2018-11-28 Genentech, Inc. High dose treatments for alzheimer's disease
US11753461B2 (en) 2016-02-01 2023-09-12 Bioverativ Therapeutics Inc. Optimized factor VIII genes
JP2019509721A (ja) 2016-02-04 2019-04-11 キュリス,インコーポレイテッド 突然変異体スムースンド及びその使用方法
MX2018009800A (es) 2016-02-12 2018-11-09 Janssen Pharmaceutica Nv Anticuerpos y fragmentos anti-vista, usos de los mismos y procedimientos de identificacion de los mismos.
CN108699142A (zh) 2016-02-17 2018-10-23 诺华股份有限公司 TGFβ2抗体
AU2017225854B2 (en) 2016-02-29 2020-11-19 Foundation Medicine, Inc. Therapeutic and diagnostic methods for cancer
KR20230038311A (ko) 2016-03-04 2023-03-17 브리스톨-마이어스 스큅 컴퍼니 항-cd73 항체와의 조합 요법
JP7155008B2 (ja) 2016-03-14 2022-10-18 ウニヴァーシテテット イ オスロ 変化されたFcRnを有する改変された免疫グロブリン
EP3431102A4 (en) 2016-03-14 2019-09-25 Chugai Seiyaku Kabushiki Kaisha THERAPEUTIC MEDICINE INDUCING CELLULAR INJURY FOR USE IN THE TREATMENT OF CANCER
CA3016552A1 (en) 2016-03-15 2017-09-21 Genentech, Inc. Methods of treating cancers using pd-1 axis binding antagonists and anti-gpc3 antibodies
BR112018068678A2 (pt) 2016-03-15 2019-01-15 Innate Pharma anticorpos anti-mica
KR20180127407A (ko) 2016-03-16 2018-11-28 메리맥 파마슈티컬즈, 인크. 암 요법용 조작된 trail
CN114907483A (zh) 2016-03-22 2022-08-16 国家医疗保健研究所 人源化抗claudin-1抗体及其用途
CA3018081A1 (en) 2016-03-22 2017-09-28 Bionomics Limited Administration of an anti-lgr5 monoclonal antibody
EP4273551A3 (en) 2016-03-25 2024-01-17 F. Hoffmann-La Roche AG Multiplexed total antibody and antibody-conjugated drug quantification assay
AU2017241776A1 (en) 2016-03-29 2018-10-11 Janssen Biotech, Inc. Treating psoriasis with increased interval dosing of anti-IL12 and/or -23 antibody
WO2017180864A1 (en) 2016-04-14 2017-10-19 Genentech, Inc. Anti-rspo3 antibodies and methods of use
CN109154027A (zh) 2016-04-15 2019-01-04 豪夫迈·罗氏有限公司 用于监测和治疗癌症的方法
JP2019521643A (ja) 2016-04-15 2019-08-08 アルパイン イミューン サイエンシズ インコーポレイテッド Cd80バリアント免疫調節タンパク質およびその使用
WO2017181148A2 (en) 2016-04-15 2017-10-19 Alpine Immune Sciences, Inc. Icos ligand variant immunomodulatory proteins and uses thereof
CA3019921A1 (en) 2016-04-15 2017-10-19 Genentech, Inc. Methods for monitoring and treating cancer
AU2017250294B2 (en) 2016-04-15 2022-07-21 Immunext Inc. Anti-human VISTA antibodies and use thereof
KR102606938B1 (ko) 2016-04-15 2023-11-29 바이오아트라, 인코퍼레이티드 항 Axl항체 및 이의 면역접합체와 이것들의 용도
BR112018071105A2 (pt) 2016-04-15 2019-02-26 Macrogenics, Inc. conjugado de droga e anticorpo, molécula de ligação, composição farmacêutica e uso
US11510966B2 (en) 2016-04-15 2022-11-29 Evive Biotechnology (Shanghai) Ltd Use of IL-22 in treating necrotizing enterocolitis
TW201805309A (zh) 2016-04-21 2018-02-16 艾伯維史坦森特瑞斯有限責任公司 新穎抗-bmpr1b抗體及使用方法
CN109071634A (zh) 2016-04-26 2018-12-21 R.P.谢勒技术有限责任公司 抗体偶联物及其制备和使用方法
CN109071647B (zh) 2016-04-27 2022-11-22 诺华股份有限公司 抗生长分化因子15的抗体及其用途
AU2017259869A1 (en) 2016-05-02 2018-09-27 F. Hoffmann-La Roche Ag The contorsbody - a single chain target binder
MX2018013072A (es) 2016-05-09 2019-03-21 Squibb Bristol Myers Co Anticuerpos del ligando similar al factor de necrosis tumoral 1a (tl1a) y usos de los mismos.
WO2017194441A1 (en) 2016-05-11 2017-11-16 F. Hoffmann-La Roche Ag Modified anti-tenascin antibodies and methods of use
LT3455261T (lt) 2016-05-13 2022-11-10 Bioatla, Inc. Antikūnai prieš ror2, antikūnų fragmentai, jų imunokonjugatai ir panaudojimas
WO2017201449A1 (en) 2016-05-20 2017-11-23 Genentech, Inc. Protac antibody conjugates and methods of use
TW201802121A (zh) 2016-05-25 2018-01-16 諾華公司 抗因子XI/XIa抗體之逆轉結合劑及其用途
SG11201810023QA (en) 2016-05-27 2018-12-28 Agenus Inc Anti-tim-3 antibodies and methods of use thereof
US20170370906A1 (en) 2016-05-27 2017-12-28 Genentech, Inc. Bioanalytical analysis of site-specific antibody drug conjugates
CN109476648B (zh) 2016-06-06 2022-09-13 豪夫迈·罗氏有限公司 司维司群抗体-药物缀合物和使用方法
CA3026880A1 (en) 2016-06-08 2017-12-14 Paul Foster Treatment of igg4-related diseases with anti-cd19 antibodies crossbinding to cd32b
EP3471759A1 (en) 2016-06-15 2019-04-24 Novartis AG Methods for treating disease using inhibitors of bone morphogenetic protein 6 (bmp6)
AU2017285764B2 (en) 2016-06-17 2024-05-02 Chugai Pharmaceutical Co Ltd Anti-myostatin antibodies and methods of use
CN109563160B (zh) 2016-06-24 2023-02-28 豪夫迈·罗氏有限公司 抗聚泛素多特异性抗体
WO2018005954A2 (en) 2016-07-01 2018-01-04 Resolve Therapeutics, Llc Optimized binuclease fusions and methods
EP3478717B1 (en) 2016-07-04 2022-01-05 F. Hoffmann-La Roche AG Novel antibody format
JP6993056B2 (ja) 2016-07-05 2022-02-15 ベイジーン リミテッド 癌治療のためのpd-1アンタゴニスト及びraf阻害剤の組合せ
TWI780057B (zh) 2016-07-14 2022-10-11 美商必治妥美雅史谷比公司 針對tim3之抗體及其用途
CA3030926A1 (en) 2016-07-19 2018-01-25 Teva Pharmaceuticals Australia Pty Ltd. Anti-cd47 combination therapy
WO2018014260A1 (en) 2016-07-20 2018-01-25 Nanjing Legend Biotech Co., Ltd. Multispecific antigen binding proteins and methods of use thereof
EP3487880A1 (en) 2016-07-25 2019-05-29 Biogen MA Inc. Anti-hspa5 (grp78) antibodies and uses thereof
US11834490B2 (en) 2016-07-28 2023-12-05 Alpine Immune Sciences, Inc. CD112 variant immunomodulatory proteins and uses thereof
CN110088127A (zh) 2016-07-28 2019-08-02 高山免疫科学股份有限公司 Cd155变体免疫调节蛋白及其用途
US11471488B2 (en) 2016-07-28 2022-10-18 Alpine Immune Sciences, Inc. CD155 variant immunomodulatory proteins and uses thereof
NL2017267B1 (en) 2016-07-29 2018-02-01 Aduro Biotech Holdings Europe B V Anti-pd-1 antibodies
US20190185578A1 (en) 2016-07-29 2019-06-20 Chugai Seiyaku Kabushiki Kaisha Bispecific antibody exhibiting increased alternative fviii-cofactor-function activity
KR102487356B1 (ko) 2016-07-29 2023-01-12 엥스띠뛰 나씨오날 드 라 쌍떼 에 드 라 흐쉐르슈 메디깔 종양 관련 대식세포를 표적화하는 항체 및 이의 용도
NL2017270B1 (en) 2016-08-02 2018-02-09 Aduro Biotech Holdings Europe B V New anti-hCTLA-4 antibodies
SG11201900616UA (en) 2016-08-02 2019-02-27 Visterra Inc Engineered polypeptides and uses thereof
CA3032146A1 (en) 2016-08-03 2018-02-08 Bio-Techne Corporation Identification of vsig3/vista as a novel immune checkpoint and use thereof for immunotherapy
MX2019001471A (es) 2016-08-05 2019-10-30 Allakos Inc Anticuerpos anti-siglec-7 para el tratamiento del cancer.
BR112019002039A2 (pt) 2016-08-05 2019-05-07 Medimmune, Llc anticorpos anti-o2 e uso dos mesmos
MX2019001448A (es) 2016-08-05 2019-09-13 Chugai Pharmaceutical Co Ltd Composicion para profilaxis o tratamiento de enfermedades relacionadas con interleucina 8 (il-8).
CN109476748B (zh) 2016-08-08 2023-05-23 豪夫迈·罗氏有限公司 用于癌症的治疗和诊断方法
CN109689111B (zh) 2016-08-11 2024-04-05 基因泰克公司 吡咯并苯并二氮杂䓬前药及其抗体缀合物
US10669344B2 (en) * 2016-08-12 2020-06-02 Janssen Biotech, Inc. Engineered antibodies and other Fc-domain containing molecules with enhanced agonism and effector functions
SI3347379T1 (sl) 2016-08-17 2020-04-30 Compugen Ltd. ANTI-TIGIT protitelesa, ANTI-PVRIG protitelesa in njihove kombinacije
CN110087680B (zh) 2016-08-19 2024-03-19 百济神州有限公司 使用包含btk抑制剂的组合产品治疗癌症
US10981976B2 (en) 2016-08-31 2021-04-20 University Of Rochester Human monoclonal antibodies to human endogenous retrovirus K envelope (HERV-K) and use thereof
AU2017321973A1 (en) 2016-09-02 2019-03-07 Dana-Farber Cancer Institute, Inc. Composition and methods of treating B cell disorders
EP3512883A1 (en) 2016-09-13 2019-07-24 Humanigen, Inc. Epha3 antibodies for the treatment of pulmonary fibrosis
SG10201607778XA (en) 2016-09-16 2018-04-27 Chugai Pharmaceutical Co Ltd Anti-Dengue Virus Antibodies, Polypeptides Containing Variant Fc Regions, And Methods Of Use
AU2017327828B2 (en) 2016-09-16 2023-11-16 Shanghai Henlius Biotech, Inc. Anti-PD-1 antibodies
US10766958B2 (en) 2016-09-19 2020-09-08 Celgene Corporation Methods of treating vitiligo using PD-1 binding antibodies
CN116731197A (zh) 2016-09-19 2023-09-12 豪夫迈·罗氏有限公司 基于补体因子的亲和层析
CN109952317A (zh) 2016-09-19 2019-06-28 细胞基因公司 使用pd-1结合蛋白治疗免疫病症的方法
EP4360714A2 (en) 2016-09-21 2024-05-01 Nextcure, Inc. Antibodies for siglec-15 and methods of use thereof
BR112019005292A2 (pt) 2016-09-21 2019-09-03 Nextcure Inc anticorpos para siglec-15 e métodos de uso dos mesmos.
HRP20231015T1 (hr) 2016-09-23 2023-12-08 F. Hoffmann-La Roche Ag Upotreba antagonista il-13 u liječenju atopičnog dermatitisa
JOP20190055A1 (ar) 2016-09-26 2019-03-24 Merck Sharp & Dohme أجسام مضادة ضد cd27
WO2018064436A1 (en) 2016-09-30 2018-04-05 Janssen Biotech, Inc. Safe and effective method of treating psoriasis with anti-il23 specific antibody
CN110139674B (zh) 2016-10-05 2023-05-16 豪夫迈·罗氏有限公司 制备抗体药物缀合物的方法
KR20190072528A (ko) 2016-10-06 2019-06-25 제넨테크, 인크. 암에 대한 치료 및 진단 방법
TWI773694B (zh) 2016-10-11 2022-08-11 美商艾吉納斯公司 抗lag-3抗體及其使用方法
WO2018068201A1 (en) 2016-10-11 2018-04-19 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against ctla-4
AU2017346488A1 (en) 2016-10-19 2019-05-30 Humabs Biomed Sa Anti-O1 antibodies and uses thereof
TW202300515A (zh) 2016-10-20 2023-01-01 法商賽諾菲公司 抗chikv抗體及其用途
US20190248895A1 (en) 2016-10-21 2019-08-15 Innate Pharma Treatment with anti-kir3dl2 agents
US11555076B2 (en) 2016-10-29 2023-01-17 Genentech, Inc. Anti-MIC antibodies and methods of use
TWI788307B (zh) 2016-10-31 2023-01-01 美商艾歐凡斯生物治療公司 用於擴增腫瘤浸潤性淋巴細胞之工程化人造抗原呈現細胞
EP3535295A1 (en) 2016-11-02 2019-09-11 EngMab Sàrl Bispecific antibody against bcma and cd3 and an immunological drug for combined use in treating multiple myeloma
MA46770A (fr) 2016-11-09 2019-09-18 Agenus Inc Anticorps anti-ox40, anticorps anti-gitr, et leurs procédés d'utilisation
WO2018087720A1 (en) 2016-11-14 2018-05-17 Novartis Ag Compositions, methods, and therapeutic uses related to fusogenic protein minion
US11466094B2 (en) 2016-11-15 2022-10-11 Genentech, Inc. Dosing for treatment with anti-CD20/anti-CD3 bispecific antibodies
JP2020502261A (ja) 2016-11-16 2020-01-23 ヤンセン バイオテツク,インコーポレーテツド 抗il23特異的抗体で乾癬を治療する方法
TW201829463A (zh) 2016-11-18 2018-08-16 瑞士商赫孚孟拉羅股份公司 抗hla-g抗體及其用途
JOP20190100A1 (ar) 2016-11-19 2019-05-01 Potenza Therapeutics Inc بروتينات ربط مولد ضد مضاد لـ gitr وطرق استخدامها
US11697680B2 (en) 2016-11-21 2023-07-11 Cureab Gmbh Anti-GP73 antibodies and immunoconjugates
CN110662770A (zh) 2016-11-23 2020-01-07 比奥维拉迪维治疗股份有限公司 结合凝血因子ix和凝血因子x的双特异性抗体
CN110520149A (zh) 2016-12-02 2019-11-29 比奥维拉迪维治疗股份有限公司 诱导对凝血因子的免疫耐受性的方法
MX2019006444A (es) 2016-12-02 2019-10-30 Bioverativ Therapeutics Inc Métodos de tratamiento de artropatía hemofílica utilizando factores de coagulación quiméricos.
WO2018104893A1 (en) 2016-12-06 2018-06-14 Glaxosmithkline Intellectual Property Development Limited Alpha4-beta7 antibodies with incrased fcrn binding and/or half-life
PE20190921A1 (es) 2016-12-07 2019-06-26 Agenus Inc Anticuerpos y metodos de su utilizacion
MX2019006330A (es) 2016-12-07 2019-09-26 Genentech Inc Anticuerpos anti-tau y metodos de uso.
