US20090147234A1 - Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses - Google Patents
Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses Download PDFInfo
- Publication number
- US20090147234A1 US20090147234A1 US12320468 US32046809A US2009147234A1 US 20090147234 A1 US20090147234 A1 US 20090147234A1 US 12320468 US12320468 US 12320468 US 32046809 A US32046809 A US 32046809A US 2009147234 A1 US2009147234 A1 US 2009147234A1
- Authority
- US
- Grant status
- Application
- Patent type
- Prior art keywords
- light
- optical
- polarization
- direction
- element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B27/00—Other optical systems; Other optical apparatus
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0927—Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B27/00—Other optical systems; Other optical apparatus
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/0944—Diffractive optical elements, e.g. gratings, holograms
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B27/00—Other optical systems; Other optical apparatus
- G02B27/28—Other optical systems; Other optical apparatus for polarising
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B27/00—Other optical systems; Other optical apparatus
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4233—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B27/00—Other optical systems; Other optical apparatus
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4261—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element with major polarization dependent properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Exposure apparatus for microlithography
- G03F7/70058—Mask illumination systems
- G03F7/7015—Details of optical elements
- G03F7/70158—Diffractive optical elements
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Exposure apparatus for microlithography
- G03F7/70483—Information management, control, testing, and wafer monitoring, e.g. pattern monitoring
- G03F7/7055—Exposure light control, in all parts of the microlithographic apparatus, e.g. pulse length control, light interruption
- G03F7/70566—Polarisation control
Abstract
A beam transforming element for forming a predetermined light intensity distribution on a predetermined surface on the basis of an incident beam includes a first basic element made of an optical material with optical activity, for forming a first region distribution of the predetermined light intensity distribution on the basis of the incident beam; and a second basic element made of an optical material with optical activity, for forming a second region distribution of the predetermined light intensity distribution on the basis of the incident beam, wherein the first basic element and the second basic element have their respective thicknesses different from each other along a direction of transmission of light.
Description
- [0001]This is a continuation of application Ser. No. 11/319,057, filed Dec. 28, 2005, which is a continuation-in-part application of Application No. PCT/JP2004/016247 filed on Nov. 2, 2004. The disclosure of the prior application is hereby incorporated by reference herein in its entirety.
- [0002]1. Field of the Invention
- [0003]The present invention relates to a beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method and, more particularly, to an illumination optical apparatus suitably applicable to exposure apparatus used in production of microdevices such as semiconductor elements, image pickup elements, liquid crystal display elements, and thin-film magnetic heads by lithography.
- [0004]2. Related Background Art
- [0005]In the typical exposure apparatus of this type, a beam emitted from a light source travels through a fly's eye lens as an optical integrator to form a secondary light source as a substantial surface illuminant consisting of a number of light sources. Beams from the secondary light source (generally, an illumination pupil distribution formed on or near an illumination pupil of the illumination optical apparatus) are limited through an aperture stop disposed near the rear focal plane of the fly's eye lens and then enter a condenser lens.
- [0006]The beams condensed by the condenser lens superposedly illuminate a mask on which a predetermined pattern is formed. The light passing through the pattern of the mask is focused on a wafer through a projection optical system. In this manner, the mask pattern is projected for exposure (or transcribed) onto the wafer. The pattern formed on the mask is a highly integrated pattern, and, in order to accurately transcribe this microscopic pattern onto the wafer, it is indispensable to obtain a uniform illuminance distribution on the wafer.
- [0007]For example, Japanese Patent No. 3246615 owned by the same Applicant of the present application discloses the following technology for realizing the illumination condition suitable for faithful transcription of the microscopic pattern in arbitrary directions: the secondary light source is formed in an annular shape on the rear focal plane of the fly's eye lens and the beams passing the secondary light source of the annular shape are set to be in a linearly polarized state with a direction of polarization along the circumferential direction thereof (hereinafter referred to as a “azimuthal polarization state”).
- [0008]An object of the present invention is to form an illumination pupil distribution of an annular shape in a azimuthal polarization state while well suppressing the loss of light quantity. Another object of the present invention is to transcribe a microscopic pattern in an arbitrary direction under an appropriate illumination condition faithfully and with high throughput, by forming an illumination pupil distribution of an annular shape in a azimuthal polarization state while well suppressing the loss of light quantity.
- [0009]In order to achieve the above objects, a first aspect of the present embodiment is to provide a beam transforming element for forming a predetermined light intensity distribution on a predetermined surface on the basis of an incident beam, comprising:
- [0010]a first basic element made of an optical material with optical activity, for forming a first region distribution of the predetermined light intensity distribution on the basis of the incident beam; and
- [0011]a second basic element made of an optical material with optical activity, for forming a second region distribution of the predetermined light intensity distribution on the basis of the incident beam,
- [0012]wherein the first basic element and the second basic element have their respective thicknesses different from each other along a direction of transmission of light.
- [0013]A second aspect of the present embodiment is to provide a beam transforming element for, based on an incident beam, forming a predetermined light intensity distribution of a shape different from a sectional shape of the incident beam, on a predetermined surface, comprising:
- [0014]a diffracting surface or a refracting surface for forming the predetermined light intensity distribution on the predetermined surface,
- [0015]wherein the predetermined light intensity distribution is a distribution in at least a part of a predetermined annular region, which is a predetermined annular region centered around a predetermined point on the predetermined surface, and
- [0016]wherein a beam from the beam transforming element passing through the predetermined annular region has a polarization state in which a principal component is linearly polarized light having a direction of polarization along a circumferential direction (azymuthally direction) of the predetermined annular region.
- [0017]A third aspect of the present invention is to provide an illumination optical apparatus for illuminating a surface to be illuminated, based on a beam from a light source, comprising:
- [0018]the beam transforming element of the first aspect or the second aspect for transforming the beam from the light source in order to form an illumination pupil distribution on or near an illumination pupil of the illumination optical apparatus.
- [0019]A fourth aspect of the present embodiment is to provide an exposure apparatus comprising the illumination optical apparatus of the third aspect for illuminating a pattern,
- [0020]the exposure apparatus being arranged to project the pattern onto a photosensitive substrate.
- [0021]A fifth aspect of the present embodiment is to provide an exposure method comprising: an illumination step of illuminating a pattern by use of the illumination optical apparatus of the third aspect; and an exposure step of projecting the pattern onto a photosensitive substrate.
- [0022]The illumination optical apparatus of the present embodiment, different from the conventional technology giving rise to the large loss of light quantity at the aperture stop, is able to form the illumination pupil distribution of the annular shape in the azimuthal polarization state, with no substantial loss of light quantity, by diffraction and optical rotating action of the diffractive optical element as the beam transforming element. Namely, the illumination optical apparatus of the present invention is able to form the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity.
- [0023]Since the exposure apparatus and exposure method using the illumination optical apparatus of the present embodiment are arranged to use the illumination optical apparatus capable of forming the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity, they are able to transcribe a microscopic pattern in an arbitrary direction under an appropriate illumination condition faithfully and with high throughput and, in turn, to produce good devices with high throughput.
- [0024]The present invention will be more fully understood from the detailed description given hereinbelow and the accompanying drawings, which are given by way of illustration only and are not to be considered as limiting the embodiment.
- [0025]Further scope of applicability of the embodiment will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will be apparent to those skilled in the art from this detailed description.
- [0026]
FIG. 1 is an illustration schematically showing a configuration of an exposure apparatus with an illumination optical apparatus according to an embodiment of the present invention. - [0027]
FIG. 2 is an illustration showing a secondary light source of an annular shape formed in annular illumination. - [0028]
FIG. 3 is an illustration schematically showing a configuration of a conical axicon system disposed in an optical path between a front lens unit and a rear lens unit of an afocal lens inFIG. 1 . - [0029]
FIG. 4 is an illustration to illustrate the action of the conical axicon system on the secondary light source of the annular shape. - [0030]
FIG. 5 is an illustration to illustrate the action of a zoom lens on the secondary light source of the annular shape. - [0031]
FIG. 6 is an illustration schematically showing a first cylindrical lens pair and a second cylindrical lens pair disposed in an optical path between the front lens unit and the rear lens unit of the afocal lens inFIG. 1 . - [0032]
FIG. 7 is a first drawing to illustrate the action of the first cylindrical lens pair and the second cylindrical lens pair on the secondary light source of the annular shape. - [0033]
FIG. 8 is a second drawing to illustrate the action of the first cylindrical lens pair and the second cylindrical lens pair on the secondary light source of the annular shape. - [0034]
FIG. 9 is a third drawing to illustrate the action of the first cylindrical lens pair and the second cylindrical lens pair on the secondary light source of the annular shape. - [0035]
FIG. 10 is a perspective view schematically showing an internal configuration of a polarization monitor inFIG. 1 . - [0036]
FIG. 11 is an illustration schematically showing a configuration of a diffractive optical element for azimuthally polarized annular illumination according to an embodiment of the present invention. - [0037]
FIG. 12 is an illustration schematically showing a secondary light source of an annular shape set in the azimuthal polarization state. - [0038]
FIG. 13 is an illustration to illustrate the action of a first basic element. - [0039]
FIG. 14 is an illustration to illustrate the action of a second basic element. - [0040]
FIG. 15 is an illustration to illustrate the action of a third basic element. - [0041]
FIG. 16 is an illustration to illustrate the action of a fourth basic element. - [0042]
FIG. 17 is an illustration to illustrate the optical activity of crystalline quartz. - [0043]
FIGS. 18A and 18B are illustrations showing octapole secondary light sources in the azimuthal polarization state consisting of eight arc regions spaced from each other along the circumferential direction and a quadrupole secondary light source in the azimuthal polarization state consisting of four arc regions spaced from each other along the circumferential direction. - [0044]
FIG. 19 is an illustration showing a secondary light source of an annular shape in the azimuthal polarization state consisting of eight arc regions overlapping with each other along the circumferential direction. - [0045]
FIGS. 20A and 20B are illustrations showing hexapole secondary light sources in the azimuthal polarization state consisting of six arc regions spaced from each other along the circumferential direction and a secondary light source in the azimuthal polarization state having a plurality of regions spaced from each other along the circumferential direction and a region on the optical axis. - [0046]
FIG. 21 is an illustration showing an example in which an entrance-side surface of a diffractive optical element for azimuthally polarized annular illumination is planar. - [0047]
FIG. 22 is a flowchart of a procedure of obtaining semiconductor devices as microdevices. - [0048]
FIG. 23 is a flowchart of a procedure of obtaining a liquid crystal display element as a microdevice. - [0049]Embodiments of the present invention will be described based on the accompanying drawings.
- [0050]
FIG. 1 is an illustration schematically showing a configuration of an exposure apparatus with an illumination optical apparatus according to an embodiment of the present invention. InFIG. 1 , the Z-axis is defined along a direction of a normal to a wafer W being a photosensitive substrate, the Y-axis along a direction parallel to the plane ofFIG. 1 in the plane of the wafer W, and the X-axis along a direction of a normal to the plane ofFIG. 1 in the plane of wafer W. The exposure apparatus of the present embodiment is provided with a light source 1 for supplying exposure light (illumination light). - [0051]The light source 1 can be, for example, a KrF excimer laser light source for supplying light with the wavelength of 248 nm, an ArF excimer laser light source for supplying light with the wavelength of 193 nm, or the like. A nearly parallel beam emitted along the Z-direction from the light source 1 has a cross section of a rectangular shape elongated along the X-direction, and is incident to a beam expander 2 consisting of a pair of lenses 2 a and 2 b. The lenses 2 a and 2 b have a negative refracting power and a positive refracting power, respectively, in the plane of
FIG. 1 (or in the YZ plane). Therefore, the beam incident to the beam expander 2 is enlarged in the plane ofFIG. 1 and shaped into a beam having a cross section of a predetermined rectangular shape. - [0052]The nearly parallel beam passing through the beam expander 2 as a beam shaping optical system is deflected into the Y-direction by a bending mirror 3, and then travels through a quarter wave plate 4 a, a half wave plate 4 b, a depolarizer (depolarizing element) 4 c, and a diffractive optical element 5 for annular illumination to enter an afocal lens 6. Here the quarter wave plate 4 a, half wave plate 4 b, and depolarizer 4 c constitute a polarization state converter 4, as described later. The afocal lens 6 is an afocal system (afocal optic) set so that the front focal position thereof approximately coincides with the position of the diffractive optical element 5 and so that the rear focal position thereof approximately coincides with the position of a predetermined plane 7 indicated by a dashed line in the drawing.
- [0053]In general, a diffractive optical element is constructed by forming level differences with the pitch of approximately the wavelength of exposure light (illumination light) in a substrate and has the action of diffracting an incident beam at desired angles. Specifically, the diffractive optical element 5 for annular illumination has the following function: when a parallel beam having a rectangular cross section is incident thereto, it forms a light intensity distribution of an annular shape in its far field (or Fraunhofer diffraction region). Therefore, the nearly parallel beam incident to the diffractive optical element 5 as a beam transforming element forms a light intensity distribution of an annular shape on the pupil plane of the afocal lens 6 and then emerges as a nearly parallel beam from the afocal lens 6.
- [0054]In an optical path between front lens unit 6 a and rear lens unit 6 b of the afocal lens 6 there are a conical axicon system 8, a first cylindrical lens pair 9, and a second cylindrical lens pair 10 arranged in order from the light source side on or near the pupil plane of the afocal lens, and the detailed configuration and action thereof will be described later. For easier description, the fundamental configuration and action will be described below, in disregard of the action of the conical axicon system 8, first cylindrical lens pair 9, and second cylindrical lens pair 10.
- [0055]The beam through the afocal lens 6 travels through a zoom lens 11 for variation of σ-value and then enters a micro fly's eye lens (or fly's eye lens) 12 as an optical integrator. The micro fly's eye lens 12 is an optical element consisting of a number of micro lenses with a positive refracting power arranged lengthwise and breadthwise and densely. In general, a micro fly's eye lens is constructed, for example, by forming a micro lens group by etching of a plane-parallel plate.
- [0056]Here each micro lens forming the micro fly's eye lens is much smaller than each lens element forming a fly's eye lens. The micro fly's eye lens is different from the fly's eye lens consisting of lens elements spaced from each other, in that a number of micro lenses (micro refracting surfaces) are integrally formed without being separated from each other. In the sense that lens elements with a positive refracting power are arranged lengthwise and breadthwise, however, the micro fly's eye lens is a wavefront splitting optical integrator of the same type as the fly's eye lens. Detailed explanation concerning the micro fly's eye lens capable of being used in the present invention is disclosed, for example, in U.S. Pat. No. 6,913,373 (B2) which is incorporated herein by reference in its entirety.
- [0057]The position of the predetermined plane 7 is arranged near the front focal position of the zoom lens 11, and the entrance surface of the micro fly's eye lens 12 is arranged near the rear focal position of the zoom lens 11. In other words, the zoom lens 11 arranges the predetermined plane 7 and the entrance surface of the micro fly's eye lens 12 substantially in the relation of Fourier transform and eventually arranges the pupil plane of the afocal lens 6 and the entrance surface of the micro fly's eye lens 12 approximately optically conjugate with each other.
- [0058]Accordingly, for example, an illumination field of an annular shape centered around the optical axis AX is formed on the entrance surface of the micro fly's eye lens 12, as on the pupil plane of the afocal lens 6. The entire shape of this annular illumination field similarly varies depending upon the focal length of the zoom lens 11. Each micro lens forming the micro fly's eye lens 12 has a rectangular cross section similar to a shape of an illumination field to be formed on a mask M (eventually, a shape of an exposure region to be formed on a wafer W).
- [0059]The beam incident to the micro fly's eye lens 12 is two-dimensionally split by a number of micro lenses to form on its rear focal plane (eventually on the illumination pupil) a secondary light source having much the same light intensity distribution as the illumination field formed by the incident beam, i.e., a secondary light source consisting of a substantial surface illuminant of an annular shape centered around the optical axis AX, as shown in
FIG. 2 . Beams from the secondary light source formed on the rear focal plane of the micro fly's eye lens 12 (in general, an illumination pupil distribution formed on or near the pupil plane of the illumination optical apparatus) travel through beam splitter 13 a and condenser optical system 14 to superposedly illuminate a mask blind 15. - [0060]In this manner, an illumination field of a rectangular shape according to the shape and focal length of each micro lens forming the micro fly's eye lens 12 is formed on the mask blind 15 as an illumination field stop. The internal configuration and action of polarization monitor 13 incorporating a beam splitter 13 a will be described later. Beam through a rectangular aperture (light transmitting portion) of the mask blind 15 are subject to light condensing action of imaging optical system 16 and thereafter superposedly illuminate the mask M on which a predetermined pattern is formed.
- [0061]Namely, the imaging optical system 16 forms an image of the rectangular aperture of the mask blind 15 on the mask M. A beam passing through the pattern of mask M travels through a projection optical system PL to form an image of the mask pattern on the wafer W being a photosensitive substrate. In this manner, the pattern of the mask M is sequentially printed in each exposure area on the wafer W through full-wafer exposure or scan exposure with two-dimensional drive control of the wafer W in the plane (XY plane) perpendicular to the optical axis AX of the projection optical system PL.
- [0062]In the polarization state converter 4, the quarter wave plate 4 a is arranged so that its crystallographic axis is rotatable around the optical axis AX, and it transforms incident light of elliptical polarization into light of linear polarization. The half wave plate 4 b is arranged so that its crystallographic axis is rotatable around the optical axis AX, and it changes the plane of polarization of linearly polarized light incident thereto. The depolarizer 4 c is composed of a wedge-shaped crystalline quartz prism (not shown) and a wedge-shaped fused silica prism (not shown) having complementary shapes. The crystalline quartz prism and the fussed silica prism are constructed as an integral prism assembly so as to be set into and away from the illumination optical path.
- [0063]Where the light source 1 is the KrF excimer laser light source or the ArF excimer laser light source, light emitted from these light sources typically has the degree of polarization of 95% or more and light of almost linear polarization is incident to the quarter wave plate 4 a. However, if a right-angle prism as a back-surface reflector is interposed in the optical path between the light source 1 and the polarization state converter 4, the linearly polarized light will be changed into elliptically polarized light by virtue of total reflection in the right-angle prism unless the plane of polarization of the incident, linearly polarized light agrees with the P-polarization plane or S-polarization plane.
- [0064]In the case of the polarization state converter 4, for example, even if light of elliptical polarization is incident thereto because of the total reflection in the right-angle prism, light of linear polarization transformed by the action of the quarter wave plate 4 a will be incident to the half wave plate 4 b. Where the crystallographic axis of the half wave plate 4 b is set at an angle of 0° or 90° relative to the plane of polarization of the incident, linearly polarized light, the light of linear polarization incident to the half wave plate 4 b will pass as it is, without change in the plane of polarization.
- [0065]Where the crystallographic axis of the half wave plate 4 b is set at an angle of 45° relative to the plane of polarization of the incident, linearly polarized light, the light of linear polarization incident to the half wave plate 4 b will be transformed into light of linear polarization with change of polarization plane of 90°. Furthermore, where the crystallographic axis of the crystalline quartz prism in the depolarizer 4 c is set at an angle of 45° relative to the polarization plane of the incident, linearly polarized light, the light of linear polarization incident to the crystalline quartz prism will be transformed (or depolarized) into light in an unpolarized state.
- [0066]The polarization state converter 4 is arranged as follows: when the depolarizer 4 c is positioned in the illumination optical path, the crystallographic axis of the crystalline quartz prism makes the angle of 45° relative to the polarization plane of the incident, linearly polarized light. Incidentally, where the crystallographic axis of the crystalline quartz prism is set at the angle of 0° or 90° relative to the polarization plane of the incident, linearly polarized light, the light of linear polarization incident to the crystalline quartz prism will pass as it is, without change of the polarization plane. Where the crystallographic axis of the half wave plate 4 b is set at an angle of 22.5° relative to the polarization plane of incident, linearly polarized light, the light of linear polarization incident to the half wave plate 4 b will be transformed into light in an unpolarized state including a linear polarization component directly passing without change of the polarization plane and a linear polarization component with the polarization plane rotated by 90°.
- [0067]The polarization state converter 4 is arranged so that light of linear polarization is incident to the half wave plate 4 b, as described above, and, for easier description hereinafter, it is assumed that light of linear polarization having the direction of polarization (direction of the electric field) along the Z-axis in
FIG. 1 (hereinafter referred to as “Z-directionally polarized light”) is incident to the half wave plate 4 b. When the depolarizer 4 c is positioned in the illumination optical path and when the crystallographic axis of the half wave plate 4 b is set at the angle of 0° or 90° relative to the polarization plane (direction of polarization) of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the half wave plate 4 b passes as kept as Z-directionally polarized light without change of the polarization plane and enters the crystalline quartz prism in the depolarizer 4 c. Since the crystallographic axis of the crystalline quartz prism is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the crystalline quartz prism is transformed into light in an unpolarized state. - [0068]The light depolarized through the crystalline quartz prism travels through the quartz prism as a compensator for compensating the traveling direction of the light and is incident into the diffractive optical element 5 while being in the depolarized state. On the other hand, if the crystallographic axis of the half wave plate 4 b is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the half wave plate 4 b will be rotated in the polarization plane by 90° and transformed into light of linear polarization having the polarization direction (direction of the electric field) along the X-direction in
FIG. 1 (hereinafter referred to as “X-directionally polarized light”) and the X-directionally polarized light will be incident to the crystalline quartz prism in the depolarizer 4 c. Since the crystallographic axis of the crystalline quartz prism is set at the angle of 45° relative to the polarization plane of the incident, X-directionally polarized light as well, the light of X-directional polarization incident to the crystalline quartz prism is transformed into light in the depolarized state, and the light travels through the quartz prism to be incident in the depolarized state into the diffractive optical element 5. - [0069]In contrast, when the depolarizer 4 c is set away from the illumination optical path, if the crystallographic axis of the half wave plate 4 b is set at the angle of 0° or 90° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the half wave plate 4 b will pass as kept as Z-directionally polarized light without change of the polarization plane, and will be incident in the Z-directionally polarized state into the diffractive optical element 5. If the crystallographic axis of the half wave plate 4 b is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto on the other hand, the light of Z-directional polarization incident to the half wave plate 4 b will be transformed into light of X-directional polarization with the polarization plane rotated by 90°, and will be incident in the X-directionally polarized state into the diffractive optical element 5.
- [0070]In the polarization state converter 4, as described above, the light in the depolarized state can be made incident to the diffractive optical element 5 when the depolarizer 4 c is set and positioned in the illumination optical path. When the depolarizer 4 c is set away from the illumination optical path and when the crystallographic axis of the half wave plate 4 b is set at the angle of 0° or 90° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light in the Z-directionally polarized state can be made incident to the diffractive optical element 5. Furthermore, when the depolarizer 4 c is set away from the illumination optical path and when the crystallographic axis of the half wave plate 4 b is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light in the X-directionally polarized state can be made incident to the diffractive optical element 5.
- [0071]In other words, the polarization state converter 4 is able to switch the polarization state of the incident light into the diffractive optical element 5 (a state of polarization of light to illuminate the mask M and wafer W in use of an ordinary diffractive optical element except for the diffractive optical element for azimuthally polarized annular illumination according to the present invention as will be described later) between the linearly polarized state and the unpolarized state through the action of the polarization state converter consisting of the quarter wave plate 4 a, half wave plate 4 b, and depolarizer 4 c, and, in the case of the linearly polarized state, it is able to switch between mutually orthogonal polarization states (between the Z-directional polarization and the X-directional polarization).
- [0072]
FIG. 3 is an illustration schematically showing the configuration of the conical axicon system disposed in the optical path between the front lens unit and the rear lens unit of the afocal lens inFIG. 1 . The conical axicon system 8 is composed of a first prism member 8 a whose plane is kept toward the light source and whose refracting surface of a concave conical shape is kept toward the mask, and a second prism member 8 b whose plane is kept toward the mask and whose refracting surface of a convex conical shape is kept toward the light source, in order from the light source side. - [0073]The refracting surface of the concave conical shape of the first prism member 8 a and the refracting surface of the convex conical shape of the second prism member 8 b are formed in a complementary manner so as to be able to be brought into contact with each other. At least one of the first prism member 8 a and the second prism member 8 b is arranged movable along the optical axis AX, so that the spacing can be varied between the refracting surface of the concave conical shape of the first prism member 8 a and the refracting surface of the convex conical shape of the second prism member 8 b.
- [0074]In a state in which the refracting surface of the concave conical shape of the first prism member 8 a and the refracting surface of the convex conical shape of the second prism member 8 b are in contact with each other, the conical axicon system 8 functions as a plane-parallel plate and has no effect on the secondary light source of the annular shape formed. However, when the refracting surface of the concave conical shape of the first prism member 8 a and the refracting surface of the convex conical shape of the second prism member 8 b are spaced from each other, the conical axicon system 8 functions a so-called beam expander. Therefore, the angle of the incident beam to the predetermined plane 7 varies according to change in the spacing of the conical axicon system 8.
- [0075]
FIG. 4 is an illustration to illustrate the action of the conical axicon system on the secondary light source of the annular shape. With reference toFIG. 4 , the secondary light source 30 a of the minimum annular shape formed in a state where the spacing of the conical axicon system 8 is zero and where the focal length of the zoom lens 11 is set at the minimum (this state will be referred to hereinafter as a “standard state”) is changed into secondary light source 30 b of an annular shape with the outside diameter and inside diameter both enlarged and without change in the width (half of the difference between the inside diameter and the outside diameter: indicated by arrows in the drawing) when the spacing of the conical axicon system 8 is increased from zero to a predetermined value. In other words, an annular ratio (inside diameter/outside diameter) and size (outside diameter) both vary through the action of the conical axicon system 8, without change in the width of the secondary light source of the annular shape. - [0076]
FIG. 5 is an illustration to illustrate the action of the zoom lens on the secondary light source of the annular shape. With reference toFIG. 5 , the secondary light source 30 a of the annular shape formed in the standard state is changed into secondary light source 30 c of an annular shape whose entire shape is similarly enlarged by increasing the focal length of the zoom lens 11 from the minimum to a predetermined value. In other words, the width and size (outside diameter) both vary through the action of zoom lens 11, without change in the annular ratio of the secondary light source of the annular shape. - [0077]
FIG. 6 is an illustration schematically showing the configuration of the first cylindrical lens pair and the second cylindrical lens pair disposed in the optical path between the front lens unit and the rear lens unit of the afocal lens inFIG. 1 . InFIG. 6 , the first cylindrical lens pair 9 and the second cylindrical lens pair 10 are arranged in order from the light source side. The first cylindrical lens pair 9 is composed, for example, of a first cylindrical negative lens 9 a with a negative refracting power in the YZ plane and with no refracting power in the XY plane, and a first cylindrical positive lens 9 b with a positive refracting power in the YZ plane and with no refracting power in the XY plane, which are arranged in order from the light source side. - [0078]On the other hand, the second cylindrical lens pair 10 is composed, for example, of a second cylindrical negative lens 10 a with a negative refracting power in the XY plane and with no refracting power in the YZ plane, and a second cylindrical positive lens 10 b with a positive refracting power in the XY plane and with no refracting power in the YZ plane, which are arranged in order from the light source side. The first cylindrical negative lens 9 a and the first cylindrical positive lens 9 b are arranged so as to integrally rotate around the optical axis AX. Similarly, the second cylindrical negative lens 10 a and the second cylindrical positive lens 10 b are arranged so as to integrally rotate around the optical axis AX.
- [0079]In the state shown in
FIG. 6 , the first cylindrical lens pair 9 functions as a beam expander having a power in the Z-direction, and the second cylindrical lens pair 10 as a beam expander having a power in the X-direction. The power of the first cylindrical lens pair 9 and the power of the second cylindrical lens pair 10 are set to be equal to each other. - [0080]
FIGS. 7 to 9 are illustrations to illustrate the action of the first cylindrical lens pair and the second cylindrical lens pair on the secondary light source of the annular shape.FIG. 7 shows such a setting that the direction of the power of the first cylindrical lens pair 9 makes the angle of +45° around the optical axis AX relative to the Z-axis and that the direction of the power of the second cylindrical lens pair 10 makes the angle of −45° around the optical axis AX relative to the Z-axis. - [0081]Therefore, the direction of the power of the first cylindrical lens pair 9 is perpendicular to the direction of the power of the second cylindrical lens pair 10, and the composite system of the first cylindrical lens pair 9 and the second cylindrical lens pair 10 has the Z-directional power and the X-directional power identical to each other. As a result, in a perfect circle state shown in
FIG. 7 , a beam passing through the composite system of the first cylindrical lens pair 9 and the second cylindrical lens pair 10 is subject to enlargement at the same power in the Z-direction and in the X-direction to form the secondary light source of a perfect-circle annular shape on the illumination pupil. - [0082]In contrast to it,
FIG. 8 shows such a setting that the direction of the power of the first cylindrical lens pair 9 makes, for example, the angle of +80° around the optical axis AX relative to the Z-axis and that the direction of the power of the second cylindrical lens pair 10 makes, for example, the angle of −80° around the optical axis AX relative to the Z-axis. Therefore, the power in the X-direction is greater than the power in the Z-direction in the composite system of the first cylindrical lens pair 9 and the second cylindrical lens pair 10. As a result, in a horizontally elliptic state shown inFIG. 8 , the beam passing through the composite system of the first cylindrical lens pair 9 and the second cylindrical lens pair 10 is subject to enlargement at the power greater in the X-direction than in the Z-direction, whereby the secondary light source of a horizontally long annular shape elongated in the X-direction is formed on the illumination pupil. - [0083]On the other hand,
FIG. 9 shows such a setting that the direction of the power of the first cylindrical lens pair 9 makes, for example, the angle of +10° around the optical axis AX relative to the Z-axis and that the direction of the power of the second cylindrical lens pair 10 makes, for example, the angle of −10° around the optical axis AX relative to the Z-axis. Therefore, the power in the Z-direction is greater than the power in the X-direction in the composite system of the first cylindrical lens pair 9 and the second cylindrical lens pair 10. As a result, in a vertically elliptical state shown inFIG. 9 , the beam passing through the composite system of the first cylindrical lens pair 9 and the second cylindrical lens pair 10 is subject to enlargement at the power greater in the Z-direction than in the X-direction, whereby the secondary light source of a vertically long annular shape elongated in the Z-direction is formed on the illumination pupil. - [0084]Furthermore, by setting the first cylindrical lens pair 9 and the second cylindrical lens pair 10 in an arbitrary state between the perfect circle state shown in
FIG. 7 and the horizontally elliptical state shown inFIG. 8 , the secondary light source can be formed in a horizontally long annular shape according to any one of various aspect ratios. By setting the first cylindrical lens pair 9 and the second cylindrical lens pair 10 in an arbitrary state between the perfect circle state shown inFIG. 7 and the vertically elliptical state shown inFIG. 9 , the secondary light source can be formed in a vertically long annular shape according to any one of various aspect ratios. - [0085]
FIG. 10 is a perspective view schematically showing the internal configuration of the polarization monitor shown inFIG. 1 . With reference toFIG. 10 , the polarization monitor 10 is provided with a first beam splitter 13 a disposed in the optical path between the micro fly's eye lens 12 and the condenser optical system 14. The first beam splitter 13 a has, for example, the form of a non-coated plane-parallel plate made of quartz glass (i.e., raw glass), and has a function of taking reflected light in a polarization state different from a polarization state of incident light, out of the optical path. - [0086]The light taken out of the optical path by the first beam splitter 13 a is incident to a second beam splitter 13 b. The second beam splitter 13 b has, for example, the form of a non-coated plane-parallel plate made of quartz glass as the first beam splitter 13 a does, and has a function of generating reflected light in a polarization state different from the polarization state of incident light. The polarization monitor is so set that the P-polarized light for the first beam splitter 13 a becomes the S-polarized light for the second beam splitter 13 b and that the S-polarized light for the first beam splitter 13 a becomes the P-polarized light for the second beam splitter 13 b.
- [0087]Light transmitted by the second beam splitter 13 b is detected by first light intensity detector 13 c, while light reflected by the second beam splitter 13 b is detected by second light intensity detector 13 d. Outputs from the first light intensity detector 13 c and from the second light intensity detector 13 d are supplied each to a controller (not shown). The controller drives the quarter wave plate 4 a, half wave plate 4 b, and depolarizer 4 c constituting the polarization state converter 4, according to need.
- [0088]As described above, the reflectance for the P-polarized light and the reflectance for the S-polarized light are substantially different in the first beam splitter 13 a and in the second beam splitter 13 b. In the polarization monitor 13, therefore, the reflected light from the first beam splitter 13 a includes the S-polarization component (i.e., the S-polarization component for the first beam splitter 13 a and P-polarization component for the second beam splitter 13 b), for example, which is approximately 10% of the incident light to the first beam splitter 13 a, and the P-polarization component (i.e., the P-polarization component for the first beam splitter 13 a and S-polarization component for the second beam splitter 13 b), for example, which is approximately 1% of the incident light to the first beam splitter 13 a.
- [0089]The reflected light from the second beam splitter 13 b includes the P-polarization component (i.e., the P-polarization component for the first beam splitter 13 a and S-polarization component for the second beam splitter 13 b), for example, which is approximately 10%×1%=0.1% of the incident light to the first beam splitter 13 a, and the S-polarization component (i.e., the S-polarization component for the first beam splitter 13 a and P-polarization component for the second beam splitter 13 b), for example, which is approximately 1%×10%=0.1% of the incident light to the first beam splitter 13 a.
- [0090]In the polarization monitor 13, as described above, the first beam splitter 13 a has the function of extracting the reflected light in the polarization state different from the polarization state of the incident light out of the optical path in accordance with its reflection characteristic. As a result, though there is slight influence of variation of polarization due to the polarization characteristic of the second beam splitter 13 b, it is feasible to detect the polarization state (degree of polarization) of the incident light to the first beam splitter 13 a and, therefore, the polarization state of the illumination light to the mask M, based on the output from the first light intensity detector 13 c (information about the intensity of transmitted light from the second beam splitter 13 b, i.e., information about the intensity of light virtually in the same polarization state as that of the reflected light from the first beam splitter 13 a).
- [0091]The polarization monitor 13 is so set that the P-polarized light for the first beam splitter 13 a becomes the S-polarized light for the second beam splitter 13 b and that the S-polarized light for the first beam splitter 13 a becomes the P-polarized light for the second beam splitter 13 b. As a result, it is feasible to detect the light quantity (intensity) of the incident light to the first beam splitter 13 a and, therefore, the light quantity of the illumination light to the mask M, with no substantial effect of change in the polarization state of the incident light to the first beam splitter 13 a, based on the output from the second light intensity detector 13 d (information about the intensity of light successively reflected by the first beam splitter 13 a and the second beam splitter 13 b).
- [0092]In this manner, it is feasible to detect the polarization state of the incident light to the first beam splitter 13 a and, therefore, to determine whether the illumination light to the mask M is in the desired unpolarized state or linearly polarized state, using the polarization monitor 13. When the controller determines that the illumination light to the mask M (eventually, to the wafer W) is not in the desired unpolarized state or linearly polarized state, based on the detection result of the polarization monitor 13, it drives and adjusts the quarter wave plate 4 a, half wave plate 4 b, and depolarizer 4 c constituting the polarization state converter 4 so that the state of the illumination light to the mask M can be adjusted into the desired unpolarized state or linearly polarized state.
- [0093]Quadrupole illumination can be implemented by setting a diffractive optical element for quadrupole illumination (not shown) in the illumination optical path, instead of the diffractive optical element 5 for annular illumination. The diffractive optical element for quadrupole illumination has such a function that when a parallel beam having a rectangular cross section is incident thereto, it forms a light intensity distribution of a quadrupole shape in the far field thereof. Therefore, the beam passing through the diffractive optical element for quadrupole illumination forms an illumination field of a quadrupole shape consisting of four circular illumination fields centered around the optical axis AX, for example, on the entrance surface of the micro fly's eye lens 12. As a result, the secondary light source of the same quadrupole shape as the illumination field formed on the entrance surface is also formed on the rear focal plane of the micro fly's eye lens 12.
- [0094]In addition, ordinary circular illumination can be implemented by setting a diffractive optical element for circular illumination (not shown) in the illumination optical path, instead of the diffractive optical element 5 for annular illumination. The diffractive optical element for circular illumination has such a function that when a parallel beam having a rectangular cross section is incident thereto, it forms a light intensity distribution of a circular shape in the far field. Therefore, a beam passing through the diffraction optical element for circular illumination forms a circular illumination field centered around the optical axis AX, for example, on the entrance plane of the micro fly's eye lens 12. As a result, the secondary light source of the same circular shape as the illumination field formed on the entrance surface is also formed on the rear focal plane of the micro fly's eye lens 12.
- [0095]Furthermore, a variety of multipole illuminations (dipole illumination, octapole illumination, etc.) can be implemented by setting other diffractive optical elements for multipole illuminations (not shown), instead of the diffractive optical element 5 for annular illumination. Likewise, modified illuminations in various forms can be implemented by setting diffractive optical elements with appropriate characteristics (not shown) in the illumination optical path, instead of the diffractive optical element 5 for annular illumination.
- [0096]In the present embodiment, a diffractive optical element 50 for so-called azimuthally polarized annular illumination can be set, instead of the diffractive optical element 5 for annular illumination, in the illumination optical path, so as to implement the modified illumination in which the beam passing through the secondary light source of the annular shape is set in the azimuthal polarization state, i.e., the azimuthally polarized annular illumination.
FIG. 11 is an illustration schematically showing the configuration of the diffractive optical element for azimuthally polarized annular illumination according to the present embodiment.FIG. 12 is an illustration schematically showing the secondary light source of the annular shape set in the azimuthal polarization state. - [0097]With reference to
FIGS. 11 and 12 , the diffractive optical element 50 for azimuthally polarized annular illumination according to the present embodiment is constructed in such an arrangement that four types of basic elements 50A-50D having the same cross section of a rectangular shape and having their respective thicknesses different from each other along the direction of transmission of light (Y-direction) (i.e., lengths in the direction of the optical axis) are arranged lengthwise and breadthwise and densely. The thicknesses are set as follows: the thickness of the first basic elements 50A is the largest, the thickness of the fourth basic elements 50D the smallest, and the thickness of the second basic elements 50B is greater than the thickness of the third basic elements 50C. - [0098]The diffractive optical element 50 includes an approximately equal number of first basic elements 50A, second basic elements 50B, third basic elements 50C, and fourth basic elements 50D, and the four types of basic elements 50A-50D are arranged substantially at random. Furthermore, a diffracting surface (indicated by hatching in the drawing) is formed on the mask side of each basic element 50A-50D, and the diffracting surfaces of the respective basic elements 50A-50D are arrayed along one plane perpendicular to the optical axis AX (not shown in
FIG. 11 ). As a result, the mask-side surface of the diffractive optical element 50 is planar, while the light-source-side surface of the diffractive optical element 50 is uneven due to the differences among the thicknesses of the respective basic elements 50A-50D. - [0099]The diffracting surface of each first basic element 50A is arranged to form a pair of arc regions (bow shape) 31A symmetric with respect to an axis line of the Z-direction passing the optical axis AX, in the secondary light source 31 of the annular shape shown in
FIG. 12 . Namely, as shown inFIG. 13 , each first basic element 50A has a function of forming a pair of arc (bow shape) light intensity distributions 32A symmetric with respect to the axis line of the Z-direction passing the optical axis AX (corresponding to a pair of arc regions 31A) in the far field 50E of the diffractive optical element 50 (i.e., in the far field of each basic element 50A-50D). - [0100]The diffracting surface of each second basic element 50B is arranged so as to form a pair of arc (bow shape) regions 31B symmetric with respect to an axis line obtained by rotating the axis line of the Z-direction passing the optical axis AX, by −45° around the Y-axis (or obtained by rotating it by 45° counterclockwise in
FIG. 12 ). Namely, as shown inFIG. 14 , each second basic element 50B has a function of forming a pair of arc (bow shape) light intensity distributions 32B symmetric with respect to the axis line resulting from the −45° rotation around the Y-axis, of the axis line of the Z-direction passing the optical axis AX (corresponding to a pair of arc regions 31B), in the far field 50E. - [0101]The diffracting surface of each third basic element 50C is arranged to form a pair of arc (bow shape) regions 31C symmetric with respect to an axis line of the X-direction passing the optical axis AX. Namely, as shown in
FIG. 15 , each third basic element 50C has a function of forming a pair of arc (bow shape) light intensity distributions 32C symmetric with respect to the axis line of the X-direction passing the optical axis AX (corresponding to a pair of arc regions 31C), in the far field 50E. - [0102]The diffracting surface of each fourth basic element 50D is arranged so as to form a pair of arc (bow shape) regions 31D symmetric with respect to an axis line obtained by rotating the axis of the Z-direction passing the optical axis AX by +45° around the Y-axis (i.e., obtained by rotating it by 45° clockwise in
FIG. 12 ). Namely, as shown inFIG. 16 , each fourth basic element 50D has a function of forming a pair of arc (bow shape) light intensity distributions 32D symmetric with respect to the axis line resulting from the +45° rotation around the Y-axis, of the axis line of the Z-direction passing the optical axis AX (corresponding to a pair of arc regions 31D), in the far field 50E. The sizes of the respective arc regions 31A-31D are approximately equal to each other, and they form the secondary light source 31 of the annular shape centered around the optical axis AX, while the eight arc regions 31A-31D are not overlapping with each other and not spaced from each other. - [0103]In the present embodiment, each basic element 50A-50D is made of crystalline quartz being an optical material with optical activity, and the crystallographic axis of each basic element 50A-50D is set approximately to coincide with the optical axis AX. The optical activity of crystalline quartz will be briefly described below with reference to
FIG. 17 . With reference toFIG. 17 , an optical member 35 of a plane-parallel plate shape made of crystalline quartz and in a thickness d is arranged so that its crystallographic axis coincides with the optical axis AX. In this case, by virtue of the optical activity of the optical member 35, incident, linearly polarized light emerges in a state in which its-polarization direction is rotated by θ around the optical axis AX. - [0104]At this time, the angle θ of rotation of the polarization direction due to the optical activity of the optical member 35 is represented by Eq (1) below, using the thickness d of the optical member 35 and the rotatory power ρ of crystalline quartz.
- [0000]
θ=d·ρ (1) - [0105]In general, the rotatory power ρ of crystalline quartz tends to increase with decrease in the wavelength of used light and, according to the description on page 167 in “Applied Optics II,” the rotatory power ρ of crystalline quartz for light having the wavelength of 250.3 nm is 153.9°/mm.
- [0106]In the present embodiment the first basic elements 50A are designed in such a thickness dA that when light of linear polarization having the direction of polarization along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +180° rotation of the Z-direction around the Y-axis, i.e., along the Z-direction, as shown in
FIG. 13 . As a result, the polarization direction of beams passing through a pair of arc light intensity distributions 32A formed in the far field 50E is also the Z-direction, and the polarization direction of beams passing through a pair of arc regions 31A shown inFIG. 12 is also the Z-direction. - [0107]The second basic elements 50B are designed in such a thickness dB that when light of linear polarization having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +135° rotation of the Z-direction around the Y-axis, i.e., along a direction resulting from −45° rotation of the Z-direction around the Y-axis, as shown in
FIG. 14 . As a result, the polarization direction of beams passing through a pair of arc light intensity distributions 32B formed in the far field 50E is also the direction obtained by rotating the Z-direction by −45° around the Y-axis, and the polarization direction of beams passing through a pair of arc regions 31A shown inFIG. 12 is also the direction obtained by rotating the Z-direction by −45° around the Y-axis. - [0108]The third basic elements 50C are designed in such a thickness dC that when light of linear polarization having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +90° rotation of the Z-direction around the Y-axis, i.e., along the X-direction, as shown in
FIG. 15 . As a result, the polarization direction of beams passing through a pair of arc light intensity distributions 32C formed in the far field 50E is also the X-direction, and the polarization direction of beams passing through a pair of arc regions 31C shown inFIG. 12 is also the X-direction. - [0109]The fourth basic elements 50D are designed in such a thickness dD that when light of linear polarization having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +45° rotation of the Z-direction around the Y-axis, as shown in
FIG. 16 . As a result, the polarization direction of beams passing through a pair of arc light intensity distributions 32D formed in the far field 50E is also the direction obtained by rotating the Z-direction by +45° around the Y-axis, and the polarization direction of beams passing through a pair of arc regions 31D shown inFIG. 12 is also the direction obtained by rotating the Z-direction by +45° around the Y-axis. - [0110]In the present embodiment, the diffractive optical element 50 for azimuthally polarized annular illumination is set in the illumination optical system on the occasion of effecting the azimuthally polarized annular illumination, whereby the light of linear polarization having the polarization direction along the Z-direction is made incident to the diffractive optical element 50. As a result, the secondary light source of the annular shape (illumination pupil distribution of annular shape) 31 is formed on the rear focal plane of the micro fly's eye lens 12 (i.e., on or near the illumination pupil), as shown in
FIG. 12 , and the beams passing through the secondary light source 31 of the annular shape are set in the azimuthal polarization state. - [0111]In the azimuthal polarization state, the beams passing through the respective arc regions 31A-31D constituting the secondary light source 31 of the annular shape turn into the linearly polarized state having the polarization direction substantially coincident with a tangent line to a circle centered around the optical axis AX, at the central position along the circumferential direction of each arc region 31A-31D.
- [0112]In the present embodiment, as described above, the beam transforming element 50 for forming the predetermined light intensity distribution on the predetermined surface on the basis of the incident beam comprises the first basic element 50A made of the optical material with optical activity, for forming the first region distribution 32A of the predetermined light intensity distribution on the basis of the incident beam; and the second basic element 50B made of the optical material with optical activity, for forming the second region distribution 32B of the predetermined light intensity distribution on the basis of the incident beam, and the first basic element 50A and the second basic element 50B have their respective thicknesses different from each other along the direction of transmission of light.
- [0113]Thanks to this configuration, the present embodiment is able to form the secondary light source 31 of the annular shape in the azimuthal polarization state, with no substantial loss of light quantity, through the diffracting action and optical rotating action of the diffractive optical element 50 as the beam transforming element, different from the conventional technology giving rise to the large loss of light quantity at the aperture stop.
- [0114]In a preferred form of the present embodiment, the thickness of the first basic element 50A and the thickness of the second basic element 50B are so set that with incidence of linearly polarized light the polarization direction of the linearly polarized light forming the first region distribution 32A is different from the polarization direction of the linearly polarized light forming the second region distribution 32B. Preferably, the first region distribution 32A and the second region distribution 32B are positioned in at least a part of a predetermined annular region, which is a predetermined annular region centered around a predetermined point on the predetermined surface, and the beams passing through the first region distribution 32A and through the second region distribution 32B have a polarization state in which a principal component is linearly polarized light having the polarization direction along the circumferential direction of the predetermined annular region.
- [0115]In this case, preferably, the predetermined light intensity distribution has a contour of virtually the same shape as the predetermined annular region, the polarization state of the beam passing through the first region distribution 32A has a linear polarization component substantially coincident with a tangential direction to a circle centered around a predetermined point at the central position along the circumferential direction of the first region distribution 32A, and the polarization state of the beam passing through the second region distribution 32B has a linear polarization component substantially coincident with a tangential direction to a circle centered around a predetermined point at the central position along the circumferential direction of the second region distribution 32B. In another preferred configuration, the predetermined light intensity distribution is a distribution of a multipole shape in the predetermined annular region, the polarization state of the beam passing through the first region distribution has a linear polarization component substantially coincident with a tangential direction to a circle centered around a predetermined point at the central position along the circumferential direction of the first region distribution, and the polarization state of the beam passing through the second region distribution has a linear polarization component substantially coincident with a tangential direction to a circle centered around a predetermined point at the central position along the circumferential direction of the second region distribution.
- [0116]In a preferred form of the present embodiment, the first basic element and the second basic element are made of an optical material with an optical rotatory power of not less than 100°/mm for light of a wavelength used. Preferably, the first basic element and the second basic element are made of crystalline quartz. The beam transforming element preferably includes virtually the same number of first basic elements and second basic elements. The first basic element and the second basic element preferably have diffracting action or refracting action.
- [0117]In another preferred form of the present embodiment, preferably, the first basic element forms at least two first region distributions on the predetermined surface on the basis of the incident beam, and the second basic element forms at least two second region distributions on the predetermined surface on the basis of the incident beam. In addition, preferably, the beam transforming element further comprises the third basic element 50C made of the optical material with optical activity, for forming the third region distribution 32C of the predetermined light intensity distribution on the basis of the incident beam, and the fourth basic element 50D made of the optical material with optical activity, for forming the fourth region distribution 32D of the predetermined light intensity distribution on the basis of the incident beam.
- [0118]In the present embodiment, the beam transforming element 50 for forming the predetermined light intensity distribution of the shape different from the sectional shape of the incident beam, on the predetermined surface, has the diffracting surface or refracting surface for forming the predetermined light intensity distribution on the predetermined surface, the predetermined light intensity distribution is a distribution in at least a part of a predetermined annular region, which is a predetermined annular region centered around a predetermined point on the predetermined surface, and the beam from the beam transforming element passing through the predetermined annular region has a polarization state in which a principal component is linearly polarized light having the direction of polarization along the circumferential direction of the predetermined annular region.
- [0119]In the configuration as described above, the present embodiment, different from the conventional technology giving rise to the large loss of light quantity at the aperture stop, is able to form the secondary light source 31 of the annular shape in the azimuthal polarization state, with no substantial loss of light quantity, through the diffracting action and optical rotating action of the diffractive optical element 50 as the beam transforming element.
- [0120]In a preferred form of the present embodiment, the predetermined light intensity distribution has a contour of a multipole shape or annular shape. The beam transforming element is preferably made of an optical material with optical activity.
- [0121]The illumination optical apparatus of the present embodiment is the illumination optical apparatus for illuminating the surface to be illuminated, based on the beam from the light source, and comprises the above-described beam transforming element for transforming the beam from the light source in order to form the illumination pupil distribution on or near the illumination pupil of the illumination optical apparatus. In this configuration, the illumination optical apparatus of the present embodiment is able to form the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity.
- [0122]Here the beam transforming element is preferably arranged to be replaceable with another beam transforming element having a different characteristic. Preferably, the apparatus further comprises the wavefront splitting optical integrator disposed in the optical path between the beam transforming element and the surface to be illuminated, and the beam transforming element forms the predetermined light intensity distribution on the entrance surface of the optical integrator on the basis of the incident beam.
- [0123]In a preferred form of the illumination optical apparatus of the present embodiment, at least one of the light intensity distribution on the predetermined surface and the polarization state of the beam from the beam transforming element passing through the predetermined annular region is set in consideration of the influence of an optical member disposed in the optical path between the light source and the surface to be illuminated. Preferably, the polarization state of the beam from the beam transforming element is so set that the light illuminating the surface to be illuminated is in a polarization state in which a principal component is S-polarized light.
- [0124]The exposure apparatus of the present embodiment comprises the above-described illumination optical apparatus for illuminating the mask, and projects the pattern of the mask onto the photosensitive substrate. Preferably, at least one of the light intensity distribution on the predetermined surface and the polarization state of the beam from the beam transforming element passing through the predetermined annular region is set in consideration of the influence of an optical member disposed in the optical path between the light source and the photosensitive substrate. Preferably, the polarization state of the beam from the beam transforming element is so set that the light illuminating the photosensitive substrate is in a polarization state in which a principal component is S-polarized light.
- [0125]The exposure method of the present embodiment comprises the illumination step of illuminating the mask by use of the above-described illumination optical apparatus, and the exposure step of projecting the pattern of the mask onto the photosensitive substrate. Preferably, at least one of the light intensity distribution on the predetermined surface and the polarization state of the beam from the beam transforming element passing through the predetermined annular region is set in consideration of the influence of an optical member disposed in the optical path between the light source and the photosensitive substrate. Preferably, the polarization state of the beam from the beam transforming element is so set that the light illuminating the photosensitive substrate is in a polarization state in which a principal component is S-polarized light.
- [0126]In other words, the illumination optical apparatus of the present embodiment is able to form the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity. As a result, the exposure apparatus of the present embodiment is able to transcribe the microscopic pattern in an arbitrary direction under an appropriate illumination condition faithfully and with high throughput because it uses the illumination optical apparatus capable of forming the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity.
- [0127]In the azimuthally polarized annular illumination based on the illumination pupil distribution of the annular shape in the azimuthal polarization state, the light illuminating the wafer W as a surface to be illuminated is in the polarization state in which the principal component is the S-polarized light. Here the S-polarized light is linearly polarized light having the direction of polarization along a direction normal to a plane of incidence (i.e., polarized light with the electric vector oscillating in the direction normal to the plane of incidence). The plane of incidence herein is defined as the following plane: when light arrives at a boundary surface of a medium (a surface to be illuminated: surface of wafer W), the plane includes the normal to the boundary plane at the arrival point and the direction of incidence of light.
- [0128]In the above-described embodiment, the diffractive optical element 50 for azimuthally polarized annular illumination is constructed by randomly arranging virtually the same number of four types of basic elements 50A-50D with the same rectangular cross section lengthwise and breadthwise and densely. However, without having to be limited to this, a variety of modification examples can be contemplated as to the number of basic elements of each type, the sectional shape, the number of types, the arrangement, and so on.
- [0129]In the above-described embodiment, the secondary light source 31 of the annular shape centered around the optical axis AX is composed of the eight arc regions 31A-31D arrayed without overlapping with each other and without being spaced from each other, using the diffractive optical element 50 consisting of the four types of basic elements 50A-50D. However, without having to be limited to this, a variety of modification examples can be contemplated as to the number of regions forming the secondary light source of the annular shape, the shape, the arrangement, and so on.
- [0130]Specifically, as shown in
FIG. 18A , it is also possible to form a secondary light source 33 a of an octapole shape in the azimuthal polarization state consisting of eight arc (bow shape) regions spaced from each other along the circumferential direction, for example, using the diffractive optical element consisting of four types of basic elements. In addition, as shown inFIG. 18B , it is also possible to form a secondary light source 33 b of a quadrupole shape in the azimuthal polarization state consisting of four arc (bow shape) regions spaced from each other along the circumferential direction, for example, using the diffractive optical element consisting of four types of basic elements. In the secondary light source of the octapole shape or the secondary light source of the quadrupole shape, the shape of each region is not limited to the arc shape, but it may be, for example, circular, elliptical, or sectorial. Furthermore, as shown inFIG. 19 , it is also possible to form a secondary light source 33 c of an annular shape in the azimuthal polarization state consisting of eight arc regions overlapping with each other along the circumferential direction, for example, using the diffractive optical element consisting of four types of basic elements. - [0131]In addition to the quadrupole or octapole secondary light source in the azimuthal polarization state consisting of the four or eight regions spaced from each other along the circumferential direction, the secondary light source may be formed in a hexapole shape in the azimuthal polarization state and of six regions spaced from each other along the circumferential direction, as shown in
FIG. 20A . In addition, as shown inFIG. 20B , the secondary light source may be formed as one having secondary light source of a multipole shape in the azimuthal polarization state consisting of a plurality of regions spaced from each other along the circumferential direction, and a secondary light source on the center pole in the unpolarized state or linearly polarized state consisting of a region on the optical axis. Furthermore, the secondary light source may also be formed in a dipole shape in the azimuthal polarization state and of two regions spaced from each other along the circumferential direction. - [0132]In the aforementioned embodiment, as shown in
FIG. 11 , the four types of basic elements 50A-50D are individually formed, and the diffractive optical element 50 is constructed by combining these elements. However, without having to be limited to this, the diffractive optical element 50 can also be integrally constructed in such a manner that a crystalline quartz substrate is subjected, for example, to etching to form the exit-side diffracting surfaces and the entrance-side uneven surfaces of the respective basic elements 50A-50D. - [0133]In the aforementioned embodiment each basic element 50A-50D (therefore, the diffractive optical element 50) is made of crystalline quartz. However, without having to be limited to this, each basic element can also be made of another appropriate optical material with optical activity. In this case, it is preferable to use an optical material with an optical rotatory power of not less than 100°/mm for light of a wavelength used. Specifically, use of an optical material with a low rotatory power is undesirable because the thickness necessary for achieving the required rotation angle of the polarization direction becomes too large, so as to cause the loss of light quantity.
- [0134]The aforementioned embodiment is arranged to form the illumination pupil distribution of the annular shape (secondary light source), but, without having to be limited to this, the illumination pupil distribution of a circular shape can also be formed on or near the illumination pupil. In addition to the illumination pupil distribution of the annular shape and the illumination pupil distribution of the multipole shape, it is also possible to implement a so-called annular illumination with the center pole and a multipole illumination with the center pole, for example, by forming a center region distribution including the optical axis.
- [0135]In the aforementioned embodiment, the illumination pupil distribution in the azimuthal polarization state is formed on or near the illumination pupil. However, the polarization direction can vary because of polarization aberration (retardation) of an optical system (the illumination optical system or the projection optical system) closer to the wafer than the diffractive optical element as the beam transforming element. In this case, it is necessary to properly set the polarization state of the beam passing through the illumination pupil distribution formed on or near the illumination pupil, with consideration to the influence of polarization aberration of these optical systems.
- [0136]In connection with the foregoing polarization aberration, reflected light can have a phase difference in each polarization direction because of a polarization characteristic of a reflecting member disposed in the optical system (the illumination optical system or the projection optical system) closer to the wafer than the beam transforming element. In this case, it is also necessary to properly set the polarization state of the beam passing through the illumination pupil distribution formed on or near the illumination pupil, with consideration to the influence of the phase difference due to the polarization characteristic of the reflecting member.
- [0137]The reflectance in the reflecting member can vary depending upon the polarization direction, because of a polarization characteristic of a reflecting member disposed in the optical system (the illumination optical system or the projection optical system) closer to the wafer than the beam transforming element. In this case, it is desirable to provide offsets on the light intensity distribution formed on or near the illumination pupil, i.e. to provide a distribution of numbers of respective basic elements, in consideration of the reflectance in each polarization direction. The same technique can also be similarly applied to cases where the transmittance in the optical system closer to the wafer than the beam transforming element varies depending upon the polarization direction.
- [0138]In the foregoing embodiment, the light-source-side surface of the diffractive optical element 50 is of the uneven shape with level differences according to the differences among the thicknesses of respective basic elements 50A-50D. Then the surface on the light source side (entrance side) of the diffractive optical element 50 can also be formed in a planar shape, as shown in
FIG. 21 , by adding a compensation member 36 on the entrance side of the basic elements except for the first basic elements 50A with the largest thickness, i.e., on the entrance side of the second basic elements 50B, third basic elements 50C, and fourth basic elements 50D. In this case, the compensation member 36 is made of an optical material without optical activity. - [0139]The aforementioned embodiment shows the example wherein the beam passing through the illumination pupil distribution formed on or near the illumination pupil has only the linear polarization component along the circumferential direction. However, without having to be limited to this, the expected effect of the present invention can be achieved as long as the polarization state of the beam passing through the illumination pupil distribution is a state in which the principal component is linearly polarized light having the polarization direction along the circumferential direction.
- [0140]The foregoing embodiment uses the diffractive optical element consisting of the plural types of basic elements having the diffracting action, as the beam transforming element for forming the light intensity distribution of the shape different from the sectional shape of the incident beam, on the predetermined plane, based on the incident beam. However, without having to be limited to this, it is also possible to use as the beam transforming element a refracting optical element, for example, consisting of plural types of basic elements having refracting surfaces virtually optically equivalent to the diffracting surfaces of the respective basic elements, i.e., consisting of plural types of basic elements having the refracting action.
- [0141]The exposure apparatus according to the foregoing embodiment is able to produce microdevices (semiconductor elements, image pickup elements, liquid crystal display elements, thin-film magnetic heads, etc.) by illuminating a mask (reticle) by the illumination optical apparatus (illumination step) and projecting a pattern for transcription formed on the mask, onto a photosensitive substrate by use of the projection optical system (exposure step). The following will describe an example of a procedure of producing semiconductor devices as microdevices by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate by means of the exposure apparatus of the foregoing embodiment, with reference to the flowchart of
FIG. 22 . - [0142]The first step 301 in
FIG. 22 is to deposit a metal film on each of wafers in one lot. The next step 302 is to apply a photoresist onto the metal film on each wafer in the lot. Thereafter, step 303 is to sequentially transcribe an image of a pattern on a mask into each shot area on each wafer in the lot, through the projection optical system by use of the exposure apparatus of the foregoing embodiment. Subsequently, step 304 is to perform development of the photoresist on each wafer in the lot, and step 305 thereafter is to perform etching with the resist pattern as a mask on each wafer in the lot, thereby forming a circuit pattern corresponding to the pattern on the mask, in each shot area on each wafer. Thereafter, devices such as semiconductor elements are produced through execution of formation of circuit patterns in upper layers and others. The semiconductor device production method as described above permits us to produce the semiconductor devices with extremely fine circuit patterns at high throughput. - [0143]The exposure apparatus of the foregoing embodiment can also be applied to production of a liquid crystal display element as a microdevice in such a manner that predetermined patterns (a circuit pattern, an electrode pattern, etc.) are formed on a plate (glass substrate). An example of a procedure of this production will be described below with reference to the flowchart of
FIG. 23 . InFIG. 23 , pattern forming step 401 is to execute a so-called photolithography step of transcribing a pattern on a mask onto a photosensitive substrate (a glass substrate coated with a resist or the like) by use of the exposure apparatus of the foregoing embodiment. In this photolithography step, the predetermined patterns including a number of electrodes and others are formed on the photosensitive substrate. Thereafter, the exposed substrate is subjected to steps such as a development step, an etching step, a resist removing step, etc., to form the predetermined patterns on the substrate, followed by next color filter forming step 402. - [0144]The next color filter forming step 402 is to form a color filter in which a number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arrayed in a matrix, or in which a plurality of sets of filters of three stripes of R, G, and B are arrayed in the direction of horizontal scan lines. After the color filter forming step 402, cell assembly step 403 is carried out. The cell assembly step 403 is to assemble a liquid crystal panel (liquid crystal cell), using the substrate with the predetermined patterns obtained in the pattern forming step 401, the color filter obtained in the color filter forming step 402, and so on.
