EP0714409A1 - Antibodies - Google Patents

Antibodies

Info

Publication number
EP0714409A1
EP0714409A1 EP19940917750 EP94917750A EP0714409A1 EP 0714409 A1 EP0714409 A1 EP 0714409A1 EP 19940917750 EP19940917750 EP 19940917750 EP 94917750 A EP94917750 A EP 94917750A EP 0714409 A1 EP0714409 A1 EP 0714409A1
Authority
EP
European Patent Office
Prior art keywords
antibody
altered
l243
human
antibodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19940917750
Other languages
German (de)
French (fr)
Inventor
Diljeet Singh Athwal
Mark William Bodmer
John Spencer Emtage
Susan Adrienne Morgan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celltech R&D Ltd
Original Assignee
Celltech R&D Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to GB9312415 priority Critical
Priority to GB939312415A priority patent/GB9312415D0/en
Priority to GB9401597 priority
Priority to GB9401597A priority patent/GB9401597D0/en
Priority to GB9402499 priority
Priority to GB9402499A priority patent/GB9402499D0/en
Priority to GB9406244 priority
Priority to GB9406244A priority patent/GB9406244D0/en
Application filed by Celltech R&D Ltd filed Critical Celltech R&D Ltd
Priority to PCT/GB1994/001290 priority patent/WO1994029351A2/en
Publication of EP0714409A1 publication Critical patent/EP0714409A1/en
Application status is Withdrawn legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2833Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]

Abstract

The invention provides antibodies with altered ability to fix complement. The invention further relates to pharmaceutical, therapeutic and diagnostic compositions containing said antibodies and to methods of therapy and diagnosis using said antibodies. The invention additionally provides a method of modulating the function of cell surface associated antigens using said antibodies. Also provided are processes for preparing said antibodies.

Description

ANTIBODIES

FIELD OF THE INVENTION

This invention relates to altered antibodies, to pharmaceutical, therapeutic and diagnostic compositions containing said antibodies; to processes for preparing said compositions; to methods of therapy and diagnosis using said antibodies, to a method of modulating the function of cell surface associated antigens using said antibodies; to DNA sequences coding for said antibodies; to cloning and expression vectors containing DNA sequences coding for said antibodies; to host cells transformed with said vectors and to processes for preparing said antibodies.

BACKGROUND OF THE INVENTION

In order for an antibody to be effective therapeutically it is desirable that it achieves the required physiological effect without producing any significant adverse toxic effects. Such toxic effects may be mediated, for example, via complement fixation. Antibody when bound to its cognate antigen can link to and activate the complement cascade. Complement consists of a complex series of proteins. The proteins of the complement system form two interrelated enzyme cascades, termed the classical and alternative pathways, providing two routes to the cleavage of C3, the central event in the complement system. The sequence of events comprising the classical complement pathway is recognition, enzymatic activation, and membrane attack leading to cell death. The recognition unit of the complement system is the C1 complex. The C1 complement protein complex is a unique feature of the classical complement cascade leading to C3 conversion. Complement fixation occurs when the C1q subcomponent binds directly to immunoglobulin antigen immune complex. Whether or not complement fixation occurs depends on a number of constraints. For example, only certain subclasses of immunoglobulin can fix complement even under optimal conditions. These are lgG1, lgG3 and IgM in man and lgG2a, lgG2b and IgM in mice. The C1q molecule is potentially multivalent for attachment to the complement fixation sites of immunoglobulin. The CH2 domain of IgG and probably the CH4 domain of IgM contain binding sites for C1q. Fc bearing cells also play a role in enhancing the effect of the immune response by binding to and opsonising, phagocytosing or killing target cells coated with antibody of the relevant class. Three IgG binding receptors (FcγR) have been described for murine and human leukocytes. FcγRI has high binding affinity for monomeric IgG, while FcγRII and FcγRIII have low affinity for mono IgG and interact mainly with antigen complexed IgG. The presence of Fc receptors confers on these immune cells the ability to mediate a number of effector mechanisms important in the effector phase of the humoral response. The gamma 1 isotype of human IgG, like lgG3, binds to FcRI and, when complexed with its cognate antigen, activates complement and binds to FcRII and FcRIII. Conversely, human lgG2 and lgG4 are relatively inactive isotypes; both fail to activate the classical complement pathway and lgG4 binds weakly to FcRI [Burton, D R and Woof, J M (1992) Adv. Immunol. 51, 1. Lucisano Valim, Y M and Lachmann, P J. (1991) Clin. exp. Immunol, 84, 1].

Localisation of amino acid residues of IgG that interact with FcRI in the CH2 domain of human IgG is well established [Woof, J M et al (1986) Molec. Immunol. 23, 319. Lund, J et al (1991) J. Immunol, 147. 2657; Canfield, S M and Morrison, S L (1991), J. exp. Med. 173, 1483; Chappel, S M et al, (1991) Proc. Natl. Acad. Sci. 88i, 9036; Chappel, S M et al (1993), J. Biol. Chem 268, 25124; Alegre, M-L et al (1992) J. Immunol, 148. 3461]. Amino acid sequence comparisons of the CH2 domains of antibodies from different species and subclasses that bind well to FcRI suggested that a region at the N-terminal end of CH2 comprising residues Leu 234 - Ser 239 (using the Kabat Eu numbering system [Kabat, E A et al, (1987) Sequences of proteins of Immunological interest. US Dept. of Health and Human Services, Bethesda, MD, USA]) is critical for interaction with FcRI. The motif Leu 234, Leu 235, Gly 236, Gly 237, Pro 238, Ser 239, is present in all IgG isotypes with high affinity for FcRI [Woof, J M et al (1986), Molec. Immunol. 23, 319]. Domain exchanges between Ig's with different Fc effector functions have demonstrated the importance of CH2 for FcRI binding [Canfield, S M and Morrison, S L (1991), J. exp. Med. 173, 1483; Chappel, S M et al, (1991) Proc. Natl. Acad. Sci. S3, 9036; Chappel, S M et al (1993), J. Biol. Chem 268, 25124] in particular the residue 235. Replacement of the Leu residue at position 235 with a Glu residue reduces the affinity of lgG3 for FcRI by 100 fold [Lund, J et al (1991) J. Immunol, 147. 2657; Canfield, S M and Morrison, S L (1991), J. exp. Med. 173, 1483]. The same Leu 235 to Glu change when performed on an lgG4 variant of OKT3 [Alegre, M-L et al (1992) J. Immunol, 148, 3461] abolished its FcRI binding and, consequently, its mitogenic properties.

Although the sequence requirements for FcRIII binding has been less extensively studied, Sarmay et al. [(1992) Molec. Immunol. 29, 633] have identified the CH2 domain residues 234 to 237 as important for lgG3 binding to all three Fc receptors. The relative importance of each residue differs with each Fc receptor with 235 and 237 being most important for FcRIII mediated cell killing. In contrast, another Fc mediated function, C1q binding and subsequent complement activation, appears to require the carboxyl terminal half of the CH2 domain [Tao, M H., Canfield, S M., and Morrison, S L(1991) J. Exp. Med. 173. 1025]. Morrison's group, following sequence analysis of polymorphisms in the CH2 domain of human IgGs also identified the importance of the C-terminal region of CH2. With a Pro to Ser change at 331 in lgG1 they abolished complement fixation and reduced C1q binding [Tao, M H et al (1993), J. Exp. Med. 178, 661]. Using inter- and intradomain switch variants of CAMPATH-1, Greenwood et al. (1993) [Eur. J. Immunol. 23, 1098] further endorsed the importance of the C-terminal end of CH2. Complement fixation could be restored to human lgG4 with just the carboxyi terminal of CH2 from residue 292 of lgG1 and not the N- terminal half or any other domain. Duncan & Winter (1988) [Nature, 332, 21] identified a motif in CH2 of Glu 318, Lys 320 and Lys 322 of the mouse lgG2b isotype. Changing any of these residues abolished C1q binding, as did the use of competitive peptides of sequences in this region. However, the C1q motif residues are also found in antibodies that do not fix complement suggesting that these residues may well be necessary but not sufficient for complement activation.

We have found that amino acid residues necessary for C1q and FcR binding of human lgG1 are located in the N-terminal region of the CH2 domain, residues 231 to 238, using a matched set of engineered antibodies based on the anti-HLA DR antibody L243. Changing the leucine 235 in the CH2 region of lgG3 and lgG4 to glutamic acid was already known to abolish FcRI binding, we have confirmed this for lgG1 and also found a concomitant abolition of human complement fixation with retention of FcRIII mediated function. Changing the glycine at 237 to alanine of lgG1 also abolished FcRI binding and reduced complement fixation and FcRIII mediated function. Exchanging the whole region 233 to 236, with the sequence found in human lgG2 abolished FcRI binding andcomplement fixation and reduced FcRIII mediated function of lgG1. In contrast, a change in the previously described C1q binding motif, from lysine at 320 to alanine had no effect on IgG 1 -mediated complement fixation. The proposed site Leu 234 - Leu 235 - Gly 236 - Gly 237 - Pro 238 - Ser 239, is present in all IgG isotypes with high affinity for FcγRI. Recent mutagenesis experiments on lgG3 antibodies have introduced point mutations in this region and the ability of the mutants to interact with FcγRI has been examined [Lund et al (1991) J. Immunol 147, 2657-2662]. The most marked effect is seen at position 235 where replacement of the naturally occurring Leu residue with a Glu residue produces an Ig with a > 100-fold decrease in affinity for FcγRI.

Our observation of the effect of this alteration at residue 235 on the ability of the antibody to fix complement was highly surprising. Earlier protein engineering studies had introduced mutations at various positions in order to locate the C1q-binding site on IgG [Duncan & Winter (1988) Nature, 332, 738-740]. The binding site for C1q was localised to three side chains, Glu 318, Lys 320 and Lys 322 of the mouse lgG2b isotype. Residues Glu 318, Lys 320 and Lys 322 are conserved in all the human IgGs, rat lgG2b and lgG2c, mouse lgG2a, lgG2b and lgG3, guinea pig lgG1 and rabbit IgG. Further experiments showed that the affinity of human C1q for mutant mouse lgG2b antibodies in which residue 235 was mutated was unaffected i.e. it was in the same range of values as that obtained with the wild type. Although the fact that altering residue 235 of the CH2 region of IgG is known to abolish FcγRI binding as we too observed, this concomitant substantial reduction in complement fixation has not been reported or suggested elsewhere and was completely unexpected. SUMMARY OF THE INVENTION

The invention provides a method of treating diseases in which antibody therapy leads to undesirable toxicity due to antibody mediated complement fixation comprising administering an altered antibody wherein one or more amino acid residues in the N-terminal region of the CH2 domain of said antibody are altered characterised in that the ability of said antibody to fix complement is altered as compared to unaltered antibody.

In a preferred embodiment the altered antibody binds to one or more cellular Fc receptors especially FcRIII and excluding FcRI i.e. the antibody does not bind significantly to FcRI, and more preferably binding to FcRI is abolished.

Accordingly in a further aspect the invention provides an altered antibody wherein one or more amino acid residues in the N-terminal region of the CH2 domain of said antibody are altered characterised in that the ability of said antibody to fix complement is altered, as compared to unaltered antibody.

In a further preferred embodiment the invention therefore provides an altered antibody wherein one or more amino acid residues in the N-terminal region of the CH2 domain of said antibody are altered characterised in that the ability of said antibody to fix complement is altered as compared to unaltered antibody and said altered antibody binds to one or more cellular Fc receptors especially FcRIII and does not bind significantly to FcRI. The constant region of the antibodies to be altered according to the invention may be of animal origin and is preferably of human origin. It may also be of any isotype but is preferably human IgG and most preferably human lgG1.

In a preferred embodiment of the invention the amino acid residue(s) which is altered lies within amino acid positions 231 to 239, preferably within 234 to 239. In a particularly preferred embodiment of the invention the amino acid residue(s) which is altered lies within the motif Leu 234 Leu 235 Gly 236 Gly 237 Pro 238 Ser 239.

In a most preferred embodiment the amino acid residue(s) which is altered is either Leu 235 and/or Gly 237.

DETAILED DESCRIPTION OF THE INVENTION

As used herein the term 'altered' when used in conjunction with the ability of an antibody to fix complement most usually indicates a decrease in the ability of antibody to fix complement compared to the starting antibody. By choosing appropriate amino acids to alter it is possible to produce an antibody the ability of which to fix complement is substantially reduced such as for example by altering residue Leu 235. It is also possible to produce an antibody with an intermediate ability to fix complement by, for example altering amino acid residue Gly 237.

As used herein the phrase 'substantially reduce complement fixation' denotes that human complement fixation is preferably≤30%, more preferably≤20% and most preferably≤10% of the level seen with the starting wild type unaltered antibody.

The term 'significantly' as used with respect to FcRI binding denotes that the binding of antibody to FcRI is typically <20%, and is most preferably ≤10% of that seen with unaltered antibody. The altered antibodies of the invention preferably bind to FcRIII as measured by their ability to mediate antibody dependent cellular cytotoxicity (ADCC) at a concentration no greater than ten times that of the wild type unaltered antibody.

The proteins encoded in the Major Histocompatibility Complex region of the genome are involved in many aspects of immunological recognition. It is known that all mammals and probably all vertebrates possess basically equivalent MHC systems and that immune response genes are linked to the MHC.

In man the major histocompatibility complex is the HLA gene cluster on chromosome 6. The main regions are D, B, C and A. The D region contains genes for class II proteins which are involved in cooperation and interaction between cells of the immune system. Many diseases have been found to be associated with the D region of the HLA gene cluster. Studies to date have shown associations with an enormous variety of diseases, including most autoimmune diseases (see for example, European Patent No. 68790). European Patent No. 68790 suggests controlling diseases associated with a particular allele of certain regions of the MHC such as the HLA-D region in humans by selectively suppressing the immune response(s) controlled by a monoclonal antibody specific for an MHC-class II antigen. We have found that by altering an MHC-class II specific antibody at position 235 in the N-terminal region of the CH2 domain it is possible to produce an antibody which fully retains its immunosuppressive properties but which has substantially reduced toxicity in vitro and is tolerated in vivo. In a further preferred embodiment the invention provides an MHC specific antibody wherein one or more amino acid residues in the N-terminal region of the CH2 domain of said antibody are altered characterised in that the ability of said antibody to fix complement is altered as compared to unaltered antibody. In a preferred embodiment the invention provides an MHC specific monoclonal antibody characterised in that said antibody has been altered at position 235 of the N-terminal region of the CH2 domain. In some instances such as with MHC specific monoclonal antibodies it may be desfrable that the alteration in the N-terminal region of the CH2 domain of the antibody while altering the ability to fix complement additionally inhibits the binding to FcRI receptors. The antibodies are preferably specific for MHC-class II antigens and due to the alteration of one or more amino acid residues in the N-terminal region of the CH2 domain will not bind significantly to FcRI.

In a further preferred embodiment the altered antibodies of the invention or for use according to the invention are directed against an MHC class II antigen characterised in that said antibody has been altered at position 235 of the N-terminal region of the CH2 domain.

In a particularly preferred embodiment, the altered antibodies of the invention or for use according to the invention are directed against an MHC class II antigen characterised in that said antibody has been altered at position 235 of the N-terminal region of the CH2 domain and the ability of said antibody to fix complement is altered as compared to unaltered antibody and said altered antibody binds to one or more cellular Fc receptors especially FcRIII and does not bind significantly to FcRI.

In a further aspect the invention provides a method for producing an altered antibody with altered ability to fix complement comprising altering one or more amino acids in the N-terminal region of the CH2 domain of said antibody, altering the ability of said antibody to fix complement as compared with unaltered antibody.

As used herein the term 'altered antibody' is used to denote an antibody which differs from the wild type unaltered antibody at one or more amino acid residues in the N-terminal region of the CH2 domain of the Fc region of the antibody. The alteration may for example comprise the substitution or replacement of the starting wild type antibody amino acid by another amino acid, or the deletion of an amino acid residue.

The residue numbering used herein is according to the Eu index described in Kabat et al [(1991) in: Sequences of Proteins of Immunological Interest, 5th Edition. United States Department of Health and Human Services.]

In human lgG1 and lgG3 antibodies the naturally occurring amino acid at position 235 of the N-terminal region of the CH2 domain is a leucine residue. The alterations at position 235 of replacing leucine by glutamic acid or alanine have been found particularly effective at producing a potent immuno-suppressive antibody with minimal toxicity in vitro and which is tolerated in vivo. The alteration at position 237 of replacing glycine by alanine has been found to produce an antibody with an intermediate ability to fix human complement, i.e. the complement fixation level is approximately 15-80%, preferably 20-60%, most preferably 20-40% of that seen with the starting wild type unaltered antibody.

The residue(s) could similarly be replaced using an analogous process to that described herein, by any other amino acid residue or amino acid derivative, having for example an inappropriate functionality on its side chain. This may be achieved by for example changing the charge and/or polarity of the side chain.

The altered antibodies of the invention may also be produced for example, by deleting residues such as 235, or by, for example, inserting a glycosylation site at a suitable position in the molecule. Such techniques are well known in the art, see for example the teaching of published European patent application EP-307434.

The altered antibodies of the invention may also be produced by exchanging lower hinge regions of antibodies of different isotypes. For example a G1/G2 lower hinge exchange abolished complement fixation and is a further preferred embodiment of the invention. This is described in more detail in the accompanying examples. The G1/G2 lower hinge exchange results in an antibody with altered residues in the 231 to 238 region of the N-terminal region of the CH2 domain wherein one or more residues may be altered and/or deleted.

In a particularly preferred embodiment of the invention the antibody is a human lgG1 antibody directed against an MHC class II antigen.

In a further aspect the invention provides a method of modulating the function of cell surface associated antigens avoiding complement mediated toxicity comprising administering an altered antibody wherein one or more amino acid residues in the N-terminal region of the CH2 domain of said antibody are altered characterised in that the ability of said antibody to fix complement is altered as compared to unaltered antibody.

In a preferred embodiment of this aspect of the invention said altered antibody is able to bind to one or more cellular Fc receptors especially FcRIII while binding to FcRI is significantly reduced. Examples of such cell surface antigens include for example adhesion molecules, T-cell receptor, CD4, CD8, CD3, CD28, CD69, MHC Class I, MHC Class II and CD25.

The invention also includes therapeutic, pharmaceutical and diagnostic compositions comprising the altered antibodies according to the invention and the uses of these products and the compositions in therapy and diagnosis.

Thus in a further aspect the invention provides a therapeutic, pharmaceutical or diagnostic composition comprising an altered antibody according to the invention, in combination with a pharmaceutically acceptable excipient, diluent or carrier.

The invention also provides a process for the preparation of a therapeutic, pharmaceutical or diagnostic composition comprising admixing an altered antibody according to the invention together with a pharmaceutically acceptable excipient, diluent or carrier.

The antibodies and compositions may be for administration in any appropriate form and amount according to the therapy in which they are employed.

The altered antibodies for use in the therapeutic, diagnostic, or pharmaceutical compositions, pr for use in the method of treatment of diseases in which antibody therapy leads to undesirable toxicity due to antibody mediated complement fixation are preferably MHC specific antibodies most preferably specific for MHC Class II antigens, and most preferably have specificity for antigen ic determinants dependent on the

DRα chain.

The therapeutic, pharmaceutical or diagnostic composition may take any suitable form for administration, and, preferably is in a form suitable for parenteral administration e.g. by injection or infusion, for example by bolus injection or continuous infusion. Where the product is for injection or infusion, it may take the form of a suspension, solution or emulsion in an oily or aqueous vehicle and it may contain formulatory agents such as suspending, preservative, stabilising and/or dispersing agents.

Alternatively, the antibody or composition may be in dry form, for reconstitution before use with an appropriate sterile liquid.

If the antibody or composition is suitable for parental administration the formulation may contain, in addition to the active ingredient, additives such as: starch - e.g. potato, maize or wheat starch or cellulose - or starch derivatives such as microcrystalline cellulose; silica; various sugars such as lactose; magnesium carbonate and/or calcium phosphate. It is desirable that, if the formulation is for parental administration it will be well tolerated by the patient's digestive system. To this end, it may be desirable to include in the formulation mucus formers and resins. It may also be desirable to improve tolerance by formulating the antibody or compositions in a capsule which is insoluble in the gastric juices. It may also be preferable to include the antibody or composition in a controlled release formulation.

If the antibody or composition is suitable for rectal administration the formulation may contain a binding and/or lubricating agent, for example polymeric glycols, gelatins, cocoa-butter or other vegetable waxes or fats. The invention also provides methods of therapy and diagnosis comprising administering an effective amount of an altered antibody according to the invention to a human or animal subject.

The antibodies and compositions may be for administration in any appropriate form and amount according to the therapy in which they are employed. The dose at which the antibody is administered depends on the nature of the condition to be treated and on whether the antibody is being. used prophylactically or to treat an existing condition. The dose will also be selected according to the age and conditions of the patient. A therapeutic dose of the antibodies according to the invention may be, for example, preferably between 0.1-25mg/kg body weight per single therapeutic dose and most preferably between 0.1-10mg/kg body weight per single therapeutic dose. immunological diseases which may be treated with the antibodies of the invention include for example joint disease such as ankylosing spondylitis, juvenile rheumatoid arthritis, rheumatoid arthritis; neurological disease such as multiple sclerosis; pancreatic disease such as diabetes, juvenile onset diabetes; gastrointestinal tract disease such as chronic active hepatitis, celiac disease, ulcerative colitis, Crohns disease, pernicious anaemia; skin diseases such as psoriasis; allergic diseases such as asthma and in transplantation related conditions such as graft versus host disease, and allograft rejection. Other diseases include those described in European Patent No. 68790.

The altered antibodies of the invention may also be useful in the treatment of infectious diseases e.g. viral or bacterial infections and in cancer immunotherapy. As used herein the term 'antibody' is used to cover natural antibodies, chimeric antibodies and CDR-grafted or humanised antibodies. Chimeric antibodies are antibodies in which an antigen binding site comprising the complete variable domains of one antibody is linked to constant domains derived from another antibody. Methods for carrying out such chimerisation procedures are described in EP 120694 (Celltech Limited), EP 125023 (Genentech Inc and City of Hope), EP 171496 (Res. Dev. Corp. Japan), EP 173494 (Stanford University) and WO 86/01533 (Celltech Ltd). CDR grafted or humanised antibodies are antibody molecules having an antigen binding site derived from an immunoglobulin from a non-human species and remaining immunoglobulin-derived parts of the molecule being derived from a human immunoglobulin. Procedures for generating CDR-grafted or humanised antibodies are described in WO 91/09967 (Celltech Ltd), WO 90/07861 (Protein Design Labs. Inc) and WO 92/11383 (Celltech Ltd).

In further aspects the invention also includes DNA sequences coding for the altered antibodies according to the invention; cloning and expression vectors containing the DNA sequences, host cells transformed with the DNA sequences and processes for producing the altered antibodies according to the invention comprising expressing the DNA sequences in the transformed host cells.

According to a further aspect of the invention there is provided a process for producing an altered antibody of the invention which process comprises: a. producing in an expression vector an operon having a DNA sequence which encodes an antibody heavy or light chain.

b. producing in an expression vector an operon having a DNA sequence which encodes a complementary antibody light or heavy chain.

c. transfecting a host cell with both operons, and

d. culturing the transfected cell line to produce the antibody molecule wherein at least one of the expression vectors contains a DNA sequence encoding an antibody heavy chain in which one or more amino acid residues in the N-terminal region of the CH2 domain of said antibody has been altered from that in the corresponding unaltered antibody.

As will be readily apparent to one skilled in the art, the alteration in the N-terminal region of the CH2 domain may be made using techniques such as site directed mutagenesis after the whole altered antibody has been expressed. To express unaltered antibody the DNA sequences should be expressed following the teaching described above for altered antibody.

The DNA sequences preferably encode a humanised antibody; a CDR-grafted heavy and/or light chain or a chimeric antibody. The cell line may be transfected with two vectors, the first vector containing the operon encoding the light chain-derived polypeptide and the second vector containing the operon encoding the heavy chain derived polypeptide. Preferably the vectors are identical except in so far as the coding sequences and selectable markers are concerned so as to ensure as far as possible that each polypeptide chain is equally expressed.

Alternatively, a single vector may be used, the vector including a selectable marker and the operons encoding both light chain- and heavy chain-derived polypeptides.

The general methods by which the vectors may be constructed, transfection methods and culture methods are well known per se. Such methods are shown, for instance, in Maniatis et al, Molecular Cloning, Cold Spring Harbor, New York 1989 and Primrose and Old, Principles of Gene Manipulation, Blackwell, Oxford, 1980.

The altered antibody according to the invention is preferably derived from the anti-MHC antibody L243, which has been deposited at the American

Type Culture Collection, Rockville, Maryland USA under Accession number ATCC HB55, and is most preferably a chimeric or a CDR-grafted derivative thereof. L243 was previously described by Lampson and Levy [J. Immunol. (1980) 125, 293].

The standard techniques of molecular biology may be used to prepare DNA sequences coding for the altered antibodies according to the invention. Desired DNA sequences may be synthesised completely or in part using oligonucleotide synthesis techniques. Site-directed mutagenesis and polymerase chain reaction (PCR) techniques may be used as appropriate. See for example "PCR Technology Principles and Applications for DNA Amplification" (1989), Ed. H. A. Eriich, Stockton Press, N.Y. London. For example, oligonucleotide directed synthesis as described by Jones et al [Nature, 321 , 522 (1986)] may be used. Also oligonucleotide directed mutagenesis may be used as described by Kramer et al [Nucleic Acid Res. 12 9441 (1984)].

Any suitable host cell/vector system may be used for the expression of the DNA sequences coding for the altered antibody. Bacterial e.g. E.coli and other microbial systems may be used. Eucaryotic e.g. mammalian host cell expression systems may also be used such as for example COS cells and CHO cells [Bebbington, C R (1991) Methods 2, 136-145], and myeloma or hybridoma cell lines [Bebbington, C R et al (1992) Bio/Technology 10, 169-175].

Where the altered antibody is derived from L243 CHO based expression systems are preferably used.

Assays for determining FcRIII binding indirectly via ADCC assays and for determining complement fixation and C1q binding are well known in the art, and are described in detail in the following examples.

Immune function/immunosuppression by antibodies may be assayed using techniques well known in the art including for example: Mixed Lymphocyte Responses and T-cell antigen recall responses to Tetanus Toxoid. These assays are described in detail in the following examples. The invention is illustrated in the following non-limiting examples and with reference to the following figures in which:

Figure 1 shows: a map of plasmid pMR15.1

Figure 2 shows: a map of plasmid pMR14

Figure 3 shows: the nucieotide sequence and predicted amino acid sequence of L243 heavy chain

Figure 4 shows: the nucieotide and amino acid sequences of

(a) clone 43, (b) clone 183 (c) clone 192

Figure 5 shows: the nucieotide sequence and predicted amino acid sequence of L243 light chain

Figure 6 shows: a map of plasmid pGamma 1

Figure 7 shows: a map of plasmid pGamma 2

Figure 8 shows: the nucieotide sequence of hinge and CH2 region of human C-gamma 1

Figure 9 shows: Antigen binding potency of L243 human isotype series

Figure 10 shows: FcRI binding of L243 isotype series

Figure 11 shows: human complement fixation by L243 isotype series e

Figure 12 shows: binding of human Clq to L243 human isotype series

Figure 13 shows: human complement fixation by L243 isotype

Figure 14 shows: guinea pig complement fixation by L243 isotype

Figure 15 shows: rabbit complement fixation by L243 isotype

Figure 16 shows: FcRIII binding of L243 isotype series by ADCC

Figure 17 shows: L243 Isotype Series Inhibition of TT recall response

Figure 18 shows: L243 Isotype Series Inhibition of TT recall response

Figure 19 shows: L243 Isotype Series Inhibition of Mixed Lymphocyte

Reaction.

Figure 20 shows: L243 Isotype Series Inhibition of TT response

Figure 21 shows: L243 Isotype Series Inhibition of Mixed Lymphocyte

Reaction

Figure 22 shows: the nucieotide and amino acid sequence of VI region in

L243-gL1

Figure 23 shows: shows the nucieotide and amino acid sequence of VI region of

L243-gL2

Figure 24 shows: the nucieotide and amino acid sequence of Vh region of L243-gH

Figure 25 shows: a graph of the results of a competition assay for L243 grafts vs FITC-chimeric L243

Figure 26 shows: a graph of a Scatchard analysis for L243 gamma 4

Figure 27 shows: a graph of FcRIII binding of chimeric, grafted and

grafted [L235E] L243 as measured by ADCC

Figure 28 shows: a graph of immunosuppressive activity of CDR grafted

L243 measured by MLR

Figure 29 shows: a graph of CDR grafted L243 and grafted [L235E]

L243 TT recall response

Figure 30 shows: a graph of complement mediated cytotoxic potency of

CDR grafted L243 and CDR grafted [L235E] L243

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS OF THE INVENTION EXAMPLES

Example 1

Gene Cloning and Expression

RNA preparation from L243 hybridoma cells

Total RNA was prepared from 3 × 10exp7 L243 hybridoma cells as described below. Cells were washed in physiological saline and dissolved in RNAzol (0.2ml per 10exp6 cells). Chloroform (0.2ml per 2ml homogenate) was added, the mixture shaken vigorously for 15 seconds and then left on ice for 15 minutes. The resulting aqueous and organic phases were separated by centrifugation for 15 minutes in an Eppendorf centrifuge and RNA precipitated from the aqueous phase by the addition of an equal volume of isopropanol. After 15 minutes on ice, the RNA was pelleted by centrifugation, washed with 70% ethanol, dried and dissolved in sterile, RNAase free water. The yield of RNA was 350 μg.

Amino acid sequence of the L243 light chain.

The sequence of the first nine amino acids of the mature L243 light chain was determined to be NH2-DIQMTQSPAS.

PCR cloning of L243 Vh and VI

The cDNA genes for the variable regions of L243 heavy and light chains were synthesised using reverse transcriptase to produce single stranded cDNA copies of the mRNA present in the total RNA, followed by Polymerase Chain Reaction (PCR) on the cDNAs with specific oligonucleotide primers. a) cDNA synthesis

cDNA was synthesised in a 20μl reaction containing the following reagents: 50mM Tris-HCI PH8.3, 75mM KCI, 10mM dithiothreitol, 3mM MgC.2, 0.5mM each deoxyribonucleoside triphosphates, 20 units RNAsin, 75ng random hexanucleotide primer, 2μg L243 RNA and 200 units Moloney Murine Leukemia Virus reverse transcriptase. After incubation at 42°C for 60 min the reaction was terminated by heating at 95°C for 5 minutes. b) PCR

Aliquots of the cDNA were subjected to PCR using combinations of primers for the heavy and light chains. The nucieotide sequences of the 5' primers for the heavy and light chains are shown in Tables 1 and 2 respectively. These sequences, ail of which contain a restriction site starting 6 nucleotides from their 5' ends, followed by the sequence GCCGCCACC to allow optimal translation of the resulting mRNAs, an initiator codon and a further 20 - 30 nucleotides, are a compilation based on the leader peptide sequences of known mouse antibodies [Kabat et al (1991 ) in Sequences of Proteins of Immunological Interest, 5th Edition - United States Department of Health and Human Services].

The 3' primers are shown in Table 3. The light chain primer spans the V - C junction of the antibody and contains a restriction site for the enzyme Spl1 to facilitate cloning of the VI PCR fragment. The heavy chain 3' primers are a mixture designed to span the J - C junction of the antibody. The first 23 nucleotides are identical to those found at the start of human C - gamma 1 , 2, 3 and 4 genes and include the Apa1 restriction site common to these human isotypes. The 3' region of the primers contain a mixed sequence based on those found in known mouse antibodies [Kabat E A, Wu, T.T.; Perry H M, Gottesman K S, and Foeller L; In: Sequences of

Proteins of Immunological Interest, 5th Edition, US Department of Health and Human Services (1991)].

The combinations of primers described above enables the PCR products for Vh and VI to be cloned directly into the appropriate expression vector (see below) to produce chimeric (mouse - human) heavy and light chains and for these genes to be expressed in mammalian cells to produce chimeric antibodies of the desired isotype.

Incubations (20 μl) for the PCR were set up as follows. Each reaction contained 10 mM Tris-HCI pH 8.3, 1.5 mM MgCtø, 50 mM KCI, 0.01% w/v gelatin, 0.25 mM each deoxyribonucleoside triphosphate, 1 - 6 pmoles 5' primer mix (Table 4), 6 pmoles 3' primer, 1 μl cDNA and 0.25 units Taq polymerase. Reactions were incubated at 95°C for 5 minutes and then cycled through 94°C for 1 minute, 55°C for 1 minute and 72°C for 1 minute. After 30 cycles, aliquots of each reaction were analysed by electrophoresis on an agarose gel. Reactions containing 5' primer mixes B1 , B2, B3 and B5 produced bands with sizes consistent with full length VI fragments while reaction B9 produced a fragment with a size expected of a Vh gene. The band produced by the B1 primers was not followed up as previous results had shown that this band corresponds to a light chain pseudogene produced by the hybridoma cell. c) Molecular cloning of the PCR fragments

DNA fragments produced in reactions B2, B3 and B5 were digested with the enzymes BstB1 and Spl1, concentrated by ethanol precipitation, electrophoresed on a 1.4 % agarose gel and DNA bands in the range of 400 base pairs recovered. These were cloned by ligation into the vector pMR15.1 (Figure 1) that had been restricted with BstB1 and Spl1 . After ligation, mixtures were transformed into E. coli LM1035 and plasmids from the resulting bacterial colonies screened for inserts by digestion with BstB1 and Spl1. Representatives with inserts from each ligation were analysed further by nucieotide sequencing.

In a similar manner, the DNA fragments produced in reaction B9 and digested with HindIII and Apa1 were cloned into the vector pMR14 (Figure 2) that had been restricted with HindIII and Apa1.

Again, representative plasmids containing inserts were analysed by nucieotide sequencing. d) Nucleotide sequence analysis

Plasmid DNA (pE1701 and pE1702) from two isolates containing Vh inserts from reaction B9 was sequenced using the primers R1053 (which primes in the 3' region of the HCMV promoter in pMR14) and R720 (which primes in the 5' region of human C - gamma 4 and allows sequencing through the DNA insert on pMR14). The determined nucieotide sequence and predicted amino acid sequence of L243 Vh in pE1702 is given in Figure 3. The nucieotide sequence for the Vh insert in pE1701 was found to be identical to that in pE1702 except at nucieotide 20 (A in pE1701) and nucieotide 426 (A in pE1701). These two differences are in the signal peptide and J regions of Vh respectively and indicate that the two clones examined are independent isolates arising from the use of different primers from the mixture of oligonucleotides during the PCR stage.

To analyse the light chain clones, sequence derived from priming with R1053 was examined. The nucleotide sequence and predicted amino acid sequence of the VI genes arising from reactions B2 (clone 183), B3 (clone 43 and B5 (clone 192) are shown in Figure 4. Comparison of the predicted protein sequences shows the following: i) clones 182, 183, 43 and 45 all code for a VI gene which, when the signal peptide is removed, produces a light chain whose sequence is identical to that determined by amino acid sequence analysis for L243 light chain (see above). ii) clones 182 and 183 contain a VI gene that codes for a signal peptide of 20 amino acids, while the VI gene in clones 43 and 45 results from priming with a different set of oligonucleotides and has a leader sequence of only 15 amino acids. iii) Clone 192 does not code for L243 VI. Instead, examination of the database of antibody sequences [Kabat, 1991] indicates that clone 192 contains the VI gene for MOPC21, a light chain synthesised by the NS1 myeloma fusion partner used in the production of the L243 hybridoma. iv) Clones 182 and 183 are identical except at nucleotide 26 (T in clone 182, C in clone 183). This difference can be accounted for by the use of different primers in the PCR and indicates that clones 182 and 183 are independent isolates of the same gene.

The nucieotide sequence and predicted amino acid sequence of the complete VI gene from clone 183 is shown in Figure 5.

Construction of human gamma 1 and gamma 2 isotypes.

The L243 Vh gene was subcloned on a HindIII - Apal fragment into pGamma 1 and pGamma 2, vectors containing the human C - gamma 1 and C - gamma 2 genes respectively (Figures 6 and 7). Human Isotype mutants

PCR mutagenesis was used to change residue 235 in human C - gammal contained in the vector pGamma 1 from leucine to either glutamic acid or to alanine and to change residue 237 from glycine to alanine. The lower hinge region of human C-gamma 1 was also replaced by the corresponding region of human C-gamma 2. The following oligonucleotides were used to effect these changes: i) L235E change

R4911 5' GCACCTGAACTCGAGGGGGGACCGTCAGTC3'

R4910 5'CCCCCCTCGAGTTCAGGTGCTGAGGAAG3'

II) L235A change

R5081 5'GCACCTGAACTCGCAGGGGGACCGTCAGTC3'

R5082 5'GACTGACGGTCCCCCTGCGAGTTCAGGTGC3'

III) G237A change

R5088 5'GCACCTGAACTCCTGGGTGCACCGTCAGTC3'

R5087 5'GACTGACGGTGCACCCAGGAGTTCAGGTGC3'

IV) Exchange of lower hinge regions

R4909 5'GCACCTCCAGTGGCAGGACCGTCAGTCTTCCTC3' R4908 5'CGGTCCTGCCACTGGAGGTGCTGAGGAAGAG3'

Other oligonucleotides used in the PCR mutagenesis are:

R4732 5'CAGCTCGGACACCTTCTCTCCTCC3'

R4912 5'CCACCACCACGCATGTGACC3'

R4732 and R4912 prime between nucleotides 834 and 858 and between nucleotides 1156 and 1137 respectively in human C - gamma 1 (Figure 8).

The general strategy for the PCR mutagenesis was as follows. For each amino acid change, two rounds of PCR were used to generate DNA fragments containing the required substitutions. These fragments were then restricted with the enzymes Bgl II and Sty1 and used to replace the corresponding fragments containing the wild type sequence in the pGamma 1 vector, (Figure 6). For the first round PCR, reactions (20 μl) were prepared containing the following reagents : 10 mM Tris - HCl pH 8.3, 1.5 mM MgCI2, 50 mM KCl, 0.01% gelatin, 0.25 mM each deoxyribonucleoside triphosphate, 50 ng pGamma 1 DNA, 0.4 unit Taq polymerase and 6 pmoles of each of the primer. The following combinations of primers were used:

R4911 / R4912,

R4910 / R4732,

R5081 / R4912,

R5082 / R4732,

R5088 / R4912,

R5087 / R4732,

R4909 / R4912,

R4908 / R4732. After 30 cycles through 94°C for 1 minute, 55°C for 1 minute and 72°C for 1 minute, the reactions were extracted with chloroform, the newly synthesised DNA precipitated with ethanol, dissolved in water and electrophoresed on a 1.4 % agarose gel. Gel slices containing the DNA fragments were excised from the gel, the DNA recovered from the agarose using a "Mermaid"™ kit (from Stratech Scientific Ltd., Luton, England) and eluted into 20μl sterile water.

Second round PCR was in a 100 μl reaction containing 10 mM Tris - HCl pH 8.3, 1.5 mM MgCI2, 50 mM KCI, 0.01 % gelatin, 0.25 mM each deoxyribonucleoside triphosphate, 2 units Taq polymerase, 1/20 of each pair of DNA fragments from the first round reaction and 30 pmoles of each of R4732 and R4912. After 30 cycles, see above, the reactions were extracted with phenol / chloroform (1/1) and precipitated with ethanol. Fragments were digested with Bgl11 and Sty1 , electrophoresed on a 1.4 % agarose gel and DNA bands of 250 base-pairs recovered from gel slices as previously described. These Bgl II - Sty1 fragments were ligated in a 3 - way ligation to the 830 base-pair Sty1 - EcoRI fragment, containing the C - terminal part of the CH2 domain and the entire CH3 domain of human C - gamma 1, and the BgIII - EcoR1 vector fragment from pGammal (see Figure 6). After transformation into LM1035, plasmid minipreps from resulting colonies were screened for the presence of the Bgl II - Sty1 fragment and representatives of each taken for nucieotide sequence analysis. From this, plasmids containing the desired sequence were identified and, for future reference, named as follows : pGammal [L235E] containing glutamic acid at residue 235,

pGammal [L235A] containing alanine at residue 235,

pGammal [G237A] containing alanine at residue 237,

pGammal [g1— >g2] containing the C-gamma 2 lower hinge region.

The above plasmids were each restricted with Hind111 and Apal and the Hind111 - Apal fragment containing L243 Vh inserted to produce the following plasmids: L243Gamma1[L235E]

L243Gamma1[L235A]

L243Gamma1[G237A]

L243Gamma [g1— >g2] a) Production of chimeric L243 antibody

Antibody for biological evaluation was produced by transient expression of the appropriate heavy and light chain pairs after co-transfection into Chinese Hamster Ovary (CHO) cells using calcium phosphate precipitation.

On the day prior to transfection, semi - confluent flasks of CHO-L761 cells were trypsinised, the cells counted and T75 flasks set up each with 10exp7 cells. On the next day, the culture medium was changed 3 hours before transfection. For transfection, the calcium phosphate precipitate was prepared by mixing 1.25 ml of 0.25M CaCI2 containing 50 μg of each of heavy and light chain expression vectors with 1.25 ml of 2×HBS (16.36 gm NaCI, 11.9 gm HEPES and 0.4 gm Na2HPO4 in 1 litre water with the pH adjusted to 7.1 with NaOH) and adding immediately into the medium on the cells. After 3 hours at 37 C in a CO2 incubator, the medium and precipitate were removed and the cells shocked by the addition of 15 ml 15 % glycerol in phosphate buffered saline (PBS) for 1 minute. The glycerol was removed, the cells washed once with PBS and incubated for 48 - 96 hours in 25 ml medium containing 10 mM sodium butyrate. Antibody was purified from the culture medium by binding to and elution from protein A - Sepharose and quantitated using an 1g ELISA (see below). b) ELISA

For the ELISA, Nunc ELISA plates were coated overnight at 4°C with a F(ab)2 fragment of a polyclonal goat anti-human Fc fragment specific antibody (Jackson Immuno-research, code 109-006-098) at 5 μg/ml in coating buffer (15mM sodium carbonate, 35mM sodium hydrogen carbonate, pH6.9). Uncoated antibody was removed by washing 5 times with distilled water. Samples and purified standards to be quantitated were diluted to approximately 1 μg/ml in conjugate buffer (0.1 M Tris-HCI pH7.0, 0.1M NaCl, 0.2% v/v Tween 20, 0,2% w/v Hammersten casein). The samples were titrated in the microtitre wells in 2-fold dilutions to give a final volume of 0.1 ml in each well and the plates incubated at room temperature for 1 hr with shaking. After the first incubation step the plates were washed 10 times with distilled water and then incubated for 1 hr as before with 0.1 ml of a mouse monoclonal anti-human kappa (clone GD12) peroxidase conjugated antibody (The Binding Site, code MP135) at a dilution of 1 in 700 in conjugate buffer. The plate was washed again and substrate solution (0.1 ml) added to each well. Substrate solution contained 150 μl N,N,N,N-tetramethylbeπzidine (10 mg/ml in DMSO), 150 μl hydrogen peroxide (30% solution) in 10 ml 0.1 M sodium acetate/sodium citrate, pH6.0. The plate was developed for 5 -10 minutes until the absorbance at 630nm was approximately 1.0 for the top standard. Absorbance at 630nm was measured using a plate reader and the concentration of the sample determined by comparing the titration curves with those of the standard. TABLE 1

Oligonucleotide primers for the 5' region

of mouse heavy chains.

CH1 : 5'ATGAAATGCAGCTGGGTCAT(G,C)TTCTT3' CH2 : 5'ATGGGATGGAGCT(A,G)TATCAT(C,G)(C, T)TCTT3'

CH3 : 5,ATGAAG(A,T)TGTGGTTAAACTGGGTTTT3'

CH4 : 5'ATG(G,A)ACTTTGGG(T,C)TCAGCTTG(G,A)T3'

CH5 : 5'ATGGACTCCAGGCTCAATTTAGTTTT3'

CH6 : 5'ATGGCTGTC(C,T)T(G,A)G(G,C)GCT(G,A)CTCTTCTG3' CH7 : 5'ATGG(G,A)ATGGAGC(G,T) GG(G,A)TCTTT(A,C)TCTT3,

CH8 : 5'ATGAGAGTGCTGATTCTTTTGTGS'

CH9 : 5'ATGG(C,A)TTGGGTGTGGA(A,C)CTTGCTATT3'

CH10 : 5'ATGGGCAGACTTACATTCTCATTCCT3'

CH11 : 5'ATGGATTTTGGGCTGATTTTTTTTATTG3" CH12 : 5'ATGATGGTGTTAAGTCTTCTGTACCT3'

Each of the above primers has the sequence

5'GCGCGCAAGCTTGCCGCCACC3' added to its 5' end. TABLE 2

Oligonucleotide primers for the 5' region of

mouse light chains.

CL1 : 5ΑTGAAGTTGCCTGTTAGGCTGTTGGTGCT3' CL2 : 5'ATGGAG(T,A)CAGACACACTCCTG(T,C)TATGGGT3'

CL3 : 5ΑTGAGTGTGCTCACTCAGGTCCT3'

CL4 : 5,ATGAGG(G,A)CCCCTGCTCAG(A,T)TT(C,T)TTGG3'

CL5 : 57.TGGATTT(T,A)CAGGTGCAGATT(T,A)TCAGCTT3'

CL6 : 5'ATGAGGT(T,G)C(T,C)(T,C)TG(T,C)T(G,C)AG(T,C)T(T,C)CTG

(A,G)G3'

CL7 : 5'ATGGGC(T,A)TCAAGATGGAGTCACA3'

CL8 : 5,ATGTGGGGA(T,C)CT(G,T)TTT(T,C)C(A,C)(A,C)TTTTTCA

AT3'

CL9 : 5,ATGGT(G,A)TCC(T,A)CA(G,C)CTCAGTTCCTT3, CL10 : 5'ATGTATATATGTTTGTTGTCTATTTC3' CL11 : 5'ATGGAAGCCCCAGCTCAGCTTCTCTT3'

Each of the above primers has the sequence

5'GGACTGTTCGAAGCCGCCACC3' added to its 5' end. TABLE 3

Oligonucleotide primers for the 3' ends

of mouse Vh and VI genes.

Light chain ( CL12 ) :

5'GGATACAGTTGGTGCAGCATCCGTACGTTT3'

Heavy chain ( R2155 ):

5'GCAGATGGGCCCTTCGTTGAGGCTG(A,C)(A,G)GAGAC(G,T,A)GTGA3'

TABLE 4

5' Primer mixtures for PCR

B1 : CL2.

B2 : CL6.

B3 : CL8.

B4 : CL4, CL9.

B5 : CL1, CL3, CL5.CL7, CL10, CL11.

B6 : CH6.

B7 : CH7.

B8 : CH2, CH4.

B9 : CH1 , CH3, CH5, CH8, CH9, CH10, CH11 , CH12. Example 2

Biological properties of engineered L243

The aim of the following experiments was to separate the immunosuppressive effects of anti-MHC-II antibodies from possible toxic consequences of their use. In the process we hope to demonstrate which Fc effector functions are necessary for immunosuppression.

ANTIGEN BINDING POTENCY BY INHIBITION ASSAY

The principle of this experiment is that antibodies that have the same binding will compete equally well with a labelled antibody for their cognate antigen. Any changes in the antigen binding potency of the engineered L243 antibodies will be revealed in this system.

Murine L243 (lgG2a) was labelled with fluorescein (FITC) using standard, techniques. All dilutions, manipulations and incubations were done in

Phosphate Buffered Saline (Gibco UK) containing 0.1% Sodium Azide

(BDH UK) and 5% Foetal Calf Serum (Sigma UK). Serial dilutions of engineered antibodies in 100μl in RB polystyrene tubes (2052 12×75mm

Falcon UK) were premixed with a constant amount in 100μl (at a previously determined optimal concentration) of the labelled antibody on 5×104 indicator cells (JY B lymphoblastoid cell line bearing high levels of HLA- DR). Cells and antibody were incubated together at 4°C for 30m in, washed twice and binding revealed using a Fluorescence Activated Cell

Scanner (FACS Becton Dickinson). After appropriate analysis, median fluorescence intensity is plotted against antibody concentration.

Results

As expected, none of the changes in the Fc portion of the molecule affected antigen binding ability (Figure 9).

ASSESSMENT OF FCγ RI BINDING.

The ability of the engineered variants of L243 to bind to FcgRI was measured. The principle of this experiment is that antibodies will bind to cells through Fc receptors and the affinity of this interaction is determined by the subclass and hence the structure of the Fc of the antibody. The assay is based on the ability of the engineered antibodies to compete for binding with FITC labelled murine lgG2a to I FNγ stimulated U937 cells.

U937 (myelomonocytic) cells, when incubated with 500μ/ml IFNγ (Genzyme UK) for 24 hours, expresses high levels of FcgRI, as assessed by CD64 binding and monomeric lgG2a binding, low levels of FcγRII and no FcγRIII.

U937 cells are washed extensively in DMEM containing 25mM HEPES (Gibco UK), incubated for 2 hours at 37°C in RPMI 1640 (Gibco UK) and then washed again in DMEM containing 25mM HEPES (Gibco UK) to remove bovine IgG bound to Fc receptors. Serial dilutions of engineered antibodies were prepared in 50μl in Phosphate Buffered Saline (Gibco UK) containing 0.1% sodium azide in V-bottom 96 well microtitre plates' (ICN/Flow UK) and were incubated with 5x104 U937 cells in 50μl for 30min at 4°C. 50μl of FITC labelled lgG2a antibody was then added to all wells, at a previously determined optimal concentration, for a further 90min at

4°C. Cells were washed once in the microtitre tray, transferred to RB polystyrene tubes (2052 12×75mm Falcon UK) washed once again and binding was revealed using a Fluorescence Activated Cell Scanner (FACS

Becton Dickinson). After appropriate analysis, median fluorescence intensity is plotted against antibody concentration.

Results

Changes in the N-terminal region of the CH2 domain of lgG1 had profound effects on binding to FcRI (Figure 10). As expected, wild type lgG1 bound well to FcRI, lgG4 about 10 times less well and lgG2 did not bind at all. We have confirmed that the Leu 235 to Glu change in human lgG4 reduced its low FcRI binding to nothing and that the same change in lgG1 completely abolishes FcRI binding. Ala at 235 reduced (by about 100 fold) but did not ablate FcRI binding. Changing Gly 237 to Ala of lgG1 also abolished FcRI as did exchanging the whole region 233 to 236, with the sequence found in human lgG2. The G1[K320A] change had no effect on FcRI binding. ANTIBODY DEPENDENT COMPLEMENT

MEDIATED CYTOTOXICITY.

The ability of the engineered variants of L243 to fix human complement was assessed using the technique of antibody dependent complement mediated cytotoxicity.

The principle of the experiment is that antibodies will mediate complement lysis of target cells bearing their cognate antigen if the Fc of the antibody is able to interact with the components of the (usually classical) complement cascade. The critical interaction is with the C1q molecule.

The source of complement in these experiments is human venous blood freshly drawn into endotoxin free glass bottles which is then allowed to clot at 37°C for 1 hour. The clot is detached from the glass and then incubated at 4°C for 2 hours to allow it to retract. The clot is then removed and the serum separated from the remaining red cells by centrifugation at 1000g. Once prepared, the serum can be stored for up to one month at -20°C without noticeable deterioration of potency but is best used fresh.

All manipulations, dilutions and incubations are done in RPMI 1640 medium (Gibco UK) containing 2mM Glutamine (Gibco UK) and 10% foetal calf serum (Sigma UK). Target cells (JY B lymphoblastoid cell line bearing high levels of HLA-DR) are labelled with 1mCi Na51Cr for 1 hour at room temperature, agitated every 15 min. The cells are then washed three times, to remove free radiolabel, and resuspended at 2×106/ml. Serial antibody dilutions are prepared in duplicate in V-bottom 96 well microtitre plates (ICN/Flow UK) in 25μl. Control wells containing medium only are also prepared to establish the spontaneous release of label giving the assay background. Target 51Cr labelled JY cells are added to all wells in 10μl. The same number of JY cells are also added to wells containing 2% Triton ×100 in water to establish the 100% release value. Target cells and antibody are incubated together and, after 1 hour at room temperature, 25μl serum as a source of complement is added to all wells (except the 100%) for a further 1 hour at room temperature. 100μl of EDTA saline at 4°C is then added to stop any further cell killing, the microtitre plates are centrifuged at 200g to pellet the intact cells and 100μl supernatant is removed and counted in a gamma counter.

Percent cell lysis is calculated by subtracting the background from all values and then expressing them as a percentage of the adjusted maximum release. Replicates vary by less than 5%. Percent cell lysis is then plotted against antibody dilution.

Results

The ability of L243 to fix human complement was not affected by all the changes made in the N-terminal region of the CH2 domain, residues 233 to 237 (Figure 11). Wild type lgG1 mediated potent killing with 600ng/ml giving half maximum cell killing (64% maximum). lgG2 and lgG4 caused no cell killing even at 20μg/ml. The Gly to Ala at 237 gave an intermediate level killing (20% maximum killing at 2μg/ml). Exchanging the whole lower hinge region with the sequence found in human lgG2 failed to cause lysis even at 20μg/ml. Changes at 235 in lgG1 had unexpectedly profound effects on human complement fixation. Changing the Leu 235 to Glu abolished complement lysis (no killing at 20μg/ml). Ala at 235 permitted low levels of killing. In contrast, a change in the previously described C1q binding motif [Duncan A R and Winter G (1998), Nature, 332, 21.], from Lys to Ala at 320 effected no change from the lgG1 wild type killing (70% maximum cell killing and half the cells dead with 600ng/ml). DIRECT BINDING OF C1q

Measurement of the direct binding of human C1q to different engineered variants of L243 was established to confirm that complement mediated cytotoxicity was due to activation of the classical pathway. Purified human C1q (Sigma UK) was directly labelled with fluorescein isothiocyanate (FITC Sigma) using conventional methods. All dilutions, manipulations and incubations were done in Phosphate Buffered Saline (Gibco UK) containing 0.1% Sodium Azide (BDH UK) and 5% Foetal Calf Serum (Sigma UK). 5×104 indicator cells (JY B lymphoblastoid cell line bearing high levels of HLA-DR) were coated with the different engineered antibodies by incubating at saturating concentrations for 1 hour at 4°C in RB polystyrene tubes (2052 12x75mm Falcon UK). After washing, serial dilutions of FITC labelled C1q in 100μl were added and were incubated together for a further 30 min at 4°C. After washing, binding of C1q was revealed using a Fluorescence Activated Cell Scanner (FACS Becton Dickinson). After appropriate analysis, median fluorescence intensity is plotted against C1q concentration.

Results

Direct binding of human C1q to the L243 human isotype series confirmed the results with complement mediated cytotoxicity (Figure 12). Labelled human C1q bound well to wild type lgG1 , when bound to JY cells, and bound poorly to lgG4. Equilibrium dissociation constants were determined essentially as described by Krause et al. [Behring Inst. Mitt. SZ 56 (1990)] and were 1.2 ×10- 7M and 1.5 ×10-8M for lgG4 and lgG1 respectively. These values compare favourably with those obtained for the mouse antibodies lgG1 and lgG2a which have similar functions [Leatherbarrow and Dwek (1984), Molec. Immunol. 21, 321]. The Leu 235 to Glu change in lgG1 reduced the binding of C1q to the same level as lgG4. In contrast, a change in the previously described C1q binding motif [Duncan A R and Winter G (1988) Nature 332, 21], from Lys to Ala at 320 had no effect on

C1q binding. The Leu 235 to Glu change in lgG4 did not alter wild type binding.

Rabbit and Guinea Pig complement

The G1[L235E] and G1[L235A] modifications behaved differently when rabbit or guinea pig serum was used as a source of complement instead of human. With rabbit C they caused the same level of lysis as the wild type G1. With guinea pig they caused 40% and 49% plateau level killing, respectively, compared with 80% killing by the lgG1 wild type. The 235 change only affects human complement binding indicating that rabbit and guinea pig complement interact differently with human lgG1 (see Figures 13-15).

ANTIBODY DEPENDENT CELL MEDIATED CYTOTOXICITY.

The ability of the engineered variants of L243 to bind to FcgRIII was assessed using antibody dependent cell mediated cytotoxicity (ADCC). The principle of the experiment is that antibodies will mediate lysis of target cells bearing their cognate antigen if the Fc of the antibody is able to interact with Fc receptor bearing effector cells capable of cytotoxicity. The critical interaction is between antibody Fc and cellular Fc receptors.

Effector cells are prepared fresh for each experiment. Human venous blood is drawn into endotoxin free tubes containing heparin. Peripheral blood mononuclear cells (PBMC) are prepared by density gradient centrifugation according to the manufacturers instructions (Pharmacia). PBMC are adjusted to 1×107 cells/ml in RPMI 1640 medium (Gibco UK) containing 2mM Glutamine (Gibco UK) and 10% foetal calf serum (Sigma UK), in which all manipulations, dilutions and incubations are done. Target cells (JY B lymphoblastoid cell line bearing high levels of HLA-DR) are labelled with 1mCi Na51Cr for 1 hour at room temperature, agitated every 15 min. The cells are then washed three times, to remove free radiolabel, and resuspended at 2×106/ml. Serial antibody dilutions are prepared in duplicate in sterile U-bottom 96 well microtitre plates (Falcon UK) in 25μl. Control wells containing medium only are also prepared to establish the spontaneous release of label giving the assay background. Target 51Cr labelled JY cells are added to all wells in 10μl. The same number of JY cells are also added to wells containing 2% Triton x100 in water to establish the 100% release value. Target cells and antibody are incubated together and, after 30min at room temperature, 25μl effector cells are added to all wells (except the 100%) for a further 4 hours at 37°C. 100μl of EDTA saline at 4°C is then added to stop any further cell killing, the microtitre plates are centrifuged at 200g to pellet the intact cells and 100μl supernatant is removed and counted in a gamma counter.

Percent cell lysis is calculated by subtracting the background from all values and then expressing them as a percentage of the adjusted maximum release. Replicates vary by less than 5%. Percent cell lysis is then plotted against antibody dilution. Results

Not all the changes made in the N-terminal region of the CH2 domain, residues 233 to 237, affected FcRIII mediated function (Figure 16 and Tables 5 and 7). L243 lgG2 was unable to mediate peripheral blood mononuclear cell cytotoxicity (ADCC) of HLA-DR positive JY lymphoblastoid cells at concentrations up to 100γ/ml. lgG4 caused a low level of ADCC (20% maximum killing at 1γ/ml) which could be abrogated by the Leu 235 to Glu change. Wild type lgG1 was a potent mediator of cell killing giving 50% cell death at 5ng/ml antibody. Gly to Ala at 237 reduced the igG1 wild type killing to the level seen with lgG4. Exchanging the whole lower hinge region with the sequence found in human lgG2 gave intermediate levels of killing with 500ng/ml needed for 50% cell death. In contrast, changes at 235 in lgG1 had minimal effect on ADCC. Changing the Leu 235 to Ala gave levels of killing comparable with the G1 wild type (9ng/ml for 50% cell death)) and changing the Leu 235 to Glu reduced ADCC a little (40ng/ml for 50% cell death). A change in the previously described C1q binding motif, from Lys to Ala at 320 had no effect on the ability of lgG1 to mediate ADCC.

IMMUNE FUNCTION

Ex vivo T cell function experiments were performed where an interaction between MHC-II and the T cell receptor was an obligatory requirement for T cell activation. The L243 isotype series was tested in mixed lymphocyte reactions, which measures both naive and memory T cell activation, and recall responses to tetanus toxoid which only measures a memory T cell response.

Mixed Lymphocyte Reaction.

The immunosuppressive potency of engineered variants of L243 was assessed using a mixed lymphocyte reaction.

The principle of the experiment is that when leucocytes from one individual are mixed with those of another which express different HLA alleles, they will recognise each other as foreign and will become activated. This activation is dependent, primarily, on interactions between the CD3/TcR complex on T cells and the MHC-II molecule on antigen presenting cells. Antibodies that bind to MHC-II are known to inhibit this reaction.

Leucocytes are prepared fresh for each experiment. Human venous blood from two individuals is drawn into endotoxin free tubes containing heparin. Peripheral blood mononuclear cells (PBMC) are prepared by density gradient centrifugation according to the manufacturers instructions (Pharmacia). PBMC are adjusted to 2×106 cells/ml in RPM1 1640 medium (Gibco UK) containing 2mM Glutamine (Gibco UK), 100μ/ml/100μg/ml Penicillin/ Streptomycin (Gibco) and 10% foetal calf serum (Sigma UK), in which all manipulations, dilutions and incubations are done. PBMC from one individual are irradiated with 3000 rads. These cells will be stimulate a response from the other individual. Serial antibody dilutions are prepared in triplicate in sterile U-bottom 96 well microtitre plates (Falcon UK) in 100μl. Control wells containing medium only and optimal Cyclosporin (Sandimmun®, Sandoz) levels (100nM) are also prepared to establish the maximum response and maximum inhibition, respectively. Equal numbers of irradiated stimulators and responders are mixed together and 100μl are added to each well. Wells of stimulator alone and responders alone are also set up as controls. The experiment is incubated at 37°C in 100% humidity and 5%CO2 for 5 days. Response is measured by assessing proliferation during the last 18 hours of culture by incubation with 1μCi/well 3H-Thymidine (Amersham UK), harvesting on to glass filter mattes and counting using a beta counter.

Results are plotted as CPM against antibody concentration. Replicates vary by less than 10%. T cell Recall Response to Tetanus Toxoid

The ability of the engineered variants of L243 to suppress a secondary response was assessed using a recall response to Tetanus Toxoid.

The principle of the experiment is that T lymphocytes from an individual previously immunised with Tetanus Toxoid (TT) will respond to TT when re-exposed ex vivo. This activation is dependent on the interaction between the CD3/TcR complex on T ceils and the MHC-II molecule on cells which process and present the antigen. Antibodies that bind to MHC-II are known to inhibit this reaction. Lymphocytes are prepared fresh for each experiment. Human venous blood is drawn into endotoxin free tubes containing heparin. Peripheral blood mononuclear cells (PBMC) are prepared by density gradient centrifugation according to the manufacturers instructions (Pharmacia). PBMC are adjusted to 2×106 cells/ml in RPMI 1640 medium (Gibco UK) containing 2mM Glutamine (Gibco UK), 100μ/ml/100μg/ml Penicillin/ Streptomycin (Gibco) and 10% foetal calf serum (Sigma UK), in which all manipulations, dilutions and incubations are done.

Serial antibody dilutions are prepared in triplicate in sterile U-bottom 96' well microtitre plates (Falcon UK) in 100μl. 50μl containing an optimal concentration of TT, previously determined by experimentation, is added to all wells. Control wells containing medium only or Cyclosporin

(Sandimmun, Sandoz) (100nM) are also prepared to establish the maximum response and maximum inhibition, respectively. 50μl PBMC are then added to each well. The experiment is incubated at 37°C in 100% humidity and 5%C02 for 7 days. Response is measured by assessing proliferation during the last 18 hours of culture by incubation with 1μCi/well

3H-Thymidine, harvesting on to glass filter mattes and counting using a beta counter.

Results are plotted as CPM against antibody concentration. Replicates vary by less than 10%.

Results (Figures 17-21)

There were no significant or qualitative differences between the effects of the L243 human isotype series between the MLR and TT response.

Maximal inhibition was achieved with G1, G1[L235E] and G1[L235A].

Approximately two orders of magnitude more of G2, G4 and G1[G237A] was required to give similar levels of inhibition. The G1/G2 L hinge exchange mutant was intermediate in immuno-suppresser potency, there was no correlation between complement fixation or FcRI binding and immuno-suppression, G1 binding well to FcRI and fixing complement and G1[L235E] doing neither, but both giving good immunosuppression. But, there was good correlation with FcRIII binding. Human G1 and G1[L235E] interact with FcRIII and give good immunosuppression. The G1/G2 L hinge is intermediate in FcRIII binding and immuno-suppression. In contrast, the G237A mutation in human G1, in agreement with published observations, reduces FcRIII binding. This antibody gave poor immunosuppression. (Table 5). Table 6 shows a number of L243 isotype mutants.

Conclusion

We have found that amino acid residues necessary for C1q and FcR binding of human lgG1 are located in the N-terminal region of the CH2 domain, residues 231 to 238, using a matched set of engineered' antibodies based on the anti-HLA DR antibody L243. Changing the leucine 235 in the CH2 region of lgG3 and lgG4 to glutamic acid was already known to abolish FcRI binding, we have confirmed this for lgG1 and also found a concomitant abolition of human complement fixation with retention of FcRIII mediated function. Changing the giycine at 237 to alanine of lgG1 also abolished FcRI binding and reduced complement fixation and FcRIII mediated function. Exchanging the whole region 233 to 236, with the sequence found in human lgG2 abolished FcRI binding and complement fixation and reduced FcRIII mediated function of lgG1. In contrast, a change in the previously described C1q binding motif, from lysine at 320 to alanine had no effect on IgG 1 -mediated complement fixation.

The effect of these changes in lgG1 on FcRI binding are similar to published observations using lgG3 and lgG4 [Lund J et al J. Immunol. 1991. 147, 265; and Alegre M-L et al J. Immunol. 1992. 148, 3461] with changes at 235 and 237 in the lower hinge/N-terminal CH2 region markedly reducing FcRI binding. The similarities between these three isotypes strongly suggests that they interact with FcRI in a similar way. We have found residues necessary for FcRIII binding of human lgG1 within the lower hinge/N-terminal end of the CH2 region. Modification at 237 and exchanging the lower hinge for lgG2 residues caused low and intermediate levels, respectively, of FcRIII mediated killing. These effects are similar to those reported by Sarmay et al [Molec. Immunol. 1992.29, 633] for human lgG3. In contrast to Sarmay et al using lgG3, our changes at residue 235 of lgG1 had little effect on FcRIII binding.

Greenwood et al [Eur. J. Immunol. 1993. 23, 1098], using inter and intra domain switch variants between lgG1 and lgG4, identify residues in lgG1 necessary for FcRIII binding in the C-terminal half of the CH2 domain beyond 292. This indicates that the residues we have identified within the lower hinge/N-terminal end of the CH2 region are necessary but not sufficient for FcRIII effector function mediated through binding of human lgG1. lgG1 variants with changes at 235 failed to mediate lysis with human complement and did not bind purified human C1q. We also found that an lgG1 molecule containing a change at 320 gave complement mediated killing equivalent to the lgG1 wild type. Residues, Glu 318, Lys 320 and Lys 322 were identified by protein engineering studies as necessary in mouse lgG2b for C1q binding [Duncan, A R and Winter G, Nature, 1988. 322, 21]. The same study also demonstrated that the 235 change in mouse lgG2b left unchanged its affinity for human C1q [Duncan, A R and Winter G, Nature, 1988. 322, 21]. The apparent contradiction between these observations is probably due to differences in C1q contacts between human lgG1 and mouse lgG2b.

We found that most changes in the lower hinge/N-terminal end of the CH2 domain affect C1q binding. The G1/G2 lower hinge exchange abolished complement fixation and the change at 237 also reduces it significantly. In contrast, Greenwood et al [Eur. J. Immunol. 1993. 23, 1098], found residues necessary for human complement fixation in the C-terminal half of the CH2 domain. Tao et al [J. exp. Med. 1993. 178. 661] also identify the C-terminal half of the CH2 domain as necessary for complement fixation. They are able to separate C1q binding from complement mediated lysis. lgG1 with a Pro to Ser change at 331, in the C-terminal half of the CH2 domain, is able to bind human C1q as well as the wild type but is unable to activate complement. This predicts that the amino acids that we have identified within the lower hinge/N-terminal end of the CH2 region are necessary for C1q binding and that the C-terminal residues are necessary for the binding and activation of the antibody dependent complement cascade beyond C1q.

TABLE 5 Summary of L-243 Isotype Series

L243 RI RIII C1q MLR TT - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

G2 - - - ++ ++

G4 + - - ++ ++

G1 +++ +++ +++ ++++ ++++

G1L235E - ++± ± +++± +++± G1L235A + +++ + ++++ ++++

G1G237A + + + ++ ++

TABLE 6

Human Isotype Mutants

Gene Residue From To NAME

G1 235 L E G1[L235E]

G1 235 L A G1[L235A]

G1 237 G A G1[G237A]

G1 320 K A G1[K320A]

G4 235 L E G4[L235E]

G1 231-238 APELLGGP AP-PVAGP G1/G2L-hinge

TABLE 7

Summary of L-243 Isotype Series

L243 RIa Rlllb Complement

G2 >10 >100000 >20/0

G4 1.2 10000ex >20/0

G4[L235E] >10 > 100000 >20/0

G1 0.13 5 0.6/65

G1/G2Lh >10 500 >20/0

G1[L235E] >10 40 >20/0

G1[L235A] 5.0 9 >20/0

G1[G237A] >10 10000eX 2.0/20

G1[K320A] 0.1 10 0.6/70

a) mg/ml antibody necessary for 50% inhibition of binding of FITC- labelled mouse lgG2a antibody to U937 cells. b) ng/ml antibody necessary for half maximal cell killing in ADCC. (ex) extrapolated value. c) mg/ml antibody necessary for half maximal cell killing by human complement and percent plateau cell killing. EXAMPLE 3

L243 is a mouse monoclonal antibody raised against human MHC Class II. The nucieotide and amino acid sequences of L243 VI and Vh are shown in Figures 5 and 3 respectively. The following examples describe the humanisation of the L243 antibody (CDR grafting).

CDR grafting of L243 liαht chain

Alignment of the framework regions of L243 light chain with those of the four human light chain subgroups [Kabat, E.A., Wu, T.T., Perry, H.M., Gottesman, K.S. and Foeller, C. 1991 , Sequences of Proteins of Immunological Interest, Fifth Edition] revealed that L243 was most homologous to antibodies in human light chain subgroup 1. Consequently, for constructing the CDR grafted light chain, the framework regions chosen corresponded to those of the human Group 1 consensus sequence. A' comparison of the amino acid sequences of the framework regions of L243 and the consensus human group I light chains is given below and shows that there are 21 differences (underlined) between the two sequences.

Analysis of the contribution that any of these framework differences might have on antigen binding (see published International patent application No. WO91/09967) identified 4 residues for investigation; these are at positions 45,49,70 and 71. Based on this analysis, two versions of the CDR grafted light chain were constructed. In the first of these, L243-gL1 , residues 45,49,70 and 71 are derived from the L243 light chain while in the second, L243-gL2, all residues are human consensus.

Light chain Comparisons

Kl

Construction of CDR grafted light chain L243-gL1

The construction of L243-gL1 is given below in detail. The following oligonucleotides were used in the Polymerase Chain Reactions (PCR) to introduce changes into the framework regions of the chimeric light chain: R5043 : 5 'GTAGGAGACCGGGTCACCATCACATGTCGAGCAAA3 '

R5CH4 : 5 'CTGAGGAGCTTTTCCTGGTTTCTGCTGATACCATGCTAAA3 ' R5045 : 5 'AAACCAGGAAAAGCTCCTCAGCTCCTGATCTTTGCTGCATC3 ' R5046 : 5 'CTTCTGGCTGCAGGCTGGAGATAGTTAGGGTATACTGTGTGCC3 ' R5047 : 5 'CTTCAGCCTGCAGCCAGAAGATTTTGCTACTTATTACTGTCAA3 ' R5048 : 5 'GGGCCGCTACCGTACGTTTTAGTTCCACTTTGGTGCCTTGACCGAA3 '

Three reactions, each of 20 μl, were set up each containing 10 mM Tris- HCI pH 8.3, 1.5 mM MgCI2, 50 mM KCI, 0.01% w/v gelatin, 0.25 mM each deoxyribonucleoside triphosphate, 0.1 μg chimeric L243 light chain DNA , 6 pmoles of R5043/R5044 or R5045/R5046 or R5047/R5048 and 0.25 units Taq polymerase. Reactions were cycled through 94°C for 1 minute, 55°C for 1 minute and 72°C for 1 minute. After 30 cycles, each reaction was analysed by electrophoresis on an agarose gel and the PCR fragments excised from the gel and recovered using a Mermaid Kit.

Aliquots of these were then subjected to a second round of PCR. The reaction, 100 μl, contained 10 mM Tris-HCI pH 8.3, 1.5 mM MgCI2, 50 mM KCI, 0.01% w/v gelatin, 1/10 of each of the three PCR fragments from the first set of reactions, 30 pmoles of R5043 and R5048 and 2.5 units Taq polymerase. Reaction temperatures were as above. After the PCR, the mixture was extracted with phenol / chloroform and then with chloroform and precipitated with ethanol. The ethanol precipitate was recovered by centrifugation, dissolved in the appropriate buffer and restricted with the enzymes BstEII and Spll. The resulting product was finally electrophoresed on an agarose gel and the 270 base pair DNA fragment recovered from a gel slice and ligated into the vector pMR15.1 (Figure 1) that had previously been digested with the same enzymes.

The ligation mixture was used to transform E. coli LM1035 and resulting colonies analysed by PCR, restriction enzyme digests and nucieotide sequencing. The nucieotide and amino acid sequence of the VI region of L243-gL1 is shown in Figure 22.

Construction of CDR grafted light chain L243-gL2

L243-gL2 was constructed from L243-gL1 using PCR. The following oligonucleotides were used to introduce the amino acid changes : R1053 : 5 'GCTGACAGACTAACAGACTGTTCC3 '

R5350 :

5 'TCTAGATGGCACACCATCTGCTAAGTTTGATGCAGCATAGATCAGGAGCTTAGGA

GC3 '

R5349 :

5 'GCAGATGGTGTGCCATCTAGATTCAGTGGCAGTGGATCAGGCACAGACTTTACCC

TAAC3 '

R684 : 5 'TTCAACTGCTCATCAGAT3 '

Two reactions, each 20 μl, were set up each containing 10 mM Tris-HCI pH 8.3, 1.5 mM MgCI2, 50 mM KCI, 0.01% w/v gelatin, 0.25 mM each deoxyribonucleoside triphosphate, 0.1 μg L243-gL1, 6 pmoles of R1053/ R5350 or R5349/R684 and 0.25 units Taq polymerase. Reactions were cycled through 94°C for 1 minute, 55°C for 1 minute and 72°C for 1 minute. After 30 cycles, each reaction was analysed by electrophoresis on an agarose gel and the PCR fragments excised from the gel and recovered using a Mermaid Kit. Aliquots of these were then subjected to a second round of PCR. The reaction, 100 μl, contained 10 mM Tris-HCI pH 8.3, 1.5 mM MgCI2, 50 mM KCI, 0.01% w/v gelatin, 1/5 of each of the PCR fragments from the first set of reactions, 30 pmoles of R1053 and R684 and 2.5 units Taq polymerase. Reaction temperatures were as above. After the PCR, the mixture was extracted with phenol / chloroform and then with chloroform and precipitated with ethanol. The ethanol precipitate was recovered by centrifugation, dissolved in the appropriate buffer and restricted with the enzymes BstEII and Spll. The resulting product was finally electrophoresed on an agarose gel and the 270 base pair DNA fragment recovered from a gel slice and ligated into the vector pMR15.1 (Figure 1) that had previously been digested with the same enzymes.

The ligation mixture was used to transform E. coli LM1035 and resulting colonies analysed by PCR, restriction enzyme digests and nucieotide sequencing. The nucleotide and amino acid sequence of the VI region of L243-gL2 is shown in Figure 23.

CDR grafting of L243 heavy chain

CDR grafting of L243 heavy chain was accomplished using the same strategy as described for the light chain. L243 heavy chain was found to be most homologous to human heavy chains belonging to subgroup 1 and therefore the consensus sequence of the human subgroup 1 frameworks was chosen to accept the L243 heavy chain CDRs.

A comparison of the framework regions of the two structures is shown below where it can be seen that L243 differs from the human consensus at 28 positions (underlined). After analysis of the contribution that any of these might make to antigen binding, only residues 27,67,69,71,72 and 75 were retained in the CDR grafted heavy chain, L243-gH.

Heavy chain comparisons

2

7

Construction of CDR grafted heavy chain. L-243 gH

L243gH was assembled by subjecting overlapping oligonucleotides to PCR in the presence of the appropriate primers. The following oligonucleotides. were used in the PCR: R3004 : 5 'GGGGGGAAGCTTGCCGCCACCATGG3 ' R3005 : 5 'CCCCCCGGGCCCTTTGTAGAAGCAG3 ' R4902 : 5 'GACAACAGGAGTGCACTCTCAGGTGCAGCTGGTGCAGTCTGGAGC

AGAGGTGAAGAAGCCTGGAGCATCTG3 ' R4903 : 5 'ACATTCACAAATTACGGAATGAATTGGGTGAGACAGGCACCTGGA

CAGGGACTCGAGTGGA3 ' R4904 : 5 ' CCTACGTACGCAGACGACTTCAAGGGAAGATTCACATTCACACTG

GAGACATCTGCATCTACAGCATACAT3 ' R4905 : 5 'CAGCAGTGTACTACTGTGCAAGAGACATTACAGCAGTGGTACCTA

CAGGATTCGACTACTGGGGACAGGGA3 ' R4897 : 5 'TGAGAGTGCACTCCTGTTGTCACAGACAGGAAGAACAGGAACACC

CAAGACCACTCCATGGTGGCGGCAAGCTTCCCCCC3 ' R4898 : 5 'CATTCCGTAATTTGTGAATGTGAATCCAGATGCCTTACAAGACAC

CTTCACAGATGCTCCAGGCTTCTTCA3 ' R4899 : 5 'GAAGTCGTCTGCGTACGTAGGCTCTCTTGTGTATGTATTAATCCA

TCCCATCCACTCGAGTCCCTGTCCAG3 ' R4900 : 5 'TTGCACAGTAGTACACTGCTGTGTCCTCAGATCTCAGAGAAGACA GCTCCATGTATGCTGTAGATGCAGAT3 ' R4901 : 5 'CCCCCCGGGCCCTTTGTAGAAGCAGAAGACACTGTCACCAGTGTT

CCCTGTCCCCAGTAGTCGAA3 '

The assembly reaction, 50 μl, contained 10 mM Tris-HCI pH 8.3, 1.5 mM MgCI2, 50 mM KCI, 0.01% w/v gelatin, 0.25 mM each deoxyribonucleoside triphosphate, 1 pmole of each Of R4897 - R4905, 10 pmoles of each of R3004 and R3005 and 2.5 units Taq polymerase. Reactions were cycled through 94 C for 1 minute, 55 C for 1 minute and 72 C for 1 minute. After 30 cycles, the reaction was extracted with phenol/chloroform (1/1), then with chloroform and precipitated with ethanol. After centrifugation, the DNA was dissolved in the appropriate restriction buffer and digested with HindIII and ApaI. The resulting fragment was isolated from an agarose gel and ligated into pMR14 (Figure 2) that had previously been digested with the same enzymes. pMR14 contains the human gamma 4 heavy chain constant region and so the heavy chain expressed from this vector will be a gamma 4 isotype. The ligation mixture was used to transform E. coli LM1035 and resulting bacterial colonies screened by restriction digest and nucieotide sequence analysis. In this way, a plasmid containing the correct sequence for L243gH was identified (Figure 24). Construction of Gamma 1 versions of chimeric and CDR grafted L243 heavy chain

Human Gamma 1 versions of L243 heavy chains were constructed by transferring the variable regions of both the murine and the CDR grafted heavy chains as HindIII to Apal fragments into the vector pGammal (Figure 6). This vector contains the human Gamma 1 heavy chain constant region.

Evaluation of activities of CDR grafted genes

The activities of the CDR grafted genes were evaluated by expressing them in mammalian cells and purifying and quantitating the newly synthesised antibodies. The methodology for this is described next, followed by a description of the biochemical and cell based assays used for the biological characterisation of the antibodies. a) Gene Expression in CHO cells

Chimeric and CDR grafted L243 was produced for biological evaluation by transient expression of heavy and light chain pairs after co-transfection into Chinese Hamster Ovary (CHO) cells using calcium phosphate precipitation as described above for production of chimeric L243. Antibody concentration was determined using a human Ig ELISA (see below). b) ELISA

For the ELISA, Nunc ELISA plates were coated overnight at 4°C with a F(ab)2 fragment of a polyclonal goat anti-human Fc fragment specific antibody (Jackson Immuno-research, code 109-006-098) at 5 μg/ml in coating buffer (15mM sodium carbonate, 35mM sodium hydrogen carbonate, pH6.9). Uncoated antibody was removed by washing 5 times with distilled water. Samples and purified standards to be quantitated were diluted to approximately 1 μg/ml in conjugate buffer (0.1 M Tris-HCl pH7.0, 0.1M NaCI, 0.2% v/v Tween 20, 0,2% w/v Hammersten casein). The samples were titrated in the microtitre wells in 2-fold dilutions to give a final volume of 0.1 ml in each well and the plates incubated at room temperature for 1 hr with shaking. After the first incubation step the plates were washed 10 times with distilled water and then incubated for 1 hr as before with 0.1 ml of a mouse monoclonal anti-human kappa (clone GD12) peroxidase conjugated antibody (The Binding Site, code MP135) at a dilution of 1 in 700 in conjugate buffer. The plate was washed again and substrate solution (0.1 ml) added to each well. Substrate solution contained 150μl N,N,N,N-tetramethylbenzidine (10 mg/ml in DMSO), 150μl hydrogen peroxide (30% solution) in 10 ml 0.1 M sodium acetate/sodium citrate, pH6.0. The plate was developed for 5 -10 minutes until the absorbance at 630nm was approximately 1.0 for the top standard. Absorbance at 630nm was measured using a plate reader and the concentration of the sample determined by comparing the titration curves with those of the standard. c) Competition Assay

The principle of this assay is that if the antigen binding region has been correctly transferred from the murine to human frameworks, then the CDR grafted antibody will compete equally well with a labelled chimeric antibody for binding to human MHC Class II. Any changes in the antigen binding potency will be revealed in this system.

Chimeric L243 was labelled with fluorescein (FITC) using the method of Wood et al [Wood.T., Thompson, S and Goldstein, G 1965, J. Immunol 95, 225-229 and used in the competition assay described above.

Figure 25 compares the ability of combinations of L243 heavy and light chains to compete with FITC-labelled chimeric L243 for binding to JY cells. All combinations were effective competitors although none of those containing CDR grafted heavy or light chains were as effective as the chimeric antibody itself. Thus, the combinations cH/gL1 , gH/cL and gH/gL1 were 89%, 78% and 64% respectively, as effective as chimeric L243 in this assay. d) Determination of Affinity constants by Scatchard Analysis

L243 antibodies were titrated from 10μg/ml in PBS, 5% fetal calf serum, 0.1% sodium azide in 1.5-fold dilutions (150μl each) before incubation with 5×104 JY cells per titration point for 1 hour on ice. The cells were previously counted, washed and resuspended in the same medium as the samples. After incubation, the cells were washed with 5ml of the above medium, spun down and the supernatant discarded. Bound antibody was revealed by addition of 100μl of a 1/100 dilution of FITC conjugated antihuman Fc monoclonal (The Binding Site; code MF001). The cells were then incubated for 1 hour on ice and then the excess FITC conjugate removed by washing as before. Cells were dispersed in 250μl of the same buffer and the median fluorescence intensity per cell was determined in a FACScan (Becton Dickinson) and calibrated using standard beads (Flow Cytometry standards Corporation). The number of molecules of antibody bound per cell at each antibody concentration was thus established and used to generate Scatchard plots. For the purpose of calculation, it was assumed that the valency of binding of the FITC conjugate to L243 was 1:1 and that the F/P ratio was 3.36 (as given by the manufacturer).

A Scatchard plot comparing the affinities of chimeric L243 (cH/cL), L243-gH/L243-gL1 and L243-gH/L243-gL2 is shown in Figure 26. Chimeric L243 was found to have an apparent Kd of 4.1 nM while the CDR grafted antibodies containing gL1 and gL2 light chains had apparent Kd of 6.4nM and 9.6nM respectively. The difference in Kd values of the antibodies with the two CDR grafted light chains reflects the contribution made by residues 45,49,70 and 71 that had been retained, in L243-gL1, from the parent light chain. e) Antibody dependent cell mediated cytotoxicity

The ability of chimeric and CDR grafted L243 to mediate antibody dependent ceil cytotoxicity (ADCC) was compared as described previously. The principle of the experiment is that antibodies will mediate lysis of target cells bearing their cognate antigen if the Fc of the antibody is able to interact with Fc receptor bearing effector cells capable of cytotoxicity. A comparison of the activities of chimeric (cH/cL) and CDR grafted (gH/gL1) L243 human gamma 1 isotypes in the above assay is shown in Figure 27. Both antibodies were effective mediators of cell lysis with maximal activity being achieved at antibody concentrations of less than 100 ng/ml. There was no significant difference between the activities of the two antibodies. f) Immune function tests

Ex vivo T cell function experiments were performed where an interaction between MHC-II and the T cell receptor was an obligatory requirement for T cell activation. Chimeric and CDR grafted L243 antibodies were compared in mixed lymphocyte reactions, which measures both naive and memory T cell activation, and in recall responses to tetanus toxoid which only measures a memory T cell response. 1) Mixed Lymphocyte reaction - as described above

The principle of the experiment is that when leucocytes from one individual are mixed with those of another individual which express different HLA alleles, they will recognise each other as foreign and the lymphocytes will become activated. This activation is dependent primarily on interactions between the CD3/TcR complex on T cells and the MHC Class II molecule on antigen presenting cells. L243 is known to inhibit this reaction.

When an MLR was carried out to compare the effectiveness of the Gamma 1 isotypes of chimeric and CDR grafted L243 as inhibitors of T cell activation, no significant differences were observed between the two antibodies (Figure 28). Greater than 90% inhibition of the MLR was observed using 100 ng/ml of either antibody. 2) T cell recall response to Tetanus toxoid

The ability of chimeric and CDR grafted L243 to suppress a secondary response was assessed using a recall response to Tetanus toxin. The principle of the experiment is described above. The results of an experiment comparing the ability of human gamma 1 isotypes of chimeric and CDR grafted L243 to inhibit the response to TT is shown in Figure 29. Both antibodies were effective inhibitors of the T cell response to TT and produced titration curves that were indistinguishable. EXAMPLE 4

The ability of CDR grafted L243 with the alteration at position 235 i.e. L[235E] to mediate antibody dependent cell cytoxicity (ADCC) was measured essentially as described in the previous examples. The results are shown in Figure 27.

Similarly the CDR grafted L243 [L235E] antibody was tested in a mixed lymphocyte reaction and in recall response to tetanus toxoid essentially as described in the previous Examples. The results are provided in Figures 28 and 29. The ability of the CDR-grafted L243 antibody [L235E] to fix human complement was assessed using the technique of antibody dependent complement mediated cytotoxicity as described in the previous Examples. The results are shown in Figure 30.

Claims

1. An altered antibody wherein one or more amino acid residues in the N-terminal region of the CH2 domain of said antibody are altered characterised in that the ability of said antibody to fix complement is altered as compared to unaltered antibody.
2. An antibody according to Claim 2 which binds to one or more cellular Fc receptors and does not bind significantly to FcR1.
3. An antibody according to Claim 1 or 2 wherein the amino acid residue which is altered lies within amino acid positions 231 to 239.
4. An antibody according to any of the preceding claims which is an MHC specific antibody.
5. A method for producing an altered antibody with altered ability to fix complement as compared to unaltered antibody comprising altering one or more amino acids in the N-terminal region of the CH2 domain of said antibody altering the ability of said antibody to fix complement as compared with unaltered antibody.
6. A method of modulating the function of cell surface associated antigens avoiding complement mediated toxicity comprising administration of an altered antibody wherein one or more amino acid residues in the N-terminal region of the CH2 domain of said antibody are altered characterised in that the ability of said antibody to fix complement is altered as compared to unaltered antibody and also said antibody.
7. A method according to Claim 6 wherein said altered antibody is able to bind one or more cellular Fc receptors especially FcRIII while binding to FcRI is significantly reduced.
8. A therapeutic, diagnostic or pharmaceutical composition comprising an altered antibody according to any of the preceding claims.
9. A process for the preparation of a therapeutic, pharmaceutical or diagnostic composition comprising admixing an altered antibody according to any of the preceding claims together with a pharmaceutically acceptable excipient, diluent or carrier.
10. A method of therapy and diagnosis comprising administering an effective amount of an altered antibody according to any of the preceding claims to a human or animal subject.
11. A process for producing an altered antibody according to any of the preceding claims comprising:
a) producing in an expression vector an operon having a DNA sequence which encodes an antibody heavy or light chain
b) producing in an expression vector an operon having a DNA sequence which encodes a complementary antibody light or heavy chain
c) transfecting a host cell with both operons
and
d) culturing the transfected cell line to produce the antibody molecule.
12. A process according to Claim 11 wherein said DNA sequences encode a humanised antibody.
13. A process according to Claim 12 wherein said DNA sequences encode a CDR-grafted heavy and/or light chain, or a chimeric antibody
14. A process according to Claim 11 , 12 or 13 wherein at least one of the expression vectors contains a DNA sequence encoding an antibody heavy chain in which one or more amino acid residues in the N- terminal region of the CH2 domain has been altered from that in the corresponding unaltered antibody.
15. A process according to Claim 11 or 12 wherein the alteration in the N- terminal region of the CH2 domain is made after the unaltered antibody has been expressed.
16. An altered antibody according to any of the preceding claims derived from the anti-MHC antibody L243 (ATCC HB55).
17. An altered antibody according to any of the preceding claims wherein the lower hinge of said antibody has been exchanged with an antibody of different isotype.
18. An altered antibody according to Claim 17 wherein an lgG1 lower hinge region has been exchanged with a lgG2 lower hinge region.
19. A method of treating diseases in which antibody therapy leads to undesirable toxicity due to antibody mediated complement fixation comprising administering an altered antibody wherein one or more amino acid residues in the N-terminal region of the CH2 domain of said antibody are altered characterised in that the ability of said antibody to fix complement is altered as compared to unaltered antibody.
EP19940917750 1993-06-16 1994-06-15 Antibodies Withdrawn EP0714409A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
GB9312415 1993-06-16
GB939312415A GB9312415D0 (en) 1993-06-16 1993-06-16 Altered antibodies
GB9401597 1994-01-27
GB9401597A GB9401597D0 (en) 1994-01-27 1994-01-27 Altered antibodies
GB9402499A GB9402499D0 (en) 1994-02-09 1994-02-09 Altered abtibodies
GB9402499 1994-02-09
GB9406244 1994-03-29
GB9406244A GB9406244D0 (en) 1994-03-29 1994-03-29 Altered antibodies
PCT/GB1994/001290 WO1994029351A2 (en) 1993-06-16 1994-06-15 Antibodies

Publications (1)

Publication Number Publication Date
EP0714409A1 true EP0714409A1 (en) 1996-06-05

Family

ID=27451034

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19940917750 Withdrawn EP0714409A1 (en) 1993-06-16 1994-06-15 Antibodies

Country Status (5)

Country Link
EP (1) EP0714409A1 (en)
JP (1) JPH08511420A (en)
AU (1) AU691811B2 (en)
CA (1) CA2163345A1 (en)
WO (1) WO1994029351A2 (en)

Families Citing this family (671)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816567A (en) * 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US5985599A (en) * 1986-05-29 1999-11-16 The Austin Research Institute FC receptor for immunoglobulin
US5824307A (en) 1991-12-23 1998-10-20 Medimmune, Inc. Human-murine chimeric antibodies against respiratory syncytial virus
DE69530763T2 (en) 1994-03-29 2004-02-26 Celltech Therapeutics Ltd., Slough Antibodies to E-selectin
US7803904B2 (en) 1995-09-01 2010-09-28 Millennium Pharmaceuticals, Inc. Mucosal vascular addressing and uses thereof
US7247302B1 (en) 1996-08-02 2007-07-24 Bristol-Myers Squibb Company Method for inhibiting immunoglobulin-induced toxicity resulting from the use of immunoglobulins in therapy and in vivo diagnosis
US7147851B1 (en) 1996-08-15 2006-12-12 Millennium Pharmaceuticals, Inc. Humanized immunoglobulin reactive with α4β7 integrin
EP1042505A1 (en) * 1997-12-22 2000-10-11 Cockbain, Julian Method for disease prognosis based on fc receptor genotyping
US6528624B1 (en) 1998-04-02 2003-03-04 Genentech, Inc. Polypeptide variants
US6194551B1 (en) 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
US6242195B1 (en) 1998-04-02 2001-06-05 Genentech, Inc. Methods for determining binding of an analyte to a receptor
JP2002510481A (en) * 1998-04-02 2002-04-09 ジェネンテック・インコーポレーテッド Antibody variants and fragments thereof
GB9809951D0 (en) * 1998-05-08 1998-07-08 Univ Cambridge Tech Binding molecules
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
PL209786B1 (en) 1999-01-15 2011-10-31 Genentech Inc. Variant of mother polypeptide containing Fc region, polypeptide containing variant of Fc region with altered affinity of Fc gamma receptor binding (Fc R), polypeptide containing variant of Fc region with altered affinity of Fc gamma neonatal receptor binding (Fc Rn), composition, isolated nucleic acid, vector, host cell, method for obtaining polypeptide variant, the use thereof and method for obtaining region Fc variant
US7183387B1 (en) 1999-01-15 2007-02-27 Genentech, Inc. Polypeptide variants with altered effector function
HU0301208A2 (en) 1999-02-12 2003-08-28 Genetics Institute, Llc B7-humanized immunoglobulin molecules and responsive handling procedures done these
US6972125B2 (en) 1999-02-12 2005-12-06 Genetics Institute, Llc Humanized immunoglobulin reactive with B7-2 and methods of treatment therewith
HU0300369A2 (en) 2000-04-11 2003-06-28 Genentech, Inc. Multivalent antibodies and their applications
AU5345901A (en) 2000-04-13 2001-10-30 Univ Rockefeller Enhancement of antibody-mediated immune responses
US20010046496A1 (en) 2000-04-14 2001-11-29 Brettman Lee R. Method of administering an antibody
US20030158382A1 (en) 2000-04-21 2003-08-21 Nobutaka Wakamiya Novel collectins
ES2343351T3 (en) 2000-06-08 2010-07-29 Immune Disease Institute, Inc. Methods and compositions for inhibiting reperfusion injury mediated by immunoglobulin.
US7179892B2 (en) 2000-12-06 2007-02-20 Neuralab Limited Humanized antibodies that recognize beta amyloid peptide
WO2002060919A2 (en) 2000-12-12 2002-08-08 Medimmune, Inc. Molecules with extended half-lives, compositions and uses thereof
US7658921B2 (en) 2000-12-12 2010-02-09 Medimmune, Llc Molecules with extended half-lives, compositions and uses thereof
US20030077739A1 (en) 2001-08-27 2003-04-24 Genentech, Inc. System for antibody expression and assembly
CA2463634A1 (en) 2001-10-15 2003-04-24 Kirin Beer Kabushiki Kaisha Anti-hla-dr antibody
US7053202B2 (en) 2001-10-19 2006-05-30 Millennium Pharmaceuticals, Inc. Immunoglobulin DNA cassette molecules, monobody constructs, methods of production, and methods of use therefor
US8084582B2 (en) 2003-03-03 2011-12-27 Xencor, Inc. Optimized anti-CD20 monoclonal antibodies having Fc variants
US8388955B2 (en) 2003-03-03 2013-03-05 Xencor, Inc. Fc variants
US20090010920A1 (en) 2003-03-03 2009-01-08 Xencor, Inc. Fc Variants Having Decreased Affinity for FcyRIIb
US8188231B2 (en) 2002-09-27 2012-05-29 Xencor, Inc. Optimized FC variants
US9714282B2 (en) 2003-09-26 2017-07-25 Xencor, Inc. Optimized Fc variants and methods for their generation
US9051373B2 (en) 2003-05-02 2015-06-09 Xencor, Inc. Optimized Fc variants
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
US8093357B2 (en) 2002-03-01 2012-01-10 Xencor, Inc. Optimized Fc variants and methods for their generation
US7132100B2 (en) 2002-06-14 2006-11-07 Medimmune, Inc. Stabilized liquid anti-RSV antibody formulations
US8187593B2 (en) 2002-08-14 2012-05-29 Macrogenics, Inc. FcγRIIB specific antibodies and methods of use thereof
US8968730B2 (en) 2002-08-14 2015-03-03 Macrogenics Inc. FcγRIIB specific antibodies and methods of use thereof
US8530627B2 (en) 2002-08-14 2013-09-10 Macrogenics, Inc. FcγRIIB specific antibodies and methods of use thereof
US8946387B2 (en) 2002-08-14 2015-02-03 Macrogenics, Inc. FcγRIIB specific antibodies and methods of use thereof
AU2008229860B2 (en) * 2003-05-02 2012-01-12 Xencor, Inc Optimized Fc variants and methods for their generation
US8101720B2 (en) 2004-10-21 2012-01-24 Xencor, Inc. Immunoglobulin insertions, deletions and substitutions
DK1931709T3 (en) 2005-10-03 2017-03-13 Xencor Inc Fc variants with optimized Fc receptor binding properties
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
WO2004074430A2 (en) * 2002-12-06 2004-09-02 Diadexus, Inc. Compositions, splice variants and methods relating to lung specific genes and proteins
US7960512B2 (en) 2003-01-09 2011-06-14 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
AU2004204494B2 (en) 2003-01-09 2011-09-29 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
CA2518371A1 (en) 2003-03-14 2004-09-30 Wyeth Antibodies against human il-21 receptor and uses therefor
CA2530388A1 (en) 2003-06-27 2005-01-06 Biogen Idec Ma Inc. Modified binding molecules comprising connecting peptides
EP1664116A4 (en) 2003-08-22 2009-06-03 Biogen Idec Inc Improved antibodies having altered effector function and methods for making the same
US7741449B2 (en) 2003-12-10 2010-06-22 Medarex, Inc. Anti-interferon alpha antibodies
ES2537163T3 (en) 2003-12-10 2015-06-03 E. R. Squibb & Sons, L.L.C. IP-10 antibodies and their uses
EP2135619A1 (en) 2003-12-10 2009-12-23 Millennium Pharmaceuticals, Inc. Humanized anti-CCR2 antibodies and methods of use therefor
NZ547438A (en) 2003-12-19 2010-01-29 Genentech Inc Monovalent antibody fragments useful as therapeutics
SI1706424T1 (en) * 2004-01-12 2010-01-29 Applied Molecular Evolution Fc region variants
EP1725659B1 (en) 2004-03-01 2011-02-09 Immune Disease Institute, Inc. Natural igm antibodies and inhibitors thereof
EP2357201B1 (en) 2004-04-13 2017-08-30 F. Hoffmann-La Roche AG Anti-P-selectin antibodies
KR101297146B1 (en) 2004-05-10 2013-08-21 마크로제닉스, 인크. HUMANIZED FcγRIIB SPECIFIC ANTIBODIES AND METHODS OF USE THEREOF
PT1781705E (en) 2004-06-21 2014-12-23 Medarex Llc Interferon alpha receptor i antibodies and their uses
EP1791563A4 (en) 2004-07-26 2009-07-08 Biogen Idec Inc Anti-cd154 antibodies
ES2426817T3 (en) 2004-08-04 2013-10-25 Mentrik Biotech, Llc Fc variants regions
CN104804095A (en) 2004-08-05 2015-07-29 健泰科生物技术公司 Humanized anti-cmet antagonists
EP1784424A4 (en) 2004-08-16 2009-03-18 Medimmune Inc Eph receptor fc variants with enhanced antibody dependent cell-mediated cytotoxicity activity
RS57636B1 (en) 2004-09-03 2018-11-30 Genentech Inc Humanized anti-beta7 antagonists and uses therefor
US7700099B2 (en) 2005-02-14 2010-04-20 Merck & Co., Inc. Non-immunostimulatory antibody and compositions containing the same
CA2587766A1 (en) 2004-11-10 2007-03-01 Macrogenics, Inc. Engineering fc antibody regions to confer effector function
WO2006053301A2 (en) 2004-11-12 2006-05-18 Xencor, Inc. Fc variants with altered binding to fcrn
US8367805B2 (en) 2004-11-12 2013-02-05 Xencor, Inc. Fc variants with altered binding to FcRn
US8802820B2 (en) 2004-11-12 2014-08-12 Xencor, Inc. Fc variants with altered binding to FcRn
US8546543B2 (en) 2004-11-12 2013-10-01 Xencor, Inc. Fc variants that extend antibody half-life
HUE026107T2 (en) 2004-12-28 2016-05-30 Innate Pharma Monoclonal antibodies against NKG2A
AU2006214121B9 (en) 2005-02-15 2013-02-14 Duke University Anti-CD19 antibodies and uses in oncology
EP2535355B1 (en) 2005-03-23 2019-01-02 Genmab A/S Antibodies against CD38 for treatment of multiple myeloma
US9284375B2 (en) 2005-04-15 2016-03-15 Macrogenics, Inc. Covalent diabodies and uses thereof
JP5838021B2 (en) 2005-04-15 2015-12-24 マクロジェニクス,インコーポレーテッド Covalent diabody and its use
US9963510B2 (en) 2005-04-15 2018-05-08 Macrogenics, Inc. Covalent diabodies and uses thereof
JP5255435B2 (en) 2005-04-26 2013-08-07 メディミューン,エルエルシー Regulation of antibody effector function of the hinge domain operation
JP5047947B2 (en) 2005-05-05 2012-10-10 デューク ユニバーシティ Anti-cd19 antibody treatment for autoimmune disease
DK2161336T4 (en) 2005-05-09 2017-04-24 Ono Pharmaceutical Co Human monoclonal antibodies to programmed death 1 (PD-1) as well as methods of treating cancer using the anti-PD-1 antibodies alone or in combination with other immunotherapies
EP1899477A4 (en) 2005-07-01 2010-01-20 Medimmune Inc An integrated approach for generating multidomain protein therapeutics
CN104356236A (en) 2005-07-01 2015-02-18 梅达雷克斯有限责任公司 Human Monoclonal Antibodies To Programmed Death Ligand 1 (PD-L1)
CA2615846A1 (en) 2005-07-21 2007-01-25 Genmab A/S Potency assays for antibody drug substance binding to an fc receptor
ES2579602T3 (en) 2005-08-10 2016-08-12 Macrogenics, Inc. Identification and modification of antibodies with variant Fc regions and methods of using these
JP4860703B2 (en) 2005-10-06 2012-01-25 ゼンコー・インコーポレイテッドXencor、 Inc. Optimized anti-cd30 antibody
CA2625619A1 (en) 2005-10-14 2007-04-26 Medimmune, Inc. Cell display of antibody libraries
PL2532679T3 (en) 2005-10-21 2017-09-29 Novartis Ag Human antibodies against il13 and therapeutic uses
EP2465870A1 (en) 2005-11-07 2012-06-20 Genentech, Inc. Binding polypeptides with diversified and consensus VH/VL hypervariable sequences
KR101434682B1 (en) 2005-12-02 2014-08-27 제넨테크, 인크. Binding polypeptides and uses thereof
RU2426742C2 (en) 2005-12-02 2011-08-20 Дженентек, Инк. Compositions and methods of treating diseases and disorders associating cytokine signal transmission
CA2638902C (en) 2005-12-08 2014-09-23 Medarex, Inc. Human monoclonal antibodies to fucosyl-gm1 and methods for using anti-fucosyl-gm1 antibodies
AR057237A1 (en) 2005-12-15 2007-11-21 Genentech Inc Methods and compositions for acting on polyubiquitin
PT1973950E (en) 2006-01-05 2014-12-29 Genentech Inc Anti-ephb4 antibodies and methods using the same
EP1984403A2 (en) 2006-01-12 2008-10-29 Alexion Pharmaceuticals, Inc. Antibodies to ox-2/cd200 and uses thereof
KR101617108B1 (en) 2006-01-20 2016-04-29 제넨테크, 인크. Anti-ephrinb2 antibodies and methods using same
TW200744634A (en) 2006-02-21 2007-12-16 Wyeth Corp Methods of using antibodies against human IL-22
TWI417301B (en) 2006-02-21 2013-12-01 Wyeth Corp Antibodies against human il-22 and uses therefor
EP1999148B8 (en) 2006-03-06 2014-03-05 Medlmmune, LLC Humanized anti-cd22 antibodies and their use in treatment of oncology, transplantation and autoimmune disease
AR059851A1 (en) 2006-03-16 2008-04-30 Genentech Inc Egfl7 antibodies and methods of use
JP5290148B2 (en) 2006-04-10 2013-09-18 ジェネンテック, インコーポレイテッド Disheveled (Dvl) PDZ modulators
WO2008105886A2 (en) 2006-05-26 2008-09-04 Macrogenics, Inc. HUMANIZED FCγRIIB-SPECIFIC ANTIBODIES AND METHODS OF USE THEREOF
SG172656A1 (en) 2006-05-30 2011-07-28 Genentech Inc Antibodies and immunoconjugates and uses therefor
CA2654000A1 (en) 2006-06-06 2008-05-22 Genentech, Inc. Anti-dll4 antibodies and methods using same
CA2656224C (en) 2006-06-26 2018-01-09 Macrogenics, Inc. Combination of fc.gamma.riib antibodies and cd20-specific antibodies and methods of use thereof
WO2008019199A2 (en) 2006-06-26 2008-02-14 Macrogenics, Inc. FCγRIIB-SPECIFIC ANTIBODIES AND METHODS OF USE THEREOF
SI2059536T1 (en) 2006-08-14 2014-06-30 Xencor, Inc. Optimized antibodies that target cd19
JP2010502220A (en) 2006-09-05 2010-01-28 ツィンマーマン デボラ エル. Antibodies and methods of use thereof for bone morphogenetic proteins and their receptors
AU2007294575B2 (en) 2006-09-08 2013-06-27 Medimmune, Llc Humanized anti-CD19 antibodies and their use in treatment of oncology, transplantation and autoimmune disease
WO2008036688A2 (en) 2006-09-18 2008-03-27 Xencor, Inc. Optimized antibodies that target hm1.24
EA018836B1 (en) 2006-10-02 2013-11-29 Медарекс, Л.Л.К. Human antibodies which bind to cxcr4, and their use
US8613925B2 (en) 2006-10-19 2013-12-24 Csl Limited Anti-IL-13Rα1 antibodies and their uses thereof
CA2666679C (en) 2006-10-19 2016-06-07 Merck & Co., Inc. High affinity antibody antagonists of interleukin-13 receptor alpha 1
KR20140116546A (en) 2006-10-27 2014-10-02 제넨테크, 인크. Antibodies and immunoconjugates and uses therefor
US8618248B2 (en) 2006-10-31 2013-12-31 President And Fellows Of Harvard College Phosphopeptide compositions and anti-phosphopeptide antibody compositions and methods of detecting phosphorylated peptides
KR101581961B1 (en) 2006-11-02 2016-01-04 악셀레론 파마 인코포레이티드 Alk1 and receptor ligands antagonists and their use
AU2007334264A1 (en) 2006-11-15 2008-06-26 Medarex, Inc. Human monoclonal antibodies to BTLA and methods of use
KR101552735B1 (en) 2006-12-01 2015-09-14 메다렉스, 엘.엘.시. Human antibodies and their use to bind to CD 22
US8652466B2 (en) 2006-12-08 2014-02-18 Macrogenics, Inc. Methods for the treatment of disease using immunoglobulins having Fc regions with altered affinities for FcγRactivating and FcγRinhibiting
JP5517626B2 (en) 2006-12-13 2014-06-11 メダレックス・リミテッド・ライアビリティ・カンパニーMedarex, L.L.C. Human antibodies and uses thereof to bind to Cd19
CA2672468A1 (en) 2006-12-14 2008-06-19 Medarex, Inc. Human antibodies that bind cd70 and uses thereof
WO2008100805A2 (en) 2007-02-09 2008-08-21 Genentech, Inc. Anti-robo4 antibodies and uses therefor
US7960139B2 (en) 2007-03-23 2011-06-14 Academia Sinica Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells
PL2644205T3 (en) 2007-04-12 2018-11-30 The Brigham And Women's Hospital, Inc. Targeting ABCB5 for cancer therapy
CN101861168B (en) 2007-05-07 2014-07-02 米迪缪尼有限公司 Anti-ICOS antibodies and their use in treatment of oncology, transplantation and autoimmune disease
EP1997830A1 (en) 2007-06-01 2008-12-03 AIMM Therapeutics B.V. RSV specific binding molecules and means for producing them
PE03212009A1 (en) 2007-06-04 2009-04-20 Genentech Inc Anti-notch1 nrr, preparation method and pharmaceutical composition
CA2683791A1 (en) 2007-06-06 2008-12-11 Domantis Limited Polypeptides, antibody variable domains & antagonists
CN101952312A (en) 2007-07-31 2011-01-19 米迪缪尼有限公司 Multispecific epitope binding proteins and uses thereof
AU2008287427B2 (en) 2007-08-13 2014-10-09 Vasgene Therapeutics, Inc. Cancer treatment using humanized antibodies that bind to EphB4
HUE042982T2 (en) 2007-09-04 2019-07-29 Compugen Ltd Polypeptides and polynucleotides, and uses thereof as a drug target for producing drugs and biologics
AR068767A1 (en) 2007-10-12 2009-12-02 Novartis Ag Sclerostin antibodies, compositions and methods of using these antibodies for treating a disease mediated disorder sclerostin
WO2009056634A2 (en) 2007-11-02 2009-05-07 Novartis Ag Molecules and methods for modulating low-density-lipoprotein receptor-related protein 6 (lrp6)
SI2514436T1 (en) 2007-11-07 2018-04-30 Genentech, Inc. Il-22 for use in treating microbial disorders
TWI580694B (en) 2007-11-30 2017-05-01 Genentech Inc Anti-vegf antibodies
JP5591712B2 (en) 2007-12-14 2014-09-17 ノボ・ノルデイスク・エー/エス Antibody and its use for human nkg2d
WO2009117030A2 (en) 2007-12-19 2009-09-24 Macrogenics, Inc. Improved compositions for the prevention and treatment of smallpox
AU2008339576B2 (en) 2007-12-21 2014-05-22 Medimmune Limited Binding members for interleukin-4 receptor alpha (IL-4Ralpha)
US8092804B2 (en) 2007-12-21 2012-01-10 Medimmune Limited Binding members for interleukin-4 receptor alpha (IL-4Rα)-173
AU2009203350B2 (en) 2008-01-11 2014-03-13 Gene Techno Science Co., Ltd. Humanized anti-alpha9 integrin antibodies and the uses thereof
EP2641612A1 (en) 2008-02-05 2013-09-25 Bristol-Myers Squibb Company Alpha 5 - beta 1 antibodies and their uses
CN101952454B (en) * 2008-02-08 2014-06-04 米迪缪尼有限公司 Anti-IFNAR1 antibodies with reduced Fc ligand affinity
LT2247304T (en) 2008-04-02 2016-10-25 Macrogenics, Inc. Her2/neu-specific antibodies and methods of using same
EP3045475B1 (en) 2008-04-02 2017-10-04 MacroGenics, Inc. Bcr-complex-specific antibodies and methods of using same
CA2721716A1 (en) 2008-04-24 2009-10-29 Gene Techno Science Co., Ltd. Humanized antibodies specific for amino acid sequence rgd of an extracellular matrix protein and the uses thereof
CA2723449A1 (en) 2008-05-02 2009-11-05 Acceleron Pharma, Inc. Methods and compositions based on alk1 antagonists for modulating angiogenesis and pericyte coverage
ES2442024T3 (en) 2008-07-15 2014-02-07 Academia Sinica Glycan arrays on glass slides coated with PTFE-like aluminum and related methods
US9182406B2 (en) 2008-08-04 2015-11-10 Biodesy, Inc. Nonlinear optical detection of molecules comprising an unnatural amino acid possessing a hyperpolarizability
AR072897A1 (en) 2008-08-05 2010-09-29 Novartis Ag Compositions and methods for antibodies that target complement protein c5
AR072999A1 (en) 2008-08-11 2010-10-06 Medarex Inc human antibodies that bind to the gene 3 of lymphocyte activation (LAG-3) and uses these
CN102264763B (en) 2008-09-19 2016-04-27 米迪缪尼有限公司 Dll4 directed to antibodies and uses thereof
US8298533B2 (en) 2008-11-07 2012-10-30 Medimmune Limited Antibodies to IL-1R1
JP5933975B2 (en) 2008-11-12 2016-06-15 メディミューン,エルエルシー Antibody preparation
KR101740066B1 (en) 2008-12-05 2017-05-25 글락소 그룹 리미티드 Methods for selecting protease resistant polypeptides
CN102300874B (en) 2008-12-08 2015-08-05 卡姆普根有限公司 Tmem154 polypeptides and polynucleotides and their use as pharmaceutical and biological products to produce a target for drug
WO2010068722A1 (en) 2008-12-12 2010-06-17 Medimmune, Llc Crystals and structure of a human igg fc variant with enhanced fcrn binding
EP2379595A2 (en) 2008-12-23 2011-10-26 AstraZeneca AB Targeted binding agents directed to 5 1 and uses thereof
KR20110119806A (en) 2009-02-19 2011-11-02 글락소 그룹 리미티드 Improved anti-tnfr1 polypeptides, antibody variable domains & antagonists
CN102421800A (en) 2009-02-23 2012-04-18 格兰马克药品股份有限公司 Humanized antibodies that bind to cd19 and their uses
HUE034196T2 (en) 2009-03-05 2018-02-28 Squibb & Sons Llc Fully human antibodies specific to cadm1
CN104447995A (en) 2009-03-20 2015-03-25 霍夫曼-拉罗奇有限公司 Bispecific anti-HER antibodies
RU2011142974A (en) 2009-03-25 2013-04-27 Дженентек, Инк. NEW antibodies against α5β1 AND THEIR USE
US8410250B2 (en) 2009-03-25 2013-04-02 Genentech, Inc. Anti-FGFR3 antibodies and methods using same
EA201101572A1 (en) 2009-04-27 2012-05-30 Новартис Аг Compositions and methods of application of therapeutic antibodies specific to the sub-unit of beta1 il-12 receptor
SG10201401604VA (en) 2009-04-20 2014-08-28 Oxford Biotherapeutics Ltd Antibodies Specific To Cadherin-17
US9062116B2 (en) 2009-04-23 2015-06-23 Infinity Pharmaceuticals, Inc. Anti-fatty acid amide hydrolase-2 antibodies and uses thereof
RS56661B1 (en) 2009-04-27 2018-03-30 Novartis Ag Compositions and methods for increasing muscle growth
AR076770A1 (en) 2009-05-13 2011-07-06 Genzyme Corp anti-CD52 human immunoglobulins
EP2429574B1 (en) 2009-05-15 2015-05-06 University Health Network Compositions and methods for treating hematologic cancers targeting the sirp - cd47 interaction
WO2010146550A1 (en) 2009-06-18 2010-12-23 Pfizer Inc. Anti notch-1 antibodies
US20120107330A1 (en) 2009-07-16 2012-05-03 Adriaan Allart Stoop Antagonists, uses & methods for partially inhibiting tnfr1
TW201106972A (en) 2009-07-27 2011-03-01 Genentech Inc Combination treatments
US8563694B2 (en) 2009-07-31 2013-10-22 Medarex, Inc. Fully human antibodies to BTLA
WO2011021146A1 (en) 2009-08-20 2011-02-24 Pfizer Inc. Osteopontin antibodies
WO2011029823A1 (en) 2009-09-09 2011-03-17 Novartis Ag Monoclonal antibody reactive with cd63 when expressed at the surface of degranulated mast cells
US8568726B2 (en) 2009-10-06 2013-10-29 Medimmune Limited RSV specific binding molecule
NO2486141T3 (en) 2009-10-07 2018-06-09
EP2470569A1 (en) 2009-10-13 2012-07-04 Oxford Biotherapeutics Ltd. Antibodies against epha10
US8759491B2 (en) 2009-10-19 2014-06-24 Genentech, Inc. Modulators of hepatocyte growth factor activator
MX2012004647A (en) 2009-10-22 2012-06-19 Genentech Inc Anti-hepsin antibodies and methods using same.
CA2774032C (en) 2009-10-23 2019-03-26 Millennium Pharmaceuticals, Inc. Anti-gcc antibody molecules and related compositions and methods
WO2011056497A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Activin receptor type iib compositions and methods of use
WO2011056494A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Activin receptor-like kinase-1 antagonist and vegfr3 antagonist combinations
WO2011056502A1 (en) 2009-10-26 2011-05-12 Genentech, Inc. Bone morphogenetic protein receptor type ii compositions and methods of use
AR078763A1 (en) 2009-10-27 2011-11-30 Glaxo Group Ltd Polypeptides anti necrosis factor stable tumor 1 (anti-TNFR1), antibody variable domains and antagonists
HUE041952T2 (en) 2009-10-30 2019-06-28 Eisai R&D Man Co Ltd Improved anti human Fraktalkine antibodies and uses thereof
MY162511A (en) 2009-11-04 2017-06-15 Merck Sharp & Dohme Engineered anti-tslp antibody
MX2012005168A (en) 2009-11-05 2012-06-08 Genentech Inc Methods and composition for secretion of heterologous polypeptides.
CA2778714C (en) 2009-11-24 2018-02-27 Medimmune Limited Targeted binding agents against b7-h1
EP2507265B1 (en) 2009-12-01 2016-05-11 Compugen Ltd. Antibody specific for heparanase splice variant T5 and its use.
AU2010325943A1 (en) 2009-12-02 2012-06-21 Acceleron Pharma Inc. Compositions and methods for increasing serum half-life of Fc fusion proteins.
US10087236B2 (en) 2009-12-02 2018-10-02 Academia Sinica Methods for modifying human antibodies by glycan engineering
JP5818805B2 (en) 2009-12-11 2015-11-18 ジェネンテック, インコーポレイテッド Anti vegf-c antibodies and methods of use thereof
WO2011076781A1 (en) 2009-12-22 2011-06-30 Novartis Ag Tetravalent cd47-antibody constant region fusion protein for use in therapy
MX2012007379A (en) 2009-12-23 2012-08-31 Genentech Inc Anti-bv8 antibodies and uses thereof.
SI2516468T1 (en) * 2009-12-23 2016-06-30 Synimmune Gmbh Anti-flt3 antibodies and methods of using the same
WO2011085343A1 (en) 2010-01-11 2011-07-14 Alexion Pharmaceuticals, Inc Biomarkers of immunomodulatory effects in humans treated with anti-cd200 antibodies
US8362210B2 (en) 2010-01-19 2013-01-29 Xencor, Inc. Antibody variants with enhanced complement activity
CN102933231B (en) 2010-02-10 2015-07-29 伊缪诺金公司 Cd20 antibody and uses thereof
MX2012009318A (en) 2010-02-10 2012-09-07 Novartis Ag Methods and compounds for muscle growth.
US20110200595A1 (en) 2010-02-18 2011-08-18 Roche Glycart TREATMENT WITH A HUMANIZED IgG CLASS ANTI EGFR ANTIBODY AND AN ANTIBODY AGAINST INSULIN LIKE GROWTH FACTOR 1 RECEPTOR
WO2011103242A1 (en) 2010-02-18 2011-08-25 Genentech, Inc. Neuregulin antagonists and use thereof in treating cancer
PT2538976T (en) 2010-02-24 2017-03-08 Immunogen Inc Immunoconjugates against folate receptor 1 and uses thereof
SG183847A1 (en) 2010-03-04 2012-10-30 Macrogenics Inc Antibodies reactive with b7-h3, immunologically active fragments thereof and uses thereof
US8802091B2 (en) 2010-03-04 2014-08-12 Macrogenics, Inc. Antibodies reactive with B7-H3 and uses thereof
US8846041B2 (en) 2010-03-24 2014-09-30 Genentech, Inc. Anti-LRP6 antibodies
WO2011130332A1 (en) 2010-04-12 2011-10-20 Academia Sinica Glycan arrays for high throughput screening of viruses
EA028899B1 (en) 2010-04-30 2018-01-31 Алексион Фармасьютикалз, Инк. ANTI-C5a ANTIBODIES AND METHODS FOR USING THE ANTIBODIES
SG185416A1 (en) 2010-05-06 2012-12-28 Novartis Ag Compositions and methods of use for therapeutic low density lipoprotein -related protein 6 (lrp6) antibodies
JP2013527761A (en) 2010-05-06 2013-07-04 ノバルティス アーゲー Therapeutic low density lipoprotein-related protein 6 (LRP6) compositions of multivalent antibodies and methods of use
WO2011147834A1 (en) 2010-05-26 2011-12-01 Roche Glycart Ag Antibodies against cd19 and uses thereof
AU2011261362B2 (en) 2010-06-03 2016-06-09 Genentech, Inc. Immuno-pet imaging of antibodies and immunoconjugates and uses therefor
MX336001B (en) 2010-06-18 2016-01-07 Genentech Inc Anti-axl antibodies and methods of use.
EP2585110A4 (en) 2010-06-22 2014-01-22 Univ Colorado Regents Antibodies to the c3d fragment of complement component 3
WO2011161119A1 (en) 2010-06-22 2011-12-29 F. Hoffmann-La Roche Ag Antibodies against insulin-like growth factor i receptor and uses thereof
WO2011161189A1 (en) 2010-06-24 2011-12-29 F. Hoffmann-La Roche Ag Anti-hepsin antibodies and methods of use
EP2591004A1 (en) 2010-07-09 2013-05-15 F.Hoffmann-La Roche Ag Anti-neuropilin antibodies and methods of use
WO2012010582A1 (en) 2010-07-21 2012-01-26 Roche Glycart Ag Anti-cxcr5 antibodies and methods of use
SG187682A1 (en) 2010-08-02 2013-03-28 Macrogenics Inc Covalent diabodies and uses thereof
CA2806855A1 (en) 2010-08-03 2012-02-09 F. Hoffmann - La Roche Ag Chronic lymphocytic leukemia (cll) biomarkers
MX2013001305A (en) 2010-08-05 2013-03-20 Hoffmann La Roche Anti-mhc antibody anti-viral cytokine fusion protein.
CA2806640A1 (en) 2010-08-13 2012-02-16 Roche Glycart Ag Anti-tenascin-c a2 antibodies and methods of use
US20130177555A1 (en) 2010-08-13 2013-07-11 Medimmune Limited Monomeric Polypeptides Comprising Variant FC Regions And Methods Of Use
NZ703653A (en) 2010-08-13 2016-09-30 Roche Glycart Ag Anti-fap antibodies and methods of use
WO2012022734A2 (en) 2010-08-16 2012-02-23 Medimmune Limited Anti-icam-1 antibodies and methods of use
EA201300256A1 (en) 2010-08-20 2013-08-30 Новартис Аг Antibodies to the receptor epidermal growth-3 factor (her3)
KR101603001B1 (en) 2010-08-25 2016-03-11 에프. 호프만-라 로슈 아게 Antibodies against il-18r1 and uses thereof
MX2013002084A (en) 2010-08-31 2013-05-09 Genentech Inc Biomarkers and methods of treatment.
WO2012035518A1 (en) 2010-09-17 2012-03-22 Compugen Ltd. Compositions and methods for treatment of drug resistant multiple myeloma
EP2625203A1 (en) 2010-10-05 2013-08-14 Novartis AG Anti-il12rbeta1 antibodies and their use in treating autoimmune and inflammatory disorders
AU2011312205B2 (en) 2010-10-05 2015-08-13 Curis, Inc. Mutant smoothened and methods of using the same
EP2638070B1 (en) 2010-11-10 2016-10-19 F.Hoffmann-La Roche Ag Methods and compositions for neural disease immunotherapy
PE06332014A1 (en) 2010-11-19 2014-05-30 Eisai Randd Man Co Ltd Neutralizing anti-CCL20 antibodies
US10208129B2 (en) 2010-12-06 2019-02-19 National Research Council Of Canada Antibodies selective for cells presenting ErbB2 at high density
AU2011342799B2 (en) 2010-12-15 2016-06-09 Wyeth Llc Anti-Notch1 antibodies
CN105175542B (en) 2010-12-16 2018-12-18 弗·哈夫曼-拉罗切有限公司 Related diagnosis and treatment and suppression th2
UA113838C2 (en) 2010-12-20 2017-03-27 An antibody that binds mezotelin and immunoconjugate
EP2655419A1 (en) 2010-12-22 2013-10-30 F.Hoffmann-La Roche Ag Anti-pcsk9 antibodies and methods of use
WO2012092539A2 (en) 2010-12-31 2012-07-05 Takeda Pharmaceutical Company Limited Antibodies to dll4 and uses thereof
WO2012100346A1 (en) 2011-01-24 2012-08-02 Ym Biosciences Inc. Antibodies selective for cells presenting egfr at high density
EP2670487A4 (en) 2011-02-03 2015-11-04 Alexion Pharma Inc Use of an anti-cd200 antibody for prolonging the survival of allografts
CA2831136A1 (en) 2011-03-21 2012-09-27 Biodesy, Llc Classification of kinase inhibitors using nonlinear optical techniques
MY163539A (en) 2011-03-29 2017-09-15 Roche Glycart Ag Antibody fc variants
EA028805B1 (en) 2011-04-01 2018-01-31 Иммьюноджен, Инк. Methods for increasing efficacy of folr1 cancer therapy
CN103596983B (en) 2011-04-07 2016-10-26 霍夫曼-拉罗奇有限公司 Anti-fgfr4 antibodies and methods of use
WO2012142515A2 (en) 2011-04-13 2012-10-18 Bristol-Myers Squibb Company Fc fusion proteins comprising novel linkers or arrangements
RU2623161C2 (en) 2011-04-15 2017-06-22 Компуджен Лтд. Polypeptides and polynucleotides and their use for treatment of immune disorders and cancer
CN103781798B (en) 2011-04-20 2018-03-13 阿塞勒隆制药公司 Endoglin polypeptide and uses thereof
WO2012146630A1 (en) 2011-04-29 2012-11-01 F. Hoffmann-La Roche Ag N-terminal acylated polypeptides, methods for their production and uses thereof
JP6190359B2 (en) 2011-05-02 2017-08-30 ミレニアム ファーマシューティカルズ, インコーポレイテッドMillennium Pharmaceuticals, Inc. Formulations for anti-α4β7 antibody
MX348814B (en) 2011-05-02 2017-06-30 Millennium Pharm Inc FORMULATION FOR ANTI-a4ß7 ANTIBODY.
RU2638806C2 (en) 2011-05-12 2017-12-15 Дженентек, Инк. Lc-ms/ms method for multiple reactions monitoring to identify therapeutic antibodies in animal species using framework signature peptides
US9346883B2 (en) 2011-05-13 2016-05-24 Institut National De La Sante Et De La Recherche Medicale (Inserm) Antibodies against HER3
ES2628385T3 (en) 2011-05-16 2017-08-02 F. Hoffmann-La Roche Ag FGFR1 agonists and methods of use
CN104080804B (en) 2011-05-21 2017-06-09 宏观基因有限公司 Deimmunized serum binding domain and uses extended serum half-life
ES2704038T3 (en) 2011-05-24 2019-03-13 Zyngenia Inc Multivalent and monovalent multispecific complexes and their uses
WO2012172495A1 (en) 2011-06-14 2012-12-20 Novartis Ag Compositions and methods for antibodies targeting tem8
US8623666B2 (en) 2011-06-15 2014-01-07 Hoffmann-La Roche Inc. Method for detecting erythropoietin (EPO) receptor using anti-human EPO receptor antibodies
CN103635490A (en) 2011-06-16 2014-03-12 诺瓦提斯公司 Soluble proteins for use as therapeutics
MX354663B (en) 2011-06-22 2018-03-14 Hoffmann La Roche Removal of target cells by circulating virus-specific cytotoxic t-cells using mhc class i comprising complexes.
EP2723376B1 (en) 2011-06-22 2018-12-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Anti-axl antibodies and uses thereof
JP6120833B2 (en) 2011-06-22 2017-04-26 インサーム(インスティテュ ナシオナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシェ メディカル)Inserm(Institut National Dela Sante Et De La Recherche Medicale) Anti-Axl antibodies and their use
UA114478C2 (en) 2011-06-28 2017-06-26 Берлін-Хемі Аг Antibodies to adp-ribosyl cyclase 2
CA2836855A1 (en) 2011-06-30 2013-01-03 Compugen Ltd. Polypeptides and uses thereof for treatment of autoimmune disorders and infection
CA2835242A1 (en) 2011-06-30 2013-01-03 Genentech, Inc. Anti-c-met antibody formulations
JP6472999B2 (en) 2011-07-01 2019-02-20 ノバルティス アーゲー Methods for treating metabolic disorders
NZ619849A (en) 2011-07-11 2016-01-29 Glenmark Pharmaceuticals Sa Antibodies that bind to ox40 and their uses
EP2731970B1 (en) 2011-07-15 2018-11-28 MorphoSys AG Antibodies that are cross-reactive for macrophage migration inhibitory factor (mif) and d-dopachrome tautomerase (d-dt)
CN103890007A (en) 2011-08-17 2014-06-25 霍夫曼-拉罗奇有限公司 Neuregulin antibodies and uses thereof
CN103890006A (en) 2011-08-23 2014-06-25 罗切格利卡特公司 Anti-mcsp antibodies
RU2014109395A (en) 2011-09-15 2015-10-20 Дженентек, Инк. Methods for the stimulation of differentiation
CN103930111A (en) 2011-09-19 2014-07-16 霍夫曼-拉罗奇有限公司 Combination treatments comprising C-MET antagonists and B-RAF antagonists
US20130089562A1 (en) 2011-10-05 2013-04-11 Genenthech, Inc. Methods of treating liver conditions using notch2 antagonists
WO2013056008A1 (en) 2011-10-14 2013-04-18 Genentech, Inc. Zymogen activators
WO2013055998A1 (en) 2011-10-14 2013-04-18 Genentech, Inc. ANTI-HtrA1 ANTIBODIES AND METHODS OF USE
JP2014530816A (en) 2011-10-14 2014-11-20 ノバルティスアーゲー Antibodies and methods for Wnt pathway related disease
US9358250B2 (en) 2011-10-15 2016-06-07 Genentech, Inc. Methods of using SCD1 antagonists
WO2013059531A1 (en) 2011-10-20 2013-04-25 Genentech, Inc. Anti-gcgr antibodies and uses thereof
KR20140097205A (en) 2011-10-28 2014-08-06 제넨테크, 인크. Therapeutic combinations and methods of treating melanoma
AU2012336069A1 (en) 2011-11-07 2014-05-22 Medimmune, Llc Multispecific and multivalent binding proteins and uses thereof
BR112014012005A2 (en) 2011-11-21 2017-12-19 Genentech Inc compositions, methods, pharmaceutical composition and article
MX362521B (en) 2011-12-05 2019-01-22 Novartis Ag Antibodies for epidermal growth factor receptor 3 (her3).
EA201491107A1 (en) 2011-12-05 2014-11-28 Новартис Аг Antibodies to the receptor epidermal growth factor 3 (her3), directed to domain ii her3
US20140335084A1 (en) 2011-12-06 2014-11-13 Hoffmann-La Roche Inc. Antibody formulation
RU2685867C2 (en) 2011-12-15 2019-04-23 Алтернатив Инновейтив Текнолоджиз Ллц Hybrid proteins and protein conjugates based on heat shock protein-70 (hsp70) and methods for use thereof (versions)
WO2013093762A1 (en) 2011-12-21 2013-06-27 Novartis Ag Compositions and methods for antibodies targeting factor p
WO2013096791A1 (en) 2011-12-23 2013-06-27 Genentech, Inc. Process for making high concentration protein formulations
US20150011431A1 (en) 2012-01-09 2015-01-08 The Scripps Research Institute Humanized antibodies
KR20140116490A (en) 2012-01-18 2014-10-02 제넨테크, 인크. Anti-lrp5 antibodies and methods of use
JP2015506944A (en) 2012-01-18 2015-03-05 ジェネンテック, インコーポレイテッド How to use the Fgf19 modifying agents
KR20140126357A (en) 2012-02-01 2014-10-30 컴퓨젠 엘티디. C1orf32 antibodies, and uses thereof for treatment of cancer
WO2013162654A1 (en) 2012-04-25 2013-10-31 Biodesy, Llc Methods for detecting allosteric modulators of proteins
WO2013120056A1 (en) 2012-02-11 2013-08-15 Genentech, Inc. R-spondin translocations and methods using the same
BR112014018005A2 (en) 2012-02-15 2018-06-26 Hoffmann La Roche use of immobilized and non-covalent complex variant Fc region human IgG1 isotype
US9139863B2 (en) 2012-03-16 2015-09-22 Genentech, Inc. Engineered conformationally-stabilized proteins
JP6198807B2 (en) 2012-03-16 2017-09-20 ジェネンテック, インコーポレイテッド Engineered conformationally stabilized protein
MX2014011500A (en) 2012-03-27 2014-12-05 Genentech Inc Diagnosis and treatments relating to her3 inhibitors.
AR090549A1 (en) 2012-03-30 2014-11-19 Genentech Inc anti-antibodies and immunoconjugates LGR5
SG11201406347TA (en) 2012-04-05 2014-11-27 Ac Immune Sa Humanized tau antibody
US10130714B2 (en) 2012-04-14 2018-11-20 Academia Sinica Enhanced anti-influenza agents conjugated with anti-inflammatory activity
US9156915B2 (en) 2012-04-26 2015-10-13 Thomas Jefferson University Anti-GCC antibody molecules
US9056910B2 (en) 2012-05-01 2015-06-16 Genentech, Inc. Anti-PMEL17 antibodies and immunoconjugates
WO2013170191A1 (en) 2012-05-11 2013-11-14 Genentech, Inc. Methods of using antagonists of nad biosynthesis from nicotinamide
EP2852840A4 (en) 2012-05-23 2016-01-13 Hoffmann La Roche Selection method for therapeutic agents
SG11201407017WA (en) 2012-06-04 2014-12-30 Irm Llc Site-specific labeling methods and molecules produced thereby
US20130344064A1 (en) 2012-06-08 2013-12-26 Glenmark Pharmaceuticals S.A. Anti-trka antibodies with enhanced inhibitory properties and derivatives thereof
WO2013188855A1 (en) 2012-06-15 2013-12-19 Genentech, Inc. Anti-pcsk9 antibodies, formulations, dosing, and methods of use
UY34887A (en) 2012-07-02 2013-12-31 Bristol Myers Squibb Company Una Corporacion Del Estado De Delaware Optimization of antibodies which bind to lymphocyte activation gene 3 (LAG-3) and their uses
DK2869848T3 (en) 2012-07-04 2016-11-21 F Hoffmann-La Roche Ag Covalent BOUND ANTIGEN-ANTIBODY CONJUGATES
PL2869837T3 (en) 2012-07-04 2017-03-31 F.Hoffmann-La Roche Ag Anti-theophylline antibodies and methods of use
EP3339328A1 (en) 2012-07-04 2018-06-27 F. Hoffmann-La Roche AG Anti-biotin antibodies and methods of use
KR20150030693A (en) 2012-07-05 2015-03-20 제넨테크, 인크. Expression and secretion system
PE06152015A1 (en) 2012-07-09 2015-05-28 Genentech Inc Immunoconjugates comprising an anti-CD22 antibody linked to a pirrolobenzodiazepina
CA2874856A1 (en) 2012-07-09 2014-01-16 Genentech, Inc. Immunoconjugates comprising anti-cd79b antibodies
EA201590173A1 (en) 2012-07-09 2015-09-30 Дженентек, Инк. Immunoconguts containing antibodies to cd22
JP2015523380A (en) 2012-07-09 2015-08-13 ジェネンテック, インコーポレイテッド Immune complexes, including the anti-cd79b antibody
SI2872534T1 (en) 2012-07-13 2018-11-30 Roche Glycart Ag Bispecific anti-vegf/anti-ang-2 antibodies and their use in the treatment of ocular vascular diseases
TWI596113B (en) 2012-07-25 2017-08-21 Celldex Therapeutics Inc Anti-kit antibodies and uses thereof
PL2880170T3 (en) 2012-08-02 2017-02-28 F.Hoffmann-La Roche Ag METHOD FOR PRODUCING SOLUBLE FcR AS Fc-FUSION WITH INERT IMMUNOGLOBULIN Fc-REGION AND USES THEREOF
WO2014031498A1 (en) 2012-08-18 2014-02-27 Academia Sinica Cell-permeable probes for identification and imaging of sialidases
BR112015004229A2 (en) 2012-08-31 2017-08-08 Immunogen Inc Diagnostic assays and kits for the detection receiver folate 1
US9376489B2 (en) 2012-09-07 2016-06-28 Novartis Ag IL-18 binding molecules
EA201500502A1 (en) 2012-11-08 2015-10-30 Ф.Хоффманн-Ля Рош Аг Binding HER3 ANTIGEN PROTEINS CONNECTING BETA HER3 BAT
EP2919813B1 (en) 2012-11-13 2018-10-24 F.Hoffmann-La Roche Ag Anti-hemagglutinin antibodies and methods of use
EP2733153A1 (en) 2012-11-15 2014-05-21 INSERM (Institut National de la Santé et de la Recherche Medicale) Methods for the preparation of immunoconjugates and uses thereof
WO2014084859A1 (en) 2012-11-30 2014-06-05 Novartis Ag Molecules and methods for modulating tmem16a activities
US9365646B2 (en) 2012-12-05 2016-06-14 Novartis Ag Compositions and methods for antibodies targeting EPO
BR112015012942A2 (en) 2012-12-10 2017-09-12 Biogen Ma Inc 2 antissanguíneas antibodies antigens dendritic cells and uses thereof
CA2894245A1 (en) 2012-12-17 2014-06-26 Trillium Therapeutics Inc. Treatment of cd47+ disease cells with sirp alpha-fc fusions
CA2896894A1 (en) 2013-01-02 2014-07-10 Glenmark Pharmaceuticals S.A. Antibodies that bind to tl1a and their uses
WO2014107739A1 (en) 2013-01-07 2014-07-10 Eleven Biotherapeutics, Inc. Antibodies against pcsk9
WO2014116749A1 (en) 2013-01-23 2014-07-31 Genentech, Inc. Anti-hcv antibodies and methods of using thereof
MA38322B1 (en) 2013-02-08 2018-09-28 Novartis Ag anti-IL-17 and their use in the treatment of autoimmune and inflammatory disorders antibody
WO2015198217A2 (en) 2013-02-08 2015-12-30 Novartis Ag Compositions and methods for long-acting antibodies targeting il-17
SG10201706468RA (en) 2013-02-08 2017-09-28 Novartis Ag Specific sites for modifying antibodies to make immunoconjugates
WO2014124258A2 (en) 2013-02-08 2014-08-14 Irm Llc Specific sites for modifying antibodies to make immunoconjugates
ES2645634T3 (en) 2013-02-12 2017-12-07 Bristol-Myers Squibb Company Methods protein refolding at high pH
EP2956468A1 (en) 2013-02-12 2015-12-23 Bristol-Myers Squibb Company Tangential flow filtration based protein refolding methods
KR20150118159A (en) 2013-02-22 2015-10-21 에프. 호프만-라 로슈 아게 Methods of treating cancer and preventing drug resistance
CA2896259A1 (en) 2013-02-26 2014-09-04 Roche Glycart Ag Anti-mcsp antibodies
US9487587B2 (en) 2013-03-05 2016-11-08 Macrogenics, Inc. Bispecific molecules that are immunoreactive with immune effector cells of a companion animal that express an activating receptor and cells that express B7-H3 and uses thereof
CA2902263A1 (en) 2013-03-06 2014-09-12 Genentech, Inc. Methods of treating and preventing cancer drug resistance
US9498532B2 (en) 2013-03-13 2016-11-22 Novartis Ag Antibody drug conjugates
US9562099B2 (en) 2013-03-14 2017-02-07 Genentech, Inc. Anti-B7-H4 antibodies and immunoconjugates
EP3299391A1 (en) 2013-03-14 2018-03-28 Genentech, Inc. Anti-b7-h4 antibodies and immunoconjugates
MX2015012709A (en) 2013-03-14 2016-05-31 Macrogenics Inc Bispecific molecules that are immunoreactive with immune effector cells that express an activating receptor.
AU2014239903A1 (en) 2013-03-14 2015-09-17 Genentech, Inc. Combinations of a MEK inhibitor compound with an HER3/EGFR inhibitor compound and methods of use
CN105307683A (en) 2013-03-14 2016-02-03 基因泰克公司 Methods of treating cancer and preventing cancer drug resistance
CN105246916A (en) 2013-03-14 2016-01-13 诺华股份有限公司 Antibodies against notch 3
PE16732015A1 (en) 2013-03-15 2015-11-27 Genentech Inc Polypeptides IL-22 fusion proteins IL-22 AND METHODS OF USE Fc
SG10201701380TA (en) 2013-03-15 2017-04-27 Genentech Inc Biomarkers and methods of treating pd-1 and pd-l1 related conditions
US10150800B2 (en) 2013-03-15 2018-12-11 Zyngenia, Inc. EGFR-binding modular recognition domains
CN105143265A (en) 2013-03-15 2015-12-09 豪夫迈·罗氏有限公司 Anti-crth2 antibodies and their use
US10035860B2 (en) 2013-03-15 2018-07-31 Biogen Ma Inc. Anti-alpha V beta 6 antibodies and uses thereof
BR112015023203A8 (en) 2013-03-15 2018-01-23 Constellation Pharmaceuticals Inc methods for the treatment of cancer, method for increasing the efficiency of a treatment of cancer, method for delaying and / or preventing the development of cancer, method for treating an individual with cancer, method for increasing the sensitivity to a therapy agent for cancer, method to extend a period of sensitivity and method to extend the duration of response to therapy for cancer.
MX2015011075A (en) 2013-03-15 2015-10-29 Dana Farber Cancer Inst Inc Therapeutic peptides.
WO2014150877A2 (en) 2013-03-15 2014-09-25 Ac Immune S.A. Anti-tau antibodies and methods of use
EA201591705A1 (en) 2013-03-15 2016-01-29 Дженентек, Инк. Compositions and methods for diagnostics and treatment of liver cancer
US10035859B2 (en) 2013-03-15 2018-07-31 Biogen Ma Inc. Anti-alpha V beta 6 antibodies and uses thereof
EP2968590B1 (en) 2013-03-15 2018-09-05 Novartis AG Antibody drug conjugates
MX2015011670A (en) 2013-03-15 2016-03-31 Biogen Ma Inc Treatment and prevention of acute kidney injury using anti-alpha v beta 5 antibodies.
AR095199A1 (en) 2013-03-15 2015-09-30 Genzyme Corp Anti-CD52 antibodies
CN105164158A (en) 2013-04-29 2015-12-16 豪夫迈·罗氏有限公司 Fcrn-binding abolished ANTI-IGF-1R antibodies and their use in the treatment of vascular eye diseases
CN105143262A (en) 2013-04-29 2015-12-09 豪夫迈·罗氏有限公司 Human fcrn-binding modified antibodies and methods of use
WO2014186877A1 (en) 2013-05-24 2014-11-27 Uger Marni Diane FasR ANTIBODIES FOR DIAGNOSTIC AND THERAPEUTIC USE
US9562101B2 (en) 2013-06-21 2017-02-07 Novartis Ag Lectin-like oxidized LDL receptor 1 antibodies and methods of use
AR096601A1 (en) 2013-06-21 2016-01-20 Novartis Ag 1 receptor antibodies lectin-like oxidized LDL and methods of use
US10086054B2 (en) 2013-06-26 2018-10-02 Academia Sinica RM2 antigens and use thereof
EP3013347A4 (en) 2013-06-27 2017-01-18 Academia Sinica Glycan conjugates and use thereof
US20160159928A1 (en) 2013-07-18 2016-06-09 Fabrus, Inc. Humanized antibodies with ultralong complementary determining regions
WO2015017146A2 (en) 2013-07-18 2015-02-05 Fabrus, Inc. Antibodies with ultralong complementarity determining regions
PE05082016A1 (en) 2013-08-09 2016-05-21 Macrogenics Inc Diabodies bispecific monovalent fc that are capable of binding to CD32b and CD79b and uses thereof
TN2016000057A1 (en) 2013-08-14 2017-07-05 Novartis Ag Methods of treating sporadic inclusion body myositis
EP2840091A1 (en) 2013-08-23 2015-02-25 MacroGenics, Inc. Bi-specific diabodies that are capable of binding gpA33 and CD3 and uses thereof
EP2839842A1 (en) 2013-08-23 2015-02-25 MacroGenics, Inc. Bi-specific monovalent diabodies that are capable of binding CD123 and CD3 and uses thereof
AU2014312086A1 (en) 2013-08-30 2016-03-10 Immunogen, Inc. Antibodies and assays for detection of folate receptor 1
EP3041484A4 (en) 2013-09-06 2017-04-12 Academia Sinica HUMAN iNKT CELL ACTIVATION USING GLYCOLIPIDS WITH ALTERED GLYCOSYL GROUPS
CA2924172A1 (en) 2013-09-13 2015-03-19 Beigene, Ltd. Anti-pd1 antibodies and their use as therapeutics and diagnostics
AR097685A1 (en) 2013-09-17 2016-04-06 Genentech Inc Methods of using anti-LGR5
EP3050896A4 (en) 2013-09-27 2017-08-09 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide heteromultimer
RU2016117978A (en) 2013-10-11 2017-11-17 Дженентек, Инк. Nsp4 inhibitors and methods for their use
MX2016003593A (en) 2013-10-11 2016-06-02 Hoffmann La Roche Multispecific domain exchanged common variable light chain antibodies.
WO2015057939A1 (en) 2013-10-18 2015-04-23 Biogen Idec Ma Inc. Anti-s1p4 antibodies and uses thereof
CN105744954A (en) 2013-10-18 2016-07-06 豪夫迈·罗氏有限公司 Anti-rsp02 and/or anti-rsp03 antibodies and their uses
MX2016005159A (en) 2013-10-23 2016-07-05 Genentech Inc Methods of diagnosing and treating eosinophilic disorders.
MX2016005854A (en) 2013-11-07 2017-07-28 Inserm (Institut Nat De La Santé Et De La Rech Médicale) Neuregulin allosteric anti-her3 antibody.
CN105722857A (en) 2013-11-21 2016-06-29 豪夫迈·罗氏有限公司 Anti-alpha-synuclein antibodies and methods of use
EA201691078A1 (en) 2013-12-06 2017-01-30 Дана-Фарбер Кэнсер Инститьют, Инк. Therapeutic peptides
CN105916519A (en) 2013-12-09 2016-08-31 阿拉科斯公司 Anti-siglec-8 antibodies and methods of use thereof
EP3080164B1 (en) 2013-12-13 2019-01-16 Genentech, Inc. Anti-cd33 antibodies and immunoconjugates
MX2016007958A (en) 2013-12-17 2016-08-03 Genentech Inc Anti-cd3 antibodies and methods of use.
SG11201604979WA (en) 2013-12-17 2016-07-28 Genentech Inc Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
JP2017501155A (en) 2013-12-17 2017-01-12 ジェネンテック, インコーポレイテッド Methods of treating cancer using the pd-1 shaft coupling antagonists and taxane
AU2014364593A1 (en) 2013-12-17 2016-07-07 Genentech, Inc. Methods of treating cancer using PD-1 axis binding antagonists and an anti-CD20 antibody
MX2016007208A (en) 2013-12-20 2016-07-21 Hoffmann La Roche HUMANIZED ANTI-Tau(pS422) ANTIBODIES AND METHODS OF USE.
KR20160111937A (en) 2013-12-24 2016-09-27 아르젠-엑스 엔.브이. Fcrn antagonists and methods of use
KR20160105880A (en) 2014-01-03 2016-09-07 에프. 호프만-라 로슈 아게 Covalently linked polypeptide toxin-antibody conjugates
BR112016013849A2 (en) 2014-01-03 2017-10-10 Hoffmann La Roche Bispecific conjugates of anti-hapten / antibody antirreceptores the blood brain barrier, their uses and pharmaceutical formulation
RU2694981C2 (en) 2014-01-03 2019-07-18 Ф. Хоффманн-Ля Рош Аг Covalently linked conjugates chelicar-antibody against chelicar and use thereof
BR112016015589A2 (en) 2014-01-06 2017-10-31 Hoffmann La Roche monovalent traffic modules for the blood-brain barrier
EP3094647A1 (en) 2014-01-15 2016-11-23 F. Hoffmann-La Roche AG Fc-region variants with modified fcrn- and maintained protein a-binding properties
US10150818B2 (en) 2014-01-16 2018-12-11 Academia Sinica Compositions and methods for treatment and detection of cancers
US10118969B2 (en) 2014-05-27 2018-11-06 Academia Sinica Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
CN106459920A (en) 2014-01-16 2017-02-22 中央研究院 Compositions and methods for treatment and detection of cancers
US9975965B2 (en) 2015-01-16 2018-05-22 Academia Sinica Compositions and methods for treatment and detection of cancers
CN106413756A (en) 2014-01-24 2017-02-15 豪夫迈·罗氏有限公司 Methods of using anti-steap1 antibodies and immunoconjugates
DK3102197T3 (en) 2014-02-04 2018-11-19 Genentech Inc Smoothened mutant and methods of use thereof
SG11201606490YA (en) 2014-02-08 2016-09-29 Genentech Inc Methods of treating alzheimer's disease
MX2016010173A (en) 2014-02-08 2016-10-13 Genentech Inc Methods of treating alzheimer's disease.
EA201691610A8 (en) 2014-02-12 2018-05-31 Дженентек, Инк. Anti-jagged1 antibodies and methods of application
EP3107574A2 (en) 2014-02-21 2016-12-28 F.Hoffmann-La Roche Ag Anti-il-13/il-17 bispecific antibodies and uses thereof
JP2017507945A (en) 2014-02-28 2017-03-23 アラコス インコーポレイテッド The methods and compositions for treating Siglec -8-related disease
NZ711451A (en) 2014-03-07 2016-05-27 Alexion Pharma Inc Anti-c5 antibodies having improved pharmacokinetics
CN106659800A (en) 2014-03-12 2017-05-10 诺华股份有限公司 Specific sites for modifying antibodies to make immunoconjugates
SG11201607519VA (en) 2014-03-14 2016-10-28 Genentech Inc Methods and compositions for secretion of heterologous polypeptides
CN106456728A (en) 2014-03-14 2017-02-22 达纳-法伯癌症研究所公司 Vaccine compositions and methods for restoring NKG2D pathway function against cancers
WO2015140591A1 (en) 2014-03-21 2015-09-24 Nordlandssykehuset Hf Anti-cd14 antibodies and uses thereof
EP3122900A1 (en) 2014-03-24 2017-02-01 F.Hoffmann-La Roche Ag Cancer treatment with c-met antagonists and correlation of the latter with hgf expression
JP2017518261A (en) 2014-03-27 2017-07-06 アカデミア シニカAcademia Sinica Reactive labeling compound and use thereof
JP2017514795A (en) 2014-03-31 2017-06-08 ジェネンテック, インコーポレイテッド Combination therapy including an anti-angiogenic agent and ox40 binding agonists
KR20160145624A (en) 2014-03-31 2016-12-20 제넨테크, 인크. Anti-ox40 antibodies and methods of use
JP2017518737A (en) 2014-04-21 2017-07-13 ミレニアム ファーマシューティカルズ, インコーポレイテッドMillennium Pharmaceuticals, Inc. Anti pSYK antibody molecules and their use for SYK targeted agents
TW201622746A (en) 2014-04-24 2016-07-01 Novartis Ag Methods of improving or accelerating physical recovery after surgery for hip fracture
WO2015164615A1 (en) 2014-04-24 2015-10-29 University Of Oslo Anti-gluten antibodies and uses thereof
US9795121B2 (en) 2014-05-05 2017-10-24 Regeneron Pharmaceuticals, Inc. Humanized C3 animals
CA2946662A1 (en) 2014-05-22 2015-11-26 Genentech, Inc. Anti-gpc3 antibodies and immunoconjugates
CA2944717A1 (en) 2014-05-23 2015-11-26 Genentech, Inc. Mit biomarkers and methods using the same
JP2017523131A (en) 2014-05-27 2017-08-17 アカデミア シニカAcademia Sinica Anti her2 glycoengineered antibody group and their use
CN107074945A (en) 2014-05-27 2017-08-18 中央研究院 Compositions and methods relating to universal glycoforms for enhanced antibody efficacy
MX2016015614A (en) 2014-05-28 2017-08-21 Agenus Inc Anti-gitr antibodies and methods of use thereof.
CA2951234A1 (en) 2014-06-06 2015-12-10 Bristol-Myers Squibb Company Antibodies against glucocorticoid-induced tumor necrosis factor receptor (gitr) and uses thereof
WO2015191715A1 (en) 2014-06-11 2015-12-17 Genentech, Inc. Anti-lgr5 antibodies and uses thereof
CN107073121A (en) 2014-06-13 2017-08-18 基因泰克公司 Methods of treating and preventing cancer drug resistance
AR100978A1 (en) 2014-06-26 2016-11-16 F Hoffmann-La Roche Ag CEREBRAL Launchers ANTI-Tau Humanized Antibody (pS422) AND USES THEREOF
MX2017000363A (en) 2014-07-11 2017-04-27 Genentech Inc Notch pathway inhibition.
CA2954868A1 (en) 2014-07-11 2016-01-14 Genentech, Inc. Anti-pd-l1 antibodies and diagnostic uses thereof
US8986691B1 (en) 2014-07-15 2015-03-24 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
US8980273B1 (en) 2014-07-15 2015-03-17 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
US20180193475A1 (en) 2014-08-05 2018-07-12 Novartis Ag Ckit antibody drug conjugates
SG11201700473QA (en) 2014-08-07 2017-02-27 Novartis Ag Angiopoietin-like 4 antibodies and methods of use
US9988443B2 (en) 2014-08-07 2018-06-05 Novartis Ag Angiopoetin-like 4 (ANGPTL4) antibodies and methods of use
PE09032017A1 (en) 2014-08-12 2017-07-12 Novartis Ag Drug conjugates with anti-cdh6
JP2017532059A (en) 2014-08-19 2017-11-02 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. Anti lag3 antibodies and antigen binding fragments
KR20170041272A (en) 2014-08-19 2017-04-14 머크 샤프 앤드 돔 코포레이션 Anti-tigit antibodies
JP2017526704A (en) 2014-09-08 2017-09-14 アカデミア シニカAcademia Sinica Human iNKT cell activation using glycolipids
CA2958479A1 (en) 2014-09-12 2016-03-17 Genentech, Inc. Anti-cll-1 antibodies and immunoconjugates
EP3191518A1 (en) 2014-09-12 2017-07-19 Genentech, Inc. Anti-b7-h4 antibodies and immunoconjugates
JP2017531620A (en) 2014-09-12 2017-10-26 ジェネンテック, インコーポレイテッド Cysteine ​​engineered antibodies and conjugates
BR112017004953A2 (en) 2014-09-17 2017-12-05 Genentech Inc immunoconjugate pharmaceutical formulation, method of treatment and method of inhibiting proliferation of a cell
WO2016057846A1 (en) 2014-10-08 2016-04-14 Novartis Ag Compositions and methods of use for augmented immune response and cancer therapy
CN107074938A (en) 2014-10-16 2017-08-18 豪夫迈·罗氏有限公司 Anti-alpha-synuclein antibodies and methods of use
KR20170086540A (en) 2014-11-03 2017-07-26 제넨테크, 인크. Assays for detecting t cell immune subsets and methods of use thereof
BR112017008666A2 (en) 2014-11-05 2018-01-30 Genentech Inc anti-FGFR2 antibody / 3 and methods of use thereof
CN107075548A (en) 2014-11-05 2017-08-18 基因泰克公司 Methods of producing two chain proteins in bacteria
KR20170075793A (en) 2014-11-05 2017-07-03 제넨테크, 인크. Methods of producing two chain proteins in bacteria
WO2016073157A1 (en) 2014-11-06 2016-05-12 Genentech, Inc. Anti-ang2 antibodies and methods of use thereof
KR20170072343A (en) 2014-11-06 2017-06-26 제넨테크, 인크. Combination therapy comprising ox40 binding agonists and tigit inhibitors
WO2016077369A1 (en) 2014-11-10 2016-05-19 Genentech, Inc. Animal model for nephropathy and agents for treating the same
PE09102017A1 (en) 2014-11-10 2017-07-12 Genentech Inc anti-interleukin-33 antibodies and their uses
PE09122017A1 (en) 2014-11-14 2017-07-12 Novartis Ag Conjugates of the antibody-drug
WO2016081384A1 (en) 2014-11-17 2016-05-26 Genentech, Inc. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
US20170362339A1 (en) 2014-11-19 2017-12-21 Genentech, Inc. Antibodies against bace1 and use thereof for neural disease immunotherapy
JP2018505652A (en) 2014-11-19 2018-03-01 ジェネンテック, インコーポレイテッド Anti-transferrin receptor / anti bace1 multispecific antibodies and methods of use
EP3221362B1 (en) 2014-11-19 2019-07-24 F.Hoffmann-La Roche Ag Anti-transferrin receptor antibodies and methods of use
TW201625693A (en) 2014-11-21 2016-07-16 Squibb Bristol Myers Co Antibodies against CD73 and uses thereof
JP2017537105A (en) 2014-11-26 2017-12-14 ミレニアム ファーマシューティカルズ, インコーポレイテッドMillennium Pharmaceuticals, Inc. Vedolizumab for the treatment of Crohn's disease with fistula
MX2017007136A (en) 2014-12-05 2017-12-04 Immunext Inc Identification of vsig8 as the putative vista receptor and its use thereof to produce vista/vsig8 modulators.
PE09532017A1 (en) 2014-12-05 2017-07-13 Genentech Inc CD79b antibodies and methods of use
EP3229836A1 (en) 2014-12-09 2017-10-18 Institut National de la Sante et de la Recherche Medicale (INSERM) Human monoclonal antibodies against axl
SG11201703750XA (en) 2014-12-10 2017-06-29 Genentech Inc Blood brain barrier receptor antibodies and methods of use
UY36449A (en) 2014-12-19 2016-07-29 Novartis Ag Compositions and methods for antibodies directed to BMP6
KR20170099963A (en) 2014-12-19 2017-09-01 레제네상스 비.브이. Antibodies that bind human c6 and uses thereof
EP3247723A1 (en) 2015-01-22 2017-11-29 Chugai Seiyaku Kabushiki Kaisha A combination of two or more anti-c5 antibodies and methods of use
CA2972072A1 (en) 2015-01-24 2016-07-28 Academia Sinica Novel glycan conjugates and methods of use thereof
AU2016216079A1 (en) 2015-02-05 2017-07-13 Chugai Seiyaku Kabushiki Kaisha Antibodies comprising an ion concentration dependent antigen-binding domain, Fc region variants, IL-8-binding antibodies, and uses therof
CN107580500A (en) 2015-02-19 2018-01-12 康姆普根有限公司 Anti-pvrig antibodies and methods of use
EP3259597A2 (en) 2015-02-19 2017-12-27 Compugen Ltd. Pvrig polypeptides and methods of treatment
WO2016135041A1 (en) 2015-02-26 2016-09-01 INSERM (Institut National de la Santé et de la Recherche Médicale) Fusion proteins and antibodies comprising thereof for promoting apoptosis
CA2978253A1 (en) 2015-03-09 2016-09-15 Argenx Bvba Methods of reducing serum levels of fc-containing agents using fcrn antagonists
WO2016149276A1 (en) 2015-03-16 2016-09-22 Genentech, Inc. Methods of detecting and quantifying il-13 and uses in diagnosing and treating th2-associated diseases
WO2016146833A1 (en) 2015-03-19 2016-09-22 F. Hoffmann-La Roche Ag Biomarkers for nad(+)-diphthamide adp ribosyltransferase resistance
JP2018512145A (en) 2015-04-03 2018-05-17 ユーリカ セラピューティックス, インコーポレイテッド Constructs and uses thereof to target Afp peptide / mhc complex
CA2982246A1 (en) 2015-04-17 2016-10-20 Alpine Immune Sciences, Inc. Immunomodulatory proteins with tunable affinities
CN107810197A (en) 2015-04-24 2018-03-16 豪夫迈·罗氏有限公司 Methods of identifying bacteria comprising binding polypeptides
EP3288981A1 (en) 2015-05-01 2018-03-07 Genentech, Inc. Masked anti-cd3 antibodies and methods of use
AU2016256911A1 (en) 2015-05-07 2017-11-16 Agenus Inc. Anti-OX40 antibodies and methods of use thereof
US20180127510A1 (en) 2015-05-22 2018-05-10 INSERM (Institut National de la Santé et de la Recherche Médicale) Human monoclonal antibodies fragments inhibiting both the cath-d catalytic activity and its binding to the lrp1 receptor
CA2984003A1 (en) 2015-05-29 2016-12-08 Genentech, Inc. Therapeutic and diagnostic methods for cancer
JP2018520658A (en) 2015-05-29 2018-08-02 ジェネンテック, インコーポレイテッド Humanized Anti-Ebola virus glycoprotein antibodies and uses thereof
AU2016271111A1 (en) 2015-05-29 2017-12-07 Bristol-Myers Squibb Company Antibodies against OX40 and uses thereof
EP3302552A1 (en) 2015-06-02 2018-04-11 H. Hoffnabb-La Roche Ag Compositions and methods for using anti-il-34 antibodies to treat neurological diseases
PE00412018A1 (en) 2015-06-05 2018-01-09 Novartis Ag Antibodies directed to the bone morphogenetic protein (BMP9) and methods from these
US10112990B2 (en) 2015-06-05 2018-10-30 Genentech, Inc. Anti-Tau antibodies and methods of use
CA2985483A1 (en) 2015-06-08 2016-12-15 Genentech, Inc. Methods of treating cancer using anti-ox40 antibodies
KR20180025888A (en) 2015-06-08 2018-03-09 제넨테크, 인크. Methods for treating cancer using anti-OX40 antibodies and PD-1 axis-binding antagonists
CN108064246A (en) 2015-06-15 2018-05-22 基因泰克公司 Antibodies and immunoconjugates
CN107847568A (en) 2015-06-16 2018-03-27 豪夫迈·罗氏有限公司 Anti-Cll-1 antibodies and methods of use
WO2016204966A1 (en) 2015-06-16 2016-12-22 Genentech, Inc. Anti-cd3 antibodies and methods of use
CN107849132A (en) 2015-06-16 2018-03-27 豪夫迈·罗氏有限公司 Humanized and affinity matured antibodies to FcRH5 and methods of use
MX2017016353A (en) 2015-06-17 2018-05-02 Genentech Inc Methods of treating locally advanced or metastatic breast cancers using pd-1 axis binding antagonists and taxanes.
MX2017016169A (en) 2015-06-17 2018-08-15 Genentech Inc Anti-her2 antibodies and methods of use.
WO2016203432A1 (en) 2015-06-17 2016-12-22 Novartis Ag Antibody drug conjugates
UY36751A (en) 2015-06-26 2017-01-31 Novartis Ag Xi factor antibodies and methods of use
EP3514174A1 (en) 2015-06-29 2019-07-24 Ventana Medical Systems, Inc. Materials and methods for performing histochemical assays for human pro-epiregulin and amphiregulin
AU2016285596A1 (en) 2015-06-29 2018-01-18 Genentech, Inc. Type II anti-CD20 antibody for use in organ transplantation
EP3322733A1 (en) 2015-07-13 2018-05-23 Compugen Ltd. Hide1 compositions and methods
CA2994516A1 (en) 2015-08-03 2017-02-09 Novartis Ag Methods of treating fgf21-associated disorders
EP3341415A1 (en) 2015-08-28 2018-07-04 H. Hoffnabb-La Roche Ag Anti-hypusine antibodies and uses thereof
CN107949573A (en) 2015-09-01 2018-04-20 艾吉纳斯公司 Anti-PD-1 antibodies and methods of use thereof
WO2017042701A1 (en) 2015-09-09 2017-03-16 Novartis Ag Thymic stromal lymphopoietin (tslp)-binding antibodies and methods of using the antibodies
US9862760B2 (en) 2015-09-16 2018-01-09 Novartis Ag Polyomavirus neutralizing antibodies
CA2994888A1 (en) 2015-09-17 2017-03-23 Immunogen, Inc. Therapeutic combinations comprising anti-folr1 immunoconjugates
CR20180217A (en) 2015-09-18 2018-05-03 Chugai Pharmaceutical Co Ltd Antibodies that bind to interleukin-8 (IL-8) and their uses
CA2999369A1 (en) 2015-09-22 2017-03-30 Spring Bioscience Corporation Anti-ox40 antibodies and diagnostic uses thereof
US10072075B2 (en) 2015-09-23 2018-09-11 Genentech, Inc. Optimized variants of anti-VEGF antibodies and methods of treatment thereof by reducing or inhibiting angiogenesis
US10058613B2 (en) 2015-10-02 2018-08-28 Genentech, Inc. Pyrrolobenzodiazepine antibody drug conjugates and methods of use
EP3150636A1 (en) 2015-10-02 2017-04-05 F. Hoffmann-La Roche AG Tetravalent multispecific antibodies
WO2017055542A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Bispecific anti-human cd20/human transferrin receptor antibodies and methods of use
CN108137699A (en) 2015-10-02 2018-06-08 豪夫迈·罗氏有限公司 Bispecific antibodies specific for pd1 and tim3
AU2016329251A1 (en) 2015-10-02 2018-03-29 F. Hoffmann-La Roche Ag Anti-PD1 antibodies and methods of use
PE9502018A1 (en) 2015-10-02 2018-06-11 Hoffmann La Roche bispecific antibodies specific for TNF receptor costimulatory
AR106189A1 (en) 2015-10-02 2017-12-20 F Hoffmann-La Roche Ag Bispecific antibodies against human Ab AND human transferrin receptor and methods of use
EP3359568A1 (en) 2015-10-07 2018-08-15 H. Hoffnabb-La Roche Ag Bispecific antibodies with tetravalency for a costimulatory tnf receptor
WO2017066714A1 (en) 2015-10-16 2017-04-20 Compugen Ltd. Anti-vsig1 antibodies and drug conjugates
EP3362100A1 (en) 2015-10-16 2018-08-22 Genentech, Inc. Hindered disulfide drug conjugates
WO2017068511A1 (en) 2015-10-20 2017-04-27 Genentech, Inc. Calicheamicin-antibody-drug conjugates and methods of use
WO2017072210A1 (en) 2015-10-29 2017-05-04 F. Hoffmann-La Roche Ag Anti-variant fc-region antibodies and methods of use
EP3184547A1 (en) 2015-10-29 2017-06-28 F. Hoffmann-La Roche AG Anti-tpbg antibodies and methods of use
JP2018534297A (en) 2015-10-29 2018-11-22 ノバルティス アーゲー Antibody conjugates comprising toll-like receptor agonists
MX2018005047A (en) 2015-10-29 2018-09-06 Merck Sharp & Dohme Antibody neutralizing human respiratory syncytial virus.
US20170145112A1 (en) 2015-10-30 2017-05-25 Genentech, Inc. Anti-factor d antibodies and conjugates
WO2017079768A1 (en) 2015-11-08 2017-05-11 Genentech, Inc. Methods of screening for multispecific antibodies
AU2016356780A1 (en) 2015-11-19 2018-06-28 Bristol-Myers Squibb Company Antibodies against glucocorticoid-induced tumor necrosis factor receptor (GITR) and uses thereof
JP2019503706A (en) 2015-11-30 2019-02-14 ブリストル−マイヤーズ スクウィブ カンパニー Anti-human IP-10 antibodies and their use
CN108602870A (en) 2015-12-04 2018-09-28 诺华股份有限公司 Antibody cytokine engrafted compositions and methods of use for immunoregulation
AU2016370813A1 (en) 2015-12-18 2018-06-28 Novartis Ag Antibodies targeting CD32b and methods of use thereof
EP3405489A1 (en) 2016-01-20 2018-11-28 Genentech, Inc. High dose treatments for alzheimer's disease
AU2017213826A1 (en) 2016-02-04 2018-08-23 Curis, Inc. Mutant smoothened and methods of using the same
CA3015528A1 (en) 2016-02-29 2017-09-08 Genentech, Inc. Therapeutic and diagnostic methods for cancer
CN109476740A (en) 2016-03-04 2019-03-15 百时美施贵宝公司 Utilize the combination therapy of anti-CD73 antibody
CN109195996A (en) 2016-03-08 2019-01-11 中央研究院 The modularity synthetic method of N- glycan and its array
KR20180120706A (en) 2016-03-14 2018-11-06 밀레니엄 파머슈티컬스 인코퍼레이티드 How to prevent graft-versus-host disease
WO2017160700A1 (en) 2016-03-14 2017-09-21 Millennium Pharmaceuticals, Inc. Methods of treating or preventing graft versus host disease
TW201740975A (en) 2016-03-15 2017-12-01 Chugai Pharmaceutical Co Ltd Methods of treating cancers using PD-1 axis binding antagonists and anti-GPC3 antibodies
WO2017161173A1 (en) 2016-03-16 2017-09-21 Merrimack Pharmaceuticals, Inc. Engineered trail for cancer therapy
KR20190003508A (en) 2016-03-22 2019-01-09 인쎄름 (엥스띠뛰 나씨오날 드 라 쌍떼 에 드 라 흐쉐르슈 메디깔) Humanized anti-Claudin-1 antibodies and uses thereof
WO2017165778A1 (en) 2016-03-24 2017-09-28 Millennium Pharmaceuticals, Inc. Methods of treating gastrointestinal immune-related adverse events in immune oncology treatments
WO2017165742A1 (en) 2016-03-24 2017-09-28 Millennium Pharmaceuticals, Inc. Methods of treating gastrointestinal immune-related adverse events in anti-ctla4 anti-pd-1 combination treatments
CN108700598A (en) 2016-03-25 2018-10-23 豪夫迈·罗氏有限公司 Multiplexed total antibody and antibody-conjugated drug quantification assay
EP3443004A1 (en) 2016-04-14 2019-02-20 H. Hoffnabb-La Roche Ag Anti-rspo3 antibodies and methods of use
KR20190006495A (en) 2016-04-15 2019-01-18 알파인 이뮨 사이언시즈, 인코포레이티드 CD80 variant immunoregulatory proteins and uses thereof
WO2017181111A2 (en) 2016-04-15 2017-10-19 Genentech, Inc. Methods for monitoring and treating cancer
CN109154027A (en) 2016-04-15 2019-01-04 豪夫迈·罗氏有限公司 For monitoring and the method for the treatment of cancer
CN110088126A (en) 2016-04-15 2019-08-02 高山免疫科学股份有限公司 ICOS ligand variant immune modulator and application thereof
WO2017189724A1 (en) 2016-04-27 2017-11-02 Novartis Ag Antibodies against growth differentiation factor 15 and uses thereof
SG11201809620UA (en) 2016-05-02 2018-11-29 Hoffmann La Roche The contorsbody - a single chain target binder
AU2017264578A1 (en) 2016-05-09 2019-01-03 Bristol-Myers Squibb Company TL1A antibodies and uses thereof
JP2019518012A (en) 2016-05-11 2019-06-27 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Modified anti-tenascin antibodies and methods of use
EP3458101A1 (en) 2016-05-20 2019-03-27 H. Hoffnabb-La Roche Ag Protac antibody conjugates and methods of use
TW201802121A (en) 2016-05-25 2018-01-16 Novartis Ag Reversal binding agents for anti-factor XI/XIa antibodies and uses thereof
EP3464360A1 (en) 2016-05-27 2019-04-10 Agenus Inc. Anti-tim-3 antibodies and methods of use thereof
EP3465221A1 (en) 2016-05-27 2019-04-10 H. Hoffnabb-La Roche Ag Bioanalytical method for the characterization of site-specific antibody-drug conjugates
US20170348422A1 (en) 2016-06-06 2017-12-07 Genentech, Inc. Silvestrol antibody-drug conjugates and methods of use
EP3468597A1 (en) 2016-06-12 2019-04-17 Millennium Pharmaceuticals, Inc. Method of treating inflammatory bowel disease
AU2017283787A1 (en) 2016-06-15 2019-01-24 Novartis Ag Methods for treating disease using inhibitors of bone morphogenetic protein 6 (BMP6)
WO2017223405A1 (en) 2016-06-24 2017-12-28 Genentech, Inc. Anti-polyubiquitin multispecific antibodies
EP3478717A1 (en) 2016-07-04 2019-05-08 H. Hoffnabb-La Roche Ag Novel antibody format
CN109757103A (en) 2016-07-14 2019-05-14 百时美施贵宝公司 For the antibody and application thereof of TIM3
WO2018022479A1 (en) 2016-07-25 2018-02-01 Biogen Ma Inc. Anti-hspa5 (grp78) antibodies and uses thereof
WO2018022946A1 (en) 2016-07-28 2018-02-01 Alpine Immune Sciences, Inc. Cd155 variant immunomodulatory proteins and uses thereof
WO2018022945A1 (en) 2016-07-28 2018-02-01 Alpine Immune Sciences, Inc. Cd112 variant immunomodulatory proteins and uses thereof
US20190185578A1 (en) 2016-07-29 2019-06-20 Chugai Seiyaku Kabushiki Kaisha Bispecific antibody exhibiting increased alternative fviii-cofactor-function activity
NL2017267B1 (en) 2016-07-29 2018-02-01 Aduro Biotech Holdings Europe B V Anti-pd-1 antibodies
NL2017270B1 (en) 2016-08-02 2018-02-09 Aduro Biotech Holdings Europe B V New anti-hCTLA-4 antibodies
EP3497129A1 (en) 2016-08-08 2019-06-19 H. Hoffnabb-La Roche Ag Therapeutic and diagnostic methods for cancer
WO2018031662A1 (en) 2016-08-11 2018-02-15 Genentech, Inc. Pyrrolobenzodiazepine prodrugs and antibody conjugates thereof
WO2018044970A1 (en) 2016-08-31 2018-03-08 University Of Rochester Human monoclonal antibodies to human endogenous retrovirus k envelope (herv-k) and uses thereof
CN109689682A (en) 2016-09-19 2019-04-26 豪夫迈·罗氏有限公司 Affinity chromatography based on complement factor
CA3031589A1 (en) 2016-09-23 2018-03-29 Genentech, Inc. Uses of il-13 antagonists for treating atopic dermatitis
US20180086841A1 (en) 2016-09-26 2018-03-29 Merck Sharp & Dohme Corp. Anti-cd27 antibodies
EP3522933A1 (en) 2016-10-05 2019-08-14 H. Hoffnabb-La Roche Ag Methods for preparing antibody drug conjugates
KR20190072528A (en) 2016-10-06 2019-06-25 제넨테크, 인크. Treatment and Diagnosis Methods for Cancer
AU2017343621A1 (en) 2016-10-11 2019-04-11 Agenus Inc. Anti-LAG-3 antibodies and methods of use thereof
WO2018081648A2 (en) 2016-10-29 2018-05-03 Genentech, Inc. Anti-mic antibidies and methods of use
CN109996809A (en) 2016-11-14 2019-07-09 诺华股份有限公司 Composition relevant to fusogenic protein MINION, method and therapeutical uses
CN109923128A (en) 2016-11-15 2019-06-21 基因泰克公司 Administration for being treated with anti-CD20/ AntiCD3 McAb bispecific antibody
TW201829463A (en) 2016-11-18 2018-08-16 瑞士商赫孚孟拉羅股份公司 Anti-antibodies and use hla-g
WO2018094300A1 (en) 2016-11-19 2018-05-24 Potenza Therapeutics, Inc. Anti-gitr antigen-binding proteins and methods of use thereof
KR20190084258A (en) 2016-11-21 2019-07-16 쿠레아브 게엠베하 Anti-GP73 antibody and immunoconjugate
KR20190080949A (en) 2016-11-23 2019-07-08 바이오버라티브 테라퓨틱스 인크. A bispecific antibody that binds to coagulation factor IX and coagulation factor X
AU2017373884A1 (en) 2016-12-07 2019-05-30 Ac Immune Sa Anti-tau antibodies and methods of their use
TW201821438A (en) 2016-12-07 2018-06-16 Genentech Inc Anti-TAU antibodies and methods of use
WO2018106862A1 (en) 2016-12-07 2018-06-14 Agenus Inc. Anti-ctla-4 antibodies and methods of use thereof
WO2018111890A1 (en) 2016-12-12 2018-06-21 Genentech, Inc. Methods of treating cancer using anti-pd-l1 antibodies and antiandrogens
WO2018115960A1 (en) 2016-12-19 2018-06-28 Mosaic Biomedicals, S.L. Antibodies against lif and uses thereof
BR112019007267A2 (en) 2016-12-20 2019-07-09 Hoffmann La Roche anti-cd20 / anti-cd3 bispecific antibody, pharmaceutical product, pharmaceutical composition comprising a anti-cd20 / anti-cd3 bispecific antibody, use of anti-cd20 / anti-cd3 bispecific antibody combination and a 4-1bb agonist and method of treatment or retardation of cancer progression in patients
AU2017379062A1 (en) 2016-12-23 2019-06-20 Potenza Therapeutics, Inc. Anti-neuropilin antigen-binding proteins and methods of use thereof
AU2017383232A1 (en) 2016-12-23 2019-06-27 Novartis Ag Factor XI antibodies and methods of use
AU2018206138A1 (en) 2017-01-03 2019-07-11 F. Hoffmann-La Roche Ag Bispecific antigen binding molecules comprising anti-4-1BB clone 20H4.9
TW201825515A (en) 2017-01-04 2018-07-16 美商伊繆諾金公司 Met antibody and immune conjugate and uses
WO2018129451A2 (en) 2017-01-09 2018-07-12 Merrimack Pharmaceuticals, Inc. Anti-fgfr antibodies and methods of use
WO2018143266A1 (en) 2017-01-31 2018-08-09 Chugai Seiyaku Kabushiki Kaisha A pharmaceutical composition for use in the treatment or prevention of a c5-related disease and a method for treating or preventing a c5-related disease
CA3049639A1 (en) 2017-02-03 2018-08-09 Novartis Ag Anti-ccr7 antibody drug conjugates
WO2018146594A1 (en) 2017-02-08 2018-08-16 Novartis Ag Fgf21 mimetic antibodies and uses thereof
AR110873A1 (en) 2017-02-10 2019-05-08 Genentech Inc Antibodies against tryptase, these compositions and uses of these
WO2018151821A1 (en) 2017-02-17 2018-08-23 Bristol-Myers Squibb Company Antibodies to alpha-synuclein and uses thereof
WO2018157027A1 (en) 2017-02-27 2018-08-30 Regeneron Pharmaceuticals, Inc. Humanized model of kidney and liver disorders
TW201837467A (en) 2017-03-01 2018-10-16 美商建南德克公司 For the diagnosis and treatment of cancer
WO2018158398A1 (en) 2017-03-02 2018-09-07 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies having specificity to nectin-4 and uses thereof
WO2018170026A2 (en) 2017-03-16 2018-09-20 Alpine Immune Sciences, Inc. Cd80 variant immunomodulatory proteins and uses thereof
WO2018170023A1 (en) 2017-03-16 2018-09-20 Alpine Immune Sciences, Inc. Pd-l2 variant immunomodulatory proteins and uses thereof
WO2018170021A1 (en) 2017-03-16 2018-09-20 Alpine Immune Sciences, Inc. Pd-l1 variant immunomodulatory proteins and uses thereof
WO2018175752A1 (en) 2017-03-22 2018-09-27 Genentech, Inc. Optimized antibody compositions for treatment of ocular disorders
WO2018175460A1 (en) 2017-03-24 2018-09-27 Novartis Ag Methods for preventing and treating heart disease
WO2018183175A1 (en) 2017-03-28 2018-10-04 Genentech, Inc. Methods of treating neurodegenerative diseases
WO2018178055A1 (en) 2017-03-29 2018-10-04 F. Hoffmann-La Roche Ag Bispecific antigen binding molecule for a costimulatory tnf receptor
WO2018178076A1 (en) 2017-03-29 2018-10-04 F. Hoffmann-La Roche Ag Bispecific antigen binding molecule for a costimulatory tnf receptor
WO2018183889A1 (en) 2017-03-30 2018-10-04 Potenza Therapeutics, Inc. Anti-tigit antigen-binding proteins and methods of use thereof
WO2018185618A1 (en) 2017-04-03 2018-10-11 Novartis Ag Anti-cdh6 antibody drug conjugates and anti-gitr antibody combinations and methods of treatment
TW201841939A (en) 2017-04-04 2018-12-01 瑞士商赫孚孟拉羅股份公司 Capable of binding specifically to a novel and fap cd40 antigen-binding molecule of the bispecific
TW201841940A (en) 2017-04-05 2018-12-01 瑞士商赫孚孟拉羅股份公司 Anti-lag3 antibody
WO2018185043A1 (en) 2017-04-05 2018-10-11 F. Hoffmann-La Roche Ag Bispecific antibodies specifically binding to pd1 and lag3
TW201839014A (en) 2017-04-07 2018-11-01 美商默沙東藥廠 Anti -ilt4 antibodies and antigen-binding fragments
WO2018190719A2 (en) 2017-04-13 2018-10-18 Aduro Biotech Holdings, Europe B.V. Anti-sirp alpha antibodies
TW201839400A (en) 2017-04-14 2018-11-01 美商建南德克公司 For the diagnosis and treatment of cancer
TW201841656A (en) 2017-04-21 2018-12-01 美商建南德克公司 Klk5 antagonists for the treatment of diseases
TW201902915A (en) 2017-04-27 2019-01-16 美商提薩羅有限公司 For lymphocyte activation gene -3 (lag-3) of an antibody and uses thereof agent
WO2018200818A2 (en) 2017-04-28 2018-11-01 Millennium Pharmaceuticals, Inc. Method of treating pediatric disorders
WO2018204363A1 (en) 2017-05-01 2018-11-08 Agenus Inc. Anti-tigit antibodies and methods of use thereof
WO2018213097A1 (en) 2017-05-15 2018-11-22 University Of Rochester Broadly neutralizing anti-influenza monoclonal antibody and uses thereof
UY37738A (en) 2017-05-24 2019-01-02 Novartis Ag Proteins grafted antibody-cytokine and methods of use for immune related disorders
WO2018215936A1 (en) 2017-05-24 2018-11-29 Novartis Ag Antibody-cytokine engrafted proteins and methods of use in the treatment of cancer
WO2018215937A1 (en) 2017-05-24 2018-11-29 Novartis Ag Interleukin-7 antibody cytokine engrafted proteins and methods of use in the treatment of cancer
WO2018215938A1 (en) 2017-05-24 2018-11-29 Novartis Ag Antibody-cytokine engrafted proteins and methods of use
WO2018218056A1 (en) 2017-05-25 2018-11-29 Birstol-Myers Squibb Company Antibodies comprising modified heavy constant regions
US20190010246A1 (en) 2017-06-01 2019-01-10 Compugen Ltd. Triple combination antibody therapies
UY37758A (en) 2017-06-12 2019-01-31 Novartis Ag Method for making bispecific antibodies, bispecific antibodies and therapeutic use of such antibodies
WO2018229706A1 (en) 2017-06-16 2018-12-20 Novartis Ag Combination therapy for the treatment of cancer
WO2018236904A1 (en) 2017-06-19 2018-12-27 Surface Oncology, Inc. Combination of anti-cd47 antibodies and cell death-inducing agents, and uses thereof
WO2018237097A1 (en) 2017-06-20 2018-12-27 Amgen Inc. Method of treating or ameliorating metabolic disorders using binding proteins for gastric inhibitory peptide receptor (gipr) in combination with glp-1 agonists
WO2018237335A1 (en) 2017-06-23 2018-12-27 VelosBio Inc. Ror1 antibody immunoconjugates
WO2019003104A1 (en) 2017-06-28 2019-01-03 Novartis Ag Methods for preventing and treating urinary incontinence
TW201908730A (en) 2017-07-21 2019-03-01 美商建南德克公司 The diagnosis and treatment of cancer
US20190119396A1 (en) 2017-07-26 2019-04-25 Forty Seven, Inc. Anti-SIRP-Alpha Antibodies and Related Methods
WO2019033043A2 (en) 2017-08-11 2019-02-14 Genentech, Inc. Anti-cd8 antibodies and uses thereof
WO2019036605A2 (en) 2017-08-17 2019-02-21 Massachusetts Institute Of Technology Multiple specificity binders of cxc chemokines and uses thereof
US20190085080A1 (en) 2017-08-25 2019-03-21 Five Prime Therapeutics, Inc. B7-h4 antibodies and methods of use thereof
WO2019059411A1 (en) 2017-09-20 2019-03-28 Chugai Seiyaku Kabushiki Kaisha Dosage regimen for combination therapy using pd-1 axis binding antagonists and gpc3 targeting agent
US20190144549A1 (en) 2017-10-10 2019-05-16 Tilos Therapeutics, Inc. Anti-lap antibodies and uses thereof
WO2019074983A1 (en) 2017-10-10 2019-04-18 Alpine Immune Sciences, Inc. Ctla-4 variant immunomodulatory proteins and uses thereof
WO2019079520A2 (en) 2017-10-18 2019-04-25 Alpine Immune Sciences, Inc. Variant icos ligand immunomodulatory proteins and related compositions and methods
WO2019077092A1 (en) 2017-10-20 2019-04-25 F. Hoffmann-La Roche Ag Method for generating multispecific antibodies from monospecific antibodies
WO2019081983A1 (en) 2017-10-25 2019-05-02 Novartis Ag Antibodies targeting cd32b and methods of use thereof
WO2019086362A1 (en) 2017-10-30 2019-05-09 F. Hoffmann-La Roche Ag Method for in vivo generation of multispecific antibodies from monospecific antibodies
WO2019089753A2 (en) 2017-10-31 2019-05-09 Compass Therapeutics Llc Cd137 antibodies and pd-1 antagonists and uses thereof
WO2019090263A1 (en) 2017-11-06 2019-05-09 Genentech, Inc. Diagnostic and therapeutic methods for cancer
WO2019100052A2 (en) 2017-11-20 2019-05-23 Compass Therapeutics Llc Cd137 antibodies and tumor antigen-targeting antibodies and uses thereof
WO2019102353A1 (en) 2017-11-22 2019-05-31 Novartis Ag Reversal binding agents for anti-factor xi/xia antibodies and uses thereof
WO2019106578A2 (en) 2017-12-01 2019-06-06 Novartis Ag Polyomavirus neutralizing antibodies
US20190194277A1 (en) 2017-12-08 2019-06-27 Argenx Bvba Use of fcrn antagonists for treatment of generalized myasthenia gravis
WO2019126133A1 (en) 2017-12-20 2019-06-27 Alexion Pharmaceuticals, Inc. Liquid formulations of anti-cd200 antibodies
WO2019126536A1 (en) 2017-12-20 2019-06-27 Alexion Pharmaceuticals Inc. Humanized anti-cd200 antibodies and uses thereof
EP3502140A1 (en) 2017-12-21 2019-06-26 F. Hoffmann-La Roche AG Combination therapy of tumor targeted icos agonists with t-cell bispecific molecules
US20190211098A1 (en) 2017-12-22 2019-07-11 Genentech, Inc. Use of pilra binding agents for treatment of a disease
WO2019129677A1 (en) 2017-12-29 2019-07-04 F. Hoffmann-La Roche Ag Anti-vegf antibodies and methods of use
WO2019136179A1 (en) 2018-01-03 2019-07-11 Alpine Immune Sciences, Inc. Multi-domain immunomodulatory proteins and methods of use thereof
WO2019134981A1 (en) 2018-01-05 2019-07-11 Ac Immune Sa Misfolded tdp-43 binding molecules
WO2019143636A1 (en) 2018-01-16 2019-07-25 Lakepharma, Inc. Bispecific antibody that binds cd3 and another target
WO2019148026A1 (en) 2018-01-26 2019-08-01 Genentech, Inc. Il-22 fc fusion proteins and methods of use
WO2019148020A1 (en) 2018-01-26 2019-08-01 Genentech, Inc. Compositions and methods of use
WO2019148412A1 (en) 2018-02-01 2019-08-08 Merck Sharp & Dohme Corp. Anti-pd-1/lag3 bispecific antibodies

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9429351A2 *

Also Published As

Publication number Publication date
AU6934194A (en) 1995-01-03
JPH08511420A (en) 1996-12-03
CA2163345A1 (en) 1994-12-22
AU691811B2 (en) 1998-05-28
WO1994029351A3 (en) 1994-12-22
WO1994029351A2 (en) 1994-12-22

Similar Documents

Publication Publication Date Title
Gorman et al. Reshaping a therapeutic CD4 antibody.
KR100238712B1 (en) Method for regulating the immune response using b7 binding molecules and il4-binding molecules
JP4157160B2 (en) Methods for the preparation of modified antibody variable region
US7597889B1 (en) Binding molecules derived from immunoglobulins which do not trigger complement mediated lysis
DE69636748T2 (en) lymphomas bispecific antibody for the effective treatment of B-cell and cell lines
US6893638B2 (en) Methods for treating b cell lymphoma using CD80-specific antibodies
EP0586617B1 (en) Anti-CD3 aglycosylated IgG Antibody
JP3597140B2 (en) Human monoclonal antibodies and pharmaceutical applications for costimulatory transmission molecule ailim
EP0340109B1 (en) Anti-T-cell receptor determinants as autoimmune disease treatment
US5869619A (en) Modified antibody variable domains
JP3339637B2 (en) Humanized chimeric t cells antibodies to Cdr grafted
EP2164873B1 (en) Stable igg4 antibodies
CN1214043C (en) Humanized antibodies to gamma-interferon
RU2139934C1 (en) Humanized antibodies and their utilization
US7034121B2 (en) Antibodies against CTLA4
EP0602126B1 (en) Immunoglobulin variants for specific fc epsilon receptors
JP3947570B2 (en) Mutated inactivated IgG2 domains and anti-CD3 antibody incorporating this
EP2626372B1 (en) Bispecific antibodies and methods for production thereof
CN1835977B (en) CD20-binding polypeptide compositions
EP0712863B1 (en) Humanized and chimeric monoclonal antibodies that recognize epidermal growth factor receptor (EGF-R); diagnostic and therapeutic use
AU662752B2 (en) Production of antibodies
JP3611573B2 (en) Methods and materials for the immunosuppressive activity and toxicity of modulation of monoclonal antibody
FI120041B (en) Soluble CTLA4 molecules and their uses
AU618989B2 (en) Improvements in or relating to antibodies
EP1073465B1 (en) T cell inhibitory receptor compositions and uses thereof

Legal Events

Date Code Title Description
AK Designated contracting states:

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19960109

17Q First examination report

Effective date: 20011116

18D Deemed to be withdrawn

Effective date: 20020101