WO2018106781A1 (en) 2016-12-07 2018-06-14 Genentech, Inc Anti-tau antibodies and methods of use
JP6992068B2 (ja) 2016-12-07 2022-02-03 アジェナス インコーポレイテッド 抗ctla-4抗体およびそれらの使用方法
MX2019006331A (es) 2016-12-12 2019-07-12 Genentech Inc Métodos para tratar el cáncer usando anticuerpos anti-pd-l1 y antiandrógenos.
DK3555132T3 (da) 2016-12-19 2024-02-05 Medimmune Ltd Antistoffer mod lif og anvendelser deraf
WO2018115960A1 (en) 2016-12-19 2018-06-28 Mosaic Biomedicals, S.L. Antibodies against lif and uses thereof
AU2017384126A1 (en) 2016-12-20 2019-05-02 F. Hoffmann-La Roche Ag Combination therapy of anti-CD20/anti-CD3 bispecific antibodies and 4-1BB (CD137) agonists
UA126284C2 (uk) 2016-12-21 2022-09-14 Сефалон, Інк. Антитіла, які специфічно зв'язуються з людським il-15, та їхнє застосування
JOP20190134A1 (ar) 2016-12-23 2019-06-02 Potenza Therapeutics Inc بروتينات رابطة لمولد ضد مضادة لنيوروبيلين وطرق استخدامها
BR112019012667A2 (pt) 2016-12-23 2020-02-11 Novartis Ag Anticorpos do fator xi e métodos de uso
WO2018115262A1 (en) 2016-12-23 2018-06-28 Innate Pharma Heterodimeric antigen binding proteins
MA47200A (fr) 2017-01-03 2019-11-13 Hoffmann La Roche Molécules bispécifiques de liaison à l'antigène comprenant un clone 20h4.9 anti-4-1bb
TW201825515A (zh) 2017-01-04 2018-07-16 美商伊繆諾金公司 Met抗體以及其免疫結合物及用途
WO2018129332A1 (en) 2017-01-06 2018-07-12 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes (tils) with tumor necrosis factor receptor superfamily (tnfrsf) agonists and therapeutic combinations of tils and tnfrsf agonists
EP3565586A1 (en) 2017-01-06 2019-11-13 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes with potassium channel agonists and therapeutic uses thereof
US11274157B2 (en) 2017-01-12 2022-03-15 Eureka Therapeutics, Inc. Constructs targeting histone H3 peptide/MHC complexes and uses thereof
WO2018137681A1 (en) 2017-01-25 2018-08-02 Beigene, Ltd. Crystalline forms of (s) -7- (1- (but-2-ynoyl) piperidin-4-yl) -2- (4-phenoxyphenyl) -4, 5, 6, 7-tetrahy dropyrazolo [1, 5-a] pyrimidine-3-carboxamide, preparation, and uses thereof
BR112019015426A2 (pt) 2017-01-31 2020-05-26 Chugai Seiyaku Kabushiki Kaisha Composição farmacêutica para uso no tratamento ou prevenção de uma doença relacionada a c5 e um método para tratar ou prevenir uma doença rela-cionada a c5
US10899844B2 (en) 2017-02-08 2021-01-26 Novartis Ag FGF21 mimetic antibodies and uses thereof
NZ756224A (en) * 2017-02-10 2024-02-23 Genmab Bv Polypeptide variants and uses thereof
AU2018217816A1 (en) 2017-02-10 2019-08-15 Genentech, Inc. Anti-tryptase antibodies, compositions thereof, and uses thereof
AU2018221731C1 (en) 2017-02-17 2021-11-18 Denali Therapeutics Inc. Engineered transferrin receptor binding polypeptides
CN110506057B (zh) 2017-02-17 2023-09-29 百时美施贵宝公司 Alpha突触核蛋白抗体及其应用
CN110352074A (zh) 2017-02-28 2019-10-18 西雅图遗传学公司 用于偶联的半胱氨酸突变抗体
US20190382490A1 (en) 2017-02-28 2019-12-19 Bristol-Myers Squibb Company Use of anti-ctla-4 antibodies with enhanced adcc to enhance immune response to a vaccine
EP3589754B1 (en) 2017-03-01 2023-06-28 F. Hoffmann-La Roche AG Diagnostic and therapeutic methods for cancer
JP2020510432A (ja) 2017-03-02 2020-04-09 アンスティチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル Nectin−4への特異性を有する抗体及びその使用
CA3053812A1 (en) 2017-03-16 2018-09-20 Alpine Immune Sciences, Inc. Pd-l2 variant immunomodulatory proteins and uses thereof
FI3596116T3 (fi) 2017-03-16 2023-11-09 Alpine Immune Sciences Inc Immunomodulatorisia pd-l1-varianttiproteiineja ja niiden käyttöjä
BR112019018747A2 (pt) 2017-03-16 2020-05-05 Alpine Immune Sciences Inc proteínas imunomoduladoras variantes de cd80 e usos das mesmas
AR111249A1 (es) 2017-03-22 2019-06-19 Genentech Inc Composiciones de anticuerpo optimizadas para el tratamiento de trastornos oculares
WO2018175460A1 (en) 2017-03-24 2018-09-27 Novartis Ag Methods for preventing and treating heart disease
WO2018183175A1 (en) 2017-03-28 2018-10-04 Genentech, Inc. Methods of treating neurodegenerative diseases
EP3601345A1 (en) 2017-03-29 2020-02-05 H. Hoffnabb-La Roche Ag Bispecific antigen binding molecule for a costimulatory tnf receptor
CN110382542B (zh) 2017-03-29 2023-06-09 豪夫迈·罗氏有限公司 针对共刺激性tnf受体的双特异性抗原结合分子
JOP20190203A1 (ar) 2017-03-30 2019-09-03 Potenza Therapeutics Inc بروتينات رابطة لمولد ضد مضادة لـ tigit وطرق استخدامها
WO2018185618A1 (en) 2017-04-03 2018-10-11 Novartis Ag Anti-cdh6 antibody drug conjugates and anti-gitr antibody combinations and methods of treatment
EP3606956A1 (en) 2017-04-04 2020-02-12 H. Hoffnabb-La Roche Ag Novel bispecific antigen binding molecules capable of specific binding to cd40 and to fap
TWI690538B (zh) 2017-04-05 2020-04-11 瑞士商赫孚孟拉羅股份公司 特異性結合至pd1至lag3的雙特異性抗體
DK3606954T3 (en) 2017-04-05 2022-09-26 Hoffmann La Roche Anti-LAG3-antistoffer
TWI796329B (zh) 2017-04-07 2023-03-21 美商默沙東有限責任公司 抗-ilt4抗體及抗原結合片段
WO2018191502A2 (en) 2017-04-13 2018-10-18 Agenus Inc. Anti-cd137 antibodies and methods of use thereof
CN110944665B (zh) 2017-04-14 2024-04-19 埃克塞里艾克西斯公司 用于预防或治疗肺癌的amhrii结合化合物
MX2019012192A (es) 2017-04-14 2020-01-21 Genentech Inc Métodos de diagnóstico y terapéuticos para el cáncer.
MX2019012137A (es) 2017-04-14 2020-07-20 Gamamabs Pharma Compuestos de union al receptor humano de la hormona antimulleriana tipo ii (amhrii) para prevenir o tratar canceres.
WO2018195338A1 (en) 2017-04-20 2018-10-25 Atyr Pharma, Inc. Compositions and methods for treating lung inflammation
TW201841656A (zh) 2017-04-21 2018-12-01 美商建南德克公司 Klk5拮抗劑用於治療疾病之用途
JP7295030B2 (ja) 2017-04-26 2023-06-20 ユーリカ セラピューティックス, インコーポレイテッド グリピカン3を特異的に認識するコンストラクト及びその使用
CA3059468A1 (en) 2017-04-27 2018-11-01 Tesaro, Inc. Antibody agents directed against lymphocyte activation gene-3 (lag-3) and uses thereof
AR111651A1 (es) 2017-04-28 2019-08-07 Novartis Ag Conjugados de anticuerpos que comprenden agonistas del receptor de tipo toll y terapias de combinación
SI3618863T1 (sl) 2017-05-01 2023-12-29 Agenus Inc. Protitelesa proti tigitu in načini uporabe njih
SG11201910193VA (en) 2017-05-05 2019-11-28 Allakos Inc Methods and compositions for treating allergic ocular diseases
WO2018209115A1 (en) 2017-05-10 2018-11-15 Iovance Biotherapeutics, Inc. Expansion of tumor infiltrating lymphocytes from liquid tumors and therapeutic uses thereof
US11168129B2 (en) 2017-05-15 2021-11-09 University Of Rochester Broadly neutralizing anti-influenza human monoclonal antibody and uses thereof
WO2018215937A1 (en) 2017-05-24 2018-11-29 Novartis Ag Interleukin-7 antibody cytokine engrafted proteins and methods of use in the treatment of cancer
KR20200010468A (ko) 2017-05-24 2020-01-30 노파르티스 아게 항체-사이토카인 생착된 단백질 및 암 치료에 있어서의 사용 방법
JOP20190271A1 (ar) 2017-05-24 2019-11-21 Novartis Ag بروتينات مطعّمة بسيتوكين- الجسم المضاد وطرق الاستخدام للاضطرابات المتعلقة بالمناعة
EP3630162A1 (en) 2017-05-24 2020-04-08 Novartis AG Antibody-cytokine engrafted proteins and methods of use
KR20200013241A (ko) 2017-05-25 2020-02-06 브리스톨-마이어스 스큅 컴퍼니 변형된 중쇄 불변 영역을 포함하는 항체
WO2018222685A1 (en) 2017-05-31 2018-12-06 Stcube & Co., Inc. Methods of treating cancer using antibodies and molecules that immunospecifically bind to btn1a1
US20200148768A1 (en) 2017-05-31 2020-05-14 Stcube & Co., Inc. Antibodies and molecules that immunospecifically bind to btn1a1 and the therapeutic uses thereof
MX2019014265A (es) 2017-06-01 2020-08-03 Compugen Ltd Tratamientos conjuntos triples con anticuerpos.
CN110997724A (zh) 2017-06-06 2020-04-10 斯特库伯株式会社 使用结合btn1a1或btn1a1-配体的抗体和分子治疗癌症的方法
UY37758A (es) 2017-06-12 2019-01-31 Novartis Ag Método de fabricación de anticuerpos biespecíficos, anticuerpos biespecíficos y uso terapéutico de dichos anticuerpos
WO2018229706A1 (en) 2017-06-16 2018-12-20 Novartis Ag Combination therapy for the treatment of cancer
WO2018229715A1 (en) 2017-06-16 2018-12-20 Novartis Ag Compositions comprising anti-cd32b antibodies and methods of use thereof
US20210087286A1 (en) 2017-06-20 2021-03-25 Amgen Inc. Method of treating or ameliorating metabolic disorders using binding proteins for gastric inhibitory peptide receptor (gipr) in combination with glp-1 agonists
KR20210079427A (ko) 2017-06-23 2021-06-29 벨로스바이오 인코포레이티드 Ror1 항체 면역접합체
EP3645569A4 (en) 2017-06-26 2021-03-24 BeiGene, Ltd. IMMUNOTHERAPY FOR LIVER CELL CARCINOMA
KR20200020707A (ko) 2017-06-28 2020-02-26 노파르티스 아게 요실금을 예방하고 치료하는 방법
JP2020527351A (ja) 2017-07-21 2020-09-10 ジェネンテック, インコーポレイテッド がんの治療法及び診断法
PL3658589T3 (pl) 2017-07-26 2024-03-18 Forty Seven, Inc. Przeciwciała anty-sirp-alfa i powiązane sposoby
CN107748259A (zh) * 2017-07-26 2018-03-02 东曜药业有限公司 一种FcRn受体的ELISA检测方法
CN107748262A (zh) * 2017-07-26 2018-03-02 东曜药业有限公司 一种FcγRIIIA受体的ELISA检测方法
CN107748253A (zh) * 2017-07-26 2018-03-02 东曜药业有限公司 一种FcγRI受体的ELISA检测方法
CN107748258A (zh) * 2017-07-26 2018-03-02 东曜药业有限公司 一种FcγRII受体的ELISA检测方法
CN111315411B (zh) 2017-07-27 2023-02-28 瑞颂医药公司 高浓度抗c5抗体制剂
CA3072334A1 (en) 2017-08-09 2019-02-14 Bioverativ Therapeutics Inc. Nucleic acid molecules and uses thereof
KR20200037366A (ko) 2017-08-11 2020-04-08 제넨테크, 인크. 항-cd8 항체 및 이의 용도
CA3073537A1 (en) 2017-08-22 2019-02-28 Sanabio, Llc Soluble interferon receptors and uses thereof
JP7437301B2 (ja) 2017-08-25 2024-02-22 ファイヴ プライム セラピューティクス インク B7-h4抗体及びその使用方法
EP3456737B1 (en) 2017-09-19 2024-02-14 Tillotts Pharma Ag Antibody variants
PL3456736T3 (pl) 2017-09-19 2021-09-13 Tillotts Pharma Ag Warianty przeciwciała
JP7382922B2 (ja) 2017-09-20 2023-11-17 中外製薬株式会社 Pd-1系結合アンタゴニストおよびgpc3標的化剤を使用する併用療法のための投与レジメン
TW201922780A (zh) 2017-09-25 2019-06-16 美商健生生物科技公司 以抗il12/il23抗體治療狼瘡之安全且有效之方法
US10759870B2 (en) 2017-09-29 2020-09-01 Chugai Seiyaku Kabushiki Kaisha Multispecific antigen-binding molecules having blood coagulation factor VIII (FVIII) cofactor function-substituting activity and pharmaceutical formulations containing such a molecule as an active ingredient
EP3694870A1 (en) 2017-10-10 2020-08-19 Alpine Immune Sciences, Inc. Ctla-4 variant immunomodulatory proteins and uses thereof
EP3694552A1 (en) 2017-10-10 2020-08-19 Tilos Therapeutics, Inc. Anti-lap antibodies and uses thereof
WO2019075270A1 (en) 2017-10-12 2019-04-18 Amesino Llc VEGFR ANTIBODY LIGHT CHAIN FUSION PROTEIN
AU2018347607A1 (en) 2017-10-14 2020-03-26 Cytomx Therapeutics, Inc. Antibodies, activatable antibodies, bispecific antibodies, and bispecific activatable antibodies and methods of use thereof
TW201925223A (zh) 2017-10-18 2019-07-01 美商艾爾潘免疫科學有限公司 變異型icos 配位體免疫調節蛋白及相關組合物及方法
WO2019077092A1 (en) 2017-10-20 2019-04-25 F. Hoffmann-La Roche Ag METHOD FOR GENERATING MULTISPECIFIC ANTIBODIES FROM MONOSPECIFIC ANTIBODIES
WO2019081983A1 (en) 2017-10-25 2019-05-02 Novartis Ag CD32B TARGETING ANTIBODIES AND METHODS OF USE
CA3078676A1 (en) 2017-10-30 2019-05-09 F. Hoffmann-La Roche Ag Method for in vivo generation of multispecific antibodies from monospecific antibodies
CN111213059B (zh) 2017-11-06 2024-01-09 豪夫迈·罗氏有限公司 用于癌症的诊断和治疗方法
EP3708589A4 (en) 2017-11-08 2021-08-11 Kyowa Kirin Co., Ltd. BIS SPECIFIC ANTIBODY BINDING TO CD40 AND EPCAM
EP3713959A1 (en) 2017-11-21 2020-09-30 Innate Pharma Multispecific antigen binding proteins
JP2021503891A (ja) 2017-11-22 2021-02-15 ノバルティス アーゲー 抗第XI/XIa因子抗体に対する反転結合剤およびそれらの使用
JP2021503885A (ja) 2017-11-22 2021-02-15 アイオバンス バイオセラピューティクス,インコーポレイテッド 末梢血からの末梢血リンパ球(pbl)の拡大培養
CN111801334B (zh) 2017-11-29 2023-06-09 百济神州瑞士有限责任公司 使用包含btk抑制剂的组合治疗惰性或侵袭性b-细胞淋巴瘤
US11433132B2 (en) 2017-12-01 2022-09-06 Novartis Ag Polyomavirus neutralizing antibodies
TW201938194A (zh) 2017-12-05 2019-10-01 日商中外製藥股份有限公司 包含結合cd3及cd137的改變的抗體可變區之抗原結合分子
SG11202003944WA (en) 2017-12-08 2020-06-29 Argenx Bvba Use of fcrn antagonists for treatment of generalized myasthenia gravis
US20210369775A1 (en) 2017-12-15 2021-12-02 Iovance Biotherapeutics, Inc. Systems and methods for determining the beneficial administration of tumor infiltrating lymphocytes, and methods of use thereof and beneficial administration of tumor infiltrating lymphocytes, and methods of use thereof
EP3498293A1 (en) 2017-12-15 2019-06-19 Institut National De La Sante Et De La Recherche Medicale (Inserm) Treatment of monogenic diseases with an anti-cd45rc antibody
WO2019126536A1 (en) 2017-12-20 2019-06-27 Alexion Pharmaceuticals Inc. Humanized anti-cd200 antibodies and uses thereof
WO2019126133A1 (en) 2017-12-20 2019-06-27 Alexion Pharmaceuticals, Inc. Liquid formulations of anti-cd200 antibodies
EP3502140A1 (en) 2017-12-21 2019-06-26 F. Hoffmann-La Roche AG Combination therapy of tumor targeted icos agonists with t-cell bispecific molecules
TW201929907A (zh) 2017-12-22 2019-08-01 美商建南德克公司 Pilra結合劑用於治療疾病之用途
EP3732202A4 (en) 2017-12-28 2022-06-15 Nanjing Legend Biotech Co., Ltd. SINGLE DOMAIN ANTIBODIES AND VARIANTS THEREOF AGAINST TIGIT
JP7314146B2 (ja) 2017-12-28 2023-07-25 中外製薬株式会社 細胞傷害誘導治療剤
EP3732203A4 (en) 2017-12-28 2021-12-15 Nanjing Legend Biotech Co., Ltd. ANTIBODIES AND VARIANTS THEREOF AGAINST PD-L1
EP3731865A1 (en) 2017-12-29 2020-11-04 F. Hoffmann-La Roche AG Method for improving vegf-receptor blocking selectivity of an anti-vegf antibody
FR3076294B1 (fr) 2017-12-29 2022-01-28 Lab Francais Du Fractionnement Procede de purification d'anticorps a partir de lait brut
US20230101432A1 (en) 2018-01-03 2023-03-30 Alpine Immune Sciences, Inc. Multi-domain immunomodulatory proteins and methods of use thereof
KR20200106525A (ko) 2018-01-05 2020-09-14 에이씨 이뮨 에스.에이. 미스폴딩된 tdp-43 결합 분자
JP7358361B2 (ja) 2018-01-12 2023-10-10 ブリストル-マイヤーズ スクイブ カンパニー Tim3に対する抗体およびその使用
CA3084518A1 (en) 2018-01-15 2019-07-18 Nanjing Legend Biotech Co., Ltd. Single-domain antibodies and variants thereof against pd-1
EP3740505A1 (en) 2018-01-16 2020-11-25 Lakepharma Inc. Bispecific antibody that binds cd3 and another target
RU2020127792A (ru) 2018-01-26 2022-02-28 Дженентек, Инк. СЛИТЫЕ БЕЛКИ IL-22- Fc И СПОСОБЫ ПРИМЕНЕНИЯ
CA3089602A1 (en) * 2018-01-26 2019-08-01 Genzyme Corporation Fc variants with enhanced binding to fcrn and prolonged half-life
BR112020015016A2 (pt) 2018-01-26 2020-12-29 Genentech, Inc. Composições farmacêuticas, métodos de tratamento da doença inflamatória intestinal, de inibição da infecção microbiana no intestino e de aceleração ou melhora da cicatrização de feridas
KR20200118089A (ko) 2018-02-01 2020-10-14 바이오버라티브 테라퓨틱스 인크. 인자 viii을 발현하는 렌티바이러스 벡터의 용도
WO2019148412A1 (en) 2018-02-01 2019-08-08 Merck Sharp & Dohme Corp. Anti-pd-1/lag3 bispecific antibodies
CN111868082A (zh) 2018-02-02 2020-10-30 博奥泰克尼公司 调节vista和vsig3的相互作用的化合物及其制备和使用方法
AU2019218959A1 (en) 2018-02-08 2020-09-03 Genentech, Inc. Bispecific antigen-binding molecules and methods of use
CA3226165A1 (en) 2018-02-09 2019-08-15 Genentech, Inc. Therapeutic and diagnostic methods for mast cell-mediated inflammatory diseases
JP2021512962A (ja) 2018-02-13 2021-05-20 アイオバンス バイオセラピューティクス,インコーポレイテッド アデノシンa2a受容体アンタゴニストによる腫瘍浸潤性リンパ球(til)の拡大培養並びにtil及びアデノシンa2a受容体アンタゴニストの治療的組み合わせ
EP3752530A1 (en) 2018-02-14 2020-12-23 ABBA Therapeutics AG Anti-human pd-l2 antibodies
MA51907A (fr) 2018-02-21 2021-05-26 Hoffmann La Roche Posologie pour un traitement avec des protéines de fusion il-22 fc
MX2020008882A (es) 2018-02-26 2021-01-08 Genentech Inc Dosificación para tratamiento con anticuerpos antagonistas anti-tigit y anti-pd-l1.
WO2019169229A1 (en) 2018-03-01 2019-09-06 Nextcure, Inc. Klrg1 binding compositions and methods of use thereof
SG11202008105RA (en) 2018-03-02 2020-09-29 Five Prime Therapeutics Inc B7-h4 antibodies and methods of use thereof
NL2020520B1 (en) 2018-03-02 2019-09-12 Labo Bio Medical Invest B V Multispecific binding molecules for the prevention, treatment and diagnosis of neurodegenerative disorders
US20190269757A1 (en) 2018-03-05 2019-09-05 Janssen Biotech, Inc. Methods of Treating Crohn's Disease with Anti-IL23 Specific Antibody
EP3765489A1 (en) 2018-03-13 2021-01-20 F. Hoffmann-La Roche AG Therapeutic combination of 4-1 bb agonists with anti-cd20 antibodies
US20200040103A1 (en) 2018-03-14 2020-02-06 Genentech, Inc. Anti-klk5 antibodies and methods of use
CN112166123B (zh) 2018-03-14 2022-09-30 北京轩义医药科技有限公司 抗紧密连接蛋白18.2抗体
CN112119090B (zh) 2018-03-15 2023-01-13 中外制药株式会社 对寨卡病毒具有交叉反应性的抗登革热病毒抗体及使用方法
TW201945393A (zh) 2018-03-21 2019-12-01 美商戊瑞治療有限公司 在酸性pH結合至VISTA之抗體
US20210070860A1 (en) * 2018-03-21 2021-03-11 Dana-Farber Cancer Institute, Inc. Fc variant compositions and methods of use thereof
US11242393B2 (en) 2018-03-23 2022-02-08 Bristol-Myers Squibb Company Antibodies against MICA and/or MICB and uses thereof
JP7464530B2 (ja) 2018-03-28 2024-04-09 ブリストル-マイヤーズ スクイブ カンパニー インターロイキン-2/インターロイキン-2受容体アルファ融合タンパク質および使用方法
EP3775184A1 (en) 2018-03-29 2021-02-17 F. Hoffmann-La Roche AG Modulating lactogenic activity in mammalian cells
KR20200138720A (ko) 2018-03-30 2020-12-10 난징 레전드 바이오테크 씨오., 엘티디. Lag-3에 대한 단일-도메인 항체 및 이의 용도
CA3092387A1 (en) 2018-04-02 2019-10-10 Bristol-Myers Squibb Company Anti-trem-1 antibodies and uses thereof
TW202011029A (zh) 2018-04-04 2020-03-16 美商建南德克公司 偵測及定量fgf21之方法
EP3552631A1 (en) 2018-04-10 2019-10-16 Inatherys Antibody-drug conjugates and their uses for the treatment of cancer
JP7423598B2 (ja) 2018-04-12 2024-01-29 メドイミューン・リミテッド がんの治療で使用するためのlif阻害剤とpd-1軸阻害剤との組み合わせ
KR20210003147A (ko) 2018-04-13 2021-01-11 제넨테크, 인크. 안정된 항-cd79b 면역접합체 제제
AR114789A1 (es) 2018-04-18 2020-10-14 Hoffmann La Roche Anticuerpos anti-hla-g y uso de los mismos
AR115052A1 (es) 2018-04-18 2020-11-25 Hoffmann La Roche Anticuerpos multiespecíficos y utilización de los mismos
CA3096703A1 (en) 2018-05-03 2019-11-07 University Of Rochester Anti-influenza neuraminidase monoclonal antibodies and uses thereof
EP3790587A4 (en) 2018-05-11 2022-01-26 Janssen Biotech, Inc. METHOD OF TREATMENT OF DEPRESSION USING IL-23 ANTIBODIES
CN110464842B (zh) 2018-05-11 2022-10-14 信达生物制药(苏州)有限公司 包含抗pcsk9抗体的制剂及其用途
MA52021A (fr) 2018-05-14 2021-03-24 Fundacio Privada Inst Catalana De Recerca I Estudis Avancats Anticorps anti-lif et leurs formes galéniques
KR20210013091A (ko) 2018-05-16 2021-02-03 시에스엘 리미티드 가용성 보체 수용체 1형 변이체 및 이의 용도
BR112020022164A2 (pt) 2018-05-18 2021-02-02 Bioverativ Therapeutics Inc. métodos de tratamento de hemofilia a
WO2019226658A1 (en) 2018-05-21 2019-11-28 Compass Therapeutics Llc Multispecific antigen-binding compositions and methods of use
AR126019A1 (es) 2018-05-30 2023-09-06 Novartis Ag Anticuerpos frente a entpd2, terapias de combinación y métodos de uso de los anticuerpos y las terapias de combinación
JP2021525071A (ja) 2018-05-31 2021-09-24 ノバルティス アーゲー B型肝炎抗体
CR20200571A (es) 2018-06-01 2021-01-18 Novartis Ag Moléculas de únion contra bcma y usos de las mismas
AU2019276578A1 (en) 2018-06-01 2021-01-14 Compugen Ltd Anti-PVRIG/anti-TIGIT bispecific antibodies and methods of use
WO2019236417A1 (en) 2018-06-04 2019-12-12 Biogen Ma Inc. Anti-vla-4 antibodies having reduced effector function
JP7372237B2 (ja) 2018-06-04 2023-10-31 中外製薬株式会社 細胞質内での半減期が変化した抗原結合分子
WO2019236739A1 (en) 2018-06-05 2019-12-12 Amgen Inc. Modulating antibody dependent cellular phagocytosis
TW202016151A (zh) 2018-06-09 2020-05-01 德商百靈佳殷格翰國際股份有限公司 針對癌症治療之多特異性結合蛋白
WO2019241758A1 (en) 2018-06-15 2019-12-19 Alpine Immune Sciences, Inc. Pd-1 variant immunomodulatory proteins and uses thereof
AU2019291307B2 (en) 2018-06-18 2024-04-04 Fundacio Privada Institucio Catalana de Recerca i Estudis Avancats Combination of LIF inhibitors and platinum-based antineoplastic agents for use in treating cancer
MX2020014091A (es) 2018-06-23 2021-05-27 Genentech Inc Metodos para tratar el cancer de pulmon con un antagonista de fijacion al eje pd-1, un agente de platino y un inhibidor de la topoisomerasa ii.
CN114903978A (zh) 2018-07-03 2022-08-16 百时美施贵宝公司 Fgf-21配制品
CN112424228A (zh) 2018-07-04 2021-02-26 豪夫迈·罗氏有限公司 新型双特异性激动性4-1bb抗原结合分子
CN113056483A (zh) 2018-07-09 2021-06-29 戊瑞治疗有限公司 结合到ilt4的抗体
WO2020014306A1 (en) 2018-07-10 2020-01-16 Immunogen, Inc. Met antibodies and immunoconjugates and uses thereof
CA3104536A1 (en) 2018-07-11 2020-01-16 Bristol-Myers Squibb Company Antibodies binding to vista at acidic ph
TW202011991A (zh) 2018-07-18 2020-04-01 美商建南德克公司 用pd-1軸結合拮抗劑、抗代謝劑及鉑劑治療肺癌之方法
US20200025776A1 (en) 2018-07-18 2020-01-23 Janssen Biotech, Inc. Sustained Response Predictors After Treatment With Anti-IL23 Specific Antibody
BR112021001655A2 (pt) 2018-08-01 2021-05-04 Chugai Seiyaku Kabushiki Kaisha composição farmacêutica para uso no tratamento ou prevenção de uma doença relacionada a c5 e método para tratar ou prevenir uma doença relacionada a c5
SG11202101152QA (en) 2018-08-03 2021-03-30 Chugai Pharmaceutical Co Ltd Antigen-binding molecule containing two antigen-binding domains that are linked to each other
EP3608674A1 (en) 2018-08-09 2020-02-12 Regeneron Pharmaceuticals, Inc. Methods for assessing binding affinity of an antibody variant to the neonatal fc receptor
AU2019319984A1 (en) 2018-08-09 2021-03-04 Bioverativ Therapeutics Inc. Nucleic acid molecules and uses thereof for non-viral gene therapy
KR102259473B1 (ko) 2018-08-10 2021-06-02 추가이 세이야쿠 가부시키가이샤 항cd137 항원 결합 분자 및 그의 사용
MA53495A (fr) 2018-08-31 2021-12-08 Regeneron Pharma Stratégie de dosage permettant d'atténuer le syndrome de libération de cytokines pour des anticorps bispécifiques cd3/c20
TW202031273A (zh) 2018-08-31 2020-09-01 美商艾歐凡斯生物治療公司 抗pd-1抗體難治療性之非小細胞肺癌(nsclc)病患的治療
GB201814281D0 (en) 2018-09-03 2018-10-17 Femtogenix Ltd Cytotoxic agents
WO2020053742A2 (en) 2018-09-10 2020-03-19 Novartis Ag Anti-hla-hbv peptide antibodies
CA3110530A1 (en) 2018-09-11 2020-03-19 Amgen Inc. Methods of modulating antibody-dependent cell-mediated cytotoxicity
WO2020056077A1 (en) 2018-09-13 2020-03-19 The Board Of Regents Of The University Of Texas System Novel lilrb4 antibodies and uses thereof
EP3853252A1 (en) 2018-09-18 2021-07-28 Merrimack Pharmaceuticals, Inc. Anti-tnfr2 antibodies and uses thereof
JP2022501332A (ja) 2018-09-19 2022-01-06 ジェネンテック, インコーポレイテッド 膀胱がんの治療方法および診断方法
CA3112578A1 (en) 2018-09-19 2020-03-26 Alpine Immune Sciences, Inc. Methods and uses of variant cd80 fusion proteins and related constructs
MX2021003213A (es) 2018-09-21 2021-05-12 Genentech Inc Metodos de diagnostico para cancer de mama triple negativo.
AU2019346134B2 (en) 2018-09-24 2023-01-12 Janssen Biotech, Inc. Safe and effective method of treating ulcerative colitis with anti-il12/il23 antibody
SG11202102777PA (en) 2018-09-27 2021-04-29 Xilio Development Inc Masked cytokine polypeptides
US11591390B2 (en) 2018-09-27 2023-02-28 Celgene Corporation SIRP-α binding proteins and methods of use thereof
CN113260634A (zh) 2018-09-28 2021-08-13 中外制药株式会社 包含改变的抗体可变区的抗原结合分子
AU2019347412A1 (en) 2018-09-28 2021-05-27 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecules capable of binding CD3 and CD137 but not simultaneously
CN112654641A (zh) 2018-10-01 2021-04-13 豪夫迈·罗氏有限公司 具有与cd40的三价结合的双特异性抗原结合分子
AU2019355252A1 (en) 2018-10-01 2021-04-01 F. Hoffmann-La Roche Ag Bispecific antigen binding molecules comprising anti-FAP clone 212
TW202035445A (zh) 2018-10-10 2020-10-01 美商帝洛斯療法股份有限公司 抗lap抗體變異體及其用途
UY38407A (es) 2018-10-15 2020-05-29 Novartis Ag Anticuerpos estabilizadores de trem2
WO2020081493A1 (en) 2018-10-16 2020-04-23 Molecular Templates, Inc. Pd-l1 binding proteins
KR20210079311A (ko) 2018-10-18 2021-06-29 제넨테크, 인크. 육종성 신장암에 대한 진단과 치료 방법
WO2020089437A1 (en) 2018-10-31 2020-05-07 Engmab Sàrl Combination therapy
EP3873532A1 (en) 2018-10-31 2021-09-08 Novartis AG Dc-sign antibody drug conjugates
US20220195024A1 (en) 2018-11-02 2022-06-23 Oklahoma Medical Research Foundation Monoclonal Antibodies to ELTD1 and Uses Thereof
BR112021008549A2 (pt) 2018-11-05 2022-01-04 Iovance Biotherapeutics Inc Método de tratamento de carcinoma pulmonar de células não pequenas com uma população de linfócitos infiltrantes de tumor
KR20210090645A (ko) 2018-11-05 2021-07-20 제넨테크, 인크. 원핵 숙주 세포에서 2개의 사슬 단백질을 생산하는 방법
CA3119968A1 (en) 2018-11-16 2020-05-22 Memorial Sloan Kettering Cancer Center Antibodies to mucin-16 and methods of use thereof
MX2021005905A (es) 2018-11-20 2021-06-23 Janssen Biotech Inc Metodo seguro y eficaz para tratar la psoriasis con el anticuerpo especifico anti-il-23.
EP3884276A2 (en) 2018-11-23 2021-09-29 Katholieke Universiteit Leuven Predicting a treatment response in inflammatory bowel disease
WO2020108530A1 (zh) 2018-11-27 2020-06-04 信达生物制药(苏州)有限公司 抗IL-23p19抗体及其用途
US20220106400A1 (en) 2018-11-28 2022-04-07 Bristol-Myers Squibb Company Antibodies comprising modified heavy constant regions
CN113727998A (zh) 2018-11-30 2021-11-30 高山免疫科学股份有限公司 Cd86变体免疫调节蛋白及其用途
CN113227134A (zh) 2018-12-05 2021-08-06 株式会社梅花治疗 抗体的Fc区变体
WO2020117952A2 (en) 2018-12-05 2020-06-11 Genentech, Inc. Diagnostic methods and compositions for cancer immunotherapy
WO2020115115A1 (en) 2018-12-05 2020-06-11 Morphosys Ag Multispecific antigen-binding molecules
US20220098310A1 (en) 2018-12-06 2022-03-31 Alexion Pharmaceuticals, Inc. Anti-alk2 antibodies and uses thereof
KR20210100668A (ko) 2018-12-06 2021-08-17 제넨테크, 인크. 항-CD79b 면역접합체, 알킬화제 및 항-CD20 항체를 포함하는 미만성 큰 B-세포 림프종의 조합 요법
CN113227119A (zh) 2018-12-10 2021-08-06 基因泰克公司 用于与含Fc的蛋白质进行位点特异性缀合的光交联肽
US20220010003A1 (en) 2018-12-14 2022-01-13 Boehringer Ingelheim Io Canada Inc. Anti-periostin antibodies and uses thereof
WO2020127509A1 (en) 2018-12-18 2020-06-25 Catapult Therapeutics B.V. The use of anti-ccr7 mabs for the prevention or treatment of graft-versus-host disease (gvhd)
WO2020128864A1 (en) 2018-12-18 2020-06-25 Janssen Biotech, Inc. Safe and effective method of treating lupus with anti-il12/il23 antibody
TW202039554A (zh) 2018-12-19 2020-11-01 瑞士商諾華公司 抗TNF-α抗體
JP2022514290A (ja) 2018-12-20 2022-02-10 ジェネンテック, インコーポレイテッド 改変抗体fcおよび使用方法
US11130804B2 (en) 2018-12-21 2021-09-28 Hoffmann-La Roche Inc. Antibody that binds to VEGF and IL-1beta and methods of use
KR20210107025A (ko) 2018-12-21 2021-08-31 제넨테크, 인크. 세포사멸에 내성인 세포주를 사용한 폴리펩티드 생산 방법
WO2020139920A2 (en) 2018-12-26 2020-07-02 City Of Hope Activatable masked anti-ctla4 binding proteins
JP2022516505A (ja) 2018-12-28 2022-02-28 スパークス・セラピューティクス・インコーポレイテッド 癌および他の疾患の治療のための、クローディン18.2に特異的な結合分子、その組成物および方法
SG11202106990PA (en) 2018-12-28 2021-07-29 Kyowa Kirin Co Ltd BISPECIFIC ANTIBODY BINDING TO TfR
CN113272327A (zh) 2018-12-30 2021-08-17 豪夫迈·罗氏有限公司 抗兔cd19抗体及其使用方法
EP3906062A1 (en) 2019-01-04 2021-11-10 Resolve Therapeutics, LLC Treatment of sjogren's disease with nuclease fusion proteins
WO2020148207A1 (en) 2019-01-14 2020-07-23 INSERM (Institut National de la Santé et de la Recherche Médicale) Human monoclonal antibodies binding to hla-a2
JP2022518399A (ja) 2019-01-14 2022-03-15 ジェネンテック, インコーポレイテッド Pd-1軸結合アンタゴニスト及びrnaワクチンを用いてがんを処置する方法
AU2020210635A1 (en) 2019-01-22 2021-08-19 Bristol Myers Squibb Company Antibodies against IL-7R alpha subunit and uses thereof
CN113329763A (zh) 2019-01-22 2021-08-31 豪夫迈·罗氏有限公司 免疫球蛋白a抗体以及制备和使用方法
AU2020210710A1 (en) 2019-01-22 2021-07-29 Innate Pharma Treatment of T cell lymphoma
EP3914616A1 (en) 2019-01-23 2021-12-01 Encefa Cd31 competitors and uses thereof
WO2020154410A1 (en) 2019-01-23 2020-07-30 Genentech, Inc. Methods of producing multimeric proteins in eukaryotic host cells
CA3127624A1 (en) 2019-01-23 2020-07-30 Millennium Pharmaceuticals, Inc. Anti-cd38 antibodies
CN113329770A (zh) 2019-01-24 2021-08-31 中外制药株式会社 新型癌抗原及所述抗原的抗体
GB201901197D0 (en) 2019-01-29 2019-03-20 Femtogenix Ltd G-A Crosslinking cytotoxic agents
CN113710706A (zh) 2019-02-27 2021-11-26 豪夫迈·罗氏有限公司 用于抗tigit抗体和抗cd20抗体或抗cd38抗体治疗的给药
US20220133795A1 (en) 2019-03-01 2022-05-05 Iovance Biotherapeutics, Inc. Expansion of Tumor Infiltrating Lymphocytes From Liquid Tumors and Therapeutic Uses Thereof
WO2020180712A1 (en) 2019-03-01 2020-09-10 Merrimack Pharmaceuticals, Inc. Anti-tnfr2 antibodies and uses thereof
MX2021010565A (es) 2019-03-08 2021-10-13 Genentech Inc Metodos para detectar y cuantificar proteinas asociadas a la membrana en vesiculas extracelulares.
AU2020236015A1 (en) 2019-03-14 2021-09-09 Genentech, Inc. Treatment of cancer with HER2XCD3 bispecific antibodies in combination with anti-HER2 MAB
KR20210141990A (ko) 2019-03-14 2021-11-23 얀센 바이오테크 인코포레이티드 항-il12/il23 항체 조성물을 생성하기 위한 제조 방법
AU2020243588A1 (en) 2019-03-18 2021-10-07 Janssen Biotech, Inc. Method of treating psoriasis in pediatric subjects with anti-IL12/IL23 antibody
CN113613676A (zh) 2019-03-19 2021-11-05 中外制药株式会社 包含对抗原的结合活性因mta而变化的抗原结合结构域的抗原结合分子及用于获得该抗原结合结构域的文库
EP3947446A1 (en) 2019-03-25 2022-02-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Treatment of taupathy disorders by targeting new tau species
WO2020206063A1 (en) 2019-04-03 2020-10-08 Genzyme Corporation Anti-alpha beta tcr binding polypeptides with reduced fragmentation
WO2020210358A1 (en) 2019-04-08 2020-10-15 Biogen Ma Inc. Anti-integrin antibodies and uses thereof
GB2589049C (en) 2019-04-11 2024-02-21 argenx BV Anti-IgE antibodies
US20230135850A1 (en) * 2019-04-15 2023-05-04 The Medical College Of Wisconsin, Inc. Recombinant PD-L1 Peptides and Methods of Use
AU2020257238A1 (en) 2019-04-17 2021-12-02 Alpine Immune Sciences, Inc. Methods and uses of variant ICOS Ligand (ICOSL) fusion proteins
KR20210153100A (ko) 2019-04-18 2021-12-16 브리스톨-마이어스 스큅 컴퍼니 낮은 pH에서의 결합에 대한 증진된 특이성을 갖는 이필리무맙 변이체
JP2022529344A (ja) 2019-04-18 2022-06-21 エイシー イミューン ソシエテ アノニム 治療及び診断のための新規分子
BR112021019571A2 (pt) 2019-04-19 2021-12-07 Chugai Pharmaceutical Co Ltd Receptor quimérico que reconhece o sítio de modificação do anticorpo
BR112021020867A2 (pt) 2019-04-19 2022-01-04 Genentech Inc Anticorpos, ácido nucleico, vetor, célula hospedeira, método de produção de um anticorpo, imunoconjugado, formulação farmacêutica, usos do anticorpo, método de tratamento de um indivíduo com câncer e método para reduzir a depuração
AU2020270376A1 (en) 2019-05-03 2021-10-07 Genentech, Inc. Methods of treating cancer with an anti-PD-L1 antibody
KR20220007136A (ko) 2019-05-14 2022-01-18 제넨테크, 인크. 소포 림프종을 치료하기 위한 항-CD79b 면역접합체의 사용 방법
EP3970743A4 (en) 2019-05-15 2023-02-15 Kyowa Kirin Co., Ltd. BISPECIFIC ANTIBODIES BINDING TO CD40 AND FAP
US20220220216A1 (en) 2019-05-15 2022-07-14 Kyowa Kirin Co., Ltd. Bispecific antibody binding to cd40 and gpc3
WO2020236841A2 (en) 2019-05-20 2020-11-26 Novartis Ag Antibody drug conjugates having linkers comprising hydrophilic groups
WO2020236792A1 (en) 2019-05-21 2020-11-26 Novartis Ag Cd19 binding molecules and uses thereof
CN114173810A (zh) 2019-05-21 2022-03-11 诺华股份有限公司 针对bcma的三特异性结合分子及其用途
WO2020236797A1 (en) 2019-05-21 2020-11-26 Novartis Ag Variant cd58 domains and uses thereof
TW202110879A (zh) 2019-05-23 2021-03-16 瑞士商Ac 免疫有限公司 抗tdp-43結合分子及其用途
MX2021014433A (es) 2019-06-05 2022-03-11 Chugai Pharmaceutical Co Ltd Molecula de union a sitio de escision de anticuerpo.
JP2022535908A (ja) 2019-06-07 2022-08-10 アルジェニクス ビーブイ 皮下投与に好適なFcRnインヒビターの医薬製剤
WO2020250915A1 (ja) 2019-06-10 2020-12-17 中外製薬株式会社 サイトカイン阻害剤と組み合わせて使用するための抗t細胞抗原結合分子
US20220298230A1 (en) * 2019-06-11 2022-09-22 The Rockefeller University Antibodies and methods for treatment of viral infections
CN114531878A (zh) 2019-06-27 2022-05-24 豪夫迈·罗氏有限公司 新颖icos抗体及包含它们的肿瘤靶向抗原结合分子
TW202116805A (zh) 2019-07-10 2021-05-01 日商中外製藥股份有限公司 Claudin-6結合分子以及其用途
WO2021005232A1 (en) 2019-07-11 2021-01-14 Umc Utrecht Holding B.V. Intranasal administration of neutralising antiviral antibodies
JPWO2021010326A1 (pl) 2019-07-12 2021-01-21
EP3999541A1 (en) 2019-07-15 2022-05-25 Bristol-Myers Squibb Company Antibodies against human trem-1 and uses thereof
WO2021011678A1 (en) 2019-07-15 2021-01-21 Bristol-Myers Squibb Company Anti-trem-1 antibodies and uses thereof
JP2022541200A (ja) 2019-07-16 2022-09-22 インサーム(インスティテュ ナシオナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシェ メディカル) Cd38に特異性を有する抗体及びその使用
CN114144436A (zh) 2019-07-24 2022-03-04 H.隆德贝克有限公司 抗mGluR5抗体及其用途
CN112300279A (zh) 2019-07-26 2021-02-02 上海复宏汉霖生物技术股份有限公司 针对抗cd73抗体和变体的方法和组合物
WO2021021605A1 (en) 2019-07-26 2021-02-04 Vanderbilt University Human monoclonal antibodies to enterovirus d68
CA3149093A1 (en) 2019-07-29 2021-02-04 Compugen Ltd. Anti-pvrig antibodies formulations and uses thereof
EP4003408A1 (en) 2019-07-31 2022-06-01 F. Hoffmann-La Roche AG Dosage and administration regimen for the treatment or prevention of c5-related diseases by the use of the anti-c5 antibody crovalimab
KR20240033090A (ko) 2019-07-31 2024-03-12 에프. 호프만-라 로슈 아게 항-c5 항체 크로발리맙의 사용에 의한 c5-관련 질병의 치료 또는 예방을 위한 투여량 및 투여 섭생
TWI832183B (zh) 2019-08-06 2024-02-11 香港商新旭生技股份有限公司 結合至病理性tau種類之抗體及其用途
EP4010372A2 (en) 2019-08-06 2022-06-15 GlaxoSmithKline Intellectual Property Development Limited Biopharmacuetical compositions and related methods
AU2020329217A1 (en) 2019-08-12 2022-07-28 Aptevo Research And Development Llc 4-1BB and OX40 binding proteins and related compositions and methods, antibodies against 4-1BB, antibodies against OX40
AU2020329290A1 (en) 2019-08-13 2022-03-24 Elpis Biopharmaceuticals Engineered interleukin-2 receptor beta agonists
WO2021042019A1 (en) 2019-08-30 2021-03-04 Agenus Inc. Anti-cd96 antibodies and methods of use thereof
EP4028054A1 (en) 2019-09-12 2022-07-20 Genentech, Inc. Compositions and methods of treating lupus nephritis
TW202124446A (zh) 2019-09-18 2021-07-01 瑞士商諾華公司 與entpd2抗體之組合療法
EP4031578A1 (en) 2019-09-18 2022-07-27 Novartis AG Entpd2 antibodies, combination therapies, and methods of using the antibodies and combination therapies
CN114423791A (zh) 2019-09-18 2022-04-29 豪夫迈·罗氏有限公司 抗klk7抗体、抗klk5抗体、多特异性抗klk5/klk7抗体及使用方法
CN114729043A (zh) 2019-09-19 2022-07-08 百时美施贵宝公司 在酸性pH下结合至VISTA的抗体
WO2021055694A1 (en) 2019-09-20 2021-03-25 Genentech, Inc. Dosing for anti-tryptase antibodies
US20220411511A1 (en) 2019-09-26 2022-12-29 Stcube & Co. Antibodies specific to glycosylated ctla-4 and methods of use thereof
WO2021058763A1 (en) 2019-09-27 2021-04-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-müllerian inhibiting substance antibodies and uses thereof
CN114746119A (zh) 2019-09-27 2022-07-12 詹森生物科技公司 抗-ceacam抗体及其用途
EP4048693A1 (en) 2019-09-27 2022-08-31 F. Hoffmann-La Roche AG Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
WO2021058729A1 (en) 2019-09-27 2021-04-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-müllerian inhibiting substance type i receptor antibodies and uses thereof
KR20220097891A (ko) 2019-09-30 2022-07-08 바이오버라티브 테라퓨틱스 인크. 렌티바이러스 벡터 제형
BR112022006620A2 (pt) 2019-10-08 2022-08-30 Nectin Therapeutics Ltd Anticorpos contra o receptor de poliovírus (pvr) e seus usos
US20220356248A1 (en) 2019-10-09 2022-11-10 Stcube & Co Antibodies specific to glycosylated lag3 and methods of use thereof
EP4045090A1 (en) 2019-10-18 2022-08-24 Genentech, Inc. Methods of using anti-cd79b immunoconjugates to treat diffuse large b-cell lymphoma
US20220378742A1 (en) 2019-11-04 2022-12-01 Compugen Ltd. Combination therapy with anti-pvrig antibodies formulations and anti-pd-1 antibodies
WO2021092171A1 (en) 2019-11-06 2021-05-14 Genentech, Inc. Diagnostic and therapeutic methods for treatment of hematologic cancers
JP2023504642A (ja) 2019-12-04 2023-02-06 メドイミューン・リミテッド Lifに対する抗体及びその使用
MX2022006676A (es) 2019-12-04 2022-07-05 Ac Immune Sa Nuevas moleculas para terapia y diagnostico.
WO2021113831A1 (en) 2019-12-05 2021-06-10 Compugen Ltd. Anti-pvrig and anti-tigit antibodies for enhanced nk-cell based tumor killing
US20230040928A1 (en) 2019-12-09 2023-02-09 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies having specificity to her4 and uses thereof
US11845799B2 (en) 2019-12-13 2023-12-19 Genentech, Inc. Anti-Ly6G6D antibodies and methods of use
CN113045655A (zh) 2019-12-27 2021-06-29 高诚生物医药(香港)有限公司 抗ox40抗体及其用途
KR102645629B1 (ko) 2019-12-27 2024-03-07 추가이 세이야쿠 가부시키가이샤 항ctla-4 항체 및 그의 사용
MX2022008341A (es) 2020-01-06 2022-08-10 Vaccinex Inc Anticuerpos anti-ccr8 y usos de estos.
JP2023509195A (ja) 2020-01-08 2023-03-07 アルジェニクス ビーブイ 天疱瘡症を治療する方法
CN110818795B (zh) 2020-01-10 2020-04-24 上海复宏汉霖生物技术股份有限公司 抗tigit抗体和使用方法
WO2022050954A1 (en) 2020-09-04 2022-03-10 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
WO2021194481A1 (en) 2020-03-24 2021-09-30 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
EP4096708A1 (en) 2020-01-31 2022-12-07 Genentech, Inc. Methods of inducing neoepitope-specific t cells with a pd-1 axis binding antagonist and an rna vaccine
US20230087600A1 (en) 2020-02-06 2023-03-23 Bristol-Myers Squibb Company Il-10 and uses thereof
WO2021163265A1 (en) 2020-02-11 2021-08-19 Vanderbilt University Human monoclonal antibodies to severe acute respiratory syndrome coronavirus 2 (sars-cov- 2)
TW202144395A (zh) 2020-02-12 2021-12-01 日商中外製藥股份有限公司 用於癌症之治療的抗cd137抗原結合分子
TW202140561A (zh) 2020-02-14 2021-11-01 日商協和麒麟股份有限公司 與cd3結合之雙特異性抗體
WO2021173844A1 (en) 2020-02-26 2021-09-02 Biograph 55, Inc. C19 c38 bispecific antibodies
CA3169939A1 (en) 2020-02-28 2021-09-02 Jie Xue Anti-cd137 construct and use thereof
MX2022010538A (es) 2020-02-28 2022-09-21 Genzyme Corp Polipeptidos de union modificados para conjugacion optimizada con farmacos.
CA3169910A1 (en) 2020-02-28 2021-09-02 Shanghai Henlius Biotech, Inc. Anti-cd137 constructs, multispecific antibody and uses thereof
CA3174442A1 (en) 2020-03-06 2021-09-10 ONA Therapeutics S.L. Anti-cd36 antibodies and their use to treat cancer
TW202144417A (zh) 2020-03-13 2021-12-01 大陸商江蘇恆瑞醫藥股份有限公司 Pvrig結合蛋白及其醫藥用途
CN115605507A (zh) 2020-03-13 2023-01-13 基因泰克公司(Us) 抗白介素-33抗体及其用途
AU2021236660A1 (en) 2020-03-19 2022-08-18 Genentech, Inc. Isoform-selective anti-TGF-beta antibodies and methods of use
US11365239B2 (en) 2020-03-20 2022-06-21 Tsb Therapeutics (Beijing) Co., Ltd. Anti-SARS-COV-2 antibodies and uses thereof
JP2023518814A (ja) 2020-03-23 2023-05-08 ジェネンテック, インコーポレイテッド Covid-19肺炎における、il-6アンタゴニストに対する応答を予測するためのバイオマーカー
CN115916820A (zh) 2020-03-23 2023-04-04 基因泰克公司 用il6拮抗剂治疗包括covid-19肺炎在内的肺炎的方法
US20230174656A1 (en) 2020-03-23 2023-06-08 Genentech, Inc. Tocilizumab and remdesivir combination therapy for covid-19 pneumonia
PE20230414A1 (es) 2020-03-24 2023-03-07 Genentech Inc Agentes de fijacion a tie2 y metodos de uso
WO2021195385A1 (en) 2020-03-26 2021-09-30 Vanderbilt University HUMAN MONOCLONAL ANTIBODIES TO SEVERE ACUTE RESPIRATORY SYNDROME CORONAVIRUS 2 (SARS-GoV-2)
EP4127153A2 (en) 2020-03-26 2023-02-08 Genentech, Inc. Modified mammalian cells having reduced host cell proteins
CR20220545A (es) 2020-03-26 2023-01-09 Univ Vanderbilt ANTICUERPOS MONOCLONALES HUMANOS DIRIGIDOS CONTRA EL CORONAVIRUS 2 DEL SÍNDROME RESPIRATORIO AGUDO GRAVE (SARS-CoV-2)
CN116249549A (zh) 2020-03-27 2023-06-09 诺华股份有限公司 用于治疗增殖性疾病和自身免疫病症的双特异性组合疗法
CN115397850A (zh) 2020-03-30 2022-11-25 豪夫迈·罗氏有限公司 与vegf和pdgf-b结合的抗体及其使用方法
EP4126969A1 (en) 2020-03-31 2023-02-08 Chugai Seiyaku Kabushiki Kaisha Dll3-targeting multispecific antigen-binding molecules and uses thereof
US20230121511A1 (en) 2020-03-31 2023-04-20 Chugai Seiyaku Kabushiki Kaisha Method for producing multispecific antigen-binding molecules
CA3170570A1 (en) 2020-04-01 2021-10-07 James J. KOBIE Monoclonal antibodies against the hemagglutinin (ha) and neuraminidase (na) of influenza h3n2 viruses
AR121706A1 (es) 2020-04-01 2022-06-29 Hoffmann La Roche Moléculas de unión a antígeno biespecíficas dirigidas a ox40 y fap
EP4127724A1 (en) 2020-04-03 2023-02-08 Genentech, Inc. Therapeutic and diagnostic methods for cancer
TW202204622A (zh) 2020-04-09 2022-02-01 大陸商蘇州艾博生物科技有限公司 針對冠狀病毒之核酸疫苗
US20230272056A1 (en) 2020-04-09 2023-08-31 Merck Sharp & Dohme Llc Affinity matured anti-lap antibodies and uses thereof
WO2021207662A1 (en) 2020-04-10 2021-10-14 Genentech, Inc. Use of il-22fc for the treatment or prevention of pneumonia, acute respiratory distress syndrome, or cytokine release syndrome
KR20230005903A (ko) 2020-04-24 2023-01-10 제넨테크, 인크. 항-CD79b 면역접합체를 사용하는 방법
PE20230078A1 (es) 2020-04-24 2023-01-11 Hoffmann La Roche Modulacion de enzimas y vias con compuestos de sulfhidrilo y sus derivados
EP4143225A4 (en) 2020-04-27 2024-05-15 Univ California ISOFORM-INDEPENDENT ANTIBODIES AGAINST LIPOPROTEIN(A)
WO2021222935A2 (en) 2020-04-28 2021-11-04 The Rockefeller University Neutralizing anti-sars-cov-2 antibodies and methods of use thereof
EP4143345A1 (en) 2020-04-28 2023-03-08 Genentech, Inc. Methods and compositions for non-small cell lung cancer immunotherapy
EP4146283A1 (en) 2020-05-03 2023-03-15 Levena (Suzhou) Biopharma Co., Ltd. Antibody-drug conjugates (adcs) comprising an anti-trop-2 antibody, compositions comprising such adcs, as well as methods of making and using the same
WO2021226551A1 (en) 2020-05-08 2021-11-11 Alpine Immune Sciences, Inc. April and baff inhibitory immunomodulatory proteins and methods of use thereof
WO2021228956A1 (en) 2020-05-12 2021-11-18 INSERM (Institut National de la Santé et de la Recherche Médicale) New method to treat cutaneous t-cell lymphomas and tfh derived lymphomas
US20230192867A1 (en) 2020-05-15 2023-06-22 Bristol-Myers Squibb Company Antibodies to garp
MX2022014422A (es) 2020-05-17 2022-12-07 Astrazeneca Uk Ltd Anticuerpos contra el sars-cov-2 y metodos de seleccion y uso de los mismos.
GB2595299B (en) 2020-05-21 2022-08-03 Mabsolve Ltd Modified immunoglobulin FC regions
CN115803091A (zh) 2020-05-22 2023-03-14 福迈康股份公司 Ace2-fc融合蛋白及其用途
CN113993900B (zh) 2020-05-27 2023-08-04 舒泰神(北京)生物制药股份有限公司 特异性识别神经生长因子的抗体及其用途
US20230235075A1 (en) 2020-06-02 2023-07-27 Dynamicure Biotechnology Llc Anti-cd93 constructs and uses thereof
CN116529260A (zh) 2020-06-02 2023-08-01 当康生物技术有限责任公司 抗cd93构建体及其用途
CN115697489A (zh) 2020-06-08 2023-02-03 豪夫迈·罗氏有限公司 抗hbv抗体及其使用方法
US20230357341A1 (en) 2020-06-10 2023-11-09 Bica Therapeutics Inc. Fusion protein containing erythropoietin polypeptide
EP4165415A1 (en) 2020-06-12 2023-04-19 Genentech, Inc. Methods and compositions for cancer immunotherapy
CN115916182A (zh) 2020-06-16 2023-04-04 基因泰克公司 用于治疗三阴性乳腺癌的方法和组合物
IL298946A (en) 2020-06-18 2023-02-01 Genentech Inc Treatment with anti-TIGIT antibodies and PD-1 spindle-binding antagonists
MX2022015764A (es) 2020-06-19 2023-01-19 Chugai Pharmaceutical Co Ltd Molecula de union al antigeno anti-celulas t para usarse en combinacion con un inhibidor de angiogenesis.
EP4169948A1 (en) 2020-06-22 2023-04-26 Innovent Biologics (Suzhou) Co., Ltd. Anti-cd73 antibody and use thereof
WO2021262783A1 (en) 2020-06-24 2021-12-30 Genentech, Inc. Apoptosis resistant cell lines
MX2022016322A (es) 2020-06-25 2023-01-24 Merck Sharp & Dohme Llc Anticuerpos de alta afinidad dirigidos a tau fosforilada en la serina 413.
WO2022006153A1 (en) 2020-06-29 2022-01-06 Resolve Therapeutics, Llc Treatment of sjogren's syndrome with nuclease fusion proteins
WO2022002880A1 (en) 2020-06-29 2022-01-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-protein s single-domain antibodies and polypeptides comprising thereof
CN116406377A (zh) 2020-07-17 2023-07-07 基因泰克公司 抗notch2抗体及其使用方法
GB2597532A (en) 2020-07-28 2022-02-02 Femtogenix Ltd Cytotoxic compounds
CA3190328A1 (en) 2020-07-29 2022-02-03 Dynamicure Biotechnology Llc Anti-cd93 constructs and uses thereof
MX2023001120A (es) 2020-07-31 2023-02-22 Chugai Pharmaceutical Co Ltd Composicion farmaceutica que comprende una celula que expresa un receptor quimerico.
WO2022031749A1 (en) 2020-08-03 2022-02-10 Genentech, Inc. Diagnostic and therapeutic methods for lymphoma
KR20230044312A (ko) 2020-08-06 2023-04-03 바이오버라티브 유에스에이 인코포레이티드 보체 매개된 질환을 갖는 대상체의 염증성 시토카인 및 피로
US20220041694A1 (en) 2020-08-10 2022-02-10 Astrazeneca Uk Limited Sars-cov-2 antibodies for treatment and prevention of covid-19
EP4196162A1 (en) 2020-08-14 2023-06-21 AC Immune SA Humanized anti-tdp-43 binding molecules and uses thereof
WO2022040345A1 (en) 2020-08-18 2022-02-24 Cephalon, Inc. Anti-par-2 antibodies and methods of use thereof
WO2022040470A1 (en) * 2020-08-20 2022-02-24 A2 Biotherapeutics, Inc. Compositions and methods for treating ceacam positive cancers
CA3188867A1 (en) 2020-08-20 2022-02-24 Xueyin Wang Compositions and methods for treating ceacam positive cancers
KR20230051677A (ko) 2020-08-20 2023-04-18 에이투 바이오쎄라퓨틱스, 인크. 메소텔린 양성 암을 치료하기 위한 조성물 및 방법
EP4204448A2 (en) 2020-08-27 2023-07-05 cureab GmbH Anti-golph2 antibodies for macrophage and dendritic cell differentiation
WO2022047316A1 (en) 2020-08-28 2022-03-03 Sana Biotechnology, Inc. Modified anti-viral binding agents
JPWO2022044248A1 (pl) 2020-08-28 2022-03-03
CN116648507A (zh) 2020-08-28 2023-08-25 基因泰克公司 宿主细胞蛋白的CRISPR/Cas9多重敲除
KR20230061458A (ko) 2020-09-04 2023-05-08 에프. 호프만-라 로슈 아게 Vegf-a 및 ang2에 결합하는 항체 및 사용 방법
CN116685351A (zh) 2020-09-17 2023-09-01 基因泰克公司 Empacta的结果:一项用于评估托珠单抗在患有covid-19肺炎的住院患者中的功效和安全性的随机、双盲、安慰剂对照、多中心研究
US20230365680A1 (en) 2020-09-30 2023-11-16 Compugen Ltd. Combination therapy with anti-pvrig antibodies formulations, anti-tigit antibodies, and anti-pd-1 antibodies
CN116406291A (zh) 2020-10-05 2023-07-07 基因泰克公司 用抗fcrh5/抗cd3双特异性抗体进行治疗的给药
WO2022076606A1 (en) 2020-10-06 2022-04-14 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
US20230372397A1 (en) 2020-10-06 2023-11-23 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
WO2022079297A1 (en) 2020-10-16 2022-04-21 Ac Immune Sa Antibodies binding to alpha-synuclein for therapy and diagnosis
EP4232475A1 (en) 2020-10-20 2023-08-30 Kantonsspital St. Gallen Antibodies or antigen-binding fragments specifically binding to gremlin-1 and uses thereof
WO2022084915A1 (en) 2020-10-22 2022-04-28 Janssen Biotech, Inc. Proteins comprising delta-like ligand 3 (dll3) antigen binding domains and their uses
EP4232822A2 (en) 2020-10-26 2023-08-30 Compugen Ltd. Pvrl2 and/or pvrig as biomarkers for treatment
WO2022093981A1 (en) 2020-10-28 2022-05-05 Genentech, Inc. Combination therapy comprising ptpn22 inhibitors and pd-l1 binding antagonists
KR20230093483A (ko) 2020-10-29 2023-06-27 포르미콘 아게 Ace2 융합 단백질 및 이의 용도
EP4240766A2 (en) 2020-11-04 2023-09-13 Genentech, Inc. Subcutaneous dosing of anti-cd20/anti-cd3 bispecific antibodies
WO2022098638A2 (en) 2020-11-04 2022-05-12 Genentech, Inc. Dosing for treatment with anti-cd20/anti-cd3 bispecific antibodies
MX2023005131A (es) 2020-11-04 2023-05-25 Genentech Inc Dosis para el tratamiento con anticuerpos biespecificos anti-cd20/anti-cd3 y conjugados anticuerpo farmaco anti-cd79b.
JP2023548878A (ja) 2020-11-04 2023-11-21 ザ ロックフェラー ユニバーシティー 中和抗sars-cov-2抗体
MX2023005234A (es) 2020-11-06 2023-05-18 Novartis Ag Terapia de combinacion de agente anti-cd19 y agente de direccionamiento a celulas b para el tratamiento de neoplasias malignas de celulas b.
WO2022097060A1 (en) 2020-11-06 2022-05-12 Novartis Ag Cd19 binding molecules and uses thereof
EP4255574A1 (en) 2020-12-01 2023-10-11 Aptevo Research and Development LLC Heterodimeric psma and cd3-binding bispecific antibodies
TW202237639A (zh) 2020-12-09 2022-10-01 日商武田藥品工業股份有限公司 鳥苷酸環化酶c(gcc)抗原結合劑之組成物及其使用方法
TW202237638A (zh) 2020-12-09 2022-10-01 日商武田藥品工業股份有限公司 烏苷酸環化酶c(gcc)抗原結合劑之組成物及其使用方法
JP2024501452A (ja) 2020-12-11 2024-01-12 アイオバンス バイオセラピューティクス,インコーポレイテッド Braf阻害剤及び/またはmek阻害剤と併用した腫瘍浸潤リンパ球治療によるがん患者の治療
US20240052042A1 (en) 2020-12-14 2024-02-15 Novartis Ag Reversal binding agents for anti-natriuretic peptide receptor i (npri) antibodies and uses thereof
WO2022133140A1 (en) 2020-12-17 2022-06-23 Iovance Biotherapeutics, Inc. Treatment with tumor infiltrating lymphocyte therapies in combination with ctla-4 and pd-1 inhibitors
CA3204702A1 (en) 2020-12-17 2022-06-23 F. Hoffmann-La Roche Ag Anti-hla-g antibodies and use thereof
US20240123067A1 (en) 2020-12-17 2024-04-18 Iovance Biotherapeutics, Inc. Treatment of cancers with tumor infiltrating lymphocyte therapies
JP2024500512A (ja) 2020-12-23 2024-01-09 イノベント バイオロジクス(シンガポール)プライベート リミティド 抗b7-h3抗体およびその使用
WO2022140797A1 (en) 2020-12-23 2022-06-30 Immunowake Inc. Immunocytokines and uses thereof
US20240110152A1 (en) 2020-12-31 2024-04-04 Iovance Biotherapeutics, Inc. Devices and processes for automated production of tumor infiltrating lymphocytes
KR20230117406A (ko) 2021-01-06 2023-08-08 에프. 호프만-라 로슈 아게 Pd1-lag3 이중특이성 항체와 cd20 t 세포 이중특이성항체를 이용한 조합 요법
EP4277926A1 (en) 2021-01-15 2023-11-22 The Rockefeller University Neutralizing anti-sars-cov-2 antibodies
CN117083297A (zh) 2021-01-22 2023-11-17 艾佩斯瑞生物制药公司 抗PD-L1单克隆抗体以及与白细胞介素-15(IL-15)、白细胞介素-15受体15α或白细胞介素-2的融合蛋白
WO2022162203A1 (en) 2021-01-28 2022-08-04 Vaccinvent Gmbh Method and means for modulating b-cell mediated immune responses
US20240076373A1 (en) 2021-01-28 2024-03-07 Compugen Ltd. Combination therapy with anti-pvrig antibodies formulations and anti-pd-1 antibodies
AU2022212599A1 (en) 2021-01-28 2023-08-17 Universität Ulm Method and means for modulating b-cell mediated immune responses
CN117120084A (zh) 2021-01-28 2023-11-24 维肯芬特有限责任公司 用于调节b细胞介导的免疫应答的方法和手段
EP4284516A1 (en) 2021-01-28 2023-12-06 Compugen Ltd. Anti-pvrig antibodies formulations and uses thereof
JP2024506557A (ja) 2021-01-29 2024-02-14 アイオバンス バイオセラピューティクス,インコーポレイテッド 修飾された腫瘍浸潤リンパ球を作製する方法及び養子細胞療法におけるそれらの使用
EP4288458A1 (en) 2021-02-03 2023-12-13 Genentech, Inc. Multispecific binding protein degrader platform and methods of use
EP4291227A2 (en) 2021-02-15 2023-12-20 Takeda Pharmaceutical Company Limited Cell therapy compositions and methods for modulating tgf-b signaling
JP2024509746A (ja) 2021-02-17 2024-03-05 プロメテウス バイオサイエンシーズ,インク. 抗cd30l抗体およびその使用
US20220340662A1 (en) 2021-03-01 2022-10-27 Xilio Development, Inc. Combination of masked ctla4 and pd1/pdl1 antibodies for treating cancer
TW202317612A (zh) 2021-03-01 2023-05-01 美商艾希利歐發展股份有限公司 用於治療癌症的ctla4及pd1/pdl1抗體之組合
JP2024509543A (ja) 2021-03-03 2024-03-04 フォーマイコン アーゲー ACE2 Fc融合タンパク質の製剤
EP4301418A1 (en) 2021-03-03 2024-01-10 Sorrento Therapeutics, Inc. Antibody-drug conjugates comprising an anti-bcma antibody
CN117279506A (zh) 2021-03-05 2023-12-22 艾欧凡斯生物治疗公司 肿瘤储存及细胞培养组合物
EP4301472A1 (en) 2021-03-05 2024-01-10 Dynamicure Biotechnology LLC Anti-vista constructs and uses thereof
JP2024518013A (ja) 2021-03-10 2024-04-24 イミュノウェイク インコーポレイテッド 免疫調節分子及びその使用
KR20230156387A (ko) 2021-03-12 2023-11-14 얀센 바이오테크 인코포레이티드 항-il23 특이적 항체에 의해 건선성 관절염을 치료하는 안전하고 효과적인 방법
BR112023018400A2 (pt) 2021-03-12 2023-12-12 Janssen Biotech Inc Método para tratamento de pacientes de artrite psoriática com resposta inadequada à terapia de tnf com anticorpo específico anti-il23
AR125074A1 (es) 2021-03-12 2023-06-07 Genentech Inc Anticuerpos anti-klk7, anticuerpos anti-klk5, anticuerpos multiespecíficos anti-klk5 / klk7 y métodos de uso
WO2022198192A1 (en) 2021-03-15 2022-09-22 Genentech, Inc. Compositions and methods of treating lupus nephritis
WO2022198141A1 (en) 2021-03-19 2022-09-22 Iovance Biotherapeutics, Inc. Methods for tumor infiltrating lymphocyte (til) expansion related to cd39/cd69 selection and gene knockout in tils
WO2022197877A1 (en) 2021-03-19 2022-09-22 Genentech, Inc. Methods and compositions for time delayed bio-orthogonal release of cytotoxic agents
AR125199A1 (es) 2021-03-23 2023-06-21 Iovance Biotherapeutics Inc Edición génica cish de linfocitos infiltrantes de tumores y usos de los mismos en inmunoterapia
EP4314049A1 (en) 2021-03-25 2024-02-07 Dynamicure Biotechnology LLC Anti-igfbp7 constructs and uses thereof
KR20240032711A (ko) 2021-03-25 2024-03-12 이오반스 바이오테라퓨틱스, 인크. T-세포 공배양 효능 검정 및 세포 치료제와 함께 사용하기 위한 방법 및 조성물
WO2022201122A1 (en) 2021-03-26 2022-09-29 Janssen Biotech, Inc. Humanized antibodies against paired helical filament tau and uses thereof
CA3207652A1 (en) 2021-03-26 2022-09-29 Stephanie Cornen Cytokine anchors for nkp46-binding nk cell engager proteins
EP4313296A1 (en) 2021-03-31 2024-02-07 Bioverativ USA Inc. Reducing surgery-associated hemolysis in cold agglutinin disease patients
EP4314068A1 (en) 2021-04-02 2024-02-07 The Regents Of The University Of California Antibodies against cleaved cdcp1 and uses thereof
EP4326287A2 (en) 2021-04-19 2024-02-28 Iovance Biotherapeutics, Inc. Chimeric costimulatory receptors, chemokine receptors, and the use of same in cellular immunotherapies
CA3215965A1 (en) 2021-04-19 2022-10-27 Amy Shen Modified mammalian cells
WO2022235867A2 (en) 2021-05-06 2022-11-10 The Rockefeller University Neutralizing anti-sars- cov-2 antibodies and methods of use thereof
AU2022269139A1 (en) 2021-05-07 2023-11-16 Alpine Immune Sciences, Inc. Methods of dosing and treatment with a taci-fc fusion immunomodulatory protein
EP4337266A1 (en) 2021-05-12 2024-03-20 Genentech, Inc. Methods of using anti-cd79b immunoconjugates to treat diffuse large b-cell lymphoma
US20220389097A1 (en) 2021-05-14 2022-12-08 Genentech Inc. Agonists of TREM2
EP4340850A1 (en) 2021-05-17 2024-03-27 Iovance Biotherapeutics, Inc. Pd-1 gene-edited tumor infiltrating lymphocytes and uses of same in immunotherapy
US20230115257A1 (en) 2021-05-17 2023-04-13 Curia Ip Holdings, Llc Sars-cov-2 spike protein antibodies
US20220372114A1 (en) 2021-05-17 2022-11-24 Curia Ip Holdings, Llc Sars-cov-2 spike protein antibodies
WO2022243261A1 (en) 2021-05-19 2022-11-24 F. Hoffmann-La Roche Ag Agonistic cd40 antigen binding molecules targeting cea
WO2022246259A1 (en) 2021-05-21 2022-11-24 Genentech, Inc. Modified cells for the production of a recombinant product of interest
CA3220227A1 (en) 2021-05-28 2022-12-01 Matthew Bruce Combination therapies for treating cancer
WO2022253756A1 (en) 2021-06-01 2022-12-08 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of b cell depleting agents for the treatment of rheumatic heart disease
EP4155321A1 (en) 2021-06-04 2023-03-29 Chugai Seiyaku Kabushiki Kaisha Anti-ddr2 antibodies and uses thereof
AU2022288574A1 (en) 2021-06-09 2023-11-30 Innate Pharma Multispecific antibodies binding to cd20, nkp46, cd16 and conjugated to il-2
WO2022258691A1 (en) 2021-06-09 2022-12-15 Innate Pharma Multispecific proteins binding to nkg2d, a cytokine receptor, a tumour antigen and cd16a
EP4352098A1 (en) 2021-06-09 2024-04-17 Innate Pharma Multispecific proteins binding to nkp46, a cytokine receptor, a tumour antigen and cd16a
WO2022258678A1 (en) 2021-06-09 2022-12-15 Innate Pharma Multispecific proteins binding to nkp30, a cytokine receptor, a tumour antigen and cd16a
KR20240019831A (ko) 2021-06-11 2024-02-14 제넨테크, 인크. St2 길항제를 이용하여 만성 폐쇄성 폐질환을 치료하는 방법
EP4355776A1 (en) 2021-06-14 2024-04-24 Argenx BV Anti-il-9 antibodies and methods of use thereof
EP4355785A1 (en) 2021-06-17 2024-04-24 Amberstone Biosciences, Inc. Anti-cd3 constructs and uses thereof
TW202306989A (zh) 2021-06-22 2023-02-16 瑞士商諾華公司 用於在治療化膿性汗腺炎中使用的雙特異性抗體
IL308633A (en) 2021-06-25 2024-01-01 Chugai Pharmaceutical Co Ltd Use of anti-CTLA-4 antibodies
AR126220A1 (es) 2021-06-25 2023-09-27 Chugai Pharmaceutical Co Ltd Anticuerpo anti-ctla-4
WO2023275621A1 (en) 2021-07-01 2023-01-05 Compugen Ltd. Anti-tigit and anti-pvrig in monotherapy and combination treatments
EP4363449A2 (en) 2021-07-02 2024-05-08 Genentech, Inc. Methods and compositions for treating cancer
TW202317633A (zh) 2021-07-08 2023-05-01 美商舒泰神(加州)生物科技有限公司 特異性識別tnfr2的抗體及其用途
AU2022306973A1 (en) 2021-07-09 2024-02-22 Janssen Biotech, Inc. Manufacturing methods for producing anti-il12/il23 antibody compositions
WO2023288182A1 (en) 2021-07-12 2023-01-19 Genentech, Inc. Structures for reducing antibody-lipase binding
WO2023284714A1 (zh) 2021-07-14 2023-01-19 舒泰神(北京)生物制药股份有限公司 特异性识别cd40的抗体及其应用
AU2022310847A1 (en) 2021-07-14 2024-01-25 Genentech, Inc. Anti-c-c motif chemokine receptor 8 (ccr8) antibodies and methods of use
WO2023001884A1 (en) 2021-07-22 2023-01-26 F. Hoffmann-La Roche Ag Heterodimeric fc domain antibodies
CA3226111A1 (en) 2021-07-22 2023-01-26 Iovance Biotherapeutics, Inc. Method for cryopreservation of solid tumor fragments
WO2023004386A1 (en) 2021-07-22 2023-01-26 Genentech, Inc. Brain targeting compositions and methods of use thereof
WO2023010060A2 (en) 2021-07-27 2023-02-02 Novab, Inc. Engineered vlrb antibodies with immune effector functions
WO2023009716A1 (en) 2021-07-28 2023-02-02 Iovance Biotherapeutics, Inc. Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with kras inhibitors
AU2022317820A1 (en) 2021-07-28 2023-12-14 F. Hoffmann-La Roche Ag Methods and compositions for treating cancer
KR20240042476A (ko) 2021-07-30 2024-04-02 오엔에이 테라퓨틱스 에스.엘. 항-cd36 항체 및 암을 치료하기 위한 이의 용도
CN117897404A (zh) 2021-08-02 2024-04-16 信达生物制药(苏州)有限公司 抗CD79b×CD3双特异性抗体及其用途
CN117794954A (zh) 2021-08-03 2024-03-29 葛兰素史密斯克莱知识产权发展有限公司 生物药物组合物和稳定同位素标记肽图谱方法
CN117794953A (zh) 2021-08-03 2024-03-29 豪夫迈·罗氏有限公司 双特异性抗体及使用方法
US20230099756A1 (en) 2021-08-07 2023-03-30 Genentech, Inc. Methods of using anti-cd79b immunoconjugates to treat diffuse large b-cell lymphoma
WO2023019239A1 (en) 2021-08-13 2023-02-16 Genentech, Inc. Dosing for anti-tryptase antibodies
CN117858905A (zh) 2021-08-19 2024-04-09 豪夫迈·罗氏有限公司 多价抗变体fc区抗体及使用方法
WO2023027177A1 (ja) 2021-08-26 2023-03-02 協和キリン株式会社 Cd116およびcd131に結合するバイスペシフィック抗体
KR20240049296A (ko) 2021-08-27 2024-04-16 제넨테크, 인크. 타우 병증을 치료하는 방법
TW202325727A (zh) 2021-08-30 2023-07-01 美商建南德克公司 抗聚泛素多特異性抗體
AU2022343729A1 (en) 2021-09-09 2024-03-21 Iovance Biotherapeutics, Inc. Processes for generating til products using pd-1 talen knockdown
WO2023043124A1 (ko) * 2021-09-17 2023-03-23 고려대학교 산학협력단 Fcγrⅲa 결합력이 향상된 당화 fc 변이체들
KR20230042638A (ko) * 2021-09-17 2023-03-29 고려대학교 산학협력단 FcγRⅢa 선택적 결합력 향상 당화 Fc 변이체들
CA3232700A1 (en) 2021-09-24 2023-03-30 Rafael CUBAS Expansion processes and agents for tumor infiltrating lymphocytes
WO2023056069A1 (en) 2021-09-30 2023-04-06 Angiex, Inc. Degrader-antibody conjugates and methods of using same
CA3232806A1 (en) 2021-09-30 2023-04-06 Seagen Inc. B7-h4 antibody-drug conjugates for the treatment of cancer
WO2023056403A1 (en) 2021-09-30 2023-04-06 Genentech, Inc. Methods for treatment of hematologic cancers using anti-tigit antibodies, anti-cd38 antibodies, and pd-1 axis binding antagonists
WO2023057893A1 (en) 2021-10-05 2023-04-13 Glaxosmithkline Intellectual Property Development Limited Combination therapies for treating cancer
CN116064598B (zh) 2021-10-08 2024-03-12 苏州艾博生物科技有限公司 冠状病毒的核酸疫苗
WO2023064958A1 (en) 2021-10-15 2023-04-20 Compugen Ltd. Combination therapy with anti-pvrig antibodies formulations, anti-tigit antibodies, and anti-pd-1 antibodies
AR127482A1 (es) 2021-10-27 2024-01-31 Iovance Biotherapeutics Inc Sistemas y métodos para coordinar la fabricación de células para inmunoterapia específica de paciente
WO2023073615A1 (en) 2021-10-29 2023-05-04 Janssen Biotech, Inc. Methods of treating crohn's disease with anti-il23 specific antibody
TW202342095A (zh) 2021-11-05 2023-11-01 英商阿斯特捷利康英國股份有限公司 用於治療和預防covid—19之組成物
WO2023081818A1 (en) 2021-11-05 2023-05-11 American Diagnostics & Therapy, Llc (Adxrx) Monoclonal antibodies against carcinoembryonic antigens, and their uses
WO2023086807A1 (en) 2021-11-10 2023-05-19 Genentech, Inc. Anti-interleukin-33 antibodies and uses thereof
WO2023086803A1 (en) 2021-11-10 2023-05-19 Iovance Biotherapeutics, Inc. Methods of expansion treatment utilizing cd8 tumor infiltrating lymphocytes
US20230151087A1 (en) 2021-11-15 2023-05-18 Janssen Biotech, Inc. Methods of Treating Crohn's Disease with Anti-IL23 Specific Antibody
AU2022389969A1 (en) 2021-11-16 2024-05-02 Genentech, Inc. Methods and compositions for treating systemic lupus erythematosus (sle) with mosunetuzumab
TW202334202A (zh) 2021-11-16 2023-09-01 瑞士商Ac免疫有限公司 用於治療和診斷的新分子
CA3235096A1 (en) 2021-11-17 2023-05-25 Disc Medicine, Inc. Methods for treating anemia of kidney disease
WO2023095000A1 (en) 2021-11-23 2023-06-01 Janssen Biotech, Inc. Method of treating ulcerative colitis with anti-il23 specific antibody
WO2023094507A1 (en) 2021-11-24 2023-06-01 Formycon Ag Improved ace2 fusion proteins
WO2023094571A1 (en) 2021-11-25 2023-06-01 Formycon Ag Stabilization of ace2 fusion proteins
TW202330582A (zh) 2021-12-15 2023-08-01 美商建南德克公司 穩定的il-18多肽及其用途
WO2023114951A1 (en) 2021-12-17 2023-06-22 Viiv Healthcare Company Combination therapies for hiv infections and uses thereof
AR128031A1 (es) 2021-12-20 2024-03-20 Hoffmann La Roche Anticuerpos agonistas anti-ltbr y anticuerpos biespecíficos que los comprenden
WO2023131901A1 (en) 2022-01-07 2023-07-13 Johnson & Johnson Enterprise Innovation Inc. Materials and methods of il-1beta binding proteins
WO2023139107A1 (en) 2022-01-18 2023-07-27 argenx BV Galectin-10 antibodies
US20230322958A1 (en) 2022-01-19 2023-10-12 Genentech, Inc. Anti-Notch2 Antibodies and Conjugates and Methods of Use
WO2023147399A1 (en) 2022-01-27 2023-08-03 The Rockefeller University Broadly neutralizing anti-sars-cov-2 antibodies targeting the n-terminal domain of the spike protein and methods of use thereof
WO2023147488A1 (en) 2022-01-28 2023-08-03 Iovance Biotherapeutics, Inc. Cytokine associated tumor infiltrating lymphocytes compositions and methods
WO2023147486A1 (en) 2022-01-28 2023-08-03 Iovance Biotherapeutics, Inc. Tumor infiltrating lymphocytes engineered to express payloads
TW202342519A (zh) 2022-02-16 2023-11-01 瑞士商Ac 免疫有限公司 人源化抗tdp-43結合分子及其用途
WO2023168352A1 (en) 2022-03-03 2023-09-07 Yale University Humanized 3e10 antibodies, variants, and antigen binding fragments thereof
WO2023172883A1 (en) 2022-03-07 2023-09-14 Alpine Immune Sciences, Inc. Immunomodulatory proteins of variant cd80 polypeptides, cell therapies thereof and related methods and uses
WO2023173026A1 (en) 2022-03-10 2023-09-14 Sorrento Therapeutics, Inc. Antibody-drug conjugates and uses thereof
WO2023170295A1 (en) 2022-03-11 2023-09-14 Janssen Pharmaceutica Nv Multispecific antibodies and uses thereof
TW202346355A (zh) 2022-03-11 2023-12-01 比利時商健生藥品公司 多特異性抗體及其用途(二)
TW202400636A (zh) 2022-03-11 2024-01-01 比利時商健生藥品公司 多特異性抗體及其用途(一)
WO2023178192A1 (en) 2022-03-15 2023-09-21 Compugen Ltd. Il-18bp antagonist antibodies and their use in monotherapy and combination therapy in the treatment of cancer
WO2023178357A1 (en) 2022-03-18 2023-09-21 Evolveimmune Therapeutics, Inc. Bispecific antibody fusion molecules and methods of use thereof
US20240103010A1 (en) 2022-03-18 2024-03-28 Compugen Ltd. Pvrl2 and/or pvrig as biomarkers for treatment
WO2023186756A1 (en) 2022-03-28 2023-10-05 F. Hoffmann-La Roche Ag Interferon gamma variants and antigen binding molecules comprising these
US20230312703A1 (en) 2022-03-30 2023-10-05 Janssen Biotech, Inc. Method of Treating Psoriasis with IL-23 Specific Antibody
TW202405009A (zh) 2022-03-30 2024-02-01 瑞士商諾華公司 使用抗利尿鈉肽受體1(npr1)抗體治療障礙之方法
GB202204813D0 (en) 2022-04-01 2022-05-18 Bradcode Ltd Human monoclonal antibodies and methods of use thereof
WO2023191816A1 (en) 2022-04-01 2023-10-05 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023196877A1 (en) 2022-04-06 2023-10-12 Iovance Biotherapeutics, Inc. Treatment of nsclc patients with tumor infiltrating lymphocyte therapies
WO2023194565A1 (en) 2022-04-08 2023-10-12 Ac Immune Sa Anti-tdp-43 binding molecules
WO2023201299A1 (en) 2022-04-13 2023-10-19 Genentech, Inc. Pharmaceutical compositions of therapeutic proteins and methods of use
WO2023201369A1 (en) 2022-04-15 2023-10-19 Iovance Biotherapeutics, Inc. Til expansion processes using specific cytokine combinations and/or akti treatment
WO2023203177A1 (en) 2022-04-20 2023-10-26 Kantonsspital St. Gallen Antibodies or antigen-binding fragments pan-specifically binding to gremlin-1 and gremlin-2 and uses thereof
WO2023209177A1 (en) 2022-04-29 2023-11-02 Astrazeneca Uk Limited Sars-cov-2 antibodies and methods of using the same
US20230348604A1 (en) 2022-04-29 2023-11-02 23Andme, Inc. Antigen binding proteins
WO2023215737A1 (en) 2022-05-03 2023-11-09 Genentech, Inc. Anti-ly6e antibodies, immunoconjugates, and uses thereof
WO2023220608A1 (en) 2022-05-10 2023-11-16 Iovance Biotherapeutics, Inc. Treatment of cancer patients with tumor infiltrating lymphocyte therapies in combination with an il-15r agonist
WO2023220597A1 (en) 2022-05-10 2023-11-16 Elpis Biopharmaceuticals Engineered interleukin-2 receptor beta reduced-binding agonist
WO2023219613A1 (en) 2022-05-11 2023-11-16 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2023217933A1 (en) 2022-05-11 2023-11-16 F. Hoffmann-La Roche Ag Antibody that binds to vegf-a and il6 and methods of use
US20230374122A1 (en) 2022-05-18 2023-11-23 Janssen Biotech, Inc. Method for Evaluating and Treating Psoriatic Arthritis with IL23 Antibody
WO2023240058A2 (en) 2022-06-07 2023-12-14 Genentech, Inc. Prognostic and therapeutic methods for cancer
WO2023239803A1 (en) 2022-06-08 2023-12-14 Angiex, Inc. Anti-tm4sf1 antibody-drug conjugates comprising cleavable linkers and methods of using same
WO2023237706A2 (en) 2022-06-08 2023-12-14 Institute For Research In Biomedicine (Irb) Cross-specific antibodies, uses and methods for discovery thereof
WO2023237928A2 (en) 2022-06-10 2023-12-14 Horizon Therapeutics Ireland Dac Igf1r antibodies
WO2023242362A1 (en) 2022-06-15 2023-12-21 argenx BV Fcrn/antigen-binding molecules and methods of use
US20240117021A1 (en) 2022-06-15 2024-04-11 Bioverativ Usa Inc. Anti-complement c1s antibody formulation
US20240025978A1 (en) 2022-06-24 2024-01-25 Bioverativ Usa Inc. Methods for treating complement-mediated diseases
WO2024011114A1 (en) 2022-07-06 2024-01-11 Iovance Biotherapeutics, Inc. Devices and processes for automated production of tumor infiltrating lymphocytes
WO2024015897A1 (en) 2022-07-13 2024-01-18 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020407A1 (en) 2022-07-19 2024-01-25 Staidson Biopharma Inc. Antibodies specifically recognizing b- and t-lymphocyte attenuator (btla) and uses thereof
WO2024020432A1 (en) 2022-07-19 2024-01-25 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
WO2024020564A1 (en) 2022-07-22 2024-01-25 Genentech, Inc. Anti-steap1 antigen-binding molecules and uses thereof
WO2024020579A1 (en) 2022-07-22 2024-01-25 Bristol-Myers Squibb Company Antibodies binding to human pad4 and uses thereof
WO2024026386A1 (en) 2022-07-27 2024-02-01 Cephalon Llc Anti-tl1a antibody formulations
WO2024026395A1 (en) 2022-07-27 2024-02-01 Cephalon Llc Anti-tl1a antibodies for the treatment of ulcerative colitis and crohn's disease
WO2024026496A1 (en) 2022-07-28 2024-02-01 Compugen Ltd. Combination therapy with anti-pvrig antibodies formulations and anti-pd-1 antibodies
WO2024030758A1 (en) 2022-08-01 2024-02-08 Iovance Biotherapeutics, Inc. Chimeric costimulatory receptors, chemokine receptors, and the use of same in cellular immunotherapies
WO2024028732A1 (en) 2022-08-05 2024-02-08 Janssen Biotech, Inc. Cd98 binding constructs for treating brain tumors
WO2024028731A1 (en) 2022-08-05 2024-02-08 Janssen Biotech, Inc. Transferrin receptor binding proteins for treating brain tumors
WO2024037633A2 (en) 2022-08-19 2024-02-22 Evive Biotechnology (Shanghai) Ltd Formulations comprising g-csf and uses thereof
WO2024042112A1 (en) 2022-08-25 2024-02-29 Glaxosmithkline Intellectual Property Development Limited Antigen binding proteins and uses thereof
WO2024044675A1 (en) 2022-08-25 2024-02-29 Beigene, Ltd. Methods of cancer treatment using anti-pd1 antibodies in combination with anti-tim3 antibodies
WO2024050524A1 (en) 2022-09-01 2024-03-07 University Of Georgia Research Foundation, Inc. Compositions and methods for directing apolipoprotein l1 to induce mammalian cell death
WO2024049949A1 (en) 2022-09-01 2024-03-07 Genentech, Inc. Therapeutic and diagnostic methods for bladder cancer
WO2024054929A1 (en) 2022-09-07 2024-03-14 Dynamicure Biotechnology Llc Anti-vista constructs and uses thereof
WO2024052503A1 (en) 2022-09-08 2024-03-14 Institut National de la Santé et de la Recherche Médicale Antibodies having specificity to ltbp2 and uses thereof
WO2024056668A1 (en) 2022-09-12 2024-03-21 Institut National de la Santé et de la Recherche Médicale New anti-itgb8 antibodies and its uses thereof
WO2024062074A1 (en) 2022-09-21 2024-03-28 Sanofi Biotechnology Humanized anti-il-1r3 antibody and methods of use
WO2024061930A1 (en) 2022-09-22 2024-03-28 Institut National de la Santé et de la Recherche Médicale New method to treat and diagnose peripheral t-cell lymphoma (ptcl)
WO2024077018A2 (en) 2022-10-04 2024-04-11 Alpine Immune Sciences, Inc. Methods and uses of taci-fc fusion immunomodulatory protein
WO2024077239A1 (en) 2022-10-07 2024-04-11 Genentech, Inc. Methods of treating cancer with anti-c-c motif chemokine receptor 8 (ccr8) antibodies
WO2024091991A1 (en) 2022-10-25 2024-05-02 Genentech, Inc. Therapeutic and diagnostic methods for multiple myeloma
WO2024089609A1 (en) 2022-10-25 2024-05-02 Ablynx N.V. Glycoengineered fc variant polypeptides with enhanced effector function
WO2024092038A2 (en) 2022-10-25 2024-05-02 Ablexis, Llc Anti-cd3 antibodies

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
USRE30985E (en) 1978-01-01 1982-06-29 Serum-free cell culture media
FR2413974A1 (fr) 1978-01-06 1979-08-03 David Bernard Sechoir pour feuilles imprimees par serigraphie
US4275149A (en) 1978-11-24 1981-06-23 Syva Company Macromolecular environment control in specific receptor assays
US4318980A (en) 1978-04-10 1982-03-09 Miles Laboratories, Inc. Heterogenous specific binding assay employing a cycling reactant as label
US4419446A (en) 1980-12-31 1983-12-06 The United States Of America As Represented By The Department Of Health And Human Services Recombinant DNA process utilizing a papilloma virus DNA as a vector
NZ201705A (en) 1981-08-31 1986-03-14 Genentech Inc Recombinant dna method for production of hepatitis b surface antigen in yeast
US4601978A (en) 1982-11-24 1986-07-22 The Regents Of The University Of California Mammalian metallothionein promoter system
US4560655A (en) 1982-12-16 1985-12-24 Immunex Corporation Serum-free cell culture medium and process for making same
US4657866A (en) 1982-12-21 1987-04-14 Sudhir Kumar Serum-free, synthetic, completely chemically defined tissue culture media
US4490473A (en) 1983-03-28 1984-12-25 Panab Labeled antibodies and methods
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
DD266710A3 (de) 1983-06-06 1989-04-12 Ve Forschungszentrum Biotechnologie Verfahren zur biotechnischen Herstellung van alkalischer Phosphatase
US4752601A (en) 1983-08-12 1988-06-21 Immunetech Pharmaceuticals Method of blocking immune complex binding to immunoglobulin FC receptors
US4767704A (en) 1983-10-07 1988-08-30 Columbia University In The City Of New York Protein-free culture medium
US4965199A (en) 1984-04-20 1990-10-23 Genentech, Inc. Preparation of functional human factor VIII in mammalian cells using methotrexate based selection
US4879231A (en) 1984-10-30 1989-11-07 Phillips Petroleum Company Transformation of yeasts of the genus pichia
US4737456A (en) 1985-05-09 1988-04-12 Syntex (U.S.A.) Inc. Reducing interference in ligand-receptor binding assays
GB8516415D0 (en) 1985-06-28 1985-07-31 Celltech Ltd Culture of animal cells
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
US5091178A (en) 1986-02-21 1992-02-25 Oncogen Tumor therapy with biologically active anti-tumor antibodies
US4927762A (en) 1986-04-01 1990-05-22 Cell Enterprises, Inc. Cell culture medium with antioxidant
GB8610600D0 (en) 1986-04-30 1986-06-04 Novo Industri As Transformation of trichoderma
US5985599A (en) 1986-05-29 1999-11-16 The Austin Research Institute FC receptor for immunoglobulin
DE3883899T3 (de) * 1987-03-18 1999-04-22 Sb2 Inc Geänderte antikörper.
US5204244A (en) 1987-10-27 1993-04-20 Oncogen Production of chimeric antibodies by homologous recombination
US5576184A (en) * 1988-09-06 1996-11-19 Xoma Corporation Production of chimeric mouse-human antibodies with specificity to human tumor antigens
ATE135397T1 (de) 1988-09-23 1996-03-15 Cetus Oncology Corp Zellenzuchtmedium für erhöhtes zellenwachstum, zur erhöhung der langlebigkeit und expression der produkte
FR2646437B1 (fr) 1989-04-28 1991-08-30 Transgene Sa Nouvelles sequences d'adn, leur application en tant que sequence codant pour un peptide signal pour la secretion de proteines matures par des levures recombinantes, cassettes d'expression, levures transformees et procede de preparation de proteines correspondant
EP0402226A1 (en) 1989-06-06 1990-12-12 Institut National De La Recherche Agronomique Transformation vectors for yeast yarrowia
EP0739904A1 (en) 1989-06-29 1996-10-30 Medarex, Inc. Bispecific reagents for aids therapy
GB8916400D0 (en) * 1989-07-18 1989-09-06 Dynal As Modified igg3
US5122469A (en) 1990-10-03 1992-06-16 Genentech, Inc. Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins
US5364930A (en) * 1990-10-16 1994-11-15 Northwestern University Synthetic C1q peptide fragments
US5419904A (en) * 1990-11-05 1995-05-30 The Regents Of The University Of California Human B-lymphoblastoid cell line secreting anti-ganglioside antibody
EP0586505A1 (en) 1991-05-14 1994-03-16 Repligen Corporation Heteroconjugate antibodies for treatment of hiv infection
US6136310A (en) 1991-07-25 2000-10-24 Idec Pharmaceuticals Corporation Recombinant anti-CD4 antibodies for human therapy
WO1993008829A1 (en) 1991-11-04 1993-05-13 The Regents Of The University Of California Compositions that mediate killing of hiv-infected cells
GB9206422D0 (en) * 1992-03-24 1992-05-06 Bolt Sarah L Antibody preparation
CA2118508A1 (en) 1992-04-24 1993-11-11 Elizabeth S. Ward Recombinant production of immunoglobulin-like domains in prokaryotic cells
WO1994004690A1 (en) 1992-08-17 1994-03-03 Genentech, Inc. Bispecific immunoadhesins
EP1005870B1 (en) * 1992-11-13 2009-01-21 Biogen Idec Inc. Therapeutic application of chimeric antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma
US5736137A (en) 1992-11-13 1998-04-07 Idec Pharmaceuticals Corporation Therapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma
US5885573A (en) * 1993-06-01 1999-03-23 Arch Development Corporation Methods and materials for modulation of the immunosuppressive activity and toxicity of monoclonal antibodies
US6491916B1 (en) 1994-06-01 2002-12-10 Tolerance Therapeutics, Inc. Methods and materials for modulation of the immunosuppresive activity and toxicity of monoclonal antibodies
EP0714409A1 (en) 1993-06-16 1996-06-05 Celltech Therapeutics Limited Antibodies
US5731168A (en) * 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US5730977A (en) * 1995-08-21 1998-03-24 Mitsui Toatsu Chemicals, Inc. Anti-VEGF human monoclonal antibody
US6750334B1 (en) 1996-02-02 2004-06-15 Repligen Corporation CTLA4-immunoglobulin fusion proteins having modified effector functions and uses therefor
DE69731289D1 (de) 1996-03-18 2004-11-25 Univ Texas Immunglobulinähnliche domäne mit erhöhten halbwertszeiten
US5834597A (en) 1996-05-20 1998-11-10 Protein Design Labs, Inc. Mutated nonactivating IgG2 domains and anti CD3 antibodies incorporating the same
WO1998023289A1 (en) * 1996-11-27 1998-06-04 The General Hospital Corporation MODULATION OF IgG BINDING TO FcRn
US6277375B1 (en) * 1997-03-03 2001-08-21 Board Of Regents, The University Of Texas System Immunoglobulin-like domains with increased half-lives
DE19721700C1 (de) 1997-05-23 1998-11-19 Deutsches Krebsforsch Mutierter OKT3-Antikörper
PT994903E (pt) * 1997-06-24 2005-10-31 Genentech Inc Metodos e composicoes para glicoproteinas galactosiladas
EP1060194A1 (en) 1998-02-25 2000-12-20 Lexigen Pharmaceuticals Corp. Enhancing the circulating half-life of antibody-based fusion proteins
US6242195B1 (en) 1998-04-02 2001-06-05 Genentech, Inc. Methods for determining binding of an analyte to a receptor
US6528624B1 (en) 1998-04-02 2003-03-04 Genentech, Inc. Polypeptide variants
US6194551B1 (en) * 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
JP2002510481A (ja) * 1998-04-02 2002-04-09 ジェネンテック・インコーポレーテッド 抗体変異体及びその断片
GB9809951D0 (en) 1998-05-08 1998-07-08 Univ Cambridge Tech Binding molecules
WO2000009560A2 (en) 1998-08-17 2000-02-24 Abgenix, Inc. Generation of modified molecules with increased serum half-lives
US7183387B1 (en) 1999-01-15 2007-02-27 Genentech, Inc. Polypeptide variants with altered effector function
US6737056B1 (en) * 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
PL209786B1 (pl) 1999-01-15 2011-10-31 Genentech Inc Przeciwciało zawierające wariant regionu Fc ludzkiej IgG1, przeciwciało wiążące czynnik wzrostu śródbłonka naczyń oraz immunoadhezyna
US6676927B1 (en) * 1999-01-20 2004-01-13 The Rockefeller University Animal model and methods for its use in the selection of cytotoxic antibodies
CN1406249B (zh) 2000-02-11 2010-06-16 默克专利股份有限公司 增加基于抗体的融合蛋白的循环半衰期
IL151348A0 (en) 2000-04-13 2003-04-10 Univ Rockefeller Enhancement of antibody-mediated immune responses
ES2649037T3 (es) 2000-12-12 2018-01-09 Medimmune, Llc Moléculas con semividas prolongadas, composiciones y usos de las mismas
US20040002587A1 (en) * 2002-02-20 2004-01-01 Watkins Jeffry D. Fc region variants
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
CA2491488A1 (en) 2002-07-09 2004-01-15 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
ATE541857T1 (de) 2002-09-27 2012-02-15 Xencor Inc Optimierte fc-varianten und herstellungsverfahren dafür
JP4768439B2 (ja) 2002-10-15 2011-09-07 アボット バイオセラピューティクス コーポレイション 変異誘発による抗体のFcRn結合親和力又は血清半減期の改変
US7217797B2 (en) 2002-10-15 2007-05-15 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
US7608260B2 (en) * 2003-01-06 2009-10-27 Medimmune, Llc Stabilized immunoglobulins
JP2006524039A (ja) 2003-01-09 2006-10-26 マクロジェニクス,インコーポレーテッド 変異型Fc領域を含む抗体の同定および作製ならびにその利用法
CA2545539A1 (en) 2003-10-15 2005-04-28 Pdl Biopharma, Inc. Alteration of fc-fusion protein serum half-lives by mutagenesis of positions 250, 314 and/or 428 of the heavy chain constant region of ig
AU2005285347A1 (en) 2004-08-19 2006-03-23 Genentech, Inc. Polypeptide variants with altered effector function
DOP2006000029A (es) 2005-02-07 2006-08-15 Genentech Inc Antibody variants and uses thereof. (variantes de un anticuerpo y usos de las mismas)

Also Published As

Publication number Publication date
CN1763097B (zh) 2011-04-13
HK1090066A1 (en) 2006-12-15
HU230769B1 (hu) 2018-03-28
NZ539776A (en) 2006-12-22
IL223048A0 (en) 2012-12-31
US20080274506A1 (en) 2008-11-06
IL223047A (en) 2016-10-31
PL394232A1 (pl) 2011-07-04
PL349770A1 (en) 2002-09-09
HUP0104865A2 (hu) 2002-04-29
MX353234B (es) 2018-01-08
JP5335735B2 (ja) 2013-11-06
CN1763097A (zh) 2006-04-26
AU2008229968A1 (en) 2008-11-06
CA2359067A1 (en) 2000-07-20
EP2366713A3 (en) 2012-06-27
EP2364997A3 (en) 2012-07-04
WO2000042072A2 (en) 2000-07-20
AU2008229968B2 (en) 2012-08-09
HUP0104865A3 (en) 2004-07-28
KR100940380B1 (ko) 2010-02-02
WO2000042072A3 (en) 2000-11-30
CA2359067C (en) 2017-03-14
AU2850500A (en) 2000-08-01
US20060194290A1 (en) 2006-08-31
HUP1500355A2 (en) 2002-04-29
EP2366713A2 (en) 2011-09-21
ES2694002T3 (es) 2018-12-17
CN1237076C (zh) 2006-01-18
EP1141024A2 (en) 2001-10-10
EP2364997A2 (en) 2011-09-14
KR101077001B1 (ko) 2011-10-26
ZA200105484B (en) 2002-07-29
PL209392B1 (pl) 2011-08-31
CN1343221A (zh) 2002-04-03
MXPA01007170A (es) 2002-07-30
JP6312092B2 (ja) 2018-04-18
KR20060067983A (ko) 2006-06-20
KR20090078369A (ko) 2009-07-17
US20060194291A1 (en) 2006-08-31
PL220113B1 (pl) 2015-08-31
JP2013166770A (ja) 2013-08-29
KR20080090572A (ko) 2008-10-08
EP1141024B1 (en) 2018-08-08
KR101155191B1 (ko) 2012-06-13
JP2010227116A (ja) 2010-10-14
IL223048A (en) 2016-09-29
KR100887482B1 (ko) 2009-03-10
IL144056A (en) 2014-04-30
IL223047A0 (en) 2012-12-31
IL222149B (en) 2018-11-29
US20080274105A1 (en) 2008-11-06
JP2016136951A (ja) 2016-08-04
KR20010102976A (ko) 2001-11-17
US7371826B2 (en) 2008-05-13
IL144056A0 (en) 2002-04-21
KR20100045527A (ko) 2010-05-03
US7790858B2 (en) 2010-09-07
BR0008758A (pt) 2001-12-04
US7785791B2 (en) 2010-08-31
JP6230257B2 (ja) 2017-11-15
JP2003512019A (ja) 2003-04-02
EP2386574A3 (en) 2012-06-27
AU778683B2 (en) 2004-12-16
EP2386574A2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP6312092B2 (ja) 変化したエフェクター機能を有するポリペプチド変異体
CA2323757C (en) Antibody variants and fragments thereof
US8674083B2 (en) Polypeptide variants with altered effector function
US7335742B2 (en) Polypeptide variants with altered effector function
US20030158389A1 (en) Polypeptide variants
CA2740948A1 (en) Antibody variants and fragments thereof
AU2012211437B2 (en) Polypeptide variants with altered effector function
AU2004233493B2 (en) Polypeptide variants with altered effector function