- [0145]In the cell assembly step 403, for example, a liquid crystal is poured into the space between the substrate with the predetermined patterns obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402 to produce the liquid crystal panel (liquid crystal cell). Thereafter, module assembly step 404 is carried out to attach such components as an electric circuit, a backlight, and so on for implementing the display operation of the assembled liquid crystal panel (liquid crystal cell), to complete the liquid crystal display element. The production method of the liquid crystal display element described above permits us to produce the liquid crystal display elements with extremely fine circuit patterns at high throughput.
- [0146]The foregoing embodiment is arranged to use the KrF excimer laser light (wavelength: 248 nm) or the ArF excimer laser light (wavelength: 193 nm) as the exposure light, but, without having to be limited to this, the present invention can also be applied to other appropriate laser light sources, e.g., an F2 laser light source for supplying laser light of the wavelength of 157 nm. Furthermore, the foregoing embodiment described the present invention, using the exposure apparatus with the illumination optical apparatus as an example, but it is apparent that the present invention can be applied to ordinary illumination optical apparatus for illuminating the surface to be illuminated, except for the mask and wafer.
- [0147]In the foregoing embodiment, it is also possible to apply the so-called liquid immersion method, which is a technique of filling a medium (typically, a liquid) with a refractive index larger than 1.1 in the optical path between the projection optical system and the photosensitive substrate. In this case, the technique of filling the liquid in the optical path between the projection optical system and the photosensitive substrate can be selected from the technique of locally filling the liquid as disclosed in PCT International Publication No. WO99/49504, the technique of moving a stage holding a substrate as an exposure target in a liquid bath as disclosed in Japanese Patent Application Laid-Open No. 6-124873, the technique of forming a liquid bath in a predetermined depth on a stage and holding the substrate therein as disclosed in Japanese Patent Application Laid-Open No. 10-303114, and so on. The PCT International Publication No. WO99/49504, Japanese Patent Application Laid-Open No. 6-124873, and Japanese Patent Application Laid-Open No. 10-303114 are incorporated herein by reference.
- [0148]The liquid is preferably one that is transparent to the exposure light, that has the refractive index as high as possible, and that is stable against the projection optical system and the photoresist applied to the surface of the substrate; for example, where the exposure light is the KrF excimer laser light or the ArF excimer laser light, pure water or deionized water can be used as the liquid. Where the F2 laser light is used as the exposure light, the liquid can be a fluorinated liquid capable of transmitting the F2 laser light, e.g., fluorinated oil or perfluoropolyether (PFPE).
- [0149]From the invention thus described, it will be obvious that the invention may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended for inclusion within the scope of the following claims.
Claims (33)
- 1. An apparatus which illuminates a surface to be illuminated with radiation from a radiation source, the apparatus comprising:a polarization state converter arranged in an illumination path;a first crystal optical element having a first thickness along an optical axis direction; anda second crystal optical element having a second thickness along an optical axis direction;wherein the first and second crystal optical elements are arranged in a plane disposed in an illumination path of the apparatus.
- 2. The apparatus according to
claim 1 , wherein the plane is arranged in the illumination path between the polarization state converter and the surface to be illuminated. - 3. The apparatus according to
claim 2 , wherein the first and second crystal optical elements are made of an optical material with optical activity. - 4. The apparatus according to
claim 3 , wherein optic axes of the optical material of the first and second crystal optical elements are aligned along the optical axis direction of the apparatus. - 5. The apparatus according to
claim 4 , wherein the first and second thicknesses are different. - 6. The apparatus according to
claim 2 , further comprising:a diffractive surface arranged in an illumination path of the apparatus which generates a first diffracted radiation and a second diffracted radiation from the radiation from the radiation source, the first and second diffracted radiations reach different regions on an illumination pupil of the apparatus. - 7. The apparatus according to
claim 6 , wherein the diffractive surface includes a first diffractive surface arranged between the first crystal optical element and the illumination pupil, and a second diffractive surface arranged between the second crystal optical element and the illumination pupil. - 8. The apparatus according to
claim 2 , further comprising an optical integrator arranged between the first and second crystal optical elements and the surface to be illuminated. - 9. The apparatus according to
claim 2 , further comprising:a diffractive surface which is arranged in an illumination path of the apparatus, and which forms a first region distribution of the predetermined light intensity distribution and a second region distribution of the predetermined light intensity distribution on the basis of radiation from the radiation source,the first crystal optical element provides a first rotation angle to an incident linearly polarized radiation, and the linearly polarized radiation from the first crystal optical element propagates to the first region distribution;the second crystal optical element provides a second rotation angle to an incident linearly polarized radiation, the second thickness differs from the first thickness, and the linearly polarized radiation from the second crystal optical element propagates to the second region distribution. - 10. The apparatus according to
claim 9 , further comprising an optical integrator arranged between the first and second crystal optical elements and the surface to be illuminated. - 11. The apparatus according to
claim 10 , wherein the diffractive surface is arranged between the first and second crystal optical elements and the surface to be illuminated. - 12. The apparatus according to
claim 9 , wherein the diffractive surface is arranged between the first and second crystal optical elements and the surface to be illuminated. - 13. The apparatus according to
claim 2 , wherein the first crystal optical element and the second crystal optical element are integrally formed. - 14. The apparatus according to
claim 2 , further comprising a polarization monitor arranged downstream of the first and second crystal optical elements. - 15. The apparatus according to
claim 1 , wherein a polarization state of the beam from the first and second crystal optical elements is based on an influence of an optical member disposed in an illumination path between the light source and the surface to be illuminated. - 16. The apparatus according to
claim 15 , wherein the optical member includes a reflective member. - 17. An exposure apparatus comprising the apparatus as defined in
claim 1 , wherein the exposure apparatus illuminates a predetermined pattern, and projects an image of the predetermined pattern onto a photosensitive substrate on the surface to be illuminated. - 18. The exposure apparatus according to
claim 17 , wherein an illumination pupil distribution on or near an illumination pupil of the apparatus is a distribution in at least a part of a predetermined annular region centered around an optical axis of the apparatus. - 19. The exposure apparatus according to
claim 17 , wherein a polarization state of the beam from the first and second crystal optical elements is set based on an influence of an optical member disposed in an illumination path between the light source and the photosensitive substrate on the surface to be illuminated. - 20. The exposure apparatus according to
claim 19 , wherein the optical member includes a reflective member. - 21. The exposure apparatus according to
claim 17 , wherein a polarization state of the beam at an illumination pupil is set so that light illuminating the photosensitive substrate is in a polarization state in which a principal component is s-polarized light. - 22. An exposure method comprising:illuminating a predetermined pattern using the exposure apparatus as defined in
claim 17 , andprojecting an image of the predetermined pattern onto a photosensitive substrate. - 23. A device manufacturing method comprising:illuminating a predetermined pattern using the exposure apparatus as defined in
claim 17 ;projecting an image of the predetermined pattern onto a photosensitive substrate; anddeveloping the photosensitive substrate. - 24. An exposure method comprising:supplying radiation;passing the supplied radiation through a polarization state converter,passing the radiation from the polarization state converter through a first crystal optical element having a first thickness along a traveling direction of an incident radiation,passing the radiation from the polarization state converter through a second crystal optical element having a second thickness along the traveling direction of an incident radiation, the first and second thicknesses being different from each other, the first and second crystal optical elements arranged in a plane crossing the traveling direction; andprojecting an image of a pattern illuminated with the radiation passed through the first and second crystal optical elements, onto a photosensitive substrate.
- 25. The method according to
claim 24 , wherein the first and second crystal optical elements are made of an optical material with optical activity. - 26. The method according to
claim 25 , wherein optic axes of the optical material of the first and second crystal optical elements are aligned along the traveling direction of the radiation. - 27. The method according to
claim 26 , further comprising:generating a first diffracted radiation and a second diffracted radiation, the first and second diffracted radiations reach different regions on an illumination pupil;optically rotating the first diffracted radiation with the first crystal optical element; andoptically rotating the second diffracted radiation with the second crystal optical element, whereinthe first and second crystal optical elements have thicknesses different from each other along a direction of transmission of the radiation. - 28. The method according to
claim 27 , further comprising projecting the radiations from the first and second crystal optical elements through an optical integrator. - 29. The method according to
claim 28 , wherein the first and second diffracted radiations are generated by radiations from the first and second crystal optical elements. - 30. The method according to
claim 24 , wherein the first crystal optical element and the second crystal optical element are integrally formed. - 31. The method according to
claim 24 , wherein polarization states of beams from the first and second crystal optical elements are set based on an influence of an optical member in an illumination path between a light source of the radiation and a substrate arranged on the surface to be illuminated. - 32. The method according to
claim 31 , wherein the optical member is reflective. - 33. A device manufacturing method comprising:projecting an image of a pattern onto a photosensitive substrate using the exposure method according to
claim 24 ; anddeveloping the photosensitive substrate.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003-390674 | 2003-11-20 | ||
JP2003390674 | 2003-11-20 | ||
PCT/JP2004/016247 WO2005050718A1 (en) | 2003-11-20 | 2004-11-02 | Light flux conversion element, lighting optical device, exposure system, and exposure method |
US11319057 US20060158624A1 (en) | 2003-11-20 | 2005-12-28 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method |
US12320468 US20090147234A1 (en) | 2003-11-20 | 2009-01-27 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12320468 US20090147234A1 (en) | 2003-11-20 | 2009-01-27 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US13137004 US20110273698A1 (en) | 2003-11-20 | 2011-07-14 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090147234A1 true true US20090147234A1 (en) | 2009-06-11 |
Family
ID=34616350
Family Applications (12)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11319057 Abandoned US20060158624A1 (en) | 2003-11-20 | 2005-12-28 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method |
US12320480 Abandoned US20090147235A1 (en) | 2003-11-20 | 2009-01-27 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US12320465 Abandoned US20090147233A1 (en) | 2003-11-20 | 2009-01-27 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US12320468 Abandoned US20090147234A1 (en) | 2003-11-20 | 2009-01-27 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US12461852 Abandoned US20090323041A1 (en) | 2003-11-20 | 2009-08-26 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US13137003 Active US9164209B2 (en) | 2003-11-20 | 2011-07-14 | Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction |
US13137002 Granted US20110273692A1 (en) | 2003-11-20 | 2011-07-14 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US13137004 Abandoned US20110273698A1 (en) | 2003-11-20 | 2011-07-14 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US13137342 Granted US20110299055A1 (en) | 2003-11-20 | 2011-08-08 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US13889965 Active US9885872B2 (en) | 2003-11-20 | 2013-05-08 | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US14818788 Pending US20150338663A1 (en) | 2003-11-20 | 2015-08-05 | Beam transforming optical system, illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thickness to rotate linear polarization direction |
US15662948 Pending US20170351100A1 (en) | 2003-11-20 | 2017-07-28 | Beam transforming optical system, illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thickness to rotate linear polarization direction |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11319057 Abandoned US20060158624A1 (en) | 2003-11-20 | 2005-12-28 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method |
US12320480 Abandoned US20090147235A1 (en) | 2003-11-20 | 2009-01-27 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US12320465 Abandoned US20090147233A1 (en) | 2003-11-20 | 2009-01-27 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
Family Applications After (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12461852 Abandoned US20090323041A1 (en) | 2003-11-20 | 2009-08-26 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US13137003 Active US9164209B2 (en) | 2003-11-20 | 2011-07-14 | Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction |
US13137002 Granted US20110273692A1 (en) | 2003-11-20 | 2011-07-14 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US13137004 Abandoned US20110273698A1 (en) | 2003-11-20 | 2011-07-14 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US13137342 Granted US20110299055A1 (en) | 2003-11-20 | 2011-08-08 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US13889965 Active US9885872B2 (en) | 2003-11-20 | 2013-05-08 | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US14818788 Pending US20150338663A1 (en) | 2003-11-20 | 2015-08-05 | Beam transforming optical system, illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thickness to rotate linear polarization direction |
US15662948 Pending US20170351100A1 (en) | 2003-11-20 | 2017-07-28 | Beam transforming optical system, illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thickness to rotate linear polarization direction |
Country Status (6)
Country | Link |
---|---|
US (12) | US20060158624A1 (en) |
EP (5) | EP2251896B1 (en) |
JP (10) | JP4976015B2 (en) |
KR (8) | KR101220667B1 (en) |
CN (8) | CN101369054B (en) |
WO (1) | WO2005050718A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060291057A1 (en) * | 2004-01-16 | 2006-12-28 | Damian Fiolka | Polarization-modulating optical element |
US20070081114A1 (en) * | 2004-01-16 | 2007-04-12 | Damian Fiolka | Polarization-modulating optical element |
US20080316459A1 (en) * | 2004-01-16 | 2008-12-25 | Carl Zeiss Smt Ag | Polarization-modulating optical element |
US20090073414A1 (en) * | 2004-02-06 | 2009-03-19 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US20090122292A1 (en) * | 2003-10-28 | 2009-05-14 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US20090147235A1 (en) * | 2003-11-20 | 2009-06-11 | Nikon Corporation | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US20100141926A1 (en) * | 2004-01-27 | 2010-06-10 | Nikon Corporation | Optical system,exposure system, and exposure method |
US20110037962A1 (en) * | 2009-08-17 | 2011-02-17 | Nikon Corporation | Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method |
US7916391B2 (en) | 2004-05-25 | 2011-03-29 | Carl Zeiss Smt Gmbh | Apparatus for providing a pattern of polarization |
US20110205519A1 (en) * | 2010-02-25 | 2011-08-25 | Nikon Corporation | Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method |
US8675177B2 (en) | 2003-04-09 | 2014-03-18 | Nikon Corporation | Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080273185A1 (en) * | 2004-06-16 | 2008-11-06 | Nikon Corporation | Optical System, Exposing Apparatus and Exposing Method |
JPWO2006016469A1 (en) * | 2004-08-10 | 2008-05-01 | 株式会社ニコン | Illumination optical apparatus, exposure apparatus, and exposure method |
KR100614651B1 (en) * | 2004-10-11 | 2006-08-22 | 삼성전자주식회사 | Apparatus And Method For Pattern Exposure, Photomask Used Therefor, Design Method For The Photomask, Illuminating System Therefor and Implementing Method For The Illuminating System |
WO2006131517A3 (en) * | 2005-06-07 | 2007-05-03 | Damian Fiolka | Illuminating device of a microlithographic projection exposure system |
DE102006031807A1 (en) * | 2005-07-12 | 2007-01-18 | Carl Zeiss Smt Ag | Lighting device for microlithographic projection exposure system, has depolarizing system to effect polarization direction variation such that light mixer produces light without preferred direction, and including plates of crystal material |
EP1953805A4 (en) * | 2005-11-10 | 2010-03-31 | Nippon Kogaku Kk | Lighting optical system, exposure system, and exposure method |
US7884921B2 (en) * | 2006-04-12 | 2011-02-08 | Nikon Corporation | Illumination optical apparatus, projection exposure apparatus, projection optical system, and device manufacturing method |
EP2009678A4 (en) * | 2006-04-17 | 2011-04-06 | Nippon Kogaku Kk | Illuminating optical apparatus, exposure apparatus and device manufacturing method |
KR20090029686A (en) | 2006-06-16 | 2009-03-23 | 가부시키가이샤 니콘 | Variable slit device, illuminating device, exposure device, exposure method, and method of manufacturing device |
DE102006032878A1 (en) * | 2006-07-15 | 2008-01-17 | Carl Zeiss Smt Ag | Illumination system of a microlithographic projection exposure system |
US20080049321A1 (en) * | 2006-08-25 | 2008-02-28 | Jds Uniphase Corporation | Passive Depolarizer |
DE102007007907A8 (en) | 2007-02-14 | 2008-12-18 | Carl Zeiss Smt Ag | A process for producing a diffractive optical element, produced according to such a method, diffractive optical element, illumination optics, micro lithography projection exposure system manufactured with such a diffractive optical element with such an illumination optical system, method for manufacturing a microelectronic device using such a projection exposure apparatus and such a method module |
DE102007019831B4 (en) | 2007-04-25 | 2012-03-01 | Carl Zeiss Smt Gmbh | Illumination system of a microlithographic projection exposure apparatus |
KR100896875B1 (en) * | 2007-07-23 | 2009-05-12 | 주식회사 동부하이텍 | Exposure apparatus and method thereof |
DE102007043958B4 (en) | 2007-09-14 | 2011-08-25 | Carl Zeiss SMT GmbH, 73447 | Illumination system of a microlithographic projection exposure apparatus |
US7996762B2 (en) * | 2007-09-21 | 2011-08-09 | Microsoft Corporation | Correlative multi-label image annotation |
JP5224027B2 (en) * | 2007-10-22 | 2013-07-03 | 大日本印刷株式会社 | Diffraction grating manufacturing method using the diffraction grating fabrication phase mask |
JP2009198903A (en) * | 2008-02-22 | 2009-09-03 | Olympus Corp | Optical equipment |
DE102008041179B4 (en) | 2008-08-12 | 2010-11-04 | Carl Zeiss Smt Ag | Illumination optics for a microlithography projection exposure system |
DE102009006685A1 (en) | 2009-01-29 | 2010-08-05 | Carl Zeiss Smt Ag | Lighting system for microlithography |
JP5360399B2 (en) * | 2009-08-06 | 2013-12-04 | 大日本印刷株式会社 | Diffraction grating fabrication phase mask |
DE102010046133B4 (en) * | 2010-09-13 | 2014-01-09 | Klaus Becker | Trunking generator |
KR20140088166A (en) * | 2011-10-24 | 2014-07-09 | 가부시키가이샤 니콘 | Illumination optical assembly, exposure apparatus, and device manufacturing method |
DE102011085334A1 (en) | 2011-10-27 | 2013-05-02 | Carl Zeiss Smt Gmbh | An optical system in an illumination system of a microlithographic projection exposure apparatus |
JPWO2013089258A1 (en) * | 2011-12-15 | 2015-04-27 | 株式会社ニコン | Microscope and stimulator |
DE102012200371A1 (en) | 2012-01-12 | 2013-07-18 | Carl Zeiss Smt Gmbh | An optical system for a microlithographic projection exposure apparatus and exposure method microlithographic |
DE102012200370A1 (en) | 2012-01-12 | 2013-08-01 | Carl Zeiss Smt Gmbh | Method for manufacturing optical element in microlithographic projection exposure system of optical system for manufacturing microstructured components, involves providing substrate that is made from material and has thickness |
CN103792767B (en) * | 2012-10-31 | 2015-10-07 | 深圳市绎立锐光科技开发有限公司 | Wavelength conversion device, and a method of manufacturing the wavelength conversion device related |
Citations (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6392800B1 (en) * | ||||
US3892470A (en) * | 1974-02-01 | 1975-07-01 | Hughes Aircraft Co | Optical device for transforming monochromatic linearly polarized light to ring polarized light |
US4744615A (en) * | 1986-01-29 | 1988-05-17 | International Business Machines Corporation | Laser beam homogenizer |
US4755027A (en) * | 1985-07-02 | 1988-07-05 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | Method and device for polarizing light radiation |
US5312513A (en) * | 1992-04-03 | 1994-05-17 | Texas Instruments Incorporated | Methods of forming multiple phase light modulators |
US5541026A (en) * | 1991-06-13 | 1996-07-30 | Nikon Corporation | Exposure apparatus and photo mask |
US5621498A (en) * | 1991-10-15 | 1997-04-15 | Kabushiki Kaisha Toshiba | Projection exposure apparatus |
US5631721A (en) * | 1995-05-24 | 1997-05-20 | Svg Lithography Systems, Inc. | Hybrid illumination system for use in photolithography |
US5739898A (en) * | 1993-02-03 | 1998-04-14 | Nikon Corporation | Exposure method and apparatus |
US5933219A (en) * | 1994-04-22 | 1999-08-03 | Canon Kabushiki Kaisha | Projection exposure apparatus and device manufacturing method capable of controlling polarization direction |
US6031658A (en) * | 1998-09-25 | 2000-02-29 | University Of Central Florida | Digital control polarization based optical scanner |
US6191880B1 (en) * | 1995-09-23 | 2001-02-20 | Carl-Zeiss-Stiftung | Radial polarization-rotating optical arrangement and microlithographic projection exposure system incorporating said arrangement |
US6208407B1 (en) * | 1997-12-22 | 2001-03-27 | Asm Lithography B.V. | Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement |
US6211944B1 (en) * | 1990-08-21 | 2001-04-03 | Nikon Corporation | Projection exposure method and apparatus |
US6229647B1 (en) * | 1992-12-14 | 2001-05-08 | Canon Kabushiki Kaisha | Reflection and refraction optical system and projection exposure apparatus using the same |
US6233041B1 (en) * | 1990-08-21 | 2001-05-15 | Nikon Corporation | Exposure method utilizing diffracted light having different orders of diffraction |
US6252712B1 (en) * | 1998-02-20 | 2001-06-26 | Carl-Zeiss-Stiftung | Optical system with polarization compensator |
US6259512B1 (en) * | 1997-08-04 | 2001-07-10 | Canon Kabushiki Kaisha | Illumination system and exposure apparatus having the same |
US6341007B1 (en) * | 1996-11-28 | 2002-01-22 | Nikon Corporation | Exposure apparatus and method |
US20020024008A1 (en) * | 2000-08-24 | 2002-02-28 | Asahi Kogaku Kogyo Kabushiki Kaisha | Method of detecting arrangement of beam spots |
US20020027719A1 (en) * | 2000-04-25 | 2002-03-07 | Silicon Valley Group, Inc. | Optical reduction system with control of illumination polarization |
US6361909B1 (en) * | 1999-12-06 | 2002-03-26 | Industrial Technology Research Institute | Illumination aperture filter design using superposition |
US6404482B1 (en) * | 1992-10-01 | 2002-06-11 | Nikon Corporation | Projection exposure method and apparatus |
US20020085276A1 (en) * | 2000-11-29 | 2002-07-04 | Nikon Corporation | Illumination optical apparatus and exposure apparatus provided with illumination optical apparatus |
US20020085176A1 (en) * | 1999-01-06 | 2002-07-04 | Nikon Corporation | Projection optical system, production method thereof, and projection exposure apparatus using it |
US20030007158A1 (en) * | 2001-07-06 | 2003-01-09 | Hill Henry A. | Method and apparatus to reduce effects of sheared wavefronts on interferometric phase measurements |
US20030038225A1 (en) * | 2001-06-01 | 2003-02-27 | Mulder Heine Melle | Lithographic apparatus, device manufacturing method, device manufactured thereby, control system, computer program, and computer program product |
US20030043356A1 (en) * | 1990-11-15 | 2003-03-06 | Nikon Corporation | Projection exposure apparatus and method |
US6535273B1 (en) * | 1998-07-02 | 2003-03-18 | Carl-Zeiss-Stiftung | Microlithographic illumination system with depolarizer |
US20030053036A1 (en) * | 2001-07-10 | 2003-03-20 | Nikon Corporation | Production method of projection optical system |
US6597430B1 (en) * | 1998-05-18 | 2003-07-22 | Nikon Corporation | Exposure method, illuminating device, and exposure system |
US6674514B2 (en) * | 2000-03-16 | 2004-01-06 | Canon Kabushiki Kaisha | Illumination optical system in exposure apparatus |
US20040004771A1 (en) * | 2002-04-26 | 2004-01-08 | Nikon Corporation | Projection optical system, exposure system provided with the projection optical system, and exposure method using the projection optical system |
US20040012764A1 (en) * | 2002-05-31 | 2004-01-22 | Mulder Heine Melle | Kit of parts for assembling an optical element, method of assembling an optical element, optical element, lithographic apparatus, and device manufacturing method |
US20040057036A1 (en) * | 2002-09-19 | 2004-03-25 | Miyoko Kawashima | Exposure method |
US20040104654A1 (en) * | 2002-08-31 | 2004-06-03 | Samsung Electronics Co., Ltd. | Cabinet for recessed refrigerators |
US20040119954A1 (en) * | 2002-12-10 | 2004-06-24 | Miyoko Kawashima | Exposure apparatus and method |
US6842223B2 (en) * | 2003-04-11 | 2005-01-11 | Nikon Precision Inc. | Enhanced illuminator for use in photolithographic systems |
US6856379B2 (en) * | 2001-05-22 | 2005-02-15 | Carl Zeiss Smt Ag | Polarizer and microlithography projection system with a polarizer |
US6870668B2 (en) * | 2000-10-10 | 2005-03-22 | Nikon Corporation | Method for evaluating image formation performance |
US6885493B2 (en) * | 2001-02-05 | 2005-04-26 | Micronic Lasersystems Ab | Method and a device for reducing hysteresis or imprinting in a movable micro-element |
US20050095749A1 (en) * | 2002-04-29 | 2005-05-05 | Mathias Krellmann | Device for protecting a chip and method for operating a chip |
US20050094268A1 (en) * | 2002-03-14 | 2005-05-05 | Carl Zeiss Smt Ag | Optical system with birefringent optical elements |
US6891655B2 (en) * | 2003-01-02 | 2005-05-10 | Micronic Laser Systems Ab | High energy, low energy density, radiation-resistant optics used with micro-electromechanical devices |
US6900915B2 (en) * | 2001-11-14 | 2005-05-31 | Ricoh Company, Ltd. | Light deflecting method and apparatus efficiently using a floating mirror |
US6913373B2 (en) * | 2002-05-27 | 2005-07-05 | Nikon Corporation | Optical illumination device, exposure device and exposure method |
US20050146704A1 (en) * | 2003-09-26 | 2005-07-07 | Carl Zeiss Smt Ag | Microlithographic exposure method as well as a projection exposure system for carrying out the method |
US20060012769A1 (en) * | 2003-09-12 | 2006-01-19 | Canon Kabushiki Kaisha | Illumination optical system and exposure apparatus using the same |
US6999157B2 (en) * | 2002-04-23 | 2006-02-14 | Canon Kabushiki Kaisha | Illumination optical system and method, and exposure apparatus |
US20060055834A1 (en) * | 2002-12-03 | 2006-03-16 | Nikon Corporation | Illumination optical system, exposure apparatus, and exposure method |
US20060072095A1 (en) * | 2003-04-09 | 2006-04-06 | Nikon Corporation | Exposure method and apparatus, and method for fabricating device |
US20060077370A1 (en) * | 2004-10-12 | 2006-04-13 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method |
US20060092398A1 (en) * | 2004-11-02 | 2006-05-04 | Asml Holding N.V. | Method and apparatus for variable polarization control in a lithography system |
US20060132748A1 (en) * | 2004-12-20 | 2006-06-22 | Kazuya Fukuhara | Exposure system, exposure method and method for manufacturing a semiconductor device |
US20060139611A1 (en) * | 2004-12-28 | 2006-06-29 | Asml Netherlands B.V. | Polarized radiation in lithographic apparatus and device manufacturing method |
US20060146384A1 (en) * | 2003-05-13 | 2006-07-06 | Carl Zeiss Smt Ag | Optical beam transformation system and illumination system comprising an optical beam transformation system |
US20060158624A1 (en) * | 2003-11-20 | 2006-07-20 | Nikon Corporation | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method |
US20060164711A1 (en) * | 2005-01-24 | 2006-07-27 | Asml Holding N.V. | System and method utilizing an electrooptic modulator |
US20070008511A1 (en) * | 2005-07-11 | 2007-01-11 | Asml Netherlands B.V. | Polarized radiation in lithographic apparatus and device manufacturing method |
US20070019179A1 (en) * | 2004-01-16 | 2007-01-25 | Damian Fiolka | Polarization-modulating optical element |
US20070058151A1 (en) * | 2005-09-13 | 2007-03-15 | Asml Netherlands B.V. | Optical element for use in lithography apparatus and method of conditioning radiation beam |
US20070081114A1 (en) * | 2004-01-16 | 2007-04-12 | Damian Fiolka | Polarization-modulating optical element |
US20070146676A1 (en) * | 2005-01-21 | 2007-06-28 | Nikon Corporation | Method of adjusting lighting optical device, lighting optical device, exposure system, and exposure method |
US20080030707A1 (en) * | 2004-08-17 | 2008-02-07 | Nikon Corporation | Lighting Optical Device, Regulation Method for Lighting Optical Device, Exposure System, and Exposure Method |
US20080030706A1 (en) * | 2006-08-01 | 2008-02-07 | Fujitsu Limited | Illumination optical system, exposure method and designing method |
US7345740B2 (en) * | 2004-12-28 | 2008-03-18 | Asml Netherlands B.V. | Polarized radiation in lithographic apparatus and device manufacturing method |
US20090073441A1 (en) * | 2004-02-06 | 2009-03-19 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US20090073411A1 (en) * | 2007-09-14 | 2009-03-19 | Nikon Corporation | Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method |
US20090091730A1 (en) * | 2007-10-03 | 2009-04-09 | Nikon Corporation | Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method |
US20090097007A1 (en) * | 2007-10-16 | 2009-04-16 | Hirohisa Tanaka | Illumination optical system, exposure apparatus, and device manufacturing method |
US20090109417A1 (en) * | 2007-10-24 | 2009-04-30 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US20090116093A1 (en) * | 2007-11-06 | 2009-05-07 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
US20090122292A1 (en) * | 2003-10-28 | 2009-05-14 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US20090128886A1 (en) * | 2007-10-12 | 2009-05-21 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
US20090185154A1 (en) * | 2007-10-31 | 2009-07-23 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure appartus, exposure method, and device manufacturing method |
US20100141921A1 (en) * | 2004-01-27 | 2010-06-10 | Nikon Corporation | Optical system, exposure system, and exposure method |
Family Cites Families (903)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB856621A (en) | 1956-07-20 | 1960-12-21 | Nat Res Dev | Improvements in or relating to polarising microscopes |
US3146294A (en) | 1959-02-13 | 1964-08-25 | American Optical Corp | Interference microscope optical systems |
US3180216A (en) | 1962-08-13 | 1965-04-27 | American Optical Corp | System and apparatus for variable phase microscopy |
US3758201A (en) | 1971-07-15 | 1973-09-11 | American Optical Corp | Optical system for improved eye refraction |
JPS557673B2 (en) | 1972-11-25 | 1980-02-27 | ||
US3892469A (en) | 1974-02-01 | 1975-07-01 | Hughes Aircraft Co | Electro-optical variable focal length lens using optical ring polarizer |
FR2385241B1 (en) * | 1976-12-23 | 1979-10-12 | Marie G R P | |
US4103260A (en) | 1977-01-03 | 1978-07-25 | Hughes Aircraft Company | Spatial polarization coding electro-optical transmitter |
US4198123A (en) | 1977-03-23 | 1980-04-15 | Baxter Travenol Laboratories, Inc. | Optical scrambler for depolarizing light |
FR2413678B1 (en) | 1977-12-28 | 1981-12-31 | Marie G R P | |
US4286843A (en) | 1979-05-14 | 1981-09-01 | Reytblatt Zinovy V | Polariscope and filter therefor |
JPS5857066B2 (en) | 1979-06-29 | 1983-12-17 | Furukawa Electric Co Ltd | |
DE2963537D1 (en) | 1979-07-27 | 1982-10-07 | Tabarelli Werner W | Optical lithographic method and apparatus for copying a pattern onto a semiconductor wafer |
FR2465241B1 (en) | 1979-09-10 | 1983-08-05 | Thomson Csf | |
FR2474708B1 (en) | 1980-01-24 | 1987-02-20 | Dme | Process for photomicrolithography has high resolution traits |
US4346164A (en) | 1980-10-06 | 1982-08-24 | Werner Tabarelli | Photolithographic method for the manufacture of integrated circuits |
JPH0139207B2 (en) | 1981-01-14 | 1989-08-18 | Nikon Kk | |
JPS57152129A (en) | 1981-03-13 | 1982-09-20 | Sanyo Electric Co Ltd | Developing method of resist |
JPS6349893B2 (en) | 1981-03-18 | 1988-10-06 | Hitachi Ltd | |
JPH0223852B2 (en) | 1981-09-21 | 1990-05-25 | Ushio Electric Inc | |
JPS5845502U (en) | 1981-09-21 | 1983-03-26 | ||
JPS58115945A (en) | 1981-12-29 | 1983-07-09 | Toyoda Gosei Co Ltd | Power transmission and signal transmission and reception method to steering section |
JPS58202448A (en) | 1982-05-21 | 1983-11-25 | Hitachi Ltd | Exposing device |
JPS5919912A (en) | 1982-07-26 | 1984-02-01 | Hitachi Ltd | Immersion distance holding device |
JPH0552487B2 (en) | 1983-06-06 | 1993-08-05 | Nippon Kogaku Kk | |
JPS59155843A (en) | 1984-01-27 | 1984-09-05 | Hitachi Ltd | Exposing device |
JPH0447968B2 (en) | 1984-08-09 | 1992-08-05 | Nippon Kogaku Kk | |
JPS6145923A (en) | 1984-08-10 | 1986-03-06 | Aronshiya:Kk | Manufacture of rotary disk for reflection type rotary encoder |
JPH0682598B2 (en) | 1984-10-11 | 1994-10-19 | 日本電信電話株式会社 | Projection exposure apparatus |
JPS6194342U (en) | 1984-11-27 | 1986-06-18 | ||
JPS61156736A (en) | 1984-12-27 | 1986-07-16 | Canon Inc | Exposing device |
JPS61196532A (en) | 1985-02-26 | 1986-08-30 | Canon Inc | Exposure device |
JPH0581489B2 (en) | 1985-03-20 | 1993-11-15 | Mitsubishi Chem Ind | |
JPH0515054B2 (en) | 1985-04-30 | 1993-02-26 | Canon Kk | |
JPS61270049A (en) | 1985-05-24 | 1986-11-29 | Toshiba Corp | Table device |
JPS622540A (en) | 1985-06-28 | 1987-01-08 | Canon Inc | Light integrator and koehler illumination system including integrator thereof |
JPS622539A (en) | 1985-06-28 | 1987-01-08 | Canon Inc | Illumination optical system |
US4683420A (en) | 1985-07-10 | 1987-07-28 | Westinghouse Electric Corp. | Acousto-optic system for testing high speed circuits |
JPS6217705A (en) | 1985-07-16 | 1987-01-26 | Nippon Kogaku Kk <Nikon> | Telecentric optical system lighting device |
JPS6265326A (en) | 1985-09-18 | 1987-03-24 | Hitachi Ltd | Exposure device |
JPH0574305B2 (en) | 1985-10-23 | 1993-10-18 | Shinetsu Chem Ind Co | |
JPS62120026A (en) | 1985-11-20 | 1987-06-01 | Fujitsu Ltd | X-ray exposing apparatus |
JPS62121417A (en) | 1985-11-22 | 1987-06-02 | Hitachi Ltd | Liquid-immersion objective lens device |
JPH07105323B2 (en) | 1985-11-22 | 1995-11-13 | 株式会社日立製作所 | Exposure method |
JPS62153710A (en) | 1985-12-27 | 1987-07-08 | Furukawa Alum Co Ltd | Preparation of reflective substrate for rotary encoder |
JPH0782981B2 (en) | 1986-02-07 | 1995-09-06 | 株式会社ニコン | Projection exposure method and apparatus |
JPS62188316A (en) | 1986-02-14 | 1987-08-17 | Canon Inc | Projection exposure device |
JPH0559660B2 (en) | 1986-02-28 | 1993-08-31 | Toyota Motor Co Ltd | |
JPH0666246B2 (en) | 1986-05-14 | 1994-08-24 | キヤノン株式会社 | The illumination optical system |
JP2506616B2 (en) | 1986-07-02 | 1996-06-12 | キヤノン株式会社 | Exposure apparatus and the circuit manufacturing method using the same |
JPS6336526A (en) | 1986-07-30 | 1988-02-17 | Oki Electric Ind Co Ltd | Wafer exposure equipment |
JPS6344726A (en) * | 1986-08-12 | 1988-02-25 | Norihisa Ito | Illumination optical device of stepper using excimer laser |
JPH0695511B2 (en) | 1986-09-17 | 1994-11-24 | 大日本スクリ−ン製造株式会社 | Washing drying processing method |
JPH0529129B2 (en) | 1986-11-19 | 1993-04-28 | Matsushita Electric Ind Co Ltd | |
JPS63131008A (en) | 1986-11-20 | 1988-06-03 | Fujitsu Ltd | Optical alignment method |
JPH0556013B2 (en) | 1986-12-03 | 1993-08-18 | Hitachi Ltd | |
JPS63157419A (en) | 1986-12-22 | 1988-06-30 | Toshiba Corp | Fine pattern transfer apparatus |
JPS63160192A (en) | 1986-12-23 | 1988-07-02 | Meidensha Electric Mfg Co Ltd | Connecting conductor of radio frequency heater |
JPS63231217A (en) | 1987-03-19 | 1988-09-27 | Omron Tateisi Electronics Co | Measuring instrument for movement quantity |
JPH0718699B2 (en) | 1987-05-08 | 1995-03-06 | 株式会社ニコン | Surface displacement detecting device |
JPS6426704A (en) | 1987-05-11 | 1989-01-30 | Jiei Shirinian Jiyon | Pocket structure of garment |
JPS63292005A (en) | 1987-05-25 | 1988-11-29 | Nikon Corp | Detecting apparatus of amount of movement corrected from running error |
JPH07117371B2 (en) | 1987-07-14 | 1995-12-18 | 株式会社ニコン | measuring device |
JPS6468926A (en) | 1987-09-09 | 1989-03-15 | Nippon Kogaku Kk | Measurement of image distortion in projection optical system |
US4981342A (en) | 1987-09-24 | 1991-01-01 | Allergan Inc. | Multifocal birefringent lens system |
JPH0191419A (en) | 1987-10-01 | 1989-04-11 | Canon Inc | Aligner |
JPH01115033A (en) | 1987-10-28 | 1989-05-08 | Hitachi Ltd | Gas discharge display device |
JPH01147516A (en) | 1987-12-04 | 1989-06-09 | Canon Inc | Beam position controller |
JP2728133B2 (en) | 1987-12-09 | 1998-03-18 | 株式会社リコー | Digital image forming apparatus |
JPH01202833A (en) | 1988-02-09 | 1989-08-15 | Toshiba Corp | Accurate xy stage device |
JPH0831513B2 (en) | 1988-02-22 | 1996-03-27 | 株式会社ニコン | Adsorber substrate |
JPH0545102Y2 (en) | 1988-02-24 | 1993-11-17 | ||
JPH01255404A (en) | 1988-04-05 | 1989-10-12 | Toshiba Corp | Electromagnet device for levitation |
US4952815A (en) | 1988-04-14 | 1990-08-28 | Nikon Corporation | Focusing device for projection exposure apparatus |
JPH01278240A (en) | 1988-04-28 | 1989-11-08 | Tokyo Electron Ltd | Uninterruptible power source for apparatus for manufacture of semiconductor |
JPH01276043A (en) | 1988-04-28 | 1989-11-06 | Mitsubishi Cable Ind Ltd | Waveguide type liquid detector |
JPH01286478A (en) | 1988-05-13 | 1989-11-17 | Hitachi Ltd | Beam uniformizing optical system and manufacture thereof |
JPH01292343A (en) | 1988-05-19 | 1989-11-24 | Fujitsu Ltd | Pellicle |
JPH01314247A (en) | 1988-06-13 | 1989-12-19 | Fuji Plant Kogyo Kk | Automatic exposing device for printed circuit board |
JPH0831514B2 (en) | 1988-06-21 | 1996-03-27 | 株式会社ニコン | Adsorber substrate |
JPH0242382A (en) | 1988-08-02 | 1990-02-13 | Canon Inc | Moving stage structure |
JPH0265149A (en) | 1988-08-30 | 1990-03-05 | Mitsubishi Electric Corp | Semiconductor device |
JP2729058B2 (en) | 1988-08-31 | 1998-03-18 | 山形日本電気株式会社 | Exposure apparatus of a semiconductor device |
JPH0297239A (en) | 1988-09-30 | 1990-04-09 | Canon Inc | Power source equipment for aligner |
JP2682067B2 (en) | 1988-10-17 | 1997-11-26 | 株式会社ニコン | Exposure apparatus and an exposure method |
JP2697014B2 (en) | 1988-10-26 | 1998-01-14 | 株式会社ニコン | Exposure apparatus and an exposure method |
JPH02139146A (en) | 1988-11-15 | 1990-05-29 | Matsushita Electric Ind Co Ltd | Positioning table of one step six degrees of freedom |
JP2940553B2 (en) | 1988-12-21 | 1999-08-25 | 株式会社ニコン | Exposure method |
US5253110A (en) | 1988-12-22 | 1993-10-12 | Nikon Corporation | Illumination optical arrangement |
DE3907136A1 (en) | 1989-03-06 | 1990-09-13 | Jagenberg Ag | Apparatus for connecting material webs |
JPH02261073A (en) | 1989-03-29 | 1990-10-23 | Sony Corp | Ultrasonic motor |
JPH02287308A (en) | 1989-04-03 | 1990-11-27 | Mikhailovich Khodosovich Vladimir | Method for aligning lens in mount of optical unit |
JPH07104442B2 (en) | 1989-04-06 | 1995-11-13 | 旭硝子株式会社 | Method for producing a magnesium fluoride film and the low-reflection film |
JPH02285320A (en) | 1989-04-27 | 1990-11-22 | Olympus Optical Co Ltd | Stop device for endoscope |
JP2527807B2 (en) | 1989-05-09 | 1996-08-28 | セイコー電子工業株式会社 | Optical association identification device |
JPH02298431A (en) | 1989-05-12 | 1990-12-10 | Mitsubishi Electric Corp | Electric discharge machining device |
JPH02311237A (en) | 1989-05-25 | 1990-12-26 | Fuji Electric Co Ltd | Carrying device |
JPH0341399A (en) | 1989-07-10 | 1991-02-21 | Nikon Corp | Manufacture of multilayered film reflecting mirror |
JPH0364811A (en) | 1989-07-31 | 1991-03-20 | Okazaki Seisakusho:Kk | Hollow core wire mi cable and manufacture thereof |
JPH0372298A (en) | 1989-08-14 | 1991-03-27 | Nikon Corp | Manufacture of multilayer film reflecting mirror |
JPH0394445A (en) | 1989-09-06 | 1991-04-19 | Mitsubishi Electric Corp | Semiconductor wafer transfer system |
JPH03132663A (en) | 1989-10-18 | 1991-06-06 | Fujitsu Ltd | Pellicle |
JPH03134341A (en) | 1989-10-20 | 1991-06-07 | Fuji Photo Film Co Ltd | Damper mechanism, vibrationproof mechanism and optical beam scanning device into which this damper mechanism, etc. are incorporated |
JP2784225B2 (en) | 1989-11-28 | 1998-08-06 | 双葉電子工業株式会社 | The relative shift amount measuring device |
JP3067142B2 (en) | 1989-11-28 | 2000-07-17 | 富士通株式会社 | Inspection method of an inspection apparatus and photomask photomask |
JPH03211812A (en) | 1990-01-17 | 1991-09-17 | Canon Inc | Exposure aligner |
JPH03263810A (en) | 1990-03-14 | 1991-11-25 | Sumitomo Heavy Ind Ltd | Vibration control method of semiconductor aligner |
JP2624560B2 (en) | 1990-04-20 | 1997-06-25 | 日鐵溶接工業株式会社 | Flux-cored wire for gas shielded arc welding |
JPH0710897B2 (en) | 1990-04-27 | 1995-02-08 | 日本油脂株式会社 | Plastic lens |
JPH0432154A (en) | 1990-05-25 | 1992-02-04 | Iwasaki Electric Co Ltd | Metal halide lamp device |
JP2897355B2 (en) | 1990-07-05 | 1999-05-31 | 株式会社ニコン | Alignment method, exposure apparatus, and a position detecting method and apparatus |
JP3077176B2 (en) | 1990-08-13 | 2000-08-14 | 株式会社ニコン | Exposure method, apparatus, and device manufacturing method |
US6252647B1 (en) * | 1990-11-15 | 2001-06-26 | Nikon Corporation | Projection exposure apparatus |
JPH04130710A (en) | 1990-09-21 | 1992-05-01 | Hitachi Ltd | Apparatus for exposure of light |
JP2548834B2 (en) | 1990-09-25 | 1996-10-30 | 三菱電機株式会社 | Electron-beam size measuring device |
JPH04133414A (en) | 1990-09-26 | 1992-05-07 | Nec Yamaguchi Ltd | Reduced projection and aligner |
JPH04152512A (en) | 1990-10-16 | 1992-05-26 | Fujitsu Ltd | Wafer chuck |
DE4033556A1 (en) | 1990-10-22 | 1992-04-23 | Suess Kg Karl | Measuring arrangement for x, y, (phi) -koordinatentische |
US5348837A (en) | 1991-09-24 | 1994-09-20 | Hitachi, Ltd. | Projection exposure apparatus and pattern forming method for use therewith |
US5072126A (en) | 1990-10-31 | 1991-12-10 | International Business Machines Corporation | Promixity alignment using polarized illumination and double conjugate projection lens |
JPH04179115A (en) | 1990-11-08 | 1992-06-25 | Nec Kyushu Ltd | Contracted projection aligner |
JP3094439B2 (en) | 1990-11-21 | 2000-10-03 | 株式会社ニコン | Exposure method |
JPH0480052U (en) | 1990-11-27 | 1992-07-13 | ||
JP3049774B2 (en) | 1990-12-27 | 2000-06-05 | 株式会社ニコン | Projection exposure apparatus and method, and device manufacturing method |
JPH04235558A (en) | 1991-01-11 | 1992-08-24 | Toshiba Corp | Exposure device |
JP3084760B2 (en) | 1991-02-28 | 2000-09-04 | 株式会社ニコン | Exposure method and apparatus |
JP3255168B2 (en) | 1991-02-28 | 2002-02-12 | 株式会社ニコン | Exposure method and device manufacturing method using the exposure method, and an exposure apparatus |
JP3084761B2 (en) | 1991-02-28 | 2000-09-04 | 株式会社ニコン | Exposure method and mask |
JP2860174B2 (en) | 1991-03-05 | 1999-02-24 | 三菱電機株式会社 | Chemical vapor deposition apparatus |
JP3200894B2 (en) | 1991-03-05 | 2001-08-20 | 株式会社日立製作所 | Exposure method and apparatus |
JPH04280619A (en) | 1991-03-08 | 1992-10-06 | Canon Inc | Wafer retaining method and retaining device |
JPH04282539A (en) | 1991-03-11 | 1992-10-07 | Hitachi Ltd | Method for forming reflection-charge preventing film |
JPH05259069A (en) | 1991-03-13 | 1993-10-08 | Tokyo Electron Kyushu Kk | Method of exposing periphery of wafer |
JPH0544170B2 (en) | 1991-03-20 | 1993-07-05 | Hitachi Ltd | |
JPH04296092A (en) | 1991-03-26 | 1992-10-20 | Matsushita Electric Ind Co Ltd | Reflow device |
JP2602345Y2 (en) | 1991-03-29 | 2000-01-11 | 京セラ株式会社 | Hydrostatic bearing apparatus |
US5251222A (en) | 1991-04-01 | 1993-10-05 | Teledyne Industries, Inc. | Active multi-stage cavity sensor |
JPH04305917A (en) | 1991-04-02 | 1992-10-28 | Nikon Corp | Adhesion type exposure device |
JPH04305915A (en) | 1991-04-02 | 1992-10-28 | Nikon Corp | Adhesion type exposure device |
JPH04330961A (en) | 1991-05-01 | 1992-11-18 | Matsushita Electron Corp | Development processing equipment |
FR2676288B1 (en) | 1991-05-07 | 1994-06-17 | Thomson Csf | Collector lighting projector. |
JPH04343307A (en) | 1991-05-20 | 1992-11-30 | Ricoh Co Ltd | Laser adjusting device |
JP2884830B2 (en) | 1991-05-28 | 1999-04-19 | キヤノン株式会社 | Automatic focusing device |
JPH0590128A (en) | 1991-06-13 | 1993-04-09 | Nikon Corp | Aligner |
JP3200874B2 (en) | 1991-07-10 | 2001-08-20 | 株式会社ニコン | Projection exposure apparatus |
JPH0545886A (en) | 1991-08-12 | 1993-02-26 | Nikon Corp | Exposure device for square substrate |
US5272501A (en) | 1991-08-28 | 1993-12-21 | Nikon Corporation | Projection exposure apparatus |
JPH0562877A (en) | 1991-09-02 | 1993-03-12 | Yasuko Shinohara | Optical system for lsi manufacturing contraction projection aligner by light |
JPH05109601A (en) | 1991-10-15 | 1993-04-30 | Nikon Corp | Aligner and exposure method |
JPH05129184A (en) | 1991-10-30 | 1993-05-25 | Canon Inc | Projection aligner |
JPH05127086A (en) | 1991-11-01 | 1993-05-25 | Matsushita Electric Ind Co Ltd | Method for uniformizing light intensity and exposure device using the same |
JP3203719B2 (en) | 1991-12-26 | 2001-08-27 | 株式会社ニコン | Device manufactured by an exposure apparatus, the exposure apparatus, exposure method, and device manufacturing method using the exposure method |
JPH05199680A (en) | 1992-01-17 | 1993-08-06 | Honda Motor Co Ltd | Power supply |
JPH0794969B2 (en) | 1992-01-29 | 1995-10-11 | 株式会社ソルテック | Alignment method and apparatus |
JP3194155B2 (en) | 1992-01-31 | 2001-07-30 | キヤノン株式会社 | The method of manufacturing a semiconductor device and a projection exposure apparatus using the same |
JPH05217837A (en) | 1992-02-04 | 1993-08-27 | Toshiba Corp | X-y movable table |
JP2796005B2 (en) | 1992-02-10 | 1998-09-10 | 三菱電機株式会社 | Projection exposure apparatus and the polarizer |
JPH05241324A (en) | 1992-02-26 | 1993-09-21 | Nikon Corp | Photomask and exposing method |
JP3153372B2 (en) | 1992-02-26 | 2001-04-09 | 東京エレクトロン株式会社 | The substrate processing apparatus |
JPH05243364A (en) | 1992-03-02 | 1993-09-21 | Hitachi Ltd | Eliminating method for charge from semiconductor wafer and semiconductor integrated circuit manufacturing apparatus using same |
JP3293882B2 (en) | 1992-03-27 | 2002-06-17 | 株式会社東芝 | Projection exposure apparatus |
JP3278896B2 (en) | 1992-03-31 | 2002-04-30 | キヤノン株式会社 | Illumination device and a projection exposure apparatus using the same |
JPH05304072A (en) | 1992-04-08 | 1993-11-16 | Nec Corp | Manufacture of semiconductor device |
JP3242693B2 (en) | 1992-05-15 | 2001-12-25 | タツモ株式会社 | Pellicle pasting apparatus |
JP2673130B2 (en) | 1992-05-20 | 1997-11-05 | 株式会社キトー | Suspension support apparatus of the running rail |
JP2946950B2 (en) | 1992-06-25 | 1999-09-13 | キヤノン株式会社 | Illumination apparatus and an exposure apparatus using the same |
JPH0629204A (en) | 1992-07-08 | 1994-02-04 | Fujitsu Ltd | Method and apparatus for development of resist |
JPH0636054A (en) | 1992-07-20 | 1994-02-10 | Mitsubishi Electric Corp | One-chip microcomputer |
JP3246615B2 (en) * | 1992-07-27 | 2002-01-15 | 株式会社ニコン | Illumination optical apparatus, exposure apparatus, and exposure method |
JPH06188169A (en) * | 1992-08-24 | 1994-07-08 | Canon Inc | Method of image formation, exposure system, and manufacture of device |
JPH06104167A (en) | 1992-09-18 | 1994-04-15 | Hitachi Hokkai Semiconductor Ltd | Manufacture of aligner and semiconductor device |
JP2884947B2 (en) | 1992-10-01 | 1999-04-19 | 株式会社ニコン | Projection exposure apparatus, a manufacturing method of an exposure method and a semiconductor integrated circuit |
JPH06118623A (en) | 1992-10-07 | 1994-04-28 | Fujitsu Ltd | Reticle and semiconductor aligner using the same |
JP2724787B2 (en) | 1992-10-09 | 1998-03-09 | キヤノン株式会社 | Positioning device |
JPH06124873A (en) | 1992-10-09 | 1994-05-06 | Canon Inc | Liquid-soaking type projection exposure apparatus |
JPH06124872A (en) * | 1992-10-14 | 1994-05-06 | Canon Inc | Image forming method and manufacture of semiconductor device using the method |
US5459000A (en) | 1992-10-14 | 1995-10-17 | Canon Kabushiki Kaisha | Image projection method and device manufacturing method using the image projection method |
JP3322274B2 (en) | 1992-10-29 | 2002-09-09 | 株式会社ニコン | Projection exposure method and a projection exposure apparatus |
JPH06148399A (en) | 1992-11-05 | 1994-05-27 | Nikon Corp | Multilayer film mirror for x rays and x-ray microscope |
JPH06163350A (en) | 1992-11-19 | 1994-06-10 | Matsushita Electron Corp | Projection exposure method and device thereof |
JP2753930B2 (en) | 1992-11-27 | 1998-05-20 | キヤノン株式会社 | Immersion-type projection exposure apparatus |
JP3180133B2 (en) | 1992-12-01 | 2001-06-25 | 日本電信電話株式会社 | Projection exposure apparatus |
JPH06177007A (en) | 1992-12-01 | 1994-06-24 | Nippon Telegr & Teleph Corp <Ntt> | Projection aligner |
JP2866267B2 (en) | 1992-12-11 | 1999-03-08 | 三菱電機株式会社 | Light drawing method of an optical writing system and a wafer substrate |
JPH06181157A (en) | 1992-12-15 | 1994-06-28 | Nikon Corp | Apparatus with low dust-generating property |
JPH06186025A (en) | 1992-12-16 | 1994-07-08 | Sekoguchi Kotohiko | Three dimensional measuring device |
JP2520833B2 (en) | 1992-12-21 | 1996-07-31 | 東京エレクトロン株式会社 | Immersion of the liquid processing apparatus |
JP3201027B2 (en) | 1992-12-22 | 2001-08-20 | 株式会社ニコン | Projection exposure apparatus and method |
JPH06204121A (en) | 1992-12-28 | 1994-07-22 | Canon Inc | Illuminator and projection aligner using the same |
JP2765422B2 (en) | 1992-12-28 | 1998-06-18 | キヤノン株式会社 | Exposure apparatus and a method of manufacturing a semiconductor device using the same |
JP2786070B2 (en) | 1993-01-29 | 1998-08-13 | セントラル硝子株式会社 | Inspection method and apparatus of the transparent plate-shaped object |
JPH06241720A (en) | 1993-02-18 | 1994-09-02 | Sony Corp | Measuring method for displacement quantity and displacement meter |
JPH06244082A (en) | 1993-02-19 | 1994-09-02 | Nikon Corp | Projection exposure device |
JP3412704B2 (en) | 1993-02-26 | 2003-06-03 | 株式会社ニコン | Projection exposure method and apparatus, and an exposure apparatus |
JP3291818B2 (en) | 1993-03-16 | 2002-06-17 | 株式会社ニコン | Projection exposure apparatus, and a semiconductor integrated circuit manufacturing method using the apparatus |
JP3537843B2 (en) | 1993-03-19 | 2004-06-14 | 株式会社テクノ菱和 | Ionizer for clean rooms |
JP3316833B2 (en) | 1993-03-26 | 2002-08-19 | 株式会社ニコン | Scanning exposure method, the surface position setting device, a scanning type exposure apparatus, and device manufacturing method using the method |
JPH0777191B2 (en) | 1993-04-06 | 1995-08-16 | 日本電気株式会社 | Exposure light projection device |
JP3309871B2 (en) | 1993-04-27 | 2002-07-29 | 株式会社ニコン | Projection exposure method and apparatus, and device manufacturing method |
JPH06326174A (en) | 1993-05-12 | 1994-11-25 | Hitachi Ltd | Vacuum suction device for wafer |
DE69435065D1 (en) * | 1993-05-25 | 2008-02-21 | Nordson Corp | Powder coating system |
JP3265503B2 (en) | 1993-06-11 | 2002-03-11 | 株式会社ニコン | Exposure method and apparatus |
US6304317B1 (en) | 1993-07-15 | 2001-10-16 | Nikon Corporation | Projection apparatus and method |
JP3291849B2 (en) | 1993-07-15 | 2002-06-17 | 株式会社ニコン | Exposure method, a device forming method, and an exposure apparatus |
JPH0757993A (en) * | 1993-08-13 | 1995-03-03 | Nikon Corp | Projection aligner |
JPH0757992A (en) * | 1993-08-13 | 1995-03-03 | Nikon Corp | Projection aligner |
JP3844787B2 (en) | 1993-09-02 | 2006-11-15 | 日産化学工業株式会社 | Its preparation and magnesium fluoride hydrate sol |
JP3359123B2 (en) | 1993-09-20 | 2002-12-24 | キヤノン株式会社 | Aberration correction optical system |
KR0153796B1 (en) | 1993-09-24 | 1998-11-16 | 사토 후미오 | Exposure apparatus and method |
JPH07122469A (en) | 1993-10-20 | 1995-05-12 | Nikon Corp | Projection aligner |
KR0166612B1 (en) * | 1993-10-29 | 1999-02-01 | 가나이 쓰토무 | Method and apparatus for exposing pattern, mask used therefor and semiconductor integrated circuit formed by using the same |
JP3505810B2 (en) | 1993-10-29 | 2004-03-15 | 株式会社日立製作所 | Pattern exposure method and apparatus |
JP3376045B2 (en) | 1993-11-09 | 2003-02-10 | キヤノン株式会社 | Device manufacturing method using the scanning exposure apparatus and the scanning type exposure apparatus |
JPH07134955A (en) | 1993-11-11 | 1995-05-23 | Hitachi Ltd | Display apparatus and reflectance controlling method of apparatus thereof |
JP3339144B2 (en) | 1993-11-11 | 2002-10-28 | 株式会社ニコン | Scanning exposure apparatus and an exposure method |
JP3278303B2 (en) | 1993-11-12 | 2002-04-30 | キヤノン株式会社 | Device manufacturing method using the scanning exposure apparatus and the scanning type exposure apparatus |
JPH07147223A (en) | 1993-11-26 | 1995-06-06 | Hitachi Ltd | Pattern forming method |
DE69432283T2 (en) | 1993-12-01 | 2004-01-22 | Sharp K.K. | Display for three-dimensional images |
JPH07161622A (en) * | 1993-12-10 | 1995-06-23 | Nikon Corp | Projection aligner |
JPH07167998A (en) | 1993-12-15 | 1995-07-04 | Nikon Corp | Target for laser plasma x-ray source |
JP3487517B2 (en) | 1993-12-16 | 2004-01-19 | 株式会社リコー | Reciprocating equipment |
JPH07183201A (en) * | 1993-12-21 | 1995-07-21 | Nec Corp | Exposure device and method therefor |
JP3508190B2 (en) | 1993-12-21 | 2004-03-22 | セイコーエプソン株式会社 | Illuminating device and a projection display device |
JPH07190741A (en) | 1993-12-27 | 1995-07-28 | Nippon Telegr & Teleph Corp <Ntt> | Measuring error correction method |
JP3099933B2 (en) | 1993-12-28 | 2000-10-16 | 株式会社東芝 | Exposure method and apparatus |
JPH07220989A (en) | 1994-01-27 | 1995-08-18 | Canon Inc | Exposure apparatus and manufacture of device using the same |
JPH07220990A (en) | 1994-01-28 | 1995-08-18 | Hitachi Ltd | Pattern forming method and exposure apparatus therefor |
JP2715895B2 (en) | 1994-01-31 | 1998-02-18 | 日本電気株式会社 | The light intensity distribution simulation method |
JP3372633B2 (en) | 1994-02-04 | 2003-02-04 | キヤノン株式会社 | Alignment method and alignment device using the same |
JP3463335B2 (en) | 1994-02-17 | 2003-11-05 | 株式会社ニコン | Projection exposure apparatus |
US5559583A (en) | 1994-02-24 | 1996-09-24 | Nec Corporation | Exposure system and illuminating apparatus used therein and method for exposing a resist film on a wafer |
JPH07239212A (en) | 1994-02-28 | 1995-09-12 | Nikon Corp | Position detector |
JPH07243814A (en) | 1994-03-03 | 1995-09-19 | Fujitsu Ltd | Measuring method of line width |
JPH07245258A (en) | 1994-03-08 | 1995-09-19 | Nikon Corp | Exposure and exposure device |
JPH07263315A (en) * | 1994-03-25 | 1995-10-13 | Toshiba Corp | Projection aligner |
US6333776B1 (en) | 1994-03-29 | 2001-12-25 | Nikon Corporation | Projection exposure apparatus |
US20020080338A1 (en) | 1994-03-29 | 2002-06-27 | Nikon Corporation | Projection exposure apparatus |
US5677757A (en) | 1994-03-29 | 1997-10-14 | Nikon Corporation | Projection exposure apparatus |
US5528118A (en) | 1994-04-01 | 1996-06-18 | Nikon Precision, Inc. | Guideless stage with isolated reaction stage |
JPH07283119A (en) * | 1994-04-14 | 1995-10-27 | Hitachi Ltd | Aligner and exposure method |
JP3193567B2 (en) | 1994-04-27 | 2001-07-30 | キヤノン株式会社 | The substrate container |
JP2836483B2 (en) | 1994-05-13 | 1998-12-14 | 日本電気株式会社 | Illumination optical apparatus |
JP3555230B2 (en) | 1994-05-18 | 2004-08-18 | 株式会社ニコン | Projection exposure apparatus |
JPH07318847A (en) | 1994-05-26 | 1995-12-08 | Nikon Corp | Illumination optical device |
JPH07335748A (en) | 1994-06-07 | 1995-12-22 | Miyazaki Oki Electric Co Ltd | Manufacture of semiconductor element |
EP0687956B2 (en) | 1994-06-17 | 2005-11-23 | Carl Zeiss SMT AG | Illumination device |
US5473465A (en) | 1994-06-24 | 1995-12-05 | Ye; Chun | Optical rotator and rotation-angle-variable half-waveplate rotator |
JP3800616B2 (en) | 1994-06-27 | 2006-07-26 | 株式会社ニコン | Target mobile device, the positioning device and a movable stage apparatus |
JP3205663B2 (en) | 1994-06-29 | 2001-09-04 | 日本電子株式会社 | The charged particle beam device |
JP3090577B2 (en) | 1994-06-29 | 2000-09-25 | 浜松ホトニクス株式会社 | Conductor layer removal method and system |
JPH0822948A (en) | 1994-07-08 | 1996-01-23 | Nikon Corp | Scanning aligner |
JP3205468B2 (en) | 1994-07-25 | 2001-09-04 | 日立東京エレクトロニクス株式会社 | Processing apparatus and an exposure apparatus equipped with a wafer chuck |
JPH0846751A (en) | 1994-07-29 | 1996-02-16 | Sanyo Electric Co Ltd | Illumination optical system |
JP3613288B2 (en) | 1994-10-18 | 2005-01-26 | 株式会社ニコン | Cleaning device for exposure apparatus |
WO1996013752A1 (en) | 1994-10-26 | 1996-05-09 | Seiko Epson Corporation | Liquid crystal device and electronic appliance |
JPH08136475A (en) | 1994-11-14 | 1996-05-31 | Kawasaki Steel Corp | Surface observing apparatus for plate-like material |
JPH08151220A (en) | 1994-11-28 | 1996-06-11 | Nippon Sekiei Glass Kk | Method for molding quartz glass |
JPH08162397A (en) | 1994-11-30 | 1996-06-21 | Canon Inc | Projection light exposure device and manufacture of semiconductor device by use thereof |
JPH08171054A (en) | 1994-12-16 | 1996-07-02 | Nikon Corp | Reflection refraction optical system |
JPH08195375A (en) | 1995-01-17 | 1996-07-30 | Sony Corp | Spin-drying method and spin-dryer |
JPH08203803A (en) | 1995-01-24 | 1996-08-09 | Nikon Corp | Exposure apparatus |
US5874820A (en) | 1995-04-04 | 1999-02-23 | Nikon Corporation | Window frame-guided stage mechanism |
JP3747958B2 (en) | 1995-04-07 | 2006-02-22 | 株式会社ニコン | Catadioptric |
JP3312164B2 (en) | 1995-04-07 | 2002-08-05 | 日本電信電話株式会社 | Vacuum suction device |
JPH08297699A (en) | 1995-04-26 | 1996-11-12 | Hitachi Ltd | System and method for supporting production failure analysis and production system |
JPH08316125A (en) | 1995-05-19 | 1996-11-29 | Hitachi Ltd | Method and apparatus for projection exposing |
JP3521544B2 (en) | 1995-05-24 | 2004-04-19 | 株式会社ニコン | Exposure apparatus |
US5663785A (en) | 1995-05-24 | 1997-09-02 | International Business Machines Corporation | Diffraction pupil filler modified illuminator for annular pupil fills |
US5680588A (en) | 1995-06-06 | 1997-10-21 | International Business Machines Corporation | Method and system for optimizing illumination in an optical photolithography projection imaging system |
KR0155830B1 (en) | 1995-06-19 | 1998-11-16 | 김광호 | Advanced exposure apparatus and exposure method using the same |
JP3531297B2 (en) | 1995-06-19 | 2004-05-24 | 株式会社ニコン | Projection exposure apparatus and the projection exposure method |
KR100474578B1 (en) | 1995-06-23 | 2005-06-21 | 가부시키가이샤 니콘 | Exp0sure apparatus |
JP3561556B2 (en) | 1995-06-29 | 2004-09-02 | 株式会社ルネサステクノロジ | Method of manufacturing a mask |
JP3637639B2 (en) | 1995-07-10 | 2005-04-13 | 株式会社ニコン | Exposure apparatus |
JPH09108551A (en) | 1995-08-11 | 1997-04-28 | Mitsubishi Rayon Co Ltd | Water purifier |
JPH0961686A (en) | 1995-08-23 | 1997-03-07 | Nikon Corp | Plastic lens |
JPH0982626A (en) | 1995-09-12 | 1997-03-28 | Nikon Corp | Projection exposure device |
JP3487527B2 (en) | 1995-09-14 | 2004-01-19 | 株式会社東芝 | Photorefractive device |
US5815247A (en) | 1995-09-21 | 1998-09-29 | Siemens Aktiengesellschaft | Avoidance of pattern shortening by using off axis illumination with dipole and polarizing apertures |
JPH0992593A (en) | 1995-09-21 | 1997-04-04 | Nikon Corp | Projection exposure system |
JP3433403B2 (en) | 1995-10-16 | 2003-08-04 | 三星電子株式会社 | Stepper interface device |
JPH09134870A (en) | 1995-11-10 | 1997-05-20 | Hitachi Ltd | Method and device for forming pattern |
JPH09148406A (en) | 1995-11-24 | 1997-06-06 | Dainippon Screen Mfg Co Ltd | Substrate carrying apparatus |
JPH09151658A (en) | 1995-11-30 | 1997-06-10 | Nichibei Co Ltd | Runner connection device for mobile partition wall |
JPH09160004A (en) | 1995-12-01 | 1997-06-20 | Denso Corp | Liquid crystal cell and its empty cell |
JP3406957B2 (en) * | 1995-12-06 | 2003-05-19 | キヤノン株式会社 | Optical element and an exposure apparatus using the same |
JPH09162106A (en) | 1995-12-11 | 1997-06-20 | Nikon Corp | Scanning aligner |
JPH09178415A (en) | 1995-12-25 | 1997-07-11 | Nikon Corp | Light wave interference measuring device |
JPH09184787A (en) | 1995-12-28 | 1997-07-15 | Olympus Optical Co Ltd | Analysis/evaluation device for optical lens |
JP3232473B2 (en) | 1996-01-10 | 2001-11-26 | キヤノン株式会社 | Projection exposure apparatus and a device manufacturing method using the same |
JP3189661B2 (en) | 1996-02-05 | 2001-07-16 | ウシオ電機株式会社 | The light source device |
JP3576685B2 (en) | 1996-02-07 | 2004-10-13 | キヤノン株式会社 | Exposure apparatus and device manufacturing method using the same |
JPH09227294A (en) | 1996-02-26 | 1997-09-02 | Toyo Commun Equip Co Ltd | Production of artificial quartz crystal |
JPH09232213A (en) | 1996-02-26 | 1997-09-05 | Nikon Corp | Projection aligner |
JPH09243892A (en) | 1996-03-06 | 1997-09-19 | Matsushita Electric Ind Co Ltd | Optical element |
JP3782151B2 (en) | 1996-03-06 | 2006-06-07 | キヤノン株式会社 | Gas supply device for excimer laser oscillator |
JP3601174B2 (en) | 1996-03-14 | 2004-12-15 | 株式会社ニコン | Exposure apparatus and an exposure method |
JPH09281077A (en) | 1996-04-16 | 1997-10-31 | Hitachi Ltd | Capillary electrophoretic apparatus |
RU2084941C1 (en) | 1996-05-06 | 1997-07-20 | Йелстаун Корпорейшн Н.В. | Adaptive optical module |
JP2691341B2 (en) | 1996-05-27 | 1997-12-17 | 株式会社ニコン | Projection exposure apparatus |
JPH09326338A (en) | 1996-06-04 | 1997-12-16 | Nikon Corp | Production management system |
JPH09325255A (en) | 1996-06-06 | 1997-12-16 | Olympus Optical Co Ltd | Electronic camera |
JPH103039A (en) | 1996-06-14 | 1998-01-06 | Nikon Corp | Reflective/refractive optical system |
JPH102865A (en) | 1996-06-18 | 1998-01-06 | Nikon Corp | Inspecting device of reticle and inspecting method therefor |
JPH1020195A (en) | 1996-06-28 | 1998-01-23 | Nikon Corp | Cata-dioptric system |
JPH1032160A (en) | 1996-07-17 | 1998-02-03 | Toshiba Corp | Pattern exposure method and device |
JP3646415B2 (en) | 1996-07-18 | 2005-05-11 | ソニー株式会社 | Method of detecting a mask defect |
JPH1038517A (en) | 1996-07-23 | 1998-02-13 | Canon Inc | Optical displacement measuring instrument |
JPH1055713A (en) | 1996-08-08 | 1998-02-24 | Ushio Inc | Ultraviolet irradiation device |
JPH1062305A (en) | 1996-08-19 | 1998-03-06 | Advantest Corp | Sensitivity correcting method of ccd camera, and lcd panel display test system with ccd camera sensitivity correcting function |
JP3646757B2 (en) | 1996-08-22 | 2005-05-11 | 株式会社ニコン | Projection exposure method and apparatus |
JPH1079337A (en) | 1996-09-04 | 1998-03-24 | Nikon Corp | Projection aligner |
JPH1082611A (en) | 1996-09-10 | 1998-03-31 | Nikon Corp | Apparatus for detecting position of face |
JPH1092735A (en) | 1996-09-13 | 1998-04-10 | Nikon Corp | Aligner |
JP2914315B2 (en) | 1996-09-20 | 1999-06-28 | 日本電気株式会社 | Scanning reduction projection exposure apparatus and distortion measurement method |
JPH10104427A (en) | 1996-10-03 | 1998-04-24 | Sankyo Seiki Mfg Co Ltd | Wavelength plate, and optical pickup unit equipped with the same |
JPH10116760A (en) | 1996-10-08 | 1998-05-06 | Nikon Corp | Aligner and substrate holding device |
DE19781041B4 (en) | 1996-10-08 | 2010-02-18 | Citizen Holdings Co., Ltd., Nishitokyo | An optical device |
JPH10116778A (en) | 1996-10-09 | 1998-05-06 | Canon Inc | Scanning aligner |
JPH10116779A (en) | 1996-10-11 | 1998-05-06 | Nikon Corp | Stage device |
JP3955985B2 (en) | 1996-10-16 | 2007-08-08 | 株式会社ニコン | Mark position detecting device and method |
KR100191329B1 (en) | 1996-10-23 | 1999-06-15 | 윤종용 | Internet education method and device |
JPH10135099A (en) | 1996-10-25 | 1998-05-22 | Sony Corp | Exposure device and exposure method |
JP3991166B2 (en) | 1996-10-25 | 2007-10-17 | 株式会社ニコン | An illumination optical system and an exposure apparatus equipped with the illumination optical apparatus |
JP4029183B2 (en) | 1996-11-28 | 2008-01-09 | 株式会社ニコン | Projection exposure apparatus and the projection exposure method |
JP4029182B2 (en) | 1996-11-28 | 2008-01-09 | 株式会社ニコン | Exposure method |
JP3624065B2 (en) | 1996-11-29 | 2005-02-23 | キヤノン株式会社 | Substrate transfer apparatus, a semiconductor manufacturing apparatus and an exposure apparatus |
JPH10169249A (en) | 1996-12-12 | 1998-06-23 | Ohbayashi Corp | Base isolating structure |
JPH10189700A (en) | 1996-12-20 | 1998-07-21 | Sony Corp | Wafer holding mechanism |
DE69717975T2 (en) | 1996-12-24 | 2003-05-28 | Asml Netherlands Bv | In two directions balanced positioning device and lithographic device with such a positioning device |
US5841500A (en) | 1997-01-09 | 1998-11-24 | Tellium, Inc. | Wedge-shaped liquid crystal cell |
JP2910716B2 (en) | 1997-01-16 | 1999-06-23 | 日本電気株式会社 | Parametric analysis method of the optical intensity calculation |
JPH10206714A (en) | 1997-01-20 | 1998-08-07 | Canon Inc | Lens moving device |
JP2926325B2 (en) | 1997-01-23 | 1999-07-28 | 株式会社ニコン | Scanning exposure method |
JPH10209018A (en) | 1997-01-24 | 1998-08-07 | Nippon Telegr & Teleph Corp <Ntt> | X-ray mask frame and maintenance of x-ray mask |
JP3612920B2 (en) | 1997-02-14 | 2005-01-26 | ソニー株式会社 | Master fabrication exposure apparatus of an optical recording medium |
JPH10255319A (en) | 1997-03-12 | 1998-09-25 | Hitachi Maxell Ltd | Master disk exposure device and method therefor |
JPH10294268A (en) | 1997-04-16 | 1998-11-04 | Nikon Corp | Projection aligner and positioning method |
JP3747566B2 (en) | 1997-04-23 | 2006-02-22 | 株式会社ニコン | The liquid immersion type exposure apparatus |
JPH118194A (en) | 1997-04-25 | 1999-01-12 | Nikon Corp | Exposure condition measuring method, and evaluation method and lithography system for projection optical system |
JP3817836B2 (en) | 1997-06-10 | 2006-09-06 | 株式会社ニコン | An exposure apparatus and a manufacturing method and an exposure method and device manufacturing method thereof |
JPH113856K1 (en) | 1997-06-11 | 1999-01-06 | ||
JP3233341B2 (en) | 1997-06-12 | 2001-11-26 | 船井電機株式会社 | Bread maker and recording medium used in this |
JPH113849A (en) | 1997-06-12 | 1999-01-06 | Sony Corp | Deformable illumination filter and semiconductor aligner |
JPH1114876A (en) | 1997-06-19 | 1999-01-22 | Nikon Corp | Optical structural body, projection exposing optical system incorporating the same and projection aligner |
JPH1116816A (en) | 1997-06-25 | 1999-01-22 | Nikon Corp | Projection aligner, method for exposure with the device, and method for manufacturing circuit device using the device |
JPH1140657A (en) | 1997-07-23 | 1999-02-12 | Nikon Corp | Sample holding device and scanning-type aligner |
US6829041B2 (en) | 1997-07-29 | 2004-12-07 | Canon Kabushiki Kaisha | Projection optical system and projection exposure apparatus having the same |
JP3413074B2 (en) | 1997-08-29 | 2003-06-03 | キヤノン株式会社 | Exposure apparatus and device manufacturing method |
JPH1187237A (en) | 1997-09-10 | 1999-03-30 | Nikon Corp | Alignment device |
JP4164905B2 (en) | 1997-09-25 | 2008-10-15 | 株式会社ニコン | Electromagnetic motor, stage apparatus and exposure apparatus |
JP2000106340A (en) | 1997-09-26 | 2000-04-11 | Nikon Corp | Aligner, scanning exposure method, and stage device |
JPH11111819A (en) | 1997-09-30 | 1999-04-23 | Asahi Kasei Micro Syst Co Ltd | Wafer fixing method and light exposing device |
JPH11111818A (en) | 1997-10-03 | 1999-04-23 | Oki Electric Ind Co Ltd | Holding device and holder for wafer |
JPH11111601A (en) | 1997-10-06 | 1999-04-23 | Nikon Corp | Method and device for exposure |
JPH11195602A (en) | 1997-10-07 | 1999-07-21 | Nikon Corp | Projection exposing method and device |
JP3097620B2 (en) | 1997-10-09 | 2000-10-10 | 日本電気株式会社 | Scanning reduction projection exposure apparatus |
JP4210871B2 (en) | 1997-10-31 | 2009-01-21 | 株式会社ニコン | Exposure apparatus |
JPH11142556A (en) | 1997-11-13 | 1999-05-28 | Nikon Corp | Controlling method for stage, stage device and exposing device thereof |
JPH11150062A (en) | 1997-11-14 | 1999-06-02 | Nikon Corp | Vibration isolator, aligner, and method for canceling vibration of vibration canceling base |
JPH11162831A (en) | 1997-11-21 | 1999-06-18 | Nikon Corp | Projection aligner and projection aligning method |
WO1999027568A1 (en) | 1997-11-21 | 1999-06-03 | Nikon Corporation | Projection aligner and projection exposure method |
JPH11163103A (en) | 1997-11-25 | 1999-06-18 | Hitachi Ltd | Method and device for manufacturing semiconductor device |
JPH11159571A (en) | 1997-11-28 | 1999-06-15 | Nikon Corp | Machine device, exposure device and its operating method |
JPH11166990A (en) | 1997-12-04 | 1999-06-22 | Nikon Corp | Stage device, exposure device and scanning exposure device |
JPH11176727A (en) | 1997-12-11 | 1999-07-02 | Nikon Corp | Projection aligner |
JP3673633B2 (en) | 1997-12-16 | 2005-07-20 | キヤノン株式会社 | Assembly and adjustment method of the projection optical system |
WO1999031716A1 (en) | 1997-12-16 | 1999-06-24 | Nikon Corporation | Aligner, exposure method and method of manufacturing device |
WO1999034255A1 (en) | 1997-12-25 | 1999-07-08 | Nikon Corporation | Method and apparatus for manufacturing photomask and method of fabricating device |
WO1999034417A1 (en) | 1997-12-26 | 1999-07-08 | Nikon Corporation | Exposure method and exposure apparatus |
JPH11204390A (en) | 1998-01-14 | 1999-07-30 | Canon Inc | Semiconductor manufacturing equipment and device manufacture |
JPH11219882A (en) | 1998-02-02 | 1999-08-10 | Nikon Corp | Stage and aligner |
JP3820728B2 (en) | 1998-02-04 | 2006-09-13 | 東レ株式会社 | Board of the measuring device |
JPH11288879A (en) | 1998-02-04 | 1999-10-19 | Hitachi Ltd | Exposure conditions detecting method and device thereof, and manufacture of semiconductor device |
JPH11233434A (en) | 1998-02-17 | 1999-08-27 | Nikon Corp | Exposure condition determining method, exposure method, aligner, and manufacture of device |
JP4207240B2 (en) | 1998-02-20 | 2009-01-14 | 株式会社ニコン | An exposure apparatus for luminometer lithography system, method for producing a calibration method and microdevices luminometer |
JPH11239758A (en) | 1998-02-26 | 1999-09-07 | Dainippon Screen Mfg Co Ltd | Substrate treatment apparatus |
JPH11260791A (en) | 1998-03-10 | 1999-09-24 | Toshiba Mach Co Ltd | Drying method of semiconductor wafer and drying equipment |
JPH11260686A (en) | 1998-03-11 | 1999-09-24 | Toshiba Corp | Exposure method |
JPH11264756A (en) | 1998-03-18 | 1999-09-28 | Tokyo Electron Ltd | Level detector and level detecting method, and substrate processing device |
WO1999049366A1 (en) | 1998-03-20 | 1999-09-30 | Nikon Corporation | Photomask and projection exposure system |
KR20010042098A (en) * | 1998-03-24 | 2001-05-25 | 오노 시게오 | Illuminator, exposing method and apparatus, and device manufacturing method |
EP1083462A4 (en) | 1998-03-26 | 2003-12-03 | Nippon Kogaku Kk | Exposure method and system, photomask, method of manufacturing photomask, micro-device and method of manufacturing micro-device |
WO1999049504A1 (en) | 1998-03-26 | 1999-09-30 | Nikon Corporation | Projection exposure method and system |
JPH11283903A (en) | 1998-03-30 | 1999-10-15 | Nikon Corp | Projection optical system inspection device and projection aligner provided with the device |
DE69931690D1 (en) | 1998-04-08 | 2006-07-20 | Asml Netherlands Bv | lithographic apparatus |
JPH11307610A (en) | 1998-04-22 | 1999-11-05 | Nikon Corp | Substrate transfer equipment and aligner |
US6238063B1 (en) | 1998-04-27 | 2001-05-29 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
JPH11312631A (en) | 1998-04-27 | 1999-11-09 | Nikon Corp | Illuminating optical device and aligner |
JP4090115B2 (en) | 1998-06-09 | 2008-05-28 | 信越ポリマー株式会社 | Substrate storage container |
JP3985346B2 (en) | 1998-06-12 | 2007-10-03 | 株式会社ニコン | Projection exposure apparatus, a method of adjusting a projection exposure apparatus, and a projection exposure method |
WO1999066370A1 (en) | 1998-06-17 | 1999-12-23 | Nikon Corporation | Method for producing mask |
JP2000012453A (en) | 1998-06-18 | 2000-01-14 | Nikon Corp | Aligner and its using method, exposure method, and manufacturing method of mask |
JP2000021742A (en) | 1998-06-30 | 2000-01-21 | Canon Inc | Method of exposure and exposure equipment |
JP2000021748A (en) | 1998-06-30 | 2000-01-21 | Canon Inc | Method of exposure and exposure equipment |
JP2000032403A (en) | 1998-07-14 | 2000-01-28 | Sony Corp | Data transmission method, data transmitter and receiver thereof |
JP2000029202A (en) | 1998-07-15 | 2000-01-28 | Nikon Corp | Production of mask |
JP2000036449A (en) | 1998-07-17 | 2000-02-02 | Nikon Corp | Aligner |
JP2000058436A (en) | 1998-08-11 | 2000-02-25 | Nikon Corp | Projection aligner and exposure method |
WO2000011706A1 (en) | 1998-08-18 | 2000-03-02 | Nikon Corporation | Illuminator and projection exposure apparatus |
JP2000081320A (en) | 1998-09-03 | 2000-03-21 | Canon Inc | Face position detector and fabrication of device employing it |
JP2000092815A (en) | 1998-09-10 | 2000-03-31 | Canon Inc | Stage device and aligner using the same |
JP4132397B2 (en) | 1998-09-16 | 2008-08-13 | 積水化学工業株式会社 | The photocurable resin composition, the liquid crystal injection port sealant and the liquid crystal display cell |
JP2000097616A (en) | 1998-09-22 | 2000-04-07 | Nikon Corp | Interferometer |
JP4065923B2 (en) | 1998-09-29 | 2008-03-26 | 株式会社ニコン | Illumination device and a projection exposure apparatus equipped with the lighting device, a projection exposure method according to the lighting device, and a-projecting adjusting method of the shadow exposure apparatus |
JP2000121491A (en) | 1998-10-20 | 2000-04-28 | Nikon Corp | Evaluation method for optical system |
JP2001176766A (en) | 1998-10-29 | 2001-06-29 | Nikon Corp | Illuminator and projection aligner |
JP2000147346A (en) | 1998-11-09 | 2000-05-26 | Toshiba Corp | Fitting mechanism for mold lens |
JP2000180371A (en) | 1998-12-11 | 2000-06-30 | Sharp Corp | Foreign matter inspecting apparatus and semiconductor process apparatus |
US6563567B1 (en) | 1998-12-17 | 2003-05-13 | Nikon Corporation | Method and apparatus for illuminating a surface using a projection imaging apparatus |
EP1014196A3 (en) | 1998-12-17 | 2002-05-29 | Nikon Corporation | Method and system of illumination for a projection optical apparatus |
US6406148B1 (en) | 1998-12-31 | 2002-06-18 | Texas Instruments Incorporated | Electronic color switching in field sequential video displays |
JP4146952B2 (en) | 1999-01-11 | 2008-09-10 | キヤノン株式会社 | Exposure apparatus and device manufacturing method |
JP2000208407A (en) | 1999-01-19 | 2000-07-28 | Nikon Corp | Aligner |
JP2000243684A (en) | 1999-02-18 | 2000-09-08 | Canon Inc | Aligner and device manufacture |
JP2000240717A (en) | 1999-02-19 | 2000-09-05 | Canon Inc | Active vibration resistant device |
JP2000252201A (en) | 1999-03-02 | 2000-09-14 | Nikon Corp | Method and device for detecting surface position, method and device for projection exposure using, and manufacture of semiconductor device |
JP2000283889A (en) | 1999-03-31 | 2000-10-13 | Nikon Corp | Inspection device and method of projection optical system, aligner, and manufacture of micro device |
JP2000286176A (en) | 1999-03-31 | 2000-10-13 | Hitachi Ltd | Semiconductor substrate processing unit and display method of its processing status |
JP2001174615A (en) | 1999-04-15 | 2001-06-29 | Nikon Corp | Diffraction optical element, method of producing the element, illumination device equipped with the element, projection exposure device, exposure method, light homogenizer, and method of producing the light homogenizer |
WO2000067303A1 (en) * | 1999-04-28 | 2000-11-09 | Nikon Corporation | Exposure method and apparatus |
DE19921795A1 (en) | 1999-05-11 | 2000-11-23 | Zeiss Carl Fa | Projection exposure system and exposure method in microlithography |
US6498869B1 (en) | 1999-06-14 | 2002-12-24 | Xiaotian Steve Yao | Devices for depolarizing polarized light |
JP2000003874A (en) | 1999-06-15 | 2000-01-07 | Nikon Corp | Exposure method and aligner |
JP2001007015A (en) | 1999-06-25 | 2001-01-12 | Canon Inc | Stage device |
WO2001003170A1 (en) | 1999-06-30 | 2001-01-11 | Nikon Corporation | Exposure method and device |
EP1129998B1 (en) | 1999-07-05 | 2012-03-21 | Nikon Corporation | Method for producing quartz glass member |
JP2001020951A (en) | 1999-07-07 | 2001-01-23 | Toto Ltd | Static pressure gas bearing |
JP2001023996A (en) | 1999-07-08 | 2001-01-26 | Sony Corp | Manufacturing method of semiconductor |
DE10029938A1 (en) | 1999-07-09 | 2001-07-05 | Zeiss Carl | Optical system for projection exposure device, includes optical element which consists of magnesium fluoride, as main constituent |
JP2001037201A (en) | 1999-07-21 | 2001-02-09 | Nikon Corp | Motor device, stage equipment and exposure device |
KR100383509B1 (en) | 1999-07-23 | 2003-05-12 | 세이코 엡슨 가부시키가이샤 | Projector |
JP2001044097A (en) | 1999-07-26 | 2001-02-16 | Matsushita Electric Ind Co Ltd | Aligner |
US6280034B1 (en) | 1999-07-30 | 2001-08-28 | Philips Electronics North America Corporation | Efficient two-panel projection system employing complementary illumination |
JP3110023B1 (en) | 1999-09-02 | 2000-11-20 | 岩堀 雅行 | Fuel emission device |
WO2001020733A1 (en) | 1999-09-10 | 2001-03-22 | Nikon Corporation | Light source and wavelength stabilization control method, exposure apparatus and exposure method, method for producing exposure apparatus, and device manufacturing method and device |
JP4362857B2 (en) | 1999-09-10 | 2009-11-11 | 株式会社ニコン | A light source apparatus and an exposure apparatus |
JP2001083472A (en) | 1999-09-10 | 2001-03-30 | Nikon Corp | Optical modulating device, light source device and exposure source |
DE69930398T2 (en) | 1999-09-20 | 2006-10-19 | Nikon Corp. | Exposure system with a parallel link mechanism and exposure method |
WO2001023935A1 (en) | 1999-09-29 | 2001-04-05 | Nikon Corporation | Projection exposure method and apparatus and projection optical system |
WO2001023933A1 (en) | 1999-09-29 | 2001-04-05 | Nikon Corporation | Projection optical system |
JP2001097734A (en) | 1999-09-30 | 2001-04-10 | Toshiba Ceramics Co Ltd | Quartz glass container and method for producing the same |
CN1260772C (en) | 1999-10-07 | 2006-06-21 | 株式会社尼康 | Stage device, method of driving stage, exposure device and exposure method |
JP2001110707A (en) | 1999-10-08 | 2001-04-20 | Orc Mfg Co Ltd | Optical system of peripheral aligner |
JP2001118773A (en) | 1999-10-18 | 2001-04-27 | Nikon Corp | Stage device and exposure system |
JP2001135560A (en) | 1999-11-04 | 2001-05-18 | Nikon Corp | Illuminating optical device, exposure, and method of manufacturing micro-device |
WO2001035451A1 (en) * | 1999-11-09 | 2001-05-17 | Nikon Corporation | Illuminator, aligner, and method for fabricating device |
JP2001144004A (en) | 1999-11-16 | 2001-05-25 | Nikon Corp | Exposing method, aligner and method of manufacturing device |
JP2001167996A (en) | 1999-12-10 | 2001-06-22 | Tokyo Electron Ltd | Substrate treatment apparatus |
JP2002118058A (en) | 2000-01-13 | 2002-04-19 | Nikon Corp | Projection aligner and projection exposure method |
JP2001203140A (en) | 2000-01-20 | 2001-07-27 | Nikon Corp | Stage device, aligner and device manufacturing method |
JP3413485B2 (en) | 2000-01-31 | 2003-06-03 | 住友重機械工業株式会社 | Thrust ripple measuring method in the linear motor |
JP2005233979A (en) | 2000-02-09 | 2005-09-02 | Nikon Corp | Catadioptric system |
JP2001228404A (en) | 2000-02-14 | 2001-08-24 | Nikon Corp | Vertical illumination type microscope, inspection apparatus for probe card and method for manufacturing probe card |
JP4018309B2 (en) | 2000-02-14 | 2007-12-05 | 松下電器産業株式会社 | Circuit parameter extracting method, designing method and apparatus for a semiconductor integrated circuit |
JP2001228401A (en) | 2000-02-16 | 2001-08-24 | Canon Inc | Projection optical system, projection aligner by this projection optical system and method for manufacturing device |
KR20010085493A (en) | 2000-02-25 | 2001-09-07 | 시마무라 기로 | Exposure apparatus, method for adjusting the same, and method for manufacturing device using the exposure apparatus |
JP2001313250A (en) | 2000-02-25 | 2001-11-09 | Nikon Corp | Aligner, its adjusting method, and method for fabricating device using aligner |
JP2001242269A (en) | 2000-03-01 | 2001-09-07 | Nikon Corp | Stage device, stage driving method, exposure device and exposure method |
US7301605B2 (en) | 2000-03-03 | 2007-11-27 | Nikon Corporation | Projection exposure apparatus and method, catadioptric optical system and manufacturing method of devices |
DE10010131A1 (en) * | 2000-03-03 | 2001-09-06 | Zeiss Carl | Microlithography projection exposure with tangential polarization involves using light with preferred direction of polarization oriented perpendicularly with respect to plane of incidence |
JP2001267227A (en) | 2000-03-21 | 2001-09-28 | Canon Inc | Vibration isolating system, exposure system, and device manufacturing method |
JP2001265581A (en) | 2000-03-21 | 2001-09-28 | Canon Inc | System and method for preventing illegal use of software |
JP2001338868A (en) | 2000-03-24 | 2001-12-07 | Nikon Corp | Illuminance-measuring device and aligner |
JP2001272764A (en) * | 2000-03-24 | 2001-10-05 | Canon Inc | Photomask for projection exposure and for projection exposure method using the photomask |
JP4689064B2 (en) | 2000-03-30 | 2011-05-25 | キヤノン株式会社 | Exposure apparatus and device manufacturing method |
JP3927753B2 (en) | 2000-03-31 | 2007-06-13 | キヤノン株式会社 | Exposure apparatus and device manufacturing method |
JP2001282526A (en) | 2000-03-31 | 2001-10-12 | Canon Inc | Software management device, its method and computer readable storage medium |
JP2001296105A (en) | 2000-04-12 | 2001-10-26 | Nikon Corp | Surface-position detecting apparatus, and aligner and aligning method using the detecting apparatus |
JP2001297976A (en) | 2000-04-17 | 2001-10-26 | Canon Inc | Method of exposure and aligner |
JP3514439B2 (en) | 2000-04-20 | 2004-03-31 | キヤノン株式会社 | The support structure of the optical element, and an exposure apparatus which is constructed using the supporting structure, a device manufacturing method, such as by the device |
JP2001307983A (en) | 2000-04-20 | 2001-11-02 | Nikon Corp | Stage device and aligner |
JP2001304332A (en) | 2000-04-24 | 2001-10-31 | Canon Inc | Active vibration damping device |
JP2002014005A (en) | 2000-04-25 | 2002-01-18 | Nikon Corp | Measuring method of spatial image, measuring method of imaging characteristic, measuring device for spatial image, and exposuring device |
WO2001082000A1 (en) | 2000-04-25 | 2001-11-01 | Silicon Valley Group, Inc. | Optical reduction system with elimination of reticle diffraction induced bias |
JP2002057097A (en) | 2000-05-31 | 2002-02-22 | Nikon Corp | Aligner, and microdevice and its manufacturing method |
JP2002016124A (en) | 2000-06-28 | 2002-01-18 | Sony Corp | Wafer transporting arm mechanism |
JP2002015978A (en) | 2000-06-29 | 2002-01-18 | Canon Inc | Exposure system |
JP2002100561A (en) | 2000-07-19 | 2002-04-05 | Nikon Corp | Aligning method and aligner and method for fabricating device |
JP2002043213A (en) | 2000-07-25 | 2002-02-08 | Nikon Corp | Stage device and exposure system |
US7154684B2 (en) | 2000-08-18 | 2006-12-26 | Nikon Corporation | Optical element holding apparatus |
JP2002071513A (en) | 2000-08-28 | 2002-03-08 | Nikon Corp | Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective |
JP4504537B2 (en) | 2000-08-29 | 2010-07-14 | 芝浦メカトロニクス株式会社 | Spin processing apparatus |
JP2002075835A (en) * | 2000-08-30 | 2002-03-15 | Nikon Corp | Illumination optical device and exposure system with the same |
US6373614B1 (en) | 2000-08-31 | 2002-04-16 | Cambridge Research Instrumentation Inc. | High performance polarization controller and polarization sensor |
JP2002093690A (en) | 2000-09-19 | 2002-03-29 | Hitachi Ltd | Method for manufacturing semiconductor device |
JP2002093686A (en) | 2000-09-19 | 2002-03-29 | Nikon Corp | Stage device and aligner |
JP2002091922A (en) | 2000-09-20 | 2002-03-29 | Fujitsu General Ltd | Method and system for distributing and managing application software and contents |
JP4245286B2 (en) | 2000-10-23 | 2009-03-25 | 株式会社ニコン | Catadioptric optical system and an exposure apparatus equipped with the optical system |
JP2002141270A (en) | 2000-11-01 | 2002-05-17 | Nikon Corp | Exposing system |
JP2002158157A (en) | 2000-11-17 | 2002-05-31 | Nikon Corp | Illumination optical device and aligner and method for fabricating microdevice |
JP2002162655A (en) * | 2000-11-27 | 2002-06-07 | Sony Corp | Optical apparatus |
JP2002170495A (en) | 2000-11-28 | 2002-06-14 | Meiki Plastics Co Ltd | Integrate barrier rib synthetic resin rear substrate |
US20020075467A1 (en) | 2000-12-20 | 2002-06-20 | Nikon Corporation | Exposure apparatus and method |
JP2002190438A (en) | 2000-12-21 | 2002-07-05 | Nikon Corp | Projection aligner |
JP2002198284A (en) | 2000-12-25 | 2002-07-12 | Nikon Corp | Stage device and projection aligner |
JP2002195912A (en) | 2000-12-27 | 2002-07-10 | Nikon Corp | Method and apparatus for measuring optical property, exposure apparatus and method for producing device |
JP2002203763A (en) | 2000-12-27 | 2002-07-19 | Nikon Corp | Optical characteristic measuring method and device, signal sensitivity setting method, exposure unit and device manufacturing method |
JP2002202221A (en) | 2000-12-28 | 2002-07-19 | Nikon Corp | Position detection method, position detector, optical characteristic measuring method, optical characteristic measuring device, exposure device, and device manufacturing method |
JP3495992B2 (en) | 2001-01-26 | 2004-02-09 | キヤノン株式会社 | Correction apparatus, an exposure apparatus, device manufacturing method and device |
US6563566B2 (en) | 2001-01-29 | 2003-05-13 | International Business Machines Corporation | System and method for printing semiconductor patterns using an optimized illumination and reticle |
JP2002227924A (en) | 2001-01-31 | 2002-08-14 | Canon Inc | Vibration control damper and exposure apparatus with vibration control damper |
CN1491427A (en) | 2001-02-06 | 2004-04-21 | 株式会社尼康 | Exposure system, and exposure method, and device production method |
JP3867904B2 (en) | 2001-02-23 | 2007-01-17 | エーエスエムエル ネザーランズ ビー.ブイ. | Optimization of illumination for a specific mask pattern |
DE10113612A1 (en) | 2001-02-23 | 2002-09-05 | Zeiss Carl | Sub-objective for illumination system has two lens groups, second lens group with at least first lens with negative refractive index and at least second lens with positive refractive index |
JP4714403B2 (en) | 2001-02-27 | 2011-06-29 | エーエスエムエル ユーエス,インコーポレイテッド | A method and apparatus for exposing a dual reticle image |
JP2002258487A (en) | 2001-02-28 | 2002-09-11 | Nikon Corp | Method and device for aligner |
JP4501292B2 (en) | 2001-03-05 | 2010-07-14 | コニカミノルタホールディングス株式会社 | Method for producing a coating method and device of the base material to be coated and the coating material |
WO2002080185A1 (en) | 2001-03-28 | 2002-10-10 | Nikon Corporation | Stage device, exposure device, and method of manufacturing device |
JP2002289505A (en) | 2001-03-28 | 2002-10-04 | Nikon Corp | Aligner, method for adjusting the aligner and method for manufacturing micro-device |
JP2002365783A (en) | 2001-04-05 | 2002-12-18 | Sony Corp | Apparatus of forming mask pattern, apparatus and method of manufacturing high-resolution mask as well as method of forming resist pattern |
JP2002305140A (en) | 2001-04-06 | 2002-10-18 | Nikon Corp | Aligner and substrate processing system |
WO2002084850A1 (en) | 2001-04-09 | 2002-10-24 | Kabushiki Kaisha Yaskawa Denki | Canned linear motor armature and canned linear motor |
JP3937903B2 (en) | 2001-04-24 | 2007-06-27 | キヤノン株式会社 | Exposure method and apparatus |
US7217503B2 (en) | 2001-04-24 | 2007-05-15 | Canon Kabushiki Kaisha | Exposure method and apparatus |
US6991877B2 (en) | 2001-04-24 | 2006-01-31 | Canon Kabushiki Kaisha | Exposure method and apparatus |
JP2002329651A (en) | 2001-04-27 | 2002-11-15 | Nikon Corp | Aligner, method of manufacturing aligner and method of manufacturing micro-device |
DE10124566A1 (en) | 2001-05-15 | 2002-11-21 | Zeiss Carl | An optical imaging system with polarization means and quartz crystal plate therefor |
KR20040015251A (en) | 2001-05-15 | 2004-02-18 | 칼 짜이스 에스엠티 아게 | Objective with fluoride crystal lenses |
DE10123725A1 (en) | 2001-05-15 | 2002-11-21 | Zeiss Carl | Objective for microlithographic projection, includes lens element with axis perpendicular to specified fluoride crystal plane |
DE10124474A1 (en) | 2001-05-19 | 2002-11-21 | Zeiss Carl | Microlithographic exposure involves compensating path difference by controlled variation of first and/or second optical paths; image plane difference is essentially independent of incident angle |
US7053988B2 (en) | 2001-05-22 | 2006-05-30 | Carl Zeiss Smt Ag. | Optically polarizing retardation arrangement, and microlithography projection exposure machine |
JPWO2002095811A1 (en) * | 2001-05-23 | 2004-09-09 | 株式会社ニコン | Illumination optical apparatus, exposure apparatus, and a micro-device manufacturing method |
JP2002359176A (en) | 2001-05-31 | 2002-12-13 | Canon Inc | Luminaire, illumination control method, aligner, device and manufacturing method thereof |
JP4622160B2 (en) | 2001-05-31 | 2011-02-02 | 旭硝子株式会社 | Diffraction grating integrated optical rotator and an optical head device |
JP2002359174A (en) | 2001-05-31 | 2002-12-13 | Mitsubishi Electric Corp | Exposure process managing system, method therefor and program for managing exposure process |
JP4689081B2 (en) | 2001-06-06 | 2011-05-25 | キヤノン株式会社 | Exposure apparatus, adjustment method, and device manufacturing method |
JP3734432B2 (en) | 2001-06-07 | 2006-01-11 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Mask transport apparatus, a mask conveying system and the mask transfer method |
JPWO2002101804A1 (en) | 2001-06-11 | 2004-09-30 | 株式会社ニコン | Exposure apparatus and device manufacturing method, and temperature stabilization channel device |
JP2002367523A (en) | 2001-06-12 | 2002-12-20 | Matsushita Electric Ind Co Ltd | Plasma display panel and method of manufacturing the same |
KR20030036254A (en) | 2001-06-13 | 2003-05-09 | 가부시키가이샤 니콘 | Scanning exposure method and scanning exposure system, and device production method |
JP2002373849A (en) | 2001-06-15 | 2002-12-26 | Canon Inc | Aligner |
US6788385B2 (en) | 2001-06-21 | 2004-09-07 | Nikon Corporation | Stage device, exposure apparatus and method |
JP4829429B2 (en) * | 2001-06-27 | 2011-12-07 | キヤノン株式会社 | Transmittance measuring device |
US6831731B2 (en) | 2001-06-28 | 2004-12-14 | Nikon Corporation | Projection optical system and an exposure apparatus with the projection optical system |
WO2003003429A1 (en) | 2001-06-28 | 2003-01-09 | Nikon Corporation | Projection optical system, exposure system and method |
JP2003015314A (en) | 2001-07-02 | 2003-01-17 | Nikon Corp | Illumination optical device and exposure device provided with the same |
JP2003015040A (en) | 2001-07-04 | 2003-01-15 | Nikon Corp | Projection optical system and exposure device equipped therewith |
JP2003017003A (en) | 2001-07-04 | 2003-01-17 | Canon Inc | Lamp and light source device |
JP3507459B2 (en) | 2001-07-09 | 2004-03-15 | キヤノン株式会社 | Illumination device, an exposure apparatus and device manufacturing method |
JP2003028673A (en) | 2001-07-10 | 2003-01-29 | Canon Inc | Optical encoder, semiconductor manufacturing apparatus, device manufacturing method, semiconductor manufacturing plant and maintaining method for semiconductor manufacturing apparatus |
EP1280007B1 (en) | 2001-07-24 | 2008-06-18 | ASML Netherlands B.V. | Imaging apparatus |
JP2003045712A (en) | 2001-07-26 | 2003-02-14 | Japan Aviation Electronics Industry Ltd | Waterproof coil and manufacturing method therefor |
JP4522024B2 (en) | 2001-07-27 | 2010-08-11 | キヤノン株式会社 | Mercury lamp, an illumination apparatus and an exposure apparatus |
JP2003043223A (en) | 2001-07-30 | 2003-02-13 | Nikon Corp | Beam splitter and wave plate made of crystal material, and optical device, exposure device and inspection device equipped with the crystal optical parts |
JP2003059799A (en) | 2001-08-10 | 2003-02-28 | Nikon Corp | Illumination optical system, exposure system, and method of manufacturing microdevice |
JP2003059803A (en) | 2001-08-14 | 2003-02-28 | Canon Inc | Aligner |
JP2003068600A (en) | 2001-08-22 | 2003-03-07 | Canon Inc | Aligner and cooling method of substrate chuck |
JP2003068604A (en) | 2001-08-23 | 2003-03-07 | Nikon Corp | Illumination optical equipment and aligner using the illumination optical equipment |
US20030038931A1 (en) | 2001-08-23 | 2003-02-27 | Nikon Corporation | Illumination optical apparatus, exposure apparatus and method of exposure |
JP2003068607A (en) | 2001-08-23 | 2003-03-07 | Nikon Corp | Aligner and exposure method |
JP2003075703A (en) | 2001-08-31 | 2003-03-12 | Konica Corp | Optical unit and optical device |
JP4183166B2 (en) | 2001-08-31 | 2008-11-19 | 京セラ株式会社 | Positioner member |
JP2003081654A (en) | 2001-09-06 | 2003-03-19 | Toshiba Ceramics Co Ltd | Synthetic quartz glass, and production method therefor |
JPWO2003023832A1 (en) | 2001-09-07 | 2004-12-24 | 株式会社ニコン | Exposure method and apparatus, and device manufacturing method |
JP2003084445A (en) | 2001-09-13 | 2003-03-19 | Canon Inc | Scanning type exposure device and exposure method |
JP2003090978A (en) * | 2001-09-17 | 2003-03-28 | Canon Inc | Illumination device, exposure device and method for manufacturing device |
JP4160286B2 (en) | 2001-09-21 | 2008-10-01 | 東芝マイクロエレクトロニクス株式会社 | Dimension measuring point selection method Lsi pattern |
JP3910032B2 (en) | 2001-09-25 | 2007-04-25 | 大日本スクリーン製造株式会社 | Board developing device |
JP4412450B2 (en) | 2001-10-05 | 2010-02-10 | 信越化学工業株式会社 | Anti-reflection filter |
JP2003124095A (en) | 2001-10-11 | 2003-04-25 | Nikon Corp | Projection exposure method, projection aligner, and device manufacturing method |
US6970232B2 (en) | 2001-10-30 | 2005-11-29 | Asml Netherlands B.V. | Structures and methods for reducing aberration in integrated circuit fabrication systems |
JP2003202523A (en) * | 2001-11-02 | 2003-07-18 | Nec Viewtechnology Ltd | Polarization unit, polarization illumination device and projection type display device using the illumination device |
US6577379B1 (en) | 2001-11-05 | 2003-06-10 | Micron Technology, Inc. | Method and apparatus for shaping and/or orienting radiation irradiating a microlithographic substrate |
JP4362999B2 (en) | 2001-11-12 | 2009-11-11 | 株式会社ニコン | Exposure apparatus and an exposure method, and device manufacturing method |
JP4307813B2 (en) | 2001-11-14 | 2009-08-05 | 株式会社リコー | Light deflection method and the optical deflecting device and a manufacturing method of the optical deflector and an optical information processing apparatus comprising the light deflecting device and an image forming apparatus and an image projecting and displaying device and an optical transmission device |
JP2003166856A (en) | 2001-11-29 | 2003-06-13 | Fuji Electric Co Ltd | Optical encoder |
JP2003161882A (en) | 2001-11-29 | 2003-06-06 | Nikon Corp | Projection optical system, exposure apparatus and exposing method |
JP3809095B2 (en) | 2001-11-29 | 2006-08-16 | ペンタックス株式会社 | An exposure device for a light source system and an exposure apparatus |
JP3945569B2 (en) | 2001-12-06 | 2007-07-18 | 東京応化工業株式会社 | Developing device |
JP2003249443A (en) | 2001-12-21 | 2003-09-05 | Nikon Corp | Stage apparatus, stage position-controlling method, exposure method and projection aligner, and device- manufacturing method |
JP2003188087A (en) | 2001-12-21 | 2003-07-04 | Sony Corp | Aligning method and aligner and method for manufacturing semiconductor device |
CN1432874A (en) | 2002-01-09 | 2003-07-30 | 尼康株式会社 | Exposure device and method |
JPWO2003063212A1 (en) | 2002-01-21 | 2005-05-26 | 株式会社ニコン | Stage apparatus and an exposure apparatus |
JP3809381B2 (en) | 2002-01-28 | 2006-08-16 | キヤノン株式会社 | Linear motor, stage apparatus, exposure apparatus and device manufacturing method |
JP2003229347A (en) | 2002-01-31 | 2003-08-15 | Canon Inc | Semiconductor manufacturing device |
JP2003233001A (en) | 2002-02-07 | 2003-08-22 | Canon Inc | Reflection type projection optical system, exposure device, and method for manufacturing device |
DE10206061A1 (en) | 2002-02-08 | 2003-09-04 | Carl Zeiss Semiconductor Mfg S | Polarization Optimized lighting system |
US20050134825A1 (en) | 2002-02-08 | 2005-06-23 | Carl Zeiss Smt Ag | Polarization-optimized illumination system |
JP2003240906A (en) | 2002-02-20 | 2003-08-27 | Dainippon Printing Co Ltd | Antireflection body and method for manufacturing the same |
CN1441236A (en) | 2002-02-27 | 2003-09-10 | 尼康株式会社 | Aberration evaluating method for imaging optical system and its regulating method |
JP2003258071A (en) | 2002-02-28 | 2003-09-12 | Nikon Corp | Substrate holding apparatus and aligner |
WO2003075328A9 (en) | 2002-03-01 | 2004-02-05 | Kenji Higashi | Projection optical system adjustment method, prediction method, evaluation method, adjustment method, exposure method, exposure device, program, and device manufacturing method |
JP3984841B2 (en) | 2002-03-07 | 2007-10-03 | キヤノン株式会社 | Strain measuring device, distortion suppression device, and an exposure apparatus, and device manufacturing method |
JP2003263119A (en) | 2002-03-07 | 2003-09-19 | Fuji Xerox Co Ltd | Rib-attached electrode and its manufacturing method |
DE10210899A1 (en) | 2002-03-08 | 2003-09-18 | Zeiss Carl Smt Ag | Refractive projection objective for immersion lithography |
JP3975787B2 (en) | 2002-03-12 | 2007-09-12 | ソニー株式会社 | The solid-state imaging device |
JP4100011B2 (en) | 2002-03-13 | 2008-06-11 | セイコーエプソン株式会社 | Surface treatment apparatus, manufacturing apparatus and manufacturing method of the organic el device |
US7085052B2 (en) | 2002-03-14 | 2006-08-01 | Optellios, Inc. | Over-parameterized polarization controller |
JP4335495B2 (en) | 2002-03-27 | 2009-09-30 | キヤノン株式会社 | Constant pressure chamber, the irradiation apparatus and the circuit pattern inspection apparatus using the same |
JP2003297727A (en) | 2002-04-03 | 2003-10-17 | Nikon Corp | Illumination optical device, exposure apparatus, and method of exposure |
JPWO2003085708A1 (en) | 2002-04-09 | 2005-08-18 | 株式会社ニコン | Exposure method and an exposure apparatus, and device manufacturing method |
US6894712B2 (en) | 2002-04-10 | 2005-05-17 | Fuji Photo Film Co., Ltd. | Exposure head, exposure apparatus, and application thereof |
DE10310690A1 (en) | 2002-04-12 | 2003-10-30 | Heidelberger Druckmasch Ag | Sheet guide in sheet-processing machine especially rotary printer has pick-up pieces, free air jet nozzles and air cushion |
JP2005524112A (en) | 2002-04-29 | 2005-08-11 | フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン | Tip protector and chip method actuation |
US20040108973A1 (en) | 2002-12-10 | 2004-06-10 | Kiser David K. | Apparatus for generating a number of color light components |
JP2004015187A (en) | 2002-06-04 | 2004-01-15 | Fuji Photo Film Co Ltd | Photographing auxiliary system, digital camera, and server |
JP4037179B2 (en) | 2002-06-04 | 2008-01-23 | 東京エレクトロン株式会社 | Cleaning method, the cleaning device |
JP2004014876A (en) | 2002-06-07 | 2004-01-15 | Nikon Corp | Adjustment method, method for measuring spatial image, method for measuring image surface, and exposure device |
JP3448812B2 (en) | 2002-06-14 | 2003-09-22 | 株式会社ニコン | Mark detecting apparatus, and exposure apparatus having the same, and a method of manufacturing a semiconductor device or a liquid crystal display device using the exposure apparatus |
JP2004022708A (en) | 2002-06-14 | 2004-01-22 | Nikon Corp | Imaging optical system, illumination optical system, aligner and method for exposure |
JP2004179172A (en) | 2002-06-26 | 2004-06-24 | Nikon Corp | Aligner, exposure method, and method of manufacturing device |
JP4012771B2 (en) | 2002-06-28 | 2007-11-21 | 富士通エフ・アイ・ピー株式会社 | License management method, license management system, a license management program |
JP2004039952A (en) | 2002-07-05 | 2004-02-05 | Tokyo Electron Ltd | Plasma treatment apparatus and monitoring method thereof |
JP2004040039A (en) | 2002-07-08 | 2004-02-05 | Sony Corp | Selecting method of exposing method |
JP2004045063A (en) | 2002-07-09 | 2004-02-12 | Topcon Corp | Method of manufacturing optical rotary encoder plate and optical rotary encoder plate |
WO2004012013A3 (en) | 2002-07-26 | 2004-06-03 | Massachusetts Inst Technology | Optical imaging using a pupil filter and coordinated illumination polarisation |
JP2004063988A (en) | 2002-07-31 | 2004-02-26 | Canon Inc | Illumination optical system, aligner having the system, and method of manufacturing device |
JP2004071851A (en) | 2002-08-07 | 2004-03-04 | Canon Inc | Semiconductor exposure method and aligner |
JP2004085612A (en) | 2002-08-22 | 2004-03-18 | Matsushita Electric Ind Co Ltd | Halftone phase shift mask, its manufacturing method and method for forming pattern using same |
JP4095376B2 (en) | 2002-08-28 | 2008-06-04 | キヤノン株式会社 | Exposure apparatus and method, and device manufacturing method |
JP2004095653A (en) | 2002-08-29 | 2004-03-25 | Nikon Corp | Aligner |
JP2004145269A (en) | 2002-08-30 | 2004-05-20 | Nikon Corp | Projection optical system, reflective and refractive projection optical system, scanning exposure apparatus and exposure method |
JP2004103674A (en) | 2002-09-06 | 2004-04-02 | Renesas Technology Corp | Method of manufacturing semiconductor integrated circuit device |
JP2004101362A (en) | 2002-09-10 | 2004-04-02 | Canon Inc | Stage position measurement and positioning device |
JP2004098012A (en) | 2002-09-12 | 2004-04-02 | Seiko Epson Corp | Thin film formation method, thin film formation device, optical device, organic electroluminescent device, semiconductor device, and electronic apparatus |
JP2004111579A (en) | 2002-09-17 | 2004-04-08 | Canon Inc | Exposure method and system |
JP4269610B2 (en) | 2002-09-17 | 2009-05-27 | 株式会社ニコン | Manufacturing method for an exposure apparatus and an exposure apparatus |
KR100480620B1 (en) | 2002-09-19 | 2005-03-31 | 삼성전자주식회사 | Exposing equipment including a Micro Mirror Array and exposing method using the exposing equipment |
JP2004119497A (en) | 2002-09-24 | 2004-04-15 | Fujitsu Ltd | Semiconductor manufacturing equipment and method therefor |
JP4333866B2 (en) | 2002-09-26 | 2009-09-16 | 大日本スクリーン製造株式会社 | Substrate processing method and substrate processing apparatus |
JP2004128307A (en) | 2002-10-04 | 2004-04-22 | Nikon Corp | Aligner and its adjustment method |
JP2004134682A (en) | 2002-10-15 | 2004-04-30 | Nikon Corp | Gas cylinder, stage apparatus, and aligner |
US6665119B1 (en) | 2002-10-15 | 2003-12-16 | Eastman Kodak Company | Wire grid polarizer |
JP2004140145A (en) | 2002-10-17 | 2004-05-13 | Nikon Corp | Aligner |
JP2004146702A (en) | 2002-10-25 | 2004-05-20 | Nikon Corp | Method for measuring optical characteristic, exposure method and method for manufacturing device |
JP2004153096A (en) | 2002-10-31 | 2004-05-27 | Nikon Corp | Aligner |
JP2004153064A (en) | 2002-10-31 | 2004-05-27 | Nikon Corp | Aligner |
JP2004152705A (en) | 2002-11-01 | 2004-05-27 | Matsushita Electric Ind Co Ltd | Manufacturing method of organic electroluminescent element |
JP2004165249A (en) | 2002-11-11 | 2004-06-10 | Sony Corp | Aligner and method of exposure |
JP2004163555A (en) | 2002-11-12 | 2004-06-10 | Olympus Corp | Vertical illumination microscope and objective for vertical illumination microscope |
JP3953460B2 (en) | 2002-11-12 | 2007-08-08 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic projection apparatus |
JP2004165416A (en) | 2002-11-13 | 2004-06-10 | Nikon Corp | Aligner and building |
JP2004172471A (en) | 2002-11-21 | 2004-06-17 | Nikon Corp | Exposure method and apparatus |
JP4378938B2 (en) | 2002-11-25 | 2009-12-09 | 株式会社ニコン | Exposure apparatus, and device manufacturing method |
US6844927B2 (en) | 2002-11-27 | 2005-01-18 | Kla-Tencor Technologies Corporation | Apparatus and methods for removing optical abberations during an optical inspection |
US6958806B2 (en) | 2002-12-02 | 2005-10-25 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP4314555B2 (en) | 2002-12-03 | 2009-08-19 | 株式会社ニコン | Linear motor device, a stage device, and an exposure apparatus |
CN101424883B (en) | 2002-12-10 | 2013-05-15 | 株式会社尼康 | Exposure system and device producing method |
JP4232449B2 (en) | 2002-12-10 | 2009-03-04 | 株式会社ニコン | Exposure method, an exposure apparatus, and device manufacturing method |
JP2004301825A (en) | 2002-12-10 | 2004-10-28 | Nikon Corp | Surface position detection device, exposure method and method for manufacturing device |
JP4352874B2 (en) | 2002-12-10 | 2009-10-28 | 株式会社ニコン | Exposure apparatus and device manufacturing method |
KR20050062665A (en) | 2002-12-10 | 2005-06-23 | 가부시키가이샤 니콘 | Exposure apparatus and method for manufacturing device |
WO2004053951A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Exposure method, exposure apparatus and method for manufacturing device |
DE10257766A1 (en) | 2002-12-10 | 2004-07-15 | Carl Zeiss Smt Ag | A method for setting a desired optical characteristic of a projection lens and microlithographic projection exposure apparatus |
JP4595320B2 (en) | 2002-12-10 | 2010-12-08 | 株式会社ニコン | Exposure apparatus, and device manufacturing method |
EP1571701A4 (en) | 2002-12-10 | 2008-04-09 | Nippon Kogaku Kk | Exposure apparatus and method for manufacturing device |
WO2004053957A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Surface position detection apparatus, exposure method, and device porducing method |
EP1571698A4 (en) | 2002-12-10 | 2006-06-21 | Nippon Kogaku Kk | Exposure apparatus, exposure method and method for manufacturing device |
CN100429748C (en) | 2002-12-10 | 2008-10-29 | 株式会社尼康 | Exposure apparatus and method for producing device |
WO2004053959A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Optical device and projection exposure apparatus using such optical device |
KR101037057B1 (en) | 2002-12-10 | 2011-05-26 | 가부시키가이샤 니콘 | Exposure apparatus and method for manufacturing device |
JP2004193425A (en) | 2002-12-12 | 2004-07-08 | Nikon Corp | Movement control method, movement controller, aligner and device manufacturing method |
JP2004198748A (en) | 2002-12-19 | 2004-07-15 | Nikon Corp | Optical integrator, illumination optical system, exposure device, and exposure method |
JP2004221253A (en) | 2003-01-14 | 2004-08-05 | Nikon Corp | Aligner |
JP2006516724A (en) | 2003-01-15 | 2006-07-06 | フラウンホーファー − ゲゼルシャフト ツル フェーデルング デル アンゲヴァントテン フォルシュング エー.ファォ. | Method for detecting defective pixels |
JP2004228497A (en) | 2003-01-27 | 2004-08-12 | Nikon Corp | Exposure device and manufacturing method of electronic device |
JP2004224421A (en) | 2003-01-27 | 2004-08-12 | Tokyo Autom Mach Works Ltd | Product feeding apparatus |
JP2004241666A (en) | 2003-02-07 | 2004-08-26 | Nikon Corp | Measuring method and exposure method |
JP2004007417A (en) | 2003-02-10 | 2004-01-08 | Fujitsu Ltd | Information providing system |
JP4366948B2 (en) | 2003-02-14 | 2009-11-18 | 株式会社ニコン | Illumination optical apparatus, an exposure apparatus and an exposure method |
JP2004259828A (en) | 2003-02-25 | 2004-09-16 | Nikon Corp | Semiconductor exposure system |
CN104678715B (en) | 2003-02-26 | 2017-05-17 | 株式会社尼康 | Exposure method, and device manufacturing method |
JP4604452B2 (en) | 2003-02-26 | 2011-01-05 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
JP2004259985A (en) | 2003-02-26 | 2004-09-16 | Sony Corp | Resist pattern forming device, method for forming resist pattern and method for manufacturing semiconductor device using the forming method |
US7206059B2 (en) | 2003-02-27 | 2007-04-17 | Asml Netherlands B.V. | Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems |
JP4305003B2 (en) | 2003-02-27 | 2009-07-29 | 株式会社ニコン | Euv optical system and euv exposure apparatus |
JP2004260115A (en) | 2003-02-27 | 2004-09-16 | Nikon Corp | Stage unit, exposure system, and method for manufacturing device |
US6943941B2 (en) | 2003-02-27 | 2005-09-13 | Asml Netherlands B.V. | Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems |
JP2004260081A (en) | 2003-02-27 | 2004-09-16 | Nikon Corp | Reflector for ultraviolet region and projection aligner employing it |
KR101181688B1 (en) | 2003-03-25 | 2012-09-19 | 가부시키가이샤 니콘 | Exposure system and device production method |
JP2004294202A (en) | 2003-03-26 | 2004-10-21 | Seiko Epson Corp | Defect detection method and device of screen |
JP4265257B2 (en) | 2003-03-28 | 2009-05-20 | 株式会社ニコン | Exposure apparatus and an exposure method, the film structure |
JP4496711B2 (en) | 2003-03-31 | 2010-07-07 | 株式会社ニコン | Exposure apparatus and an exposure method |
JP2004304135A (en) | 2003-04-01 | 2004-10-28 | Nikon Corp | Exposure device, exposing method and manufacturing method of micro-device |
WO2004091079A1 (en) | 2003-04-07 | 2004-10-21 | Kabushiki Kaisha Yaskawa Denki | Canned linear motor armature and canned linear motor |
JP4288413B2 (en) | 2003-04-07 | 2009-07-01 | 株式会社ニコン | Molding method and molding apparatus of quartz glass |
EP1612850B1 (en) | 2003-04-07 | 2009-03-25 | Nikon Corporation | Exposure apparatus and method for manufacturing a device |
JP4281397B2 (en) | 2003-04-07 | 2009-06-17 | 株式会社ニコン | Molding apparatus of the quartz glass |
JP4341277B2 (en) | 2003-04-07 | 2009-10-07 | 株式会社ニコン | Molding method of quartz glass |
JP4465974B2 (en) | 2003-04-07 | 2010-05-26 | 株式会社ニコン | Molding apparatus of the quartz glass |
JP4428115B2 (en) | 2003-04-11 | 2010-03-10 | 株式会社ニコン | Immersion lithography system |
JP2004319724A (en) | 2003-04-16 | 2004-11-11 | Ses Co Ltd | Structure of washing tub in semiconductor washing apparatus |
WO2004094940A1 (en) | 2003-04-23 | 2004-11-04 | Nikon Corporation | Interferometer system, signal processing method in interferometer system, stage using the signal processing method |
EP1620350A1 (en) | 2003-04-24 | 2006-02-01 | Metconnex Canada Inc. | A micro-electro-mechanical-system two dimensional mirror with articulated suspension structures for high fill factor arrays |
JP2004327660A (en) | 2003-04-24 | 2004-11-18 | Nikon Corp | Scanning projection aligner, exposure method, and device manufacturing method |
US7095546B2 (en) | 2003-04-24 | 2006-08-22 | Metconnex Canada Inc. | Micro-electro-mechanical-system two dimensional mirror with articulated suspension structures for high fill factor arrays |
JP2004335808A (en) | 2003-05-08 | 2004-11-25 | Sony Corp | Pattern transfer device, pattern transfer method and program |
JP4487168B2 (en) | 2003-05-09 | 2010-06-23 | 株式会社ニコン | Stage apparatus and a driving method, and an exposure apparatus |
JP2004335864A (en) | 2003-05-09 | 2004-11-25 | Nikon Corp | Aligner and exposure method |
JP2004342987A (en) | 2003-05-19 | 2004-12-02 | Canon Inc | Stage apparatus |
WO2004104654A1 (en) | 2003-05-21 | 2004-12-02 | Nikon Corporation | Depolarization element, illumination optical device, exposure device, and exposure method |
EP3048487B1 (en) | 2003-05-23 | 2017-03-29 | Nikon Corporation | Immersion exposure method and apparatus, and method for producing a device |
KR101523829B1 (en) | 2003-05-23 | 2015-05-28 | 가부시키가이샤 니콘 | Exposure device and device manufacturing method |
JP2005012190A (en) | 2003-05-23 | 2005-01-13 | Nikon Corp | Estimation method and adjusting method of imaging optical system, exposure apparatus and method |
JP2004349645A (en) | 2003-05-26 | 2004-12-09 | Sony Corp | Liquid-immersed differential liquid-drainage static-pressure floating pad, master-disk exposure apparatus, and method of exposure using liquid-immersed differential liquid-drainage |
KR101618419B1 (en) | 2003-05-28 | 2016-05-04 | 가부시키가이샤 니콘 | Exposure method, exposure device, and device manufacturing method |
JP2004356410A (en) | 2003-05-29 | 2004-12-16 | Nikon Corp | Aligner and method for exposure |
DE10324477A1 (en) | 2003-05-30 | 2004-12-30 | Carl Zeiss Smt Ag | Microlithographic projection exposure system |
KR101087516B1 (en) | 2003-06-04 | 2011-11-28 | 가부시키가이샤 니콘 | Stage apparatus, fixation method, exposure apparatus, exposure method, and device producing method |
JP2005005295A (en) | 2003-06-09 | 2005-01-06 | Nikon Corp | Stage apparatus and exposure device |
JP2005005395A (en) | 2003-06-10 | 2005-01-06 | Nikon Corp | Gas feeding evacuation method and apparatus, mirror cylinder, exposure device, and method |
JP2005005521A (en) | 2003-06-12 | 2005-01-06 | Nikon Corp | Device and method for exposing, and polarization state measurement device |
US6867844B2 (en) | 2003-06-19 | 2005-03-15 | Asml Holding N.V. | Immersion photolithography system and method using microchannel nozzles |
KR101674329B1 (en) | 2003-06-19 | 2016-11-08 | 가부시키가이샤 니콘 | Exposure device and device producing method |
JP2005019628A (en) | 2003-06-25 | 2005-01-20 | Nikon Corp | Optical apparatus, aligner, manufacturing method of device |
DE10328938A1 (en) | 2003-06-27 | 2005-01-20 | Carl Zeiss Smt Ag | Corrector to compensate for disturbances in the polarization distribution and projection lens for microlithography |
JP3862678B2 (en) | 2003-06-27 | 2006-12-27 | キヤノン株式会社 | Exposure apparatus and device manufacturing method |
US7499148B2 (en) | 2003-07-02 | 2009-03-03 | Renesas Technology Corp. | Polarizer, projection lens system, exposure apparatus and exposing method |
JP2005026634A (en) | 2003-07-04 | 2005-01-27 | Sony Corp | Aligner and manufacturing method of semiconductor device |
KR101296501B1 (en) | 2003-07-09 | 2013-08-13 | 가부시키가이샤 니콘 | Exposure apparatus and method for manufacturing device |
WO2005006415A1 (en) | 2003-07-09 | 2005-01-20 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
WO2005008754A1 (en) | 2003-07-18 | 2005-01-27 | Nikon Corporation | Flare measurement method, exposure method, and flare measurement mask |
WO2005010963A1 (en) | 2003-07-24 | 2005-02-03 | Nikon Corporation | Illuminating optical system, exposure system and exposure method |
JP4492600B2 (en) | 2003-07-28 | 2010-06-30 | 株式会社ニコン | Exposure apparatus and an exposure method, and device manufacturing method |
JP4492239B2 (en) | 2003-07-28 | 2010-06-30 | 株式会社ニコン | Exposure apparatus and device manufacturing method, and a control method for an exposure apparatus |
JP2005050718A (en) | 2003-07-30 | 2005-02-24 | Furukawa Automotive Parts Inc | Terminal connecting tool for flat cable |
JP2005051147A (en) | 2003-07-31 | 2005-02-24 | Nikon Corp | Exposure method and exposure device |
JP2005055811A (en) | 2003-08-07 | 2005-03-03 | Olympus Corp | Optical member, optical apparatus having the optical member incorporated therein, and method of assembling the optical apparatus |
JP2005064210A (en) | 2003-08-12 | 2005-03-10 | Nikon Corp | Method for exposure, and method of manufacturing electronic device and exposure device utilizing the method |
JP4262031B2 (en) | 2003-08-19 | 2009-05-13 | キヤノン株式会社 | Manufacturing method for an exposure apparatus and device |
JP4305095B2 (en) | 2003-08-29 | 2009-07-29 | 株式会社ニコン | Immersion projection exposure apparatus and the immersion optics cleaning method equipped with cleaning mechanism of the optical components |
US7907255B2 (en) | 2003-08-29 | 2011-03-15 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
KR20160042180A (en) | 2003-08-29 | 2016-04-18 | 가부시키가이샤 니콘 | Liquid recovery apparatus, exposure apparatus, exposure method, and device production method |
KR100659257B1 (en) | 2003-08-29 | 2006-12-19 | 에이에스엠엘 네델란즈 비.브이. | Lithographic Apparatus and Device Manufacturing Method |
JP4218475B2 (en) | 2003-09-11 | 2009-02-04 | 株式会社ニコン | Extreme ultraviolet optical system and an exposure apparatus |
JP2005091023A (en) | 2003-09-12 | 2005-04-07 | Minolta Co Ltd | Optical encoder and imaging device equipped therewith |
DE10343333A1 (en) | 2003-09-12 | 2005-04-14 | Carl Zeiss Smt Ag | Illumination system for microlithography projection exposure system, has mirror arrangement with array of individual mirrors that is controlled individually by changing angular distribution of light incident on mirror arrangement |
WO2005026843A3 (en) | 2003-09-12 | 2005-05-26 | Markus Brotsack | Illumination system for a microlithography projection exposure installation |
JP2005093324A (en) | 2003-09-19 | 2005-04-07 | Toshiba Corp | Glass substrate used for image display device, manufacturing method and apparatus therefor |
JP2005093948A (en) | 2003-09-19 | 2005-04-07 | Nikon Corp | Aligner and its adjustment method, exposure method, and device manufacturing method |
WO2005029559A1 (en) | 2003-09-19 | 2005-03-31 | Nikon Corporation | Exposure apparatus and device producing method |
JP2005123586A (en) | 2003-09-25 | 2005-05-12 | Matsushita Electric Ind Co Ltd | Apparatus and method for projection |
JP4374964B2 (en) | 2003-09-26 | 2009-12-02 | 株式会社ニコン | Molding method and molding apparatus of quartz glass |
KR101119723B1 (en) | 2003-09-26 | 2012-03-23 | 칼 짜이스 에스엠티 게엠베하 | Microlithographic projection exposure |
JP2005108925A (en) | 2003-09-29 | 2005-04-21 | Nikon Corp | Lighting optical device, exposure apparatus and exposure method |
JP4385702B2 (en) | 2003-09-29 | 2009-12-16 | 株式会社ニコン | Exposure apparatus and an exposure method |
JP4470433B2 (en) | 2003-10-02 | 2010-06-02 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
JP4513299B2 (en) | 2003-10-02 | 2010-07-28 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
JP2005114882A (en) | 2003-10-06 | 2005-04-28 | Hitachi High-Tech Electronics Engineering Co Ltd | Method for placing substrate on process stage, substrate exposure stage, and substrate exposure apparatus |
WO2005036623A1 (en) | 2003-10-08 | 2005-04-21 | Zao Nikon Co., Ltd. | Substrate transporting apparatus and method, exposure apparatus and method, and device producing method |
KR20060120658A (en) | 2003-10-08 | 2006-11-27 | 가부시키가이샤 니콘 | Substrate carrying apparatus, exposure apparatus, and method for producing device |
JP2005116831A (en) | 2003-10-08 | 2005-04-28 | Nikon Corp | Projection aligner, exposure method, and device manufacturing method |
JPWO2005036619A1 (en) | 2003-10-09 | 2007-11-22 | 株式会社ニコン | Illumination optical apparatus, an exposure apparatus and an exposure method |
JPWO2005036620A1 (en) | 2003-10-10 | 2006-12-28 | 株式会社ニコン | Exposure method and an exposure apparatus, and device manufacturing method |
EP1524558A1 (en) | 2003-10-15 | 2005-04-20 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP2005127460A (en) | 2003-10-27 | 2005-05-19 | Mitsubishi Heavy Ind Ltd | Base isolation and quake removing floor system |
JP4605014B2 (en) | 2003-10-28 | 2011-01-05 | 株式会社ニコン | Exposure apparatus, exposure method, a device manufacturing method |
JP2005140999A (en) | 2003-11-06 | 2005-06-02 | Nikon Corp | Optical system, adjustment method of optical system, exposure device and exposure method |
WO2005048326A1 (en) | 2003-11-13 | 2005-05-26 | Nikon Corporation | Variable slit apparatus, illumination apparatus, exposure apparatus, exposure method, and device producing method |
JPWO2005048325A1 (en) | 2003-11-17 | 2007-11-29 | 株式会社ニコン | Stage drive methods and stage apparatus and exposure apparatus |
JP4976094B2 (en) * | 2003-11-20 | 2012-07-18 | 株式会社ニコン | Illumination optical apparatus, exposure apparatus, exposure method, and a micro device manufacturing method |
JP4470095B2 (en) | 2003-11-20 | 2010-06-02 | 株式会社ニコン | Illumination optical apparatus, an exposure apparatus and an exposure method |
JP4552428B2 (en) | 2003-12-02 | 2010-09-29 | 株式会社ニコン | Illumination optical apparatus, projection exposure apparatus, exposure method and device manufacturing method |
US6970233B2 (en) | 2003-12-03 | 2005-11-29 | Texas Instruments Incorporated | System and method for custom-polarized photolithography illumination |
JP2005175176A (en) | 2003-12-11 | 2005-06-30 | Nikon Corp | Exposure method and method for manufacturing device |
JP2005175177A (en) | 2003-12-11 | 2005-06-30 | Nikon Corp | Optical apparatus and aligner |
DE602004030481D1 (en) | 2003-12-15 | 2011-01-20 | Nippon Kogaku Kk | Stage system, exposure apparatus and exposure method |
JP3102327U (en) | 2003-12-17 | 2004-07-02 | 国統国際股▲ふん▼有限公司 | Leak-proof mechanism of the flexible tube |
JP4954444B2 (en) | 2003-12-26 | 2012-06-13 | 株式会社ニコン | The flow path forming member, an exposure apparatus and device manufacturing method |
US8064044B2 (en) | 2004-01-05 | 2011-11-22 | Nikon Corporation | Exposure apparatus, exposure method, and device producing method |
JP4586367B2 (en) | 2004-01-14 | 2010-11-24 | 株式会社ニコン | Stage apparatus and an exposure apparatus |
US8270077B2 (en) | 2004-01-16 | 2012-09-18 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
JP4474927B2 (en) | 2004-01-20 | 2010-06-09 | 株式会社ニコン | Exposure method and an exposure apparatus, device manufacturing method |
JP2005209705A (en) | 2004-01-20 | 2005-08-04 | Nikon Corp | Exposure device and manufacturing method for device |
WO2005071717A1 (en) | 2004-01-26 | 2005-08-04 | Nikon Corporation | Exposure apparatus and device producing method |
US7580559B2 (en) | 2004-01-29 | 2009-08-25 | Asml Holding N.V. | System and method for calibrating a spatial light modulator |
KR101227211B1 (en) | 2004-02-03 | 2013-01-28 | 가부시키가이샤 니콘 | Exposure apparatus and method of producing device |
WO2005076323A1 (en) | 2004-02-10 | 2005-08-18 | Nikon Corporation | Aligner, device manufacturing method, maintenance method and aligning method |
JP4370992B2 (en) | 2004-02-18 | 2009-11-25 | 株式会社ニコン | Optical element and an exposure apparatus |
WO2005081291A1 (en) | 2004-02-19 | 2005-09-01 | Nikon Corporation | Exposure apparatus and method of producing device |
JP4693088B2 (en) | 2004-02-20 | 2011-06-01 | 株式会社ニコン | Illumination optical apparatus, exposure apparatus, and exposure method |
JP2005234359A (en) | 2004-02-20 | 2005-09-02 | Ricoh Co Ltd | Optical characteristic measuring apparatus of scanning optical system, method of calibrating optical characteristic measuring apparatus of scanning optical system, scanning optical system and image forming apparatus |
JP5076497B2 (en) | 2004-02-20 | 2012-11-21 | 株式会社ニコン | Exposure apparatus, supply method and the method of recovering the liquid, the exposure method, and device manufacturing method |
JP4333404B2 (en) | 2004-02-25 | 2009-09-16 | 株式会社ニコン | Conveying apparatus, conveyance method, an exposure apparatus, exposure method, and device manufacturing method |
DE102004010569A1 (en) | 2004-02-26 | 2005-09-15 | Carl Zeiss Smt Ag | Illumination system for a microlithography projection exposure system |
US6977718B1 (en) | 2004-03-02 | 2005-12-20 | Advanced Micro Devices, Inc. | Lithography method and system with adjustable reflector |
JP2005251549A (en) | 2004-03-04 | 2005-09-15 | Nikon Corp | Microswitch and driving method for microswitch |
JP2005259789A (en) | 2004-03-09 | 2005-09-22 | Nikon Corp | Detection system, aligner and manufacturing method of device |
JP4778685B2 (en) | 2004-03-10 | 2011-09-21 | 株式会社日立ハイテクノロジーズ | The semiconductor device pattern shape evaluation method and apparatus |
JP4497968B2 (en) | 2004-03-18 | 2010-07-07 | キヤノン株式会社 | Illumination device, an exposure apparatus and device manufacturing method |
JP2005268700A (en) | 2004-03-22 | 2005-09-29 | Nikon Corp | Staging device and aligner |
JP2005276932A (en) | 2004-03-23 | 2005-10-06 | Nikon Corp | Aligner and device-manufacturing method |
JP4474979B2 (en) | 2004-04-15 | 2010-06-09 | 株式会社ニコン | Stage apparatus and an exposure apparatus |
WO2005104195A1 (en) | 2004-04-19 | 2005-11-03 | Nikon Corporation | Exposure apparatus and device producing method |
JP2005311020A (en) | 2004-04-21 | 2005-11-04 | Nikon Corp | Exposure method and method of manufacturing device |
JP4776891B2 (en) * | 2004-04-23 | 2011-09-21 | キヤノン株式会社 | An illumination optical system, exposure apparatus, and device manufacturing method |
JP4569157B2 (en) | 2004-04-27 | 2010-10-27 | 株式会社ニコン | Catoptric projection optical system and an exposure apparatus equipped with the reflection type projection optical system |
US7324280B2 (en) | 2004-05-25 | 2008-01-29 | Asml Holding N.V. | Apparatus for providing a pattern of polarization |
JP2005340605A (en) | 2004-05-28 | 2005-12-08 | Nikon Corp | Aligner and its adjusting method |
JP5159027B2 (en) | 2004-06-04 | 2013-03-06 | キヤノン株式会社 | An illumination optical system and an exposure apparatus |
JP2006005197A (en) | 2004-06-18 | 2006-01-05 | Canon Inc | Aligner |
JP4419701B2 (en) | 2004-06-21 | 2010-02-24 | 株式会社ニコン | Molding apparatus of the quartz glass |
JP2006017895A (en) | 2004-06-30 | 2006-01-19 | Integrated Solutions:Kk | Aligner |
JP4444743B2 (en) | 2004-07-07 | 2010-03-31 | キヤノン株式会社 | Exposure apparatus and device manufacturing method |
JP2006024819A (en) | 2004-07-09 | 2006-01-26 | Renesas Technology Corp | Immersion exposure apparatus and manufacturing method for electronic device |
US7283209B2 (en) | 2004-07-09 | 2007-10-16 | Carl Zeiss Smt Ag | Illumination system for microlithography |
WO2006006730A1 (en) | 2004-07-15 | 2006-01-19 | Nikon Corporation | Planar motor equipment, stage equipment, exposure equipment and device manufacturing method |
JP4411158B2 (en) | 2004-07-29 | 2010-02-10 | キヤノン株式会社 | Exposure apparatus |
EP1621930A3 (en) * | 2004-07-29 | 2011-07-06 | Carl Zeiss SMT GmbH | Illumination system for a microlithographic projection exposure apparatus |
JP2006049758A (en) | 2004-08-09 | 2006-02-16 | Nikon Corp | Control method of exposure device, and method and device for exposure using the same |
JP2006054364A (en) | 2004-08-13 | 2006-02-23 | Nikon Corp | Substrate-chucking device and exposure device |
EP1801853A4 (en) | 2004-08-18 | 2008-06-04 | Nippon Kogaku Kk | Exposure apparatus and device manufacturing method |
JP2006073584A (en) | 2004-08-31 | 2006-03-16 | Nikon Corp | Exposure apparatus and exposure method, and device manufacturing method |
US20070252970A1 (en) | 2004-09-01 | 2007-11-01 | Nikon Corporation | Substrate Holder, Stage Apparatus, and Exposure Apparatus |
US7433046B2 (en) | 2004-09-03 | 2008-10-07 | Carl Ziess Meditec, Inc. | Patterned spinning disk based optical phase shifter for spectral domain optical coherence tomography |
JP4772306B2 (en) | 2004-09-06 | 2011-09-14 | 株式会社東芝 | Immersion optical device and a cleaning method |
JP2006080281A (en) | 2004-09-09 | 2006-03-23 | Nikon Corp | Stage device, gas bearing device, exposure device, and device manufacturing method |
KR20070048722A (en) | 2004-09-10 | 2007-05-09 | 가부시키가이샤 니콘 | Stage apparatus and exposure apparatus |
CN100456423C (en) | 2004-09-14 | 2009-01-28 | 尼康股份有限公司 | Correction method and exposure device |
JP2006086141A (en) | 2004-09-14 | 2006-03-30 | Nikon Corp | Projection optical system, aligner, and method of exposure |
CN101015039B (en) | 2004-09-17 | 2010-09-01 | 尼康股份有限公司 | Substrate for exposure, exposure method and device manufacturing method |
JP2006086442A (en) | 2004-09-17 | 2006-03-30 | Nikon Corp | Stage device and exposure device |
WO2006035775A1 (en) | 2004-09-27 | 2006-04-06 | Hamamatsu Photonics K.K. | Spatial light modulator, optical processor, coupling prism and method for using coupling prism |
JP2006100363A (en) | 2004-09-28 | 2006-04-13 | Canon Inc | Aligner, exposure method, and device manufacturing method |
JP4747545B2 (en) | 2004-09-30 | 2011-08-17 | 株式会社ニコン | Stage device and an exposure apparatus and device manufacturing method |
JP4335114B2 (en) | 2004-10-18 | 2009-09-30 | 日本碍子株式会社 | Micromirror device |
GB0423093D0 (en) | 2004-10-18 | 2004-11-17 | Qinetiq Ltd | Optical correlation apparatus and method |
JP2006120985A (en) | 2004-10-25 | 2006-05-11 | Nikon Corp | Illumination optical device, and exposure apparatus and method |
JP2006128192A (en) | 2004-10-26 | 2006-05-18 | Nikon Corp | Holding apparatus, barrel, exposure apparatus, and device manufacturing method |
EP1811546A4 (en) | 2004-11-01 | 2010-01-06 | Nippon Kogaku Kk | Exposure apparatus and device producing method |
JP4517354B2 (en) | 2004-11-08 | 2010-08-04 | 株式会社ニコン | Exposure apparatus and device manufacturing method |
EP1816671A4 (en) | 2004-11-11 | 2010-01-13 | Nippon Kogaku Kk | Exposure method, device manufacturing method, and substrate |
JP2006140366A (en) | 2004-11-15 | 2006-06-01 | Nikon Corp | Projection optical system and exposure device |
JP2005150759A (en) | 2004-12-15 | 2005-06-09 | Nikon Corp | Scanning exposure device |
EP1837896B1 (en) | 2004-12-15 | 2015-09-09 | Nikon Corporation | Substrate holding apparatus, exposure apparatus and device manufacturing method |
JP2006170811A (en) | 2004-12-16 | 2006-06-29 | Nikon Corp | Multilayer film reflecting mirror, euv exposure device, and soft x-ray optical apparatus |
JP2006170899A (en) | 2004-12-17 | 2006-06-29 | Nikon Corp | Photoelectric encoder |
KR20070090876A (en) | 2004-12-24 | 2007-09-06 | 가부시키가이샤 니콘 | Magnetic guiding apparatus, stage apparatus, exposure apparatus and device manufacturing method |
JP2006177865A (en) | 2004-12-24 | 2006-07-06 | Ntn Corp | Magnetic encoder and bearing for wheel equipped with it |
JP4402582B2 (en) | 2004-12-27 | 2010-01-20 | 大日本印刷株式会社 | For large photomask case and the case exchange apparatus |
US20060138349A1 (en) | 2004-12-27 | 2006-06-29 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP4632793B2 (en) | 2005-01-12 | 2011-02-23 | 京セラ株式会社 | Navigation function with a portable terminal |
US8053937B2 (en) | 2005-01-21 | 2011-11-08 | Nikon Corporation | Linear motor, stage apparatus and exposure apparatus |
EP1843204A1 (en) | 2005-01-25 | 2007-10-10 | Nikon Corporation | Exposure device, exposure method, and micro device manufacturing method |
WO2006085524A1 (en) | 2005-02-14 | 2006-08-17 | Nikon Corporation | Exposure equipment |
JP4650619B2 (en) | 2005-03-09 | 2011-03-16 | 株式会社ニコン | The drive unit, an optical unit, an optical device, and an exposure apparatus |
JP2006253572A (en) | 2005-03-14 | 2006-09-21 | Nikon Corp | Stage apparatus, exposure apparatus, and device manufacturing method |
JP2006269462A (en) * | 2005-03-22 | 2006-10-05 | Sony Corp | Exposure apparatus and illuminating apparatus |
JP5125503B2 (en) | 2005-03-23 | 2013-01-23 | コニカミノルタホールディングス株式会社 | A method of manufacturing an organic el element |
JP4561425B2 (en) | 2005-03-24 | 2010-10-13 | ソニー株式会社 | Hologram recording and reproducing apparatus and hologram recording and reproducing method |
JP4858744B2 (en) | 2005-03-24 | 2012-01-18 | 株式会社ニコン | Exposure apparatus |
JP2006278820A (en) | 2005-03-30 | 2006-10-12 | Nikon Corp | Exposure method and exposure device |
JP4546315B2 (en) | 2005-04-07 | 2010-09-15 | 株式会社神戸製鋼所 | Method for manufacturing a micromachined mold |
WO2006118108A1 (en) | 2005-04-27 | 2006-11-09 | Nikon Corporation | Exposure method, exposure apparatus, method for manufacturing device, and film evaluation method |
JP4676815B2 (en) | 2005-05-26 | 2011-04-27 | ルネサスエレクトロニクス株式会社 | Exposure apparatus and an exposure method |
JP2006351586A (en) | 2005-06-13 | 2006-12-28 | Nikon Corp | Lighting device, projection aligner, and method of manufacturing microdevice |
JP4710427B2 (en) | 2005-06-15 | 2011-06-29 | 株式会社ニコン | Optical element holding device, a manufacturing method of the lens barrel and an exposure apparatus and device |
DE102005030839A1 (en) | 2005-07-01 | 2007-01-11 | Carl Zeiss Smt Ag | Projection exposure system having a plurality of projection lenses |
JP5309565B2 (en) | 2005-08-05 | 2013-10-09 | 株式会社ニコン | Stage apparatus, exposure apparatus, methods, exposure methods, and device manufacturing method |
JP2007048819A (en) | 2005-08-08 | 2007-02-22 | Nikon Corp | Surface position detector, aligner and process for fabricating microdevice |
JP2007043980A (en) | 2005-08-11 | 2007-02-22 | Sanei Gen Ffi Inc | Quality improver for japanese/western baked confectionery |
JP2007087306A (en) | 2005-09-26 | 2007-04-05 | Yokohama National Univ | Target image designating and generating system |
JP2007093546A (en) | 2005-09-30 | 2007-04-12 | Nikon Corp | Encoder system, stage device, and exposure apparatus |
JP4640090B2 (en) | 2005-10-04 | 2011-03-02 | ウシオ電機株式会社 | A discharge lamp holder, and a discharge lamp holding mechanism |
JP2007113939A (en) | 2005-10-18 | 2007-05-10 | Nikon Corp | Measuring device and method therefor, stage device, and exposure device and method therefor |
JP2007120334A (en) | 2005-10-25 | 2007-05-17 | Denso Corp | Abnormality diagnostic device of vehicle driving system |
JP2007120333A (en) | 2005-10-25 | 2007-05-17 | Mitsubishi Heavy Ind Ltd | Injection pipe of combustor for rocket and combustor for rocket |
JP4809037B2 (en) | 2005-10-27 | 2011-11-02 | 日本カニゼン株式会社 | Article having a black-plated film and a method of forming a plating film |
WO2007055237A1 (en) | 2005-11-09 | 2007-05-18 | Nikon Corporation | Exposure apparatus, exposure method and device manufacturing method |
EP1953805A4 (en) | 2005-11-10 | 2010-03-31 | Nippon Kogaku Kk | Lighting optical system, exposure system, and exposure method |
KR20080068013A (en) | 2005-11-14 | 2008-07-22 | 가부시키가이샤 니콘 | Liquid recovery member, exposure apparatus, exposure method, and device production method |
JP2007142313A (en) | 2005-11-22 | 2007-06-07 | Nikon Corp | Measuring instrument and adjusting method |
JP2007144864A (en) | 2005-11-29 | 2007-06-14 | Sanyo Electric Co Ltd | Laminated structure and refrigeration unit using the same |
KR20080071552A (en) | 2005-12-06 | 2008-08-04 | 가부시키가이샤 니콘 | Exposure method, exposure apparatus, and method for manufacturing device |
EP2768016B1 (en) | 2005-12-08 | 2017-10-25 | Nikon Corporation | Exposure apparatus and method |
JP4800901B2 (en) | 2005-12-12 | 2011-10-26 | 矢崎総業株式会社 | Voltage detecting device and an insulating interface |
US20070166134A1 (en) | 2005-12-20 | 2007-07-19 | Motoko Suzuki | Substrate transfer method, substrate transfer apparatus and exposure apparatus |
JP2007170938A (en) | 2005-12-21 | 2007-07-05 | Nikon Corp | Encoder |
JP2007207821A (en) | 2006-01-31 | 2007-08-16 | Nikon Corp | Variable slit device, lighting device, aligner, exposure method, and method of manufacturing device |
EP1821149A3 (en) | 2006-02-15 | 2009-08-05 | Canon Kabushiki Kaisha | Exposure apparatus and device manufacturing method |
JP2007227637A (en) | 2006-02-23 | 2007-09-06 | Canon Inc | Immersion aligner |
WO2007097198A1 (en) | 2006-02-27 | 2007-08-30 | Nikon Corporation | Dichroic filter |
JP2007234110A (en) | 2006-02-28 | 2007-09-13 | Toshiba Corp | Optical information recording apparatus and control method of optical information recording apparatus |
JP4929762B2 (en) | 2006-03-03 | 2012-05-09 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
JP2007280623A (en) | 2006-04-03 | 2007-10-25 | Seiko Epson Corp | Heat treatment device, thin-film forming device, and heat treatment method |
JP2007295702A (en) | 2006-04-24 | 2007-11-08 | Toshiba Mach Co Ltd | Linear motor, and stage drive device |
JPWO2007132862A1 (en) | 2006-05-16 | 2009-09-24 | 株式会社ニコン | A projection optical system, an exposure method, an exposure apparatus, and device manufacturing method |
JP4893112B2 (en) | 2006-06-03 | 2012-03-07 | 株式会社ニコン | High-frequency circuit component |
JP4873138B2 (en) | 2006-06-21 | 2012-02-08 | 富士ゼロックス株式会社 | Information processing apparatus and program |
JP2008058580A (en) | 2006-08-31 | 2008-03-13 | Canon Inc | Image forming apparatus, monitoring device, control method and program |
JP2008064924A (en) | 2006-09-06 | 2008-03-21 | Seiko Epson Corp | Fixing device and image forming apparatus |
WO2008041575A1 (en) | 2006-09-29 | 2008-04-10 | Nikon Corporation | Stage device and exposure device |
JP2007051300A (en) | 2006-10-10 | 2007-03-01 | Teijin Chem Ltd | Flame-retardant resin composition |
JP4924879B2 (en) | 2006-11-14 | 2012-04-25 | 株式会社ニコン | Encoder |
WO2008061681A3 (en) | 2006-11-21 | 2008-07-17 | Markus Deguenther | Illumination lens system for projection microlithography, and measuring and monitoring method for such an illumination lens system |
WO2008065977A1 (en) | 2006-11-27 | 2008-06-05 | Nikon Corporation | Exposure method, pattern forming method, exposure device, and device manufacturing method |
JP2007274881A (en) | 2006-12-01 | 2007-10-18 | Nikon Corp | Moving object apparatus, fine-motion object, and exposure apparatus |
JP4910679B2 (en) | 2006-12-21 | 2012-04-04 | 株式会社ニコン | Variable capacitor, variable capacitor device, a high frequency circuit filter and a high frequency circuit |
DE102007027985A1 (en) | 2006-12-21 | 2008-06-26 | Carl Zeiss Smt Ag | An optical system, in particular lighting means or projection objective of a microlithographic projection exposure apparatus |
WO2008078668A1 (en) | 2006-12-26 | 2008-07-03 | Miura Co., Ltd. | Method of feeding makeup water for boiler water supply |
EP2125745B1 (en) | 2006-12-27 | 2017-02-22 | Sanofi | Cycloalkylamine substituted isoquinolone derivatives |
KR20150036734A (en) | 2006-12-27 | 2015-04-07 | 가부시키가이샤 니콘 | Stage apparatus, exposure apparatus and device manufacturing method |
WO2008090975A1 (en) | 2007-01-26 | 2008-07-31 | Nikon Corporation | Support structure and exposure apparatus |
KR101497886B1 (en) | 2007-05-09 | 2015-03-04 | 가부시키가이샤 니콘 | Photomask substrate, photomask substrate forming member, photomask substrate manufacturing method, photomask, and exposure method using photomask |
WO2008149537A1 (en) | 2007-05-31 | 2008-12-11 | Panasonic Corporation | Image capturing device, additional information providing server, and additional information filtering system |
JP5194650B2 (en) | 2007-08-31 | 2013-05-08 | 株式会社ニコン | Electronic camera |
JP4499774B2 (en) | 2007-10-24 | 2010-07-07 | 株式会社半導体エネルギー研究所 | Insulated gate semiconductor device |
WO2009153925A1 (en) | 2008-06-17 | 2009-12-23 | 株式会社ニコン | Nano-imprint method and apparatus |
WO2009157154A1 (en) | 2008-06-26 | 2009-12-30 | 株式会社ニコン | Method and apparatus for manufacturing display element |
KR20110028473A (en) | 2008-06-30 | 2011-03-18 | 가부시키가이샤 니콘 | Method and apparatus for manufacturing display element, method and apparatus for manufacturing thin film transistor, and circuit forming apparatus |
US20110037962A1 (en) | 2009-08-17 | 2011-02-17 | Nikon Corporation | Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method |
US20110205519A1 (en) | 2010-02-25 | 2011-08-25 | Nikon Corporation | Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method |
Patent Citations (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6392800B1 (en) * | ||||
US5627626A (en) * | 1902-01-20 | 1997-05-06 | Kabushiki Kaisha Toshiba | Projectin exposure apparatus |
US3892470A (en) * | 1974-02-01 | 1975-07-01 | Hughes Aircraft Co | Optical device for transforming monochromatic linearly polarized light to ring polarized light |
US4755027A (en) * | 1985-07-02 | 1988-07-05 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | Method and device for polarizing light radiation |
US4744615A (en) * | 1986-01-29 | 1988-05-17 | International Business Machines Corporation | Laser beam homogenizer |
US6233041B1 (en) * | 1990-08-21 | 2001-05-15 | Nikon Corporation | Exposure method utilizing diffracted light having different orders of diffraction |
US6211944B1 (en) * | 1990-08-21 | 2001-04-03 | Nikon Corporation | Projection exposure method and apparatus |
US6710855B2 (en) * | 1990-11-15 | 2004-03-23 | Nikon Corporation | Projection exposure apparatus and method |
US20030043356A1 (en) * | 1990-11-15 | 2003-03-06 | Nikon Corporation | Projection exposure apparatus and method |
US5541026A (en) * | 1991-06-13 | 1996-07-30 | Nikon Corporation | Exposure apparatus and photo mask |
US5707501A (en) * | 1991-10-15 | 1998-01-13 | Kabushiki Kaisha Toshiba | Filter manufacturing apparatus |
US5621498A (en) * | 1991-10-15 | 1997-04-15 | Kabushiki Kaisha Toshiba | Projection exposure apparatus |
US5312513A (en) * | 1992-04-03 | 1994-05-17 | Texas Instruments Incorporated | Methods of forming multiple phase light modulators |
US6404482B1 (en) * | 1992-10-01 | 2002-06-11 | Nikon Corporation | Projection exposure method and apparatus |
US6229647B1 (en) * | 1992-12-14 | 2001-05-08 | Canon Kabushiki Kaisha | Reflection and refraction optical system and projection exposure apparatus using the same |
US5739898A (en) * | 1993-02-03 | 1998-04-14 | Nikon Corporation | Exposure method and apparatus |
US5933219A (en) * | 1994-04-22 | 1999-08-03 | Canon Kabushiki Kaisha | Projection exposure apparatus and device manufacturing method capable of controlling polarization direction |
US5631721A (en) * | 1995-05-24 | 1997-05-20 | Svg Lithography Systems, Inc. | Hybrid illumination system for use in photolithography |
US6392800B2 (en) * | 1995-09-23 | 2002-05-21 | Carl-Zeiss-Stiftung | Radial polarization-rotating optical arrangement and microlithographic projection exposure system incorporating said arrangement |
US6191880B1 (en) * | 1995-09-23 | 2001-02-20 | Carl-Zeiss-Stiftung | Radial polarization-rotating optical arrangement and microlithographic projection exposure system incorporating said arrangement |
US6549269B1 (en) * | 1996-11-28 | 2003-04-15 | Nikon Corporation | Exposure apparatus and an exposure method |
US6341007B1 (en) * | 1996-11-28 | 2002-01-22 | Nikon Corporation | Exposure apparatus and method |
US6590634B1 (en) * | 1996-11-28 | 2003-07-08 | Nikon Corporation | Exposure apparatus and method |
US6400441B1 (en) * | 1996-11-28 | 2002-06-04 | Nikon Corporation | Projection exposure apparatus and method |
US6259512B1 (en) * | 1997-08-04 | 2001-07-10 | Canon Kabushiki Kaisha | Illumination system and exposure apparatus having the same |
US6208407B1 (en) * | 1997-12-22 | 2001-03-27 | Asm Lithography B.V. | Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement |
US6252712B1 (en) * | 1998-02-20 | 2001-06-26 | Carl-Zeiss-Stiftung | Optical system with polarization compensator |
US6597430B1 (en) * | 1998-05-18 | 2003-07-22 | Nikon Corporation | Exposure method, illuminating device, and exposure system |
US6535273B1 (en) * | 1998-07-02 | 2003-03-18 | Carl-Zeiss-Stiftung | Microlithographic illumination system with depolarizer |
US6031658A (en) * | 1998-09-25 | 2000-02-29 | University Of Central Florida | Digital control polarization based optical scanner |
US20020085176A1 (en) * | 1999-01-06 | 2002-07-04 | Nikon Corporation | Projection optical system, production method thereof, and projection exposure apparatus using it |
US6583931B2 (en) * | 1999-01-06 | 2003-06-24 | Nikon Corporation | Projection optical system, production method thereof, and projection exposure apparatus using it |
US6361909B1 (en) * | 1999-12-06 | 2002-03-26 | Industrial Technology Research Institute | Illumination aperture filter design using superposition |
US6674514B2 (en) * | 2000-03-16 | 2004-01-06 | Canon Kabushiki Kaisha | Illumination optical system in exposure apparatus |
US20040120044A1 (en) * | 2000-04-25 | 2004-06-24 | Asml Holding N.V. | Optical reduction system with control of illumination polarization |
US7239446B2 (en) * | 2000-04-25 | 2007-07-03 | Asml Holding N.V. | Optical reduction system with control of illumination polarization |
US20020027719A1 (en) * | 2000-04-25 | 2002-03-07 | Silicon Valley Group, Inc. | Optical reduction system with control of illumination polarization |
US6680798B2 (en) * | 2000-04-25 | 2004-01-20 | Asml Holding N.V. | Optical reduction system with control of illumination polarization |
US6538247B2 (en) * | 2000-08-24 | 2003-03-25 | Pentax Corporation | Method of detecting arrangement of beam spots |
US20020024008A1 (en) * | 2000-08-24 | 2002-02-28 | Asahi Kogaku Kogyo Kabushiki Kaisha | Method of detecting arrangement of beam spots |
US6870668B2 (en) * | 2000-10-10 | 2005-03-22 | Nikon Corporation | Method for evaluating image formation performance |
US20020085276A1 (en) * | 2000-11-29 | 2002-07-04 | Nikon Corporation | Illumination optical apparatus and exposure apparatus provided with illumination optical apparatus |
US6885493B2 (en) * | 2001-02-05 | 2005-04-26 | Micronic Lasersystems Ab | Method and a device for reducing hysteresis or imprinting in a movable micro-element |
US6856379B2 (en) * | 2001-05-22 | 2005-02-15 | Carl Zeiss Smt Ag | Polarizer and microlithography projection system with a polarizer |
US20030038225A1 (en) * | 2001-06-01 | 2003-02-27 | Mulder Heine Melle | Lithographic apparatus, device manufacturing method, device manufactured thereby, control system, computer program, and computer program product |
US20030007158A1 (en) * | 2001-07-06 | 2003-01-09 | Hill Henry A. | Method and apparatus to reduce effects of sheared wavefronts on interferometric phase measurements |
US20030053036A1 (en) * | 2001-07-10 | 2003-03-20 | Nikon Corporation | Production method of projection optical system |
US6900915B2 (en) * | 2001-11-14 | 2005-05-31 | Ricoh Company, Ltd. | Light deflecting method and apparatus efficiently using a floating mirror |
US20050094268A1 (en) * | 2002-03-14 | 2005-05-05 | Carl Zeiss Smt Ag | Optical system with birefringent optical elements |
US6999157B2 (en) * | 2002-04-23 | 2006-02-14 | Canon Kabushiki Kaisha | Illumination optical system and method, and exposure apparatus |
US20040004771A1 (en) * | 2002-04-26 | 2004-01-08 | Nikon Corporation | Projection optical system, exposure system provided with the projection optical system, and exposure method using the projection optical system |
US20050095749A1 (en) * | 2002-04-29 | 2005-05-05 | Mathias Krellmann | Device for protecting a chip and method for operating a chip |
US6913373B2 (en) * | 2002-05-27 | 2005-07-05 | Nikon Corporation | Optical illumination device, exposure device and exposure method |
US20040012764A1 (en) * | 2002-05-31 | 2004-01-22 | Mulder Heine Melle | Kit of parts for assembling an optical element, method of assembling an optical element, optical element, lithographic apparatus, and device manufacturing method |
US7038763B2 (en) * | 2002-05-31 | 2006-05-02 | Asml Netherlands B.V. | Kit of parts for assembling an optical element, method of assembling an optical element, optical element, lithographic apparatus, and device manufacturing method |
US20040104654A1 (en) * | 2002-08-31 | 2004-06-03 | Samsung Electronics Co., Ltd. | Cabinet for recessed refrigerators |
US20040057036A1 (en) * | 2002-09-19 | 2004-03-25 | Miyoko Kawashima | Exposure method |
US20060055834A1 (en) * | 2002-12-03 | 2006-03-16 | Nikon Corporation | Illumination optical system, exposure apparatus, and exposure method |
US20040119954A1 (en) * | 2002-12-10 | 2004-06-24 | Miyoko Kawashima | Exposure apparatus and method |
US6891655B2 (en) * | 2003-01-02 | 2005-05-10 | Micronic Laser Systems Ab | High energy, low energy density, radiation-resistant optics used with micro-electromechanical devices |
US20080024747A1 (en) * | 2003-04-09 | 2008-01-31 | Nikon Corporation | Exposure method and apparatus, and method for fabricating device |
US20090185156A1 (en) * | 2003-04-09 | 2009-07-23 | Nikon Corporation | Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas |
US20060072095A1 (en) * | 2003-04-09 | 2006-04-06 | Nikon Corporation | Exposure method and apparatus, and method for fabricating device |
US20080068572A1 (en) * | 2003-04-09 | 2008-03-20 | Nikon Corporation | Exposure method and apparatus, and method for fabricating device |
US6842223B2 (en) * | 2003-04-11 | 2005-01-11 | Nikon Precision Inc. | Enhanced illuminator for use in photolithographic systems |
US20060146384A1 (en) * | 2003-05-13 | 2006-07-06 | Carl Zeiss Smt Ag | Optical beam transformation system and illumination system comprising an optical beam transformation system |
US20060012769A1 (en) * | 2003-09-12 | 2006-01-19 | Canon Kabushiki Kaisha | Illumination optical system and exposure apparatus using the same |
US20050146704A1 (en) * | 2003-09-26 | 2005-07-07 | Carl Zeiss Smt Ag | Microlithographic exposure method as well as a projection exposure system for carrying out the method |
US20090122292A1 (en) * | 2003-10-28 | 2009-05-14 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US20060158624A1 (en) * | 2003-11-20 | 2006-07-20 | Nikon Corporation | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method |
US20090147233A1 (en) * | 2003-11-20 | 2009-06-11 | Nikon Corporation | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US20090147235A1 (en) * | 2003-11-20 | 2009-06-11 | Nikon Corporation | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US20090002675A1 (en) * | 2004-01-16 | 2009-01-01 | Carl Zeiss Smt Ag | Polarization-modulating optical element |
US20070019179A1 (en) * | 2004-01-16 | 2007-01-25 | Damian Fiolka | Polarization-modulating optical element |
US20070081114A1 (en) * | 2004-01-16 | 2007-04-12 | Damian Fiolka | Polarization-modulating optical element |
US20100142051A1 (en) * | 2004-01-27 | 2010-06-10 | Nikon Corporation | Optical system, exposure system, and exposure method |
US20100141926A1 (en) * | 2004-01-27 | 2010-06-10 | Nikon Corporation | Optical system,exposure system, and exposure method |
US20100141921A1 (en) * | 2004-01-27 | 2010-06-10 | Nikon Corporation | Optical system, exposure system, and exposure method |
US20090073414A1 (en) * | 2004-02-06 | 2009-03-19 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US20090073441A1 (en) * | 2004-02-06 | 2009-03-19 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US20080030707A1 (en) * | 2004-08-17 | 2008-02-07 | Nikon Corporation | Lighting Optical Device, Regulation Method for Lighting Optical Device, Exposure System, and Exposure Method |
US20060077370A1 (en) * | 2004-10-12 | 2006-04-13 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method |
US7245353B2 (en) * | 2004-10-12 | 2007-07-17 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method |
US7245355B2 (en) * | 2004-10-12 | 2007-07-17 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method |
US20060092398A1 (en) * | 2004-11-02 | 2006-05-04 | Asml Holding N.V. | Method and apparatus for variable polarization control in a lithography system |
US20060132748A1 (en) * | 2004-12-20 | 2006-06-22 | Kazuya Fukuhara | Exposure system, exposure method and method for manufacturing a semiconductor device |
US7345740B2 (en) * | 2004-12-28 | 2008-03-18 | Asml Netherlands B.V. | Polarized radiation in lithographic apparatus and device manufacturing method |
US20060139611A1 (en) * | 2004-12-28 | 2006-06-29 | Asml Netherlands B.V. | Polarized radiation in lithographic apparatus and device manufacturing method |
US20070146676A1 (en) * | 2005-01-21 | 2007-06-28 | Nikon Corporation | Method of adjusting lighting optical device, lighting optical device, exposure system, and exposure method |
US20060164711A1 (en) * | 2005-01-24 | 2006-07-27 | Asml Holding N.V. | System and method utilizing an electrooptic modulator |
US20070008511A1 (en) * | 2005-07-11 | 2007-01-11 | Asml Netherlands B.V. | Polarized radiation in lithographic apparatus and device manufacturing method |
US20070058151A1 (en) * | 2005-09-13 | 2007-03-15 | Asml Netherlands B.V. | Optical element for use in lithography apparatus and method of conditioning radiation beam |
US20080030706A1 (en) * | 2006-08-01 | 2008-02-07 | Fujitsu Limited | Illumination optical system, exposure method and designing method |
US20090073411A1 (en) * | 2007-09-14 | 2009-03-19 | Nikon Corporation | Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method |
US20090091730A1 (en) * | 2007-10-03 | 2009-04-09 | Nikon Corporation | Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method |
US20090128886A1 (en) * | 2007-10-12 | 2009-05-21 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
US20090097007A1 (en) * | 2007-10-16 | 2009-04-16 | Hirohisa Tanaka | Illumination optical system, exposure apparatus, and device manufacturing method |
US20090109417A1 (en) * | 2007-10-24 | 2009-04-30 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US20090185154A1 (en) * | 2007-10-31 | 2009-07-23 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure appartus, exposure method, and device manufacturing method |
US20090116093A1 (en) * | 2007-11-06 | 2009-05-07 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9146474B2 (en) | 2003-04-09 | 2015-09-29 | Nikon Corporation | Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas |
US8675177B2 (en) | 2003-04-09 | 2014-03-18 | Nikon Corporation | Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas |
US9885959B2 (en) | 2003-04-09 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator |
US9164393B2 (en) | 2003-04-09 | 2015-10-20 | Nikon Corporation | Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas |
US9678437B2 (en) | 2003-04-09 | 2017-06-13 | Nikon Corporation | Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction |
US9423697B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9140992B2 (en) | 2003-10-28 | 2015-09-22 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US20090122292A1 (en) * | 2003-10-28 | 2009-05-14 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9146476B2 (en) | 2003-10-28 | 2015-09-29 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9760014B2 (en) | 2003-10-28 | 2017-09-12 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9423698B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9244359B2 (en) | 2003-10-28 | 2016-01-26 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9140993B2 (en) | 2003-10-28 | 2015-09-22 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9164209B2 (en) | 2003-11-20 | 2015-10-20 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction |
US20090147235A1 (en) * | 2003-11-20 | 2009-06-11 | Nikon Corporation | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US9885872B2 (en) | 2003-11-20 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US9581911B2 (en) | 2004-01-16 | 2017-02-28 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
US8289623B2 (en) | 2004-01-16 | 2012-10-16 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
US8320043B2 (en) | 2004-01-16 | 2012-11-27 | Carl Zeiss Smt Gmbh | Illumination apparatus for microlithographyprojection system including polarization-modulating optical element |
US9316772B2 (en) | 2004-01-16 | 2016-04-19 | Carl Zeiss Smt Gmbh | Producing polarization-modulating optical element for microlithography system |
US8279524B2 (en) | 2004-01-16 | 2012-10-02 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
US20060291057A1 (en) * | 2004-01-16 | 2006-12-28 | Damian Fiolka | Polarization-modulating optical element |
US8270077B2 (en) | 2004-01-16 | 2012-09-18 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
US20080316459A1 (en) * | 2004-01-16 | 2008-12-25 | Carl Zeiss Smt Ag | Polarization-modulating optical element |
US8711479B2 (en) | 2004-01-16 | 2014-04-29 | Carl Zeiss Smt Gmbh | Illumination apparatus for microlithography projection system including polarization-modulating optical element |
US8861084B2 (en) | 2004-01-16 | 2014-10-14 | Carl Zeiss Smt Ag | Polarization-modulating optical element |
US20080316598A1 (en) * | 2004-01-16 | 2008-12-25 | Carl Zeiss Smt Ag | Polarization-modulating optical element |
US20070081114A1 (en) * | 2004-01-16 | 2007-04-12 | Damian Fiolka | Polarization-modulating optical element |
US8259393B2 (en) | 2004-01-16 | 2012-09-04 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
US8482717B2 (en) | 2004-01-16 | 2013-07-09 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
US20100177293A1 (en) * | 2004-01-16 | 2010-07-15 | Carl Zeiss Smt Ag | Polarization-modulating optical element |
US8436983B2 (en) | 2004-01-27 | 2013-05-07 | Nikon Corporation | Optical system, exposure system, and exposure method |
US8351021B2 (en) | 2004-01-27 | 2013-01-08 | Nikon Corporation | Optical system, exposure system, and exposure method |
US20100142051A1 (en) * | 2004-01-27 | 2010-06-10 | Nikon Corporation | Optical system, exposure system, and exposure method |
US8339578B2 (en) | 2004-01-27 | 2012-12-25 | Nikon Corporation | Optical system, exposure system, and exposure method |
US20100141926A1 (en) * | 2004-01-27 | 2010-06-10 | Nikon Corporation | Optical system,exposure system, and exposure method |
US9140990B2 (en) | 2004-02-06 | 2015-09-22 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US20090073414A1 (en) * | 2004-02-06 | 2009-03-19 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US9423694B2 (en) | 2004-02-06 | 2016-08-23 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US20090073441A1 (en) * | 2004-02-06 | 2009-03-19 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US9429848B2 (en) | 2004-02-06 | 2016-08-30 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US7916391B2 (en) | 2004-05-25 | 2011-03-29 | Carl Zeiss Smt Gmbh | Apparatus for providing a pattern of polarization |
US20110037962A1 (en) * | 2009-08-17 | 2011-02-17 | Nikon Corporation | Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method |
US20110205519A1 (en) * | 2010-02-25 | 2011-08-25 | Nikon Corporation | Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method |
Also Published As
Publication number | Publication date | Type |
---|---|---|
EP1693885B1 (en) | 2016-05-04 | grant |
JP2011233911A (en) | 2011-11-17 | application |
KR101220667B1 (en) | 2013-01-21 | grant |
CN101685267A (en) | 2010-03-31 | application |
JP2014003306A (en) | 2014-01-09 | application |
KR20150103759A (en) | 2015-09-11 | application |
US20110299055A1 (en) | 2011-12-08 | application |
EP2251896A1 (en) | 2010-11-17 | application |
KR101220616B1 (en) | 2013-01-21 | grant |
KR101220636B1 (en) | 2013-01-18 | grant |
EP3118890A2 (en) | 2017-01-18 | application |
JPWO2005050718A1 (en) | 2007-12-06 | application |
CN101685265B (en) | 2015-10-14 | grant |
KR101578310B1 (en) | 2015-12-16 | grant |
CN101685266A (en) | 2010-03-31 | application |
JP6160666B2 (en) | 2017-07-12 | grant |
US20170351100A1 (en) | 2017-12-07 | application |
US20150338663A1 (en) | 2015-11-26 | application |
US20110273698A1 (en) | 2011-11-10 | application |
CN101685264A (en) | 2010-03-31 | application |
US9164209B2 (en) | 2015-10-20 | grant |
JP5967132B2 (en) | 2016-08-10 | grant |
KR20100029136A (en) | 2010-03-15 | application |
JP2014195094A (en) | 2014-10-09 | application |
US20090323041A1 (en) | 2009-12-31 | application |
JP2010226117A (en) | 2010-10-07 | application |
CN101685265A (en) | 2010-03-31 | application |
JP2014003305A (en) | 2014-01-09 | application |
CN1883029A (en) | 2006-12-20 | application |
EP1926129A1 (en) | 2008-05-28 | application |
EP2117034B1 (en) | 2016-05-04 | grant |
CN101685266B (en) | 2014-12-10 | grant |
US9885872B2 (en) | 2018-02-06 | grant |
KR101578226B1 (en) | 2015-12-16 | grant |
US20110273693A1 (en) | 2011-11-10 | application |
EP2251896B1 (en) | 2015-09-23 | grant |
KR20100029254A (en) | 2010-03-16 | application |
CN100555566C (en) | 2009-10-28 | grant |
JP5983689B2 (en) | 2016-09-06 | grant |
KR101737682B1 (en) | 2017-05-18 | grant |
KR20140029543A (en) | 2014-03-10 | application |
CN101369054A (en) | 2009-02-18 | application |
JP5696746B2 (en) | 2015-04-08 | grant |
US20090147235A1 (en) | 2009-06-11 | application |
JP2015008304A (en) | 2015-01-15 | application |
JP5731591B2 (en) | 2015-06-10 | grant |
WO2005050718A1 (en) | 2005-06-02 | application |
US20130242394A1 (en) | 2013-09-19 | application |
EP1926129B1 (en) | 2012-01-04 | grant |
KR20170120724A (en) | 2017-10-31 | application |
KR20100005131A (en) | 2010-01-13 | application |
EP3118890A3 (en) | 2017-02-15 | application |
JP2017227906A (en) | 2017-12-28 | application |
JP2016026306A (en) | 2016-02-12 | application |
CN101685264B (en) | 2014-03-12 | grant |
EP1693885A1 (en) | 2006-08-23 | application |
KR20060128892A (en) | 2006-12-14 | application |
CN101369056B (en) | 2011-01-12 | grant |
US20060158624A1 (en) | 2006-07-20 | application |
CN101685267B (en) | 2015-01-14 | grant |
EP1693885A4 (en) | 2007-06-27 | application |
US20110273692A1 (en) | 2011-11-10 | application |
EP2117034A1 (en) | 2009-11-11 | application |
CN101369054B (en) | 2011-05-18 | grant |
CN101685204A (en) | 2010-03-31 | application |
US20090147233A1 (en) | 2009-06-11 | application |
CN101369056A (en) | 2009-02-18 | application |
JP4976015B2 (en) | 2012-07-18 | grant |
JP2016212434A (en) | 2016-12-15 | application |
KR20150015011A (en) | 2015-02-09 | application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1681710A1 (en) | Lighting optical device and projection aligner | |
US20070146676A1 (en) | Method of adjusting lighting optical device, lighting optical device, exposure system, and exposure method | |
US20090097007A1 (en) | Illumination optical system, exposure apparatus, and device manufacturing method | |
US20010019404A1 (en) | Projection exposure system for microlithography and method for generating microlithographic images | |
US20090073411A1 (en) | Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method | |
US20090115989A1 (en) | Lighting optical system, exposure system, and exposure method | |
US7423731B2 (en) | Illumination optical system, exposure apparatus, and exposure method with polarized switching device | |
US20090091730A1 (en) | Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method | |
US20070132977A1 (en) | Optical integrator, illumination optical device, exposure device, and exposure method | |
US20110037962A1 (en) | Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method | |
US20090185154A1 (en) | Optical unit, illumination optical apparatus, exposure appartus, exposure method, and device manufacturing method | |
US20060146384A1 (en) | Optical beam transformation system and illumination system comprising an optical beam transformation system | |
US20090109417A1 (en) | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method | |
US20070258077A1 (en) | Illumination optical apparatus, exposure apparatus, and device manufacturing method | |
JP2006054328A (en) | Illumination optic device, exposure device and manufacturing method of micro device | |
JP2003297727A (en) | Illumination optical device, exposure apparatus, and method of exposure | |
US20100142051A1 (en) | Optical system, exposure system, and exposure method | |
US20090040490A1 (en) | Illuminating optical apparatus, exposure apparatus and device manufacturing method | |
US20060171138A1 (en) | Illuminating optical system, exposure system and exposure method | |
JP2001135560A (en) | Illuminating optical device, exposure, and method of manufacturing micro-device | |
JP2009111223A (en) | Spatial light modulation unit, lighting optical system, exposure apparatus, and manufacturing method for device | |
US20090135396A1 (en) | Illuminating optical apparatus, exposure apparatus and device manufacturing method | |
JP2004247527A (en) | Illumination optical apparatus, aligner, and exposure method | |
US20110205519A1 (en) | Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method | |
US20060170901A1 (en) | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |