CN117794953A - 双特异性抗体及使用方法 - Google Patents

双特异性抗体及使用方法 Download PDF

Info

Publication number
CN117794953A
CN117794953A CN202280054162.6A CN202280054162A CN117794953A CN 117794953 A CN117794953 A CN 117794953A CN 202280054162 A CN202280054162 A CN 202280054162A CN 117794953 A CN117794953 A CN 117794953A
Authority
CN
China
Prior art keywords
domain
seq
amino acid
acid sequence
cdr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280054162.6A
Other languages
English (en)
Inventor
U·布林克曼
L·科达里·德克
C·克莱因
A·S·英德科夫
D·施密德
P·A·A·韦伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of CN117794953A publication Critical patent/CN117794953A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2881Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD71
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/44Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/35Valency
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/524CH2 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/53Hinge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/77Internalization into the cell
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Transplantation (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明涉及双特异性抗体,所述双特异性抗体包含与TfR特异性结合的第一抗原结合结构域以及与PD1特异性结合的第二抗原结合结构域和任选的第三抗原结合结构域。本发明进一步涉及生产这些分子的方法、使用这些分子的方法、其药物组合物以及它们作为用于治疗癌症、急性和慢性感染以及移植物抗宿主病的药物的用途。

Description

双特异性抗体及使用方法
技术领域
本发明涉及双特异性抗体,所述双特异性抗体包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域。本发明还涉及包含所述双特异性抗体的免疫缀合物以及使用所述双特异性抗体或所述免疫缀合物的方法。
背景技术
蛋白质程序性死亡1(PD1或CD279)是细胞表面受体的CD28家族的抑制性成员,该家族还包括CD28、CTLA-4、ICOS和BTLA,并且结合PD-L1和PD-L2(Greenwald R.J.等人AnnuRev Immunol.(2005)23:515-48;Freeman G.J.等人J Exp Med.(2000)192:1027-34;Latchman Y.等人Nat Immunol.(2001)2:261-8),形成所谓的PD1/PD-L1轴。PD1在激活的B细胞、T细胞和髓样细胞上表达(Agata等人,同上;Okazaki等人(2002)Curr.Opin.Immunol.14:391779-82;Bennett等人(2003)J Immunol170:711-8)。PD1基因是一种55kDa I型跨膜蛋白,属于Ig基因超家族的一部分(Agata等人(1996)Int Immunol 8:765-72)。PD1包含膜近端免疫受体酪氨酸抑制基序(ITIM)和膜远端基于酪氨酸的开关基序(ITSM)(Thomas,M.L.(1995)J Exp Med 181:1:1953-6;Vivier,E.和Daeron,M.(1997)Immunol Today 18:286-91)。尽管结构与CTLA-4相似,但PD1缺乏对B7-1和B7-2的结合至关重要的MYPPPY基序(SEQ ID NO:71)。已鉴定出PD1的两种配体:PD-L1(CD274)和PD-L2(CD273),它们已被证明在与PD1结合后下调T细胞激活(Freeman等人(2000)J Exp Med192:1027-34;Latchman等人(2001)Nat Immunol 2:261-8;Carter等人(2002)Eur JImmunol 32:634-43)。PD-L1和PD-L2二者都与PD1结合,而不与其他CD28家族成员结合的B7同源物。PD1的一种配体PD-L1在多种人类癌症中是丰富的(Dong等人(2002)Nat.Med 8:787-9)。利用单克隆抗体和小分子药物靶向PD1/PD-L1免疫检查点已成为免疫肿瘤学的主要焦点。
除了其作为CD28家族的抑制性成员的作用以外,已经发现PD1在自身免疫性脑脊髓炎、系统性红斑狼疮、移植物抗宿主病(GVHD)、I型糖尿病和类风湿性关节炎中发挥作用(Salama等人(2003)J Exp Med 198:71-78;Prokunina和Alarcon-Riquelme(2004)Hum MoIGenet 13:R143;Nielsen等人(2004)Lupus 13:510)。在鼠B细胞肿瘤系中,PD1的ITSM被证明在阻断B细胞受体介导的Ca2+流和下游效应分子的酪氨酸磷酸化方面至关重要(Okazaki等人(2001)PNAS 98:13866-71)。
多个专利申请公开了抗PD1抗体的生产和/或用干扰PD-L1结合和/或PD1信号传导的剂(包括抗PD1抗体)增强免疫应答的方法,包括以下:US2003/0039653、US2004/0213795、US2006/0110383、US2007/0065427、US2007/0122378、US2012/237522、WO2004/072286、WO2006/121168、WO2006/133396、WO2007/005874、WO2008/083174、WO2008/156712、WO2009/024531、WO2009/014708、WO2009/114335、WO2010/027828、WO2010/027423、WO2010/036959、WO2010/029435、WO2010/029434、WO2010/063011、WO2010/089411、WO2011/066342、WO2011/110604、WO2011/110621和WO2012/145493。
转铁蛋白受体(TfR)为膜受体,通过结合铁-转铁蛋白复合物并通过受体介导的内吞作用将其内化,从而参与铁转运至细胞内。由于其快速的内化和再循环率,TfR是细胞内递送治疗方法的一个有吸引力的靶标。然而,由于TfR在全身大量表达,体内递送大多低效且不具有特异性。
本领域中描述的PD1抗体的作用依赖于通过与PD1结合来阻断PD-L1和PD1之间的相互作用。由于即使是抗PD1抗体与PD1的最强烈的抗体结合也是非共价的并因此是短暂的,需要开发靶向PD1的新化合物,其比已知的抗PD1抗体具有改进的功效和更持久的作用。
发明内容
在一方面,本发明提供了新颖的双特异性抗体,所述双特异性抗体包含特异性结合TfR的第一抗原结合结构域,和特异性结合PD1/PD-L1轴的分子的第二抗原结合结构域和任选地第三抗原结合结构域。在一方面,PD1/PD-L1轴分子选自由PD1、PD-L1和PD-L2组成的组。在一个具体的方面,PD1/PD-L1轴分子为PD1或PD-L1。在一个具体的方面,PD1/PD-L1轴分子为PD1。本发明的抗TfR抗PD1双特异性抗体具有特别有益的特性,诸如功能优化的结合亲和力、增加的生物活性、对特定T细胞的特异性靶向和高靶向效率。
在另一方面,双特异性抗体结合表达并在其表面上展示TfR和PD1的细胞的表面上的TfR和PD1受体。在优选的方面,抗体与TfR和PD1的结合是同时的。当双特异性抗体与细胞表面上的TfR和PD1结合后,PD1从表达TfR和PD1的所述细胞的表面上被清除,优选地通过将双特异性抗体与TfR和PD1形成的复合物内化到所述细胞中清除。因此,PD1从细胞表面被清除,优选地与TfR和结合的双特异性抗体一起被清除。本发明至少部分基于以下发现:本发明的抗PD1抗TfR双特异性抗体具有通过从细胞表面去除PD1来抑制PD1和PD-L1之间的相互作用的有益效果,这比通过仅仅结合抗PD1阻断抗体(这不导致PD1的内化和PD1从细胞表面的清除)可实现的抑制更有效和/或更持久。
在一个方面,本发明提供了一种双特异性抗体,其包含特异性结合TfR的第一抗原结合结构域、特异性结合PD1的第二抗原结合结构域和特异性结合PD1的第三抗原结合结构域。因此,这种双特异性抗体具有一个对TfR特异性的抗原结合结构域和两个对PD1特异性的抗原结合结构域。这种具有两个针对第一靶标的结合结构域和一个针对第二靶标的结合结构域的分子也被称为2+1形式或2+1形式抗体。在一个方面,这些分子基于IgG类Fab片段,并且任选地还基于IgG类Fc区,其可以以不同构象彼此共价结合,以产生不同的2+1形式抗体。图1至图4中显示了具有不同抗原结合结构域的构象的不同2+1形式的实例。本领域描述了另外的构象在(Brinkmann和Kontermann(2017)MAbs 9(2):182-212;Kontermann和Brinkmann(2015)Drug Discov Today 20(7):838-47;Bacac M等人(2018)Clin CancerRes.24(19):4785-4797;Rius Ruiz等人(2018)Sci Transl Med10(461):eaat1445;Seckinger等人(2017)Cancer Cell.31(3):396-410;Bacac等人(2016)Oncoimmunology.5(8):e1203498;Bacac等人(2016)Clin Cancer Res.22(13):3286-97;Weber等人(2018)Cell Rep.22(1):149-162;Niewoehner等人(2014)Neuron.81(1):49-60)。
令人惊讶的是,已经发现这种抗TfR抗PD1 2+1形式抗体,即具有分别靶向抗PD1和抗TfR的结合结构域的2:1化学计量的双特异性抗体,或者换句话说,包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和第三抗原结合结构域的双特异性抗体,显示出比单特异性的二价PD1抗体改善的生物学活性并更好地抑制PD1和PD-L1之间的相互作用。
在双特异性抗体的一个方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域,第一抗原结合结构域、第二抗原结合结构域和/或当存在时的第三抗原结合结构域为Fab片段。在进一步的方面,本发明涉及双特异性抗体,所述双特异性抗体包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域,其中所述双特异性抗体包含由第一亚基和第二亚基构成的Fc结构域。在具体方面,所述双特异性抗体包含的一个或多个Fab片段与Fc结构域融合。在另一方面,Fab片段经由肽接头与Fc结构域融合。在另外的方面,Fc结构域为IgG Fc结构域,特别是IgG1 Fc结构域或IgG4 Fc结构域。在具体方面,双特异性抗体的重链为γ型(IgG),特别是γ1型。在另一个具体的方面,基于其恒定结构域的氨基酸序列,双特异性抗体的轻链属于kappa(κ)亚型和/或lambda(λ)亚型。
在一个方面,本发明提供了一种双特异性抗体,其包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域,其中双特异性抗体包含Fc结构域、第一Fab片段和第二Fab片段和任选地第三Fab片段,第一Fab片段包含特异性结合TfR的抗原结合结构域,第二Fab片段和任选地第三Fab片段包含特异性结合PD1的抗原结合结构域。在具体方面,双特异性抗体包含Fc结构域、包含特异性结合TfR的抗原结合结构域的第一Fab片段以和包含特异性结合PD1的抗原结合结构域的第二Fab片段和任选地第三Fab片段,其中Fab片段与Fc结构域融合。在一个方面,双特异性抗体确切地包含一个(单价的)与TfR特异性结合的抗原结合结构域且确切地包含两个(单价的)与PD1特异性结合的抗原结合结构域。特别地,Fc结构域为IgG Fc结构域,特别是IgG1 Fc结构域或IgG4 Fc结构域。在一个具体的方面,双特异性抗体的重链为γ型(IgG),特别是γ1(IgG1)亚型。在另一个具体的方面,基于其恒定结构域的氨基酸序列,双特异性抗体的轻链属于kappa(κ)亚型和/或lambda(λ)亚型。在一个方面,双特异性抗体不包含J链。在另一方面,双特异性抗体不包含杂交IgA/IgG抗体序列和/或杂交IgM/IgG抗体序列。在进一步的方面,双特异性抗体主要呈单体形式,即,其不形成包含多于一个本发明的双特异性抗体的二聚体或多聚体(例如五聚体)结构。在具体方面,至少90%、更具体地至少95%、优选地至少98%、更优选地至少99%的抗体呈单体形式。
在一个方面,本发明涉及一种双特异性抗体,其包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域,其中Fc结构域包含一个或多个氨基酸取代,所述一个或多个氨基酸取代减少与Fc受体,特别是与Fcγ受体的结合。具体地,Fc结构域属于人IgG1亚类,具有氨基酸突变L234A、L235A和P329G(根据Kabat EU索引编号)。
在另一方面,本发明涉及一种双特异性抗体,其包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域,其中Fc结构域包含促进Fc结构域的第一亚基和第二亚基的缔合的修饰。在一个方面,本发明涉及一种双特异性抗体,其包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域,其中根据杵臼结构方法(knobs intoholes method),Fc结构域的第一亚基包含杵而Fc结构域的第二亚基包含臼。在具体方面,双特异性抗体是其中Fc结构域的第一亚基包含氨基酸取代S354C和T366W(根据Kabat EU索引编号),并且Fc结构域的第二亚基包含氨基酸取代Y349C、T366S和Y407V(根据Kabat EU索引编号)的双特异性抗体。
在进一步的方面,本发明提供了双特异性抗体,其包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域,其中第一抗原结构域、第二抗原结合结构域和当存在时的第三抗原结合结构域各自为Fab片段,并且其中在Fab片段中的一个或两个中
a)可变结构域VL和VH彼此替换,使得VH结构域为轻链的一部分,并且VL结构域为重链的一部分,或
b)恒定结构域CL和CH1彼此替换,使得CH1结构域为轻链的一部分,并且CL结构域为重链的一部分。
在优选的方面,可变结构域VL和VH彼此替换,使得VH结构域为轻链的一部分,并且VL结构域为重链的一部分。在具体方面,双特异性抗体是其中在包含特异性结合PD1的抗原结合结构域的一个或多个Fab片段中,可变结构域VL和VH彼此替换或者恒定结构域CL和CH1彼此替换的双特异性抗体。在特别优选的方面,在特异性结合PD1的抗原结合结构域中,可变结构域VL和VH彼此替换。在一个方面,双特异性抗体确切地包含一个(单价的)与TfR特异性结合的抗原结合结构域且确切地包含两个(单价的)与PD1特异性结合的抗原结合结构域。
在另外的方面,本发明涉及一种双特异性抗体,其包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域,其中所述第一抗原结合结构域、第二抗原结合结构域和当存在时的第三抗原结合结构域各自为Fab片段,并且其中在Fab片段中的一个或两个中,在恒定结构域CL中,124位处的氨基酸独立地被赖氨酸(K)、精氨酸(R)或组氨酸(H)(根据Kabat EU索引编号)取代,并且在恒定结构域CH1中,147位和213位处的氨基酸独立地被谷氨酸(E)或天冬氨酸(D)(根据Kabat EU索引编号)取代。在具体方面,本发明涉及一种双特异性抗体,其包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域,其中在包含特异性结合TfR的所述抗原结合结构域的Fab片段中,在恒定结构域CL中,124位处的氨基酸独立地被赖氨酸(K)、精氨酸(R)或组氨酸(H)(根据Kabat EU索引编号)取代,并且在恒定结构域CH1中,147位和213位处的氨基酸独立地被谷氨酸(E)或天冬氨酸(D)(根据Kabat EU索引编号)取代。
在具体方面,本发明提供了双特异性抗体,其包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域,其中在包含特异性结合PD1的所述抗原结合结构域的第二Fab片段和当存在时的第三Fab片段中,恒定结构域CL中124位处的氨基酸独立地被赖氨酸(K)、精氨酸(R)或组氨酸(H)(根据KabatEU索引编号)取代,并且在恒定结构域CH1中,147位和213位处的氨基酸独立地被谷氨酸(E)或天冬氨酸(D)(根据Kabat EU索引编号)取代。
在一个方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域的双特异性抗体是二价抗体,其包含
a)与第一抗原特异性结合的抗体的第一轻链和第一重链,以及
b)与第二抗原特异性结合的抗体的第二轻链和第二重链,其中第二轻链和第二重链的可变结构域VL和VH彼此替换,而其中第二轻链和第二重链的恒定结构域CL和CH1彼此替换。
a)下的抗体的两个亚基不包含如b)下报道的修饰,并且a)下的重链和轻链是分离的链。在b)下的抗体的两个亚基中,在轻链内,可变轻链结构域VL被抗体的可变重链结构域VH替换,并且恒定轻链结构域CL被抗体的恒定重链结构域CH1替换;并且在重链内,可变重链结构域VH被抗体的可变轻链结构域VL替换,并且恒定重链结构域CH1被抗体的恒定轻链结构域CL替换。
在一个方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域的双特异性抗体是二价抗体,其包含
a)与第一抗原特异性结合的抗体的第一轻链和第一重链,以及
b)与第二抗原特异性结合的抗体的第二轻链和第二重链,其中所述第二轻链和所述第二重链的可变结构域VL和VH彼此替换。
a)下的抗体的两个亚基不包含如b)下报道的修饰,并且a)下的重链和轻链是分离的链。在b)下的抗体的两个亚基中,在轻链内,可变轻链结构域VL被抗体的可变重链结构域VH替换;并且在重链内,可变重链结构域VH被抗体的可变轻链结构域VL替换。
在一个方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域的双特异性抗体是二价抗体,其包含
a)与第一抗原特异性结合的抗体的第一轻链和第一重链,以及
b)与第二抗原特异性结合的抗体的第二轻链和第二重链,其中所述第二轻链和所述第二重链的恒定结构域CL和CH1彼此替换。
a)下的抗体的两个亚基不包含如b)下报道的修饰,并且a)下的重链和轻链是分离的链。在b)下的抗体的两个亚基中,恒定轻链结构域CL在轻链内被抗体的恒定重链结构域CH1替换;并且恒定重链结构域CH1在重链内被抗体的恒定轻链结构域CL替换。
在一个进一步的方面,本发明提供了双特异性抗体,其包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域,其中第一抗原结合结构域和第二抗原结合结构域和当存在时的第三抗原结合结构域各自为Fab片段并且(i)第二抗原结合结构域在其Fab重链的C末端与第一抗原结合结构域的Fab重链的N末端融合,或(ii)第一抗原结合结构域在其Fab重链的C末端与第二抗原结合结构域的Fab重链的N末端融合。换句话说,双特异性抗体由彼此融合的Fab片段组成。第三抗原结合结构域(当存在时)在其Fab重链的C末端与另外两条Fab重链之一的游离N末端与双特异性抗体融合,或者在其Fab重链的N末端与另外两条Fab重链之一的游离C末端与双特异性抗体融合(另请参见图4的示例性构象)。在一个方面,双特异性抗体确切地包含一个(单价的)与TfR特异性结合的抗原结合结构域且确切地包含两个(单价的)与PD1特异性结合的抗原结合结构域。
在一个方面,双特异性抗体包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和第三抗原结合结构域,其中所述双特异性抗体为包含以下的三价抗体
a)由两条抗体重链和两条抗体轻链组成并包含与PD1特异性结合的两个抗原结合结构域的全长抗体,
b)第一多肽,其由以下项组成:
i)抗体重链可变结构域(VH),或
ii)抗体重链可变结构域(VH)和抗体恒定结构域1(CH1),
其中第一多肽在其VH结构域的N末端经由肽接头与全长抗体的两条重链中的一条的C末端融合,以及
c)第二多肽,其由以下项组成:
i)抗体轻链可变结构域(VL),或
ii)抗体轻链可变结构域(VL)和抗体轻链恒定结构域(CL),
其中第二多肽任选地以VL结构域或CL结构域的N末端经由肽接头与全长抗体的两条重链中的另一条的C末端融合,并且
其中第一多肽的抗体重链可变结构域(VH)和第二多肽的抗体轻链可变结构域(VL)一起形成与TfR特异性结合的抗原结合结构域。
在另一方面,双特异性抗体包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和第三抗原结合结构域,其中所述双特异性抗体为包含以下的三价抗体
a)由两条抗体重链和两条抗体轻链组成并包含与PD1特异性结合的第一抗原结合结构域和与TfR特异性结合的第二抗原结合结构域的全长抗体,
b)第一多肽,其由以下项组成:
i)抗体重链可变结构域(VH),或
ii)抗体重链可变结构域(VH)和抗体恒定结构域1(CH1),
其中所述第一多肽以其VH结构域或当存在时的其恒定结构域1(CH1)的C末端经由肽接头与所述全长抗体的两条重链中的一条的N末端融合,以及
c)第二多肽,其由以下项组成:
i)抗体轻链可变结构域(VL),或
ii)抗体轻链可变结构域(VL)和抗体轻链恒定结构域(CL),
其中所述第二多肽任选地以VL结构域或当存在时的CL结构域的C末端经由肽接头与所述全长抗体的两条重链中的另一条的N末端融合,并且
其中所述第一多肽的抗体重链可变结构域(VH)和所述第二多肽的抗体轻链可变结构域(VL)一起形成与PD1特异性结合的抗原结合结构域。在具体方面,第一多肽和任选地第二多肽与重链的N末端融合,所述重链包含与TfR特异性结合的抗原结合结构域的VH结构域。
在一方面,本发明涉及一种双特异性抗体,其包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域,其中所述第一抗原结合结构域、第二抗原结合结构域和当存在时的第三抗原结合结构域各自为Fab片段,并且所述抗体包含由第一亚基和第二亚基构成的Fc结构域;并且其中
(i)所述第二抗原结合结构域在其Fab重链的C末端与所述第一抗原结合结构域的Fab重链的N末端融合,并且所述第一抗原结合结构域在其Fab重链的C末端与所述Fc结构域的第一亚基的N末端融合,或
(ii)所述第一抗原结合结构域在其Fab重链的C末端与所述第二抗原结合结构域的Fab重链的N末端融合,并且所述第二抗原结合结构域在所述Fab重链的C末端与所述Fc结构域的第一亚基的N末端融合;并且
(iii)当存在时,所述第三抗原结合结构域在其Fab重链的C末端与所述Fc结构域的第二亚基的N末端融合。在一个方面,双特异性抗体为三价抗体。在另一方面,双特异性抗体确切地包含一个(单价的)与TfR特异性结合的抗原结合结构域且确切地包含两个(单价的)与PD1特异性结合的抗原结合结构域。在某些方面,双特异性抗体为IgG类抗体。在另一方面,双特异性抗体的Fab片段和/或Fc区属于IgG类。在某些方面,双特异性抗体为IgG1同种型。在另一方面,双特异性抗体的Fab片段和/或Fc区属于IgG1同种型。
在进一步的方面,本发明提供了一种双特异性抗体,其包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域,其中所述第一抗原结合结构域、第二抗原结合结构域和当存在时的第三抗原结合结构域各自为Fab片段,并且所述抗体包含由第一亚基和第二亚基构成的Fc结构域;并且其中
i)所述第一抗原结合结构域在其Fab重链的N末端与所述Fc结构域的第一亚基或第二亚基的C末端融合,所述第二抗原结合结构域在其Fab重链的C末端与所述Fc结构域的第一亚基的N末端融合,并且当存在时,所述第三抗原结合结构域在其Fab重链的C末端与所述Fc结构域的第二亚基的N末端融合
或者
ii)所述第一抗原结合结构域在其Fab重链的C末端与所述Fc结构域的第一亚基的N末端融合,所述第二抗原结合结构域在其Fab重链的C末端与所述Fc结构域的第二亚基的N末端融合,并且当存在时,所述第三抗原结合结构域在其Fab重链的N末端与所述Fc结构域的第一亚基或第二亚基的C末端融合。在一个方面,双特异性抗体为三价抗体。在另一方面,双特异性抗体确切地包含一个(单价的)与TfR特异性结合的抗原结合结构域且确切地包含两个(单价的)与PD1特异性结合的抗原结合结构域。在某些方面,双特异性抗体为IgG类抗体。在另外的方面,双特异性抗体的Fab片段和/或Fc区属于IgG类。在某些方面,双特异性抗体为IgG1同种型。在又另一方面,双特异性抗体的Fab片段和/或Fc区属于IgG1同种型。
在一个方面中,双特异性抗体是三价抗体,其包含
a)一个包含与TfR特异性结合的第一抗原结合结构域的Fab片段,
b)两个包含与PD1特异性结合的抗原结合结构域的交叉Fab片段,其中CH1和CL结构域彼此交换,
c)一个Fc区,其包含第一Fc区重链和第二Fc区重链,
其中所述Fab片段的CH1结构域的C末端连接到重链Fc区多肽中的一个的N末端,并且一个交叉Fab片段的CH1结构域的C末端连接到另一重链Fc区多肽的N末端,并且其中另一交叉Fab片段的CH1结构域的C末端连接到Fab片段的VH结构域的N末端或连接到交叉Fab片段的VH结构域的N末端。在具体方面,连接经由肽接头进行。在另一方面,双特异性抗体确切地包含一个(单价的)与TfR特异性结合的抗原结合结构域且确切地包含两个(单价的)与PD1特异性结合的抗原结合结构域。在某些方面,双特异性抗体为IgG类抗体。在另外的方面,双特异性抗体的Fab片段和/或Fc区属于IgG类。在某些方面,双特异性抗体为IgG1同种型。在又另一方面,双特异性抗体的Fab片段和/或Fc区属于IgG1同种型。
在一个方面,包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含
a)全长抗体,所述全长抗体与PD1特异性结合并且由两条抗体重链和两条抗体轻链组成,其中,在轻链内,可变轻链结构域VL被所述抗体的可变重链结构域VH替换;并且在重链片段内,可变重链结构域VH被所述抗体的可变轻链结构域VL替换,以及
b)与TfR特异性结合的Fab片段,
其中Fab片段重链的N末端连接到全长抗体的两条重链之一的C末端。在另一方面,双特异性抗体确切地包含一个(单价的)与TfR特异性结合的抗原结合结构域且确切地包含两个(单价的)与PD1特异性结合的抗原结合结构域。在某些方面,双特异性抗体为IgG类抗体。在另外的方面,Fab片段和/或全长抗体属于IgG类。在某些方面,双特异性抗体为IgG1同种型。在又另一方面,Fab片段和/或全长抗体为IgG1同种型。
在进一步的方面,双特异性抗体包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域,其中
与TfR特异性结合的第一抗原结合结构域包含
包含以下的重链可变结构域(VH):(a)CDR-H1,其包含SEQ ID NO:1的氨基酸序列,(b)CDR-H2,其包含SEQ ID NO:2的氨基酸序列,和(c)CDR-H3,其包含SEQ ID NO:3的氨基酸序列,以及
包含以下的轻链可变结构域(VL):(d)CDR-L1,其包含SEQ ID NO:4的氨基酸序列,(e)CDR-L2,其包含SEQ ID NO:5的氨基酸序列,和(f)CDR-L3,其包含SEQ ID NO:6的氨基酸序列,或者
包含以下的重链可变结构域(VH):(a)CDR-H1,其包含SEQ ID NO:9的氨基酸序列,(b)CDR-H2,其包含SEQ ID NO:10的氨基酸序列,和(c)CDR-H3,其包含SEQ ID NO:11的氨基酸序列,以及
包含以下的轻链可变结构域(VL):(d)CDR-L1,其包含SEQ ID NO:12的氨基酸序列,(e)CDR-L2,其包含SEQ ID NO:13的氨基酸序列,和(f)CDR-L3,其包含SEQ ID NO:14的氨基酸序列。
在一个实施例中,包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体的与PD1特异性结合的第二抗原结合结构域和/或当存在时的第三抗原结合结构域包含
包含以下的重链可变结构域(VH):(a)CDR-H1,其包含SEQ ID NO:17的氨基酸序列,(b)CDR-H2,其包含SEQ ID NO:18的氨基酸序列,和(c)CDR-H3,其包含SEQ ID NO:19的氨基酸序列,以及
包含以下的轻链可变结构域(VL):(d)CDR-L1,其包含SEQ ID NO:20的氨基酸序列,(e)CDR-L2,其包含SEQ ID NO:21的氨基酸序列,和(f)CDR-L3,其包含SEQ ID NO:22的氨基酸序列或者
包含以下的重链可变结构域(VH):(a)CDR-H1,其包含SEQ ID NO:25的氨基酸序列,(b)CDR-H2,其包含SEQ ID NO:26的氨基酸序列,和(c)CDR-H3,其包含SEQ ID NO:27的氨基酸序列,以及
包含以下的轻链可变结构域(VL):(d)CDR-L1,其包含SEQ ID NO:28的氨基酸序列,(e)CDR-L2,其包含SEQ ID NO:29的氨基酸序列,和(f)CDR-L3,其包含SEQ ID NO:30的氨基酸序列。
在具体方面,本发明提供了一种双特异性抗体,其包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域,其中所述双特异性抗体同时与TfR和PD1结合,并且在双特异性抗体同时结合后,由双特异性抗体、TfR和PD1形成的复合物被内化到细胞中,并且PD1从细胞表面清除,并且其中双特异性抗体包含
与TfR特异性结合的第一抗原结合结构域,其包含
包含以下的重链可变结构域(VH):(a)CDR-H1,其包含SEQ ID NO:1的氨基酸序列,(b)CDR-H2,其包含SEQ ID NO:2的氨基酸序列,和(c)CDR-H3,其包含SEQ ID NO:3的氨基酸序列,以及
包含以下的轻链可变结构域(VL):(d)CDR-L1,其包含SEQ ID NO:4的氨基酸序列,(e)CDR-L2,其包含SEQ ID NO:5的氨基酸序列,和(f)CDR-L3,其包含SEQ ID NO:6的氨基酸序列;
或者
包含以下的重链可变结构域(VH):(a)CDR-H1,其包含SEQ ID NO:9的氨基酸序列,(b)CDR-H2,其包含SEQ ID NO:10的氨基酸序列,和(c)CDR-H3,其包含SEQ ID NO:11的氨基酸序列,以及
包含以下的轻链可变结构域(VL):(d)CDR-L1,其包含SEQ ID NO:12的氨基酸序列,(e)CDR-L2,其包含SEQ ID NO:13的氨基酸序列,和(f)CDR-L3,其包含SEQ ID NO:14的氨基酸序列;
以及
与PD1特异性结合的第二抗原结合结构域和/或当存在时的第三抗原结合结构域,其包含
包含以下的重链可变结构域(VH):(a)CDR-H1,其包含SEQ ID NO:17的氨基酸序列,(b)CDR-H2,其包含SEQ ID NO:18的氨基酸序列,和(c)CDR-H3,其包含SEQ ID NO:19的氨基酸序列,以及
包含以下的轻链可变结构域(VL):(d)CDR-L1,其包含SEQ ID NO:20的氨基酸序列,(e)CDR-L2,其包含SEQ ID NO:21的氨基酸序列,和(f)CDR-L3,其包含SEQ ID NO:22的氨基酸序列
或者
包含以下的重链可变结构域(VH):(a)CDR-H1,其包含SEQ ID NO:25的氨基酸序列,(b)CDR-H2,其包含SEQ ID NO:26的氨基酸序列,和(c)CDR-H3,其包含SEQ ID NO:27的氨基酸序列,以及
包含以下的轻链可变结构域(VL):(d)CDR-L1,其包含SEQ ID NO:28的氨基酸序列,(e)CDR-L2,其包含SEQ ID NO:29的氨基酸序列,和(f)CDR-L3,其包含SEQ ID NO:30的氨基酸序列。
在另外的方面,双特异性抗体包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域,其中
与TfR特异性结合的第一抗原结合结构域包含
VH结构域,其包含SEQ ID NO:7的氨基酸序列,以及VL结构域,其包含SEQ ID NO:8的氨基酸序列,或者
VH结构域,其包含SEQ ID NO:15的氨基酸序列,以及VL结构域,其包含SEQ ID NO:16的氨基酸序列,
并且与PD1特异性结合的第二抗原结合结构域和/或当存在时的第三抗原结合结构域包含
VH结构域,其包含SEQ ID NO:23的氨基酸序列,以及VL结构域,其包含SEQ ID NO:24的氨基酸序列,或者
VH结构域,其包含SEQ ID NO:31的氨基酸序列,以及VL结构域,其包含SEQ ID NO:32的氨基酸序列。
在进一步的方面,包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体为单克隆抗体。
在具体方面,包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体为人源化抗体或嵌合抗体。
在另一方面,本发明涉及一种双特异性抗体,所述双特异性抗体包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域,其包含
第一重链,其包含与SEQ ID NO:35的序列具有至少95%序列同一性的氨基酸序列,第一轻链,其包含与SEQ ID NO:36的序列具有至少95%序列同一性的氨基酸序列,和
第二重链,其包含与SEQ ID NO:39的序列具有至少95%序列同一性的氨基酸序列,和第二轻链,其包含与SEQ ID NO:40的序列具有至少95%序列同一性的氨基酸序列,
或者
第一重链,其包含与SEQ ID NO:37的序列具有至少95%序列同一性的氨基酸序列,第一轻链,其包含与SEQ ID NO:38的序列具有至少95%序列同一性的氨基酸序列,和
第二重链,其包含与SEQ ID NO:39的序列具有至少95%序列同一性的氨基酸序列,和第二轻链,其包含与SEQ ID NO:40的序列具有至少95%序列同一性的氨基酸序列,
或者
第一重链,其包含与SEQ ID NO:35的序列具有至少95%序列同一性的氨基酸序列,第一轻链,其包含与SEQ ID NO:36的序列具有至少95%序列同一性的氨基酸序列,和
第二重链,其包含与SEQ ID NO:41的序列具有至少95%序列同一性的氨基酸序列,和第二轻链,其包含与SEQ ID NO:42的序列具有至少95%序列同一性的氨基酸序列,
或者
第一重链,其包含与SEQ ID NO:37的序列具有至少95%序列同一性的氨基酸序列,第一轻链,其包含与SEQ ID NO:38的序列具有至少95%序列同一性的氨基酸序列,和
第二重链,其包含与SEQ ID NO:41的序列具有至少95%序列同一性的氨基酸序列,和第二轻链,其包含与SEQ ID NO:42的序列具有至少95%序列同一性的氨基酸序列。
在另一方面,本发明涉及一种双特异性抗体,所述双特异性抗体包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和第三抗原结合结构域,其包含
第一重链,其包含与SEQ ID NO:59的序列具有至少95%序列同一性的氨基酸序列,第二重链,其包含与SEQ ID NO:60的序列具有至少95%序列同一性的氨基酸序列,第一轻链,其包含与SEQ ID NO:57的序列具有至少95%序列同一性的氨基酸序列,和第二轻链,其包含与SEQ ID NO:58的序列具有至少95%序列同一性的氨基酸序列,
或者
第一重链,其包含与SEQ ID NO:61的序列具有至少95%序列同一性的氨基酸序列,第二重链,其包含与SEQ ID NO:60的序列具有至少95%序列同一性的氨基酸序列,第一轻链,其包含与SEQ ID NO:57的序列具有至少95%序列同一性的氨基酸序列,和第二轻链,其包含与SEQ ID NO:58的序列具有至少95%序列同一性的氨基酸序列。
根据本发明的另一方面,包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体是这样的抗体,其中抗体以在nM至亚nM范围内的亲和力与TfR和PD1二者结合,如通过本文所述和技术人员已知的现有技术方法确定的。
根据本发明的另一方面,包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体独立地特征在于以下性质的一个或多个:抗PD1抗TfR双特异性抗体
i)在1nM的浓度时,将PD1/PD-L1介导的TCR信号传导的抑制降低超过2倍,或者在100nM的浓度时降低超过4倍(如根据实例4,在共培养测定中使用与荧光素酶报告系统可操作地连接的NFAT应答元件检测的);和/或
ii)在与激活T细胞接触时内化到激活T细胞中超过25%,优选超过40%,更优选超过50%(在根据实例6的内化测定中)
iii)增强同种异体刺激的T细胞的粒酶B分泌(在根据实例14的最小混合淋巴细胞反应中)。
在一个方面,包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体为多特异性抗体。
在另一个方面,本发明提供了一种双特异性抗体,所述双特异性抗体包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域,其包含SEQ ID NO:35的第一重链、SEQ ID NO:36的第一轻链、SEQ ID NO:39的第二重链,和SEQ ID NO:40的第二轻链。
在另一个方面,本发明提供了一种双特异性抗体,所述双特异性抗体包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域,其包含SEQ ID NO:37的第一重链、SEQ ID NO:38的第一轻链、SEQ ID NO:39的第二重链,和SEQ ID NO:40的第二轻链。
在另一个方面,本发明提供了一种双特异性抗体,所述双特异性抗体包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域,其包含SEQ ID NO:35的第一重链、SEQ ID NO:36的第一轻链、SEQ ID NO:41的第二重链,和SEQ ID NO:42的第二轻链。
在另一个方面,本发明提供了一种双特异性抗体,所述双特异性抗体包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域,其包含SEQ ID NO:37的第一重链、SEQ ID NO:38的第一轻链、SEQ ID NO:41的第二重链,和SEQ ID NO:42的第二轻链。
在另一个方面,本发明提供了一种双特异性抗体,所述双特异性抗体包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域,其包含SEQ ID NO:59的第一重链、SEQ ID NO:60的第二重链、SEQ ID NO:57的第一轻链,和SEQ ID NO:58的第二轻链。
在另一个方面,本发明提供了一种双特异性抗体,所述双特异性抗体包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域,其包含SEQ ID NO:61的第一重链、SEQ ID NO:60的第二重链、SEQ ID NO:57的第一轻链,和SEQ ID NO:58的第二轻链。
在另一方面,本发明提供了一种免疫缀合物,所述免疫缀合物包含双特异性抗体和细胞毒性剂,所述双特异性抗体包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域。在具体方面,细胞毒性剂是假单胞菌外毒素A或鹅膏毒素。
在一个进一步的方面,双特异性抗体是多特异性抗体,其包含
a)全长双特异性抗体,其包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域并且由两条抗体重链和两条抗体轻链组成,和
b)与一至四种另外的抗原(即第三和/或第四和/或第五和/或第六抗原,优选地特异性结合一种另外的抗原,即第三抗原)特异性结合的一个、两个、三个或四个单链Fab片段),
其中b)下的所述单链Fab片段经由在a)下的所述全长抗体的重链或轻链的C末端或N末端处的肽接头与所述全长抗体融合。在另外的方面,多特异性抗体确切地包含一个(单价的)与TfR特异性结合的抗原结合结构域且确切地包含两个(单价的)与PD1特异性结合的抗原结合结构域。
在一个进一步的方面,双特异性抗体是多特异性抗体,其包含
a)全长双特异性抗体,其包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域并且由两条抗体重链和两条抗体轻链组成,和
b)与生物素特异性结合的一个、两个、三个或四个单链Fab片段,
其中b)下的所述单链Fab片段经由在a)下的所述全长抗体的重链或轻链的C末端或N末端处的肽接头与所述全长抗体融合。
在一个方面,与第三抗原结合的一个或两个相同的单链Fab片段经由在所述全长抗体的重链或轻链的C末端处的肽接头与所述全长抗体融合。在优选的方面,第三抗原是生物素。
在一个方面,与第三抗原结合的一个或两个相同的单链Fab片段经由在所述全长抗体的重链的C末端处的肽接头与所述全长抗体融合。在优选的方面,第三抗原是生物素。
在一个方面,与第三抗原结合的一个或两个相同的单链Fab片段经由在所述全长抗体的轻链的C末端处的肽接头与所述全长抗体融合。在优选的方面,第三抗原是生物素。
在一个方面,与第三抗原结合的两个相同的单链Fab片段经由在所述全长抗体的每条重链或轻链的C末端处的肽接头与所述全长抗体融合。在优选的方面,第三抗原是生物素。
在一个方面,与第三抗原结合的两个相同的单链Fab片段经由在所述全长抗体的每条重链的C末端处的肽接头与所述全长抗体融合。
在一个方面中,与第二抗原结合的两个相同的单链Fab片段经由在所述全长抗体的每条轻链的C末端处的肽接头与所述全长抗体融合。
在一个具体的方面,本发明提供了一种三特异性抗体,所述三特异性包含与TfR特异性结合的第一抗原结合结构域、与PD1特异性结合的第二抗原结合结构域和特异性结合生物素的第三抗原结合结构域。在一个具体的方面,本发明提供了一种三特异性抗体,所述三特异性抗体包含与TfR特异性结合的第一抗原结合结构域、与PD1特异性结合的第二抗原结合结构域和特异性结合生物素的第三抗原结合结构域,其包含SEQ ID NO:47的第一重链和SEQ ID NO:48的第一轻链、SEQ ID NO:49的第二重链,和SEQ ID NO:50的第二轻链。在另一方面,三特异性抗体的特异性结合生物素的第三抗原结合结构域用于使与生物素缀合的有效负载与所述三特异性抗体结合。在具体的方面,有效负载为细胞毒性剂,优选假单胞菌外毒素A或鹅膏毒素。
在一个方面,本发明提供了一种编码双特异性抗体的分离的核酸,所述双特异性抗体包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域。本发明还提供了编码免疫缀合物的分离的核酸,所述免疫缀合物包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域。在进一步的方面,本发明提供了一种包含所述核酸的宿主细胞。
在另一方面,本发明涉及生产双特异性抗体或包含所述双特异性抗体的免疫缀合物的方法,所述双特异性抗体包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域,所述方法包括在适合表达所述抗体的条件下培养包含编码所述双特异性抗体或所述免疫缀合物的核酸的宿主细胞的步骤。在具体方面,方法进一步包括从宿主细胞回收抗体。在进一步的方面,本发明还涉及通过这种方法产生的双特异性抗体。
在一个方面,本发明提供了一种药物组合物,所述药物组合物包含双特异性抗体或包含所述双特异性抗体的免疫缀合物以及药用载体,所述双特异性抗体包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域。在另外的方面,本发明涉及药物组合物,所述药物组合物包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域或包含所述双特异性抗体的免疫缀合物、药用载体以及另外的治疗剂。
在另一方面,本发明提供了双特异性抗体、包含所述双特异性抗体的免疫缀合物或包含所述双特异性抗体的药物组合物,用作药物,所述双特异性抗体包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域。
本发明还涵盖了用于以下的双特异性抗体、包含所述双特异性抗体的免疫缀合物或包含所述个抗体的药物组合物,所述双特异性抗体包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域
i)调节免疫应答,诸如恢复T细胞活性,
ii)刺激免疫应答或功能,
iii)预防或治疗癌症,
iv)延缓癌症进展,
v)延长患有癌症的患者的存活期,
vi)急性感染,
vii)慢性和急性病毒感染,和/或
viii)其他依赖于PD1表达和PD1介导的免疫调节的病况。
携带细胞毒性有效负载的免疫缀合物或三特异性抗体也可用于
i)治疗移植物抗宿主病,和/或
ii)预防或治疗自身免疫性疾病。
在另一方面,本发明提供了一种双特异性抗体、包含所述双特异性抗体的免疫缀合物或包含所述双特异性抗体的药物组合物,用于预防或治疗癌症,其中所述双特异性抗体包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域,其中所述双特异性抗体与化学治疗剂、放射和/或用于癌症免疫疗法的其他剂联合施用。
此外,提供了一种抑制个体中肿瘤细胞的生长的方法,所述方法包括向所述个体施用有效量的双特异性抗体、包含所述双特异性抗体的免疫缀合物或包含所述双特异性抗体的药物组合物以抑制肿瘤细胞的生长,所述双特异性抗体包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域。
在具体方面,本发明涉及双特异性抗体、包含所述双特异性抗体的免疫缀合物或包含所述双特异性抗体的药物组合物在制造用于治疗以下疾病的药物中的用途,所述双特异性抗体包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域,
i.癌症,
ii.感染,或
iii.移植物抗宿主病。
此外,本发明公开了双特异性抗体、包含所述双特异性抗体的免疫缀合物或包含所述双特异性抗体的药物组合物在制造用于以下的药物中的用途,所述双特异性抗体包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域,
i)调节免疫应答,诸如恢复T细胞活性
ii)刺激免疫应答或功能
iii)延缓癌症进展,和/或
iv)延长患有癌症的患者的存活期。
在一个方面,本发明提供了一种治疗患有移植物抗宿主病的个体的方法,所述方法包括向所述个体施用有效量的双特异性抗体、包含所述双特异性抗体的免疫缀合物或包含所述双特异性抗体的药物组合物,所述双特异性抗体包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域。在另外的方面,提供了治疗患有移植物抗宿主病的个体的方法,所述方法包括向所述个体施用有效量的双特异性抗体、包含所述双特异性抗体的免疫缀合物或包含所述双特异性抗体的药物组合物,所述双特异性抗体包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域,所述方法还包括向所述个体施用另外的治疗剂。另外的治疗剂优选地选自由化学治疗剂、检查点抑制剂、放射和/或用于癌症免疫疗法的其他剂组成的组,诸如免疫细胞因子IL-2及其变体、IL-7、IL-12、PD1-IL2v;共刺激分子,例如FAP-4-1BBL/OX40/CD40、TLR激动剂、抗体药物缀合物(ADC)和可用作免疫疗法和肿瘤“冷热”转换的潜在“引发剂”的细胞毒性融合蛋白。
此外,提供了抑制个体中PD1功能的方法,所述方法包括向所述个体施用有效量的双特异性抗体、包含所述双特异性抗体的免疫缀合物或包含所述双特异性抗体的药物组合物,以抑制PD1功能,所述双特异性抗体包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域。所述个体优选是哺乳动物,特别是人。
附图说明
图1:本发明的双特异性抗体的示例性配置的示意图,其具有抗PD1和抗TfR特异性的结合结构域的1+1化学计量。两个不同的结合结构域通过它们的模式来区分。对于每种配置,显示了促进异二聚化的电荷变体的两种可能的定向(用++或--表示),一种是电荷位于Fab(上排)中,另一种是电荷位于交叉Fab(下排)中。(A,F)“1+1交叉Mab VH-VL”分子的示意图。(B,G)“单臂1+1IgG交叉Mab VH-VL”分子的示意图,其中交叉Fab和Fab组分的顺序交替。(C,H)“单臂1+1IgG交叉Mab VH-VL”分子的示意图。(D,I)“Fab-交叉Fab VH-VL”融合分子的示意图。(E,J)“交叉Fab-Fab VH-VL”融合分子的示意图。黑点:Fc结构域中促进异源二聚化的任选修饰。++、--:任选地引入CH1和CL结构域中的具有相反电荷的氨基酸。交叉Fab分子被描述为包含VH区和VL区的交换,但是可以-在其中在CH1和CL结构域中不引入电荷修饰的方面中-可替代地包含CH1和CL结构域的交换。
图2:本发明的双特异性抗体的示例性配置的示意图,其具有抗PD1和抗TfR特异性的结合结构域的2+1化学计量,其中一个结合结构域附接至一个Fab的重链的N末端(“TCB形式”)。不同的结合结构域通过其模式来区分。出现两次的结合结构域为抗PD1结合结构域。出现一次的结合结构域为TfR结合结构域。对于交叉Mab的每种配置,显示了促进异二聚化的电荷变体的两种可能的定向(用++或--表示),一种是电荷位于Fab(上排)中,另一种是电荷位于交叉Fab(下排)中。(A,E)“2+1IgG交叉Mab VH-VL”分子的示意图。(B,F)具有两个交叉Fab和一个Fab的“2+1IgG交叉Mab VH-VL”分子的示意图,该分子经由其CH1结构域的C末端与交叉Fab中的一个的VL结构域的N末端融合。(C,G)具有两个交叉Fab以及交叉Fab和Fab组分的顺序交替(“倒置”)的“2+1IgG交叉Mab VH-VL”分子的示意图。(D,H)“2+1IgG交叉Mab”分子(“倒置”)的示意图。黑点:Fc结构域中促进异源二聚化的任选修饰。++、--:任选地引入CH1和CL结构域中的具有相反电荷的氨基酸。交叉Fab分子被描述为包含VH区和VL区的交换,但是可以-在其中在CH1和CL结构域中不引入电荷修饰的方面中-可替代地包含CH1和CL结构域的交换。
图3:本发明的双特异性抗体的示例性配置的示意图,其具有抗PD1和抗TfR特异性的结合结构域的2+1化学计量,其中一个结合结构域附接至一个Fc重链的C末端(“BBB形式”)。在此示意图中,不同的结合结构域通过其模式来区分。出现两次的结合结构域为抗PD1结合结构域。出现一次的结合结构域为TfR结合结构域。对于每种配置,显示了促进异二聚化的电荷变体的两种可能的定向(用++或--表示),一种是电荷位于Fab(上排)中,另一种是电荷位于交叉Fab(下排)中。(A,E)“(交叉Fab)2-Fc-Fab”分子的示意图。(B,F)“(Fab)2-Fc-交叉Fab”分子的示意图。(C,G)“(Fab+交叉Fab)-Fc-Fab”分子的示意图。(D,H)“(Fab+交叉Fab)-Fc-交叉Fab”分子的示意图。黑点:Fc结构域中促进异源二聚化的任选修饰。++、--:任选地引入CH1和CL结构域中的具有相反电荷的氨基酸。交叉Fab分子被描述为包含VH区和VL区的交换,但是可以-在其中在CH1和CL结构域中不引入电荷修饰的方面中-可替代地包含CH1和CL结构域的交换。
图4:本发明的双特异性抗体的示例性配置的示意图,其具有抗PD1和抗TfR特异性的结合结构域的2+1化学计量,其中三个Fab分子经由肽接头彼此共价结合,如图所示。不同的结合结构域通过其模式来区分。出现两次的结合结构域为抗PD1结合结构域。出现一次的结合结构域为TfR结合结构域。对于融合分子的每种配置,显示了促进异二聚化的电荷变体的两种可能的定向(用++或--表示),一种是电荷位于Fab(上排)中,另一种是电荷位于交叉Fab(下排)中。(A,E)“(Fab)2-交叉fab”分子的示意图。(B,F)“交叉Fab-(Fab)2”分子的示意图。(C,G)“(交叉Fab)2-Fab”的示意图。(D,H)“Fab-(交叉Fab)2”分子的示意图。++、--:任选地引入CH1和CL结构域中的具有相反电荷的氨基酸。交叉Fab分子被描述为包含VH区和VL区的交换,但是可以-在其中在CH1和CL结构域中不引入电荷修饰的方面中-可替代地包含CH1和CL结构域的交换。
图5A:具有TfR和PD1结合结构域的双特异性1+1交叉Mab的示意图。
图5B:双特异性交叉Mab的示意图,其第三结合结构域特异性结合生物素,用于将有效负载递送至活性免疫细胞。
图6:实例中使用的2+1抗体(血脑屏障穿梭(BBB)形式)的示意图。测试的2+1形式抗体分子8156和8158被生产为带有电荷修饰的“2+1IgG交叉Mab VH-VL,倒置”(即PD1结合物中的VH/VL交换,TfR结合物中的电荷修饰:EE=147E,213E;RK=123R,124K)。(B-E)用于抗体组装的组分:抗PD1交叉Fab结构域的轻链(A);在CL中具有电荷修饰的抗TfR Fab结构域的轻链(B);在Fc区具有臼和PG LALA突变的抗PD1交叉的重链,并且抗TfR Fab分子的重链的N末端附接到Fc区的C末端(H);在Fc区具有抗PD1交叉Fab和杵以及PG LALA突变的重链(K)。对于对照分子8158,TfR结合臂的轻链和重链的可变抗体区被非结合序列(“Nada”)替换。
图7:实例中使用的2+1抗体(T细胞双特异性抗体(TCB)形式)的示意图。测试的抗体分子8157和8159被生产为带有电荷修饰的“2+1(交叉Fab)2-Fc-Fab VH-VL”(即PD1结合物中的VH/VL交换,TfR结合物中的电荷修饰:EE=147E,213E;RK=123R,124K)。(B-E).用于抗体组装的组分:抗PD1交叉Fab分子的轻链(A);在CL中具有电荷修饰的抗TfR Fab分子的轻链(B);在Fc区具有臼和PG LALA突变的抗TfR分子的重链,并且抗PD1交叉Fab分子的重链的C末端附接到抗PD1 Fab的N末端(H);在Fc区具有杵和PG LALA突变的抗PD1交叉的重链(K)。对于对照分子8159,TfR结合臂的轻链和重链的可变抗体区被非结合序列(“Nada”)替换。
图8:在共培养测定中PD1/PD-L1信号传导的阻断。
图8A:将表达PD1的Jurkat-PD1-NFAT细胞与抗体在37℃预孵育30分钟,用培养基洗涤一次,然后添加至激活细胞(表达PD-L1的CHO-K1细胞,粘附过夜)5小时。通过添加Bio-GloTM荧光素酶测定底物后的发光信号来测量PD1信号传导对TCR激活的抑制(代表3个独立实验)。
图8B:测定期间,添加抗体后的细胞生存力。共培养测定中的细胞生存力不受添加所应用浓度的任何抗体的影响。
图9:三特异性抗PD1抗TfR抗生物素交叉Mab分子(1129)和抗PD1抗Nada抗生物素对照分子(9904)的SPR曲线。
图10:三特异性抗PD1抗TfR抗生物素交叉Mab的亲和力增强结合取决于PD1表达。
图10A:通过流式细胞术分析的PD1转导的NFAT-bla Jurkat细胞上TfR和PD1的表达水平。
图10B:对与PD1-转导的NFAT-bla Jurkat细胞的表面结合的PE标记抗体进行定量(n=3±平均值的标准误差(SEM))。
图10C:通过bio-Cy5检测的交叉Mab与PD1-转导的NFAT-bla Jurkat细胞的结合(代表三个独立实验)。将三特异性抗PD1抗TfR抗生物素交叉Mab 1129和对照与在其表面表达不同水平的PD1(野生型WT、PD1低、PD1高)的Jurkat细胞一起孵育。使用生物素化的Cy5检测抗体,并经由流式细胞术测量中值APC进行检测。在细胞表面表达较高水平的PD1的细胞上的结合更强。
图11:激活T细胞对抗PD1抗TfR交叉Mab的内化。
图11A和图11B:抗PD1抗TfR双特异性抗体8012、8013、8017和8018显示内化,类似于TfR Nada对照抗体(8015、8016)。仅携带PD1结合结构域但不携带TfR结合结构域的抗体不显示内化(PD1-0103-0312、8014、8019)。
图12:mEGFP-PD1转导的Jurkat细胞中mEGFP-PD1和Bio-Cy5有效负载的内化和共定位。mEGFP-PD1 Jurkats与同Bio-Cy5复合的10nM抗TfR/抗PD1/抗生物素三特异性交叉Mab或对照抗体一起孵育3小时。通过共聚焦显微术评估GFP-PD1和Bio-Cy5的定位。
图13:mEGFP-PD1在转导的Jurkat细胞中的内化。将mEGFP-PD1转导的Jurkat细胞与10nM帕博利珠单抗(二价抗PD1抗体)、抗TfR/抗PD1双特异性抗体或抗CD33非结合对照抗体一起孵育60分钟。通过共聚焦显微术评估mEGFP-PD1的定位。
图14A和图14B:Jurkat细胞中抗体介导的转导mEGFP-PD1的减少和恢复。
图14A:mEGFP-PD1转导的Jurkat细胞用10nM三特异性抗体或对照分子处理,并在1、3、24和48小时后评估其GFP中值荧光。
图14B:用10nM三特异性抗体处理细胞24小时,以实现最大GFP-PD1下调,并在24小时内监测GFP信号。
图15A和图15B:生物素化假单胞菌外毒素PE25的亲合力增强递送。
图15A:使用与bio-PE25复合的三特异性抗体或仅毒素对照处理48小时,通过CellTiter-测定测量PD1转导的NFAT-bla Jurkat细胞的生存力。
图15B:用不携带bio-PE25的对照抗体处理48小时后,PD1转导的NFAT-bla Jurkat细胞的生存力。
图16A和图16B:激活的人T细胞中亲合力增强的结合和内化。
图16A:通过生物素化的Cy5检测的三特异性抗体与激活的T细胞(抗CD3/CD28)的结合。PD1被定量为约8000个分子/细胞,TfR被定量为约200 000个分子/细胞。在对照抗体仅示出很少与激活的T细胞结合的浓度,通过生物素化的Cy5检测三特异性抗体。
图16B:细胞表面上的抗IgG与来自两个供体的生物素化的Cy5数据的相对荧光(t=1小时与t=0小时)±标准差。通过在时间点0小时和1小时对IgG进行后染色,观察到包含抗TfR的抗体的内化,但未观察到Nada/抗PD1抗体的内化。
图17:在移植物抗宿主病(GvHD)的模型中,T细胞上PD1和TfR的共表达以及亲合力增强的宿主浸润的T细胞的杀伤
图17A:植入人PBMC的小鼠通常会在适当的时候发生GvHD并死于GvHD。
图17B:通过流式细胞术分析来自小鼠脾脏的细胞,并对单个人CD3细胞进行门控。分析浸润的人CD4和CD8阳性细胞的TfR和PD1表达。在鼠脾细胞中检测到的人T细胞(包括CD4和CD8 T细胞)中超过70%为TfR和PD1双阳性。
图17C:用与PE25复合的抗PD1/TfR抗体处理脾细胞显示,降低该细胞池中的人T细胞的数量的剂量减少10倍至1000倍。
图18A和图18B:实例中使用的具有与PD1二价结合的双特异性抗TfR/抗PD1抗体的不同2+1形式以及各种对照构建体的比较表示。从左到右,它们对应于(A)分子8157、8156,(B)PD1-0103-0312、8159和8158。“N”表示抗Nada结合结构域。
图18A:第一种2+1形式(抗TfR结合结构域在抗PD1结合结构域和铰链区之间;“TCB形式”;左侧)包含一个PD1结合实体作为IgG配置中的常规Fab臂和在TfR结合交叉Fab的“顶部”(即N末端)的第二PD1结合Fab臂,该TfR结合交叉Fab在杵臼结构异二聚体对侧的铰链之前。第二种2+1形式(抗TfR结合结构域c末端与Fc结构域的CH3融合;“BBB形式”;右侧)包含IgG的常规Fab臂作为PD1结合臂,TfR结合Fab以交叉Fab形式附接到不对称(杵臼结构)CH3结构域的C末端。
图18B:左侧示出了“经典”二价阻断性抗PD1抗体(抗PD1-IgG)。为了比较TfR结合和内化对抗PD1抗体的影响,构建了两个对照,其中TfR被非抗原结合Fab片段替换(抗Nada结合结构域在抗PD1结合结构域和铰链区之间以及抗Nada结合结构域c末端与Fc结构域的CH3融合)。
图19:与抗PD1抗体和两种PD1 Nada对照抗体相比,以二价方式与PD1结合并以单价方式与TfR结合的两种双特异性抗体8156和8157(不同的2+1形式)的内化。以二价方式结合PD1但不包含TfR结合物的对照分子(抗PD1,8158、8159)表现出相当差的内化,而以二价方式结合PD1和以单价方式结合TfR的两种2+1双特异性抗体形式(8157,8156)显示内化率显著增加
图20A和图20B:测试抗体对与同种异体成熟树突状细胞共培养的人CD4 T细胞释放的细胞毒性颗粒酶B的影响(混合淋巴细胞反应)。抗PD1抗Tfr双特异性抗体8012和8013达到的EC50值与二价PD1-0103-0312结合物达到的EC50值相当。单价抗PD1构建体PD1-0103-0312/Nada(8014)和帕博利珠单抗/Nada(8019)仅导致适度的颗粒酶B分泌,并且结合物Nada/51A165(8015)和Nada/1026(8016)的单价TfR结合根本不诱导任何颗粒酶B分泌。
图21:测试抗体对与同种异体成熟树突状细胞共培养的人CD4 T细胞释放的细胞毒性颗粒酶B的影响(混合淋巴细胞反应)。TCB和BBB形式(8156和8157)显示出比二价亲本抗PD1抗体并且也与各自的对照(8158和8159)相比更低的EC50值,导致颗粒酶B分泌增加,并且因此增加了这些形式诱导的T细胞效应功能。
图22A、图22B和图22C:测试抗体对与同种异体成熟树突状细胞共培养的人CD4 T细胞释放的细胞毒性颗粒酶B的影响(混合淋巴细胞反应)。
图22A:单价抗PD1抗Tfr双特异性抗体8012和8013达到的EC50值与二价PD1-0103-0312结合物达到的EC50值相当。另一方面,单价抗PD1构建体PD1-0103-0312/Nada(8014)仅导致适度的颗粒酶B分泌。
图22B:单价抗PD1抗Tfr双特异性抗体8017和8018达到的EC50值与帕博利珠单抗达到的EC50值相当。另一方面,单价抗PD1构建体帕博利珠单抗/Nada(8019)仅导致适度的颗粒酶B分泌。
图22C二价抗PD1抗Tfr双特异性抗体8157(TCB形式)和8156(BBB形式)达到的EC50值低于用帕博利珠单抗或二价PD1-0103-0312结合物达到的EC50值。另一方面,二价抗PD1构建体PD1-0103-0312/Nada TCB形式(8159)和BBB形式(8158)仅导致适度的颗粒酶B分泌。
图23使用在其细胞表面上表达鼠TfR的BA/F3细胞系(RNCB登记ID:CL003201)测试的抗PD1抗TfR鼠源化分子的内化。包含TfR结合结构域的两种分子6768(mTfR-001/huPD1-478 TCB形式)和6794(mTfR-001/Nada TCB形式)在三小时后显示出约70%的良好内化率,而huPD1/Nada(P1AG6769)显示出无内化。
图24在共培养测定中测试了抗PD1抗TfR鼠源化分子对PD1/PD-L1介导的信号传导的阻断。分子6768(mTfR-001/huPD1-478,TCB形式)和6769(Nada/huPD1-478,TCB形式)与抗PD1抗体PD1-0103-0312一样,包含二价抗PD1结合结构域。所有这些分子在阻断PD1-PDL1信号途径方面都表现出相当的功能。不包含抗PD1抗原结合结构域的对照分子6794(mTfR-001/Nada,TCB形式)未显示任何阻断功能。
具体实施方式
在一方面,本发明部分基于以下发现:本发明的选择的抗TfR抗PD1双特异性抗体与TfR和PD1结合,并且具有内化到表达并在其表面上展示TfR和PD1的细胞中的能力。
在进一步的方面,本发明部分基于以下发现:抗TfR抗PD1 2+1形式抗体,即包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和第三抗原结合结构域的双特异性抗体显示出改进的生物学活性,并且比单特异性二价PD1抗体更好地抑制PD1和PD-L1之间的相互作用。在一个方面,这些分子包含彼此共价结合的IgG类Fab片段,并且任选地还包含IgG类Fc区,产生本文描述的不同构象的2+1形式抗体。
已发现使表达PD1和TfR的细胞与本发明的抗TfR抗PD1双特异性抗体接触导致PD1从这些细胞、特别是T细胞的表面清除,并因此防止PD-L1与那些细胞的表面上的PD1受体结合。抗TfR抗PD1双特异性抗体抑制PD1/PD-L1介导的T细胞受体信号传导,例如它们增加免疫调节细胞因子(例如干扰素γ和颗粒酶B释放/分泌)。通过从细胞表面清除PD-1实现的抑制比通过抗PD1阻断抗体的瞬时结合实现的抑制更有效和/或更持久。通过使用本发明的抗体来增加的其他免疫调节细胞因子是例如肿瘤坏死因子α(TNFα)分泌和IL-12。如本文所用,术语干扰素γ(IFN-γ)、肿瘤坏死因子α(TNFα)、IL-12等指的是人类细胞因子。
I.定义
出于本文目的的“受体人框架”是这样的框架,其包含来源于如下所定义的人免疫球蛋白框架或人共有框架的轻链可变结构域(VL)框架或重链可变结构域(VH)框架的氨基酸序列。“来源于”人免疫球蛋白框架或人共有框架的受体人框架可包含与所述人免疫球蛋白框架或人共有框架相同的氨基酸序列,或者其可以包含氨基酸序列变化。在一些方面,氨基酸变化的数量为10个或更少、9个或更少、8个或更少、7个或更少、6个或更少、5个或更少、4个或更少、3个或更少或2个或更少。在一些方面,VL受体人框架在序列上与VL人免疫球蛋白框架序列或人共有框架序列相同。
“亲和力”是指分子(例如,抗体)的单个结合结构域与其结合配偶体(例如,抗原)之间的非共价相互作用的总和的强度。除非另有说明,否则如本文所用,“结合亲和力”是指内在结合亲和力,其反映了结合对的成员(例如,抗体和抗原)之间的1:1相互作用。分子X对其配偶体Y的亲和力一般可以由解离常数(KD)表示。亲和力可以通过本领域已知的常规方法测量,包括本文所述的那些方法。下文描述用于测量结合亲和力的具体的说明性和示例性方法。
“亲和力成熟的”抗体是指在一个或多个互补决定区(CDR)中具有一个或多个改变的抗体,与不具有此类改变的亲本抗体相比,此类改变引起抗体对抗原的亲和力的改善。
术语“抗TfR抗体”和“特异性结合TfR的抗体或抗原结合结构域”指的是这样的抗体或抗原结合结构域,其能够以足够的亲和力结合TfR,使得所述抗体或抗原结合片段可用作靶向TfR的诊断和/或治疗剂。在一个方面,抗TfR抗体或特异性结合TfR的抗体或抗原结合结构域与不相关的非TfR蛋白的结合程度小于抗TfR抗体或抗原结合结构域与TfR的结合的约10%,例如通过表面等离子共振(SPR)测量的。在某些方面,包含结合TfR的抗原结合结构域的抗体的解离常数(KD)为≤1μM、≤100nM、≤10nM、≤1nM、≤0.1nM、≤0.01nM或≤0.001nM(例如,10-8M或更小,例如10-8M至10-13M,例如10-9M至10-13M)。当抗体的KD为1μM或更小时,则称该抗体或抗原结合结构域“特异性结合”TfR。在某些方面,抗TfR抗体结合TfR的表位,所述表位在来自不同物种的TfR中是保守的。
术语“抗PD1抗体”和“特异性结合PD1的抗体或抗原结合结构域”指的是这样的抗体或抗原结合结构域,其能够以足够的亲和力结合PD1,使得所述抗体或抗原结合片段可用作靶向PD1的诊断和/或治疗剂。在一个方面,特异性结合PD1的抗体或抗原结合结构域与不相关的非PD1蛋白的结合程度小于抗体或抗原结合结构域与PD1的结合的约10%,例如通过表面等离子共振(SPR)测量的。在某些方面,与PD1结合的抗体或抗原结合结构域的解离常数(KD)为≤1μM、≤100nM、≤10nM、≤1nM、≤0.1nM、≤0.01nM或≤0.001nM(例如,10-8M或更小,例如10-8M至10-13M,例如10-9M至10-13M)。当抗体具有1μM或更小的KD时,则称该抗体或抗原结合结构域“特异性结合”PD1。在某些方面,抗PD1抗体或特异性结合PD1的抗体或抗原结合结构域结合PD1的表位,所述表位在来自不同物种的PD1中是保守的。本文的术语“抗体”以最广泛的含义使用,并且包括各种抗体结构,包括但不限于单克隆抗体、多克隆抗体、多特异性抗体(例如,双特异性抗体)和抗体片段,只要它们表现出所需的抗原结合活性即可。多个专利申请公开了抗PD1抗体的生产和/或用干扰PD-L1结合和/或PD1信号传导的剂(包括抗PD1抗体)增强免疫应答的方法,包括以下:US2003/0039653、US2004/0213795、US2006/0110383、US2007/0065427、US2007/0122378、US2012/237522、WO2004/072286、WO2006/121168、WO2006/133396、WO2007/005874、WO2008/083174、WO2008/156712、WO2009/024531、WO2009/014708、WO2009/114335、WO2010/027828、WO2010/027423、WO2010/036959、WO2010/029435、WO2010/029434、WO2010/063011、WO2010/089411、WO2011/066342、WO2011/110604、WO2011/110621和WO2012/145493。
“阻断性”抗体或“拮抗剂”抗体是抑制或降低其所结合的抗原的生物学活性的抗体。在一些实施例中,阻断性抗体或拮抗剂抗体基本上或完全抑制抗原的生物活性。例如,本发明的双特异性抗体阻断通过PD1和PD-L1的信号传导,以将由T细胞进行的功能性应答(例如增殖、细胞因子产生、靶细胞杀伤)从功能障碍状态恢复到抗原刺激。
如本文所用,术语“单特异性”抗体表示具有一个或多个结合结构域的抗体,每个结合结构域与相同抗原的相同表位结合。术语“双特异性”意指抗体能够与至少两种不同的抗原决定簇特异性结合,例如各自由一对抗体重链可变结构域(VH)和抗体轻链可变结构域(VL)形成的两个结合结构域与不同抗原或同一抗原上的不同表位结合。本文中,这样的双特异性抗体也称为1+1形式或1+1形式抗体。在本文中,其他双特异性抗体形式被称为2+1形式或2+1形式抗体(包含针对第一抗原或表位的两个结合结构域和针对第二抗原或表位的一个结合结构域)或2+2形式或2+2形式抗体(包含针对第一抗原或表位的两个结合结构域和针对第二抗原或表位的两个结合结构域)。
术语“包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体”、“特异性结合TfR和PD1的双特异性抗体”“对TfR和PD1有特异性的双特异性抗原结合分子”和“抗TfR抗PD1双特异性抗体”在本文中可互换使用,并且是指能够以足够的亲和力结合TfR和PD1,使得所述抗体可用作靶向TfR和PD1的诊断和/或治疗剂的双特异性抗体。
如在当前应用中所用的术语“价”表示抗原结合分子存在指定数目的结合结构域。因此,术语“二价”“四价”和“六价”分别表示抗原结合分子中存在两个结合结构域、四个结合结构域和六个结合结构域。根据本发明的双特异性抗体是至少“二价的”,并且可以是“三价的”或“多价的”(例如“四价的”或“六价的”)。在具体方面,本发明的抗体具有两个或多个结合结构域并且是双特异性的。也就是说,即使在存在多于两个结合结构域(即抗体是三价的或多价的)的情况下,抗体也可以是双特异性的。特别是,本发明涉及的双特异性二价和三价抗体针对它们所特异性结合的每种抗原都有一个或两个结合结构域。
术语“全长抗体”和“完整抗体”在本文中可互换使用,是指具有与天然抗体结构基本上相似的结构的抗体。“天然抗体”是指具有不同结构的天然存在的免疫球蛋白分子。例如,天然IgG类抗体是约150,000Da(道尔顿)的异四聚体糖蛋白,其由通过二硫键键合的两条轻链和两条重链构成。形成本文公开的抗体、抗体片段和抗体样分子的单独地多肽链有时在本文中也被称为“亚基”,例如Fab片段的亚基或Fc结构域的亚基。从N末端到C末端,每条重链具有可变区(VH)(也称为可变重链结构域或重链可变结构域),接着是三个恒定结构域(CH1、CH2和CH3)(也称为重链恒定区)。类似地,从N末端到C末端,每条轻链具有可变区(VL)(也称为可变轻链结构域或轻链可变结构域),接着是轻链恒定结构域(CL)(也称为轻链恒定区)。抗体的重链可以分配为五种类型中的一种,该五种类型被称为α(IgA)、δ(IgD)、ε(IgE)、γ(IgG)或μ(IgM),它们中的一些可以进一步分为亚型,例如γ1(IgG1)、γ2(IgG2)、γ3(IgG3)、γ4(IgG4)、α1(IgA1)和α2(IgA2)。抗体的轻链基于其恒定结构域的氨基酸序列,可以归属于两种类型中的一种,这两种类型称为kappa(κ)和lambda(λ)。
“抗体片段”是指除了完整抗体以外的分子,其包含完整抗体的一部分且结合完整抗体结合的抗原。抗体片段的实例包括但不限于Fv、Fab、Fab'、Fab'-SH、F(ab')2;双体抗体;线性抗体;单链抗体分子(例如,scFv和scFab);单结构域抗体(dAb);以及由抗体片段形成的多特异性抗体。关于某些抗体片段的综述,请参见Holliger和Hudson,NatureBiotechnology 23:1126-1136(2005)。关于scFv片段的综述,参见例如Plückthun,载于ThePharmacology of Monoclonal Antibodies,第113卷,Rosenburg和Moore编辑,Springer-Verlag,New York,第269至第315页(1994);还可参见WO 93/16185;以及美国专利号5,571,894和5,587,458。关于对包含补救受体结合表位残基并具有增加的体内半衰期的Fab和F(ab')2片段的讨论,请参见美国专利号5,869,046。双体抗体是具有两个抗原结合结构域的抗体片段,该双体抗体可以是二价的或双特异性的,参见例如EP 404,097;WO 1993/01161;Hudson等人,Nat Med 9,129-134(2003);以及Hollinger等人,Proc Natl Acad Sci USA90,6444-6448(1993)。在Hudson等人,Nat Med 9,129-134(2003)中也描述了三体抗体和四体抗体。单结构域抗体为包含抗体的全部或部分重链可变结构域或全部或部分轻链可变结构域的抗体片段。在某些实施例中,单结构域抗体是人单结构域抗体(Domantis,Inc.,Waltham,MA;参见例如美国专利号6,248,516B1)。另外,抗体片段包含单链多肽,该单链多肽的特征在于具有VH结构域,即能够与VL结构域一起装配到功能性抗原结合位点;或具有VL结构域的特征,即能够与VH结构域一起装配到功能性抗原结合结构域,从而提供全长抗体的抗原结合特性。抗体片段可以通过各种技术制备,包括但不限于完整抗体的蛋白水解消化以及由重组宿主细胞(例如大肠杆菌或噬菌体)生产,如本文所述。
木瓜蛋白酶消化完整抗体产生两个称为“Fab”片段的相同的抗原结合片段,每个“Fab”片段含有重链可变结构域和轻链可变结构域以及轻链的恒定结构域和重链的第一恒定结构域(CH1)。因此,如本文所用,术语“Fab片段”是指这样的抗体片段,其包含含有VL结构域和轻链恒定结构域(CL)的轻链片段,以及重链的VH结构域和第一恒定结构域(CH1),并且包括VH中的三个CDR和VL中的三个CDR。术语“Fab”、“Fab片段”、“Fab分子”和“Fab结构域”在本文中可互换使用,是指包含重链可变结构域和轻链可变结构域以及轻链恒定结构域以及重链的第一恒定结构域(CH1)的抗体片段。
Fab'片段与Fab片段的不同之处在于Fab'片段在重链CH1结构域的羧基末端添加了一些残基,这些残基包括来自抗体铰链区的一个或多个半胱氨酸。Fab’-SH是Fab’片段,其中恒定结构域的半胱氨酸残基具有游离巯基。胃蛋白酶处理产生F(ab')2片段,该片段具有两个抗原结合位点(两个Fab片段)和Fc区的一部分。
术语“交叉Fab”或“交叉-Fab片段”或“xFab片段”或“交换型Fab片段”是指这样的Fab片段,其中重链和轻链的可变区或恒定区被交换。关于这些Fab片段变体和以下段落中讨论的Fab片段,术语“片段”、“分子”和“结构域”在本文中也可互换使用。交换型Fab片段的两种不同链组成是可能的,并且包含在本发明的双特异性抗体中:在一方面,Fab重链和轻链的可变区被交换,即交换型Fab片段包含由轻链可变区(VL)和重链恒定区(CH1)构成的肽链,以及由重链可变区(VH)和轻链恒定区(CL)构成的肽链。该交换型Fab片段也被称为交叉Fab(VLVH)。在另一方面,当Fab重链和轻链的恒定区被交换时,交换型Fab片段包含由重链可变区(VH)和轻链恒定区(CL)构成的肽链,以及由轻链可变区(VL)和重链恒定区(CH1)构成的肽链。该交换型Fab片段也被称为交叉Fab(CLCH1)。为了进一步减少来自不同Fab分子的重链和轻链的错配并且由此提高所需(双特异性)抗体的纯度和产率,可以在与第一抗原(TfR)结合的Fab分子或与第二抗原(PD1)结合的Fab分子中的任一者的CH1和CL结构域的特定氨基酸位置处引入带相反电荷的荷电氨基酸,如本文进一步描述的。电荷修饰在(双特异性)抗体中包含的常规Fab分子中进行(诸如在例如图1A至图1E、图2A至图2D、图3A至图3D、图4A至图4D中所示)或(双特异性)抗体中包含的VH/VL交叉型Fab分子中进行(诸如在例如图1F至图1J、图2E至图2H、图3E至图3H、图4E至图4H中所示)(但不在两者中同时进行)。
“单链Fab片段”或“scFab”是由抗体重链可变结构域(VH)、抗体恒定结构域1(CH1)、抗体轻链可变结构域(VL)、抗体轻链恒定结构域(CL)和接头组成的多肽,其中所述抗体结构域和所述接头在N末端至C末端方向上具有以下顺序中的一种:a)VH-CH1-接头-VL-CL,b)VL-CL-接头-VH-CH1,c)VH-CL-接头-VL-CH1,或d)VL-CH1-接头-VH-CL;并且其中所述接头为至少30个氨基酸,优选在32个与50个氨基酸之间的多肽。所述单链Fab片段经由CL结构域与CH1结构域之间的天然二硫键而稳定化。此外,这些单链Fab分子可以通过经由插入半胱氨酸残基(例如根据Kabat编号的可变重链中的44位和可变轻链中的100位)生成链间二硫键,而进一步稳定化。
“交换型单链Fab片段”或“x-scFab”是由抗体重链可变结构域(VH)、抗体恒定结构域1(CH1)、抗体轻链可变结构域(VL)、抗体轻链恒定结构域(CL)和接头组成的多肽,其中所述抗体结构域和所述接头在N末端至C末端方向上具有以下顺序中的一种:a)VH-CL-接头-VL-CH1和b)VL-CH1-接头-VH-CL;其中VH和VL一起形成与抗原特异性结合的抗原结合结构域,并且其中所述接头是至少30个氨基酸的多肽。此外,这些x-scFab分子可以通过经由插入半胱氨酸残基(例如根据Kabat编号的可变重链中的44位和可变轻链中的100位)生成链间二硫键,而进一步稳定化。
“单链可变片段(scFv)”是抗体的重链可变区(VH)和轻链可变区(VL)的融合蛋白,与10个至约25个氨基酸的短接头肽连接。接头通常富含甘氨酸以获得柔性,以及富含丝氨酸或苏氨酸以获得溶解度,并且可以将VH的N末端与VL的C末端连接,或反之亦然。尽管去除了恒定区并引入了接头,但该蛋白保留了原始抗体的特异性。scFv抗体例如描述于Houston,J.S.,Methods in Enzymol.203(1991)46-96)。另外,抗体片段包含单链多肽,该单链多肽的特征在于具有VH结构域,即能够与VL结构域一起装配到功能性抗原结合位点;或具有VL结构域的特征,即能够与VH结构域一起装配到功能性抗原结合结构域,从而提供全长抗体的抗原结合特性。
“支架抗原结合蛋白”是本领域已知的,例如纤连蛋白和设计的锚蛋白重复序列蛋白(DARPin)已被用作抗原结合结构域的替代支架,参见例如Gebauer和Skerra,Engineeredprotein scaffolds as next-generation antibody therapeutics.Curr Opin ChemBiol 13:245-255(2009)和Stumpp等人,Darpins:A new generation of proteintherapeutics.Drug Discovery Today 13:695-701(2008)。在本发明的一个方面中,支架抗原结合蛋白选自由以下项组成的组:CTLA-4(Evibody)、脂质运载蛋白(Anticalin)、蛋白A衍生的分子(诸如蛋白A的Z结构域(亲和体))、A结构域(Avimer/巨型抗体)、血清转铁蛋白(反式体);设计的锚蛋白重复序列蛋白(DARPin)、抗体轻链或重链的可变结构域(单结构域抗体,sdAb)、抗体重链的可变结构域(纳米抗体,aVH)、VNAR片段、纤连蛋白(AdNectin)、C型凝集素结构域(四连接素);新抗原受体β-内酰胺酶的可变结构域(VNAR片段)、人γ-晶体蛋白或泛素蛋白(Affilin分子);人蛋白酶抑制剂的kunitz型结构域、微型体(诸如来自knottin家族的蛋白质)、肽适体和纤连蛋白(adnectin)。
术语“嵌合”抗体是指这样的抗体,在该抗体中重链和/或轻链的一部分来源于特定来源或物种,而重链和/或轻链的其余部分来源于不同的来源或物种。
抗体的“类别”是指抗体的重链所具有的恒定结构域或恒定区的类型。存在五大类抗体:IgA、IgD、IgE、IgG和IgM,并且这些抗体中的一些可以进一步分为亚类(同种型),例如IgG1、IgG2、IgG3、IgG4、IgA1和IgA2。在某些方面,抗体属于IgG类。IgG类抗体以及IgG样抗体分子通常易于大量制造和纯化,并且它们通常具有与传统IgG1相似的药理学特性。在某些方面,抗体是IgG1同种型。在某些方面,抗体是具有P329G、L234A和L235A突变以降低Fc区效应子功能的IgG1同种型。在其他方面,抗体是IgG2同种型。在某些方面,抗体是在铰链区具有S228P突变的IgG4同种型,以改善IgG4抗体的稳定性。对应于不同类别的免疫球蛋白的重链恒定结构域分别称为α、δ、ε、γ和μ。抗体的轻链基于其恒定结构域的氨基酸序列,可以归属于两种类型中的一种,这两种类型称为kappa(κ)和lambda(λ)。
如本申请中所用的术语“源自人源的恒定区”或“人恒定区”表示亚类IgG1、IgG2、IgG3或IgG4的人抗体的恒定重链区和/或恒定轻链kappa或lambda区。此类恒定区在现有技术中是众所周知的并且例如,通过以下描述的:Kabat,E.A.,等人,Sequences of Proteinsof Immunological Interest,第5版,Public Health Service,National Institutes ofHealth,Bethesda,MD(1991)(还参见,例如Johnson,G.,和Wu,T.T.,Nucleic Acids Res.28(2000)214-218;Kabat,E.A.,等人,Proc.Natl.Acad.Sci.USA 72(1975)2785-2788)。除非本文另外规定,否则恒定区中氨基酸残基的编号是根据EU编号系统,EU编号系统也称为Kabat的EU索引,如在Kabat,E.A.等人,Sequences of Proteins of ImmunologicalInterest,第5版,Public Health Service,National Institutes of Health,Bethesda,MD(1991),NIH Publication 91-3242中所述。
本文使用的术语“清除”是指当表达受体分子的细胞与本发明的抗体接触时,在所述细胞的表面上展示的所述受体分子的数量显著减少。清除表示为细胞表面上的受体分子与未与本发明的抗体接触的对照细胞的表面上存在的受体分子的数量的比率。与未经处理的对照细胞相比,在细胞的表面上展示的受体分子的数量方面,其中从细胞表面清除受体分子的细胞优选具有超过10%、20%、30%、40%、50%、60%、70%、80%或90%的减少,更优选超过95%、98%或99%的减少。这些范围可以通过本文描述的和技术人员已知的现有技术方法来确定。
“效应子功能”是指可归因于抗体的Fc区、随着抗体同种型的变化而变化的那些生物学活性。抗体效应子功能的实例包括:C1q结合和补体依赖性细胞毒性(CDC);Fc受体结合;抗体依赖性细胞介导的细胞毒性(ADCC);吞噬作用;细胞表面受体(例如,B细胞受体)的下调;以及B细胞活化。
药剂(例如药物组合物)的“有效量”是指能够以必需的剂量在必需的时段内有效地实现期望的治疗或预防结果的量。
本文的术语“Fc区”用于定义IgG类免疫球蛋白重链的C末端区,该C末端区包含恒定区的至少一部分。该术语包括天然序列Fc区和变体Fc区。在一个方面,人IgG重链Fc区从Cys226或从Pro230延伸至重链的羧基末端。然而,由宿主细胞产生的抗体可以经历对来自重链C末端的一个或多个(特别是一个或两个)氨基酸的翻译后裂解。因此,由宿主细胞通过表达编码全长重链的特定核酸分子产生的抗体可以包括全长重链,或者所述抗体可以包括全长重链的切割变体。这可能是重链的最后两个C末端氨基酸为甘氨酸(G446)和赖氨酸(K447,EU编号)的情况。因此,Fc区的C末端赖氨酸(Lys447)或C末端甘氨酸(Gly446)和赖氨酸(Lys447)可以存在或可以不存在。如果没有另外指明,则包含Fc区的重链的氨基酸序列在本文中被表示为没有C末端甘氨酸-赖氨酸二肽。在一个方面,包括如本文所指定的Fc区的重链包含在根据本发明的抗体中,所述重链包含另外的C末端甘氨酸-赖氨酸二肽(G446和K447,EU编号系统)。在一个方面,包括如本文所指定的Fc区的重链包含在根据本发明的抗体中,所述重链包含另外的C末端甘氨酸残基(G446,根据EU索引编号)。除非本文另有说明,否则Fc区或恒定区中氨基酸残基的编号是根据EU编号系统,也称为EU索引,如Kabat等人所述(Sequences of Proteins of Immunological Interest,第5版,美国卫生与公众服务部,国立卫生研究院,马里兰州贝塞斯达,1991)。
“框架”或“FR”是指除互补决定区(CDR)之外的可变结构域残基。可变结构域的FR通常由以下四个FR结构域组成:FR1、FR2、FR3和FR4。因此,CDR和FR序列通常在VH(或VL)中以如下序列出现:FR1-CDR-H1(CDR-L1)-FR2-CDR-H2(CDR-L2)-FR3-CDR-H3(CDR-L3)-FR4。
根据本文所用的Kabat编号系统,框架和CDR区位于可变结构域的以下区域:
FR1 CDR-1 FR2 CDR2 FR3 CDR3 FR4
VH 1-30 31-35b* 36-49 50-65 66-94 95-102 103-113
VL 1-23 24-34 35-49 50-56 57-88 89-97 98-107
*在CDR-H1中,可能存在35b位和36位之间的其他氨基酸,此处称为“35c”、“35d”和“35e”位。
术语“全长抗体”、“完整抗体”及“全抗体”在本文中可互换地用于指代具有基本上类似于天然抗体结构的结构或具有含有如本文所定义的Fc区的重链的抗体。
术语“宿主细胞”、“宿主细胞系”和“宿主细胞培养物”可互换使用,并且是指外源核酸已被引入其中的细胞,包括此类细胞的子代。宿主细胞包括“转化体”和“转化细胞”,其包括原代转化细胞和来源于该原代转化细胞的子代,不考虑传代次数。子代可能不与亲本细胞的核酸内容物完全一致,而是可能含有突变。本文包括如在原始转化细胞中筛选或选择的具有相同功能或生物活性的突变子代。
“人抗体”是这样的抗体,该抗体具有的氨基酸序列对应于由人或人细胞产生的抗体的氨基酸序列,或来源于利用人抗体全套库或其他人抗体编码序列的非人源的抗体的氨基酸序列。人抗体的该定义特别地排除了包含非人抗原结合残基的人源化抗体。
“人共有框架”是这样的框架,其表示在人免疫球蛋白VL或VH框架序列的选择中最常存在的氨基酸残基。一般而言,人免疫球蛋白VL或VH序列的选择来自于可变结构域序列的亚组。一般而言,序列的亚组是如Kabat等人,Sequences of Proteins ofImmunological Interest,第五版,NIH Publication 91-3242,Bethesda MD(1991),第1-3卷中所述的亚组。在一个方面,对于VL,该亚组是如Kabat等人,出处同上中的亚组κI。在一个方面,对于VH,该亚组是如Kabat等人,出处同上中的亚组III。
“人源化”抗体是指这样的嵌合抗体,其包含来自非人CDR的氨基酸残基和来自人FR的氨基酸残基。在某些方面,人源化抗体将基本上包含所有的至少一个、通常两个可变结构域,其中所有或基本上所有CDR对应于非人抗体的CDR,并且所有或基本上所有的FR对应于人抗体的FR。人源化抗体任选地可以包含来源于人抗体的抗体恒定区的至少一部分。“人源化形式”的抗体,例如,非人抗体,是指已经进行过人源化的抗体。
如本文所用的术语“高变区”或“HVR”是指抗体可变结构域中在序列上高变并确定抗原结合特异性的各个区域,例如“互补决定区”(“CDR”)。
通常,抗体包含六个CDR;三个在VH中(CDR-H1、CDR-H2、CDR-H3),并且三个在VL中的(CDR-L1、CDR-L2、CDR-L3)。本文中的示例性CDR包括:
(a)出现在以下氨基酸残基处的高变环:26至32(L1)、50至52(L2)、91至96(L3)、26至32(H1)、53至55(H2)和96至101(H3)(Chothia和Lesk,J.Mol.Biol.196:901-917(1987));
(b)出现在以下氨基酸残基处的CDR:24至34(L1)、50至56(L2)、89至97(L3)、31至35b(H1)、50至65(H2)和95至102(H3)(Kabat等人,Sequences of Proteins ofImmunological Interest,第5版,Public Health Service,National Institutes ofHealth,Bethesda,MD(1991));以及
(c)存在于氨基酸残基27c-36(L1)、46-55(L2)、89-96(L3)、30-35b(H1)、47-58(H2)和93-101(H3)处的抗原接触点(MacCallum等人J.Mol.Biol.262:732-745(1996))。
表1.CDR定义1
CDR Kabat Chothia AbM2
VH CDR1 31-35 26-32 26-35
VH CDR2 50-65 52-58 50-58
VH CDR3 95-102 95-102 95-102
VL CDR1 24-34 26-32 24-34
VL CDR2 50-56 50-52 50-56
VL CDR3 89-97 91-96 89-97
1表1中所有CDR定义的编号是根据Kabat等人提出的编号惯例(见上文)。
2如表1中所用的具有小写字母“b”的“AbM”是指由Oxford Molecular的“AbM”抗体建模软件定义的CDR。
除非另外指明,否则CDR根据出处同上的Kabat等人所述的方法确定。本领域的技术人员将理解,CDR名称也可以根据出处同上的Chothia所述的方法、出处同上的McCallum所述的方法或者任何其他在科学上接受的命名系统来确定。
术语“细胞表面受体”、“膜受体”和“跨膜受体”在本文中可互换使用。细胞表面受体是特化的整合膜蛋白,允许细胞和细胞外空间之间的通讯。它们嵌入细胞的质膜中,并通过与细胞外分子(诸如细胞因子、生长因子、细胞粘附分子、激素、神经递质、营养素)结合,并通过经由内部信号传导途径的一系列分子开关触发细胞内的响应,来在细胞信号传导和信号转导中发挥作用。PD1和TfR是这类细胞表面受体的实例。
“免疫缀合物”为与一种或多种异源分子(包括但不限于细胞毒性剂)缀合的抗体。
“个体”或“受试者”是哺乳动物。哺乳动物包括但不限于驯养的动物(例如牛、绵羊、猫、犬和马)、灵长类动物(例如人和非人灵长类动物,诸如猴)、兔以及啮齿类动物(例如小鼠和大鼠)。在某些方面,个体或受试者是人。
本文所用的术语“内化”或“受体内化”指的是也被称为内吞作用的生物过程,即细胞通过吞噬分子(诸如蛋白)来吸收它们的过程,导致分子从细胞的外部转运到内部。被内化的分子可以位于细胞内区室例如液泡、内体、溶酶体、内质网、高尔基体中,或者位于胞质溶胶中。“被内化的(internalized)”抗体或“内化(internalizing)”抗体是指能够从靶细胞的外部被转运到内部的抗体,例如通过与内化细胞表面受体(诸如转铁蛋白受体)结合。
“分离的”抗体为已从其自然环境的组分中分离的抗体。在一些方面,通过例如电泳(例如,SDS-PAGE、等电聚焦(IEF)、毛细管电泳)或色谱(例如,离子交换或反相HPLC)方法确定,将抗体纯化至大于95%或99%的纯度。关于评估抗体纯度的方法的综述,参见例如Flatman等人,J.Chromatogr.B 848:79-87(2007)。
术语“接头肽”、“肽接头”或“肽接头”可互换使用并且是指短至中等长度的多肽,优选十至约25个氨基酸。接头肽通常为了灵活性而富含甘氨酸,并为了溶解性而富含丝氨酸或苏氨酸。如本文所用,术语“接头肽”、“肽接头”或“肽接头”表示连接(connect/link)两个多肽序列,例如,连接两个多肽结构域的合成氨基酸序列。如本文所用,术语“合成的”是指非天然存在的氨基酸序列。本发明的肽接头经由肽键连接两个氨基酸序列。通常,接头肽将生物活性部分与第二部分以线性序列连接。在多肽的背景下,“线性序列”或“序列”为多肽中的氨基酸在氨基末端至羧基末端方向上的顺序,其中序列中彼此相邻的残基在多肽的一级结构中是连续的。如本文所用,术语“连接”、“连接”、“共价结合”、“融合”或“融合”可互换使用。在一个方面,接头主要或完全由Gly和Ser组成。在进一步的方面,接头具有SEQ IDNO:108或SEQ ID NO:109的序列。
术语“核酸分子”或“多核苷酸”包括包含核苷酸聚合物的任何化合物和/或物质。每个核苷酸由碱基组成,特别是嘌呤或嘧啶碱基(即胞嘧啶(C)、鸟嘌呤(G)、腺嘌呤(A)、胸腺嘧啶(T)或尿嘧啶(U))、糖(即脱氧核糖或核糖)和磷酸酯基团。通常,核酸分子通过碱基序列进行描述,其中所述碱基代表核酸分子的一级结构(线性结构)。碱基序列通常表示为从5'至3'。在本文中,术语核酸分子涵盖脱氧核糖核酸(DNA)(包括例如互补DNA(cDNA)和基因组DNA)、核糖核酸(RNA)(特别是信使RNA(mRNA))、DNA或RNA的合成形式,以及包含这些分子中的两种或更多种的混合聚合物。核酸分子可以是线性的或环状的。此外,术语核酸分子包括有义链和反义链,以及单链和双链形式。此外,本文所描述的核酸分子可含有天然存在的或非天然存在的核苷酸。非天然存在的核苷酸的示例包括具有衍生化的糖或磷酸主链键或经化学修饰的残基的经修饰的核苷酸碱基。核酸分子还涵盖适合作为用于本发明的抗体的体外和/或体内(例如,在宿主或患者体内)直接表达的载体的DNA和RNA分子。此类DNA(例如cDNA)或RNA(例如mRNA)载体可以是未修饰的或经修饰的。例如,可以对mRNA进行化学修饰以增强RNA载体的稳定性和/或编码分子的表达,使得可以将mRNA注射到受试者体内以产生体内抗体(参见例如Stadler等人,Nature Medicine 2017,在线发表于2017年6月12日,doi:10.1038/nm.4356或EP 2 101 823 B1)。
“分离的”核酸是指已从其自然环境的组分中分离的核酸分子。分离的核酸包括这样的核酸分子,其包含在通常含有核酸分子的细胞中,但该核酸分子存在于染色体外或与其天然染色体位置不同的染色体位置处。
“编码抗TfR或抗PD1抗体的分离的核酸”是指编码抗TfR或抗PD1抗体重链和轻链(或其片段)的一个或多个核酸分子,包括在单一载体或单独的载体中的此类核酸分子,以及存在于宿主细胞中一个或多个位置的此类核酸分子。
如本文所用的术语“单克隆抗体”是指从基本上同质的抗体群体获得的抗体,即,除了可能的变体抗体(例如,包含天然存在的突变或在单克隆抗体制剂的生产过程中产生,此类变体通常以少量形式存在)之外,包括该群体的个别抗体具有同一性和/或结合相同表位。与通常包括针对不同决定簇(表位)的不同抗体的多克隆抗体制剂相反,单克隆抗体制剂中的每种单克隆抗体针对抗原上的单一决定簇。因此,修饰语“单克隆”表示抗体的特征是从基本上同质的抗体群体获得的,并且不应解释为需要通过任何特定方法生产抗体。例如,根据本发明的单克隆抗体可以通过多种技术制备,包括但不限于杂交瘤方法、重组DNA方法、噬菌体展示方法,以及利用含有全部或部分人免疫球蛋白基因座的转基因动物的方法,在本文中描述了用于制备单克隆抗体的此类方法和其他示例性方法。
“裸抗体”是指不缀合至异源部分(例如,细胞毒性部分)或放射性标记物的抗体。裸抗体可存在于药物组合物中。
“天然抗体”是指具有不同结构的天然存在的免疫球蛋白分子。例如,天然IgG抗体是约150,000道尔顿的异四聚体糖蛋白,由经二硫键合的两条相同轻链和两条相同重链构成。从N末端至C末端,每条重链均具有可变结构域(VH),亦称为可变重链结构域或重链可变区,随后为三个恒定重链结构域(CH1、CH2和CH3)。类似地,从N末端至C末端,每条轻链均具有可变结构域(VL),亦称为可变轻链结构域或轻链可变区,随后为恒定轻链(CL)结构域。
术语“包装插页”用于指治疗产品的商业包装中通常包括的说明书,其包含涉及此类治疗产品的使用的有关适应症、用法、剂量、施用、组合疗法、禁忌和/或警告的信息。
如本文所用,术语“有效负载”是指作用于靶标(例如,靶细胞)并且可以为可被引入外来体和/或生产细胞中的任何天然存在的或人工合成的药物活性分子的治疗剂。它包括治疗剂,诸如核苷酸、核酸、氨基酸、多肽、脂质、碳水化合物、病毒和病毒颗粒以及小分子。
相对于参照多肽序列的“氨基酸序列同一性百分比(%)”被定义为在比对候选序列与参考多肽序列并引入空位(如果必要的话)以实现最大的序列同一性百分比之后,并且出于比对的目的在不考虑将任何保守取代作为序列同一性的组成部分的情况下,候选序列中的氨基酸残基与参考多肽序列中的氨基酸残基相同的百分比。用于确定氨基酸序列同一性百分比的比对可以通过本领域技术范围内的各种方式实现,例如使用公众可获得的计算机软件,诸如BLAST、BLAST-2、Clustal W、Megalign(DNASTAR)软件或FASTA程序包。本领域技术人员可确定用于比对序列的适当参数,包括在所比较的序列的全长上实现最大比对所需的任何算法。可替代地,可以使用序列比较计算机程序ALIGN-2来生成同一性百分比值。ALIGN-2序列比较计算机程序由基因泰克公司编写,并且源代码已经与用户文档一起提交到U.S.Copyright Office,Washington D.C.,20559,在那里以美国版权登记号TXU510087注册,并且在WO 2001/007611中有所描述。
除非另外指明,否则出于本文的目的,使用FASTA包第36.3.8c版或更高版本的ggsearch程序,利用BLOSUM50比较矩阵生成氨基酸序列同一性百分比的值。FASTA程序包由W.R.Pearson和D.J.Lipman(1988),“Improved Tools for Biological SequenceAnalysis”,PNAS 85:2444-2448;W.R.Pearson(1996)“Effective protein sequencecomparison”Meth.Enzymol.266:227-258;和Pearson等人(1997)Genomics 46:24-36创作并且可从www.fasta.bioch.virginia.edu/fasta_www2/fasta_down.shtml或www.ebi.ac.uk/Tools/sss/fasta公开获得。可替代地,可以使用可在fasta.bioch.virginia.edu/fasta_www2/index.cgi处访问的公共服务器来比较序列,使用ggsearch(全局蛋白质:蛋白质)程序和默认选项(BLOSUM50;开放:-10;ext:-2;Ktup=2)来确保执行全局而非局部比对。在输出比对标头中给出氨基酸同一性百分比。
术语“药物组合物”或“药物制剂”是指处于允许包含在其中的活性成分的生物活性有效的形式,并且不含对于将被施用该药物组合物的受试者具有不可接受的毒性的附加组分的制剂。
“药用载体”是指药物组合物或制剂中除活性成分之外的成分,其对受试者是无毒的。药用载体包括但不限于缓冲液、赋形剂、稳定剂,或防腐剂。
除非另外指明,否则如本文所用的术语“TfR”或“转铁蛋白受体”是指来自任何脊椎动物来源的任何天然TfR或转铁蛋白受体,该脊椎动物来源包括哺乳动物诸如灵长类动物(例如,人)和啮齿动物(例如,小鼠和大鼠)。该术语涵盖“全长”的未加工TfR,以及通过细胞中加工产生的任何形式的TfR。该术语还涵盖TfR的天然存在变体,例如剪接变体或等位基因变体。示例性人TfR的氨基酸序列示出于SEQ ID NO:66和表10中。
除非另外指明,否则本文中的术语“PD1”或“程序性细胞死亡蛋白1”是指来自任何脊椎动物来源的任何天然PD1或程序性细胞死亡蛋白1,该脊椎动物来源包括哺乳动物诸如灵长类动物(例如人)和啮齿动物(例如小鼠和大鼠)。该术语包括“全长”的未加工PD1,以及通过细胞中加工产生的任何形式的PD1。该术语还涵盖PD1的天然存在变体,例如剪接变体或等位基因变体。示例性人PD1的氨基酸序列示出于SEQ ID NO:65和表10中。
如本文所用,“治疗”(及其语法变体)是指试图改变所治疗个体的疾病的自然病程,并且可以执行以用于预防或可以在临床病理学过程中执行的临床干预措施。治疗的期望效果包括但不限于预防疾病的发生或复发、减轻症状、削弱疾病的任何直接或间接病理学后果、预防转移、降低疾病进展的速率、改善或减轻疾病状态,以及缓解或改善预后。在一些方面,本发明的抗体用于延迟疾病的发展或减缓疾病的进展。
术语“癌症”和“癌性”是指或描述哺乳动物中通常以细胞生长不受控制为特征的生理状况。癌症方面包括实体瘤癌症和非实体瘤癌症。癌症的实例包括但不限于癌、淋巴瘤、母细胞瘤、肉瘤和白血病或淋巴样恶性肿瘤。此类癌症的更具体的实例包括但不限于:膀胱癌(例如,尿路上皮癌(UC),包括转移性UC(mUC);肌层浸润性膀胱癌(MIBC)和非肌层浸润性膀胱癌(NMIBC));肾脏或肾癌(例如,肾细胞癌(RCC));肺癌,包括小细胞肺癌、非小细胞肺癌、肺腺癌和肺鳞状细胞癌;尿路癌;乳腺癌(例如,HER2+乳腺癌和三阴性乳腺癌(TNBC),该TNBC是指雌激素受体(ER-)、孕激素受体(PR-)和HER2(HER2-)呈阴性);前列腺癌,诸如去势抵抗性前列腺癌(CRPC);腹膜癌;肝细胞癌;胃癌(gastric/stomach cancer),包括胃肠道癌和胃肠道间质癌;胰腺癌(例如,胰腺导管腺癌(PDAC));胶质母细胞瘤;宫颈癌;卵巢癌;肝癌(例如,肝细胞癌(HCC));肝细胞瘤;结肠癌;直肠癌;大肠癌;子宫内膜癌或子宫癌;唾液腺癌;前列腺癌;外阴癌;甲状腺癌;肝癌;肛门癌;阴茎癌;黑色素瘤,包括浅表扩散性黑色素瘤、恶性雀斑样痣黑色素瘤、末梢型斑状恶性黑色素瘤,以及结节性黑色素瘤;多发性骨髓瘤和B细胞淋巴瘤(包括低度/滤泡性非霍奇金淋巴瘤(NHL);小淋巴细胞性(SL)NHL;中度/滤泡性NHL;中度弥漫性NHL;高度免疫母细胞性NHL;高度淋巴细胞性NHL;高度小型非裂解细胞NHL;巨大肿块NHL;套细胞淋巴瘤;AIDS相关淋巴瘤;以及瓦尔登斯特伦氏巨球蛋白血症(Waldenstrom'sMacroglobulinemia));慢性淋巴细胞白血病(CLL);急性淋巴细胞白血病(ALL);急性粒细胞性白血病(AML);毛细胞白血病;慢性粒细胞白血病(CML);移植后淋巴增生性疾病(PTLD);以及骨髓增生异常综合征(MDS),以及与斑痣性错构瘤病、水肿(诸如与脑肿瘤有关的疾病)、梅格斯综合征(Meigs'syndrome)、脑癌、头颈部癌和相关转移瘤相关的异常血管增生。
如本文所用,术语“肿瘤”是指所有赘生性细胞生长和增殖,无论是恶性还是良性,以及所有前癌性和癌性细胞和组织。术语“癌症”、“癌性”、“细胞增生性疾患”、“增生性疾患”和“肿瘤”在本文中并不互相排斥。
术语“细胞增殖性疾病”和“增殖性疾病”是指与某种程度的异常细胞增殖相关的病症。在一个实施例中,所述细胞增殖性病症为癌症。在另一实施例中,细胞增殖性病症是肿瘤。
术语“B细胞增殖性疾患”或“B细胞恶性肿瘤”是指与某种程度的异常B细胞增殖相关的疾患,并且包括例如淋巴瘤、白血病、骨髓瘤和骨髓增生异常综合征。在一个实施例中,B细胞增殖性疾患为淋巴瘤,诸如非霍奇金淋巴瘤(NHL),包括例如,DLBCL(例如,复发性或难治性DLBCL)、FL(例如,复发性或难治性FL或转化性FL)或MCL。在另一个实施例中,B细胞增殖性疾患为白血病,诸如慢性淋巴细胞白血病(CLL)。在又一个实施例中,B细胞增殖性疾患为中枢神经系统淋巴瘤(CNSL)。
膀胱癌
术语“膀胱癌”包括但不限于尿路上皮癌(UC),并且其可以为例如局部晚期或转移性的。本文所述的方法适用于治疗不同阶段的癌症,包括局部晚期和/或转移性癌症。在癌症分期中,局部晚期通常被定义为已从局部区域扩散到附近组织和/或淋巴结的癌症。在罗马数字分期体系中,局部晚期通常被归类为II期或III期。转移性癌症为其中癌症在全身扩散到远处组织和器官的阶段(IV期)。
术语“上尿路UC”是指肾盂或输尿管的UC。上尿路UC可以为上尿路转移性UC。UC的少数病例(例如约5%至10%)为上尿路UC。
术语“下尿路UC”是指膀胱或尿道的UC。下尿路UC可以为下尿路转移性UC。UC的大多数病例(例如,约90%至95%)为下尿路UC。
如本文所用,术语“不可手术的”与“不可切除的”可互换使用,是指不可能对其进行手术切除或不能安全地进行手术切除的癌症(例如,膀胱癌(例如,UC,包括局部晚期或转移性UC)。在一些实施例中,膀胱癌(例如,UC,包括局部晚期或转移性UC)由于涉及骨盆侧壁或邻近内脏(临床T4b期)或大块淋巴结转移(N2-N3)而为不可手术的。
术语“符合用铂类化疗治疗的条件”是指受试者符合用铂类化疗进行治疗的条件,无论是根据主治临床医生的判断,还是根据本领域已知的铂类化疗的制定标准。例如,Galsky等人Lancet Oncol.12(3):211-4,2011中提出的标准,可用于确定受试者是否符合进行基于顺铂的化疗的条件。Galsky等人描述患有转移性UC(mUC)的患者的共识定义,其中满足以下至少一项的患者被认为不适合进行基于顺铂的化疗:(i)世界卫生组织(WHO)或东部肿瘤协作组(ECOG)体能状态为2,或Karnofsky体能状态为60-70%;(ii)肌酐清除率(计算值或测量值)小于1mL/s;(iii)美国国家癌症研究所(NCI)不良事件通用术语标准(CTCAE)v4.0≥2级的听力测定的听力丧失;(iv)CTCAE v.4.0≥2级的周围神经病;和/或纽约心脏协会(NYHA)III级心力衰竭。在一个示例中,如果患者具有以下中一种或多种情况,则认为他们不适合进行基于顺铂的化疗:肾功能受损(例如,肾小球滤过率(GFR)>30但<60mL/min);GFR可以通过直接测量(即,肌酐清除率或乙二胺四乙酸盐)进行评定,或者,如果无法获得,则通过从血清/血浆肌酐(Cockcroft-Gault公式)计算;听力丧失(例如,在两个连续频率下为25分贝的美国国家癌症研究所(NCI)不良事件通用术语标准(CTCAE)v4.0≥2级的听力测定的听力丧失);周围神经病(例如,NCI CTCAE v4.0≥2级的周围神经病(即,感觉改变或感觉异常,包括刺痛));和/或ECOG体能状态评定(参见Oken等人Am.J.Clin.Oncol.5:649-655,1982)(例如,ECOG体能状态为2)。在一些实施例中,具有以下中一种情况的受试者可能符合进行基于卡铂的化疗的条件:肾功能受损(例如,肾小球滤过率(GFR)>30但<60mL/min);GFR可以通过直接测量(即,肌酐清除率或乙二胺四乙酸盐)进行评定,或者,如果无法获得,则通过从血清/血浆肌酐(Cockcroft-Gault公式)计算;听力丧失(例如,在两个连续频率下为25分贝的CTCAE v4.0≥2级的听力测定的听力丧失);周围神经病(例如,NCI CTCAE v4.0≥2级的周围神经病(即,感觉改变或感觉异常,包括刺痛));和/或ECOG体能状态评定(例如,ECOG体能状态为2)。
化疗剂还包括“铂类”化疗剂,其包含含有铂作为分子的组成部分的有机化合物。通常,铂类化疗剂为铂的配位络合物。铂类化疗剂在本领域中有时被称为“铂类药”。铂类化疗剂的示例包括但不限于顺铂、卡铂、奥沙利铂、奈达铂、四硝酸三铂、菲铂(phenanthriplatin)、吡铂(picoplatin,)、脂铂(lipoplatin)和沙铂(satraplatin)。铂类化疗剂(例如,顺铂或卡铂)可以与一种或多种额外的化疗剂(例如,核苷类似物(例如,吉西他滨))组合施用。
如本文所用,“铂类化疗”是指包括铂类化疗剂的化疗方案。例如,铂类化疗可以包括铂类化疗剂(例如,顺铂或卡铂)与一种或多种附加化疗剂(例如,核苷类似物(例如,吉西他滨))组合。
如本文所用,“核苷类似物”是指包括核酸类似物和糖的核苷。核苷类似物可以起到抗代谢药的作用。示例性核苷类似物包括但不限于吉西他滨、阿糖胞苷、氟达拉滨(fludarabine)和克拉屈滨(cladribine)。
乳腺癌
术语“乳腺癌”包括但不限于HER2+乳腺癌和三阴性乳腺癌(TNBC),这是这样一种形式的乳腺癌,其中癌细胞针对雌激素受体(ER-)、孕酮受体(PR-)和HER2(HER2-)呈阴性,并且其可能是局部晚期、不可切除和/或转移性的(例如,转移性三阴性乳腺癌(mTNBC))。
如本文所用,术语“早期TNBC”和“eTNBC”是指早期TNBC,包括I期至III期TNBC。早期TNBC占所有新早期乳腺癌诊断的10%至20%,其中在用新辅助蒽环类药物和紫杉烷疗法进行治疗后的3年无事件生存率为74%至76%。
如本文所用,“病理完全缓解”或“pCR”是指不存在来自乳腺和淋巴结两者的侵袭性肿瘤。术语pCR包括乳腺和腋窝淋巴结中不存在侵袭性癌,而与导管原位癌无关(即,ypT0/is ypN0);乳腺和腋窝淋巴结中不存在侵袭性癌和原位癌(即,ypT0 ypN0);以及乳腺中不存在侵袭性癌,而与导管原位癌或淋巴结受累无关(即,ypT0/is)。在特定方面,pCR是指乳腺和腋窝淋巴结中不存在侵袭性癌,而与导管原位癌无关(即,ypT0/is ypN0)。
如本文所用,“紫杉烷”为可与微管蛋白结合从而促进微管组装和稳定化和/或防止微管解聚的药剂(例如,二萜)。示例性紫杉烷包括但不限于,紫杉醇(即,CAS#33069-62-4)、多西他赛(即,CAS#114977-28-5)、拉罗他赛、卡巴他赛、米拉他赛、替司他赛和/或orataxel。本文包括的紫杉烷还包括紫杉类药物(taxoid)10-脱乙酰基巴卡丁III和/或其衍生物。在一些实施例中,紫杉烷为白蛋白包被的纳米颗粒(例如,纳米白蛋白结合(nab)-紫杉醇(即,)和/或nab-多西他赛(ABI-008))。在一些实施例中,紫杉烷为nab-紫杉醇在一些实施例中,紫杉烷配制在(例如,)中和/或(诸如聚山梨醇酯80(例如,))中。在一些实施例中,紫杉烷为脂质体包封的紫杉烷。在一些实施例中,紫杉烷为紫杉烷的前药形式和/或缀合形式(例如,DHA与紫杉醇共价缀合、聚谷氨酸紫杉醇和/或碳酸亚油酯-紫杉醇)。在一些实施例中,紫杉醇配制为基本上不含表面活性剂(例如,在不存在和/或(诸如)紫杉醇的情况下)。
如本文所用,“蒽环类药物”是指表现出细胞毒活性的一类抗生素化合物。蒽环类药物可以经由DNA嵌入、拓扑异构酶-II介导的毒性、活性氧类的生成和/或DNA加合物形成引起细胞毒性。示例性蒽环类药物包括但不限于多柔比星、表柔比星、伊达比星、柔红霉素、米托蒽醌和戊柔比星。在一些方面,蒽环类药物为多柔比星或表柔比星。在一些具体方面,蒽环类药物为多柔比星。在其他具体方面,蒽环类药物为表柔比星。
如本文所用,“烷化剂”是指将烷基附接到核苷酸(例如,DNA)的一类化疗剂。通常,烷基附接到DNA的鸟嘌呤碱基。示例性烷化剂包括但不限于氮芥衍生物(例如,环磷酰胺、苯丁酸氮芥、乌拉莫司汀、美法仑或苯达莫司汀)、亚硝基脲(例如,卡莫司汀、洛莫司汀或链脲佐菌素)、烷基磺酸盐(例如,白消安)、三嗪(例如,达卡巴嗪或替莫唑胺)和乙烯亚胺(例如,六甲蜜胺或噻替哌)。
肾癌
在一些实施例中,癌症为肾癌。在特定实施例中,肾癌为肾细胞癌(RCC)(例如,晚期RCC或转移性RCC(mRCC),包括先前未治疗的RCC)。在一些实施例中,肾癌是肉瘤样肾癌(例如,肉瘤样RCC(例如,肉瘤样晚期或mRCC))。
术语“肉瘤样”是指例如通过组织学评估以肉瘤样形态为特征的癌症(例如肾癌(例如RCC))。肉瘤样肾癌(例如肉瘤样RCC)与攻击行为和不良预后相关。在一些实施例中,肉瘤样肾癌包括非典型梭形细胞或由非典型梭形细胞组成和/或类似于任何形式的肉瘤。参见例如,El Mouallem等人Urol.Oncol.36:265-271,2018中所述,其全文以引用方式并入本文。肉瘤样RCC可发生在任何亚型的RCC中,包括透明细胞RCC、嫌色RCC、集合管癌、肾髓质癌、富马酸水合酶(FH)缺陷型RCC和琥珀酸脱氢酶(SDH)缺陷型RCC。肉瘤样RCC的发病率因亚型而异,但透明细胞RCC(约5%至8%)和嫌色RCC(约8%至10%)通常较高。肉瘤样成分的组织学可以是可变的,并且可以包括纤维肉瘤样模式、多形性未分化肉瘤样模式或其他异源肉瘤样模式(例如骨肉瘤、软骨肉瘤或横纹肌肉瘤样模式)。坏死通常出现在大多数(约90%)病例中。在一些实施例中,对于被分类为肉瘤样的个体肾癌,不存在肉瘤样分化的最低量或百分比。肉瘤样RCC可以如实例1中所述地进行评估。在其他实施例中,肉瘤样RCC可以如2012年国际泌尿病理学会(ISUP)温哥华共识所描述的那样进行表征(参见Srigley等人Am.J.Surg.Pathol.37:1469-89,2013,其通过引用整体并入本文)。
术语“纪念斯隆凯特琳癌症中心(MSKCC)风险评分”是指基于与肾癌(例如,RCC,例如,mRCC)患者的生存相关的一组预后因素的评分系统。参见例如,Motzer等人J.Clin.Oncol.17(8):2530-2540,1999和Motzer等人J.Clin.Oncol.20(1):289-296,2002,其通过引用整体并入本文。在一些实施例中,MSKCC风险评分可以基于以下因素来计算,如实例1中描述的:(i)从肾切除术到治疗(例如全身治疗)的时间少于一年、未进行肾切除术或初步诊断患有转移性疾病;(ii)血红蛋白水平低于正常下限(LLN),任选地其中血红蛋白的正常范围对于男性而言为13.5g/dL与17.5g/dL之间并且对于女性而言为12g/dL与15.5g/dL之间;(iii)血清校正钙水平大于10mg/dL,任选地其中血清校正钙水平为血清钙水平(mg/dL)+0.8(4-血清白蛋白(g/dL));(iv)血清乳酸脱氢酶(LDH)水平大于正常上限(ULN)的1.5倍,任选地其中ULN为140U/L;和/或(v)卡氏活动状态(KPS)评分<80。在一些实施例中,如果个体具有零个前述特征,则该个体具有有利的MSKCC风险评分。在一些实施例中,如果个体具有前述特征中的一项或两项,则该个体具有中等MSKCC风险评分。在一些实施例中,如果个体具有前述特征中的三项或多项,则该个体具有较差的MSKCC风险评分。在一些实施例中,个体的MSKCC风险评分可用于鉴定个体是否可受益于抗癌疗法,例如,包括VEGF拮抗剂(例如,抗VEGF抗体诸如贝伐单抗)和PD-L1轴结合拮抗剂(例如,抗PD-L1抗体诸如阿替利珠单抗)的抗癌疗法。
如本文所用,“无恶化率”或“DFR”是指患者在一段时间内经历有临床意义的恶化的概率,例如,从疗法开始到患者第一次在MD安德森症状清单(MDASI)干扰量表的基线以上增加≥2分的时间。
“MD安德森症状清单(MDASI)干扰量表”是指患者报告的结果测量评分系统,用于评估与癌症及其治疗相关的多种症状的严重程度和影响(参见Mendoza等人Clin.BreastCancer 13:325-334,2013;Jones等人Clin.Genitourin.Cancer 12:41-49,2014;和Shi等人Pain 158:1108-1112,2017)。在MDASI干扰量表中,患者评估过去24小时内症状对生活各个方面的干扰程度。每个干扰项(工作、一般活动、步行、与他人的关系、生活享受和情绪)均按0至10分等级进行评分,其中0代表“不干扰”而10代表“完全干扰”。
肝癌
如本文所用,术语“不可切除的”是指不可能对其进行手术切除或不能安全地进行手术切除的癌症(例如,肝癌(例如,HCC,包括局部晚期或转移性HCC)。例如,对于肝癌,“不可切除的”表示癌症无法通过部分肝切除术安全切除,例如由于肿瘤太大而无法安全切除、肿瘤位于肝脏的部分导致难以移除(例如,诸如靠近大血管)、存在多个肿瘤或癌症已扩散到整个肝脏和/或肝脏外部、和/或受试者具有妨碍切除的潜在的健康问题(例如,肝硬化)。
如本文所用,“放射学进展时间”(TTRP)是指第一事件(例如,随机化进入临床试验或施用治疗方案的第一剂量)与通过放射学评估的客观进展之间的时间长度。在一些实施例中,放射照相进展根据实体瘤响应评估标准(RECIST)标准,例如RECIST v1.1或mRECIST(例如,HCC mRECIST)来定义。
术语“可变区”或“可变结构域”是指抗体重链或轻链的参与抗体与抗原结合的结构域。天然抗体的重链和轻链的可变结构域(分别为VH和VL)通常具有相似的结构,其中每个结构域包含四个保守框架区(FR)和三个互补决定区(CDR)。(参见例如,Kindt等人KubyImmunology,第6版,W.H.Freeman and Co.,第91页(2007))。单个VH或VL结构域可足以赋予抗原结合特异性。此外,结合特定抗原的抗体可分别使用来自结合该抗原的抗体的VH或VL结构域来进行分离,以筛选互补VL或VH结构域的文库。参见例如,Portolano等人,J.Immunol.150:880-887(1993);Clarkson等人,Nature 352:624-628(1991)。
如本文所用的术语“载体”是指能够载运与其相连的另一核酸的核酸分子。该术语包括作为自我复制核酸结构的载体,以及整合入其已被引入的宿主细胞的基因组中的载体。某些载体能够指导与其可操作地连接的核酸的表达。此类载体在本文中称为“表达载体”。
II.组合物和方法
在一方面,本发明部分地基于这样的发现:一方面将特异性结合TfR的第一抗原结合结构域与另一方面特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域组合在单个双特异性抗体中导致双特异性抗体在与表达和/或在其表面展示TfR和PD1的细胞接触时被内化。这样的细胞可以为例如活化的T细胞。在进一步的方面,本发明部分地基于以下发现:抗TfR抗PD1 2+1形式抗体,即包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和第三抗原结合结构域的双特异性抗体,与单特异性二价PD1抗体相比,显示出改进的生物学活性,并导致PD1和PD-L1之间的相互作用的更好的抑制。在一个方面,这些分子包含彼此共价结合的IgG类Fab片段,并且任选地还包含IgG类Fc区,产生本文公开的2+1形式抗体。不希望受理论约束,发明人相信这些抗体从T细胞的表面清除PD1,并从而比通过仅仅使抗PD1阻断抗体结合PD1能够实现的更持久地破坏PD1与位于肿瘤细胞的表面上的PD1配体(PD-L1)的结合。因此,本发明的抗体产生比本领域已知的抗PD1抗体更强的对PD1/PD-L1介导的信号传导的抑制作用。据信,本文描述的抗体的有用性与这些抗体与细胞表面上的两种受体TfR和PD1形成复合物的能力有关,在形成复合物后所述复合物被整体内化到细胞中。
根据本发明的抗体还可用于将有效负载特异性转运至T细胞,通过将有效负载直接缀合至抗体或通过将另外的抗原结合结构域附接至抗体,然后抗体可与有效负载特异性结合。在某些方面,提供了与PD1和TfR结合的双特异性抗体。本发明的抗体例如可用于将诸如小分子或RNA的剂递送至T细胞以用于癌症治疗。
在另一方面,本发明部分地基于以下发现:与单特异性抗PD1抗体或具有1+1化学计量的靶向抗PD1和抗TfR的结合结构域的双特异性抗TfR抗PD1抗体(即包含与TfR特异性结合的一个抗原结合结构域和与PD1特异性结合的仅一个抗原结合结构域的双特异性抗体)相比,具有靶向抗PD1和抗TfR的结合结构域的2+1化学计量的双特异性抗TfR抗PD1抗体,即包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和第三抗原结合结构域导致PD1的内化增加。本发明的抗体可用于例如抑制个体中肿瘤细胞的生长或用于诊断或治疗肿瘤。本发明的抗体可用于本领域已知的抗PD1抗体用于的各种医学治疗。
A.与TfR和PD1结合的示例性双特异性抗体
在一个方面,本发明提供了一种双特异性抗体,该双特异性抗体包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域。在一个方面,提供了一种分离的双特异性抗体,该分离的双特异性抗体包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域。在一个方面,本发明提供了与TfR和PD1特异性结合的抗体。在某些方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体引起PD1从细胞表面的清除并引起PD1内化到细胞中。细胞优选为T细胞,更优选为活化的T细胞。PD1内化到细胞中抑制PD1与其配体的结合,优选地抑制与PD-L1的结合。优选地,由于PD1内化到细胞中,PD1与其配体之间的结合的抑制比通过仅抗原结合结构域与PD1的结合实现的阻断具有更持久的效果。包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体优选地
i.同时结合TfR和PD1,
ii.通过同时与TfR和PD1结合,导致由双特异性抗体、TfR和PD1形成的复合物内化到细胞中,并从细胞表面清除PD1,防止PD-L1接近PD1,和/或
iii.能够阻断PD1-PD-L1相互作用和/或通过与PD1结合并实现从细胞表面清除PD1来阻止PD1信号传导,优选地导致比常规抗PD1抗体更有效和/或更持久的PD1/PD-L1介导的信号传导的抑制。
在一个方面,双特异性抗体包含的Fab片段以及任选地IgG类Fc区彼此共价结合,产生不同构象的2+1形式抗体。在进一步的方面,双特异性抗体主要呈单体形式,即,其不形成包含多于一个本发明的双特异性抗体的二聚体或多聚体(例如五聚体)结构。在具体方面,至少90%、更具体地至少95%、优选地至少98%、更优选地至少99%的抗体呈单体形式。
在一个方面,本发明提供了一种双特异性抗体,该双特异性抗体包含A)与TfR特异性结合的第一抗原结合结构域,其包含
a.选自以下中的至少一个、至少两个、至少三个、至少四个、至少五个或全部六个CDR:(a)CDR-H1,其包含SEQ ID NO:1的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:2的氨基酸序列;(c)CDR-H3,其包含SEQ ID NO:3的氨基酸序列;(d)CDR-L1,其包含SEQ ID NO:4的氨基酸序列;(e)CDR-L2,其包含SEQ ID NO:5的氨基酸序列;和(f)CDR-L3,其包含SEQ IDNO:6的氨基酸序列,或者
b.选自以下中的至少一个、至少两个、至少三个、至少四个、至少五个或全部六个CDR:(a)CDR-H1,其包含SEQ ID NO:9的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:10的氨基酸序列;(c)CDR-H3,其包含SEQ ID NO:11的氨基酸序列;(d)CDR-L1,其包含SEQ ID NO:12的氨基酸序列;(e)CDR-L2,其包含SEQ ID NO:13的氨基酸序列;和(f)CDR-L3,其包含SEQID NO:14的氨基酸序列,和
B)与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域,其包含
a.选自以下中的至少一个、至少两个、至少三个、至少四个、至少五个或全部六个CDR:(a)CDR-H1,其包含SEQ ID NO:17的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:18的氨基酸序列;(c)CDR-H3,其包含SEQ ID NO:19的氨基酸序列;(d)CDR-L1,其包含SEQ ID NO:20的氨基酸序列;(e)CDR-L2,其包含SEQ ID NO:21的氨基酸序列;和(f)CDR-L3,其包含SEQID NO:22的氨基酸序列,或者
b.选自以下中的至少一个、至少两个、至少三个、至少四个、至少五个或全部六个CDR:(a)CDR-H1,其包含SEQ ID NO:25的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:26的氨基酸序列;(c)CDR-H3,其包含SEQ ID NO:27的氨基酸序列;(d)CDR-L1,其包含SEQ ID NO:28的氨基酸序列;(e)CDR-L2,其包含SEQ ID NO:29的氨基酸序列;和(f)CDR-L3,其包含SEQID NO:30的氨基酸序列。
在一个方面,本发明提供了一种双特异性抗体,该双特异性抗体包含
A)与TfR特异性结合的第一抗原结合结构域,其包含
a.选自以下的至少一个、至少两个或所有三个VH CDR序列:(a)CDR-H1,其包含SEQID NO:1的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:2的氨基酸序列;和(c)CDR-H3,其包含SEQ ID NO:3的氨基酸序列,或者
b.选自以下的至少一个、至少两个或所有三个VH CDR序列:(a)CDR-H1,其包含SEQID NO:9的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:10的氨基酸序列;和(c)CDR-H3,其包含SEQ ID NO:11的氨基酸序列,以及
B)与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域,其包含
a.选自以下的至少一个、至少两个或所有三个VH CDR序列:(a)CDR-H1,其包含SEQID NO:17的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:18的氨基酸序列;和(c)CDR-H3,其包含SEQ ID NO:19的氨基酸序列,或者
b.选自以下的至少一个、至少两个或所有三个VH CDR序列:(a)CDR-H1,其包含SEQID NO:25的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:26的氨基酸序列;和(c)CDR-H3,其包含SEQ ID NO:27的氨基酸序列。
在一个方面,双特异性抗体包含CDR-H3,其包含SEQ ID NO:3的氨基酸序列,以及CDR-H3,其包含SEQ ID NO:19的氨基酸序列。在一个方面,双特异性抗体包含CDR-H3,其包含SEQ ID NO:3的氨基酸序列,以及CDR-H3,其包含SEQ ID NO:27的氨基酸序列。
在一个方面,双特异性抗体包含CDR-H3,其包含SEQ ID NO:11的氨基酸序列,以及CDR-H3,其包含SEQ ID NO:19的氨基酸序列。在一个方面,双特异性抗体包含CDR-H3,其包含SEQ ID NO:11的氨基酸序列,以及CDR-H3,其包含SEQ ID NO:27的氨基酸序列。
在另一方面,双特异性抗体包含
A)与TfR特异性结合的第一抗原结合结构域,其包含
a.CDR-H3,其包含SEQ ID NO:3的氨基酸序列和CDR-L3,其包含SEQ ID NO:6的氨基酸序列,或者
b.CDR-H3,其包含SEQ ID NO:11的氨基酸序列和CDR-L3,其包含SEQ ID NO:14的氨基酸序列,和
B)与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域,其包含
a.CDR-H3,其包含SEQ ID NO:19的氨基酸序列和CDR-L3,其包含SEQ ID NO:22的氨基酸序列,或者
b.CDR-H3,其包含SEQ ID NO:27的氨基酸序列和CDR-L3,其包含SEQ ID NO:30的氨基酸序列。
在进一步的方面,抗体包含
A)与TfR特异性结合的第一抗原结合结构域,其包含
a.CDR-H3,其包含SEQ ID NO:3的氨基酸序列,CDR-L3,其包含SEQ ID NO:6的氨基酸序列,和CDR-H2,其包含SEQ ID NO:2的氨基酸序列,
或者
b.CDR-H3,其包含SEQ ID NO:11的氨基酸序列,CDR-L3,其包含SEQ ID NO:14的氨基酸序列,和CDR-H2,其包含SEQ ID NO:10的氨基酸序列,
并且
B)与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域,其包含
a.CDR-H3,其包含SEQ ID NO:19的氨基酸序列,CDR-L3,其包含SEQ ID NO:22的氨基酸序列,和CDR-H2,其包含SEQ ID NO:18的氨基酸序列,
或者
b.CDR-H3,其包含SEQ ID NO:27的氨基酸序列,CDR-L3,其包含SEQ ID NO:30的氨基酸序列,和CDR-H2,其包含SEQ ID NO:26的氨基酸序列。
在进一步的方面,抗体包含
A)与TfR特异性结合的第一抗原结合结构域,其包含
a.CDR-H1,其包含SEQ ID NO:1的氨基酸序列;CDR-H2,其包含SEQ ID NO:2的氨基酸序列;和CDR-H3,其包含SEQ ID NO:3的氨基酸序列,
或者
b.CDR-H1,其包含SEQ ID NO:9的氨基酸序列;CDR-H2,其包含SEQ ID NO:10的氨基酸序列;和CDR-H3,其包含SEQ ID NO:11的氨基酸序列,
以及
B)与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域,其包含
a.CDR-H1,其包含SEQ ID NO:17的氨基酸序列;CDR-H2,其包含SEQ ID NO:18的氨基酸序列;和CDR-H3,其包含SEQ ID NO:19的氨基酸序列,
或者
b.CDR-H1,其包含SEQ ID NO:25的氨基酸序列;CDR-H2,其包含SEQ ID NO:26的氨基酸序列;和CDR-H3,其包含SEQ ID NO:27的氨基酸序列。
在另一方面,本发明提供了双特异性抗体,所述双特异性抗体包含
A)与TfR特异性结合的第一抗原结合结构域,其包含
a.选自以下的至少一个、至少两个或所有三个VL CDR序列:(a)CDR-L1,其包含SEQID NO:4的氨基酸序列;(b)CDR-L2,其包含SEQ ID NO:5的氨基酸序列;和(c)CDR-L3,其包含SEQ ID NO:6的氨基酸序列,或者
b.选自以下的至少一个、至少两个或所有三个VL CDR序列:(a)CDR-L1,其包含SEQID NO:12的氨基酸序列;(b)CDR-L2,其包含SEQ ID NO:13的氨基酸序列;和(c)CDR-L3,其包含SEQ ID NO:14的氨基酸序列,和
B)与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域,其包含
a.选自以下的至少一个、至少两个或所有三个VL CDR序列:(a)CDR-L1,其包含SEQID NO:20的氨基酸序列;(b)CDR-L2,其包含SEQ ID NO:21的氨基酸序列;和(c)CDR-L3,其包含SEQ ID NO:22的氨基酸序列,或者
b.选自以下的至少一个、至少两个或所有三个VL CDR序列:(a)CDR-L1,其包含SEQID NO:28的氨基酸序列;(b)CDR-L2,其包含SEQ ID NO:29的氨基酸序列;和(c)CDR-L3,其包含SEQ ID NO:30的氨基酸序列。
在一个方面中,双特异性抗体包含
A)与TfR特异性结合的第一抗原结合结构域,其包含
a.(a)CDR-L1,其包含SEQ ID NO:4的氨基酸序列;(b)CDR-L2,其包含SEQ ID NO:5的氨基酸序列;和(c)CDR-L3,其包含SEQ ID NO:6的氨基酸序列,或者
b.(a)CDR-L1,其包含SEQ ID NO:12的氨基酸序列;(b)CDR-L2,其包含SEQ ID NO:13的氨基酸序列;和(c)CDR-L3,其包含SEQ ID NO:14的氨基酸序列,和
B)与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域,其包含
a.(a)CDR-L1,其包含SEQ ID NO:20的氨基酸序列;(b)CDR-L2,其包含SEQ ID NO:21的氨基酸序列;和(c)CDR-L3,其包含SEQ ID NO:22的氨基酸序列,或者
b.(a)CDR-L1,其包含SEQ ID NO:28的氨基酸序列;(b)CDR-L2,其包含SEQ ID NO:29的氨基酸序列;和(c)CDR-L3,其包含SEQ ID NO:30的氨基酸序列。
在另一方面,本发明的双特异性抗体包含
A)与TfR特异性结合的第一抗原结合结构域,其包含
a.VH结构域,其包含选自以下的至少一个、至少两个或所有三个VH CDR序列:(i)CDR-H1,其包含SEQ ID NO:1的氨基酸序列,(ii)CDR-H2,其包含SEQ ID NO:2的氨基酸序列,和(iii)CDR-H3,其包含SEQ ID NO:3的氨基酸序列;和VL结构域,其包含选自以下的至少一个、至少两个或所有三个VL CDR序列:(i)CDR-L1,其包含SEQ ID NO:4的氨基酸序列,(ii)CDR-L2,其包含SEQ ID NO:5的氨基酸序列,和(c)CDR-L3,其包含SEQ ID NO:6的氨基酸序列,或者
b.VH结构域,其包含选自以下的至少一个、至少两个或所有三个VH CDR序列:(i)CDR-H1,其包含SEQ ID NO:9的氨基酸序列,(ii)CDR-H2,其包含SEQ ID NO:10的氨基酸序列,和(iii)CDR-H3,其包含SEQ ID NO:11的氨基酸序列;和VL结构域,其包含选自以下的至少一个、至少两个或所有三个VL CDR序列:(i)CDR-L1,其包含SEQ ID NO:12的氨基酸序列,(ii)CDR-L2,其包含SEQ ID NO:13的氨基酸序列,和(c)CDR-L3,其包含SEQ ID NO:14的氨基酸序列,和
B)与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域,其包含
a.VH结构域,其包含选自以下的至少一个、至少两个或所有三个VH CDR序列:(i)CDR-H1,其包含SEQ ID NO:17的氨基酸序列,(ii)CDR-H2,其包含SEQ ID NO:18的氨基酸序列,和(iii)CDR-H3,其包含SEQ ID NO:19的氨基酸序列;和VL结构域,其包含选自以下的至少一个、至少两个或所有三个VL CDR序列:(i)CDR-L1,其包含SEQ ID NO:20的氨基酸序列,(ii)CDR-L2,其包含SEQ ID NO:21的氨基酸序列,和(c)CDR-L3,其包含SEQ ID NO:22的氨基酸序列,
或者
b.VH结构域,其包含选自以下的至少一个、至少两个或所有三个VH CDR序列:(i)CDR-H1,其包含SEQ ID NO:25的氨基酸序列,(ii)CDR-H2,其包含SEQ ID NO:26的氨基酸序列,和(iii)CDR-H3,其包含SEQ ID NO:27的氨基酸序列;和VL结构域,其包含选自以下的至少一个、至少两个或所有三个VL CDR序列:(i)CDR-L1,其包含SEQ ID NO:28的氨基酸序列,(ii)CDR-L2,其包含SEQ ID NO:29的氨基酸序列,和(c)CDR-L3,其包含SEQ ID NO:30的氨基酸序列。
在另一方面,本发明提供了双特异性抗体,所述双特异性抗体包含
A)第一抗原结合结构域,其包含:(a)CDR-H1,其包含SEQ ID NO:1的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:2的氨基酸序列;(c)CDR-H3,其包含SEQ ID NO:3的氨基酸序列;(d)CDR-L1,其包含SEQ ID NO:4的氨基酸序列;(e)CDR-L2,其包含SEQ ID NO:5的氨基酸序列;和(f)CDR-L3,其包含SEQ ID NO:6的氨基酸序列和
B)第二抗原结合结构域和任选地第三抗原结合结构域,其包含(a)CDR-H1,其包含SEQ ID NO:17的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:18的氨基酸序列;(c)CDR-H3,其包含SEQ ID NO:19的氨基酸序列;(d)CDR-L1,其包含SEQ ID NO:20的氨基酸序列;(e)CDR-L2,其包含SEQ ID NO:21的氨基酸序列;和(f)CDR-L3,其包含SEQ ID NO:22的氨基酸序列。
在另一方面,本发明提供了双特异性抗体,所述双特异性抗体包含
C)第一抗原结合结构域,其包含:(a)CDR-H1,其包含SEQ ID NO:1的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:2的氨基酸序列;(c)CDR-H3,其包含SEQ ID NO:3的氨基酸序列;(d)CDR-L1,其包含SEQ ID NO:4的氨基酸序列;(e)CDR-L2,其包含SEQ ID NO:5的氨基酸序列;和(f)CDR-L3,其包含SEQ ID NO:6的氨基酸序列和
D)第二抗原结合结构域和任选地第三抗原结合结构域,其包含(a)CDR-H1,其包含SEQ ID NO:25的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:26的氨基酸序列;(c)CDR-H3,其包含SEQ ID NO:27的氨基酸序列;(d)CDR-L1,其包含SEQ ID NO:28的氨基酸序列;(e)CDR-L2,其包含SEQ ID NO:29的氨基酸序列;和(f)CDR-L3,其包含SEQ ID NO:30的氨基酸序列。
在另一方面,本发明提供了双特异性抗体,所述双特异性抗体包含
E)第一抗原结合结构域,其包含:(a)CDR-H1,其包含SEQ ID NO:9的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:10的氨基酸序列;(c)CDR-H3,其包含SEQ ID NO:11的氨基酸序列;(d)CDR-L1,其包含SEQ ID NO:12的氨基酸序列;(e)CDR-L2,其包含SEQ ID NO:13的氨基酸序列;和(f)CDR-L3,其包含SEQ ID NO:14的氨基酸序列和
F)第二抗原结合结构域和任选地第三抗原结合结构域,其包含(a)CDR-H1,其包含SEQ ID NO:17的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:18的氨基酸序列;(c)CDR-H3,其包含SEQ ID NO:19的氨基酸序列;(d)CDR-L1,其包含SEQ ID NO:20的氨基酸序列;(e)CDR-L2,其包含SEQ ID NO:21的氨基酸序列;和(f)CDR-L3,其包含SEQ ID NO:22的氨基酸序列。
在另一方面,本发明提供了双特异性抗体,所述双特异性抗体包含
G)第一抗原结合结构域,其包含:(a)CDR-H1,其包含SEQ ID NO:9的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:10的氨基酸序列;(c)CDR-H3,其包含SEQ ID NO:11的氨基酸序列;(d)CDR-L1,其包含SEQ ID NO:12的氨基酸序列;(e)CDR-L2,其包含SEQ ID NO:13的氨基酸序列;和(f)CDR-L3,其包含SEQ ID NO:14的氨基酸序列和
H)第二抗原结合结构域和任选地第三抗原结合结构域,其包含(a)CDR-H1,其包含SEQ ID NO:25的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:26的氨基酸序列;(c)CDR-H3,其包含SEQ ID NO:27的氨基酸序列;(d)CDR-L1,其包含SEQ ID NO:28的氨基酸序列;(e)CDR-L2,其包含SEQ ID NO:29的氨基酸序列;和(f)CDR-L3,其包含SEQ ID NO:30的氨基酸序列。
在本文提供的任一个方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体为人源化的。在一个方面,抗TfR抗PD1双特异性抗体进一步包含人受体框架,例如人免疫球蛋白框架或人共有框架。“来源于”人免疫球蛋白框架或人共有框架的受体人框架可包含与所述人免疫球蛋白框架或人共有框架相同的氨基酸序列,或者其可以包含氨基酸序列变化。在一些实施例中,氨基酸变化的数量为10个或更少、9个或更少、8个或更少、7个或更少、6个或更少、5个或更少、4个或更少、3个或更少,或2个或更少。在一些实施例中,VL受体人框架在序列上与VL人免疫球蛋白框架序列或人共有框架序列相同。
在另一方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含SEQ ID NO:7的VH的CDR序列中的一个或多个和SEQ ID NO:23的VH的CDR序列中的一个或多个。在另一个实施例中,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含SEQ ID NO:8的VL的CDR序列中的一个或多个和SEQ ID NO:24的VL的CDR序列中的一个或多个。在另一个实施例中,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含SEQ ID NO:7的VH的CDR序列和SEQ ID NO:8的VL的CDR序列和SEQ ID NO:23的VH的CDR序列和SEQ ID NO:24的VL的CDR序列。
在另一方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含SEQ ID NO:7的VH的CDR序列中的一个或多个和SEQ ID NO:31的VH的CDR序列中的一个或多个。在另一个实施例中,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含SEQ ID NO:8的VL的CDR序列中的一个或多个和SEQ ID NO:32的VL的CDR序列中的一个或多个。在另一个实施例中,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含SEQ ID NO:7的VH的CDR序列和SEQ ID NO:8的VL的CDR序列和SEQ ID NO:31的VH的CDR序列和SEQ ID NO:32的VL的CDR序列。
在另一方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含SEQ ID NO:15的VH的CDR序列中的一个或多个和SEQ ID NO:23的VH的CDR序列中的一个或多个。在另一个实施例中,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含SEQ ID NO:16的VL的CDR序列中的一个或多个和SEQ ID NO:24的VL的CDR序列中的一个或多个。在另一个实施例中,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含SEQ ID NO:15的VH的CDR序列和SEQ ID NO:16的VL的CDR序列和SEQ ID NO:23的VH的CDR序列和SEQ ID NO:24的VL的CDR序列。
在另一方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含SEQ ID NO:15的VH的CDR序列中的一个或多个和SEQ ID NO:31的VH的CDR序列中的一个或多个。在另一个实施例中,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含SEQ ID NO:16的VL的CDR序列中的一个或多个和SEQ ID NO:32的VL的CDR序列中的一个或多个。在另一个实施例中,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含SEQ ID NO:15的VH的CDR序列和SEQ ID NO:16的VL的CDR序列和SEQ ID NO:31的VH的CDR序列和SEQ ID NO:32的VL的CDR序列。
在进一步的方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含SEQ ID NO:7的VH结构域的CDR-H1、CDR-H2和CDR-H3氨基酸序列以及SEQ ID NO:8的VL结构域的CDR-L1、CDR-L2和CDR-L3氨基酸序列以及SEQ ID NO:23的VH结构域的CDR-H1、CDR-H2和CDR-H3氨基酸序列以及SEQ ID NO:24的VL结构域的CDR-L1、CDR-L2和CDR-L3氨基酸序列。
在进一步的方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含SEQ ID NO:7的VH结构域的CDR-H1、CDR-H2和CDR-H3氨基酸序列以及SEQ ID NO:8的VL结构域的CDR-L1、CDR-L2和CDR-L3氨基酸序列以及SEQ ID NO:31的VH结构域的CDR-H1、CDR-H2和CDR-H3氨基酸序列以及SEQ ID NO:32的VL结构域的CDR-L1、CDR-L2和CDR-L3氨基酸序列。
在进一步的方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含SEQ ID NO:15的VH结构域的CDR-H1、CDR-H2和CDR-H3氨基酸序列以及SEQ ID NO:16的VL结构域的CDR-L1、CDR-L2和CDR-L3氨基酸序列以及SEQ ID NO:23的VH结构域的CDR-H1、CDR-H2和CDR-H3氨基酸序列以及SEQ ID NO:24的VL结构域的CDR-L1、CDR-L2和CDR-L3氨基酸序列。
在进一步的方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含SEQ ID NO:15的VH结构域的CDR-H1、CDR-H2和CDR-H3氨基酸序列以及SEQ ID NO:16的VL结构域的CDR-L1、CDR-L2和CDR-L3氨基酸序列以及SEQ ID NO:31的VH结构域的CDR-H1、CDR-H2和CDR-H3氨基酸序列以及SEQ ID NO:32的VL结构域的CDR-L1、CDR-L2和CDR-L3氨基酸序列。
在另一个方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含a)SEQ ID NO:7的VH结构域的重链CDR氨基酸序列中的一个或多个和与SEQ ID NO:7的VH结构域的框架氨基酸序列具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%序列统一性的框架,以及b)SEQ ID NO:23的VH结构域的重链CDR氨基酸序列中的一个或多个和与SEQ ID NO:23的VH结构域的框架氨基酸序列具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%序列统一性的框架。
在一个方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含a)SEQ ID NO:7的VH结构域的三个重链CDR氨基酸序列和与SEQ ID NO:7的VH结构域的框架氨基酸序列具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%序列统一性的框架,以及b)SEQ ID NO:23的VH结构域的三个重链CDR氨基酸序列和与SEQ IDNO:23的VH结构域的框架氨基酸序列具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%序列统一性的框架。
在一方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含a)SEQ ID NO:7的VH结构域的三个重链CDR氨基酸序列和与SEQ ID NO:7的VH结构域的框架氨基酸序列具有至少95%序列同一性的框架,以及b)SEQ ID NO:23的VH结构域的三个重链CDR氨基酸序列和与SEQ ID NO:23的VH结构域的框架氨基酸序列具有至少95%序列同一性的框架。在另一方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含a)SEQ ID NO:7的VH结构域的三个重链CDR氨基酸序列和与SEQ ID NO:23的VH结构域的框架氨基酸序列具有至少98%序列同一性的框架,以及b)SEQ ID NO:7的VH结构域的三个重链CDR氨基酸序列和与SEQ ID NO:23的VH结构域的框架氨基酸序列具有至少98%序列同一性的框架。
在另一个方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含a)SEQ ID NO:7的VH结构域的重链CDR氨基酸序列中的一个或多个和与SEQ ID NO:7的VH结构域的框架氨基酸序列具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%序列统一性的框架,以及b)SEQ ID NO:31的VH结构域的重链CDR氨基酸序列中的一个或多个和与SEQ ID NO:31的VH结构域的框架氨基酸序列具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%序列统一性的框架。
在一个方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含a)SEQ ID NO:7的VH结构域的三个重链CDR氨基酸序列和与SEQ ID NO:7的VH结构域的框架氨基酸序列具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%序列统一性的框架,以及b)SEQ ID NO:31的VH结构域的三个重链CDR氨基酸序列和与SEQ IDNO:31的VH结构域的框架氨基酸序列具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%序列统一性的框架。在一方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含a)SEQ ID NO:7的VH结构域的三个重链CDR氨基酸序列和与SEQ ID NO:7的VH结构域的框架氨基酸序列具有至少95%序列同一性的框架,以及b)SEQID NO:31的VH结构域的三个重链CDR氨基酸序列和与SEQ ID NO:31的VH结构域的框架氨基酸序列具有至少95%序列同一性的框架。在另一方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含a)SEQ ID NO:7的VH结构域的三个重链CDR氨基酸序列和与SEQ ID NO:7的VH结构域的框架氨基酸序列具有至少98%序列同一性的框架,以及b)SEQ ID NO:31的VH结构域的三个重链CDR氨基酸序列和与SEQ ID NO:31的VH结构域的框架氨基酸序列具有至少98%序列同一性的框架。
在另一个方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含a)SEQ ID NO:15的VH结构域的重链CDR氨基酸序列中的一个或多个和与SEQ ID NO:15的VH结构域的框架氨基酸序列具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%序列统一性的框架,以及b)SEQ ID NO:23的VH结构域的重链CDR氨基酸序列中的一个或多个和与SEQ ID NO:23的VH结构域的框架氨基酸序列具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%序列统一性的框架。
在一个方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含a)SEQ ID NO:15的VH结构域的三个重链CDR氨基酸序列和与SEQ ID NO:15的VH结构域的框架氨基酸序列具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%序列统一性的框架,以及b)SEQ ID NO:23的VH结构域的三个重链CDR氨基酸序列和与SEQID NO:23的VH结构域的框架氨基酸序列具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%序列统一性的框架。在一方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含a)SEQ ID NO:15的VH结构域的三个重链CDR氨基酸序列和与SEQ ID NO:15的VH结构域的框架氨基酸序列具有至少95%序列同一性的框架,以及b)SEQ ID NO:23的VH结构域的三个重链CDR氨基酸序列和与SEQ ID NO:23的VH结构域的框架氨基酸序列具有至少95%序列同一性的框架。在另一方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含a)SEQ ID NO:15的VH结构域的三个重链CDR氨基酸序列和与SEQ ID NO:15的VH结构域的框架氨基酸序列具有至少98%序列同一性的框架,以及b)SEQ ID NO:23的VH结构域的三个重链CDR氨基酸序列和与SEQ ID NO:23的VH结构域的框架氨基酸序列具有至少98%序列同一性的框架。
在另一个方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含a)SEQ ID NO:15的VH结构域的重链CDR氨基酸序列中的一个或多个和与SEQ ID NO:15的VH结构域的框架氨基酸序列具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%序列统一性的框架,以及b)SEQ ID NO:31的VH结构域的重链CDR氨基酸序列中的一个或多个和与SEQ ID NO:31的VH结构域的框架氨基酸序列具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%序列统一性的框架。
在一方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含a)SEQ ID NO:15的VH结构域的三个重链CDR氨基酸序列和与SEQ ID NO:15的VH结构域的框架氨基酸序列具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%序列统一性的框架,以及b)SEQ ID NO:31的VH结构域的三个重链CDR氨基酸序列和与SEQ IDNO:31的VH结构域的框架氨基酸序列具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%序列统一性的框架。在一方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含a)SEQ ID NO:15的VH结构域的三个重链CDR氨基酸序列和与SEQ ID NO:15的VH结构域的框架氨基酸序列具有至少95%序列同一性的框架,以及b)SEQ ID NO:31的VH结构域的三个重链CDR氨基酸序列和与SEQ ID NO:31的VH结构域的框架氨基酸序列具有至少95%序列同一性的框架。在另一方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含a)SEQ ID NO:15的VH结构域的三个重链CDR氨基酸序列和与SEQ ID NO:15的VH结构域的框架氨基酸序列具有至少98%序列同一性的框架,以及b)SEQ ID NO:31的VH结构域的三个重链CDR氨基酸序列和与SEQ ID NO:31的VH结构域的框架氨基酸序列具有至少98%序列同一性的框架。
在一个方面,包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含
A)与TfR特异性结合的第一抗原结合结构域,其包含(a)CDR-H1,其包含SEQ IDNO:1的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:2的氨基酸序列;(c)CDR-H3,其包含SEQID NO:3的氨基酸序列;(d)CDR-L1,其包含SEQ ID NO:4的氨基酸序列;(e)CDR-L2,其包含SEQ ID NO:5的氨基酸序列;和(f)CDR-L3,其包含SEQ ID NO:6的氨基酸序列和VH结构域,其与SEQ ID NO:7的氨基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列同一性以及VL结构域,其与SEQ ID NO:8的氨基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列同一性,和
B)与PD1特异性结合的第二抗原结合结构域和/或当存在时的第三抗原结合结构域,其包含(a)CDR-H1,其包含SEQ ID NO:17的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:18的氨基酸序列;(c)CDR-H3,其包含SEQ ID NO:19的氨基酸序列;(d)CDR-L1,其包含SEQID NO:20的氨基酸序列;(e)CDR-L2,其包含SEQ ID NO:21的氨基酸序列;和(f)CDR-L3,其包含SEQ ID NO:22的氨基酸序列和VH结构域,其与SEQ ID NO:23的氨基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列同一性,和VL结构域,其与SEQ ID NO:24的氨基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列同一性。
在一个方面,第一VH结构域与SEQ ID NO:7的氨基酸序列具有至少95%序列同一性并且第二VH结构域与SEQ ID NO:23的氨基酸序列具有至少95%序列同一性。在一个方面,第一VL结构域与SEQ ID NO:8的氨基酸序列具有至少95%序列同一性并且第二VL结构域与SEQ ID NO:24的氨基酸序列具有至少95%序列同一性。
在一个方面,包含与TfR特异性结合的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域的双特异性抗体包含
A)与TfR特异性结合的第一抗原结合结构域,其包含(a)CDR-H1,其包含SEQ IDNO:1的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:2的氨基酸序列;(c)CDR-H3,其包含SEQID NO:3的氨基酸序列;(d)CDR-L1,其包含SEQ ID NO:4的氨基酸序列;(e)CDR-L2,其包含SEQ ID NO:5的氨基酸序列;和(f)CDR-L3,其包含SEQ ID NO:6的氨基酸序列和VH结构域,其与SEQ ID NO:7的氨基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列同一性,和VL结构域,其与SEQ ID NO:8的氨基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列同一性,和
B)与PD1特异性结合的第二抗原结合结构域和/或当存在时的第三抗原结合结构域,其包含(a)CDR-H1,其包含SEQ ID NO:25的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:26的氨基酸序列;(c)CDR-H3,其包含SEQ ID NO:27的氨基酸序列;(d)CDR-L1,其包含SEQID NO:28的氨基酸序列;(e)CDR-L2,其包含SEQ ID NO:29的氨基酸序列;和(f)CDR-L3,其包含SEQ ID NO:30的氨基酸序列和VH结构域,其与SEQ ID NO:31的氨基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列同一性,和VL结构域,其与SEQ ID NO:32的氨基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列同一性。
在一个方面,第一VH结构域与SEQ ID NO:7的氨基酸序列具有至少95%序列同一性并且第二VH结构域与SEQ ID NO:31的氨基酸序列具有至少95%序列同一性。在一个方面,第一VL结构域与SEQ ID NO:8的氨基酸序列具有至少95%序列同一性并且第二VL结构域与SEQ ID NO:32的氨基酸序列具有至少95%序列同一性。
在一个方面,包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含
A)与TfR特异性结合的第一抗原结合结构域,其包含(a)CDR-H1,其包含SEQ IDNO:9的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:10的氨基酸序列;(c)CDR-H3,其包含SEQID NO:11的氨基酸序列;(d)CDR-L1,其包含SEQ ID NO:12的氨基酸序列;(e)CDR-L2,其包含SEQ ID NO:13的氨基酸序列;和(f)CDR-L3,其包含SEQ ID NO:14的氨基酸序列和VH结构域,其与SEQ ID NO:15的氨基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列同一性,和VL结构域,其与SEQ ID NO:16的氨基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列同一性,和
B)与PD1特异性结合的第二抗原结合结构域和/或当存在时的第三抗原结合结构域,其包含(a)CDR-H1,其包含SEQ ID NO:17的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:18的氨基酸序列;(c)CDR-H3,其包含SEQ ID NO:19的氨基酸序列;(d)CDR-L1,其包含SEQID NO:20的氨基酸序列;(e)CDR-L2,其包含SEQ ID NO:21的氨基酸序列;和(f)CDR-L3,其包含SEQ ID NO:22的氨基酸序列和VH结构域,其与SEQ ID NO:23的氨基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列同一性,和VL结构域,其与SEQ ID NO:24的氨基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列同一性。
在一个方面,第一VH结构域与SEQ ID NO:15的氨基酸序列具有至少95%序列同一性并且第二VH结构域与SEQ ID NO:23的氨基酸序列具有至少95%序列同一性。在一个方面,第一VL结构域与SEQ ID NO:16的氨基酸序列具有至少95%序列同一性并且第二VL结构域与SEQ ID NO:24的氨基酸序列具有至少95%序列同一性。
在一个方面,包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含
A)与TfR特异性结合的第一抗原结合结构域,其包含(a)CDR-H1,其包含SEQ IDNO:9的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:10的氨基酸序列;(c)CDR-H3,其包含SEQID NO:11的氨基酸序列;(d)CDR-L1,其包含SEQ ID NO:12的氨基酸序列;(e)CDR-L2,其包含SEQ ID NO:13的氨基酸序列;和(f)CDR-L3,其包含SEQ ID NO:14的氨基酸序列和VH结构域,其与SEQ ID NO:15的氨基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列同一性,和VL结构域,其与SEQ ID NO:16的氨基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列同一性,和
B)与PD1特异性结合的第二抗原结合结构域和/或当存在时的第三抗原结合结构域,其包含(a)CDR-H1,其包含SEQ ID NO:25的氨基酸序列;(b)CDR-H2,其包含SEQ ID NO:26的氨基酸序列;(c)CDR-H3,其包含SEQ ID NO:27的氨基酸序列;(d)CDR-L1,其包含SEQID NO:28的氨基酸序列;(e)CDR-L2,其包含SEQ ID NO:29的氨基酸序列;和(f)CDR-L3,其包含SEQ ID NO:30的氨基酸序列和VH结构域,其与SEQ ID NO:31的氨基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列同一性,和VL结构域,其与SEQ ID NO:32的氨基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列同一性。
在一个方面,第一VH结构域与SEQ ID NO:15的氨基酸序列具有至少95%序列同一性并且第二VH结构域与SEQ ID NO:31的氨基酸序列具有至少95%序列同一性。在一个方面,第一VL结构域与SEQ ID NO:16的氨基酸序列具有至少95%序列同一性并且第二VL结构域与SEQ ID NO:32的氨基酸序列具有至少95%序列同一性。
在另一方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含
A)第一重链可变结构域(VH)序列,其与选自由以下项组成的组的氨基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的序列同一性:SEQID NO:7和SEQ ID NO:15和
B)第二重链可变结构域(VH)序列,其与选自由以下项组成的组的氨基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的序列同一性:SEQID NO:23和SEQ ID NO:31。
在一个方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含
A)重链可变结构域(VH)序列,其与选自由以下项组成的组的氨基酸序列具有至少95%的序列同一性:SEQ ID NO:7和SEQ ID NO:15和
B)重链可变结构域(VH)序列,其与选自由以下项组成的组的氨基酸序列具有至少95%的序列同一性:SEQ ID NO:23和SEQ ID NO:31。
在某些方面,具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%或99%同一性的VH序列相对于参考序列包含取代(例如,保守取代)、插入或缺失,但是包含该序列的包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体保留了与TfR和/或PD1结合的能力。在某些方面,在SEQ ID NO:7、SEQ ID NO:15、SEQ ID NO:23,和/或SEQ ID NO:31中,总计1至10个氨基酸被取代、插入和/或缺失。在某些方面,取代、插入或缺失发生在CDR之外的区域(即,在FR中)。任选地,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含第一重链可变结构域(VH)序列,其选自由以下项组成的组:SEQ ID NO:7和SEQ ID NO:15,和第二重链可变结构域(VH)序列,其选自由以下项组成的组:SEQ ID NO:23和SEQ ID NO:31,包括那些序列的翻译后修饰。
在另一方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含
A)第一轻链可变结构域(VL)序列,其与选自由以下项组成的组的氨基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的序列同一性:SEQID NO:8和SEQ ID NO:16和
B)第二轻链可变结构域(VL)序列,其与选自由以下项组成的组的氨基酸序列具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的序列同一性:SEQID NO:24和SEQ ID NO:32。
在一个方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含
A)轻链可变结构域(VL)序列,其与选自由以下项组成的组的氨基酸序列具有至少95%的序列同一性:SEQ ID NO:8和SEQ ID NO:16和
B)轻链可变结构域(VL)序列,其与选自由以下项组成的组的氨基酸序列具有至少95%的序列同一性:SEQ ID NO:24和SEQ ID NO:32。
在某些方面,具有至少90%、91%、92%、93%、94%、95%、96%、97%、98%或99%同一性的VL序列相对于参考序列包含取代(例如,保守取代)、插入或缺失,但是包含该序列的包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体保留了与TfR和/或PD1结合的能力。在某些方面,在SEQ ID NO:8、SEQ ID NO:16、SEQ ID NO:24和/或SEQ ID NO:32中,总计1至10个氨基酸被取代、插入和/或缺失。在某些方面,取代、插入或缺失发生在CDR之外的区域(即,在FR中)。任选地,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含第一轻链可变结构域(VL)序列,其选自由以下项组成的组:SEQ ID NO:8和SEQ ID NO:16和第二轻链可变结构域(VL)序列,其选自由以下项组成的组:SEQ ID NO:24和SEQ ID NO:32,包括该序列的翻译后修饰。
在另一方面,提供了包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体,其中抗体包含如上文提供的任一方面的VH序列,以及上文提供的任一方面的VL序列。在一个方面中,双特异性抗体包含
A)与TfR特异性结合的第一抗原结合结构域,其包含以下的VH和
VL序列
a.SEQ ID NO:7和SEQ ID NO:8,或者
b.SEQ ID NO:13和SEQ ID NO:14和
B)与PD1特异性结合的第二抗原结合结构域,和/或当存在时的第三抗原结合结构域,其分别包含VH和VL序列
a.SEQ ID NO:23和SEQ ID NO:24,或者
b.SEQ ID NO:31和SEQ ID NO:32,
包括那些序列的翻译后修饰。
在本发明的另外的方面,根据任何上述方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体为单克隆抗体,包括嵌合抗体、人源化抗体或人抗体。在一个方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体包含至少一种抗体片段,例如Fv、Fab、Fab'、scFv、双体抗体或F(ab')2片段。
在另一方面,抗体为全长抗体,例如本文所定义的完整IgG1抗体或其他抗体类别或同种型。在某些方面,抗体属于IgG类。在另一方面,抗体的Fab片段和/或Fc区属于IgG类。在某些方面,抗体是IgG1同种型。在另一方面,抗体的Fab片段和/或Fc区属于IgG1同种型。
在进一步的方面,如本文所述的抗体为IgG1同种型/亚类并且包含以下的恒定重链结构域:SEQ ID NO:69或SEQ ID NO:70或以下的重链氨基酸序列的恒定部分SEQ ID NO:35、SEQ ID NO:37、SEQ ID NO:39或SEQ ID NO:41。在一个方面,额外存在C末端甘氨酸(Gly446)。在一个方面,另外地存在C末端甘氨酸(Gly446)和C末端赖氨酸(Lys447)。
在另一方面,本发明涉及双特异性抗体,其包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域,其包含第一重链,所述第一重链包含与SEQID NO:35的序列具有至少95%序列同一性的氨基酸序列,第一轻链,其包含与SEQ ID NO:36的序列具有至少95%序列同一性的氨基酸序列,以及第二重链,其包含与SEQ ID NO:39的序列具有至少95%序列同一性的氨基酸序列,和第二轻链,其包含与SEQ ID NO:40的序列具有至少95%序列同一性的氨基酸序列。
在另一方面,本发明涉及双特异性抗体,其包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域,其包含第一重链,所述第一重链包含与SEQID NO:37的序列具有至少95%序列同一性的氨基酸序列,第一轻链,其包含与SEQ ID NO:38的序列具有至少95%序列同一性的氨基酸序列,以及第二重链,其包含与SEQ ID NO:39的序列具有至少95%序列同一性的氨基酸序列,和第二轻链,其包含与SEQ ID NO:40的序列具有至少95%序列同一性的氨基酸序列。
在另一方面,本发明涉及双特异性抗体,其包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域,其包含第一重链,所述第一重链包含与SEQID NO:35的序列具有至少95%序列同一性的氨基酸序列,第一轻链,其包含与SEQ ID NO:36的序列具有至少95%序列同一性的氨基酸序列,以及第二重链,其包含与SEQ ID NO:41的序列具有至少95%序列同一性的氨基酸序列,和第二轻链,其包含与SEQ ID NO:42的序列具有至少95%序列同一性的氨基酸序列。
在另一方面,本发明涉及双特异性抗体,其包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域,其包含第一重链,所述第一重链包含与SEQID NO:37的序列具有至少95%序列同一性的氨基酸序列,第一轻链,其包含与SEQ ID NO:38的序列具有至少95%序列同一性的氨基酸序列,以及第二重链,其包含与SEQ ID NO:41的序列具有至少95%序列同一性的氨基酸序列,和第二轻链,其包含与SEQ ID NO:42的序列具有至少95%序列同一性的氨基酸序列。
在另一方面,本发明涉及一种双特异性抗体,所述双特异性抗体包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域和第三抗原结合结构域,其包含
第一重链,其包含与SEQ ID NO:59的序列具有至少95%序列同一性的氨基酸序列(H链),第二重链,其包含与SEQ ID NO:60的序列具有至少95%的序列同一性的氨基酸序列(K链),第一轻链,其包含与SEQ ID NO:57的序列具有至少95%的序列同一性的氨基酸序列(A链),以及第二轻链,其包含与SEQ ID NO:58的序列具有至少95%的序列同一性的氨基酸序列(B链)。
在进一步的方面,本发明涉及一种双特异性抗体,该双特异性抗体包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和第三抗原结合结构域,其包含
第一重链,其包含与SEQ ID NO:61的序列具有至少95%序列同一性的氨基酸序列(H链),第二重链,其包含与SEQ ID NO:60的序列具有至少95%的序列同一性的氨基酸序列(K链),第一轻链,其包含与SEQ ID NO:57的序列具有至少95%的序列同一性的氨基酸序列(A链),以及第二轻链,其包含与SEQ ID NO:58的序列具有至少95%的序列同一性的氨基酸序列(B链)。
在进一步的方面,根据任何上述方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体可以单独地或组合地掺入以下第1节至第8节中描述的任何特征:
1.抗体亲和力
在某些方面,本文提供了一种抗体,其解离常数(KD)为≤1μM、≤100nM、≤10nM、≤1nM、≤0.1nM、≤0.01nM或≤0.001nM(例如,10-8M或更小,例如10-8M至10-13M,例如10-9M至10-13M)。
一方面,使用表面等离子体共振测定法测量KD。例如,使用-2000或-3000(BIAcore,Inc.,Piscataway,NJ)在25℃下用固定的抗原CM5芯片以~10个响应单位(RU)进行测定。在一个方面,根据供应商说明书,用N-乙基-N'-(3-二甲基氨基丙基)-碳化二亚胺盐酸盐(EDC)及N-羟基琥珀酰亚胺(NHS)活化羧甲基化的葡聚糖生物感测器芯片(CM5,BIACORE,Inc.)。将抗原用10mM醋酸钠pH 4.8稀释至5μg/ml(约0.2μM),之后以5μl/分钟的流量进行注射以获得大约10响应单位(RU)的偶联蛋白。注射抗原之后,注射1M乙醇胺以阻断未反应的基团。关于动力学测量,在25℃,以约25μl/min的流速,注射在含有0.05%聚山梨酯20(TWEEN-20TM)表面活性剂(PBST)的PBS中的Fab的两倍连续稀释液(0.78nM至500nM)。使用简单的一对一Langmuir结合模型(Evaluation Software 3.2版),通过同时拟合缔合与解离感测器图来计算缔合速率(kon)与解离速率(koff)。平衡解离常数(KD)计算为比率koff/kon。参见例如,Chen等人,J.Mol.Biol.293:865-881(1999)。如果通过上述表面等离子体共振测定得出缔合速率超过106M-1s-1,则可通过使用荧光淬灭技术测定缔合速率,即如在分光计诸如配备止流装置的分光光度计(Aviv Instruments)或8000系列SLM-AMINCO TM分光光度计(ThermoSpectronic)中用搅拌比色杯所测得的,在浓度渐增的抗原存在下,测量在25℃PBS pH 7.2中的20nM抗抗原抗体(Fab形式)的荧光发射强度(激发=295nm;发射=340nm,16nm带通)的增加或减少。
在一种替代方法中,通过放射性标记的抗原结合测定法(RIA)测量KD。在一个方面,采用目的抗体的Fab形式及其抗原进行RIA。例如,Fab对抗原的溶液结合亲和力是通过在一系列未标记的抗原滴定存在下用最小浓度的(125I)标记的抗原平衡Fab,然后用抗Fab抗体包被的板捕获结合的抗原来测量的(参见,例如,Chen等人,J.Mol.Biol.293:865-881(1999))。为确定用于测定法的条件,用在50mM碳酸钠(pH 9.6)中5μg/ml捕获抗Fab抗体(Cappel Labs)包被微孔板(Thermo Scientific)过夜,随后在室温(大约23℃)用在PBS中2%(w/v)牛血清白蛋白阻断二至五小时。在非吸附板(Nunc#269620)中,将100pM或26pM[125I]-抗原与目标Fab的系列稀释液混合(例如,与Presta等人,CancerRes.57:4593-4599(1997)中的抗VEGF抗体,Fab-12的评定符合)。然后将目的Fab孵育过夜;然而,孵育可以持续更长时间(例如,约65小时)以确保达到平衡。此后,将混合物转移至捕获板以在室温下孵育(例如,一小时)。然后去除溶液并用在PBS中的0.1%聚山梨醇酯20洗涤所述板八次。当板已干燥时,添加150μl/孔的闪烁体(MICROSCINT-20TM;Packard),并且在TOPCOUNT TMγ计数器(Packard)上对板计数十分钟。选择给出小于或等于20%最大结合的各Fab的浓度以用于竞争性结合测定中。
2.抗体片段
在某些方面,本文提供的抗体是抗体片段。
一方面,抗体片段是Fab’、Fab’-SH或F(ab’)2片段,特别是Fab片段。木瓜蛋白酶消化完整抗体产生两个称为“Fab”片段的相同的抗原结合片段,每个“Fab”片段包含重链可变结构域和轻链可变结构域(分别为VH和VL),包括VH中的三个CDR(CDR-H1、CDR-H2、CDR-H3)和VL中的三个CDR(CDR-L1、CDR-L2、CDR-L3),以及轻链的恒定结构域(CL)和重链的第一恒定结构域(CH1)。因此,术语“Fab片段”是指包括包含VL结构域和CL结构域的轻链以及包含VH结构域和CH1结构域的重链片段的抗体片段。Fab’片段与Fab片段的不同之处在于Fab’片段在CH1结构域的羧基末端添加了残基,这些残基包括来自抗体铰链区的一个或多个半胱氨酸。Fab’-SH是Fab’片段,其中恒定结构域的半胱氨酸残基具有游离巯基。胃蛋白酶处理产生F(ab')2片段,该片段具有两个抗原结合结构域(两个Fab片段)和Fc区的一部分。关于对包含补救受体结合表位残基并具有增加的体内半衰期的Fab和F(ab')2片段的讨论,请参见美国专利号5,869,046。在一个方面,Fab片段属于IgG类。
在一个方面,抗体片段是双体抗体、三体抗体或四体抗体。“双体抗体”是具有两个抗原结合结构域的抗体片段,其可以是二价或双特异性的。参见例如,EP 404,097;WO1993/01161;Hudson等人,Nat.Med.9:129-134(2003);和Hollinger等人,Proc.Natl.Acad.Sci.USA 90:6444-6448(1993)。关于三体抗体和四体抗体的描述也可参见Hudson等人,Nat.Med.9:129-134(2003)。
在另一个方面,抗体片段为单链Fab片段。“单链Fab片段”或“scFab”是由抗体重链可变结构域(VH)、抗体重链恒定结构域1(CH1)、抗体轻链可变结构域(VL)、抗体轻链恒定结构域(CL)和接头组成的多肽,其中所述抗体结构域和所述接头在N末端至C末端方向上具有以下顺序中的一种:a)VH-CH1-接头-VL-CL、b)VL-CL-接头-VH-CH1、c)VH-CL-接头-VL-CH1,或d)VL-CH1-接头-VH-CL。特别地,所述接头是至少30个氨基酸,优选地在32个与50个氨基酸之间的多肽。所述单链Fab片段经由CL结构域与CH1结构域之间的天然二硫键而稳定化。此外,这些单链Fab片段可以通过经由插入半胱氨酸残基(例如,根据Kabat编号的可变重链中的44位和可变轻链中的100位)生成链间二硫键,而进一步稳定化。
在另一方面,抗体片段是单链可变片段(scFv)。“单链可变片段”或“scFv”是抗体的重链可变结构域(VH)和轻链可变结构域(VL)的融合蛋白,是通过肽接头连接的。特别地,接头是10个至约25个氨基酸的短多肽,并且通常富含甘氨酸以获得柔性,以及富含丝氨酸或苏氨酸以获得溶解性,并且可以将VH的N末端与VL的C末端连接,或反之。尽管去除了恒定区并且引入了接头,但该蛋白质仍保留了原始抗体的特异性。关于scFv片段的综述,参见例如Plückthun,载于The Pharmacology of Monoclonal Antibodies,第113卷,Rosenburg和Moore编辑(Springer-Verlag,New York),第269至第315页(1994);还可参见WO 93/16185;以及美国专利号5,571,894和5,587,458。
在另一方面,抗体片段是单结构域抗体。“单结构域抗体”是包含抗体的全部或部分重链可变结构域或者抗体的全部或部分轻链可变结构域的抗体片段。在某些方面,单结构域抗体是人单结构域抗体(Domantis,Inc.,Waltham,MA;参见例如美国专利号6,248,516B1)。
抗体片段可以通过各种技术制备,包括但不限于完整抗体的蛋白水解消化以及由重组宿主细胞(例如大肠杆菌)重组产生,如本文所述。
3.嵌合抗体和人源化抗体
在某些方面,本文提供的抗体是嵌合抗体。某些嵌合抗体如以下文献所述:例如美国专利号第4,816,567号和Morrison等人,Proc.Natl.Acad.Sci.USA,81:6851-6855(1984)。在一个实例中,嵌合抗体包含非人可变区(例如,源自小鼠、大鼠、仓鼠、兔或非人灵长类动物(诸如猴)的可变区)和人恒定区。在另一个实例中,嵌合抗体为其中类别或亚类已经与亲本抗体的类别或亚类改变的“类别转换”抗体。嵌合抗体包括其抗原结合片段。
在某些方面,嵌合抗体是人源化抗体。通常,将非人抗体人源化以减少对人的免疫原性,同时保留亲本非人抗体的特异性和亲和力。通常,人源化抗体包含一个或多个可变结构域,其中CDR(或其部分)源自非人抗体,并且FR(或其部分)源自人抗体序列。人源化抗体任选地还将包含人恒定区的至少一部分。在一些方面,人源化抗体中的一些FR残基被来自非人抗体(例如,CDR残基所来源于的抗体)的相应残基取代,例如以恢复或改善抗体特异性或亲和力。
人源化抗体及其制备方法例如综述于以下参考文献:Almagro和Fransson,Front.Biosci.13:1619-1633(2008),又如以下文献所述:例如,Riechmann等人,Nature332:323-329(1988);Queen等人,Proc.Nat’lAcad.Sci.USA 86:10029-10033(1989);美国专利号5,821,337、7,527,791、6,982,321和7,087,409;Kashmiri等人,Methods 36:25-34(2005)(描述特异性决定区(SDR)移植);Padlan,Mol.Immunol.28:489-498(1991)(描述“表面再塑”);Dall’Acqua等人,Methods 36:43-60(2005)(描述“FR改组”);和Osbourn等人,Methods 36:61-68(2005)和Klimka等人,Br.J.Cancer,83:252-260(2000)(描述FR改组的“导向选择”方法)。
可用于人源化的人框架区包括但不限于:使用“最佳拟合”方法选择的框架区(参见例如,Sims等人J.Immunol.151:2296(1993));源自轻链或重链可变区特定亚组的人抗体的共有序列的框架区(参见例如,Carter等人Proc.Natl.Acad.Sci.USA,89:4285(1992);和Presta等人,J.Immunol.,151:2623(1993));人成熟(体细胞突变的)框架区或人种系框架区(参见,例如,Almagro和Fransson,Front.Biosci.13:1619-1633(2008));以及源自筛选FR文库的框架区(参见例如,Baca等人,J.Biol.Chem.272:10678-10684(1997)和Rosok等人,J.Biol.Chem.271:22611-22618(1996))。
4.人抗体
在某些方面,本文提供的抗体是人抗体。可以使用本领域已知的各种技术来产生人抗体。对人抗体的一般性描述可参见:van Dijk和van de Winkel,Curr.Opin.Pharmacol.5:368-74(2001)和Lonberg,Curr.Opin.Immunol.20:450-459(2008)。
可以通过以下方式来制备人抗体:将免疫原施用于转基因动物,所述转基因动物已被修饰以响应于抗原激发而产生具有人可变区的完整人抗体或完整抗体。此类动物通常含有全部或部分人免疫球蛋白基因座,所述全部或部分人免疫球蛋白基因座替代内源性免疫球蛋白基因座,或者在动物的染色体外存在或随机整合至动物的染色体中。在此类转基因小鼠中,内源性免疫球蛋白基因座通常已被灭活。关于从转基因动物得到人抗体的方法的综述,参见Lonberg,Nat.Biotech.23:1117-1125(2005)。还参见例如描述XENOMOUSETM技术的美国专利号6,075,181和6,150,584;描述技术的美国专利号5,770,429;描述K-M 技术的美国专利号7,041,870,以及描述技术的美国专利申请公开号US 2007/0061900)。可以进一步修饰来自由此类动物产生的完整抗体的人可变区,例如通过与不同的人恒定区组合。
人抗体也可以通过基于杂交瘤的方法制备。已经描述了用于产生人单克隆抗体的人骨髓瘤和小鼠-人杂交骨髓瘤细胞系。(参见例如,Kozbor J.Immunol.,133:3001(1984);Brodeur等人,Monoclonal Antibody Production Techniques and Applications,第51-63页(Marcel Dekker,Inc.,New York,1987);以及Boerner等人,J.Immunol.,147:86(1991))。通过人B细胞杂交瘤技术产生的人抗体也可参见如下描述:Li等人,Proc.Natl.Acad.Sci.USA,103:3557-3562(2006)。另外的方法包括例如在美国专利号7,189,826(描述了从杂交瘤细胞系产生单克隆人IgM抗体)和Ni,Xiandai Mianyixue,26(4):265-268(2006)(描述了人-人杂交瘤)中描述的那些方法。人类杂交瘤技术(Trioma技术)也描述于Vollmers和Brandlein,Histology and Histopathology,20(3):927-937(2005)和Vollmers和Brandlein,Methods and Findings in Experimental and ClinicalPharmacology,27(3):185-91(2005)中。
人抗体还可以通过分离选自人源噬菌体展示文库的可变结构域序列产生。然后可以将此类可变结构域序列与预期的人恒定结构域结合。从抗体文库中选择人抗体的技术描述如下。
5.源自文库的抗体
在某些方面,本文提供的抗体衍生自文库。可以通过筛选组合文库中具有一个或多个所需活性的抗体来分离本发明的抗体。用于筛选组合文库的方法综述于例如Lerner等人,Nature Reviews 16:498-508(2016)中。例如,本领域已知多种方法用于产生噬菌体展示文库并筛选此类文库以获得具有所需结合特征的抗体。此类方法综述于例如Frenzel等人,mAbs8:1177-1194(2016);Bazan等人,Human Vaccines and Immunotherapeutics8:1817-1828(2012)和Zhao等人,Critical Reviews in Biotechnology 36:276-289(2016)中,以及Hoogenboom等人,Methods in Molecular Biology178:1-37(O’Brien等人编辑,Human Press,Totowa,NJ,2001)中和Marks和Bradbury,Methods in Molecular Biology248:161-175(Lo编辑,Human Press,Totowa,NJ,2003)中。
在某些噬菌体展示方法中,将VH和VL基因的全部集合通过聚合酶链式反应(PCR)单独克隆,并在噬菌体文库中随机重组,然后可以从所述噬菌体文库中筛选抗原结合噬菌体,如在Winter等人,Annual Review of Immunology 12:433-455(1994)中描述的。噬菌体通常将抗体片段展示为单链Fv(scFv)片段或Fab片段。来自经免疫的来源的文库提供针对免疫原的高亲和力抗体,而无需构建杂交瘤。可替代地,可以克隆所有天然组成成分(例如,来自人的所有天然组成成分)以提供针对广泛的非自身抗原和自身抗原的抗体的单一来源,而无需任何免疫,如由Griffiths等人在EMBO Journal 12:725-734(1993)。此外,还通过以下方式来合成天然文库:克隆来自干细胞的未重排的V基因区段;以及使用包含随机序列的PCR引物来编码高度可变的CDR3区并完成体外重排,如由Hoogenboom和Winter在Journal of Molecular Biology 227:381-388(1992)。描述人抗体噬菌体文库的专利出版物包括,例如:美国专利号5,750,373;7,985,840;7,785,903和8,679,490以及美国专利公开号2005/0079574、2007/0117126、2007/0237764和2007/0292936。
本领域已知用于筛选具有一种或多种所需活性的抗体的组合文库的方法的其他实例包括核糖体和mRNA展示,以及对细菌、哺乳动物细胞、昆虫细胞或酵母细胞进行抗体展示和选择的方法。用于酵母表面展示的方法综述于例如Scholler等人,Methods inMolecular Biology 503:135-56(2012)和Cherf等人,Methods in Molecular biology1319:155-175(2015)以及Zhao等人,Methods in Molecular Biology 889:73-84(2012)中。用于核糖体展示的方法描述于例如He等人,Nucleic Acids Research 25:5132-5134(1997)和Hanes等人,PNAS 94:4937-4942(1997)中。
在本文中从人抗体文库分离出的抗体或抗体片段被认为是人抗体或人抗体片段。
6.多特异性抗体
在一些方面,本文提供的双特异性抗体为多特异性抗体,例如三特异性抗体或四特异性抗体。“多特异性抗体”是对至少两个不同位点(即,不同抗原上的不同表位或相同抗原上的不同表位)具有结合特异性的单克隆抗体。在某些方面,多特异性抗体具有三种或更多种结合特异性。在某些方面,结合特异性中的一种是针对TfR的,结合特异性中的一种是针对PD1的,并且第三种特异性是针对任何其他抗原的。在某些方面,双特异性抗体可以与TfR和/或PD1的两个(或多个)不同表位结合。多特异性(例如,双特异性)抗体还可用于将细胞毒性剂或细胞定位到表达PD1和/或TfR的细胞。可以将多特异性抗体制备为全长抗体或抗体片段。
制备多特异性抗体的技术包括但不限于,具有不同特异性的两个免疫球蛋白重链-轻链对的重组共表达(参见,Milstein和Cuello,Nature 305:537(1983))和“杵臼”工程化(参见例如,美国专利号5,731,168,以及Atwell等人,J.Mol.Biol.270:26(1997))。多特异性抗体也可以通过以下方法来制备:工程化静电转向效应,以用于制备抗体Fc-异源二聚体分子(参见例如,WO 2009/089004);交联两种或更多种抗体或片段(参见例如,美国专利号4,676,980以及Brennan等人,Science,229:81(1985));使用亮氨酸拉链以生产双特异性抗体(参见例如,Kostelny等人,J.Immunol.,148(5):1547-1553(1992)和WO 2011/034605);使用通用轻链技术,以用于规避轻链错配问题(参见例如,WO 98/50431);使用“双体抗体”技术,以用于制备双特异性抗体片段(参见例如,Hollinger等人,Proc.Natl.Acad.Sci.USA,90:6444-6448(1993));以及使用单链Fv(sFv)二聚体(参见例如,Gruber等人,J.Immunol.,152:5368(1994));以及如例如Tutt等人,J.Immunol.147:60(1991)所述的方法制备三特异性抗体。
本文还包括具有三个或多个抗原结合结构域的工程化抗体,包括例如“章鱼抗体”或者DVD-Ig(参见例如,WO 2001/77342和WO 2008/024715)。具有三个或多个抗原结合结构域的多特异性抗体的其他示例可以在WO 2010/115589、WO 2010/112193、WO 2010/136172、WO 2010/145792和WO 2013/026831中找到。双特异性抗体或其抗原结合片段还包括“双重作用FAb”或“DAF”,其包含结合TfR的第一抗原结合结构域和结合PD1以及另一种不同抗原或TfR和/或PD1的两个不同表位的第二抗原结合结构域(参见例如,US2008/0069820和WO2015/095539)。
多特异性抗体也可以以不对称形式提供,其中在具有相同抗原特异性的一个或多个结合臂中有结构域互换,即通过交换VH/VL结构域(参见例如,WO 2009/080252和WO2015/150447)、CH1/CL结构域(参见例如,WO 2009/080253)或完整的Fab臂(参见例如,WO2009/080251、WO 2016/016299,还参见Schaefer等人,PNAS,108(2011)1187-1191,以及Klein等人,MAbs 8(2016)1010-20)。在一方面,多特异性抗体包含交叉Fab片段。术语“交叉Fab片段”或“xFab片段”或“交换型Fab片段”是指这样的Fab片段,其中重链和轻链的可变区或恒定区被交换。交叉Fab片段包含由轻链可变区(VL)和重链恒定区1(CH1)组成的多肽链,以及由重链可变区(VH)和轻链恒定区(CL)组成的多肽链。还可以通过将荷电或非荷电的氨基酸突变引入结构域界面以指导正确的Fab配对,以对不对称Fab臂进行工程化。参见例如WO 2016/172485。
多特异性抗体的各种其他分子形式是在本领域中已知的并且包括在本文中(参见例如Spiess等人,Mol Immunol 67(2015)95-106)。
可用于此目的的双特异性抗体形式的示例包括但不限于所谓的“BiTE”(双特异性T细胞接合子)分子,其中两个scFv分子通过柔性接头融合(参见例如,WO 2004/106381、WO2005/061547、WO 2007/042261以及WO 2008/119567;Nagorsen和Exp Cell Res317,1255-1260(2011));双体抗体(Holliger等人,Prot Eng 9,299-305(1996))及其衍生物,诸如串联双体抗体(“TandAb”;Kipriyanov等人,J Mol Biol 293,41-56(1999));“DART”(双重亲和力再靶向)分子,其基于双体抗体形式但特征是具有用于实现额外稳定化的C-末端二硫桥(Johnson等人,J Mol Biol 399,436-449(2010)),以及所谓的三功能抗体(triomab),其是全杂交小鼠/大鼠IgG分子(综述于Seimetz等人,Cancer Treat Rev 36,458-467(2010)中)。本文所包含的特定的T细胞双特异性抗体形式描述于以下文献中:WO2013/026833;WO 2013/026839;WO 2016/020309;Bacac等人,Oncoimmunology 5(8)(2016)e1203498。
在一个方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体为三特异性抗体或四特异性抗体,其包含
a)特异性结合TfR的全长抗体的第一轻链和第一重链,以及
b)特异性结合PD1的全长抗体的第二(修饰的)轻链和第二(修饰的)重链,其中可变结构域VL和VH彼此替换,和/或其中恒定结构域CL和CH1彼此替换,并且
c)其中与一种或两种其他抗原(即第三种和/或第四种抗原)特异性结合的一至四个抗原结合结构域经由肽接头与a)和/或b)的轻链或重链的C末端或N末端融合。
在一个方面,包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体为三特异性抗体或四特异性抗体,其包含
a)特异性结合PD1的全长抗体的第一轻链和第一重链,以及
b)特异性结合TfR的全长抗体的第二(修饰的)轻链和第二(修饰的)重链,其中可变结构域VL和VH彼此替换,并且/或者其中恒定结构域CL和CH1彼此替换,并且
c)其中与一种或两种其他抗原(即第三种和/或第四种抗原)特异性结合的一至四个抗原结合结构域经由肽接头与a)和/或b)的轻链或重链的C末端或N末端融合。
a)下的抗体不含有如b)下报道的修饰,并且a)下的重链和轻链是分离的链。
在一个方面,在c)下三特异性抗体或四特异性抗体包含与一种或两种另外的抗原特异性结合的一个或两个抗原结合结构域。
在一个方面,抗原结合结构域选自由Fab片段、scFv片段和scFab片段组成的组。在一个方面,抗原结合结构域为Fab片段。在一个方面,抗原结合结构域为scFv片段。在一个方面,抗原结合结构域为scFab片段。
在一个方面,抗原结合结构域与a)和/或b)下的重链的C末端融合。
在一个方面,在c)下三特异性或四特异性抗体包含与另一种抗原特异性结合的一个或两个抗原结合结构域。
在一个方面,在c)下三特异性或四特异性抗体包含与第三抗原特异性结合的两个相同的抗原结合结构域。在一个优选的实施例中,此类两个相同的抗原结合结构域均经由相同的肽接头与a)和b)下的重链的C末端融合。在一个优选的实施例中,两个相同的抗原结合结构域为Fab片段、scFv片段或scFab片段。
在一个方面,在c)下三特异性或四特异性抗体包含与第三抗原和第四抗原特异性结合的两个抗原结合结构域。在一个实施例中,两个抗原结合结构域经由相同的肽接头与a)和b)下的重链的C末端融合。在一个优选的实施例中,两个抗原结合结构域为Fab片段、scFv片段或scFab片段。
在一个方面中,双特异性抗体是双特异性的四价抗体,其包含
a)与第一抗原特异性结合(并包含两个Fab片段)的抗体的两条轻链和两条重链,
b)特异性结合第二抗原的抗体的另外两个Fab片段,其中所述另外的Fab片段均经由肽接头与a)的重链的C末端或N末端融合,并且
其中在Fab片段中执行以下修饰
(i)在a)的两个Fab片段中,或在b)的两个Fab片段中,可变结构域VL和VH彼此替换,和/或恒定结构域CL和CH1彼此替换,或者
(ii)在a)的两个Fab片段中,可变结构域VL和VH彼此替换,并且恒定结构域CL和CH1彼此替换,而在b)的两个Fab片段中,可变结构域VL和VH彼此替换,或恒定结构域CL和CH1彼此替换,或者
(iii)在a)的两个Fab片段中,可变结构域VL和VH彼此替换,或恒定结构域CL和CH1彼此替换,而在b)的两个Fab片段中,可变结构域VL和VH彼此替换,并且恒定结构域CL和CH1彼此替换,或者
(iv)在a)的两个Fab片段中,可变结构域VL和VH彼此替换,而在b)的两个Fab片段中,恒定结构域CL和CH1彼此替换,或者
(v)在a)的两个Fab片段中,恒定结构域CL和CH1彼此替换,而在b)的两个Fab片段中,可变结构域VL和VH彼此替换。
在一个方面中,所述另外的Fab片段均经由肽接头与a)的重链的C末端或a)的重链的N末端融合。
在一个方面中,所述另外的Fab片段经由肽接头与a)的重链的C末端融合。
在一个方面,所述另外的Fab片段经由肽连接子与a)的重链的N末端融合。
在一个方面中,在Fab片段中,执行以下修饰:在a)的两个Fab片段中,或在b)的两个Fab片段中,可变结构域VL和VH彼此替换,和/或恒定结构域CL和CH1彼此替换。
在一个方面中,双特异性抗体是四价抗体,其包含:
a)特异性结合第一抗原并且包含第一VH-CH1结构域对的第一抗体的(经修饰的)重链,其中所述第一抗体的第二VH-CH1结构域对的N末端经由肽接头与所述重链的C末端融合,
b)a)的所述第一抗体的两条轻链,
c)特异性结合第二抗原并包含第一VH-CL结构域对的第二抗体的(经修饰的)重链,其中所述第二抗体的第二VH-CL结构域对的N末端经由肽接头与所述重链的C末端融合,以及
d)c)的所述第二抗体的两条(经修饰的)轻链,每条轻链包含CL-CH1结构域对。
在一个方面中,双特异性抗体包含
a)特异性结合第一抗原的第一全长抗体的重链和轻链,以及
b)特异性结合第二抗原的第二全长抗体的重链和轻链,其中所述重链的N末端经由肽接头连接至所述轻链的C末端。
a)下的抗体不含有如b)下报道的修饰,并且重链和轻链是分离的链。
在一个方面中,双特异性抗体包含
a)全长抗体,其与第一抗原特异性结合并由两条抗体重链和两条抗体轻链组成;以及
b)与第二抗原特异性结合的Fv片段,所述Fv片段包含VH2结构域和VL2结构域,其中所述两个结构域经由二硫桥相互连接,
其中只有VH2结构域或VL2结构域中的一者经由肽接头与特异性结合第一抗原的全长抗体的重链或轻链融合。
在双特异性抗体中,a)下的重链和轻链是分离的链。
在一个方面中,VH2结构域或VL2结构域中的另一个不经由肽接头与特异性结合第一抗原的全长抗体的重链或轻链融合。
在一些方面,第一轻链包含VL结构域和CL结构域,并且第一重链包含VH结构域、CH1结构域、铰链区、CH2结构域和CH3结构域。
在一个方面中,双特异性抗体是三价抗体,其包含
a)特异性结合第一抗原的两个Fab片段,
b)特异性结合第二抗原的一个交叉Fab片段,在所述交叉Fab片段中CH1和CL结构域彼此交换,
c)一个Fc区,其包含第一Fc区重链和第二Fc区重链,
其中两个Fab片段的CH1结构域的C末端连接到重链Fc区多肽的N末端,且其中交叉Fab片段的VH结构域的N末端连接到Fab片段中的一个的VH结构域的C末端。
在一个方面中,双特异性抗体是三价抗体,其包含
a)特异性结合第一抗原的一个Fab片段,
b)与第二抗原特异性结合的两个交叉Fab片段,其中CH1和CL结构域彼此交换,
c)一个Fc区,其包含第一Fc区重链和第二Fc区重链,
其中Fab片段的CH1结构域的C末端连接到重链Fc区多肽中的一个的N末端,并且两个交叉Fab片段中的一个的CL结构域的C末端连接到另一重链Fc区多肽的N末端,并且其中两个交叉Fab片段中的另一个的CH1结构域的C末端连接到Fab片段的VH结构域的N末端或连接到交叉Fab片段的VH结构域的N末端。
在一个方面中,双特异性抗体包含
a)二价全长抗体,其与第一抗原特异性结合并由两条抗体重链和两条抗体轻链组成;以及
b)与第二抗原特异性结合的Fab片段,所述Fab片段包含含有重链片段和轻链片段的VH2结构域和VL2结构域,其中在所述轻链片段内,可变轻链结构域VL2被所述抗体的可变重链结构域VH2替换,而在所述重链片段内,可变重链结构域VH2被所述抗体的可变轻链结构域VL2替换
其中重链Fab片段插入在所述全长抗体的重链中的一条的CH1结构域与所述全长抗体的相应Fc区之间,并且轻链Fab片段的N末端缀合至所述全长抗体的轻链的C末端,所述全长抗体的轻链与已插入所述重链Fab片段的所述全长抗体的重链配对。
在一个方面中,双特异性抗体包含
a)二价全长抗体,其与第一抗原特异性结合并由两条抗体重链和两条抗体轻链组成;以及
b)与第二抗原特异性结合的Fab片段,所述Fab片段包含含有重链片段和轻链片段的VH2结构域和VL2结构域,其中在所述轻链片段内,可变轻链结构域VL2被所述抗体的可变重链结构域VH2替换,而在所述重链片段内,可变重链结构域VH2被所述抗体的可变轻链结构域VL2替换,并且其中所述Fab片段的所述重链片段的C末端缀合至所述全长抗体的重链中的一条的N末端,并且所述Fab片段的所述轻链片段的C末端缀合至所述全长抗体的所述轻链的N末端,所述全长抗体的轻链与所述Fab片段的重链片段缀合至的所述全长抗体的重链配对。
在一个具体的方面,提供了为三价抗体的双特异性抗体,其包含
a)一个特异性结合TfR的Fab片段,
b)与PD1特异性结合的两个交叉Fab片段,其中CH1和CL结构域彼此交换,
c)一个Fc区,其包含第一Fc区重链和第二Fc区重链,
其中Fab片段的CH1结构域的C末端连接到重链Fc区多肽中的一个的N末端,并且第一交叉Fab片段的CH1结构域的C末端连接到另一重链Fc区多肽的N末端,并且其中第二交叉Fab片段的CH1结构域的C末端连接到Fab片段的VH结构域的N末端或连接到交叉Fab片段的VL结构域的N末端。在另外的方面,Fc结构域为IgG Fc结构域,特别是IgG1Fc结构域或IgG4Fc结构域。在具体方面,双特异性抗体的重链为γ型(IgG),特别是γ1型。在另一个具体的方面,基于其恒定结构域的氨基酸序列,双特异性抗体的轻链属于kappa(κ)亚型和/或lambda(λ)亚型。
在一个具体的方面,提供了为三价抗体的双特异性抗体,其包含
a)与PD1特异性结合的两个交叉Fab片段,其中VL和VH结构域彼此交换,
b)一个特异性结合TfR的Fab片段,
c)一个Fc区,其包含第一Fc区重链和第二Fc区重链,
其中第一交叉Fab片段的CH1结构域的C末端连接到重链Fc区多肽中的一个的N末端,并且Fab片段的CH1结构域的C末端连接到另一重链Fc区多肽的N末端,并且其中第二交叉Fab片段的CH1结构域的C末端连接到交叉Fab片段的VL结构域的N末端或连接到Fab片段的VH结构域的N末端。在另外的方面,Fc结构域为IgG Fc结构域,特别是IgG1Fc结构域或IgG4 Fc结构域。在具体方面,双特异性抗体的重链为γ型(IgG),特别是γ1型。在另一个具体的方面,基于其恒定结构域的氨基酸序列,双特异性抗体的轻链属于kappa(κ)亚型和/或lambda(λ)亚型。
在一个方面,提供了为三价抗体的双特异性抗体,其包含
a)全长抗体,所述全长抗体与PD1特异性结合并且由两条抗体重链和两条抗体轻链组成,其中,在轻链内,可变轻链结构域VL被所述抗体的可变重链结构域VH替换;并且在重链片段内,可变重链结构域VH被所述抗体的可变轻链结构域VL替换,以及
b)与TfR特异性结合的Fab片段,
其中重链Fab片段的N末端缀合至全长抗体的两条重链中的一条的C末端。在另外的方面,抗体和/或Fab片段属于IgG类,特别是IgG1或IgG4同种型。在具体方面,双特异性抗体的重链为γ型(IgG),特别是γ1型。在另一个具体的方面,基于其恒定结构域的氨基酸序列,双特异性抗体的轻链属于kappa(κ)亚型和/或lambda(λ)亚型。
在一个方面,提供了为三价抗体的双特异性抗体,其包含
a)全长抗体,其与PD1特异性结合并由两条抗体重链和两条抗体轻链组成,和
b)与TfR特异性结合的交叉Fab片段,其中CH1和CL结构域彼此交换,
其中重链交叉Fab片段的N末端缀合至全长抗体的两条重链中的一条的C末端。
7.抗体变体
在某些方面中,设想了本文提供的抗体的氨基酸序列变体。例如,可能期望改变抗体的结合亲和力和/或其他生物学特性。抗体的氨基酸序列变体可以通过向编码抗体的核苷酸序列中引入适当的修饰或通过肽合成来制备。此类修饰包括例如抗体氨基酸序列内残基的缺失、和/或插入和/或取代。可以进行缺失、插入和取代的任何组合以实现最终构建体,前提条件是最终构建体具有所需特征,例如抗原结合。
a)取代、插入和删除性变体
在某些方面,提供了具有一个或多个氨基酸取代的抗体变体。用于取代诱变的目的位点包括CDR和FR。保守取代在表1中的“优选取代”标题下示出。更多实质性改变提供于表2的“示例性取代”标题下,并且在下文参考氨基酸侧链类别进行了进一步描述。可以将氨基酸取代引入目标抗体中,并对产物进行所需活性(例如保留/改善的抗原结合、降低的免疫原性,或改善的ADCC或CDC)筛选。
表2
可根据共同的侧链特性将氨基酸分组:
(1)疏水性:正亮氨酸、Met、Ala、Val、Leu、Ile;
(2)中性亲水性:Cys、Ser、Thr、Asn、Gln;
(3)酸性:Asp、Glu;
(4)碱性:His、Lys、Arg;
(5)影响链取向的残基:Gly,Pro;
(6)芳族:Trp、Tyr、Phe。
非保守性取代将需要用这些类别中的一个的成员交换另一类别的成员。
一种类型的取代变体涉及取代亲本抗体(例如,人源化抗体或人抗体)的一个或多个高可变区残基。通常,相对于亲本抗体,选为用于进一步研究的一个或多个所得变体将在某些生物学特性方面(例如,亲和力增加、免疫原性降低)有改变(例如,改善)和/或将基本上保留亲本抗体的某些生物学特性。示例性取代变体是亲和力成熟抗体,其可例如使用诸如本文所述的那些基于噬菌体展示的亲和力成熟技术方便地生成。简要地说,对一个或多个CDR残基进行突变并且将变体抗体展示在噬菌体上并针对特定生物学活性(例如结合亲和力)进行筛选。
例如,可在CDR中作出改变(例如,取代),以改善抗体亲和力。此类改变可以在CDR“热点”中进行,即由在体细胞成熟过程期间经历高频突变的密码子编码的残基(参见例如,Chowdhury,Methods Mol.Biol.207:179-196(2008)),和/或接触抗原的残基,测试所得变体VH或VL的结合亲和力。通过构建并自二级文库重新选择而实现的亲和力成熟已被例如Hoogenboom等人在Methods in Molecular Biology 178:1-37(O'Brien等人编辑,HumanPress,Totowa,NJ,(2001))中进行描述。在亲和力成熟的某些方面,通过多种方法(例如,易错PCR、链改组或寡核苷酸定向诱变)的任何一种将多样性引入选择用于成熟的可变基因中。然后创建一个二级文库。随后对该文库进行筛选以鉴别具有所需亲和力的任何抗体变体。引入多样性的另一种方法涉及CDR定向方法,其中将若干CDR残基(例如,每次4至6个残基)随机化。参与抗原结合的CDR残基可例如使用丙氨酸扫描突变或建模来特异性地鉴别。具体而言,常常靶向CDR-H3和CDR-L3。
在某些方面,取代、插入或缺失可发生在一个或多个CDR内,只要此类改变基本上不降低抗体结合抗原的能力即可。例如,可在CDR中进行基本上不降低结合亲和力的保守性改变(例如,如本文提供的保守性取代)。这样的改变可以例如在CDR中的抗原接触残基的外部。在上文提供的某些变体VH和VL序列中,每个CDR要么保持不变,要么包含不超过一个、两个或三个氨基酸取代。
可用于鉴别可被靶向诱变的抗体残基或区域的方法称作“丙氨酸扫描诱变”,如Cunningham和Wells(1989)Science,244:1081-1085所述。在此方法中,鉴别残基或一组靶残基(例如,带电残基,诸如arg、asp、his、lys和glu)并用中性或带负电的氨基酸(例如,丙氨酸或多丙氨酸)替换以确定抗体与抗原的相互作用是否受到影响。可在对初始取代展示功能敏感性的氨基酸位置引入其他取代。替代性地或附加地,可以使用抗原-抗体复合物的晶体结构鉴定抗体与抗原之间的接触点。可靶向或消除作为取代的候选的此类接触残基和相邻残基。可筛选变体以确定它们是否具备期望的特性。
氨基酸序列插入包括长度范围为一个残基至含有一百个或更多个残基的多肽的氨基和/或羧基末端融合,以及一个或多个氨基酸残基的序列内插入。末端插入的实例包括具有N末端甲硫氨酰残基的抗体。抗体分子的其他插入变体包括将抗体的N末端或C末端与增加抗体的血清半衰期的酶(例如,对于ADEPT(抗体定向酶前药治疗))或多肽融合。
b)糖基化变体
在某些方面,改变本文提供的抗体以增加或降低抗体糖基化的程度。糖基化位点向抗体的添加或缺失可通过改变氨基酸序列以产生或去除一个或多个糖基化位点而方便地实现。
当抗体包含Fc区时,与其相连的寡糖可以被改变。由哺乳动物细胞产生的天然抗体通常包含支链的双触角寡糖,该双触角寡糖通常通过N-键合连接至Fc区的CH2结构域的Asn297。参见例如,Wright等人TIBTECH 15:26-32(1997)。寡糖可包括各种碳水化合物,例如,甘露糖、N-乙酰基葡糖胺(GlcNAc)、半乳糖和唾液酸,以及附接于双触角寡糖结构的“主干”中的GlcNAc的岩藻糖。在一些方面中,可对本发明的抗体中的寡糖进行修饰,以产生具有某些改善的特性的抗体变体。
一方面,提供了具有非岩藻糖基化的寡糖的抗体变体,即缺少(直接或间接地)连接在Fc区的岩藻糖的寡糖结构。这样的非岩藻糖基化的寡糖(也称为“去岩藻糖基化”的寡糖)特别是N-连接的寡糖,其缺少在双触角寡糖结构的茎中连接第一GlcNAc的岩藻糖残基。一方面,提供了与天然或亲本抗体相比在Fc区中具有增加比例的非岩藻糖基化寡糖的抗体变体。例如,非岩藻糖基化寡糖的比例可以为至少约20%、至少约40%、至少约60%、至少约80%或甚至约100%(即不存在岩藻糖基化寡糖)。非岩藻糖基化寡糖的百分比,如例如WO2006/082515中所述,如通过MALDI-TOF质谱法测量的,是缺少岩藻糖残基的寡糖的(平均)量相对于与Asn 297连接的所有寡糖(例如复杂、杂合和高甘露糖结构)之和。Asn297是指位于Fc区中约297位的天冬酰胺残基(Fc区残基的EU编号);然而,由于抗体中的微小序列变化,Asn297也可以位于297位上游或下游大约±3个氨基酸,即在294位和300位之间。在Fc区中具有非岩藻糖基化寡糖比例增加的此类抗体可具有改善的FcγRIIIa受体结合和/或改善的效应子功能,特别是改善的ADCC功能。参见例如US 2003/0157108和US 2004/0093621。
能够生产岩藻糖基化减少的抗体的细胞系的示例包括缺乏蛋白质岩藻糖基化的Lec13 CHO细胞(Ripka等人Arch.Biochem.Biophys.249:533-545(1986);US2003/0157108;和WO 2004/056312,尤其是实例11),以及敲除细胞系,诸如α-1,6-岩藻糖基转移酶基因、FUT8、敲除CHO细胞(参见例如,Yamane-Ohnuki等人Biotech.Bioeng.87:614-622(2004);Kanda,Y.等人,Biotechnol.Bioeng.,94(4):680-688(2006);和WO 2003/085107),或具有减少或取消的GDP岩藻糖合成或转运蛋白活性的细胞(参见例如,US2004259150、US2005031613、US2004132140、US2004110282)。
在另一方面,抗体变体提供了二等分的寡糖,例如,其中连接至抗体的Fc区的双触角寡糖被GlcNAc二等分。如上所述,这样的抗体变体可以具有减少的岩藻糖基化和/或改善的ADCC功能。此类抗体变体的实例描述于例如Umana等人,Nat Biotechnol 17,176-180(1999);Ferrara等人,Biotechn Bioeng 93,851-861(2006);WO 99/54342;WO 2004/065540,WO 2003/011878。
还提供了在连接于Fc区的寡糖中具有至少一个半乳糖残基的抗体变体。这样的抗体变体可以具有改善的CDC功能。此类抗体变体描述于例如WO 1997/30087、WO 1998/58964和WO 1999/22764中。
c)Fc区变体
在某些方面,一个或多个氨基酸修饰可引入本文提供的抗体的Fc区中,从而生成Fc区变体。Fc区变体可包含人Fc区序列(例如人IgG1、IgG2、IgG3或IgG4 Fc区),其在一个或多个氨基酸位置上包含氨基酸修饰(例如取代)。
在某些方面,本发明考虑具有一些但不是全部效应功能的抗体变体,这使其成为其中抗体的体内半衰期很重要而某些效应功能(诸如补体依赖性细胞毒性(CDC)和抗体依赖性细胞介导的细胞毒性(ADCC))不必要或有害的应用的理想候选者。可以进行体外和/或体内细胞毒性测定,以确认CDC和/或ADCC活性的降低/耗尽。例如,可以进行Fc受体(FcR)结合测定以确保抗体缺乏FcγR结合(因此可能缺乏ADCC活性),但是保留FcRn结合能力。介导ADCC的主要细胞NK细胞仅表达FcγRIII,而单核细胞表达FcγRI、FcγRII和FcγRIII。造血细胞上的FcR表达汇总于Ravetch和Kinet,Annu.Rev.Immunol.9:457-492(1991)的第464页表3中。评估目的分子的ADCC活性的体外测定的非限制性示例描述于美国专利号5,500,362(参见例如,Hellstrom,I.等人Proc.Nat’l Acad.Sci.USA 83:7059-7063(1986))和Hellstrom,I等人,Proc.Nat’l Acad.Sci.USA 82:1499-1502(1985);5,821,337(参见Bruggemann,M.等人,J.Exp.Med.166:1351-1361(1987))。替代性地,可使用非放射性测定方法(参见例如,用于流式细胞术的ACTITM非放射性细胞毒性测定(CellTechnology,Inc.Mountain View,CA);以及CytoTox非放射性细胞毒性测定(Promega,Madison,WI)。用于此类测定的有用效应细胞包括外周血单核细胞(PBMC)和自然杀伤(NK)细胞。可替代地或另外地,目的分子的ADCC活性可以在体内评估,例如,在动物模型(诸如在Clynes等人Proc.Nat’l Acad.Sci.USA 95:652-656(1998)中公开的动物模型)中评估。也可以进行C1q结合测定以确认抗体不能结合C1q,因此缺乏CDC活性。参见例如WO 2006/029879和WO2005/100402中的C1q和C3c结合ELISA。为评估补体活化,可以进行CDC测定(参见例如,Gazzano-Santoro等人,J.Immunol.Methods 202:163(1996);Cragg,M.S.等人,Blood 101:1045-1052(2003);以及Cragg,M.S.和M.J.Glennie,Blood 103:2738-2743(2004))。FcRn结合和体内清除/半衰期测定也可以使用本领域已知的方法执行(参见例如Petkova,S.B.等人,Int’l.Immunol.18(12):1759-1769(2006);WO 2013/120929 Al)。
具有减少的效应子功能的抗体包括具有Fc区残基238、265、269、270、297、327和329中的一者或多者的取代的那些(美国专利号6,737,056)。此类Fc突变体包括在氨基酸位置265、269、270、297和327处的两个或更多个处具有取代的Fc突变体,包括所谓的“DANA”Fc突变体,其残基265和297被取代为丙氨酸(美国专利号7,332,581)。
描述了具有改善的或降低的与FcR的结合的某些抗体变体。(参见例如,美国专利号6,737,056;WO 2004/056312,以及Shields等人,J.Biol.Chem.9(2):6591-6604(2001)。)
在某些方面,抗体变体包含具有一个或多个改善ADCC的氨基酸取代的Fc区,例如,在Fc区的298、333和/或334位的取代(残基的EU编号)。
在某些方面,抗体变体包含具有一个或多个减少FcγR结合的氨基酸取代的Fc区,例如Fc区的234位和235位的取代(残基的EU编号)。一方面,取代是L234A和L235A(LALA)。在某些方面,抗体变体进一步包含在衍生自人IgG1 Fc区的Fc区中的D265A和/或P329G。一方面,在衍生自人IgG1 Fc区的Fc区中,取代是L234A、L235A和P329G(LALA-PG)。(参见例如WO2012/130831)。在另一方面,在衍生自人IgG1 Fc区的Fc区中,取代是L234A、L235A和D265A(LALA-DA)。
在一些方面,在Fc区中进行改变,产生改变(即,改善或减少)的C1q结合和/或补体依赖性细胞毒性(CDC),例如,如美国专利号6194551、WO 99/51642和Idusogie等人J.Immunol.164:4178-4184(2000)。
具有增加的半衰期和改善的与新生儿Fc受体(FcRn)的结合,负责将母体IgG转移至胎儿的抗体(Guyer等人,J.Immunol.117:587(1976)和Kim等人,J.Immunol.24:249(1994))描述于US2005/0014934(Hinton等人)中。那些抗体包含Fc区,该Fc区中具有改善Fc区与FcRn的结合的一个或多个取代。此类Fc变体包括在以下Fc区残基中的一处或多处具有取代的Fc变体:238、252、254、256、265、272、286、303、305、307、311、312、317、340、356、360、362、376、378、380、382、413、424或434,例如对Fc区残基434的取代(参见例如,美国专利号7371826;Dall'Acqua,W.F.等人J.Biol.Chem.281(2006)23514-23524)。
通过定点诱变已经鉴定了对小鼠Fc-小鼠FcRn相互作用至关重要的Fc区残基(参见例如,Dall’Acqua,W.F.等人J.Immunol 169(2002)5171-5180)。残基I253、H310、H433、N434和H435(EU残基编号)参与相互作用(Medesan,C.等人,Eur.J.Immunol.26(1996)2533;Firan,M.等人,Int.Immunol.13(2001)993;Kim,J.K.等人,Eur.J.Immunol.24(1994)542)。发现残基I253、H310和H435对于人Fc与鼠FcRn的相互作用至关重要(Kim,J.K.等人,Eur.J.Immunol.29(1999)2819)。对人Fc-人FcRn复合物的研究已表明,残基I253、S254、H435和Y436对于该相互作用至关重要(Firan,M.等人,Int.Immunol.13(2001)993;Shields,R.L.,等人,J.Biol.Chem.276(2001)6591-6604)。在Yeung,Y.A.等人(J.Immunol.182(2009)7667-7671)中已经报道并且检查了残基248至259和301至317和376至382和424至437的各种突变体。
在某些方面,抗体变体包含具有一个或多个减少FcRn结合的氨基酸取代的Fc区,例如,在Fc区的253、和/或310和/或435位的取代(残基的EU编号)。在某些方面,抗体变体包含在位置253、310和435位具有氨基酸取代的Fc区。一方面,在衍生自人IgG1 Fc区的Fc区中,取代是I253A、H310A和H435A。参见例如,Grevys,A.等人,J.Immunol.194(2015)5497-5508。
在某些方面,抗体变体包含具有一个或多个减少FcRn结合的氨基酸取代的Fc区,例如,在Fc区的310、和/或433和/或436位的取代(残基的EU编号)。在某些方面,抗体变体包含在位置310、433和436位具有氨基酸取代的Fc区。一方面,在衍生自人IgG1 Fc区的Fc区中,取代是H310A、H433A和Y436A。(参见,例如,WO 2014/177460 Al)。
在某些方面,抗体变体包含具有一个或多个增加FcRn结合的氨基酸取代的Fc区,例如,在Fc区的252、和/或254和/或256位的取代(残基的EU编号)。在某些方面,抗体变体包含在位置252、254和256位具有氨基酸取代的Fc区。一方面,在衍生自人IgG1 Fc区的Fc区中,取代是M252Y、S254T和T256E。有关Fc区变体的其他实例,另外参见:Duncan和Winter,Nature 322:738-40(1988);美国专利号5,648,260;美国专利号5,624,821;以及WO 94/29351。
如本文报道的抗体的重链的C末端可以是以氨基酸残基PGK结束的完整C末端。重链的C末端可以是缩短的C末端,在所述缩短的C末端中已经去除了一个或两个C末端氨基酸残基。在一个优选的方面,重链的C末端是以PG结束的缩短的C末端。在本文报道的所有方面中的一个方面,如本文所指定的包含包括C末端CH3结构域的重链的抗体,包含C末端甘氨酸-赖氨酸二肽(G446和K447,氨基酸位置的EU索引编号)。在本文报道的所有方面的一个方面中,如本文所指定的包含包括C末端CH3结构域的重链的抗体,包含C末端甘氨酸残基(G446,氨基酸位置的EU索引编号)。
d)经半胱氨酸工程改造的抗体变体
在某些方面,可能需要产生半胱氨酸工程化改造的抗体,例如THIOMABTM抗体,其中抗体的一个或多个残基被半胱氨酸残基取代。在特定实施例中,取代的残基存在于抗体的可接近位点。如本文进一步描述的,通过用半胱氨酸取代那些残基,从而将反应性硫醇基团定位于抗体的可接近位点,并且可用于将抗体与其他部分(诸如药物部分或接头-药物部分)缀合,以产生免疫缀合物。半胱氨酸工程化改造的抗体可以如例如在美国专利号7,521,541、8,30,930、7,855,275、9,000,130或WO 2016040856中所述产生。
e)抗体衍生物
在某些方面,本文提供的抗体可被进一步修饰以包含本领域已知的并且容易获得的附加非蛋白质部分。适合于抗体衍生化的部分包括但不限于水溶性聚合物。水溶性聚合物的非限制性示例包括但不限于聚乙二醇(PEG)、乙二醇/丙二醇的共聚物、羧甲基纤维素、葡聚糖、聚乙烯醇、聚乙烯吡咯烷酮、聚-1,3-二氧戊环、聚-1,3,6-三噁烷、乙烯/马来酸酐共聚物、聚氨基酸(均聚物或随机共聚物)和葡聚糖或聚(n-乙烯吡咯烷酮)聚乙二醇、丙二醇均聚物、聚环氧丙烷/环氧乙烷共聚物、聚氧乙烯化多元醇(例如甘油)、聚乙烯醇及其混合物。由于其在水中的稳定性,聚乙二醇丙醛在制造中可具有优势。聚合物可具有任何分子量,并且可以具有支链或不具有支链。附接至抗体的聚合物的数目可变,并且如果附接了多于一个聚合物,那么它们可以为相同或不同的分子。通常,可基于以下考虑因素测定用于衍生化的聚合物的数目和/或类型,包括但不限于抗体待改善的特定特性或功能、抗体衍生物是否将用于限定条件下的疗法等。
8.免疫缀合物
本发明还提供了免疫缀合物,其包含本文的包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体,该双特异性抗体缀合(化学键合)至一种或多种治疗剂,诸如细胞毒性剂、化学治疗剂、药物、生长抑制剂、毒素(例如,蛋白毒素,细菌、真菌、植物或动物来源的酶活性毒素或其片段)或放射性同位素。
一方面,免疫缀合物是抗体-药物缀合物(ADC),其中抗体缀合至上述一种或多种治疗剂。通常使用接头将抗体缀合至一种或多种治疗剂。Pharmacol Review 68:3-19(2016)中列出了ADC技术的概述,其包括治疗剂、药物和接头的实例。
在另一个方面,免疫缀合物包含与酶活性毒素或其片段缀合的本文所述的抗体,该酶活性毒素或其片段包括但不限于白喉A链、白喉毒素的非结合活性片段、外毒素A链(来自铜绿假单胞菌)、蓖麻毒蛋白质A链、相思豆毒蛋白质A链、蒴莲根毒素A链、α-帚曲霉素、油桐蛋白、石竹黄素蛋白、美洲商陆抗病毒蛋白(PAPI、PAPII和PAP-S)、苦瓜抑制剂、姜黄素、巴豆素、肥皂草抑制剂、明胶、米托菌素、局限曲霉素、酚霉素、依诺霉素和单端孢菌素。
在另一个方面,免疫缀合物包括与放射性原子缀合以形成放射性缀合物的本文所述的抗体。多种放射性同位素可用于制备放射性缀合物。实例包括At211、I131、I125、Y90、Re186、Re188、Sm153、Bi212、P32、Pb212和Lu的放射性同位素。当放射性缀合物用于检测时,它可能包含用于闪烁显像研究的放射性原子,例如,tc99m或I123,或用于核磁共振(NMR)成像(也称为磁共振成像,mri)的自旋标记物,诸如碘-123、碘-131、铟-111、氟-19、碳-13、氮-15、氧-17、钆、锰或铁。
可以使用多种双功能蛋白偶联剂,诸如N-琥珀酰亚氨基-3-(2-吡啶基二硫代)丙酸酯(SPDP)、4-(N-马来酰亚氨基甲基)环己烷-1-羧酸琥珀酰亚胺酯(SMCC)、亚氨基硫杂环戊烷(IT)、亚氨基酯的双官能衍生物(诸如己二酸二甲酯盐酸盐)、活性酯(诸如辛二酸二琥珀酰亚胺基酯)、醛(诸如戊二醛)、双叠氮基化合物(诸如双(对叠氮基苯甲酰基)己二胺)、双重氮衍生物(诸如双-(对重氮苯甲酰基)-乙二胺)、二异氰酸酯(诸如甲苯2,6-二异氰酸酯)和双活性氟化合物(诸如1,5-二氟-2,4-二硝基苯)制备抗体和细胞毒性剂的缀合物。例如,可以如Vitetta等人,Science 238:1098(1987)中所述制备蓖麻毒蛋白免疫毒素。碳-14标记的1-异硫氰基苄基-3-甲基二亚乙基三胺五乙酸(MX-DTPA)为一种示例性螯合剂,用于将放射性核苷酸缀合至抗体。参见WO 94/11026。接头可以为促进细胞中细胞毒性药物释放的“可切割接头”。例如,可以使用对酸不稳定的接头、肽酶敏感的接头、对光不稳定的接头、二甲基接头或包含二硫键的接头(Chari等人,Cancer Res.52:127-131(1992);美国专利号5,208,020)。
本文的免疫缀合物或ADC明确考虑但不限于用交联剂制备的此类缀合物,包括但不限于市售的(例如,来自Pierce Biotechnology,Inc.,Rockford,IL.,U.S.A)BMPS、EMCS、GMBS、HBVS、LC-SMCC、MBS、MPBH、SBAP、SIA、SIAB、SMCC、SMPB、SMPH、磺基-EMCS、磺基-GMBS、磺基-KMUS、磺基-MBS、磺基-SIAB、磺基-SMCC、磺基-SMPB和SVSB(琥珀酰亚氨基-(4-乙烯基砜)苯甲酸酯)。
B.重组方法和组合物
可以使用重组方法和组合物来产生抗体,例如,如在US 4,816,567中所述。对于这些方法,提供了编码抗体的一种或多种分离的核酸。
在天然抗体或天然抗体片段的情况下,需要两种核酸,一种用于轻链或其片段,一种用于重链或其片段。此类核酸编码包含抗体的VL的氨基酸序列和/或包含抗体的VH的氨基酸序列(例如抗体的轻链和/或重链)。这些核酸可以在相同的表达载体上或不同的表达载体上。
在具有异源二聚重链的某些双特异性抗体的情况下,需要四种核酸,一种用于第一轻链,一种用于包含第一异单体(heteromonomeric)Fc区多肽的第一重链,一种用于第二轻链,并且一种用于包含第二异单体Fc区多肽的第二重链。四种核酸可包含在一种或多种核酸分子或表达载体中。此类核酸编码构成抗体的第一VL的氨基酸序列和/或构成抗体的包含第一异单体Fc区的第一VH的氨基酸序列和/或构成抗体的第二VL的氨基酸序列和/或构成抗体的包含第二异单体Fc区的第二VH的氨基酸序列(例如抗体的第一轻链和/或第二轻链和/或第一重链和/或第二重链)。这些核酸可以在相同的表达载体上或在不同的表达载体上,通常这些核酸位于两个或三个表达载体上,即一个载体可以包含这些核酸中的多于一种。这些双特异性抗体的示例是交叉Mab(参见例如Schaefer,W.等人,PNAS,108(2011)11187-1191)。例如,该异单体重链中的一条包含所谓的“杵突变(杵mutation)”(T366W,以及任选地S354C或Y349C中的一者),并且该异单体重链中的另一条包含所谓的“臼突变(hole mutation)”(T366S、L368A和Y407V,以及任选地Y349C或S354C)(参见例如Carter,P.等人,Immunotechnol。2(1996)73),根据EU索引编号。
在一个方面,提供了编码如在本文所报道的方法中使用的抗体的分离的核酸。
在一个方面,提供了一种制备包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体的方法,其中该方法包括在适于表达抗体的条件下培养包含如上提供的编码该抗体的核酸的宿主细胞,以及任选地从宿主细胞(或宿主细胞培养基)中回收该抗体。
对于包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体的重组产生,将例如如上所述的编码所述抗体的核酸分离并插入到一个或多个载体中以进行进一步克隆和/或在宿主细胞中表达。可以使用常规程序来容易地对此类核酸进行分离和测序(例如,通过使用能够与编码抗体的重链和轻链的基因特异性结合的寡核苷酸探针),或通过重组方法产生或通过化学合成获得此类核酸。
用于克隆或表达编码抗体的载体的合适宿主细胞包括本文所述的原核或真核细胞。例如,可以在细菌中产生抗体,特别是当不需要糖基化和Fc效应子功能时。关于在细菌中表达抗体片段和多肽,参见例如US 5,648,237、US 5,789,199和US 5,840,523(还参见Charlton,K.A.,在:Methods in Molecular Biology,第248卷,Lo,B.K.C.(编辑),HumanaPress,Totowa,NJ(2003),第245-254页,描述抗体片段在大肠杆菌中的表达。)抗体可在表达后在可溶性级分中从细菌细胞糊中分离,并且可以进一步纯化。
除了原核生物外,诸如丝状真菌或酵母等真核微生物也是用于编码抗体的载体的合适克隆或表达宿主,该真核微生物包括真菌和酵母菌株,其糖基化途径已经“人源化”,从而导致产生具有部分或完全人糖基化模式的抗体。参见Gerngross,T.U.,Nat.Biotech.22(2004)1409-1414;和Li,H.等人,Nat.Biotech.24(2006)210-215。
用于表达糖基化抗体的合适宿主细胞也来源于多细胞生物体(无脊椎动物和脊椎动物)。无脊椎动物细胞的实例包括植物细胞和昆虫细胞。已经鉴定出了可以与昆虫细胞结合使用,特别是用于转染草地夜蛾(Spodoptera frugiperda)细胞的许多杆状病毒株。
植物细胞培养物也可用作宿主。参见例如US 5,959,177、US 6,040,498、US 6,420,548、US 7,125,978和US 6,417,429(描述了用于在转基因植物中生产抗体的PLANTIBODIESTM技术)。
脊椎动物细胞也可用作宿主。例如,适于在悬浮液中生长的哺乳动物细胞系可能是有用的。有用的哺乳动物宿主细胞系的其他实例为:由SV40转化的猴肾CV1系(COS-7);人胚肾系(如例如以下文献所述的293或293T细胞:Graham,F.L.等人,J.Gen Virol.36(1977)59-74);幼仓鼠肾细胞(BHK);小鼠支持细胞(如例如以下文献所述的TM4细胞:Mather,J.P.,Biol.Reprod.23(1980)243-252);猴肾细胞(CV1);非洲绿猴肾细胞(VERO-76);人宫颈癌细胞(HELA);犬肾细胞(MDCK);buffalo大鼠肝细胞(BRL 3A);人肺细胞(W138);人肝细胞(Hep G2);小鼠乳腺肿瘤(MMT 060562);TRI细胞(例如以下文献所述的:Mather,J.P.等人,Annals N.Y.Acad.Sci.383(1982)44-68);MRC 5细胞;以及FS4细胞。其他有用的哺乳动物宿主细胞系包括中国仓鼠卵巢(CHO)细胞,包括DHFR-CHO细胞(Urlaub,G.等人,Proc.Natl.Acad.Sci.USA 77(1980)4216-4220);以及骨髓瘤细胞系,诸如Y0、NS0和Sp2/0。关于适用于抗体产生的某些哺乳动物宿主细胞系的综述,参见例如Yazaki,P.和Wu,A.M.,Methods in Molecular Biology,第248卷,Lo,B.K.C.(编辑),Humana Press,Totowa,NJ(2004),第255-268页。
一方面,宿主细胞是真核细胞,例如中国仓鼠卵巢(CHO)细胞或淋巴细胞(例如Y0、NS0、Sp20细胞)。
C.测定
本文提供的包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体可通过本领域已知的各种测定来鉴定、筛选或表征其物理/化学性质和/或生物活性。
1.结合测定和其他测定
在一个方面,本发明的抗体通过诸如ELISA、蛋白质印迹等已知方法测试其抗原结合活性。
在另一方面,竞争测定法可用于鉴定与小鼠抗人转铁蛋白受体抗体128.1竞争结合TfR的抗体(对于可变区序列,参见WO93/01819和SEQ ID NO:64和65)。在某些方面,此类竞争抗体结合由小鼠抗人转铁蛋白受体抗体128.1结合的相同表位(例如,线性或构象表位)。用于定位抗体与之结合的表位的详细示例性方法提供于:Morris(1996),“EpitopeMapping Protocols”,收录于Methods in Molecular Biology第66卷(Humana Press,Totowa,NJ)。
在示例性竞争测定中,将固定的TfR在包含与TfR结合的第一标记的抗体(例如,小鼠抗人转铁蛋白受体抗体128.1)和正在测试其与第一抗体竞争结合TfR的能力的第二未标记的抗体的溶液中孵育。该第二抗体可存在于杂交瘤上清液中。作为对照,将固定化TfR在包含第一标记抗体而非包含第二未标记抗体的溶液中孵育。在容许第一抗体与TfR结合的条件下孵育之后,去除过量未结合的抗体,并且测量与固定化TfR缔合的标记的量。若与固定化TfR缔合的标记的量相对于对照样本在测试样品中基本上减少,则表明第二抗体与第一抗体竞争结合TfR。参见Harlow和Lane(1988)Antibodies:A Laboratory Manual第14章(Cold Spring Harbor Laboratory,Cold Spring Harbor,NY)。
在另一方面,可使用竞争测定法鉴定与例如纳武利尤单抗或帕博利珠单抗竞争结合PD1的抗体。在某些方面,此类竞争抗体结合与纳武利尤单抗或帕博利珠单抗结合的同一表位(例如,线性或构象表位)结合。用于定位抗体与之结合的表位的详细示例性方法提供于:Morris(1996),“Epitope Mapping Protocols”,收录于Methods in MolecularBiology第66卷(Humana Press,Totowa,NJ)。
在示例性竞争测定中,将固定的PD1在包含结合PD1的第一标记的抗体(例如,纳武利尤单抗或帕博利珠单抗)和正在测试其与第一抗体竞争结合PD1的能力的第二未标记的抗体的溶液中孵育。该第二抗体可存在于杂交瘤上清液中。作为对照,将固定化PD1在包含第一标记抗体而非包含第二未标记抗体的溶液中温育。在容许第一抗体与PD1结合的条件下温育之后,去除过量未结合的抗体,并且测量与固定化PD1缔合的标记的量。若与固定化PD1缔合的标记的量相对于对照样本在测试样品中基本上减少,则表明第二抗体与第一抗体竞争结合PD1。参见Harlow和Lane(1988)Antibodies:A Laboratory Manual第14章(ColdSpring Harbor Laboratory,Cold Spring Harbor,NY)。
另一方面,提供了Jurkat细胞测定法,其允许评估双特异性抗TfR抗PD1抗体的亲合力增强的结合。为此,通过用PD1表达构建体慢病毒转导细胞,产生以不同水平表达PD1的NFAT-bla Jurkat细胞。Jurkat细胞与双特异性抗体接触并被标记。流式细胞术用于评估结合是否依赖于PD1表达水平。在实例5中更详细地描述了该测定。
2.活性测定
一方面,提供了用于鉴定具有生物活性的包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体的测定。生物学活性可以包括例如增强不同免疫细胞(尤其是T细胞)的活化和/或增殖、免疫调节细胞因子(诸如IFNγ或TNF-α)的分泌、对PD1途径的阻断或对肿瘤细胞的杀伤的能力。还提供了在体内和/或体外具有此类生物活性的抗体。
在某些方面中,测试本发明的抗体的此类生物活性。在一个方面中,提供了免疫细胞测定法,其测量来自一个个体(供体X)的淋巴细胞对来自另一个体(供体Y)的淋巴细胞的活化。混合淋巴细胞反应(MLR)可以证明阻断PD1途径对淋巴细胞效应细胞的影响。在存在或不存在本发明的双特异性抗体的情况下,测试测定中的T细胞的活化,测量为细胞毒性颗粒酶B释放。在实例13中更详细地描述了该测定。
在另一方面,提供了PD1/PD-L1阻断共培养测定法,其测量表达PD-L1的CHO-K1细胞和表达PD1的Jurkat-PD1-NFAT细胞之间PD1/PD-L1介导的TCR信号传导的抑制的阻断。通过检测报告基因的表达来测量PD1信号传导对TCR激活的抑制。在实例4中更详细地描述了该测定。
在另一方面,提供了基于活化T细胞的内化测定法,其允许确定双特异性抗TfR抗PD1抗体进入细胞的内化。为此,CD3和CD28活化的CD4T细胞首先在4℃暴露于抗体,然后在37℃孵育以允许内化,并随后对细胞进行染色和固定。作为对照,每个样品的一半在4℃暴露于抗体后立即被洗涤、染色和固定化(在4℃的内化是可忽略的)。然后使用特异性结合双特异性抗TfR抗PD1抗体的荧光标记抗体对两种条件(4℃和37℃)的细胞进行染色。使用流式细胞术检测荧光。然后比较细胞和对照细胞之间荧光标记的CD4+T细胞的几何平均荧光强度(GMFI)和频率。内化百分比用以下公式计算:
内化=100-((GMFI荧光CD4+T细胞 37℃÷GMFI荧光CD4+T细胞 4℃)*100)
在实例6中更详细地描述了该测定。
D.用于诊断和检测的方法和组合物
在某些方面,本文提供的包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体中的任一种可用于检测生物样品中TfR或PD1的存在。如本文所用的术语“检测”涵盖定量或定性检测。在某些方面,生物样品包含细胞或组织,诸如免疫细胞或T细胞浸润或肿瘤组织。
在一个方面,提供了包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体,用于诊断或检测方法中使用。在进一步的方面,提供一种检测生物样品中包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体的存在的方法。在某些方面,该方法包括使生物样品在允许如本文描述的包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体结合TfR和/或PD1的条件下与包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1抗体的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体接触,以及检测在包含特异性结合TfR的第一抗原结合结构域和特异性结合TfR和/或PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体之间是否形成复合物。此类方法可以是体外或体内方法。
在某些方面,提供了标记的包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域的双特异性抗体。标记包括但不限于直接检测的标记或部分(诸如荧光标记、发色标记、电子致密标记、化学发光标记,以及放射性标记),以及间接(例如通过酶促反应或分子相互作用)检测的部分(诸如酶或配体)。示例性标记包括但不限于放射性同位素32P、14C、125I、3H和131I;荧光团,诸如稀土螯合物或荧光素(fluorescein)及其衍生物、罗丹明及其衍生物、丹酰、伞形酮;萤光素酶(luciferase),例如萤火虫萤光素酶和细菌萤光素酶(美国专利号4,737,456);萤光素(luciferin);2,3-二氢二氮杂萘二酮(dihydrophthalazinedione);辣根过氧化物酶(HRP);碱性磷酸酶;β-半乳糖苷酶;葡糖淀粉酶;溶菌酶;糖氧化酶,例如葡萄糖氧化酶、半乳糖氧化酶和葡萄糖-6-磷酸脱氢酶;杂环氧化酶,诸如尿酸氧化酶和黄嘌呤氧化酶;与采用过氧化氢来氧化染料前体的酶(诸如HRP、乳过氧化物酶,或微过氧化物酶)偶联;生物素/抗生物素蛋白;纺丝标记;噬菌体标记;稳定自由基等。
E.药物组合物
在其他方面,提供了包含本文提供的任一种抗体的药物组合物,其例如用于以下任一种治疗方法中。在一个方面,药物组合物包含任一种本文提供的抗体和药用载体。在另一方面,药物组合物包含任一种本文提供的抗体和例如如下所述的至少一种另外的治疗剂。
通过混合具有期望程度的纯度的本文描述的双特异性抗体与一种或多种任选的药用载体来制备双特异性抗体的呈冻干组合物或水溶液的形式的药物组合物,该双特异性抗体包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域(Remington's Pharmaceutical Sciences第16版,Osol,A.编辑(1980))。药用载体通常在所采用的剂量和浓度下对接受者无毒,包括但不限于:缓冲剂,诸如组氨酸、磷酸盐、柠檬酸盐、乙酸盐和其他有机酸;抗氧化剂,包括抗坏血酸和甲硫氨酸;防腐剂(诸如十八烷基二甲基苄基氯化铵;氯化六甲双铵;苯扎氯铵;苄索氯铵;苯酚、丁醇或苄醇;对羟基苯甲酸烷基酯,诸如对羟基苯甲酸甲酯或对羟基苯甲酸丙酯;儿茶酚;间苯二酚;环己醇;3-戊醇;间甲酚);低分子量(小于约10个残基)多肽;蛋白质,诸如血清白蛋白、明胶或免疫球蛋白;亲水性聚合物,诸如聚乙烯吡咯烷酮;氨基酸,诸如甘氨酸、谷氨酰胺、天冬酰胺、组氨酸、精氨酸或赖氨酸;单糖、二糖和其他碳水化合物,包括葡萄糖、甘露糖或糊精;螯合剂,诸如EDTA;糖,诸如蔗糖、甘露醇、海藻糖或山梨糖醇;成盐抗衡离子,诸如钠;金属络合物(例如锌蛋白络合物);和/或非离子表面活性剂,诸如聚乙二醇(PEG)。本文的示例性药用载体进一步包含间质药物分散剂诸如可溶性中性活性透明质酸酶糖蛋白(sHASEGP),例如,人类可溶性PH-20透明质酸酶糖蛋白,诸如rHuPH20(Halozyme,Inc.)。某些示例性sHASEGP及使用方法(包括rHuPH20)描述于美国专利公开号2005/0260186和2006/0104968中。在一个方面中,将sHASEGP与一种或多种另外的糖胺聚糖酶(诸如软骨素酶)组合。
示例性的冻干抗体组合物描述于美国专利号6267958中。水性抗体组合物包括在美国专利号6,171,586和WO 2006/044908中描述的那些,后者中的组合物包含组氨酸-乙酸盐缓冲液。
本文的药物组合物还可含有多于一种对于所治疗的特定适应症是必需的活性成分,优选是具有不会彼此不利地影响的互补活性的活性成分。在某些方面,另外的治疗剂是免疫调节剂、细胞生长抑制剂、细胞粘附抑制剂、细胞毒性剂、细胞凋亡活化剂,或增加细胞对凋亡诱导剂的敏感性的试剂。在优选的方面,另外的治疗剂是抗癌剂,例如微管破坏剂、抗代谢物、拓扑异构酶抑制剂、DNA嵌入剂、烷化剂、激素疗法、激酶抑制剂、受体拮抗剂、肿瘤细胞凋亡活化剂,或抗血管生成剂。此类活性成分适当地以对预期目的有效的量组合存在。活性成分可以包埋在例如通过凝聚技术或通过界面聚合而制备的微胶囊(例如分别为羟甲基纤维素或明胶微胶囊和聚(甲基丙烯酸甲酯)微胶囊)中;包埋在胶体药物递送系统(例如,脂质体、白蛋白微球、微乳液、纳米粒子和纳米胶囊)中;或包埋在粗乳液中。此类技术公开于Remington's Pharmaceutical Sciences第16版,Osol,A.编辑(1980)中。
可以制备用于缓释的药物组合物。缓释制剂的合适实例包括含有抗体的固态疏水聚合物的半透性基质,这些基质是例如膜或微胶囊等成型制品的形式。
用于体内施用的药物组合物通常是无菌的。例如,无菌可以通过无菌过滤膜过滤而容易地实现。
F.治疗方法和施用途径
本文提供的抗TfR抗PD1双特异性抗体中的任一种可用于治疗方法中。
在一个方面,提供了一种用作药物的抗TfR抗PD1双特异性抗体。在进一步的方面,提供了用于治疗癌症的抗TfR抗PD1双特异性抗体。在某些方面,提供一种用于治疗方法中的抗TfR抗PD1双特异性抗体。在某些方面,本发明提供了用于治疗患有癌症的个体的方法中的抗TfR抗PD1双特异性抗体,该方法包括向该个体施用有效量的抗TfR抗PD1双特异性抗体。在某些方面,本发明提供了用于治疗患有传染病(优选慢性或急性感染,例如慢性或急性病毒感染)的个体的方法中的抗TfR抗PD1双特异性抗体,该方法包括向该个体施用有效量的抗TfR抗PD1双特异性抗体。在又另一方面,本发明提供了用于治疗患有神经退行性疾病诸如阿尔茨海默病的个体的方法中的抗TfR抗PD1双特异性抗体,该方法包括向该个体施用有效量的抗TfR抗PD1双特异性抗体。在一个这样的方面,例如如下所描述的,该方法进一步包括向个体施用有效量的至少一种另外的治疗剂(例如,一种、两种、三种、四种、五种或六种另外的治疗剂)。在进一步的方面,本发明提供了用作免疫刺激剂或刺激干扰素-γ(IFN-γ)或肿瘤坏死因子α(TNFα)分泌的抗TfR抗PD1双特异性抗体。在某些实施例中,本发明提供了用于免疫刺激方法或在个体中刺激干扰素-γ(IFN-γ)或肿瘤坏死因子α(TNFα)分泌的方法中的抗TfR抗PD1双特异性抗体,该方法包括向该个体施用有效量的抗TfR抗PD1双特异性抗体用于免疫刺激或刺激干扰素-γ(IFN-γ)或肿瘤坏死因子α(TNFα)分泌。根据上述方面中的任一者的“个体”优选地是人。
在进一步的方面,本发明提供了抗TfR抗PD1双特异性抗体在制造或制备药物中的用途。在一个方面,药物用于治疗癌症。在进一步方面,该药物用于治疗癌症的方法,该方法包含向患有癌症的个体施用有效量的药物。在一个这样的方面,例如如下所描述的,该方法进一步包括向个体施用有效量的至少一种另外的治疗剂。在进一步的方面,药物用于诱导细胞介导的癌细胞的裂解。在进一步的方面,药物用于在个体中诱导细胞介导的癌细胞裂解的方法中,该方法包括向该个体施用有效量的药物以诱导癌细胞的细胞凋亡/或抑制癌细胞增殖。根据上述方面中的任一方面的“个体”可以为人。
在进一步的方面,本发明提供了用于治疗癌症的方法。在一个方面,该方法包括向患有此类癌症的个体施用有效量的抗TfR抗PD1双特异性抗体。在一个这样的方面,如下所描述的,该方法进一步包括向个体施用有效量的至少一种另外的治疗剂。
根据上述方面中的任一方面的“个体”可以为人。
在进一步的方面,本发明提供了用于在个体中免疫刺激或刺激干扰素-γ(IFN-γ)或肿瘤坏死因子α(TNFα)分泌的方法。在一个方面,该方法包括向该个体施用有效量的抗TfR抗PD1双特异性抗体以用于免疫刺激或刺激干扰素-γ(IFN-γ)或肿瘤坏死因子α(TNFα)分泌。在一个方面,“个体”是人。
在进一步的方面,本发明提供了包含本文提供的抗TfR抗PD1双特异性抗体中的任一种的药物组合物,其例如用于以上治疗方法中的任一者中。在一个方面,药物组合物包含本文提供的抗TfR抗PD1双特异性抗体中的任一种以及药用载体。在另一方面,药物组合物包含本文提供的抗TfR抗PD1双特异性抗体中的任一种和例如如下所述的至少一种另外的治疗剂。
本发明的抗体可以单独施用或用于组合疗法。例如,该组合疗法包括施用本发明的抗体并且施用至少一种另外的治疗剂(例如,一种、两种、三种、四种、五种或六种另外的治疗剂)。在某些方面,组合疗法包括施用本发明的抗体和施用至少一种另外的治疗剂,诸如免疫调节剂、细胞生长抑制剂、细胞粘附抑制剂、细胞毒性剂、细胞凋亡活化剂,或增加细胞对凋亡诱导剂的敏感性的剂。在优选的方面,另外的治疗剂是抗癌剂,例如微管破坏剂、抗代谢物、拓扑异构酶抑制剂、DNA嵌入剂、烷化剂、激素疗法、激酶抑制剂、受体拮抗剂、肿瘤细胞凋亡活化剂,或抗血管生成剂。
上述此类组合疗法涵盖组合施用(其中两种或更多种治疗剂包括在相同或单独的药物组合物中)和单独施用,在单独施用的情况下,本发明的抗体的施用可以在施用另外的治疗剂或药剂之前、同时和/或之后进行。在一个方面,抗TfR抗PD1双特异性抗体的施用和另外的治疗剂的施用在彼此相距约一个月内,或在约一周、两周或三周内,或在约一天、二天、三天、四天、五天或六天之内进行。在一个方面,在治疗的第1天将抗体和另外的治疗剂施用于患者。本发明的抗体也可以与放射疗法组合使用。
本发明的抗体(和任何另外的治疗剂)可以通过任何合适的方式施用,包括肠胃外、肺内和鼻内,并且如果需要的话用于局部治疗、病灶内施用。肠胃外输注包括肌内、静脉内、动脉内、腹膜内或皮下施用。给药可以通过任何合适的途径进行,例如通过注射,诸如静脉内或皮下注射,部分取决于施用是短暂的还是长期的。本文考虑了各种投配时间安排,包括但不限于在各个时间点处的单次或多次施用、推注施用,以及脉冲输注。
本发明的抗体将以符合良好医学实践的方式配制、给药和施用。在这种情况下需要考虑的因素包括所治疗的特定疾患、所治疗的特定哺乳动物、个体患者的临床病症、疾患的原因、药剂的递送部位、施用方法、施用的时间安排,以及执业医师已知的其他因素。该抗体不是必须的,而是任选地与一种或多种目前用于预防或治疗所讨论的疾患的制剂共同配制。这些其他制剂的有效量取决于药物组合物中存在的抗体的量、疾患或治疗的类型以及上面讨论的其他因素。这些通常以与本文所述相同的剂量和施用途径使用,或以本文所述剂量的约1%至99%使用,或以任何剂量且通过经验/临床上确定为合适的任何途径使用。
为了预防或治疗疾病,本发明的抗体的适当剂量(当单独使用或与一种或多种其他另外治疗剂组合使用时)将取决于待治疗的疾病类型、抗体的类型、疾病的严重程度和病程、施用分子用于预防还是治疗目的、患者的病史和对抗体的应答以及主治医师的酌处权。抗体适当地一次或在一系列治疗中施用于患者。取决于疾病的类型和严重性,约1μg/kg至15mg/kg(例如0.1mg/kg-10mg/kg)的抗体可以是例如通过一次或多次单独施用或通过连续输注而施用于患者的初始候选剂量。取决于上述因素,一种典型的日剂量的范围可以为约1μg/kg至100mg/kg或更多。对于数天或更长时间的重复施用,取决于病症,治疗通常会持续直至发生所需的疾病症状抑制。抗体的一种示例性剂量的范围为约0.05mg/kg至约10mg/kg。因此,可以向患者施用约0.5mg/kg、2.0mg/kg、4.0mg/kg或10mg/kg(或它们的任何组合)的一种或多种剂量。此类剂量可以间歇施用,例如每周或每三周施用(例如,使得患者接受约两次至约二十次,或例如约六次剂量的抗体)。可施用初始较高负荷剂量,然后施用一种或多种较低剂量。示例性给药方案包括施用约4mg/kg初始负荷剂量的抗体,然后每周施用约2mg/kg维持剂量的抗体。然而,其他剂量方案可能有用。通过常规技术和测定可以容易地监测该疗法的进展。
G.制品
在本发明的另一方面中,提供了一种制品,其含有可用于治疗、预防和/或诊断上述疾患的物质。该制品包括容器和在该容器上或与该容器相关的标签或包装插页(packageinsert)。合适的容器包括例如瓶子、小瓶、注射器、IV溶液袋等。所述容器可以由诸如玻璃或塑料等多种材料形成。该容器容纳组合物,该组合物本身或与另一种组合物组合能够有效地治疗、预防和/或诊断病症,并且该容器可以具有无菌进入口(例如,该容器可以是静脉内溶液袋或具有可由皮下注射针刺穿的塞子的小瓶)。组合物中的至少一种活性剂是本发明的抗体。标签或包装插页指示该组合物用于治疗所选择的病症。此外,该制品可包括(a)第一容器,其中该第一容器中含有包含本发明的抗体的组合物;以及(b)第二容器,该第二容器中含有包含另外的细胞毒性剂或其他治疗剂组合物。本发明该方面中的制品还可包含包装插页,该包装插页指示该组合物可用于治疗特定病症。替代性地或另外地,该制品还可包含第二(或第三)容器,该第二(或第三)容器包含药用缓冲液,诸如抑菌性注射用水(BWFI)、磷酸盐缓冲盐水、林格氏溶液和葡萄糖溶液。所述制品还可包括从商业和用户角度所需的其他物质,包括其他缓冲剂、稀释剂、过滤器、针头和注射器。
下面列出本发明的具体实施例:
1.一种双特异性抗体,其包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域。
2.根据实施例1所述的双特异性抗体,其中所述双特异性抗体结合在细胞的表面上展示的TfR和PD1,并且其中所述双特异性抗体被内化到所述细胞中。
3.根据实施例2所述的双特异性抗体,其中所述细胞表达TfR和PD1并将它们展示在其表面上。
4.根据实施例2或3所述的双特异性抗体,其中在所述双特异性抗体与在所述细胞的表面上展示的TfR和PD1结合后,PD1从所述细胞的表面被清除。
5.根据前述实施例之一所述的双特异性抗体,所述双特异性抗体包含第三抗原结合结构域,其中所述第三抗原结合结构域特异性结合PD1。
6.根据前述实施例之一所述的双特异性抗体,其中所述第一抗原结合结构域、第二抗原结合结构域和/或当存在时的第三抗原结合结构域为Fab片段,优选IgG来源的Fab片段。
7.根据前述实施例之一所述的双特异性抗体,其中所述第一抗原结合结构域和所述第二抗原结合结构域各自为Fab片段,并且(i)所述第二抗原结合结构域在Fab重链的C末端处与所述第一抗原结合结构域的Fab重链的N末端融合,或者(ii)所述第一抗原结合结构域在Fab重链的C末端处与所述第二抗原结合结构域的Fab重链的N末端融合。
8.根据前述实施例之一所述的双特异性抗体,所述双特异性抗体包含由第一亚基和第二亚基构成的Fc结构域,优选IgG来源的Fc结构域。
9.根据实施例8所述的双特异性抗体,其中Fab片段中的一个或多个与Fc结构域融合。
10.根据实施例7至9中任一项所述的双特异性抗体,其中Fab片段中的一个或多个经由肽接头与Fc结构域融合。
11.一种双特异性抗体,其包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域,其中第一抗原结合结构域、第二抗原结合结构域和当存在时的第三抗原结合结构域各自为Fab片段,并且抗体包含由第一亚基和第二亚基构成的Fc结构域;并且其中(i)第二抗原结合结构域在其Fab重链的C末端与第一抗原结合结构域的Fab重链的N末端融合,并且第一抗原结合结构域在其Fab重链的C末端与Fc结构域的第一亚基的N末端融合,或(ii)第一抗原结合结构域在其Fab重链的C末端与第二抗原结合结构域的Fab重链的N末端融合,并且第二抗原结合结构域在Fab重链的C末端与Fc结构域的第一亚基的N末端融合;并且其中当存在时,第三抗原结合结构域在其Fab重链的C末端与Fc结构域的第二亚基的N末端融合。
12.一种双特异性抗体,所述双特异性抗体包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和第三抗原结合结构域,其中所述第一抗原结合结构域、第二抗原结合结构域和第三抗原结合结构域各自为Fab片段,并且所述抗体包含由第一亚基和第二亚基构成的Fc结构域;并且其中
所述第一抗原结合结构域在其Fab重链的C末端与所述Fc结构域的所述第一亚基的N末端融合,
所述第二抗原结合结构域在其Fab重链的C末端与所述Fc结构域的所述第二亚基的N末端融合,并且
所述第三抗原结合结构域在其Fab重链的N末端与所述Fc结构域的所述第一亚基或所述第二亚基的C末端融合。
13.根据实施例8至12中任一项所述的双特异性抗体,其中所述Fc结构域为IgG Fc结构域,特别是IgG1 Fc结构域或IgG4 Fc结构域。
14.根据实施例1至13中任一项所述的双特异性抗体,其中所述双特异性抗体包含至少两条重链并且其中所述双特异性抗体的所述重链为γ型(IgG),特别是γ1型。
15.根据实施例1至14中任一项所述的双特异性抗体,其中所述双特异性抗体包含至少两条轻链并且其中所述双特异性抗体的所述轻链选自kappa(κ)和/或lambda(λ)亚型。
16.根据实施例8至15中任一项所述的双特异性抗体,其中所述Fc结构域包含降低与Fc受体、特别是与Fcγ受体的结合的一个或多个氨基酸取代。
17.根据实施例8至16中任一项所述的双特异性抗体,其中所述Fc结构域为人IgG1亚类,具有氨基酸突变L234A、L235A和P329G(根据Kabat EU索引编号)。
18.根据实施例8至17中任一项所述的双特异性抗体,其中所述Fc结构域包含促进所述Fc结构域的所述第一亚基和所述第二亚基的缔合的修饰。
19.根据实施例8至18中任一项所述的双特异性抗体,其中根据杵臼结构方法,所述Fc结构域的所述第一亚基包含杵,并且所述Fc结构域的所述第二亚基包含臼。
20.根据实施例8至19中任一项所述的双特异性抗体,其中所述Fc结构域的所述第一亚基包含氨基酸取代S354C和T366W(根据Kabat EU索引编号),并且所述Fc结构域的所述第二亚基包含氨基酸取代Y349C、T366S和Y407V(根据Kabat EU索引编号)。
21.根据实施例6至20中任一项所述的双特异性抗体,其中在所述Fab片段中的一个中,所述可变结构域VL和VH彼此替换,使得所述VH结构域为轻链的一部分并且所述VL结构域为重链的一部分。
22.根据实施例6至21中任一项所述的双特异性抗体,其中在包含特异性结合PD1的抗原结合结构域的第二Fab片段和/或当存在时的第三Fab片段中,可变结构域VL和VH彼此替换,使得VH结构域为轻链的一部分并且VL结构域为重链的一部分。
23.根据实施例6至22中任一项所述的双特异性抗体,其中在所述Fab片段中的一个钟,在所述恒定结构域CL中,124位处的氨基酸独立地被赖氨酸(K)、精氨酸(R)或组氨酸(H)取代(根据Kabat EU索引编号),并且在所述恒定结构域CH1中,147位和213位处的氨基酸独立地被谷氨酸(E)或天冬氨酸(D)取代(根据Kabat EU索引编号)。
24.根据实施例6至23中任一项所述的双特异性抗体,其中在包含特异性结合TfR的抗原结合结构域的所述第一Fab片段中,在所述恒定结构域CL中,124位处的氨基酸独立地被赖氨酸(K)、精氨酸(R)或组氨酸(H)取代(根据Kabat EU索引编号),并且在所述恒定结构域CH1中,147位和213位处的氨基酸独立地被谷氨酸(E)或天冬氨酸(D)取代(根据KabatEU索引编号)。
25.根据实施例1至24中任一项所述的双特异性抗体,其中所述双特异性抗体不包含J链。
26.根据实施例1至25中任一项所述的双特异性抗体,其中所述双特异性抗体不包含任何杂交IgA/IgG抗体序列和/或任何杂交IgM/IgG抗体序列。
27.根据实施例1至26中任一项所述的双特异性抗体,其中所述双特异性抗体为单体。
28.一种双特异性抗体,其包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域,其中双特异性抗体包含Fc结构域、第一Fab片段和第二Fab片段和当存在时的第三Fab片段,所述第一Fab片段包含特异性结合TfR的抗原结合结构域,所述第二Fab片段和当存在时的第三Fab片段包含特异性结合PD1的抗原结合结构域,并且其中所述Fab片段与所述Fc结构域融合。
29.一种双特异性抗体,其确切地包含一个(单价的)与TfR特异性结合的抗原结合结构域且确切地包含两个(单价的)与PD1特异性结合的抗原结合结构域,其中所述双特异性抗体包含Fc结构域、包含与TfR特异性结合的抗原结合结构域的Fab片段和两个两个Fab片段,其中所述两个Fab片段中的每一个包含与PD1特异性结合的一个抗原结合结构域,并且其中三个Fab片段中的至少两个与Fc结构域融合,并且三个Fab片段中的一个任选地与其他Fab片段中的一个融合。
30.一种双特异性抗体,其包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域,其中第一抗原结合结构域、第二抗原结合结构域和当存在时的第三抗原结合结构域各自为Fab片段,并且抗体包含由第一亚基和第二亚基构成的Fc结构域;并且其中
(i)所述第二抗原结合结构域在其Fab重链的C末端与所述第一抗原结合结构域的Fab重链的N末端融合,并且所述第一抗原结合结构域在其Fab重链的C末端与所述Fc结构域的第一亚基的N末端融合,或
(ii)第一抗原结合结构域在其Fab重链的C末端与第二抗原结合结构域的Fab重链的N末端融合,并且第二抗原结合结构域在Fab重链的C末端与Fc结构域的第一亚基的N末端融合,并且其中当存在时,第三抗原结合结构域在其Fab重链的C末端与Fc结构域的第二亚基的N末端融合。
31.一种双特异性抗体,所述双特异性抗体包含特异性结合TfR的第一抗原结合结构域和特异性结合PD1的第二抗原结合结构域和任选地第三抗原结合结构域,其中所述第一抗原结合结构域、第二抗原结合结构域和第三抗原结合结构域各自为Fab片段,并且所述抗体包含由第一亚基和第二亚基构成的Fc结构域;并且其中
所述第一抗原结合结构域在其Fab重链的C末端与所述Fc结构域的所述第一亚基的N末端融合,
所述第二抗原结合结构域在其Fab重链的C末端与所述Fc结构域的所述第二亚基的N末端融合,并且
所述第三抗原结合结构域在其Fab重链的N末端与所述Fc结构域的所述第一亚基或所述第二亚基的C末端融合。
32.根据前述实施例之一所述的双特异性抗体,其中特异性结合TfR的所述第一抗原结合结构域包含
i.重链可变结构域(VH),其包含
a)CDR-H1,其包含SEQ ID NO:1的氨基酸序列,
b)CDR-H2,其包含SEQ ID NO:2的氨基酸序列,和
c)CDR-H3,其包含SEQ ID NO:3的氨基酸序列,以及轻链可变结构域(VL),其包含
d)CDR-L1,其包含SEQ ID NO:4的氨基酸序列,
e)CDR-L2,其包含SEQ ID NO:5的氨基酸序列,和
f)CDR-L3,其包含SEQ ID NO:6的氨基酸序列,或者
ii.重链可变结构域(VH),其包含
a)CDR-H1,其包含SEQ ID NO:9的氨基酸序列,
b)CDR-H2,其包含SEQ ID NO:10的氨基酸序列,和
c)CDR-H3,其包含SEQ ID NO:11的氨基酸序列,以及轻链可变结构域(VL),其包含
d)CDR-L1,其包含SEQ ID NO:12的氨基酸序列,
e)CDR-L2,其包含SEQ ID NO:13的氨基酸序列,和
f)CDR-L3,其包含SEQ ID NO:14的氨基酸序列。
33.前述实施例之一所述的双特异性抗体,其中特异性结合PD1的第二抗原结合结构域和/或当存在时的第三抗原结合结构域包含
i.重链可变结构域(VH),其包含
a)CDR-H1,其包含SEQ ID NO:17的氨基酸序列,
b)CDR-H2,其包含SEQ ID NO:18的氨基酸序列,和
c)CDR-H3,其包含SEQ ID NO:19的氨基酸序列,以及轻链可变结构域(VL),其包含
d)CDR-L1,其包含SEQ ID NO:20的氨基酸序列,
e)CDR-L2,其包含SEQ ID NO:21的氨基酸序列,和
f)CDR-L3,其包含SEQ ID NO:22的氨基酸序列,或者
ii.重链可变结构域(VH),其包含
a)CDR-H1,其包含SEQ ID NO:25的氨基酸序列,
b)CDR-H2,其包含SEQ ID NO:26的氨基酸序列,和
c)CDR-H3,其包含SEQ ID NO:27的氨基酸序列,以及轻链可变结构域(VL),其包含
d)CDR-L1,其包含SEQ ID NO:28的氨基酸序列,
e)CDR-L2,其包含SEQ ID NO:29的氨基酸序列,和
f)CDR-L3,其包含SEQ ID NO:30的氨基酸序列。
34.前述实施例之一所述的双特异性抗体,其中
i.与TfR特异性结合的所述第一抗原结合结构域包含
a)VH结构域,其与SEQ ID NO:7的氨基酸序列具有至少95%序列同一性,以及VL序列,其与SEQ ID NO:8的氨基酸序列具有至少95%序列同一性,或者
b)VH结构域,其与SEQ ID NO:15的氨基酸序列具有至少95%序列同一性,以及VL序列,其与SEQ ID NO:16的氨基酸序列具有至少95%序列同一性,
以及
ii.与PD1特异性结合的所述第二抗原结合结构域和/或在存在时的所述第三抗原结合结构域包含
a)VH结构域,其与SEQ ID NO:23的氨基酸序列具有至少95%序列同一性,以及VL序列,其与SEQ ID NO:24的氨基酸序列具有至少95%序列同一性,或者
b)VH结构域,其与SEQ ID NO:31的氨基酸序列具有至少95%序列同一性,以及VL序列,其与SEQ ID NO:32的氨基酸序列具有至少95%序列同一性。
35.前述实施例之一所述的双特异性抗体,其中
i.与TfR特异性结合的所述第一抗原结合结构域包含
a)VH结构域,其包含SEQ ID NO:7的氨基酸序列,以及VL结构域,其包含SEQ IDNO:8的氨基酸序列,或者
b)VH结构域,其包含SEQ ID NO:15的氨基酸序列,以及VL结构域,其包含SEQ IDNO:16的氨基酸序列,
并且
ii.与PD1特异性结合的所述第二抗原结合结构域和/或在存在时的所述第三抗原结合结构域包含
a)VH结构域,其包含SEQ ID NO:23的氨基酸序列,以及VL结构域,其包含SEQ IDNO:24的氨基酸序列,或者
b)VH结构域,其包含SEQ ID NO:31的氨基酸序列,以及VL结构域,其包含SEQ IDNO:32的氨基酸序列。
36.根据前述实施例之一所述的双特异性抗体,其为单克隆抗体。
37.前述实施例之一所述的双特异性抗体,其为人源化或嵌合抗体。
38.前述实施例之一所述的双特异性抗体,其包含第一重链,所述第一重链包含与SEQ ID NO:35的序列具有至少95%序列同一性的氨基酸序列,第一轻链,其包含与SEQ IDNO:36的序列具有至少95%序列同一性的氨基酸序列,第二重链,所述第二重链包含与SEQID NO:39的序列具有至少95%序列同一性的氨基酸序列,以及第二轻链,所述第二轻链包含与序列40具有至少95%序列同一性的氨基酸序列。
39.前述实施例之一所述的双特异性抗体,其包含第一重链,所述第一重链包含与SEQ ID NO:37的序列具有至少95%序列同一性的氨基酸序列,第一轻链,其包含与SEQ IDNO:38的序列具有至少95%序列同一性的氨基酸序列,第二重链,所述第二重链包含与SEQID NO:39的序列具有至少95%序列同一性的氨基酸序列,以及第二轻链,所述第二轻链包含与序列40具有至少95%序列同一性的氨基酸序列。
40.前述实施例之一所述的双特异性抗体,其包含第一重链,所述第一重链包含与SEQ ID NO:35的序列具有至少95%序列同一性的氨基酸序列,第一轻链,其包含与SEQ IDNO:36的序列具有至少95%序列同一性的氨基酸序列,第二重链,所述第二重链包含与SEQID NO:41的序列具有至少95%序列同一性的氨基酸序列,以及第二轻链,所述第二轻链包含与序列42具有至少95%序列同一性的氨基酸序列。
41.前述实施例之一所述的双特异性抗体,其包含第一重链,所述第一重链包含与SEQ ID NO:37的序列具有至少95%序列同一性的氨基酸序列,第一轻链,其包含与SEQ IDNO:38的序列具有至少95%序列同一性的氨基酸序列,第二重链,所述第二重链包含与SEQID NO:41的序列具有至少95%序列同一性的氨基酸序列,以及第二轻链,所述第二轻链包含与序列42具有至少95%序列同一性的氨基酸序列。
42.前述实施例之一所述的双特异性抗体,其包含第一重链,所述第一重链包含与SEQ ID NO:59的序列具有至少95%序列同一性的氨基酸序列,第二重链,其包含与SEQ IDNO:60的序列具有至少95%序列同一性的氨基酸序列,第一轻链,其包含与SEQ ID NO:57的序列具有至少95%序列同一性的氨基酸序列,以及第二轻链,所述第二轻链包含与序列58具有至少95%序列同一性的氨基酸序列。
43.前述实施例之一所述的双特异性抗体,其包含第一重链,所述第一重链包含与SEQ ID NO:61的序列具有至少95%序列同一性的氨基酸序列,第二重链,其包含与SEQ IDNO:60的序列具有至少95%序列同一性的氨基酸序列,第一轻链,其包含与SEQ ID NO:57的序列具有至少95%序列同一性的氨基酸序列,以及第二轻链,所述第二轻链包含与序列58具有至少95%序列同一性的氨基酸序列。
44.前述实施例之一所述的双特异性抗体,其中所述抗体以nM至亚-nM范围内的亲和力结合TfR和PD1两者。
45.根据前述实施例之一所述的双特异性抗体,其中所述抗体为多特异性抗体。
46.根据前述实施例之一所述的双特异性抗体,其包含SEQ ID NO:37的第一重链和SEQ ID NO:38的第一轻链、SEQ ID NO:39的第二重链,和SEQ ID NO:40的氨基酸序列。
47.根据前述实施例之一所述的双特异性抗体,其包含SEQ ID NO:35的第一重链和SEQ ID NO:36的第一轻链、SEQ ID NO:39的第二重链,和SEQ ID NO:40的第二轻链。
48.根据前述实施例之一所述的双特异性抗体,其包含SEQ ID NO:35的第一重链和SEQ ID NO:36的第一轻链、SEQ ID NO:41的第二重链,和SEQ ID NO:42的第二轻链。
49.根据前述实施例之一所述的双特异性抗体,其包含SEQ ID NO:37的第一重链和SEQ ID NO:38的第一轻链、SEQ ID NO:41的第二重链,和SEQ ID NO:42的第二轻链。
50.根据前述实施例之一所述的双特异性抗体,其包含SEQ ID NO:59的第一重链、SEQ ID NO:60的第二重链、SEQ ID NO:57的第一轻链,和SEQ ID NO:58的第二轻链。
51.根据前述实施例之一所述的双特异性抗体,其包含SEQ ID NO:61的第一重链、SEQ ID NO:60的第二重链、SEQ ID NO:57的第一轻链,和SEQ ID NO:58的第二轻链。
52.一种免疫缀合物,其包含根据前述实施例之一所述的双特异性抗体以及细胞毒剂。
53.根据实施例52所述的免疫缀合物,其中所述细胞毒性剂为假单胞菌外毒素A或鹅膏毒素。
54.一种三特异性抗体,其包含根据实施例1至51中任一项所述的双特异性抗体,其中与第三靶标特异性结合的另外的结合结构域与所述双特异性抗体的C末端融合。
55.一种分离的核酸,其编码根据实施例1至51之一所述的双特异性抗体、或根据实施例52或53所述的免疫缀合物、或根据实施例48所述的三特异性抗体。
56.一种宿主细胞,其包含根据实施例55所述的核酸。
57.一种生产根据实施例1至51之一所述的双特异性抗体、或根据实施例52或53所述的免疫缀合物、或根据实施例54所述的三特异性抗体的方法,所述方法包括在适合表达所述抗体的条件下培养根据实施例56所述的宿主细胞。
58.根据实施例57所述的方法,其进一步包括从宿主细胞回收抗体。
59.通过实施例57或58所述的方法生产的双特异性抗体。
60.一种药物组合物,其包含根据实施例1至51之一所述的双特异性抗体、或根据实施例52或53所述的免疫缀合物或根据实施例54所述的三特异性抗体以及药用载体。
61.根据实施例60所述的药物组合物,其进一步包含另外的治疗剂。
62.根据实施例1至51中任一项或59所述的双特异性抗体、或根据实施例52或53所述的免疫缀合物、或根据实施例54所述的三特异性抗体或根据实施例60或61中任一项所述的药物组合物用作药物。
63.根据实施例1至51中任一项或59所述的双特异性抗体、或根据实施例52或53所述的免疫缀合物、或根据实施例54所述的三特异性抗体或根据实施例60或61中任一项所述的药物组合物用于治疗移植物抗宿主病。
64.根据实施例1至51中任一项或59所述的双特异性抗体、或根据实施例52或53所述的免疫缀合物、或根据实施例54所述的三特异性抗体或根据实施例60或61中任一项所述的药物组合物用于
i.调节免疫应答,诸如恢复T细胞活性,
ii.刺激免疫应答或功能,
iii.治疗感染,
iv.治疗癌症,
v.延缓癌症进展,
vi.延长患有癌症的患者的存活期。
65.根据实施例1至51中任一项或59所述的双特异性抗体、或根据实施例52或53所述的免疫缀合物、或根据实施例54所述的三特异性抗体或根据实施例60或61中任一项所述的药物组合物,用于预防或治疗癌症。
66.根据实施例1至51中任一项或59所述的双特异性抗体、或根据实施例52或53所述的免疫缀合物、或根据实施例54所述的三特异性抗体或根据实施例60或61中任一项所述的药物组合物,用于预防或治疗癌症,其中所述双特异性抗体与用于癌症免疫疗法的化学治疗剂、放射和/或其他剂组合施用。
67.一种抑制个体中肿瘤细胞生长的方法,所述方法包括向所述个体施用有效量的根据实施例1至51中任一项或59中所述的双特异性抗体、或根据实施例52或53所述的免疫缀合物、或根据实施例54所述的三特异性抗体或根据实施例60或61中任一项所述的药物组合物来抑制所述肿瘤细胞的生长。
68.根据实施例1至51中任一项或59所述的双特异性抗体、或根据实施例52或53所述的免疫缀合物、或根据实施例54所述的三特异性抗体或根据实施例60或61中任一项所述的药物组合物在制造用于治疗以下的药物中的用途:
i.移植物抗宿主病,
ii.感染或
iii.癌症。
69.根据实施例1至51中任一项或59所述的双特异性抗体、或根据实施例52或53所述的免疫缀合物、或根据实施例54所述的三特异性抗体或根据实施例60或61中任一项所述的药物组合物在制造用于以下的药物中的用途:
i.调节免疫应答,诸如恢复T细胞活性
ii.刺激免疫应答或功能
iii.延缓癌症进展,和/或
iv.延长患有癌症的患者的存活期。
70.一种治疗患有移植物抗宿主病的个体的方法,所述方法包括向所述个体施用有效量的根据实施例1至51中任一项或59所述的双特异性抗体、或根据实施例52或53所述的免疫缀合物、或根据实施例54所述的三特异性抗体或根据实施例60或61中任一项所述的药物组合物。
71.根据实施例67或70所述的方法,其进一步包括向所述个体施用另外的治疗剂。
72.根据实施例71所述的方法,其中所述另外的治疗剂选自由化学治疗剂、放射和用于癌症免疫疗法的其他剂组成的组。
73.一种抑制个体中PD1功能的方法,所述方法包括向所述个体施用有效量的根据实施例1至51中任一项或59所述的双特异性抗体、或根据实施例52或53所述的免疫缀合物、或根据实施例54所述的三特异性抗体或根据实施例60或61中任一项所述的药物组合物来抑制PD1功能。
氨基酸序列的描述
表3.抗TfR抗原结合部分(可变区和高变区(CDR))
表4.抗PD1抗原结合部分(可变区和高变区(CDR))
表5.非结合对照(“Nada”)
表6.对用于本文所述的抗TfR双特异性抗体的单特异性未经修饰的抗TfR抗体/抗原结合部分进行命名
抗体 靶标 VH(SEQ ID NO:) VL(SEQ ID NO:)
1026 TfR 7 8
51A165 TfR 15 16
PD1-0103-0312 PD1 23 24
派姆单抗 PD1 31 32
表7A.对具有经修饰的VH/VL的双特异性抗体作为交叉Mab进行命名(参见WO2016/016299)
表7B:用于示例性2+1形式抗体(人源化和小鼠替代分子)的VH/VL区的命名
表8.用于示例性双特异性抗体的全长重链和轻链(1+1形式;高变区加下划线并加粗)
表9.用于2:1抗体形式的全长重链和轻链(TCB形式和BBB形式;高变区加下划线并加粗)
表10.野生型TfR和PD1的示例性序列
表11.示例性恒定重链和轻链区
III.实例
以下是本发明的方法和组合物的实例。应当理解,在给出以上提供的一般描述的情况下,可以实践各种其他实施例。
使用标准方法来操纵DNA,如在Sambrook,J.等人,Molecular cloning:Alaboratory manual;Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NewYork,1989中所述。根据制造商的说明来使用分子生物学试剂。补充有10% FBS和2.5mM L-谷氨酰胺的RPMI培养基用于所有类型的细胞培养和细胞测定。用于经转导的Jurkat细胞的培养基另外包含50μg/mL吉欧霉素和1.5μg/mL嘌呤霉素。为了生成以下双特异性抗体和多特异性抗体,在CH3/CH3界面中将WO 2016/016299中描述的交叉Mab技术(其中在一个抗体臂中交换了VH/VL,并且已经通过电荷修饰对另一抗体臂的CH1/CL界面进行了修饰)与杵臼结构技术结合使用,以促进异源二聚化,如Regula等人.(2018)Protein Engineering,Design and Selection,31(7-8):289-299中描述的。
PD1-0103-0312的生成和全长抗体序列描述于例如WO2017/55443A1中。帕博利珠单抗的生成和全长序列描述于例如WO2008/156712A1中。实例1:结合TfR和PD1的双特异性抗原结合分子的制造
使用杵臼结构突变Y349C、T366S、L368A、Y407V(臼)和S354C、T366W(杵)设计了几种靶向TfR(常规Fab)和PD1(交叉Fab)的双特异性交叉Mab(图5A;全长序列在表12连同表8中指示)。包含PD1结合结构域的臂包含WO2017/55443A1中描述的抗PD1抗体的可变区氨基酸序列(重链可变结构域SEQ ID NO:23和轻链可变结构域SEQ ID NO:24),下文称为PD1-0103-0312,或抗PD1抗体帕博利珠单抗的可变区氨基酸序列(重链可变结构域SEQ ID NO:31和轻链可变结构域SEQ ID NO:32),一种被批准用于治疗癌症并在例如WO2008/156712A1中描述的二价抗PD1抗体。包含TfR结合结构域的臂包含WO2016/207240A1中描述的抗TfR抗体的可变区氨基酸序列(重链可变结构域SEQ ID NO:7和轻链可变结构域SEQ ID NO:8),下文称为1026,或未公开的抗TfR抗体(下文称为51A165)的可变区氨基酸序列(重链可变结构域SEQ ID NO:15和轻链可变结构域SEQ ID NO:16)。使用LALA PG突变废除了免疫效应物功能(L234A、L235A和P329G;Schlothauer等人.(2016)Protein Engineering,Design&Selection,vol.29no.10,pp.457-466)。
表12.双特异性和三特异性TfR/PD1交叉Mab序列(1+1形式)
使用内部工具对抗体的DNA序列进行了优化,并从GeneArt或Twist Bioscience订购。将编码表12中示出的氨基酸序列的DNA片段克隆到已建立的表达载体中,使用(Polyplus)将表达载体转染到HEK293悬浮细胞中,并在37℃、8% CO2的加湿培养箱中培养。六至七天后,通过在3500g离心收获上清液,并使上清液过滤通过0.22μm过滤单元(Thermo Fisher Scientific)。通过蛋白A和尺寸排阻色谱法从细胞上清液中纯化抗体。通过Caliper LabChips和质谱法验证抗体的抗体分子量。
实例2:构建可与生物素化细胞毒性剂结合作为有效负载的三特异性交叉Mab
通过将抗生物素scFV作为第三结合实体与实例1中描述的双特异性交叉Mab 8018的C末端融合,工程化了别名为1129并靶向TfR(常规Fab)、PD1(交叉Fab)和生物素的三特异性交叉Mab用于递送有效负载。抗生物素scFv在Q44C和Q100C处包含半胱氨酸键,并经由(G4S)4接头与交叉Mab的C末端融合。三特异性交叉Mab 1129(序列参见表12连同表8)如实例1中描述地在HEK293细胞中重组产生。抗体1129的示意图在图5B中示出。
作为对照分子,抗体被工程化,其中TfR结合臂(表12中的抗体9904)或PD1结合臂(表12中的抗体9903)的轻链和重链的可变抗体区中的结合序列被非结合序列替换(在下文中用术语“Nada”表示)。作为双非结合对照,其中双臂均替换为既不结合PD1也不结合TfR的实体,抗CD33抗体,其C末端附接有抗生物素scFv(“抗CD33抗CD33抗生物素”;表12中的抗体0784)。通过Biacore SPR证实了实例2的三特异性交叉MAb分子的结合亲和力与对应的具有一个Nada fab的对照分子相当(参见实例4中的表14)。
实例3:构建两种不同的交叉Mab双特异性抗体,其以二价方式结合PD1并以单价方式结合TfR(2+1形式)
如图6和图7所示,设计了两种以二价方式靶向PD1并以单价方式靶向TfR的交叉MAb(抗体8156和8157,序列在表13中示出)。
包含一个与第一靶标结合的结合结构域和两个结合第二靶标的结合结构域的复合抗体形式在本文中被称为2+1形式。通过应用与实例1和2中描述的相同的方法进行瞬时表达和纯化,来生成两种不同2+1形式的结合两个PD1和一个TfR的复合抗体形式。这些分子的组成示意性地描绘在图6和图7中。全长序列在表12连同表9中指示。
第一个2+1形式包含两个PD1结合交叉Fab(其中VH和VL彼此替换的Fab)作为IgG的臂,TfR结合Fab经由其VH的N末端附接到不对称的(杵臼结构)CH3结构域的C末端(抗体8156,图6)。该形式在本文中也称为BBB形式。
第二种2+1形式包含一个PD1-结合实体作为交叉Fab臂和一个TfR结合实体作为IgG配置中的Fab臂,以及在TfR结合Fab的顶部(即附接于N末端)的第二PD1-结合交叉Fab臂,该TfR结合Fab杵臼结构Fc异二聚体另一侧的铰链之前(抗体8157,图7)。该形式在本文中也称为TCB形式。
两种形式的Fc结构域均使用杵臼结构突变Y349C、T366S、L368A、Y407V(臼)和S354C、T366W(杵)进行工程化。使用LALA PG突变废除了免疫效应物功能(L234A、L235A和P329G;Schlothauer等人.同上)。
两种复合抗体形式中的每一种均由四个不同的氨基酸链形成,如图6和图7示意性的描绘并表示为A链、B链、H链(具有“臼”突变的重链)和K链(具有“杵”突变的重链)。这些氨基酸链的各个氨基酸序列列为SEQ ID NO:57、SEQ ID NO:58、SEQ ID NO:59、SEQ ID NO:60和SEQ ID NO:61.
对照分子以相同的形式和组成生成,不同之处在于,在对照分子中,TfR结合结构域的可变区被替换为非结合序列(称为“Nada”)(抗体8158和8159,序列显示在表13中)。这些分子的各个氨基酸序列列为SEQ ID NO:57、SEQ ID NO:60、SEQ ID NO:62、SEQ ID NO:63和SEQ ID NO:64.
如实例1中描述的,双特异性交叉Mab 8156、8157、8158和8159在HEK293细胞中重组地产生。
表13.双特异性抗TfR抗PD1交叉MAb序列(2+1形式)
实例4:PD1/PD-L1介导的信号传导的阻断和三特异性抗PD1抗TfR抗生物素交叉Mab分子的结合亲和力
与阻断抗体帕博利珠单抗类似,三特异性抗PD1抗TfR抗生物素交叉Mab 1129在共培养测定中阻断PD1/PD-L1介导的TCR信号传导抑制。对于PD1/PD-L1阻断生物测定(Promega),效应细胞为表达人PD1和由NFAT应答元件(NFAT-RE)驱动的荧光素酶报告系统的Jurkat T细胞。NFAT-RE激活是在TCR激活后诱导的。人PD1(效应细胞)和PD-L1(靶细胞)之间的相互作用中断TCR下游信号并阻止NFAT-RE激活。PD1或PD-L1阻断后,抑制信号被移除而NFAT-RE被激活,从而产生发光读出。
对于设置,将5,000个表达PD-L1的CHO-K1细胞接种到96孔板中过夜。将50,000个表达PD1的Jurkat-PD1-NFAT细胞与抗体在37℃预孵育30分钟,用培养基洗涤一次,并然后添加到激活细胞中5小时。通过在添加Bio-GloTM荧光素酶测定底物后的发光信号来测量PD1信号传导对TCR激活的抑制。与抗Nada抗PD1抗生物素对照抗体9904(“Nada/αPD1”)相比,抗TfR抗PD1抗生物素抗体1129(“αTfR/αPD1”)示出了对PD1的抑制显著增加(10nM时增加超过2倍),但不如帕博利珠单抗高,帕博利珠单抗在相同Fab浓度的这种5小时设置中显示出在高浓度的甚至更高的阻断作用(图8A)。
与抗Nada抗PD1抗生物素对照抗体相比,使用抗TfR抗PD1抗生物素抗体对PD1的抑制增加并不是由于靶标结合方面的任何差异,这一点也得到了通过Biacore SPR测量的相当的KD、ka和kd值的支持(图9和表14)。两种分子在所有三个参数方面的表现非常相似,表明PD1抑制的任何差异必定是由于存在或不存在TfR结合物造成的。
对于Biacore SPR,在pH 5.0,通过使用GE Healthcare提供的胺偶联试剂盒将大约16.000共振单位(RU)的捕获系统(内部制造的20μg/ml抗PGLALA Ab(mAb<PG LALA>M-17.24-IgG)偶联到CM5芯片(GE Healthcare BR-1005-30)上。样品和系统缓冲液是PBS-T(10mM磷酸盐缓冲盐水,其包括0.05% Tween20)pH 7.4。流动池设置为25℃,而样品块设置为12℃,并且用运行缓冲液灌注两次。通过以10μl/min的流速注射5nM溶液来捕获合适的抗体,注射时间为30秒。
通过以30μl/min的流速注射以1:3稀释度从400nM开始至0,5nM的各种浓度的溶液中的PD1持续150秒来测量缔合。监测解离阶段长达750sec,并通过从样品溶液切换到运行缓冲液来触发。通过用10mM NaOH溶液以30μl/min的流速洗涤40秒使表面再生。通过减去从抗PGLALA Ab表面获得的应答来校正大折射率偏差。还减去空白注射(=双重参照)。为了计算表观KD和其他动力学参数,使用了Langmuir 1:1模型。得到的KD、ka和kd值如表14所示。
表14.Biacore SPR测定中PD1的解离率
别名 ka(1/Ms) kd(1/s) KD(M) t1/2(s)
1129(αTfR/αPD1) 2.0·106 1.0·10-2 5.2·10-9 68
9904(Nada/αPD1) 1.9·106 9.0·10-3 4.8·10-9 77
共培养测定中的细胞生存力不受添加所应用浓度的任何抗体的影响(图8B)。
实例5:三特异性抗PD1抗TfR抗生物素交叉Mab的亲合力增强结合取决于PD1表达
通过Jurkat细胞测定评估三特异性抗PD1抗TfR抗生物素交叉Mab 1129的亲合力增强结合。使用Lenti-X HTX包装系统(Clontech Laboratories)用PD1慢病毒转导NFAT-bla Jurkat细胞(Thermo Fisher Scientific)。生成了以低水平和高水平表达人PD1的单克隆(低表达水平对应于约3,000个结合的抗PD1抗体/细胞,而高表达水平对应于约20,000个结合的抗PD1抗体/细胞)。使用未转导的野生型Jurkat细胞作为对照。
使用PE标记的抗体PE抗人PD1(克隆NAT105)和PE抗人TfR(克隆CY1G4)(BioLegend)以及流式细胞术(BD,Canto II)测量PD1和TfR表达。将与不相关抗原结合的PE标记的小鼠IgG1用作同种型对照(Iso)。用低表面表达和高表面表达的PD1转导的NFAT-blaJurkat细胞系显示出相似的TfR表达(图10A和图10B)。
为了评估三特异性抗PD1抗TfR抗生物素交叉Mab 1129与Jurkat细胞的结合是否依赖于PD1表达水平,将野生型、低PD1和高PD1 Jurkat细胞各250,000个细胞接种到96孔板中并与抗体1129或对照抗体9903或9904在冰上孵育2小时。添加200nM生物素化Cy5(bio-Cy5,内部制备)10分钟,然后在冰冷的PBS中洗涤2次。通过流式细胞术分析细胞的荧光团结合。在细胞表面上表达高水平PD1的Jurkat细胞上检测到更高程度的抗体1129(通过生物素化Cy5)(图10C,左上)。这种效果与细胞表面上的PD1表达相关,如通过在细胞表面上表达低水平的PD1且具有更少的结合抗体1129的细胞证明的。相比之下,即使在测试的最高浓度,具有一个Nada结构域的对照抗体9904和9903显示出与细胞表面的结合非常少(图10C,右上和左下)。
实例6:抗PD1抗TfR双特异性抗体被激活的T细胞内化
为了从T细胞表面去除PD1受体,通过转铁蛋白受体诱导的内化的机制对于抗PD1抗TfR双特异性抗体至关重要。因此,通过流式细胞术在双特异性抗Tfr抗PD1抗体8012、8013或8014或对照抗体8015、8016、8017、8018或8019(序列参见表12)结合3天多克隆激活的CD4+T细胞后评估PD1受体内化。
将CD4+T细胞在4℃暴露于不同分子30分钟,然后用抗LALAPG PE缀合抗体染色然后固定,或在37℃进一步孵育另外3小时以允许分子内化。在4℃孵育的CD4 T细胞用作参考,因为4℃的内化可以忽略不计。
为此,将来自健康供体的CD4+T细胞富集(Miltenyi Biotec,130-045-101),并在CD3(1μg/ml板结合)和CD28(1mg/μl可溶)的存在下多克隆激活三天。将细胞与如表12中示出的分子8012-8019在4℃孵育30分钟,洗涤并分成两组。一组立即用抗LALAPG PE缀合的二抗染色,随后固定(BD Cell fix)。第二组重悬于培养基中并在37℃孵育3小时,然后进行抗LALAPG-PE染色和固定。用LSR Fortessa(BD Biosciences)获得细胞,并用Flowjo(Treestar)进行分析。
然后比较两组之间的几何平均荧光强度(GMFI)和PE+CD4+T细胞的频率,并使用以下公式计算内化的百分比:
内化=100-((GMFIPE+CD4+T细胞 37℃÷GMFIPE+CD4+T细胞 4℃)*100)
图11A和图11B展示抗PD1抗TfR双特异性抗体8012(PD1-0103-0312/TfR(51A165))和8018(Pembro/TfR(51A165))(图11A)和8013(PD1-0103-0312/TfR(1026))和8017(Pembro/TfR(1026))(图11B)与对应的对照的比较,证明了二价抗PD1抗体(PD1-0103-0312)或对应的单价对照抗PD1/抗Nada抗体(8014和8019)都没有被内化,而PD1-0103-0312来源的双特异性抗体8012和8013以及帕博利珠单抗来源的双特异性抗体8017和8018显示内化,正如不具有PD1结合结构域的单价TfR构建体8015和8016一样。
实例7:具有结合的有效负载的三特异性抗TfR抗PD1抗生物素交叉MAb内化到Jurkat细胞中
为了评估三特异性交叉Mab相对于细胞的定位,使用Lenti-X HTX包装系统(Clontech Laboratories),用单体增强的的(mE)GFP-(G4S)2-PD1融合蛋白慢病毒转导NFAT-bla Jurkat细胞(Thermo Fisher Scientific)。对于活细胞成像,将表达mEGFP-PD1的Jurkat细胞以50,000个细胞/孔的密度接种到包含10% FCS的无酚红RPMI培养基中的8孔室载玻片(Lab-TekTM,Thermo Fisher)中。
对于膜染色,根据制造商的说明(PKH26GL-1KT,Sigma Aldrich)将活细胞与PKH26一起预孵育。简而言之,将1x106个细胞沉淀、重悬于200μl稀释液中,并与包含0.4μl PKH26染料的200μl稀释液混合。2-3分钟后,通过添加200μl FCS来终止标记反应,并将细胞再次沉淀并重悬于不含酚红的RPMI培养基中。为了跟踪抗体的内化,将10nM三特异性抗TfR抗PD1抗生物素抗体1129、对照抗体9903(TfR/Nada/抗生物素)、9904(Nada/帕博利珠单抗/抗生物素)和0784(抗CD33-抗Bio)与50nM生物素化Cy5(Bio-Cy5)在PBS中于37℃复合30分钟。将复合物添加到细胞中并允许其内化3小时。
PD1-GFP和抗体的内化随后在Leica SP8激光扫描共聚焦显微镜上使用63×/1.2NA水浸物镜(Leica)进行荧光显微术。使用台式孵育室(Oko-touch,Okolab)将温度、CO2水平和湿度维持在37℃和5% CO2。在以下条件进行顺序扫描:600Hz(双向扫描)、7倍变焦和2倍线平均(384像素x 384像素,像素大小:69nm)。Z堆栈以步长350nm采集。使用白光激光在488nm、561nm和633nm处激发。使用HyD检测器在495-560nm(GFP)和643-715nm(Cy5)检测荧光发射。使用Leica LAS AF软件的3D查看器处理图像。
使用mEGFP-PD1转导的Jurkat细胞和共聚焦显微镜,可以显示三特异性抗TfR抗PD1抗生物素交叉Mab(“αTfR/αPD1”)将生物素化Cy5递送到细胞内。此外,有效负载与PD1一起定位于囊泡中。对于两种Nada(“Nada/αPD1”和“αTfR/Nada”)和抗CD33(“αCD33”)对照分子,在细胞内仅发现非常有限量的生物素化Cy5或PD1(图12)。
实例8:转导的Jurkat细胞与三特异性抗TfR抗PD1抗生物素交叉MAb接触后,囊泡mEGFP-PD1积累
为了测试囊泡mEGFP-PD1积累是否依赖于PD1和TfR的同时结合,将三特异性抗TfR抗PD1抗生物素交叉MAb(“αTfR/αPD1”)与帕博利珠单抗进行比较。与三特异性抗TfR抗PD1抗生物素交叉MAb相比,PD1在用帕博利珠单抗处理后保留在细胞表面(图13)。
通过对mEGFP-PD1转导的Jurkat细胞进行流式细胞术进一步证实了三特异性抗TfR抗PD1抗生物素交叉MAb的PD1内化。添加三特异性抗TfR抗PD1抗生物素交叉Mab(“αTfR/αPD1”)后,mEGFP信号在24小时内下降至40%,并且当抗体留在溶液中时,mEGFP信号保持在该水平至少长达48小时(图14A)。单价Nada/抗PD1交叉Mab(“Nada/αPD1”)在24小时后将PD1水平降低至约80%,而二价帕博利珠单抗显示出缓慢降低,在48小时后仅降低至85%。有趣的是,每当三特异性抗TfR抗PD1抗生物素交叉MAb抗体被移除时,该转导的Jurkat细胞系上的mEGFP-PD1信号恢复得相当快,在另外24小时内恢复至约80%(图14B)。
实例9:截短的假单胞菌外毒素(PE25)的亲合力增强递送
为了确认使用该平台的细胞内递送,使用了截短的假单胞菌外毒素PE25,其需要内体/溶酶体递送来展现其细胞毒性特性。PE25在大肠杆菌中产生并通过先前在WO2015101589A1中关于截短的假单胞菌外毒素衍生物描述的方法纯化。然后按照EZ-LinkSulfo-NHS-生物素化试剂盒(Thermo Scientific)的说明,使用20倍过量的Sulfo-NHS-LC-生物素使截短的假单胞菌外毒素生物素化。通过蛋白质印迹验证了成功的毒素生物素化。将生物素化的PE25与三特异性抗TfR抗PD1抗生物素交叉MAb 1129或对照抗体9903或9904在PBS中复合10分钟,并与野生型、低PD1和高PD1Jurkat细胞一起孵育48小时,然后通过CellTiter Glo生存力发光测定(Promega)评估细胞生存力。
如预期的,生物素化的PE25本身在应用浓度没有毒性(图15A)。当经由抗PD1/Nada抗体9904(“αPD1/Nada+bio PE25”)递送时,细胞生存力随着浓度增加而降低,并且这种效果在高PD1表达时更加明显。然而,它需要100nM的抗体才能实现显著的细胞毒性。由于TfR的快速内化性质,Nada/抗TfR抗体(“Nada/αTfR+bio PE25”)以剂量依赖性方式递送毒素并降低细胞生存力。对于三特异性抗TfR抗PD1抗生物素交叉Mab(“αPD1/αTfR+Bio PE25”)也可以看到这种效果,但与Nada/抗TfR抗体相比,当抗体以低于10nM的浓度添加时,三特异性抗TfR抗PD1抗生物素交叉Mab以比抗TfR/Nada低至多100倍的浓度降低高PD1表达的Jurkat细胞的细胞生存力。在不存在生物素化的PE25的情况下,在48小时的测定时间范围内,抗体中无一在所应用的浓度表现出任何毒性(图15B)。
实例10:激活的人T细胞中三特异性抗PD1抗TfR抗生物素交叉Mab的亲合力增强结合和内化
进一步评估了抗体与原代人类T细胞的相互作用。对于分离T细胞,根据制造商的建议,使用Paque Plus(GE Healthcare)和LeucosepTM离心管(Greiner Bio-one)处理来自健康人供体的新鲜血液。将人PBMC(外周血单核细胞)用板结合的抗CD3和可溶性抗CD28激活,这导致T细胞表面上约200,000个TfR分子和约8,000个PD1分子的表达。
在对照抗体9903(“αTfR/Nada”)和9904(“Nada/αPD1”)仅显示与激活的T细胞非常少的结合的浓度,通过生物素化的Cy5检测三特异性抗PD1抗TfR抗生物素交叉Mab 1129(“αTfR/αPD1”)(因为Cy5染料在光谱上与APC(别藻蓝蛋白)相当,因此流式细胞仪的APC通道可用于检测Cy5)(图16A)。通过在时间点0小时和1小时使用AF488标记的二抗对细胞表面上的IgG进行后染色,观察到两种包含抗TfR的抗体1129(“αTfR/αPD1”)和9903(“αTfR/Nada”)(程度较小)的显著内化作用,但对于Nada/抗PD1抗体9904(“Nada/αPD1”)没有观察到内化作用(图16B)。
实例11:移植物抗宿主病中激活的T细胞的亲合力介导的杀伤
作为治疗应用,研究了移植物抗宿主病(GvHD),对其而言,短期根除高度激活的宿主T细胞可能会产生重大影响。对来自移植有PBMC 20天且通常在适当时候死于GvHD的荷瘤小鼠的脾T细胞进行评估(图17A)。为此目的,根据制造商的说明,使用人淋巴细胞分离管(human Pancoll,PAN-Biotech,Aidenbach,Germany)从健康志愿者供体分离人PBMC。从Jackson Laboratories订购NSG小鼠(NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ;JAX库存#005557)。经由尾静脉对荷瘤-小鼠静脉内接种100μL PBS中的107个人PBMC。20天后,切除脾脏并通过70μm限制器分离细胞。对细胞进行CD3、CD4、CD8、PD1和TfR染色,并通过流式细胞术进行分析,以评估浸润的人T细胞上的TfR和PD1表达。
在鼠脾细胞中检测到的超过70%的人T细胞(包括CD4和CD8 T细胞)为TfR(此处表示为“CD71”)和PD1双阳性的(图17B)。
用与PE25复合的三特异性抗TfR抗PD1抗生物素交叉Mab(“aPD1/αTfR+PE”)处理这些脾细胞,显示减少该细胞池中的人T细胞的数量所需的剂量减少了10-1000倍(图17C)。
实例12:以二价方式结合PD1并以单价方式结合TfR(2+1形式)的双特异性抗体的增强的内化
目前应用于癌症疗法的PD1结合抗体通常为二价分子,即它们携带两个PD1结合结构域。以能够二价结合PD1的形式测试了TfR结合性双特异性抗体,以了解它们能否赋予增强的内化并从而增强效力。按照实例3中所述生成此处测试的抗体。
图18A示意性地描绘了测试分子的组成。第一种2+1形式具有一个PD1结合实体作为IgG配置中的交叉Fab臂,以及位于TfR结合Fab的顶部(即附接于N末端)的第二个PD1结合交叉Fab臂,该TfR结合Fab与杵臼结构Fc异二聚体的第二亚基的铰链融合(抗体8157)。第二种2+1形式具有两个PD1结合交叉Fab臂作为IgG的臂,TfR结合Fab附接于不对称(杵臼结构)CH3结构域的“臼”亚基的C末端(抗体8156)。对照分子以相同的形式和组成生成,除了在那些中TfR结合物的可变区被交换为被称为“Nada”的非结合序列(图18B)。另外的对照是未添加另一种结合物的亲本二价PD1结合IgG(PD1-0103-0312)(图18B,左侧)。
以二价方式结合PD1并以单价方式结合TfR的双特异性抗体用于内化测定。实验设置与实例6中相同。结果在图19中示出。以二价方式结合PD1但不包含TfR结合物的所有三种对照分子均表现出相当差的内化,无论其形式如何。相比之下,以二价方式结合PD1并以单价方式结合TfR的双特异性抗体形式显示出显著增加的内化率。
图19中的所有测试构建体均基于相同的亲本二价抗PD1抗体。亲本抗PD1抗体PD1-0103-0312以及包含Nada序列的分子(8159和8158)没有表现出内化趋势增加。另一方面,抗体8156和8157在3小时后表现出很强程度的内化。
实例13:与亲本二价抗PD1抗体相比,以单价方式(1+1形式)结合PD1和TfR的双特异性交叉Mab具有相等的T细胞效应功能
最小混合淋巴细胞反应(mMLR)用于评估同种异体设置中抗TfR抗PD1双特异性抗体的作用,并且特别是在暴露于多种分子后对同种特异性T细胞的细胞毒性的影响。该设置由新鲜分离的CD4+T细胞组成,与同种异体单核细胞来源的成熟树突状细胞(mDC)共培养5天。
mDC的生成需要经由磁珠(Miltenyi Biotec,130-050-201)分离单核细胞,然后在包含GM-CSF(50ng/ml)和IL4(100ng/ml)的培养基中培养5天以诱导由单核细胞形成未成熟的树突状细胞。添加TNF-α、IL-1β和IL-6(各50ng/ml)持续另外2天以诱导DC成熟。
在mMLR的第一天,按照制造商的说明(Miltenyi Biotec,130-045-101),经由使用CD4珠的阳性选择来纯化来自无亲缘关系的供体CD4 T细胞,并用5μM的羧基-荧光素-琥珀酰亚胺酯(CFSE)标记,然后与同种异体mDC共培养。然后将CD4 T细胞和mDC以5:1的比例接种在96孔板中,每孔105CD4 T细胞和2x104同种异体mDC。添加七步稀释系列的二价抗PD1抗体PD1-0103.0312、双特异性抗Tfr抗PD1抗体8012、8013和8014以及对照抗体8015、8016、8017、8018和8019,最高浓度为10μg/ml且最低浓度为10pg/ml。
共培养5天后,取出一半上清液,并用包含高尔基体转运抑制剂、高尔基plug(布雷非德菌素A)和高尔基体Stop(莫能菌素)的新鲜培养基替换,然后在37℃另外孵育5小时,以允许细胞因子在细胞质中积累。然后洗涤细胞并用抗人CD4(BV605,BioLegend)和Live/Dead可固定染料Aqua(Invitrogen)染色,之后用Fix/Perm缓冲液(BD Bioscience)进行固定化/透化。最后,进行颗粒酶B的细胞内染色(Alexa Fluor 647,BD BioScience)。EC50的值是根据剂量应答(刺激)分析计算的:log(激动剂)对应答(三个参数)以及通过GraphPadPrism 8.4.2软件内的曲线下面积分析的AUC。
混合淋巴细胞反应的结果显示随着颗粒酶B产生的T细胞效应功能(图20A和图20B)。虽然通过结合物Nada/51A165(8015)和Nada/1026(8016)的单价TfR结合不会诱导任何颗粒酶B分泌,但单价抗PD1构建体PD1-0103-0312/Nada(8014)和帕博利珠单抗/Nada(8019)导致适度的颗粒酶B分泌,但未达到二价PD1-0103-0312所达到的EC50值。
尽管PD1-0103-0312/TfR双特异性抗体(8012,8013)和帕博利珠单抗/TfR双特异性抗体(8017,8018)仅以单价方式与PD1结合,但它们在效力方面与二价抗PD1阻断抗体PD1-0103-0312引起颗粒酶B的分泌在相同范围内,产生相当的效应T细胞功能(图20A和图20B)。表15和表16显示与对应的对照分子相比活性的改进(通过EC50值测量)(表示为相对于对照分子的倍数变化)。如从表15和表16中可以看出,与对应的单价对照(抗PD1抗Nada)相比,在一个双特异性抗体中组合一种PD1结合实体与一种TfR结合实体将抗体活性改进了约100倍至5000倍。
表15.
表16.
实例14:与二价抗PD1抗体相比,TCB和BBB形式双特异性2+1抗体形式诱导的T细胞效应功能增强
实验设置与实例13的实验设置相同,采用六步稀释系列的PD1-0103-0312和抗体8156-8159,最高浓度为10μg/ml且最低浓度为100pg/ml。
用TCB和BBB形式(8156和8157)处理后的混合淋巴细胞反应的结果表明比二价亲本抗PD1抗体低约7倍的EC50值,并且与各自的对照(8158和18159)相比也降低的EC50值,导致颗粒酶B分泌增加,并因此这些形式诱导的T细胞效应功能增加(图21)。表17和表18显示与对应的对照分子相比活性的改进(基于测量的EC50值)。
表17.
表18.
从表17和表18可以看出,将两个PD1结合实体与一个TfR结合实体组合在单个2+1形式双特异性抗体中以与二价亲本抗PD1抗体相比约7-8倍的因子或与相应的2+1对照(抗PD1:抗Nada=2:1)相比约4.5-16倍的因子改进抗体活性。
实例15:2+1和1+1形式双特异性抗体诱导的T细胞效应功能的比较
为了允许在观察到的结果之间进行直接比较,重复实例13的实验设置,其中PD1-0103-0312、帕博利珠单抗和抗体8012-8014、8017-8019和8156-8159的6步稀释系列在一次实验中,最高浓度为10μg/ml且最低浓度为100pg/ml。
混合淋巴细胞反应的结果显示颗粒酶B的产生是T细胞效应功能的替代。为了更好的可读性,结果已被分到三个不同的图中,尽管它们是从一个单一实验获得的(图22A至图22C)。用单价1+1形式(8012,8013,8017,8018)处理后,T细胞分泌的颗粒酶B的范围分别与各自的二价抗PD1抗体PD1-0103-0312(图22A)和帕博利珠单抗(图22B)所达到的范围相当。
当用2+1形式(8156,8158)处理T细胞时,与帕博利珠单抗和PD1-103-0312触发的分泌相比,颗粒酶B分泌增加,表明这些形式诱导的进一步增强的T细胞效应功能(图22C)。具有两个PD-1结合结构域和一个Nada结合结构域的两个对照分子8158和8159显示出与二价PD1结合物PD1-0103-0312和帕博利珠单抗相当的颗粒酶B分泌。
表19
测试分子 EC50(pM)
PD1-0103-0312 109.7
派姆单抗 175.1
8012 34.01
8013 387.5
8014 13115
8017 120.6
8018 139.4
8019 n.d.
8156 25.8
8157 12.01
8158 110.8
8159 117.3
表19示出了所有测试分子的EC50值,由此可以看出在增强T细胞效应功能方面,分子8157比PD1-0103-0312或相应的对照分子8159约9至10倍更有效,而分子8156能够达到比两个对照分子PD1-0103-0312和8158高4倍的效力。8156和8157也比帕博利珠单抗更有效数倍。
实例16:鼠源化抗PD1-TfR构建体和对照的内化
对于体内实验,生成了鼠源化替代抗PD1抗TfR双特异性抗体和对照分子(序列参见表20)。
表20:鼠结直肠同系模型的替代分子
在体内实验之前,在基于细胞的测定中测试了分子6768和6794内化到细胞中的能力。基本如实例6中所述地进行实验。分子6769用作阴性对照。由于鼠源化分子与鼠TfR结合,因此此处用表达鼠TfR的BA/F3细胞系(RNCB AccessionID:Cl003201)取代激活的人CD4细胞。
为了进行检测,使用了AlexaFluor647缀合的抗DAPG抗体。然后比较与各分子在4℃孵育30分钟后立即染色并固定的组和在37℃另外孵育3小时的组之间的AF647+BA/F3细胞的几何平均荧光强度(GMFI)和频率,并且内化的百分比按下式计算:
内化=100-((GMFIAF647+BA/F3细胞 37℃÷GMFIAF647+BA/F3细胞 4℃)*100)
如图23示出的,关于生物学功能,可以说包含6768(mTfR-001/huPD1-478 TCB形式)和6794(mTfR-001/Nada TCB形式)的两种分子在3小时后均表现出约70%的良好的内化率,而6769(huPD1/Nada)未表现出内化,而是积累在细胞表面上。
实例17:鼠源化PD1-TfR分子阻断PD1/PDL1介导的信号传导的能力
测试了鼠源化分子6768和6769(参见表20)阻断PD1/PD-L1介导的信号传导的能力。分子6794用作阴性对照,抗PD1抗体0103-0312用作阳性对照。由于鼠源化构建体6768和6769包含抗人PD1抗原结合结构域,因此使用与实例4中描述的相同的实验设置测定它们在PD1-PDL1信号传导途径阻断方面的功能。
图24中可以看出,不包含抗PD1抗原结合结构域的对照分子6794(mTfR-001/Nada,TCB形式)没有表现出对PD1/PD-L1介导的信号传导的任何阻断。分子6768(mTfR-001/huPD1-478,TCB形式)和6769(Nada/huPD1-478,TCB形式)包含二价抗PD1结合结构域,如抗PD1抗体PD1-0103-0312,并在阻断PD1-PDL1途径方面展示出相当的功能。
实例18:鼠皮下结直肠同系模型的建立
在CRO Antineo(Lyon,France),皮下结直肠同系模型用于在C57BL/6J小鼠中评估muPD1-TfR 2+1形式化合物与muPD1和muPD-1-NADA相比的体内效力。用于测试的鼠源化替代分子的序列示于表20中。该皮下模型的读出是肿瘤生长抑制。简而言之,6至8周龄雌性C57BL/6J小鼠通过皮下注射接种5×105个MC38细胞。将小鼠饲养在无特定病原体的条件下,并根据指南进行持续的健康监测。
将小鼠随机分为不同的治疗组,当皮下模型中通过卡尺测量的肿瘤达到平均100mm3体积时开始治疗。所有治疗均通过静脉内施用,并且研究了1mg/kg至10mg/kg范围内的muPD1-TfR、muPD1和muPD-1-NADA的剂量。使用卡尺测量并使用以下公式计算肿瘤体积:
肿瘤体积=长x宽x深x 4/3π
肿瘤生长抑制用作读出,并且为了测试多重比较的组均值的显著差异,使用标准方差分析(单因素ANOVA)与Dunnett方法。使用JMP统计软件程序进行分析。
尽管为了清楚理解的目的先前已通过举例说明和实施方案相当详细地描述了本发明,但是这些描述和实施方案不应解释为限制本发明的范围。本文引用的所有专利和科学文献的公开内容均全文以引用方式明确地并入。

Claims (15)

1.一种双特异性抗体,其包含与TfR特异性结合的第一抗原结合结构域和与PD1特异性结合的第二抗原结合结构域。
2.根据权利要求1所述的双特异性抗体,其包含与PD1特异性结合的第三抗原结合结构域。
3.根据权利要求1至2中任一项所述的双特异性抗体,其中所述第一抗原结合结构域、所述第二抗原结合结构域和/或在存在时的所述第三抗原结合结构域为Fab片段。
4.根据权利要求3所述的双特异性抗体,其包含由第一亚基和第二亚基构成的Fc结构域,其中所述Fab片段中的一个或多个与所述Fc结构域融合,并且其中所述Fc结构域为IgGFc结构域,特别是IgG1 Fc结构域或IgG4 Fc结构域。
5.根据权利要求1至4中任一项所述的抗体,其中所述第一抗原结合结构域、所述第二抗原结合结构域和在存在时的所述第三抗原结合结构域各自为Fab片段,并且所述抗体包含由第一亚基和第二亚基构成的Fc结构域;并且其中(i)所述第二抗原结合结构域在其Fab重链的C末端与所述第一抗原结合结构域的Fab重链的N末端融合,并且所述第一抗原结合结构域在其Fab重链的C末端与所述Fc结构域的所述第一亚基的N末端融合,或(ii)所述第一抗原结合结构域在其Fab重链的C末端与所述第二抗原结合结构域的Fab重链的N末端融合,并且所述第二抗原结合结构域在所述Fab重链的C末端与所述Fc结构域的所述第一亚基的N末端融合;并且其中所述第三抗原结合结构域在存在时在其Fab重链的C末端与所述Fc结构域的所述第二亚基的N末端融合。
6.根据权利要求2至4中任一项所述的抗体,其中所述第一抗原结合结构域、所述第二抗原结合结构域和所述第三抗原结合结构域各自为Fab片段,并且所述抗体包含由第一亚基和第二亚基构成的Fc结构域;并且其中
所述第一抗原结合结构域在其Fab重链的C末端与所述Fc结构域的所述第一亚基的N末端融合,
所述第二抗原结合结构域在其Fab重链的C末端与所述Fc结构域的所述第二亚基的N末端融合,并且
所述第三抗原结合结构域在其Fab重链的N末端与所述Fc结构域的所述第一亚基或所述第二亚基的C末端融合。
7.根据权利要求1至6中任一项所述的双特异性抗体,其中所述双特异性抗体
a)与表达TfR和PD1的细胞的表面上的TfR和PD1结合,并且其中所述双特异性抗体被内化到所述细胞中,并且/或者
b)在所述双特异性抗体与所述细胞的所述表面上展示的TfR和PD1结合后,PD1从所述细胞的所述表面被消耗。
8.根据权利要求1至7中任一项所述的双特异性抗体,其包含至少两条重链和至少两条轻链,并且其中
a)所述双特异性抗体的所述重链属于γ型(IgG),特别是属于γ1型,并且/或者
b)所述双特异性抗体的所述轻链选自kappa(κ)和/或lambda(λ)亚型。
9.根据权利要求4至8中任一项所述的双特异性抗体,其中所述Fc结构域包含
i.减少与Fc受体、特别是与Fcγ受体的结合的一个或多个氨基酸取代,和/或
ii.促进所述Fc结构域的所述第一亚基和所述第二亚基的缔合的修饰。
10.根据权利要求3至9中任一项所述的双特异性抗体,其中在所述Fab片段中的一个中,可变结构域VL和VH彼此替换,使得所述VH结构域为所述轻链的一部分并且所述VL结构域为所述重链的一部分。
11.根据权利要求1至10中任一项所述的双特异性抗体,其中特异性结合TfR的所述第一抗原结合结构域包含
i.重链可变结构域(VH),其包含
a)CDR-H1,其包含SEQ ID NO:1的氨基酸序列,
b)CDR-H2,其包含SEQ ID NO:2的氨基酸序列,和
c)CDR-H3,其包含SEQ ID NO:3的氨基酸序列,以及
轻链可变结构域(VL),其包含
d)CDR-L1,其包含SEQ ID NO:4的氨基酸序列,
e)CDR-L2,其包含SEQ ID NO:5的氨基酸序列,和
f)CDR-L3,其包含SEQ ID NO:6的氨基酸序列,
或者
ii.重链可变结构域(VH),其包含
a)CDR-H1,其包含SEQ ID NO:9的氨基酸序列,
b)CDR-H2,其包含SEQ ID NO:10的氨基酸序列,和
c)CDR-H3,其包含SEQ ID NO:11的氨基酸序列,以及
轻链可变结构域(VL),其包含
d)CDR-L1,其包含SEQ ID NO:12的氨基酸序列,
e)CDR-L2,其包含SEQ ID NO:13的氨基酸序列,和
f)CDR-L3,其包含SEQ ID NO:14的氨基酸序列。
12.根据权利要求1至11中任一项所述的双特异性抗体,其中特异性结合PD1的所述第二抗原结合结构域和/或在存在时的所述第三抗原结合结构域包含
i.重链可变结构域(VH),其包含
a)CDR-H1,其包含SEQ ID NO:17的氨基酸序列,
b)CDR-H2,其包含SEQ ID NO:18的氨基酸序列,和
c)CDR-H3,其包含SEQ ID NO:19的氨基酸序列,以及
轻链可变结构域(VL),其包含
d)CDR-L1,其包含SEQ ID NO:20的氨基酸序列,
e)CDR-L2,其包含SEQ ID NO:21的氨基酸序列,和
f)CDR-L3,其包含SEQ ID NO:22的氨基酸序列,
或者
ii.重链可变结构域(VH),其包含
a)CDR-H1,其包含SEQ ID NO:25的氨基酸序列,
b)CDR-H2,其包含SEQ ID NO:26的氨基酸序列,和
c)CDR-H3,其包含SEQ ID NO:27的氨基酸序列,以及
轻链可变结构域(VL),其包含
d)CDR-L1,其包含SEQ ID NO:28的氨基酸序列,
e)CDR-L2,其包含SEQ ID NO:29的氨基酸序列,和
f)CDR-L3,其包含SEQ ID NO:30的氨基酸序列。
13.根据权利要求1至12中任一项所述的双特异性抗体,其中
i.与TfR特异性结合的所述第一抗原结合结构域包含
a)VH结构域,其包含SEQ ID NO:7的氨基酸序列,以及VL结构域,其包含SEQ ID NO:8的氨基酸序列,或者
b)VH结构域,其包含SEQ ID NO:15的氨基酸序列,以及VL结构域,其包含SEQ ID NO:16的氨基酸序列,并且
ii.与PD1特异性结合的所述第二抗原结合结构域和/或在存在时的所述第三抗原结合结构域包含
a)VH结构域,其包含SEQ ID NO:23的氨基酸序列,以及VL结构域,其包含SEQ ID NO:24的氨基酸序列,或者
b)VH结构域,其包含SEQ ID NO:31的氨基酸序列,以及VL结构域,其包含SEQ ID NO:32的氨基酸序列。
14.一种药物组合物,其包含根据权利要求1至13中任一项所述的双特异性抗体以及药用载体。
15.根据权利要求1至13中任一项所述的双特异性抗体或根据权利要求14所述的药物组合物,其用于预防或治疗癌症。
CN202280054162.6A 2021-08-03 2022-08-02 双特异性抗体及使用方法 Pending CN117794953A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP21189372.2 2021-08-03
EP21189372 2021-08-03
PCT/EP2022/071661 WO2023012147A1 (en) 2021-08-03 2022-08-02 Bispecific antibodies and methods of use

Publications (1)

Publication Number Publication Date
CN117794953A true CN117794953A (zh) 2024-03-29

Family

ID=77206975

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280054162.6A Pending CN117794953A (zh) 2021-08-03 2022-08-02 双特异性抗体及使用方法

Country Status (4)

Country Link
EP (1) EP4380980A1 (zh)
JP (1) JP2024528217A (zh)
CN (1) CN117794953A (zh)
WO (1) WO2023012147A1 (zh)

Family Cites Families (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4737456A (en) 1985-05-09 1988-04-12 Syntex (U.S.A.) Inc. Reducing interference in ligand-receptor binding assays
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
US6548640B1 (en) 1986-03-27 2003-04-15 Btg International Limited Altered antibodies
IL85035A0 (en) 1987-01-08 1988-06-30 Int Genetic Eng Polynucleotide molecule,a chimeric antibody with specificity for human b cell surface antigen,a process for the preparation and methods utilizing the same
JP3101690B2 (ja) 1987-03-18 2000-10-23 エス・ビィ・2・インコーポレイテッド 変性抗体の、または変性抗体に関する改良
EP0368684B2 (en) 1988-11-11 2004-09-29 Medical Research Council Cloning immunoglobulin variable domain sequences.
DE3920358A1 (de) 1989-06-22 1991-01-17 Behringwerke Ag Bispezifische und oligospezifische, mono- und oligovalente antikoerperkonstrukte, ihre herstellung und verwendung
US5208020A (en) 1989-10-25 1993-05-04 Immunogen Inc. Cytotoxic agents comprising maytansinoids and their therapeutic use
US5959177A (en) 1989-10-27 1999-09-28 The Scripps Research Institute Transgenic plants expressing assembled secretory antibodies
US6150584A (en) 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
WO1992009690A2 (en) 1990-12-03 1992-06-11 Genentech, Inc. Enrichment method for variant proteins with altered binding properties
US5571894A (en) 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
LU91067I2 (fr) 1991-06-14 2004-04-02 Genentech Inc Trastuzumab et ses variantes et dérivés immuno chimiques y compris les immotoxines
GB9114948D0 (en) 1991-07-11 1991-08-28 Pfizer Ltd Process for preparing sertraline intermediates
JPH06509103A (ja) 1991-07-15 1994-10-13 アルベマール・コーポレーシヨン 外傷性損傷の予防および重症度の減少
US7018809B1 (en) 1991-09-19 2006-03-28 Genentech, Inc. Expression of functional antibody fragments
US5587458A (en) 1991-10-07 1996-12-24 Aronex Pharmaceuticals, Inc. Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof
CA2372813A1 (en) 1992-02-06 1993-08-19 L.L. Houston Biosynthetic binding protein for cancer marker
ATE196606T1 (de) 1992-11-13 2000-10-15 Idec Pharma Corp Therapeutische verwendung von chimerischen und markierten antikörpern, die gegen ein differenzierung-antigen gerichtet sind, dessen expression auf menschliche b lymphozyt beschränkt ist, für die behandlung von b-zell-lymphoma
EP0714409A1 (en) 1993-06-16 1996-06-05 Celltech Therapeutics Limited Antibodies
US5789199A (en) 1994-11-03 1998-08-04 Genentech, Inc. Process for bacterial production of polypeptides
US5840523A (en) 1995-03-01 1998-11-24 Genetech, Inc. Methods and compositions for secretion of heterologous polypeptides
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US6267958B1 (en) 1995-07-27 2001-07-31 Genentech, Inc. Protein formulation
GB9603256D0 (en) 1996-02-16 1996-04-17 Wellcome Found Antibodies
DK0979281T3 (da) 1997-05-02 2005-11-21 Genentech Inc Fremgangsmåde til fremstilling af multispecifikke antistoffer med heteromultimere og fælles bestanddele
US6171586B1 (en) 1997-06-13 2001-01-09 Genentech, Inc. Antibody formulation
ATE296315T1 (de) 1997-06-24 2005-06-15 Genentech Inc Galactosylierte glykoproteine enthaltende zusammensetzungen und verfahren zur deren herstellung
US6040498A (en) 1998-08-11 2000-03-21 North Caroline State University Genetically engineered duckweed
EP1028751B1 (en) 1997-10-31 2008-12-31 Genentech, Inc. Methods and compositions comprising glycoprotein glycoforms
US6610833B1 (en) 1997-11-24 2003-08-26 The Institute For Human Genetics And Biochemistry Monoclonal human natural antibodies
DK1034298T3 (da) 1997-12-05 2012-01-30 Scripps Research Inst Humanisering af murint antistof
US6194551B1 (en) 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
DK1068241T3 (da) 1998-04-02 2008-02-04 Genentech Inc Antistofvarianter og fragmenter deraf
AU3657899A (en) 1998-04-20 1999-11-08 James E. Bailey Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
US20030175884A1 (en) 2001-08-03 2003-09-18 Pablo Umana Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
KR101155191B1 (ko) 1999-01-15 2012-06-13 제넨테크, 인크. 효과기 기능이 변화된 폴리펩티드 변이체
WO2001007611A2 (en) 1999-07-26 2001-02-01 Genentech, Inc. Novel polynucleotides and method for the use thereof
NZ517906A (en) 1999-10-04 2003-01-31 Medicago Inc Cloning of genomic sequences encoding nitrite reductase (NiR) for use in regulated expression of foreign genes in host plants
US7125978B1 (en) 1999-10-04 2006-10-24 Medicago Inc. Promoter for regulating expression of foreign genes
IL149809A0 (en) 1999-12-15 2002-11-10 Genentech Inc Shotgun scanning, a combinatorial method for mapping functional protein epitopes
DK2857516T3 (en) 2000-04-11 2017-08-07 Genentech Inc Multivalent antibodies and uses thereof
US6596541B2 (en) 2000-10-31 2003-07-22 Regeneron Pharmaceuticals, Inc. Methods of modifying eukaryotic cells
EP1916303B1 (en) 2000-11-30 2013-02-27 Medarex, Inc. Nucleic acids encoding rearranged human immunoglobulin sequences from transgenic transchromosomal mice
AU2002258941A1 (en) 2001-04-20 2002-11-05 Mayo Foundation For Medical Education And Research Methods of enhancing cell responsiveness
HUP0600342A3 (en) 2001-10-25 2011-03-28 Genentech Inc Glycoprotein compositions
JP4488740B2 (ja) 2001-11-13 2010-06-23 ダナ−ファーバー キャンサー インスティテュート,インコーポレイテッド 免疫細胞活性化を調節する作用剤およびその使用方法
US20040093621A1 (en) 2001-12-25 2004-05-13 Kyowa Hakko Kogyo Co., Ltd Antibody composition which specifically binds to CD20
PL373256A1 (en) 2002-04-09 2005-08-22 Kyowa Hakko Kogyo Co, Ltd. Cells with modified genome
JP4832719B2 (ja) 2002-04-09 2011-12-07 協和発酵キリン株式会社 FcγRIIIa多型患者に適応する抗体組成物含有医薬
JP4628679B2 (ja) 2002-04-09 2011-02-09 協和発酵キリン株式会社 Gdp−フコースの輸送に関与する蛋白質の活性が低下または欠失した細胞
WO2003085118A1 (fr) 2002-04-09 2003-10-16 Kyowa Hakko Kogyo Co., Ltd. Procede de production de composition anticorps
CA2481658A1 (en) 2002-04-09 2003-10-16 Kyowa Hakko Kogyo Co., Ltd. Method of enhancing of binding activity of antibody composition to fcy receptor iiia
EP1513879B1 (en) 2002-06-03 2018-08-22 Genentech, Inc. Synthetic antibody phage libraries
JP4409430B2 (ja) 2002-07-03 2010-02-03 小野薬品工業株式会社 免疫賦活組成物
US7361740B2 (en) 2002-10-15 2008-04-22 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
EP2301966A1 (en) 2002-12-16 2011-03-30 Genentech, Inc. Immunoglobulin variants and uses thereof
CN101899114A (zh) 2002-12-23 2010-12-01 惠氏公司 抗pd-1抗体及其用途
CA2510003A1 (en) 2003-01-16 2004-08-05 Genentech, Inc. Synthetic antibody phage libraries
ES2542885T3 (es) 2003-01-22 2015-08-12 Roche Glycart Ag Constructos de fusión y uso de los mismos para producir anticuerpos con mayor afinidad de unión al receptor de Fc y función efectora
US7563869B2 (en) 2003-01-23 2009-07-21 Ono Pharmaceutical Co., Ltd. Substance specific to human PD-1
US20060104968A1 (en) 2003-03-05 2006-05-18 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminogly ycanases
US7871607B2 (en) 2003-03-05 2011-01-18 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases
EP1629012B1 (en) 2003-05-31 2018-11-28 Amgen Research (Munich) GmbH Pharmaceutical compositions comprising bispecific anti-cd3, anti-cd19 antibody constructs for the treatment of b-cell related disorders
US7235641B2 (en) 2003-12-22 2007-06-26 Micromet Ag Bispecific antibodies
WO2005097832A2 (en) 2004-03-31 2005-10-20 Genentech, Inc. Humanized anti-tgf-beta antibodies
US7785903B2 (en) 2004-04-09 2010-08-31 Genentech, Inc. Variable domain library and uses
EP2357201B1 (en) 2004-04-13 2017-08-30 F. Hoffmann-La Roche AG Anti-P-selectin antibodies
TWI380996B (zh) 2004-09-17 2013-01-01 Hoffmann La Roche 抗ox40l抗體
NZ553500A (en) 2004-09-23 2009-11-27 Genentech Inc Genentech Inc Cysteine engineered antibodies and conjugates withCysteine engineered antibodies and conjugates with a free cysteine amino acid in the heavy chain a free cysteine amino acid in the heavy chain
JO3000B1 (ar) 2004-10-20 2016-09-05 Genentech Inc مركبات أجسام مضادة .
SI1871805T1 (sl) 2005-02-07 2020-02-28 Roche Glycart Ag Antigen vezavne molekule, ki vežejo EGFR, vektorji, ki te kodirajo in uporabe le-teh
CN117534755A (zh) 2005-05-09 2024-02-09 小野药品工业株式会社 程序性死亡-1(pd-1)的人单克隆抗体及使用抗pd-1抗体来治疗癌症的方法
BRPI0611766A2 (pt) 2005-06-08 2011-12-20 Dana Farber Cancer Inst Inc métodos e composições para o tratamento de infecções persistentes e cáncer por inibição da rota de morte celular programada
KR101888321B1 (ko) 2005-07-01 2018-08-13 이. 알. 스퀴부 앤드 선즈, 엘.엘.씨. 예정 사멸 리간드 1 (피디-엘1)에 대한 인간 모노클로날 항체
EP3178850B1 (en) 2005-10-11 2021-01-13 Amgen Research (Munich) GmbH Compositions comprising cross-species-specific antibodies and uses thereof
EP2465870A1 (en) 2005-11-07 2012-06-20 Genentech, Inc. Binding polypeptides with diversified and consensus VH/VL hypervariable sequences
US20070237764A1 (en) 2005-12-02 2007-10-11 Genentech, Inc. Binding polypeptides with restricted diversity sequences
AR060871A1 (es) 2006-05-09 2008-07-16 Genentech Inc Union de polipeptidos con supercontigos optimizados
US20080044455A1 (en) 2006-08-21 2008-02-21 Chaim Welczer Tonsillitus Treatment
EP2471816A1 (en) 2006-08-30 2012-07-04 Genentech, Inc. Multispecific antibodies
HUE030139T2 (en) 2006-12-27 2017-04-28 Univ Emory Preparations and procedures for treating inflammations
DE102007001370A1 (de) 2007-01-09 2008-07-10 Curevac Gmbh RNA-kodierte Antikörper
WO2008119567A2 (en) 2007-04-03 2008-10-09 Micromet Ag Cross-species-specific cd3-epsilon binding domain
NZ600758A (en) 2007-06-18 2013-09-27 Merck Sharp & Dohme Antibodies to human programmed death receptor pd-1
US20090028857A1 (en) 2007-07-23 2009-01-29 Cell Genesys, Inc. Pd-1 antibodies in combination with a cytokine-secreting cell and methods of use thereof
EP2195347A1 (en) 2007-08-17 2010-06-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for treating and diagnosing hematologic malignancies
US20090162359A1 (en) 2007-12-21 2009-06-25 Christian Klein Bivalent, bispecific antibodies
US9266967B2 (en) 2007-12-21 2016-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
US8242247B2 (en) 2007-12-21 2012-08-14 Hoffmann-La Roche Inc. Bivalent, bispecific antibodies
HUE028536T2 (en) 2008-01-07 2016-12-28 Amgen Inc Method for producing antibody to FC heterodimer molecules using electrostatic control effects
US8168757B2 (en) 2008-03-12 2012-05-01 Merck Sharp & Dohme Corp. PD-1 binding proteins
EA023148B1 (ru) 2008-08-25 2016-04-29 Эмплиммьюн, Инк. Композиции на основе антагонистов pd-1 и их применение
JP2012510429A (ja) 2008-08-25 2012-05-10 アンプリミューン、インコーポレーテッド Pd−1アンタゴニストおよびその使用方法
JP5794917B2 (ja) 2008-09-12 2015-10-14 アイシス・イノベーション・リミテッドIsis Innovationlimited Pd−1特異抗体およびその使用
US8927697B2 (en) 2008-09-12 2015-01-06 Isis Innovation Limited PD-1 specific antibodies and uses thereof
US8552154B2 (en) 2008-09-26 2013-10-08 Emory University Anti-PD-L1 antibodies and uses therefor
KR101050829B1 (ko) 2008-10-02 2011-07-20 서울대학교산학협력단 항 pd-1 항체 또는 항 pd-l1 항체를 포함하는 항암제
AU2009319701B2 (en) 2008-11-28 2014-10-09 Dana-Farber Cancer Institute, Inc. Methods for the treatment of infections and tumors
ES2629337T3 (es) 2009-02-09 2017-08-08 Inserm - Institut National De La Santé Et De La Recherche Médicale Anticuerpos contra PD-1 y anticuerpos contra PD-L1 y usos de los mismos
SG175004A1 (en) 2009-04-02 2011-11-28 Roche Glycart Ag Multispecific antibodies comprising full length antibodies and single chain fab fragments
WO2010115589A1 (en) 2009-04-07 2010-10-14 Roche Glycart Ag Trivalent, bispecific antibodies
PE20120540A1 (es) 2009-05-27 2012-05-09 Hoffmann La Roche Anticuerpos triespecificos o tetraespecificos
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
RU2573915C2 (ru) 2009-09-16 2016-01-27 Дженентек, Инк. Содержащие суперспираль и/или привязку белковые комплексы и их применение
US20130017199A1 (en) 2009-11-24 2013-01-17 AMPLIMMUNE ,Inc. a corporation Simultaneous inhibition of pd-l1/pd-l2
TW201134488A (en) 2010-03-11 2011-10-16 Ucb Pharma Sa PD-1 antibodies
WO2011110604A1 (en) 2010-03-11 2011-09-15 Ucb Pharma, S.A. Pd-1 antibody
EP2579897A1 (en) 2010-06-08 2013-04-17 Genentech, Inc. Cysteine engineered antibodies and conjugates
ES2692268T3 (es) 2011-03-29 2018-12-03 Roche Glycart Ag Variantes de Fc de anticuerpo
EP2699264B1 (en) 2011-04-20 2018-03-14 Medlmmune, LLC Antibodies and other molecules that bind b7-h1 and pd-1
RS57744B1 (sr) 2011-08-23 2018-12-31 Roche Glycart Ag Bispecifični antigen vezujući molekuli
NO2748201T3 (zh) 2011-08-23 2018-05-12
WO2013026839A1 (en) 2011-08-23 2013-02-28 Roche Glycart Ag Bispecific antibodies specific for t-cell activating antigens and a tumor antigen and methods of use
MX360352B (es) 2012-02-15 2018-10-30 Hoffmann La Roche Cromatografia de afinidad basada en receptores fc.
BR112015027385A2 (pt) 2013-04-29 2017-08-29 Hoffmann La Roche Anticorpos modificados de ligação ao fcrn humano e métodos de uso
JP7325166B2 (ja) 2013-12-20 2023-08-14 ジェネンテック, インコーポレイテッド 二重特異性抗体
EP3089759B1 (en) 2014-01-03 2018-12-05 F. Hoffmann-La Roche AG Covalently linked polypeptide toxin-antibody conjugates
UA117289C2 (uk) 2014-04-02 2018-07-10 Ф. Хоффманн-Ля Рош Аг Мультиспецифічне антитіло
CN106573986A (zh) 2014-07-29 2017-04-19 豪夫迈·罗氏有限公司 多特异性抗体
KR102317315B1 (ko) 2014-08-04 2021-10-27 에프. 호프만-라 로슈 아게 이중특이적 t 세포 활성화 항원 결합 분자
AR101844A1 (es) 2014-09-12 2017-01-18 Genentech Inc Anticuerpos y conjugados modificados genéticamente con cisteína
AU2016252773B2 (en) 2015-04-24 2022-06-02 Genentech, Inc. Multispecific antigen-binding proteins
SG10201913762QA (en) * 2015-05-04 2020-03-30 Cytomx Therapeutics Inc Anti-cd71 antibodies, activatable anti-cd71 antibodies, and methods of use thereof
NZ737205A (en) 2015-06-24 2024-07-26 F Hoffmann La Roche Ag Anti-transferrin receptor antibodies with tailored affinity
AU2016329197B2 (en) * 2015-09-30 2021-01-21 Igm Biosciences, Inc. Binding molecules with modified J-chain
PL3356404T3 (pl) 2015-10-02 2022-01-03 F. Hoffmann-La Roche Ag Przeciwciała anty-pd1 i sposoby ich stosowania
JP2021511793A (ja) * 2018-01-31 2021-05-13 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Lag3に結合する抗原結合部位を含む二重特異性抗体
EP3883964A1 (en) * 2018-11-20 2021-09-29 INSERM (Institut National de la Santé et de la Recherche Médicale) Bispecific antibody targeting transferrin receptor 1 and soluble antigen

Also Published As

Publication number Publication date
EP4380980A1 (en) 2024-06-12
JP2024528217A (ja) 2024-07-26
WO2023012147A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
JP6872069B2 (ja) FcRH5に対するヒト化親和性成熟抗体及び使用方法
CN110818795B (zh) 抗tigit抗体和使用方法
JP2018520642A (ja) マスク抗cd3抗体及びその使用方法
JP6302476B2 (ja) Her3のベータヘアピンに結合するher3抗原結合タンパク質
WO2020153467A1 (ja) 新規がん抗原及びそれらの抗原に対する抗体
JP2022548484A (ja) 抗cd39抗体の組成物及び方法
KR20200055758A (ko) 신규 항-cd19 항체
KR20220002967A (ko) 항 mertk 항체 및 이의 사용 방법
KR20210076918A (ko) 4-1bb 및 종양-관련 항원에 결합하는 항체 작제물 및 이의 용도
KR20210039328A (ko) 종교차성 항잠재형 TGF-β1 항체 및 사용 방법
JP2023509214A (ja) 抗tigit抗体、それを含む多重特異性抗体及びその使用方法
JP2023509215A (ja) 抗tigit抗体、それを含む多重特異性抗体及びその使用方法。
JP2024010057A (ja) 抗ctla-4抗体およびその使用
CN116323675A (zh) 抗cd47抗体及使用方法
TW201605902A (zh) 結合HER3之β-髮夾結構的抗HER3抗體
KR20220119471A (ko) 신규한 항fgfr2b 항체
JP2024081766A (ja) 標的細胞特異的な細胞質侵入抗原結合分子
JP2024095774A (ja) 抗ctla-4抗体
KR20220119144A (ko) 신규한 항fgfr2b 항체
CN114641501A (zh) 抗vsig4抗体或抗原结合片段及其用途
KR102690145B1 (ko) 항ctla-4 항체의 사용
CN117794953A (zh) 双特异性抗体及使用方法
JP2024500267A (ja) 改善された細胞質侵入活性を有する抗原結合分子
CN118574849A (zh) 抗ox40抗体和使用方法
CN118488965A (zh) 抗ox40抗体、多特异性抗体及其使用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination