JP4210871B2 - Exposure apparatus - Google Patents

Exposure apparatus Download PDF

Info

Publication number
JP4210871B2
JP4210871B2 JP29977597A JP29977597A JP4210871B2 JP 4210871 B2 JP4210871 B2 JP 4210871B2 JP 29977597 A JP29977597 A JP 29977597A JP 29977597 A JP29977597 A JP 29977597A JP 4210871 B2 JP4210871 B2 JP 4210871B2
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
stage
exposure
measurement
wafer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29977597A
Other languages
Japanese (ja)
Other versions
JPH11135400A (en )
Inventor
哲夫 谷口
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/70216Systems for imaging mask onto workpiece
    • G03F7/70241Optical aspects of refractive systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/70216Systems for imaging mask onto workpiece
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/70483Information management, control, testing, and wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control, in all parts of the microlithographic apparatus, e.g. pulse length control, light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/70483Information management, control, testing, and wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/70691Handling of masks or wafers
    • G03F7/70716Stages

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
本発明は、例えば半導体素子、液晶表示素子、又は薄膜磁気ヘッド等を製造するためのリソグラフィ工程中で、マスクパターンを感光性の基板上に転写するために使用される露光装置に関し、特に露光ビームの状態、又は結像特性等を計測するための計測装置を備えた露光装置に使用して好適なものである。 The present invention is, for example, a semiconductor device, a liquid crystal display device, or during the lithographic process for manufacturing the thin-film magnetic heads, etc., it relates to an exposure apparatus used to transfer a mask pattern onto a photosensitive substrate, in particular exposure beam state, or is suitably used in an exposure apparatus having a measuring device for measuring the imaging characteristics.
【0002】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION
半導体素子等を製造する際に、所定の露光光のもとでマスクとしてのレチクルのパターンを投影光学系を介してレジストの塗布されたウエハ(又はガラスプレート等)上に転写する工程で、従来は一括露光型の投影露光装置(ステッパー)が多用されていた。 When manufacturing a semiconductor element or the like, in the step of transferring onto a predetermined original pattern of a reticle as a mask through a projection optical system in a resist coated wafer of the exposure light (or a glass plate or the like), conventional the collective exposure type projection exposure apparatus (stepper) was often used. 最近では、投影光学系を大型化することなく大面積のレチクルのパターンを高精度に転写するために、レチクル及びウエハを投影光学系に対して同期走査して露光を行うステップ・アンド・スキャン方式のような走査露光型の投影露光装置(走査型露光装置)も注目されている。 Recently, in order to transfer the pattern of a large area reticle without increasing the size of the projection optical system with high accuracy, a step-and-scan method to perform synchronous scanning to expose the reticle and the wafer with respect to the projection optical system scanning exposure type projection exposure apparatus such as (scanning exposure apparatus) has also been noted.
【0003】 [0003]
これらの露光装置では、常に適正な露光量で、且つ高い結像特性を維持した状態で露光を行う必要があるため、レチクルの位置決めを行うレチクルステージ、又はウエハの位置決めを行うウエハステージには、露光光の照度等の状態、及び投影倍率等の結像特性を計測するための計測装置が備えられている。 In these exposure devices, always proper exposure amount, and it is necessary to perform exposure with high while maintaining the imaging characteristics, the wafer stage for the reticle stage positioning the reticle, or the positioning of the wafer, state of illumination or the like of the exposure light, and the measuring device for measuring the imaging characteristics of the projection magnification, etc. are provided. 例えばウエハステージに備えられている計測装置としては、投影光学系に対する露光光の入射エネルギーを計測するための照射量モニタ、及び投影像の位置やコントラスト等を計測するための空間像検出系等がある。 For example a measuring device provided in the wafer stage, the spatial image detection system or the like for measuring the position and contrast, etc. of the irradiation monitor, and projection image for measuring the incident energy of the exposure light to the projection optical system is there. 一方、レチクルステージ上に備えられている計測装置としては、例えば投影光学系の結像特性計測用に用いられる指標マークが形成された基準板がある。 On the other hand, the measuring device is provided on the reticle stage, for example, a reference plate index mark used for imaging characteristic measured is formed of a projection optical system.
【0004】 [0004]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
上記の如き従来の露光装置においては、レチクルステージ、又はウエハステージに設けられた計測装置を用いて、露光量の適正化が図られると共に、高い結像特性が維持されていた。 In the above-described conventional exposure apparatus uses a measurement device provided in the reticle stage, or wafer stage, along with the exposure amount of optimization can be achieved, high imaging characteristics were maintained. これに対して、最近の露光装置には、半導体素子等を製造する際の露光工程のスループット(生産性)を高めることも要求されている。 In contrast, the recent exposure apparatus, it is also required to increase the throughput of the exposure step in manufacturing a semiconductor device or the like (productivity). スループットを向上させるための方法としては、単位時間当たりの露光エネルギーを増加させる方法の他に、ステージの駆動速度を大きくして、一括露光型ではステッピング時間を短縮し、走査露光型ではステッピング時間及び走査露光時間を短縮する方法がある。 As a method for improving throughput, in addition to the method for increasing the exposure energy per unit time, by increasing the driving speed of the stage, to reduce the stepping time in one-shot exposure type, stepping time and the scanning exposure type there is a method to shorten the scanning exposure time.
【0005】 [0005]
このようにステージの駆動速度を向上させるには、ステージ系が同じ大きさである場合にはより大きい出力の駆動モータを使用すればよく、逆に従来と同じ出力の駆動モータで駆動速度を向上させるには、ステージ系を小型化、軽量化する必要がある。 For this to increase the driving speed of the stage, improving the driving speed by the driving motor of the same output as a conventional It suffices to use the drive motor of greater output, conversely when the stage system is the same size to miniaturized stage system, it is necessary to weight. ところが、前者のようにより大きい出力の駆動モータを使用すると、その駆動モータから発生する熱量が増大する。 However, the use of a drive motor of a larger output as the former, the amount of heat generated from the driving motor is increased. このように増大する熱量は、ステージ系の微妙な熱変形を生じて、露光装置で要求されている高い位置決め精度が得られなくなる恐れがある。 Heat to increase in this manner is caused subtle thermal deformation of the stage system, high positioning accuracy which is required for the exposure apparatus may not be obtained. そこで、位置決め精度の劣化を防止して、駆動速度を向上するには、後者のようにステージ系をできるだけ小型化、軽量化することが望まれる。 Therefore, to prevent deterioration of the positioning accuracy, to improve the driving speed is as small as possible a stage system as in the latter case, be reduced in weight it is desired.
【0006】 [0006]
特に、走査露光型の露光装置では、駆動速度の向上によって走査露光時間も短縮されてスループットが大きく改善されると共に、ステージ系の小型化によってレチクルとウエハとの同期精度も向上して、結像性能や重ね合わせ精度も向上するという大きな利点がある。 In particular, in a scanning exposure type exposure apparatus, scanning exposure time by improving the driving speed is reduced with the throughput is greatly improved, also improved synchronization accuracy between the reticle and the wafer by the miniaturization of the stage system, imaging there is a great advantage that improves performance and overlay accuracy. ところが、従来のようにレチクルステージ、又はウエハステージに各種計測装置が備えられている場合には、ステージを小型化するのは困難である。 However, when the reticle stage as in the prior art, or the wafer stage various measurement devices are provided, it is difficult to reduce the size of the stage.
【0007】 [0007]
更に、レチクルステージ、又はウエハステージに露光光の状態、又は結像特性等を計測するための計測装置が備えられている場合、その計測装置には通常アンプ等の熱源が付属していると共に、計測中に露光光の照射によってその計測装置の温度が次第に上昇する。 Furthermore, the reticle stage, or wafer stage of an exposure light conditions, or when a measuring device for measuring the imaging characteristics such as are provided, along with heat source normally amplifiers such as in the measurement device comes, temperature of the measurement device by irradiation of exposure light gradually increases during the measurement. その結果、レチクルステージ、又はウエハステージが微妙に熱変形して、位置決め精度や重ね合わせ精度等が劣化する恐れもある。 As a result, the reticle stage, or the wafer stage is subtly thermal deformation, positioning accuracy and overlay accuracy and the like can also deteriorate. 現状では、計測装置の温度上昇による位置決め精度等の劣化は僅かなものであるが、今後、半導体素子等の回路パターンが一層微細化するにつれて、計測装置の温度上昇の影響を抑制する必要性が高まると予想される。 At present, although the deterioration of the positioning accuracy and the like due to the temperature rise of the measuring device is insignificant, the future, as the circuit pattern of a semiconductor device is further miniaturized, the need to suppress the influence of the temperature rise of the measuring device It is expected to increase.
【0008】 [0008]
本発明は斯かる点に鑑み、露光光の状態、又は結像特性を計測する機能を維持した状態で、レチクル、又はウエハを位置決めするためのステージを小型化できる露光装置を提供することを第1の目的とする。 The present invention has been made in view of the points mow 斯, the state of the exposure light, or in a state of maintaining the function of measuring the imaging characteristics, a reticle, or a stage for positioning the wafer to provide an exposure apparatus capable of downsizing the as one of the purposes.
更に本発明は、露光光の状態、又は結像特性を計測する計測装置を備えると共に、その計測装置を使用して計測する際の温度上昇の悪影響を軽減できる露光装置を提供することを第2の目的とする。 The invention further state of the exposure light, or imaging characteristics provided with a measuring device for measuring, to provide an exposure apparatus which can reduce the adverse effects of temperature rise at the time of measurement using the measurement device second for the purpose of.
【0009】 [0009]
【課題を解決するための手段】 In order to solve the problems]
本発明による第1の露光装置は、マスク(R)に形成されたパターンを露光ビームを用いて基板(W)上に転写する露光装置において、その基板を保持して所定の領域を移動する第1のステージ(WST)と、その第1のステージとは独立して移動自在に配置され、その基板を保持しない第2のステージ(14)と、この第2のステージに設けられてその露光ビームの状態を計測する計測装置(18)と、 その第1のステージに保持された基板の露光中、その露光ビームの照射位置から離れた待避位置にその第2のステージを配置するとともに、その露光ビームの照射位置にその第2のステージを配置して、その第1のステージへの基板のロードと並行してその計測装置によるその露光ビームの状態の計測を実行可能とする制御装置(10) The first exposure apparatus of the present invention, an exposure apparatus for transferring onto a substrate (W) using an exposure beam pattern formed on the mask (R), first moves the predetermined region holding the substrate a first stage (WST), the the first stage are movably arranged independently, and a second stage which does not hold the substrate (14), the exposure beam provided in the second stage a measuring device for measuring the state (18), during exposure of the substrate held by the first stage, as well as place the second stage retracted position away from the irradiation position of the exposure beam, the exposure and placing the second stage to the irradiation position of the beam, the control device in parallel with the load of the substrate to the first stage to be executed to measure the state of the exposure beam by the measurement device (10) を備えたものである。 , It is those with a.
【0010】 [0010]
斯かる本発明によれば、本来の露光に使用するその第1のステージには露光に必要な最小限の機能のみを持たせることによって、その第1のステージの大きさは必要最小限にできるため、ステージの小型化、軽量化が可能になる。 According to the present invention, with it in its first stage to use the original exposure to have only minimum functions necessary for exposure, the size of the first stage may be the minimum necessary Therefore, the size of the stage, it is possible to weight reduction. 一方、露光に直接必要がなく、露光ビームの照度等の状態を計測する計測装置は、別の第2のステージに搭載されるため、露光ビームの状態も計測できる。 On the other hand, exposure to it is not necessary directly measuring device for measuring the state of the illumination or the like of the exposure beam, to be mounted on a separate second stage, the state of the exposure beam can be measured.
【0011】 [0011]
この場合、その計測装置の一例は、露光ビームの全体のパワーを計測する光電センサ、又はその露光ビームの照度分布を計測する照度むらセンサ等である。 In this case, an example of the measurement device, a photoelectric sensor for measuring the total power of the exposure beam, or an uneven illuminance sensor for measuring the illuminance distribution of the exposure beam.
また、その第2のステージは、一例として例えばその第1のステージの移動面上で、その第1のステージとは独立に移動自在に配置されているものである。 Also, the second stage, on the way of example for example moving plane of the first stage, and its first stage in which is movably arranged independently. このとき、その第1のステージの代わりにその第2のステージを配置することによって、マスク、又は基板が実際に配置される面の近傍での露光ビームの状態が計測できる。 In this case, by placing the second stage instead of the first stage, the mask, or the state of the exposure beam in the vicinity of the surface on which the substrate is actually placed it can be measured.
【0012】 [0012]
また、その露光ビームが照射される位置とその露光ビームが照射されない位置との間でその第1のステージを移動させる制御装置(10)を備えることが望ましい。 Further, it is desirable to provide the first control device for moving the stage (10) between a position in which the exposure beam is irradiated with the exposure beam is not irradiated position. このとき、計測時にはその第1のステージが露光ビームの照射位置から待避される。 In this case, at the time of measuring the first stage it is retracted from the irradiation position of the exposure beam.
また、その露光ビームが照射される位置とその露光ビームが照射されない位置との間でその第2のステージを移動させる制御装置(10)を備えることが望ましい。 Further, it is desirable to provide the second control device for moving the stage (10) between a position in which the exposure beam is irradiated with the exposure beam is not irradiated position. これによって、計測時にはその第2のステージの計測装置が露光ビームの照射位置に移動する。 Thus, at the time of measuring the measurement apparatus of the second stage it is moved to the irradiation position of the exposure beam.
【0013】 [0013]
また、その第1のステージがその露光ビームを照射される位置に有るときに、その第2のステージをその露光ビームが照射されない位置に位置決めする制御装置(10)を備えることが望ましい。 Furthermore, when located at a position where the first stage is irradiated with the exposure beam, it is desirable to provide a control device (10) for positioning the second stage to the exposure beam is not irradiated position. これによって、露光時、及び計測時で2つのステージを効率的に使い分けられる。 Thus, during exposure, and are selectively used effectively two stage during measurement.
次に、本発明による第2の露光装置は、マスク(R)に形成されたパターンを投影光学系(PL)を介して基板(W)上に投影する露光装置において、その基板を保持して所定の領域を移動する第1のステージ(WST)と、その第1のステージとは独立して移動自在に配置され、その基板を保持しない第2のステージ(14)と、この第2のステージに設けられてその投影光学系の結像特性を計測する計測装置(20)と、 その第1のステージに保持された基板の露光中、その投影光学系の露光領域から離れた待避位置にその第2のステージを配置するとともに、その投影光学系と対向してその第2のステージを配置して、その第1のステージへの基板のロードと並行してその計測装置によるその結像特性の計測を実行可能とする制御装置 Then, the second exposure apparatus according to the present invention is an exposure apparatus for projecting on a substrate (W) via a mask (R) on the formed pattern a projection optical system (PL), to hold the substrate a first stage which moves the predetermined region (WST), the the first stage are movably arranged independently, and a second stage which does not hold the substrate (14), the second stage its in the measuring device for measuring the imaging characteristic of the projection optical system provided (20), during exposure of the substrate held on the first stage, retracted position away from the exposure area of the projection optical system with arranging the second stage, opposed to the projection optical system by arranging the second stage, the imaging characteristics due to the measuring apparatus in parallel with the load of the substrate to its first stage control device that can execute the measurement 10)と、を備えたものである。 10), those having a.
【0014】 [0014]
斯かる本発明によれば、本来の露光に使用するその第1のステージには露光に必要な最小限の機能のみを持たせることによって、その第1のステージの小型化、軽量化が可能になる。 According to the present invention, with it in its first stage to use the original exposure to have only minimum functions necessary for exposure, downsizing of the first stage, the possible weight reduction Become. 一方、露光に直接必要がなく、ディストーション等の結像特性を計測する計測装置は、別の第2のステージに搭載されるため、結像特性も計測できる。 On the other hand, exposure to it is not necessary directly measuring device for measuring the imaging characteristics such as distortion is to be mounted to a different second stage, imaging characteristics can be measured.
【0015】 [0015]
この場合、その計測装置の一例は、投影像の位置センサ、計測用指標マーク、又は計測用基準面等である。 In this case, an example of the measurement device, the position sensor of the projected image, measurement index mark, or a measuring reference surface or the like.
また、その第2のステージは、一例として例えばその第1のステージの移動面上で、その第1のステージとは独立に移動自在に配置されているものである。 Also, the second stage, on the way of example for example moving plane of the first stage, and its first stage in which is movably arranged independently. このとき、その第1のステージの代わりにその第2のステージを配置することによって、その基板が実際に配置される面での結像特性が計測できる。 In this case, by placing the second stage instead of the first stage, imaging properties of a plane that substrate is actually located can be measured.
【0016】 [0016]
また、その投影光学系による露光領域内の位置と、この露光領域の外側の所定の位置との間でその第1のステージを移動させる制御装置(10)を備えることが望ましい。 Also, the position of the exposure region by the projection optical system, it is desirable to provide a control device for moving the first stage between a predetermined position outside of the exposure region (10). このとき、計測時にはその第1のステージが露光領域から待避される。 In this case, at the time of measuring the first stage it is retracted from the exposure area.
同様に、その投影光学系による露光領域内の位置と、この露光領域の外側の所定の位置との間でその第2のステージを移動させる制御装置(10)を備えることが望ましい。 Similarly, the position of the exposure area by the projection optical system, it is desirable to provide a control device for moving the second stage between a predetermined position outside of the exposure region (10). このとき、計測時にはその第2のステージの計測装置が露光領域に移動する。 In this case, at the time of measuring the measurement apparatus of the second stage it is moved to the exposure area.
【0017】 [0017]
次に、本明細書の「発明の実施の形態」に記載された別の発明(以下、「本発明の第3、第4、第5、及び第6の露光装置」という。)は、以下の通りである。 Next, another invention described in "Embodiments of the invention" herein (hereinafter referred to as "the third invention, the fourth, fifth, and sixth exposure apparatus".), The following it is as of.
即ち 、本発明の第3の露光装置は、マスク(R)に形成されたパターンを露光ビームを用いて基板(W)上に転写する露光装置において、その露光ビームの状態を計測する計測装置(18,19)が配置されたステージ(41)と、このステージに備えられてその計測装置を冷却する冷却装置(44,45A,45B)と、を有するものである。 That is, the third exposure apparatus of the present invention, an exposure apparatus for transferring onto a substrate (W) using an exposure beam pattern formed on the mask (R), the measuring device for measuring the state of the exposure beam ( and 18, 19) is arranged stage (41), a cooling device for cooling the measuring unit provided in the stage (44, 45A, 45B), and has a. 斯かる本発明によれば、その計測装置を使用して露光ビームの照度等を計測する際にその計測装置が温度上昇しても、その冷却装置によって冷却されるため、露光部にはその温度上昇の影響が及ばない。 According to such present invention, since when measuring the illuminance or the like to the exposure beam using the measurement device and the measurement device even when the temperature increase, is cooled by the cooling device, the exposure unit that temperature the influence of the rise beyond.
【0018】 [0018]
次に、本発明の第4の露光装置は、マスク(R)に形成されたパターンを投影光学系(PL)を介して基板(W)上に投影する露光装置において、その投影光学系の結像特性を計測する計測装置(20,42,43)が配置されたステージ(41)と、このステージに備えられてその計測装置を冷却する冷却装置(44,45A,45B)と、を有するものである。 Next, a fourth exposure apparatus of the present invention, an exposure apparatus for projecting on a substrate (W) via a mask (R) on the formed pattern a projection optical system (PL), formation of the projection optical system having a measuring device for measuring the image characteristic (20,42,43) is arranged stage (41), a cooling device for cooling the measuring unit provided in the stage (44, 45A, 45B), the it is. 斯かる本発明によれば、その計測装置を使用して結像特性を計測する際にその計測装置が温度上昇しても、その冷却装置によって冷却されるため、露光部にはその温度上昇の影響が及ばない。 According to such present invention, since when measuring the imaging characteristics using the measurement device and the measurement device even when the temperature increase, is cooled by the cooling device, the exposed portion of the temperature rise It is not affected.
【0019】 [0019]
次に、本発明の第5の露光装置は、マスク(R)に形成されたパターンを露光ビームを用いて基板(W)上に転写する露光装置において、そのマスクとその基板との何れか一方を保持して所定の領域を移動する第1のステージ(WST;41A)と、その露光ビームの状態を計測する計測装置(18,19)が搭載された第2のステージ(14;41Aa)と、その第1のステージとその第2のステージとの間に配置され、その第2のステージから伝導する熱を遮断する断熱部材(48)と、を備えたものである。 Next, a fifth exposure apparatus of the present invention, an exposure apparatus for transferring onto a substrate (W) using an exposure beam pattern formed on the mask (R), either one of the mask and its substrate the holding first stage for moving the predetermined region and;; (41Aa 14) and (WST 41A), the second stage measuring device (18, 19) is mounted to measure the state of the exposure beam , is disposed between the first stage and its second stage, a heat insulating member for blocking the heat conducted from the second stage (48), those having a. 斯かる本発明によれば、その計測装置が熱源を含んでいても、又はその計測装置を使用して露光ビームの照度等を計測する際にその計測装置が温度上昇しても、その断熱部材によって熱伝導が阻害され、露光部にはその熱源や温度上昇の影響が及ばない。 According to such present invention, also include the measurement device is a heat source, or even the measurement apparatus increases the temperature when measuring the illuminance or the like to the exposure beam using the measuring device, the heat insulating member heat conduction is hindered by, the exposed portion beyond the influence of the heat source and temperature rise.
【0020】 [0020]
この場合、その断熱部材の一例は、熱伝導率の低い固体材料(48)、又は温度調整された気体である。 In this case, an example of the heat insulating member is less solid material thermal conductivity (48), or a temperature adjusted gas. 温度調整された気体としては、空調されている気体等が使用される。 The temperature adjusted gas, such gas being conditioned is used.
次に、本発明の第6の露光装置は、マスク(R)に形成されたパターンを投影光学系(PL)を介して基板(W)上に投影する露光装置において、その基板を保持して所定の領域を移動する第1のステージ(WST;41A)と、その投影光学系の結像特性を計測する計測装置(20)が搭載された第2のステージ(14;41Aa)と、その第1のステージとその第2のステージとの間に配置され、その第2のステージから伝導する熱を遮断する断熱部材(48)と、を備えたものである。 Next, a sixth exposure apparatus of the present invention, an exposure apparatus for projecting on a substrate (W) via a mask (R) on the formed pattern a projection optical system (PL), to hold the substrate first stage for moving the predetermined region; and (WST 41A), the second stage measuring device (20) is mounted to measure the imaging characteristic of the projection optical system; and (14 41Aa), the first disposed between the first stage and its second stage, the heat insulating member (48) for blocking the heat conducted from the second stage, in which with a. 斯かる本発明によれば、その計測装置を使用して結像特性を計測する際にその計測装置が温度上昇しても、又はその計測装置が熱源を含んでいても、その断熱部材によって熱伝導が阻害されるため、露光部にはその温度上昇等の影響が及ばない。 According to such present invention, even when measuring the imaging characteristics using the measurement device the measurement device rises temperature, or even the measurement apparatus includes a heat source, heat by the heat insulating member since conduction is inhibited, the exposed portion beyond the influence of the temperature rise.
【0021】 [0021]
この場合も、その断熱部材の一例は、熱伝導率の低い固体材料(48)、又は温度調整された気体である。 Again, an example of the heat insulating member is less solid material thermal conductivity (48), or a temperature adjusted gas.
また、本発明の第1及び第2の露光装置においては、その第2のステージ(14)が、この第2ステージの位置の基準となる基準部材を有していれば、この第2ステージの位置を正確に求めることができる。 In the first and second exposure apparatus of the present invention, the second stage (14), if it has a reference member as a reference position of the second stage, the second stage position can be obtained accurately.
同様に、本発明の第3及び第4の露光装置においては、ステージ(14)が、このステージの位置の基準となる基準部材を有していれば、このステージの位置を正確に求めることができる。 Similarly, in the third and fourth exposure apparatus of the present invention, stage (14), if it has a reference member as a reference position of the stage, for the determination of the position of the stage exactly it can.
また、本発明の第2の露光装置においては、その投影光学系(PL)による露光領域内において、その第1のステージ(WST)の位置とその第2のステージ(14)の位置とが、共通の干渉計(15)により計測されれば、その第1のステージの位置とその第2のステージの位置とを正確に求めることができるとともに、装置構成を簡単にできる。 In the second exposure apparatus of the present invention, in the exposure region by the projection optical system (PL), and the position of the first stage (WST) and the position of the second stage (14), if it is measured by a common interferometer (15), it is possible to determine the a position of the first stage and the position of the second stage accurately, the apparatus can be configured easily.
【0022】 [0022]
【発明の実施の形態】 DETAILED DESCRIPTION OF THE INVENTION
以下、本発明の第1の実施の形態につき図1〜図4を参照して説明する。 It will be described below with reference to the first to FIGS. 1 to 4 per the embodiment of the present invention.
図1は本例で使用されるステップ・アンド・スキャン方式の投影露光装置を示し、この図1において露光時には、露光光源、ビーム整形光学系、照度分布均一化用のフライアイレンズ、光量モニタ、可変開口絞り、視野絞り、及びリレーレンズ系等を含む照明系1から射出された露光光ILは、ミラー2、及びコンデンサレンズ3を介してレチクルRのパターン面(下面)のスリット状の照明領域を照明する。 Figure 1 shows the projection exposure apparatus of step-and-scan method used in this example, at the time of exposure in this FIG. 1, exposure light source, a beam shaping optical system, a fly-eye lens for the illuminance distribution uniform, the light quantity monitor, variable aperture stop, a field stop, and the slit-like illumination area of ​​the emitted exposure light IL from the illumination system 1, mirror 2, and the pattern surface of the reticle R through the condenser lens 3 (the lower surface) comprising a relay lens system, etc. to illuminate the. 露光光ILとしては、KrF(波長248nm)、若しくはArF(波長193nm)等のエキシマレーザ光、YAGレーザの高調波、又は水銀ランプのi線(波長365nm)等が使用できる。 The exposure light IL, KrF (wavelength 248 nm), or ArF (wavelength 193 nm) excimer laser light such as, harmonics of YAG laser, or a mercury lamp i line (wavelength 365 nm), etc. can be used. 照明系1内の可変開口絞りを切り換えることによって、通常の照明方法、輪帯照明、いわゆる変形照明、及び小さいコヒーレンスファクタ(σ値)の照明等の内の所望の照明方法を選択できるように構成されている。 By switching the variable aperture stop in the illumination system 1, normal illumination method, the annular illumination, the so-called modified illumination, and configured so as to select a desired illumination method of the lighting or the like of a small coherence factor (sigma value) It is. 露光光源がレーザ光源である場合には、その発光タイミング等は装置全体の動作を統轄制御する主制御系10が、不図示のレーザ電源を介して制御する。 When the exposure light source is a laser light source, the light emission timing or the like is the main control system 10 for supervising controlling the operation of the entire apparatus is controlled via the laser power supply (not shown).
【0023】 [0023]
レチクルRのその露光光ILによる照明領域9(図3参照)内のパターンの像は、投影光学系PLを介して投影倍率β(βは、1/4倍、又は1/5倍等)で縮小されて、フォトレジストが塗布されたウエハW上のスリット状の露光領域12に投影される。 The image of the pattern in the exposure light IL illuminating region 9 by the reticle R (see FIG. 3) is (are beta, 1/4-fold, or 1/5, etc.) projection magnification beta via the projection optical system PL in It is reduced and projected on the slit-like exposure region 12 on the wafer W coated with a photoresist. 以下、投影光学系PLの光軸AXに平行にZ軸を取り、Z軸に垂直な平面内で走査露光時のレチクルR及びウエハWの走査方向に直交する非走査方向(即ち、図1の紙面に垂直な方向)に沿ってX軸を取り、走査方向(即ち、図1の紙面に平行な方向)に沿ってY軸を取って説明する。 Hereinafter, taken parallel to the Z axis to the optical axis AX of the projection optical system PL, non-scanning direction perpendicular to the scanning direction of the reticle R and the wafer W during scanning exposure in the plane perpendicular to the Z axis (i.e., in FIG. 1 the X axis along the direction) perpendicular to the paper surface, the scanning direction (i.e., will be described and the Y-axis along a direction) parallel to the plane of FIG.
【0024】 [0024]
先ず、ウエハWのアライメント用のオフ・アクシス方式で画像処理方式のアライメントセンサ16が投影光学系PLに隣接して設けられており、アライメントセンサ16の検出信号が主制御系10内のアライメント処理系に供給されている。 First, the alignment sensor 16 of the image processing method in off-axis type of alignment of the wafer W is provided adjacent to the projection optical system PL, the detection signal is the alignment processing system in the main control system 10 of the alignment sensor 16 It is supplied to. アライメントセンサ16は、ウエハW上に形成されている位置合わせ用のマーク(ウエハマーク)等の位置検出を行うために使用される。 Alignment sensor 16 is used to detect the position of the mark for alignment formed on the wafer W (wafer marks) and the like. アライメントセンサ16の検出中心と投影光学系PLによるレチクルRの投影像の中心との間隔(ベースライン量)は予め高精度に求められて、主制御系10内のアライメント処理系に記憶されており、アライメントセンサ16の検出結果、及びそのベースライン量よりウエハWの各ショット領域とレチクルRの投影像とが高精度に重ね合わせられる。 Alignment detection center and the interval between the center of the projection image of the reticle R by the projection optical system PL of the sensor 16 (base line amount) sought to advance precision, are stored in the alignment processing system of the main control system 10 , the detection result of the alignment sensor 16, and a projection image of each shot area and the reticle R on the wafer W from the base line amount is overlaid with high precision. 不図示であるが、レチクルRの上方にはレチクルR上のアライメントマークを検出するためのレチクルアライメント顕微鏡が配置されている。 Although not shown, above the reticle R are disposed reticle alignment microscopes for detecting the alignment mark on the reticle R.
【0025】 [0025]
次に、レチクルRは、レチクルステージRST上に真空吸着によって保持され、レチクルステージRSTは、Y方向に平行に配置された2本のガイド4A及び4B上にエアーベアリングを介してY方向に移動自在に載置されている。 Next, the reticle R is held by vacuum suction on the reticle stage RST, reticle stage RST is movable in the Y direction via the air bearing on the two guide 4A and 4B which are arranged parallel to the Y-direction It is placed in. 更に本例では、ガイド4A及び4B上に、レチクルステージRSTとは独立にエアーベアリングを介してY方向に移動自在に計測用ステージ5が載置されている。 In addition, the present example, on the guide 4A and 4B, independently movably measurement stage 5 in the Y direction via the air bearing is placed on the reticle stage RST.
【0026】 [0026]
図3は、レチクルステージRST及び計測用ステージ5を示す平面図であり、この図3において、Y方向(走査方向)に伸びたガイド4A及び4Bに沿って、それぞれ不図示のリニアモータ等によってY方向に駆動されるようにレチクルステージRST、及び計測用ステージ5が載置されている。 Figure 3 is a plan view showing a reticle stage RST and measurement stage 5, Y in FIG. 3, along a guide 4A and 4B extending in the Y direction (scanning direction), by a linear motor or the like, respectively (not shown) reticle stage RST, and the measurement stage 5 is mounted so as to be driven in the direction. ガイド4A,4Bの長さは、走査露光時のレチクルステージRSTの移動ストロークよりも、少なくとも計測用ステージ5の幅分だけ長く設定されている。 Guide 4A, the length of 4B, rather than the movement stroke of the reticle stage RST during scanning exposure, is set longer by at least the width of the measurement stage 5. また、レチクルステージRSTは、Y方向に移動する粗動ステージと、この粗動ステージ上で2次元的な位置が微調整できる微動ステージとを組み合わせて構成されている。 Further, the reticle stage RST, a coarse movement stage that moves in the Y direction, on the coarse movement stage 2 dimensional position is constituted by combining a fine motion stage can be finely adjusted.
【0027】 [0027]
そして、計測用ステージ5上にX方向に細長いガラス板よりなる基準板6が固定され、基準板6上に投影光学系PLの結像特性計測用の複数の指標マークIMが所定の配置で形成されている。 Then, forming the reference plate 6 consists of an elongated glass plate in the X direction is fixed on the measurement stage 5, a plurality of index marks IM for imaging characteristic measurement of the projection optical system PL on a reference plate 6 is in a predetermined arrangement It is. 基準板6は、レチクルRに対する露光光のスリット状の照明領域9、より正確には投影光学系PLのレチクルR側の視野を覆うことができるだけの大きさを備えている。 Reference plate 6, the illumination region 9 slit-like exposure light with respect to the reticle R, and more precisely is provided with a large enough can cover the field of view reticle R side of the projection optical system PL. 基準板6を使用することで、結像特性計測用の専用レチクルを用意しておく必要がなく、且つ、実露光用のレチクルRとその専用レチクルとの交換時間も不要となるため、結像特性を高頻度に計測でき、投影光学系PLの経時変化に正確に追従することができる。 By using the reference plate 6, it is not necessary to prepare a dedicated reticle for imaging characteristics measurement, and, since the reticle R for actual exposure also unnecessary replacement time with its dedicated reticle, imaging characteristics can be measured frequently, it is possible to accurately follow the change with time of the projection optical system PL.
【0028】 [0028]
このように本例では、基準板6用の計測用ステージ5が独立に設けられ、本来のレチクルステージRST上には、レチクルRの他に計測用の部材は搭載されていない。 Thus in this example, the measurement stage 5 for the reference plate 6 is provided independently, on the original reticle stage RST, in addition to members for measuring the reticle R is not mounted. 即ち、レチクルステージRSTは、走査露光のために必要最小限の走査、及び位置決め機能のみを備えればよいため、レチクルステージRSTの小型化、軽量化が実現されている。 That is, the reticle stage RST, a scan minimum required for scanning exposure, and to it Sonaere only positioning function, miniaturization of the reticle stage RST, weight reduction is realized. 従って、レチクルステージRSTをより高速に走査できるため、露光工程のスループットが向上する。 Therefore, it is possible to scan the reticle stage RST faster, improving the throughput of the exposure process. 特に縮小投影の場合には、レチクルステージRSTの走査速度はウエハステージの走査速度の1/β倍(例えば4倍、5倍等)になるため、走査速度の上限はレチクルステージでほぼ決定されることがあり、この場合には本例では特にスループットが大きく向上する。 Particularly in the case of reduction projection, the scan speed of the reticle stage RST is 1 / beta times the scanning speed of the wafer stage (e.g. 4-fold, 5-fold, etc.) to become the upper limit of the scanning speed is substantially determined by the reticle stage it has, in particular throughput in this example in this case is greatly improved.
【0029】 [0029]
また、ガイド4A,4Bに対して+Y方向に設置されたレーザ干渉計7YからレチクルステージRSTの+Y方向の側面の移動鏡にレーザビームが照射され、+X方向に設置された2軸のレーザ干渉計7X1,7X2からレチクルステージRSTの+X方向の側面の移動鏡にレーザビームが照射され、レーザ干渉計7Y,7X1,7X2によってレチクルステージRSTのX座標、Y座標、及び回転角が計測され、計測値が図1の主制御系10に供給され、主制御系10はその計測値に基づいてリニアモータ等を介してレチクルステージRSTの速度や位置を制御する。 The guide 4A, the laser beam from the laser interferometer 7Y installed in the + Y direction in the + Y direction of the moving mirror side of the reticle stage RST with respect to 4B are irradiated, the laser interferometer 2 axes disposed in the + X direction 7X1,7X2 laser beam is irradiated onto the movement mirror in the + X direction side of the reticle stage RST from the laser interferometer 7Y, X-coordinate of the reticle stage RST by 7X1,7X2, Y coordinates and the angle of rotation is measured and the measured value There is supplied to the main control system 10 of FIG. 1, the main control system 10 controls the speed and position of the reticle stage RST via a linear motor or the like based on the measurement value. また、ガイド4A,4Bに対して−Y方向に設置されたレーザ干渉計8Yから計測用ステージ5の−Y方向の側面の移動鏡にレーザビームが照射され、レーザ干渉計8Yによって計測される計測用ステージ5のY座標が主制御系10に供給されている。 The guide 4A, the laser beam emitted from the laser interferometer 8Y installed in the -Y direction to the movement mirror -Y direction side of the measurement stage 5 relative to 4B, measurement is measured by a laser interferometer 8Y Y coordinate of the use stage 5 is supplied to the main control system 10. Y軸のレーザ干渉計7Y及び8Yの光軸は、それぞれY方向に沿って照明領域9の中心、即ち投影光学系PLの光軸AXを通過しており、レーザ干渉計7Y及び8Yは、それぞれ常時レチクルステージRST及び計測用ステージ5の走査方向の位置を計測している。 The optical axis of the laser interferometer 7Y and 8Y for the Y axis, the center of the illumination region 9 respectively along the Y direction, that is, passes through the optical axis AX of the projection optical system PL, the laser interferometer 7Y and 8Y, respectively the scanning direction of the position at all times reticle stage RST and measurement stage 5 is measured.
【0030】 [0030]
そして、結像特性の計測時に、レチクルステージRSTを+Y方向に待避させて、基準板6が照明領域9を覆うように計測用ステージ5をY方向に移動すると、レーザ干渉計7X1,7X2からのレーザビームがレチクルステージRSTの側面から外れて計測用ステージ5の+X方向の側面の移動鏡に照射されるようになる。 Then, when the measurement of the imaging characteristics, and is retracted the reticle stage RST in the + Y direction, the reference plate 6 moves the measurement stage 5 so as to cover the illumination region 9 in the Y direction, from the laser interferometers 7X1,7X2 the laser beam is to be irradiated onto the movement mirror in the + X direction sides of the measurement stage 5 out from the side of the reticle stage RST. このときにレーザ干渉計8Y及び7X1,7X2から得られる計測値に基づいて、主制御系10はリニアモータ等を介して計測用ステージ5の位置を高精度に制御する。 At this time, based on the measurement values ​​obtained from the laser interferometer 8Y and 7X1,7X2, the main control system 10 controls the position of the measurement stage 5 with high precision through a linear motor or the like. なお、この際に基準板6を照明領域9に対してより高精度に位置合わせしたい場合には、基準板6上にアライメントマークを形成しておき、このマークの位置をレチクルアライメント顕微鏡を用いて検出すればよい。 Incidentally, the reference plate 6 when this if you want to align with high accuracy than the illumination region 9, previously formed alignment marks on the reference plate 6, the position of the mark using the reticle alignment microscope it may be detected.
【0031】 [0031]
一方、計測中には、レチクルステージRSTの非走査方向の位置は計測されないが、露光のためにレチクルステージRSTが照明領域9下に達すれば、再びレーザ干渉計7X1,7X2からのレーザビームがレチクルステージRSTの移動鏡に照射されるようになる。 On the other hand, during the measurement, the position of the non-scanning direction of the reticle stage RST is not measured, it reaches the reticle stage RST is under illumination region 9 for exposure, again a laser beam from the laser interferometer 7X1,7X2 reticle It will be irradiated onto the movement mirror stage RST. そして、最終的な位置合わせはレチクルアライメント顕微鏡を用いて行われるため、レーザ干渉計7X1,7X2からのレーザビームが途切れることの不都合は無い。 The final alignment is to be done using the reticle alignment microscope, there is no disadvantage that the laser beam from the laser interferometer 7X1,7X2 is interrupted.
【0032】 [0032]
図1に戻り、ウエハWは不図示のウエハホルダを介してウエハステージWST上に保持され、ウエハステージWSTは定盤13上にエアーベアリングを介してX方向、Y方向に移動自在に載置されている。 Returning to Figure 1, the wafer W is held on the wafer stage WST via the wafer holder (not shown), wafer stage WST X direction via the air bearing on a surface plate 13, are movably mounted on the Y-direction there. ウエハステージWSTには、ウエハWのZ方向の位置(フォーカス位置)、及び傾斜角を制御するフォーカス・レベリング機構も組み込まれている。 The wafer stage WST, the position in the Z direction of the wafer W (focus position), and focus leveling mechanism for controlling the inclination angle is also incorporated. また、定盤13上にウエハステージWSTとは別体でエアーベアリングを介してX方向、Y方向に移動自在に各種の計測装置が備えられた計測用ステージ14が載置されている。 Further, X direction to the wafer stage WST on the surface plate 13 via the air bearing separately, measurement stage 14 movable in various measuring device is provided in the Y direction is placed. 計測用ステージ14にも、その上面のフォーカス位置を制御する機構が組み込まれている。 To the measurement stage 14, a mechanism for controlling the focus position of the upper surface is incorporated.
【0033】 [0033]
図2は、ウエハステージWST、及び計測用ステージ14を示す平面図であり、この図2において、定盤13の表面の内部には例えば所定の配列でコイル列が埋め込まれ、ウエハステージWSTの底面、及び計測用ステージ14の底面にはそれぞれヨークと共に磁石列が埋め込まれ、そのコイル列、及び対応する磁石列によってそれぞれ平面モータが構成され、この平面モータによってウエハステージWST、及び計測用ステージ14のX方向、Y方向の位置、及び回転角が互いに独立に制御されている。 Figure 2 is a plan view showing a wafer stage WST, and a measurement stage 14, in FIG. 2, the interior surface of the platen 13 coil array is embedded, for example, a predetermined arrangement, the bottom surface of the wafer stage WST , and the magnet array is embedded with each of the bottom surface of the measurement stage 14 yoke, the coil array, and corresponding respectively planar motor by a magnet row is formed, the wafer stage WST, and the measurement stage 14 by the planar motor X-direction, the position in the Y direction and the angle of rotation is controlled independently of each other. なお、平面モータについては、例えば特開平8−51756号公報においてより詳細に開示されている。 Note that the planar motor, for example, disclosed in greater detail in JP-A-8-51756 JP.
【0034】 [0034]
本例のウエハステージWSTは、露光に必要な最小限の機能のみを備えている。 Wafer stage WST of this embodiment is provided with only minimum functions necessary for exposure. 即ち、ウエハステージWSTは、フォーカス・レベリング機構を備えると共に、ウエハステージWST上には、ウエハWを吸着保持するウエハホルダ(ウエハWの底面側)と、ウエハステージWSTの位置計測用の基準マーク板17との2つの部材が固定されている。 That is, wafer stage WST is provided with a focus leveling mechanism, on wafer stage WST, wafer holder for attracting and holding the wafer W (the bottom side of the wafer W), the reference mark plate for position measurement of wafer stage WST 17 It is fixed two members with. 基準マーク板17上には、X方向及びY方向の位置基準となる基準マーク(不図示)が形成されており、この基準マークの位置をアライメントセンサ16で検出することによって、ウエハステージWST(ウエハW)の例えばレチクルRの投影像に対する位置関係が検出される。 On the reference mark plate 17, the reference mark to be X-direction and Y-direction position reference (not shown) is formed, by detecting the position of the reference mark in the alignment sensor 16, the wafer stage WST (wafer positional relationship with respect to the projection image, for example, reticle R W) is detected.
【0035】 [0035]
また、計測用ステージ14の表面は、ウエハステージWST上のウエハWの表面とほぼ同じ高さに設定されている。 The surface of the measurement stage 14 is set at substantially the same height as the surface of wafer W on wafer stage WST. そして、計測用ステージ14には、投影光学系PLを通過した露光光の全部の単位時間当たりのエネルギー(入射エネルギー)を計測するための光電センサよりなる照射量モニタ18、投影光学系PLによるスリット状の露光領域12内での照度分布を計測するための光電センサよりなる照度むらセンサ19、及び結像特性測定用のスリット21X,21Yが形成された測定板20が固定されている。 Then, the measurement stage 14, the dose monitor 18, the slit of the projection optical system PL consisting of a photoelectric sensor for measuring the energy (incident energy) per total unit time of the exposure light which has passed through the projection optical system PL illuminance unevenness sensor 19 consisting of a photoelectric sensor for measuring the illuminance distribution at Jo exposure area within 12, and an imaging characteristic measuring slit 21X, 21Y measurement plate 20 formed is fixed. 測定板20のX軸のスリット21X、及びY軸のスリット21Yの底面側にはそれぞれ集光レンズ、及び光電センサが配置され、測定板20、及び光電センサ等より空間像検出系が構成されている。 Slit 21X of the X-axis of the measurement plate 20, and the Y-axis of each condenser lens is on the bottom side of the slit 21Y, and a photoelectric sensor is disposed, the measurement plate 20, and the spatial image detection system of a photoelectric sensor or the like is configured there. なお、そのスリット21X,21Yの代わりに、矩形開口のエッジを使用してもよい。 Incidentally, the slit 21X, 21Y, instead of, may be used an edge of the rectangular opening. そして、照射量モニタ18の受光面は、露光領域12を覆う大きさに形成されると共に、照度むらセンサ19の受光部はピンホール状となっており、照射量モニタ18及び照度むらセンサ19の検出信号は図1の主制御系10に供給されている。 Then, the light receiving surface of the dose monitor 18 is formed in a size to cover the exposure region 12, the light receiving portion of the uneven illuminance sensor 19 has a pinhole-shaped, the dose monitor 18 and the uneven illuminance sensor 19 detection signal is supplied to the main control system 10 of FIG.
【0036】 [0036]
また、測定板20の底部の光電センサの検出信号は図1の結像特性演算系11に供給されている。 The detection signal of the photoelectric sensor of the bottom of the measuring plate 20 is supplied to the imaging characteristic computation system 11 of FIG. 1. この場合、投影光学系PLの結像特性の計測時には、図3のレチクル側の計測用ステージ5上の基準板6が照明領域9に移動され、基準板9に形成されている指標マークIMの像がウエハステージ側に投影され、その像を計測板20上のスリット21X,21YでそれぞれX方向、Y方向に走査しつつ、底部の光電センサからの検出信号を結像特性演算系11で取り込む。 In this case, at the time of measurement of the imaging characteristics of the projection optical system PL, and the reference plate 6 on the measurement stage 5 on the reticle side in Fig. 3 is moved in the illumination region 9, the index mark IM formed on the reference plate 9 image is projected on the wafer stage side, a slit 21X on the image measurement plate 20, respectively X direction 21Y, while scanning in the Y direction, captures the detection signals from the photoelectric sensor of the bottom by the imaging characteristic computation system 11 . 結像特性演算系11では、その検出信号を処理してその指標マークIMの像の位置、及びコントラスト等を検出し、この検出結果より投影像の像面湾曲、ディストーション、ベストフォーカス位置等の結像特性を求めて主制御系10に出力する。 In imaging characteristic calculation system 11, the position of the image of the index mark IM and processes the detection signal, and detects the contrast, etc., curvature of the projected image from the detection result, distortion, binding of such best focus position seeking image properties outputs to the main control system 10. 更に、不図示であるが、投影光学系PL内の所定のレンズを駆動して所定のディストーション等の結像特性を補正する機構も設けられており、主制御系10はこの補正機構を介して投影光学系PLの結像特性を補正できるように構成されている。 Furthermore, although not shown, the projection drives the predetermined lens in the optical system PL with a mechanism also provided for correcting the imaging characteristics such as predetermined distortion, the main control system 10 via the correction mechanism It is configured to be corrected imaging characteristics of the projection optical system PL.
【0037】 [0037]
図2において、計測用ステージ14に備えられている照射量モニタ18、照度むらセンサ19、及び測定板20の底部の光電センサ等のセンサには、何れもアンプ等の発熱源、及び電源や通信用の信号ケーブルが接続されている。 2, irradiation monitor 18 provided in the measurement stage 14, illuminance unevenness sensor 19, and the sensor such as a photoelectric sensor at the bottom of the measuring plate 20, both heat source such as an amplifier, and a power supply and communication signal cable use is connected. 従って、それらのセンサが露光用のウエハステージWSTに搭載されていると、センサに付随する熱源や信号ケーブルの張力によって位置決め精度等が劣化する恐れがある。 Therefore, when the sensors are mounted on the wafer stage WST of the exposure, the positioning accuracy and the like by the tension of the heat source and the signal cable associated with the sensor may deteriorate. また、結像特性等の計測中の露光光の照射による熱エネルギーも位置決め精度の悪化等を招く恐れがある。 The thermal energy which may lead to deterioration of the positioning accuracy due to the irradiation of the exposure light during measurement, such as imaging characteristics. これに対して本例では、それらのセンサが露光用のウエハステージWSTから分離された計測用ステージ14に設けられているため、ウエハステージWSTを小型化、軽量化できると共に、計測用のセンサの熱源や計測中の露光光の熱エネルギーによる位置決め精度の低下が防止できる利点がある。 In this example the contrary, since these sensors are provided to the measurement stage 14 separated from the wafer stage WST of the exposure, compact wafer stage WST, it is possible weight, of a sensor for measurement there is an advantage that lowering of positioning accuracy due to heat and thermal energy of the exposure light during measurement can be prevented. ウエハステージWSTの小型化によって、ウエハステージWSTの移動速度や制御性が向上し、露光工程のスループットが高まると共に、位置決め精度等がより向上する。 Miniaturization of wafer stage WST, improved movement speed and controllability of the wafer stage WST, the throughput of the exposure process is increased, positioning accuracy and the like can be further improved.
【0038】 [0038]
また、定盤13に対して+Y方向に設置されたレーザ干渉計15YからウエハステージWSTの+Y方向の側面の移動鏡にレーザビームが照射され、−X方向に設置された2軸のレーザ干渉計15X1,15X2からウエハステージWSTの−X方向の側面の移動鏡にレーザビームが照射され、レーザ干渉計15Y,15X1,15X2によってウエハステージWSTのX座標、Y座標、及び回転角が計測され、計測値が図1の主制御系10に供給され、主制御系10はその計測値に基づいて平面モータを介してウエハステージWSTの速度や位置を制御する。 The laser beam emitted from the laser interferometer 15Y installed in the + Y direction with respect to the surface plate 13 to the movable mirror of the + Y direction side of the wafer stage WST, the laser interferometer 2 axes disposed in the -X direction 15X1,15X2 laser beam onto the movement mirror in the -X direction side of the wafer stage WST is irradiated from the laser interferometer 15Y, X-coordinate of the wafer stage WST by 15X1,15X2, Y coordinates and the angle of rotation is measured and the measurement value is supplied to the main control system 10 of FIG. 1, the main control system 10 controls the speed and position of the wafer stage WST via the planar motor based on the measured value. また、露光光の入射エネルギー等の計測時には、それらの位置計測用のレーザビームは計測用ステージ14の移動鏡に照射される。 Further, at the time of measurement, such as incident energy of the exposure light, a laser beam for measuring their positions is irradiated onto the movement mirror of the measurement stage 14.
【0039】 [0039]
図4は、露光光の入射エネルギー等の計測時のウエハステージWST、及び計測用ステージ14の配置の一例を示し、この図4に示すようにウエハステージWSTを露光領域12から離れた位置に待避させて、露光領域12が計測用ステージ14上にかかるように計測用ステージ14を移動すると、レーザ干渉計15Y,15X1,15X2からのレーザビームが、ウエハステージWSTの側面から外れて計測用ステージ14の側面の移動鏡に照射されるようになる。 4, the wafer stage WST during the measurement such as incident energy of the exposure light, and shows an example of the arrangement of the measurement stage 14, saves the wafer stage WST as shown in FIG. 4 in a position away from the exposure area 12 by, the exposure region 12 moves measurement stage 14 as according to the above measurement stage 14, a laser interferometer 15Y, the laser beam from 15X1,15X2 is, the measurement stage out from the side surface of wafer stage WST 14 It will be irradiated onto the movement mirror side of. このときにレーザ干渉計15Y及び15X1,15X2から得られる計測値に基づいて、主制御系10は平面モータを介して計測用ステージ14の位置を高精度に制御する。 At this time, based on the measurement values ​​obtained from the laser interferometer 15Y and 15X1,15X2, the main control system 10 controls the position of the measurement stage 14 via a planar motor with high accuracy. なお、平面モータをオープンループで駆動することによってもウエハステージWST、及び計測用ステージ14の位置は大まかに制御できるため、レーザビームが照射されていない状態では、主制御系10はウエハステージWST、及び計測用ステージ14の位置を平面モータを用いてオープンループ方式で駆動する。 Since the position of the wafer stage WST, and the measurement stage 14 may roughly controlled also by driving the plane motor in an open loop, in the state in which the laser beam is not irradiated, the main control system 10 is a wafer stage WST, and driven in an open loop system using a planar motor the position of the measurement stage 14. 但し、レーザ干渉計15Y,15X1,15X2の他に、ウエハステージWST、及び計測用ステージ14の位置を所定精度で検出するためのリニアエンコーダ等を設けておき、レーザビームが照射されていない状態では、それらのリニアエンコーダ等を用いて位置計測を行ってもよい。 However, laser interferometer 15Y, in addition to 15X1,15X2, wafer stage WST, and the position of the measurement stage 14 may be provided with a linear encoder or the like for detecting a predetermined accuracy, while the laser beam is not irradiated it may be performed position measurement using these linear encoder or the like.
【0040】 [0040]
図1に戻り、不図示であるが、投影光学系PLの側面には、ウエハWの表面の複数の計測点にスリット像を斜めに投影し、その反射光によって再結像されるスリット像の横ずれ量から対応する計測点のフォーカス位置を検出する斜入射方式の焦点位置検出系(AFセンサ)が配置されている。 Returning to Figure 1, although not shown, the side surface of the projection optical system PL, and projecting a slit image obliquely to a plurality of measurement points on the surface of the wafer W, the slit image is re-imaged by the reflected light focus position detecting system of the oblique incidence type which detects the focus position of the measurement points from the corresponding lateral deviation (AF sensor) is disposed. その焦点位置検出系の検出結果に基づいて、走査露光中のウエハWの表面が投影光学系PLの像面に合焦される。 Based on the detection result of the focus position detecting system, the surface of the wafer W during scanning exposure is focused on the image plane of the projection optical system PL. なお、図2では省略しているが、計測用ステージ14上にはその焦点位置検出系用の基準面を有する基準部材も搭載されている。 Though omitted in FIG. 2, on the measurement stage 14 is also a reference member having a reference surface for the focus position detecting system is mounted.
【0041】 [0041]
次に、本例の投影露光装置の動作につき説明する。 It will now be described the operation of the projection exposure apparatus of this embodiment. 先ず、ウエハステージ側の計測用ステージ14を用いて投影光学系PLに対する露光光ILの入射光量を計測する。 First, to measure the amount of incident light of the exposure light IL with respect to the projection optical system PL using the measurement stage 14 on the wafer stage side. この場合、レチクルRがロードされた状態での入射光量を計測するために、図1において、レチクルステージRST上に露光用のレチクルRがロードされ、レチクルRが露光光ILの照明領域上に移動する。 In this case, in order to measure the amount of incident light in a state where the reticle R is loaded moved, in FIG. 1, the reticle R for exposure on the reticle stage RST is loaded, the reticle R is on the illumination area of ​​the exposure light IL to. その後、図4に示すように、ウエハステージWSTは定盤13上で例えば+Y方向に待避し、計測用ステージ14が投影光学系PLによる露光領域12に向かって移動する。 Thereafter, as shown in FIG. 4, the wafer stage WST is saved in a on the surface plate 13, for example the + Y direction, the measurement stage 14 is moved toward the exposure area 12 by the projection optical system PL. その後、計測用ステージ14上の照射量モニタ18の受光面が露光領域12を覆う位置で計測用ステージ14が停止し、この状態で照射量モニタ18を介して露光光ILの光量が計測される。 Thereafter, the light-receiving surface the measurement stage 14 is stopped at a position covering the exposure area 12 of the dose monitor 18 on the measurement stage 14, the light quantity of the exposure light IL through the dose monitor 18 in this state is measured .
【0042】 [0042]
主制御系10では、その計測された光量を結像特性演算系11に供給する。 The main control system 10, and supplies the measured amount of light to the imaging characteristic computation system 11. この際に、例えば照明系1内で露光光ILから分岐して得られる光束を検出して得られる計測値も結像特性演算系11に供給されており、結像特性演算系11では、2つの計測値に基づいて、照明系1内でモニタされる光量から投影光学系PLに入射する光量を間接的に演算するための係数を算出して記憶する。 At this time, are supplied to the measured value also imaging characteristic computation system 11 obtained by detecting the light beam obtained by branching from the exposure light IL, for example, within the illumination system 1, the imaging characteristic calculation system 11, 2 One of the basis of the measured values, indirectly stores calculated and the coefficient for calculating the amount of light entering the projection optical system PL from the amount of light monitored in the illumination system 1. この間に、ウエハステージWSTにはウエハWがロードされる。 During this time, the wafer stage WST wafer W is loaded. その後、図2に示すように、計測用ステージ14は露光領域12から離れた位置に待避し、ウエハステージWST上のウエハWの中心が投影光学系PLの光軸AX(露光領域12の中心)付近に位置するように、ウエハステージWSTの移動が行われる。 Thereafter, as shown in FIG. 2, the measurement stage 14 is retracted to a position away from the exposure area 12, the center of the wafer W on wafer stage WST is the optical axis AX of the projection optical system PL (the center of the exposure region 12) so as to be positioned in the vicinity, the movement of the wafer stage WST is performed. ウエハステージWSTが待避中であるときには、図4に示すように、レーザ干渉計15Y,15X1,15X2からのレーザビームは照射されないため、例えば平面モータをオープンループ方式で駆動することによって位置制御が行われている。 When wafer stage WST is being retracted, as shown in FIG. 4, the laser interferometer 15Y, the position control line by the laser beam is driven for not irradiated, for example, a planar motor in an open loop manner from 15X1,15X2 are we.
【0043】 [0043]
その後、計測用ステージ14が露光領域12から待避して、ウエハステージWSTにレーザ干渉計15Y,15X1,15X2からのレーザビームが照射されるようになった時点で、ウエハステージWSTの位置はそれらのレーザ干渉計の計測値に基づいて制御されるようになる。 Thereafter, the measurement stage 14 is retracted from the exposure area 12, the wafer stage WST in the laser interferometer 15Y, when the laser beam is adapted to be irradiated from 15X1,15X2, the position of wafer stage WST thereof It will be controlled based on the measurement values ​​of the laser interferometers. その後、レチクルRの上方の不図示のレチクルアライメント顕微鏡を用いて、レチクルR上の所定のアライメントマークと、図2の基準マーク部材17上の所定の基準マークとの位置ずれ量を所定の目標値にするように、レチクルステージRSTを駆動することによって、レチクルRのアライメントが行われる。 Then, by using the reticle alignment microscope (not shown) above the reticle R, and a predetermined alignment mark on the reticle R, positional displacement amount a predetermined target value with a predetermined reference mark on the reference mark member 17 of FIG. 2 so as to, by driving the reticle stage RST, the alignment of the reticle R is performed. これとほぼ同時に、その基準マーク部材17上の別の基準マークの位置を図1のアライメントセンサ16で検出することによって、ウエハステージWSTのレチクルRの投影像に対する位置関係(ベースライン量)が正確に検出される。 At about the same time, by detecting the position of another reference mark on the reference mark member 17 by the alignment sensor 16 of FIG. 1, the positional relationship with respect to the projection image of the reticle R on the wafer stage WST (baseline amount) is correct It is detected.
【0044】 [0044]
次に、アライメントセンサ16を介してウエハW上の所定のショット領域(サンプルショット)に付設されたウエハマークの位置を検出することによって、ウエハWの各ショット領域の配列座標が求められる。 Then, by detecting the position of the wafer marks arranged in a predetermined shot area on the wafer W (sample shots) via the alignment sensor 16, the arrangement coordinates of each shot area on the wafer W is determined. その後、その配列座標、及びアライメントセンサ16の既知のベースライン量に基づいて、ウエハWの露光対象のショット領域とレチクルRのパターン像との位置合わせを行いながら、走査露光が行われる。 Thereafter, the array coordinates, and based on the known baseline amount of the alignment sensor 16, while the alignment of the pattern image of the shot regions and the reticle R to be exposed of the wafer W, the scanning exposure is performed.
【0045】 [0045]
走査露光時には、図1において、露光光ILの照明領域9(図3参照)に対して、レチクルステージRSTを介してレチクルRが+Y方向(又は−Y方向)に速度VRで走査されるのに同期して、露光領域12に対してウエハステージWSTを介してウエハWが−X方向(又は+X方向)に速度β・VR(βは投影倍率)で走査される。 During scanning exposure, in FIG. 1, the illumination region 9 of the exposure light IL (see FIG. 3), to the reticle R via the reticle stage RST is scanned in the + Y direction (or the -Y direction) in the speed VR synchronously, the wafer W via the wafer stage WST (the beta projection magnification) speed beta · VR in the -X direction (or + X direction) is scanned with respect to the exposure area 12. 走査方向が逆であるのは、投影光学系PLが反転像を投影することによる。 The scanning direction is reversed, due to the projection optical system PL projects an inverted image. そして、1つのショット領域への露光が終了すると、ウエハステージWSTのステッピングによって次のショット領域が走査開始位置に移動し、以下、ステップ・アンド・スキャン方式で各ショット領域への露光が順次行われる。 When the exposure of one shot region is completed, the next shot area by the stepping of the wafer stage WST is moved to the scanning start position, following the exposure of each shot area is successively performed by the step-and-scan method . この走査露光中には、図2及び図3に示すように、ウエハステージ側の計測用ステージ14、及びレチクルステージ側の計測用ステージ5はそれぞれ露光領域外に待避している。 During this scanning exposure, as shown in FIGS. 2 and 3, measurement stage 14 on the wafer stage side, and the measurement stage 5 of the reticle stage side is respectively retracted to outside the exposure area.
【0046】 [0046]
また、露光中には、例えば照明系1内で露光光ILから分岐した光束の光量が常時計測されて結像特性演算系11に供給され、結像特性演算系11では、供給される光量の計測値、及び予め求めてある係数に基づいて投影光学系PLに入射する露光光ILの光量を算出し、露光光ILの吸収によって発生する投影光学系PLの結像特性(投影倍率、ディストーション等)の変化量を計算し、この計算結果を主制御系10に供給する。 Further, during the exposure, for example, the light quantity of the light beam branched from the exposure light IL in the illumination system 1 is supplied is always measured in imaging characteristic calculation system 11, the imaging characteristic calculation system 11, the amount of light supplied measurements, and obtained in advance by calculating the amount of the exposure light IL incident on the projection optical system PL based on the coefficients are, imaging characteristics (the projection magnification of the projection optical system PL caused by the absorption of the exposure light IL, such as distortion the amount of change) is calculated, and supplies the calculation result to the main control system 10. 主制御系10では、例えば投影光学系PL内の所定のレンズを駆動することによって、その結像特性の補正を行う。 The main control system 10, by driving the example predetermined lens in the projection optical system PL, corrects the imaging characteristics.
【0047】 [0047]
以上が、通常の露光であるが、本例の投影露光装置のメンテナンス等で装置状態を計測するときには、計測用ステージ14を露光領域12側に移動して計測を行う。 The above is a general exposure, when measuring the device state maintenance or the like of the projection exposure apparatus of this embodiment performs the measurement by moving the measurement stage 14 in the exposure area 12 side. 例えば、露光領域12内の照度均一性を測定するときは、レチクルRをレチクルステージRSTから除いた後、図4において、照度むらセンサ19を露光領域12内でX方向、Y方向に微動しながら照度分布を計測する。 For example, when measuring the illuminance uniformity of the exposure region 12, after removal of the reticle R from the reticle stage RST, in FIG. 4, X-direction unevenness of illumination sensor 19 in the exposed areas within 12, while the fine movement in the Y-direction to measure the illuminance distribution. この際に、計測用ステージ14の位置をより正確に求める必要があれば、ウエハステージWSTと同様に基準マーク部材17に相当する基準マーク部材を計測用ステージ14上に設け、アライメントセンサ16でその基準マーク部材内の基準マークの位置を測定するようにしてもよい。 At this time, if it is necessary to determine the position of the measurement stage 14 more accurately, provided reference mark member corresponding to the reference mark member 17 similar to the wafer stage WST on the measurement stage 14, the in alignment sensor 16 the position of the reference mark of the reference mark in the member may be measured.
【0048】 [0048]
次に、レチクルステージ側の計測用ステージ5、及びウエハステージ側の計測用ステージ14を用いて、投影光学系PLの結像特性を測定する動作につき説明する。 Next, the measurement stage 5 of the reticle stage side, and with a measurement stage 14 on the wafer stage side, will be described operation of measuring the imaging characteristics of the projection optical system PL. この場合、図3において、レチクルステージRSTは+Y方向に待避して、計測用ステージ5上の基準板6が照明領域9内に移動する。 In this case, in FIG. 3, the reticle stage RST + Y and retracted in a direction, the reference plate 6 on the measurement stage 5 is moved in the illumination region 9. このとき、計測用ステージ5には非走査方向のレーザ干渉計7X1,7X2からのレーザビームも照射されるようになるため、レーザ干渉計8Y,7X1,7X2の計測値に基づいて計測用ステージ5の位置は高精度に位置決めできる。 At this time, since the measurement stage 5 so the laser beam is also irradiated from the laser interferometer 7X1,7X2 the non-scanning direction, the laser interferometer 8Y, stage for measurement based on the measurement values ​​of 7X1,7X2 5 position can be positioned with high accuracy.
【0049】 [0049]
このときに、既に説明したように、ウエハステージ側には複数の指標マークIMの像が投影光学系PLを介して投影される。 At this time, as already described, the wafer stage side images of a plurality of index marks IM is projected through the projection optical system PL. この状態で、図4において、計測用ステージ14を駆動して、測定板20上のスリットでその指標マークIMの像をX方向、Y方向に走査し、測定板20の底部の光電センサの検出信号を結像特性演算系11で処理することによって、それらの像の位置、及びコントラストが求められる。 In this state, in FIG. 4, and drives the measurement stage 14, the image of the X-direction of the index mark IM slit on the measurement plate 20 scans in the Y direction, the detection of a photoelectric sensor at the bottom of the measuring plate 20 by processing the signal in imaging characteristic computation system 11, positions of the image, and the contrast is obtained. また、測定板20のフォーカス位置を所定量ずつ変えながら、それらの像の位置、及びコントラストが求められる。 Further, while changing the focus position of the measuring plate 20 by a predetermined amount, the position of their images, and contrast is obtained. これらの測定結果より、結像特性演算系11は、投影光学系PLの投影像のベストフォーカス位置、像面湾曲、ディストーション(倍率誤差を含む)といった結像特性の変動量を求める。 From these measurements, the imaging characteristic computation system 11 determines the best focus position, curvature of field, the amount of variation in imaging characteristics such as distortion (including magnification error) of the projected image of the projection optical system PL. この変動量は主制御系10に供給され、その変動量が許容範囲を超える場合には、主制御系10は投影光学系PLの結像特性を補正する。 This variation is supplied to the main control system 10, if the variation amount exceeds the allowable range, the main control system 10 corrects the imaging characteristics of the projection optical system PL.
【0050】 [0050]
上記の実施の形態では、図2に示すように、ウエハステージWST及び計測用ステージ14は、それぞれ定盤13上で平面モータによって駆動されている。 In the above embodiment, as shown in FIG. 2, the wafer stage WST and the measurement stage 14 is driven by a planar motor on each platen 13. しかしながら、1次元モータの組み合わせによってウエハステージWST及び計測用ステージ14を2次元的に駆動する構成も可能である。 However, arrangements are possible in which a combination of one-dimensional motor drives wafer stage WST and the measurement stage 14 in two dimensions.
そこで、次に、ウエハステージ、及び計測用ステージをそれぞれ1次元モータを組み合わせた機構で駆動する第2の実施の形態につき、図5を参照して説明する。 Accordingly, Next, a second embodiment for driving the wafer stage, and a measurement stage in the system combined one-dimensional motor respectively, it will be described with reference to FIG. 本例も、ステップ・アンド・スキャン方式の投影露光装置に本発明を適用したものであり、図5において図1及び図2に対応する部分には同一符号を付してその詳細説明を省略する。 This example also is obtained by applying the present invention to a projection exposure apparatus by a step-and-scan method, a detailed description thereof will be omitted for portions corresponding to FIGS. 1 and 2 in FIG. 5 are denoted by the same reference numerals .
【0051】 [0051]
図5(a)は本例の投影露光装置のウエハステージ側を示す平面図、図5(b)はその正面図であり、図5(a),(b)において、定盤33の上面にX方向に沿って平行に2本のX軸リニアガイド34A及び34Bが設置され、X軸リニアガイド34A及び34Bを連結するように、Y方向(走査方向)に細長いY軸リニアガイド32が設置されている。 5 (a) is a plan view showing a wafer stage side of the projection exposure apparatus of this embodiment, a 5 (b) is a front view thereof, FIGS. 5 (a), (b), the the upper surface of the platen 33 parallel to the two X axis linear guides 34A and 34B along the X direction is installed so as to connect the X-axis linear guides 34A and 34B, an elongated Y-axis linear guide 32 is disposed in the Y direction (scanning direction) ing. Y軸リニアガイド32は、不図示のリニアモータによってX軸リニアガイド34A,34Bに沿ってX方向に駆動される。 Y-axis linear guide 32, X-axis linear guides 34A by a linear motor (not shown) is driven in the X direction along the 34B.
【0052】 [0052]
また、Y軸リニアガイド32に沿ってそれぞれY方向に移動自在に、且つ互いに独立にウエハステージ31、及び計測用ステージ35が配置され、ウエハステージ31上に不図示のウエハホルダを介してウエハWが吸着保持され、計測用ステージ35上には照射量モニタ18、照度むらセンサ19、及び測定板20が固定され、測定板20の底部には光電センサが組み込まれている。 Also, movably respectively in the Y direction along the Y-axis linear guide 32, and is disposed wafer stage 31 and the measurement stage 35, independently of one another, the wafer W via a wafer holder (not shown) on the wafer stage 31 held by suction, the measurement stage 35 irradiation monitor on top 18, the uneven illuminance sensor 19, and the measurement plate 20 is fixed, the photoelectric sensor is built into the bottom of the measuring plate 20. この場合、ウエハステージ31、及び計測用ステージ35の底面はそれぞれエアーベアリングを介して定盤33上に載置され、ウエハステージ31、及び計測用ステージ35はそれぞれ独立に不図示のリニアモータを介してY軸リニアガイド32に沿ってY方向に駆動される。 In this case, the wafer stage 31, and the bottom surface of the measurement stage 35 is placed on the surface plate 33 via the air bearing respectively, the wafer stage 31, and the measurement stage 35 through a linear motor (not shown) each independently It is driven in the Y direction along the Y-axis linear guide 32 Te. 即ち、ウエハステージ31、及び計測用ステージ35はそれぞれ独立にY軸リニアガイド32、及びX軸リニアガイド34A,34Bに沿って2次元的に駆動される。 That is, the wafer stage 31 and the measurement stage 35, are each independently Y-axis linear guide 32, and the X axis linear guides 34A, 2-dimensionally driven along 34B. そして、本例においても、図3のレチクルステージ側のレーザ干渉計7Y,7X1,7X2,8Yと同様な4軸のレーザ干渉計によって、ウエハステージ31、及び計測用ステージ35の2次元的な位置が計測され、この計測結果に基づいてウエハステージ31、及び計測用ステージ35の位置や駆動速度が制御されている。 Also in the present embodiment, a laser interferometer 7Y of the reticle stage side of FIG. 3, by a laser interferometer similar 4-axis and 7X1,7X2,8Y, the wafer stage 31, and two-dimensional position of the measurement stage 35 There is measured, the position and the driving speed of the wafer stage 31, and the measurement stage 35 is controlled based on the measurement results. その他の構成は第1の実施の形態と同様である。 Other configurations are the same as in the first embodiment.
【0053】 [0053]
本例において、露光光の照射エネルギー、又は投影光学系の結像特性を計測する際には、露光光による露光領域に対して−Y方向に離れた位置にウエハステージ31が待避して、その露光領域に計測用ステージ35が移動する。 In this example, the irradiation energy of the exposure light, or when measuring the imaging characteristics of the projection optical system is retracted wafer stage 31 is at a position apart in the -Y direction with respect to the exposure area by the exposure light, the It is the measurement stage 35 in the exposure area to move. 一方、露光時には、露光光による露光領域に対して+Y方向に離れた位置に計測用ステージ35が待避する。 On the other hand, at the time of exposure, the measurement stage 35 is retracted in a position away in the + Y direction with respect to the exposure area by the exposure light. その後、ウエハステージ31をX方向、Y方向にステッピングさせて、ウエハW上の露光対象のショット領域を露光領域に対する走査開始位置に移動した後、ウエハステージ31をY軸リニアガイド32に沿ってY方向に定速移動することによって、当該ショット領域への走査露光が行われる。 Thereafter, the wafer stage 31 X-direction, by stepping in the Y direction, after moving the shot area subject to exposure on the wafer W to the scanning start position for exposure region along the wafer stage 31 in the Y-axis linear guide 32 Y by constant speed movement in a direction, the scanning exposure to the relevant shot area is performed.
【0054】 [0054]
上述のように本例によれば、Y軸リニアガイド32に沿って計測用ステージ35がウエハステージ31とは独立に配置されている。 According to the present embodiment as described above, measurement stage 35 along the Y-axis linear guide 32 is disposed independently of the wafer stage 31. この構成によって、より高いステージの制御精度が要求される走査方向(Y方向)の駆動では、計測用ステージ35を駆動する必要がないと共に、ウエハステージ31は小型化、軽量化されているため、走査速度が向上でき、走査露光時の同期精度等も向上している。 This configuration, in the driving of the scanning direction (Y-direction) higher stage control accuracy is required, with no need to drive the measurement stage 35, since the wafer stage 31 is miniaturized, being lighter, scanning speed can be improved, and also improved synchronization accuracy of time of scanning exposure. 一方、非走査方向(X方向)に対しては計測用ステージ35も同時に駆動されるため、駆動機構に対する負荷は大きくなる。 Meanwhile, since the measurement stage 35 relative to the non-scanning direction (X direction) are driven simultaneously, the load on the drive mechanism increases. しかしながら、非走査方向では走査方向に比べてそれ程高い制御精度が要求されないため、そのような負荷の増加の影響は小さい。 However, since very high control accuracy as compared with the scanning direction in the non-scanning direction is not required, the effect of such an increase in load is small. 更に、発熱源としての計測用ステージ35がウエハステージ31から分離されているため、ウエハステージ31の位置決め精度等の低下が防止されている。 Furthermore, since the measurement stage 35 as a heat generating source is separated from the wafer stage 31, reduction in the positioning accuracy of the wafer stage 31 is prevented.
【0055】 [0055]
なお、本例において、図5(a),(b)に2点鎖線で示すようにY軸リニアガイド32と並列に第2のY軸リニアガイド36をX方向に移動自在に配置し、このY軸リニアガイド32に計測用ステージ35をY方向に移動自在に配置してもよい。 In the present example, FIG. 5 (a), arranged movably a second Y-axis linear guide 36 in the X direction in parallel to Y-axis linear guide 32 as shown by two-dot chain line (b), the this the Y-axis linear guide 32 to the measurement stage 35 may be arranged to be movable in the Y direction. これによって、ウエハステージ31をX方向へ駆動する際の制御精度も向上する。 This also improves the control accuracy when driving the wafer stage 31 in the X direction.
【0056】 [0056]
また、上記の第1の実施の形態では、図3に示すように、同一のガイド4A,4Bに沿ってレチクルステージRST、及び計測用ステージ5が配置されているが、図2のウエハステージ側のようにレチクルステージRST、及び計測用ステージ5が独立に2次元的に動けるようにしてもよい。 In the first embodiment described above, as shown in FIG. 3, the same guide 4A, the reticle stage RST along the 4B, and is the stage 5 is arranged for measurement, the wafer stage side of FIG. 2 reticle stage RST, and the measurement stage 5 may be move two-dimensionally independently as.
更に、上記の実施の形態では、ウエハWが載置されるウエハステージWST,31はそれぞれ1つ設けられているが、ウエハWが載置されるウエハステージを複数個設けても良い。 Further, in the above embodiment, although the wafer stage WST, 31 on which a wafer W is mounted is provided each one may be provided a plurality of wafer stage on which the wafer W is mounted. この場合、1つのウエハステージで露光を行い、他方のウエハステージでアライメント用の計測、あるいはウエハ交換を行う方法を使用することもできる。 In this case, exposure of one wafer stage, the measurement for alignment in the other wafer stage, or a method of performing wafer exchange can also be used. 同様に、レチクルステージ側にもレチクルRが載置される複数のレチクルステージを設け、これら複数のレチクルステージに異なるレチクルを載置して、これらのレチクルを順次ウエハ上の同一のショット領域に露光条件(フォーカス位置、露光量、照明条件等)を変えて露光するようにしてもよい。 Similarly, a plurality of reticle stage reticle R is mounted to the reticle stage side provided, by placing different reticles to the plurality of reticle stage, the exposure to the same shot area on sequential wafer these reticles conditions (focus position, exposure, lighting conditions, etc.) by changing may be exposed.
【0057】 [0057]
次に、本発明の第3の実施の形態につき図6及び図7を参照して説明する。 Will now be described with reference to FIGS. 6 and 7 per the third embodiment of the present invention. 本例は、ウエハステージに設けられた計測装置を冷却する冷却装置を設けたものであり、図6及び図7において図1及び図2に対応する部分には同一符号を付してその詳細説明を省略する。 This example, which has a cooling device for cooling the measuring device provided on the wafer stage, and the detailed description the same reference numerals are given to the portions corresponding to FIGS. 1 and 2 in FIG. 6 and FIG. 7 omitted.
図6は、本例の投影露光装置を示し、この図6において、投影光学系PLによる露光領域12側にウエハWが配置され、ウエハWは不図示のウエハホルダを介してウエハステージ41上に保持され、ウエハステージ41は定盤13上に例えば平面モータによってX方向、Y方向に駆動されるように載置されている。 6 shows a projection exposure apparatus of this embodiment, the holding in FIG. 6, the wafer W is placed on the exposure area 12 side by the projection optical system PL, the wafer W is on a wafer stage 41 via a wafer holder (not shown) is, the wafer stage 41 is mounted to be driven by for example a planar motor on a surface plate 13 X and Y directions. 不図示であるがウエハステージ41内にはウエハWのフォーカス位置、及び傾斜角を制御する機構も組み込まれている。 Focus position of the wafer W is within although the wafer stage 41 is not shown, and a mechanism for controlling the inclination angle is also incorporated. 更に、ウエハステージ41にはウエハWを囲むように露光光ILや結像特性の計測機構が組み込まれている。 Furthermore, the measuring mechanism of the exposure light IL and imaging characteristics so as to surround the wafer W is incorporated in the wafer stage 41.
【0058】 [0058]
図7は、図6のウエハステージ41の平面図を示し、この図7において、ウエハW(ウエハホルダ)の近傍には、基準マーク部材17、照射量モニタ18、照度むらセンサ19、スリット21X,21Yが形成された測定板20が配置されている。 Figure 7 shows a plan view of the wafer stage 41 in FIG. 6, in FIG. 7, in the vicinity of the wafer W (wafer holder), the reference mark member 17, the dose monitor 18, the uneven illuminance sensor 19, a slit 21X, 21Y measurement plate 20 but is formed is disposed. また、ウエハステージ41上で照射量モニタ18の近傍には、持ち運びできる基準照度計を設置するための凹部47が形成されており、凹部47に基準照度計を設置して露光光ILの入射エネルギーを計測することによって、異なる投影露光装置間の照度のマッチングを取れるようになっている。 In the vicinity of the irradiation monitor 18 on the wafer stage 41 is formed with a recess 47 for installing a reference illuminometer that can be carried, by installing a standard luminometer recess 47 incident energy of the exposure light IL by measuring the, so that take the matching of the illuminance between different projection exposure apparatus. 更に、ウエハステージ41上の一隅に平坦度等の基準となる基準平面が形成された基準部材46も固定されている。 Furthermore, the reference member 46 the reference plane is formed as a reference flatness such as a corner on the wafer stage 41 is also fixed. 本例では、これらの計測機構の熱源を冷却するための冷却装置が設けられている。 In this example, a cooling apparatus for cooling a heat source of these measurement mechanism is provided.
【0059】 [0059]
即ち、図6に一部を切り欠いて示すように、測定板20のスリット21Yの底部に集光レンズ42、及び光電センサ43が配置され、不図示であるが光電センサ43にはアンプ等も接続されている。 That is, as shown partially cut away in FIG. 6, the condenser lens 42 and the photoelectric sensor 43, is arranged at the bottom of the slit 21Y measurement plate 20, amplifier or the like in the photoelectric sensor 43 though not shown also It is connected. そこで、ウエハステージ41の内部に光電センサ43の近傍を通過するように冷却管44が設置され、冷却管44には大きな可撓性を有する配管45Aを介して、外部の冷却装置より低温の液体よりなる冷媒が供給され、配管45A内を通過した冷媒は大きな可撓性を有する配管45Bを介してその冷却装置に戻されている。 Therefore, the cooling pipe 44 is placed so the interior of the wafer stage 41 passes by the photoelectric sensor 43, the cooling pipe 44 through a pipe 45A with a large flexibility, low temperature liquid from the outside of the cooling device is supplied become more refrigerant, the refrigerant having passed through the pipe 45A is returned to its cooling system through a pipe 45B having a greater flexibility. また、その冷却管44は、図7の照射量モニタ18、照度むらセンサ19の近傍、並びに基準照度計用の凹部47、基準マーク部材17、基準部材46の底部をも通過している。 Moreover, the cooling tube 44, irradiation monitor 18 of FIG. 7, which also passes through the vicinity of the uneven illuminance sensor 19, and the recess 47 for the reference illuminance meter, the reference mark member 17, the bottom of the reference member 46. 本例では、これらの計測装置のアンプ等の熱源からの熱エネルギーが冷却管44内の冷媒を介して排出されるため、その熱エネルギーによってウエハWの位置決め精度等が悪化することがない。 In this example, since the heat energy from the heat source such as the amplifier of the measuring device is discharged via the refrigerant in the cooling tube 44, never positioning accuracy or the like of the wafer W is deteriorated by the heat energy. また、露光光ILの入射エネルギー等の計測時に、照射量モニタ18や照度むらセンサ19に露光光ILが照射された場合でも、その照射エネルギーは冷却管44内の冷媒を介して排出されるため、その照射エネルギーによってウエハWの位置決め精度等が悪化することがない。 Further, when the measurement of such incident energy of the exposure light IL, even when the exposure light IL is irradiated to the irradiation quantity monitor 18 and illuminance unevenness sensor 19, since the irradiation energy is discharged via the refrigerant in the cooling pipe 44 have never positioning accuracy of the wafer W is deteriorated by the irradiation energy.
【0060】 [0060]
なお、本例では液体よりなる冷媒を使用して計測装置を冷却しているが、例えば空調用の空気等をそれらの計測装置の近傍に集中的に送風して冷却を行ってもよい。 Although this example to cool the measuring apparatus using a refrigerant made of a liquid, such as air or the like for air conditioning may be performed intensively blown to cool the vicinity of their measuring devices.
次に、本発明の第4の実施の形態につき図8を参照して説明する。 Next, will be explained with reference to Figure 8 a fourth embodiment of the present invention. 本例は、ウエハステージ上でウエハの配置領域(第1のステージ)と計測装置の配置領域(第2のステージ)との間に断熱部材を設けたものであり、図8において図7に対応する部分には同一符号を付してその詳細説明を省略する。 This embodiment, which has provided a heat insulating member between the arrangement region of the wafer on the wafer stage arrangement region (first stage) and the measuring device (second stage), corresponding to FIG. 7 8 the portions will not be further described by the same reference numerals.
【0061】 [0061]
図8は、図7のウエハステージ41と同様に定盤上をX方向、Y方向に駆動されるウエハステージ41Aを示し、この図8において、ウエハステージ41Aの上部は、熱伝導率の低い材料よりなる断熱板48によって、計測装置設置領域41Aaと、それ以外の領域とに分かれている。 Figure 8 shows the wafer stage 41A driven to the surface plate in the same manner as the wafer stage 41 in FIG. 7 X direction, the Y direction, in FIG. 8, the upper portion of the wafer stage 41A has a lower thermal conductivity material the more becomes insulating plate 48 is divided into a measuring device installation region 41Aa, and other regions. 熱伝導率の低い材料としては、ステンレススチール、鉄、黄銅等の金属、セラミックス、又はガラス等が使用できる。 The material having low thermal conductivity, stainless steel, iron, metals such as brass, ceramic, or glass can be used. そして、後者の領域上にウエハホルダ(不図示)を介してウエハWが載置されると共に、位置基準となる基準マーク部材17が設置され、前者の計測装置設置領域41Aa内に、位置基準となるマークが形成された基準マーク部材17A、照射量モニタ18、照度むらセンサ19、基準平面を有する基準部材46、及びスリットが形成された測定板20が配置されている。 Then, the wafer W via a wafer holder (not shown) in the latter region is placed, is installed reference mark member 17 serving as a positional reference, the former measuring device installation area 41Aa, a position reference reference mark member 17A which marks are formed, the dose monitor 18, the uneven illuminance sensor 19, the reference member 46 having a reference plane, and the measurement plate 20 in which slits are formed is disposed. 更に、計測装置設置領域41Aa上には、基準照度計を設置するための凹部47が形成されている。 Furthermore, on measuring apparatus installed area 41Aa, recesses 47 for installing a reference illumination meter is formed.
【0062】 [0062]
本例においても、露光光や結像特性の計測時に計測装置設置領域41Aa内の計測装置が使用されるが、これらの計測装置のアンプ等で発生する熱エネルギーは断熱板48によってウエハW側には拡散しにくいため、ウエハWの位置決め精度等が悪化することがない。 In this example, when the measurement of the exposure light and image forming characteristic measurement device in measuring apparatus installation area 41Aa are used, thermal energy generated by the amplifier or the like of these measurement devices on the wafer W side by a heat insulating plate 48 since it is difficult to diffuse, the positioning accuracy of the wafer W is not deteriorated. 同様に、計測時に露光光によって与えられる照射エネルギーも断熱板48によってウエハW側には拡散しにくい利点がある。 Similarly, irradiation energy imparted by exposure light during measurement to the wafer W side by a heat insulating plate 48 has the advantage of not easily diffused.
【0063】 [0063]
なお、例えば図2に示すように、ウエハステージWSTと計測用ステージ14とが分離している構成でも、ウエハステージWSTと計測用ステージ14との間の空調された空気を断熱部材とみなすことができる。 Incidentally, for example, as shown in FIG. 2, be configured to wafer stage WST and the measurement stage 14 are separated, the conditioned air between the wafer stage WST and the measurement stage 14 be regarded as a heat insulating member it can. また、レチクルステージ側でも、レチクルが載置される領域と、計測装置が設置される領域との間に断熱部材を配置するようにしてもよい。 Also, the reticle stage side, and the region where the reticle is placed, may be arranged a heat insulating member between the area measurement apparatus is installed.
【0064】 [0064]
また、上記の実施の形態は本発明をステップ・アンド・スキャン方式の投影露光装置に適用したものであるが、本発明は一括露光型の投影露光装置(ステッパー)にも適用できると共に、投影光学系を使用しないプロキシミティ方式の露光装置にも適用できる。 Further, the above embodiment is the present invention is applied to a projection exposure apparatus by a step-and-scan method, the present invention is also applicable to one-shot exposure type projection exposure apparatus (stepper), a projection optical system can also be applied to a proximity type exposure apparatus that does not use. また、露光装置のみならず、ウエハ等を位置決めするためのステージを使用する検査装置、又はリペア装置等に用いてもよい。 Moreover, not exposure device only, inspection apparatus using the stage for positioning the wafer or the like, or may be used to repair device.
【0065】 [0065]
このように、本発明は上述の実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。 Thus, the present invention is not limited to the embodiments described above, can take various arrangements without departing from the gist of the present invention.
【0066】 [0066]
【発明の効果】 【Effect of the invention】
本発明の第1 及び第2の露光装置によれば、 基板を移動するための第1のステージに対して計測装置を備えた第2のステージが独立に設けられているため、それぞれ露光ビーム(露光光)の状態、又は投影光学系の結像特性を計測する機能を維持した状態で、 基板を位置決めするためのステージを小型化、軽量化できる利点がある。 According to the first and second exposure apparatus of the present invention, since the second stage having a measuring device for the first stage for moving the substrate are provided independently, each exposure beam ( state of the exposure light), or the imaging characteristics of the projection optical system while maintaining the function of measuring, miniaturize the stage for positioning the substrate, an advantage of light weight. 従って、これらのステージの制御性能を向上でき、露光工程のスループットも向上すると共に、計測装置を構成する光電センサ、又はアンプ等の熱源が露光用のステージから分離されることになって、重ね合わせ精度等が向上する。 Therefore, can improve the control performance of these stages, as well as improved throughput of the exposure step, the photoelectric sensors constituting the measuring device, or a heat source such as an amplifier becomes to be separated from the stage for the exposure, the overlay accuracy and the like can be improved. 特に本発明をステップ・アンド・スキャン方式のような走査露光型の露光装置に適用すると、走査速度の向上によってスループットが大きく向上するため、本発明の効果は特に大きい。 In particular, when the present invention is applied to a scanning exposure type exposure apparatus, such as a step-and-scan method, the throughput by improving the scanning speed is greatly improved, the effect of the present invention is particularly large.
【0067】 [0067]
これらの場合、第2のステージは、第1のステージとは独立に移動自在に配置されているときには、その第1のステージを迅速に計測領域に移動できる。 In these cases, the second stage, when it is arranged movably independently of the first stage can move the first stage to quickly measurement region.
また、露光ビームが照射される位置(露光領域)と、露光ビームが照射されない位置(非露光領域)との間で第1のステージを移動させる制御装置を備えたときには、計測時に迅速にその第1のステージを待避できる。 Further, the position (exposure area) exposure beam is irradiated, when the exposure beam is provided with a control device for moving the first stage between a position not irradiated (unexposed areas) are quickly its first during measurement It can be saved the first stage.
【0068】 [0068]
また、露光ビームが照射される位置(露光領域)と、露光ビームが照射されない位置(非露光領域)との間で第2のステージを移動させる制御装置を備えたときには、露光時に迅速にその第2のステージを待避できる。 Further, the position (exposure area) exposure beam is irradiated, when the exposure beam is provided with a control device for moving the second stage between a position not irradiated (unexposed areas) are quickly its first during exposure It can be saved 2 of the stage.
また、第1のステージが露光ビームを照射される位置に有るときに、第2のステージを露光ビームが照射されない位置に位置決めする制御装置を備えたときには、それら2つのステージを効率的に使い分けることができる。 Furthermore, when in the position where the first stage is illuminated with exposure beam, when the second stage is the exposure beam having a control device for positioning at positions not irradiated, selectively using the two stages efficiently can.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】本発明の第1の実施の形態の投影露光装置を示す概略構成図である。 1 is a schematic diagram showing a projection exposure apparatus according to a first embodiment of the present invention.
【図2】図1のウエハステージWST、及び計測用ステージ14を示す平面図である。 2 is a plan view of wafer stage WST in FIG. 1, and the measurement stage 14 shown.
【図3】図1のレチクルステージRST、及び計測用ステージ5を示す平面図である。 3 is a plan view showing the reticle stage RST, and the measurement stage 5 in FIG.
【図4】その第1の実施の形態において、計測用ステージ14を用いて露光光の状態等を計測する場合の説明に供する平面図である。 [4] In the first embodiment, it is a plan view for explaining a case of measuring the state of exposure light using the measurement stage 14.
【図5】(a)は本発明の第2の実施の形態の投影露光装置のウエハステージ、及び計測用ステージを示す平面図、(b)は図5(a)の正面図である。 5 (a) is a plan view showing a wafer stage, and the measurement stage of a projection exposure apparatus of the second embodiment of the present invention, is a front view of (b) is 5 (a).
【図6】本発明の第3の実施の形態の投影露光装置を示す一部を切り欠いた概略構成図である。 6 is a schematic configuration view, with parts cut away showing a projection exposure apparatus of the third embodiment of the present invention.
【図7】図6の投影露光装置のウエハステージを示す平面図である。 7 is a plan view showing a wafer stage of the projection exposure apparatus of FIG.
【図8】本発明の第4の実施の形態の投影露光装置のウエハステージを示す平面図である。 8 is a plan view showing a wafer stage of the projection exposure apparatus of the fourth embodiment of the present invention.
【符号の説明】 DESCRIPTION OF SYMBOLS
R レチクルRST レチクルステージ4A,4B ガイド5 レチクルステージ側の計測用ステージ6 基準板PL 投影光学系W ウエハWST,31,41,41A ウエハステージ10 主制御系11 結像特性演算系13 定盤14,35 ウエハステージ側の計測用ステージ17 基準マーク部材18 照射量モニタ19 照度むらセンサ20 測定板32 Y軸リニアガイド33 定盤34A,34B X軸リニアガイド48 断熱板 R reticle RST reticle stage 4A, 4B guide 5 reticle stage side of the measurement stage 6 reference plate PL projection optical system W wafer WST, 31,41,41A wafer stage 10 main control system 11 imaging characteristic computation system 13 platen 14, 35 wafer stage side of the measurement stage 17 reference mark member 18 irradiation monitor 19 illuminance unevenness sensor 20 measuring plate 32 Y-axis linear guide 33 surface plate 34A, 34B X-axis linear guide 48 insulation board

Claims (11)

  1. マスクに形成されたパターンを露光ビームを用いて基板上に転写する露光装置において、 In an exposure apparatus for transferring a substrate using the formed pattern as a mask exposure beam,
    前記基板を保持して所定の領域を移動する第1のステージと、 A first stage for moving the predetermined region while holding the substrate,
    前記第1のステージとは独立して移動自在に配置され、前記基板を保持しない第2のステージと、 Wherein the first stage is movably arranged independently, and a second stage which does not hold the substrate,
    該第2のステージに設けられて前記露光ビームの状態を計測する計測装置と、 A measuring device for measuring a state of the exposure beam is provided to the second stage,
    前記第1のステージに保持された基板の露光中、前記露光ビームの照射位置から離れた待避位置に前記第2のステージを配置するとともに、前記露光ビームの照射位置に前記第2のステージを配置して、前記第1のステージへの基板のロードと並行して前記計測装置による前記露光ビームの状態の計測を実行可能とする制御装置と、を備えたことを特徴とする露光装置。 During exposure of the substrate held on the first stage, together with arranging the second stage retracted position away from the irradiation position of the exposure beam, arranging the second stage at the irradiation position of the exposure beam to an exposure apparatus, characterized in that it and a control device which can execute the measurement of the state of the exposure beam by the measuring device in parallel with the load of the substrate to the first stage.
  2. 前記パターンを前記基板上に投影する投影光学系を備え、前記計測装置は、前記投影光学系の結像特性を計測可能である請求項1記載の露光装置。 Includes a projection optical system for projecting the pattern onto the substrate, the measurement apparatus, exposure apparatus according to claim 1, wherein it is possible measure the imaging characteristic of the projection optical system.
  3. マスクに形成されたパターンを投影光学系を介して基板上に投影する露光装置において、 In an exposure apparatus for projecting on a substrate a pattern formed on a mask via a projection optical system,
    前記基板を保持して所定の領域を移動する第1のステージと、 A first stage for moving the predetermined region while holding the substrate,
    前記第1のステージとは独立して移動自在に配置され、前記基板を保持しない第2のステージと、 Wherein the first stage is movably arranged independently, and a second stage which does not hold the substrate,
    該第2のステージに設けられて前記投影光学系の結像特性を計測する計測装置と、 A measuring device for measuring the imaging characteristic of the projection optical system provided in the second stage,
    前記第1のステージに保持された基板の露光中、前記投影光学系の露光領域から離れた待避位置に前記第2のステージを配置するとともに、前記投影光学系と対向して前記第2のステージを配置して、前記第1のステージへの基板のロードと並行して前記計測装置による前記結像特性の計測を実行可能とする制御装置と、を備えたことを特徴とする露光装置。 Wherein during exposure of the substrate held by the first stage, said projection with arranging the second stage retracted position away from the exposure area of the optical system, the projection optical system facing to the second stage the placed, an exposure apparatus, wherein a control device, further comprising a that can execute the measurement of the imaging characteristic by the measuring device in parallel with the substrate loading into the first stage.
  4. 前記第1のステージは複数設けられ、前記複数の第1のステージの1つに保持される基板の露光と並行して、前記1つの第1のステージとは別の第1のステージに保持される基板のアライメント用の計測あるいはその基板の交換が行われる請求項1から3のいずれか一項に記載の露光装置。 The first stage is provided in plurality, in parallel with the exposure of the substrate held by the one of the plurality of first stage, held in a separate first stage and the one first stage the exposure apparatus according to any one of claims 1 to 3, measurement or replacement of the substrate for alignment of a substrate that is carried out.
  5. 前記第1のステージと前記第2のステージをそれぞれ独立に駆動する平面モータを含む駆動装置を備える請求項1から4のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 1 to 4 comprising a driving device including a planar motor for driving the second stage and the first stage independently.
  6. 前記第1のステージと前記第2のステージとで一部が共用されるリニアモータを含み、前記第1のステージと前記第2のステージをそれぞれ独立に駆動する駆動装置を備える請求項1から4のいずれか一項に記載の露光装置。 Includes a linear motor portion is shared with the second stage and the first stage, from claim 1, further comprising a driving device for driving the first stage and the second stage each independently 4 An apparatus according to any one of.
  7. 前記基板のマークを検出するアライメント系を備え、前記第2のステージは、前記アライメント系によって検出可能な基準マークを有する請求項1から6のいずれか一項に記載の露光装置。 Comprising an alignment system for detecting a mark of the substrate, the second stage, the exposure apparatus according to any one of 6 claim 1 having a reference mark detectable by the alignment system.
  8. 前記基板のマークを検出するアライメント系を備え、前記第1のステージは、前記アライメント系によって検出可能な基準マークを有する請求項1から7のいずれか一項に記載の露光装置。 Comprising an alignment system for detecting a mark of the substrate, the first stage, the exposure apparatus according to any one of claims 1 to 7 having a detectable reference mark by the alignment system.
  9. 前記マスクを保持するマスクステージを備え、前記マスクステージと前記第1のステージとによって前記マスクと前記基板とを同期移動して前記基板の走査露光を行う請求項1から8のいずれか一項に記載の露光装置。 Includes a mask stage for holding the mask, to any one of claims 1 to 8, wherein a mask stage first by synchronously moving the substrate and the mask by a stage for scanning exposure of the substrate the exposure apparatus according.
  10. 前記マスクを保持するマスクステージと、前記露光ビームが照射されるマーク部材を有し、前記マスクステージとは独立して可動な計測用ステージとを備える請求項1から9のいずれか一項に記載の露光装置。 A mask stage for holding the mask, wherein a mark member exposure beam is irradiated, according to any one of said mask stage independently of claim 1 and a movable measurement stage 9 of the exposure apparatus.
  11. それぞれマスクを保持して独立に可動な複数のマスクステージを備える前記請求項1から10のいずれか一項に記載の露光装置。 The exposure apparatus according to any one of claims 1 to 10, each comprising a movable plurality of mask stage independently while holding the mask.
JP29977597A 1997-10-31 1997-10-31 Exposure apparatus Expired - Fee Related JP4210871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29977597A JP4210871B2 (en) 1997-10-31 1997-10-31 Exposure apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29977597A JP4210871B2 (en) 1997-10-31 1997-10-31 Exposure apparatus
PCT/JP1998/004843 WO1999023692A1 (en) 1997-10-31 1998-10-26 Aligner and exposure method
AU9648198A AU9648198A (en) 1997-10-31 1998-10-26 Aligner and exposure method

Publications (2)

Publication Number Publication Date
JPH11135400A true JPH11135400A (en) 1999-05-21
JP4210871B2 true JP4210871B2 (en) 2009-01-21

Family

ID=17876815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29977597A Expired - Fee Related JP4210871B2 (en) 1997-10-31 1997-10-31 Exposure apparatus

Country Status (2)

Country Link
JP (1) JP4210871B2 (en)
WO (1) WO1999023692A1 (en)

Families Citing this family (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351041B1 (en) 1999-07-29 2002-02-26 Nikon Corporation Stage apparatus and inspection apparatus having stage apparatus
KR101532824B1 (en) 2003-04-09 2015-07-01 가부시키가이샤 니콘 Exposure method and apparatus, and device manufacturing method
KR20170064003A (en) 2003-04-10 2017-06-08 가부시키가이샤 니콘 Environmental system including a transport region for an immersion lithography apparatus
EP3232271A1 (en) 2003-04-10 2017-10-18 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
EP1616220B1 (en) 2003-04-11 2013-05-01 Nikon Corporation Apparatus and method for maintaining immersion fluid under a lithographic projection lens
CN101825847B (en) 2003-04-11 2013-10-16 株式会社尼康 Cleanup method for optics in immersion lithography
KR20060018869A (en) 2003-06-19 2006-03-02 가부시키가이샤 니콘 Exposure device and device producing method
KR101414896B1 (en) 2003-07-28 2014-07-03 가부시키가이샤 니콘 Exposure apparatus, device producing method, and exposure apparatus controlling method
KR101475995B1 (en) 2003-08-21 2014-12-23 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device producing method
KR101443001B1 (en) 2003-09-29 2014-09-22 가부시키가이샤 니콘 Projection exposure device, projection exposure method, and device manufacturing method
EP2312395B1 (en) 2003-09-29 2015-05-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
WO2005041276A1 (en) 2003-10-28 2005-05-06 Nikon Corporation Exposure apparatus, exposure method, and device producing method
EP1679737A4 (en) 2003-10-31 2008-01-30 Nikon Corp Exposure apparatus and device producing method
EP3139214A3 (en) 2003-12-03 2017-05-31 Nikon Corporation Exposure apparatus, exposure method, device producing method, and optical component
DE602004027162D1 (en) 2004-01-05 2010-06-24 Nippon Kogaku Kk Exposure means exposure methods, and devices manufacturing processes
KR101135232B1 (en) 2004-01-20 2012-04-12 칼 짜이스 에스엠테 게엠베하 Microlithographic projection exposure apparatus
WO2005071717A1 (en) 2004-01-26 2005-08-04 Nikon Corporation Exposure apparatus and device producing method
US7589822B2 (en) * 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
EP3093873B1 (en) 2004-02-04 2017-10-11 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
WO2005076323A1 (en) 2004-02-10 2005-08-18 Nikon Corporation Aligner, device manufacturing method, maintenance method and aligning method
JP5076497B2 (en) 2004-02-20 2012-11-21 株式会社ニコン Exposure apparatus, supply method and the method of recovering the liquid, the exposure method, and device manufacturing method
DE102004013886A1 (en) 2004-03-16 2005-10-06 Carl Zeiss Smt Ag A method for multiple exposure, microlithography projection exposure apparatus and projection system
US20070201010A1 (en) * 2004-03-25 2007-08-30 Nikon Corporation Exposure Apparatus, Exposure Method, And Device Manufacturing Method
KR101330370B1 (en) 2004-04-19 2013-11-15 가부시키가이샤 니콘 Exposure apparatus and device producing method
US7486381B2 (en) 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1774405B1 (en) 2004-06-04 2014-08-06 Carl Zeiss SMT GmbH System for measuring the image quality of an optical imaging system
EP3203498A1 (en) 2004-06-09 2017-08-09 Nikon Corporation Exposure apparatus and device manufacturing method
US8508713B2 (en) 2004-06-10 2013-08-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8373843B2 (en) 2004-06-10 2013-02-12 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
KR101556454B1 (en) 2004-06-10 2015-10-13 가부시키가이샤 니콘 Exposure equipment, exposure method and device manufacturing method
US8717533B2 (en) 2004-06-10 2014-05-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
WO2005124833A1 (en) 2004-06-21 2005-12-29 Nikon Corporation Exposure device, exposure device member cleaning method, exposure device maintenance method, maintenance device, and device manufacturing method
US7463330B2 (en) 2004-07-07 2008-12-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2006006565A1 (en) 2004-07-12 2006-01-19 Nikon Corporation Exposure equipment and device manufacturing method
EP1783823A4 (en) 2004-07-21 2009-07-22 Nikon Corp Exposure method and method for producing device
US8169591B2 (en) 2004-08-03 2012-05-01 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8102512B2 (en) 2004-09-17 2012-01-24 Nikon Corporation Substrate holding device, exposure apparatus, and device manufacturing method
KR20070063505A (en) * 2004-10-08 2007-06-19 가부시키가이샤 니콘 Exposure device and device manufacturing method
WO2006041083A1 (en) 2004-10-13 2006-04-20 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
KR101285951B1 (en) 2004-10-26 2013-07-12 가부시키가이샤 니콘 Substrate processing method, exposure apparatus and method for manufacturing device
EP1816671A4 (en) 2004-11-11 2010-01-13 Nikon Corp Exposure method, device manufacturing method, and substrate
US9557656B2 (en) * 2004-12-01 2017-01-31 Nikon Corporation Stage apparatus and exposure apparatus
JP4752473B2 (en) 2004-12-09 2011-08-17 株式会社ニコン Exposure apparatus, exposure method and device manufacturing method
KR101771334B1 (en) 2004-12-15 2017-08-24 가부시키가이샤 니콘 Substrate holding apparatus, exposure apparatus and device manufacturing method
US7528931B2 (en) * 2004-12-20 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7450217B2 (en) 2005-01-12 2008-11-11 Asml Netherlands B.V. Exposure apparatus, coatings for exposure apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby
KR20150004890A (en) 2005-01-31 2015-01-13 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
US8547522B2 (en) * 2005-03-03 2013-10-01 Asml Netherlands B.V. Dedicated metrology stage for lithography applications
WO2006101024A1 (en) 2005-03-18 2006-09-28 Nikon Corporation Exposure method, exposure apparatus, device manufacturing method and exposure apparatus evaluating method
JP4770833B2 (en) 2005-03-25 2011-09-14 株式会社ニコン Method of measuring the shot shape, mask
JP4605219B2 (en) 2005-03-30 2011-01-05 株式会社ニコン Method of determining the exposure conditions, exposure method and an exposure apparatus, and device manufacturing method
USRE43576E1 (en) 2005-04-08 2012-08-14 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
KR101555707B1 (en) 2005-04-18 2015-09-25 가부시키가이샤 니콘 The exposure apparatus and exposure methods, and device manufacturing method
CN100555568C (en) 2005-04-28 2009-10-28 株式会社尼康 Exposure method, exposure apparatus and device manufacturing method
EP2660852B1 (en) 2005-05-12 2015-09-02 Nikon Corporation Projection optical system, exposure apparatus and exposure method
KR20080018158A (en) 2005-06-21 2008-02-27 가부시키가이샤 니콘 Exposure apparatus, exposure method, maintenance method and device manufacturing method
US7924416B2 (en) 2005-06-22 2011-04-12 Nikon Corporation Measurement apparatus, exposure apparatus, and device manufacturing method
US8693006B2 (en) 2005-06-28 2014-04-08 Nikon Corporation Reflector, optical element, interferometer system, stage device, exposure apparatus, and device fabricating method
KR20080026082A (en) 2005-06-30 2008-03-24 가부시키가이샤 니콘 Exposure apparatus and method, exposure apparatus maintenance method, and device manufacturing method
WO2007023813A1 (en) 2005-08-23 2007-03-01 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8111374B2 (en) 2005-09-09 2012-02-07 Nikon Corporation Analysis method, exposure method, and device manufacturing method
EP1933371A1 (en) 2005-09-09 2008-06-18 Nikon Corporation Exposure apparatus, exposure method, and device production method
EP1936665A4 (en) 2005-09-21 2010-03-31 Nikon Corp Exposure device, exposure method, and device fabrication method
US8681314B2 (en) 2005-10-24 2014-03-25 Nikon Corporation Stage device and coordinate correction method for the same, exposure apparatus, and device manufacturing method
JP2007123334A (en) * 2005-10-25 2007-05-17 Nikon Corp Stage apparatus, aligner, and manufacturing method of device
JPWO2007052659A1 (en) 2005-11-01 2009-04-30 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
JPWO2007055199A1 (en) 2005-11-09 2009-04-30 株式会社ニコン Exposure apparatus and method, and device manufacturing method
JPWO2007055373A1 (en) 2005-11-14 2009-04-30 株式会社ニコン The liquid recovery member, an exposure apparatus, exposure method, and device manufacturing method
KR20080068006A (en) 2005-11-15 2008-07-22 가부시키가이샤 니콘 Exposure apparatus, exposure method and device manufacturing method
US7803516B2 (en) 2005-11-21 2010-09-28 Nikon Corporation Exposure method, device manufacturing method using the same, exposure apparatus, and substrate processing method and apparatus
JP2007165869A (en) 2005-11-21 2007-06-28 Nikon Corp Exposure method and method for manufacturing device using same, exposure device, and method and device of processing substrate
US8125610B2 (en) 2005-12-02 2012-02-28 ASML Metherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
EP1970944A4 (en) 2005-12-06 2010-04-28 Nikon Corp Exposure apparatus, exposure method, projection optical system and device manufacturing method
US7782442B2 (en) 2005-12-06 2010-08-24 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device producing method
KR20080071552A (en) 2005-12-06 2008-08-04 가부시키가이샤 니콘 Exposure method, exposure apparatus, and method for manufacturing device
EP2768016B1 (en) 2005-12-08 2017-10-25 Nikon Corporation Exposure apparatus and method
CN101300662B (en) 2005-12-28 2012-05-09 株式会社尼康 Pattern forming method, pattern forming apparatus, and device manufacturing method
WO2007077875A1 (en) 2005-12-28 2007-07-12 Nikon Corporation Exposure apparatus, exposure method, and device production method
US8411271B2 (en) 2005-12-28 2013-04-02 Nikon Corporation Pattern forming method, pattern forming apparatus, and device manufacturing method
US8953148B2 (en) 2005-12-28 2015-02-10 Nikon Corporation Exposure apparatus and making method thereof
EP1975982A1 (en) 2005-12-28 2008-10-01 Nikon Corporation Pattern formation method and pattern formation apparatus, exposure metho and exposure apparatus, and device manufacturing method
KR101431405B1 (en) 2006-01-19 2014-08-18 가부시키가이샤 니콘 Moving body drive method, moving body drive system, pattern formation method, pattern formation device, exposure method, exposure device, and device fabrication method
EP1986223A4 (en) 2006-02-16 2010-08-25 Nikon Corp Exposure apparatus, exposing method, and device manufacturing method
US7714982B2 (en) 2006-02-16 2010-05-11 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
WO2007094407A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
KR20080103564A (en) 2006-02-16 2008-11-27 가부시키가이샤 니콘 Exposure apparatus, exposing method, and device manufacturing method
KR101333872B1 (en) 2006-02-21 2013-11-27 가부시키가이샤 니콘 Pattern forming apparatus, pattern forming method, mobile object driving system, mobile body driving method, exposure apparatus, exposure method and device manufacturing method
JP5177674B2 (en) * 2006-02-21 2013-04-03 株式会社ニコン Measuring apparatus and method, a pattern forming apparatus and method, and device manufacturing method
CN101980085B (en) 2006-02-21 2012-11-07 株式会社尼康 Exposure apparatus, exposure method, and device manufacturing method
EP1993120A1 (en) 2006-03-03 2008-11-19 Nikon Corporation Exposure method and apparatus, and device manufacturing method
KR20080107363A (en) 2006-03-03 2008-12-10 가부시키가이샤 니콘 Exposure apparatus and device manufacturing method
JP5077770B2 (en) 2006-03-07 2012-11-21 株式会社ニコン A device manufacturing method, device manufacturing system and test apparatus
KR20080114691A (en) 2006-03-13 2008-12-31 가부시키가이샤 니콘 Exposure apparatus, maintenance method, exposure method and device manufacturing method
US20070242254A1 (en) 2006-03-17 2007-10-18 Nikon Corporation Exposure apparatus and device manufacturing method
US8982322B2 (en) 2006-03-17 2015-03-17 Nikon Corporation Exposure apparatus and device manufacturing method
US20080013062A1 (en) 2006-03-23 2008-01-17 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
KR20090006064A (en) 2006-04-05 2009-01-14 가부시키가이샤 니콘 Stage apparatus, exposure apparatus, stage control method, exposure method and device manufacturing method
DE102006021797A1 (en) 2006-05-09 2007-11-15 Carl Zeiss Smt Ag Optical imaging device with thermal attenuation
US7728462B2 (en) 2006-05-18 2010-06-01 Nikon Corporation Monolithic stage devices providing motion in six degrees of freedom
WO2007135990A1 (en) 2006-05-18 2007-11-29 Nikon Corporation Exposure method and apparatus, maintenance method and device manufacturing method
KR20090023335A (en) 2006-05-22 2009-03-04 가부시키가이샤 니콘 Exposure method and apparatus, maintenance method, and device manufacturing method
WO2007136089A1 (en) 2006-05-23 2007-11-29 Nikon Corporation Maintenance method, exposure method and apparatus, and device manufacturing method
WO2007145165A1 (en) * 2006-06-12 2007-12-21 Nikon Corporation Stage apparatus, exposure apparatus and device manufacturing method
JP5245825B2 (en) 2006-06-30 2013-07-24 株式会社ニコン Maintenance method, exposure method and apparatus, and device manufacturing method
US20080073563A1 (en) 2006-07-01 2008-03-27 Nikon Corporation Exposure apparatus that includes a phase change circulation system for movers
KR101236043B1 (en) 2006-07-14 2013-02-21 가부시키가이샤 니콘 Stage apparatus, exposure apparatus, and device manufacturing method
US8570484B2 (en) 2006-08-30 2013-10-29 Nikon Corporation Immersion exposure apparatus, device manufacturing method, cleaning method, and cleaning member to remove foreign substance using liquid
WO2008026742A1 (en) * 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
KR101442449B1 (en) * 2006-09-01 2014-09-22 가부시키가이샤 니콘 Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
WO2008029917A1 (en) 2006-09-08 2008-03-13 Nikon Corporation Mask, exposure apparatus and device manufacturing method
KR20090060270A (en) 2006-09-08 2009-06-11 가부시키가이샤 니콘 Cleaning member, cleaning method and device manufacturing method
WO2008044612A1 (en) 2006-09-29 2008-04-17 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JP5055971B2 (en) 2006-11-16 2012-10-24 株式会社ニコン Surface treatment method and surface treatment apparatus, exposure method and apparatus, and device manufacturing method
US20080156356A1 (en) 2006-12-05 2008-07-03 Nikon Corporation Cleaning liquid, cleaning method, liquid generating apparatus, exposure apparatus, and device fabricating method
KR20150036734A (en) 2006-12-27 2015-04-07 가부시키가이샤 니콘 Stage apparatus, exposure apparatus and device manufacturing method
JP5505584B2 (en) * 2006-12-28 2014-05-28 株式会社ニコン Exposure apparatus
US8004651B2 (en) 2007-01-23 2011-08-23 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
US8323855B2 (en) 2007-03-01 2012-12-04 Nikon Corporation Pellicle frame apparatus, mask, exposing method, exposure apparatus, and device fabricating method
US7830046B2 (en) 2007-03-16 2010-11-09 Nikon Corporation Damper for a stage assembly
US8497980B2 (en) 2007-03-19 2013-07-30 Nikon Corporation Holding apparatus, exposure apparatus, exposure method, and device manufacturing method
US8134685B2 (en) 2007-03-23 2012-03-13 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
US8300207B2 (en) 2007-05-17 2012-10-30 Nikon Corporation Exposure apparatus, immersion system, exposing method, and device fabricating method
US8164736B2 (en) 2007-05-29 2012-04-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
JP4968335B2 (en) 2007-06-11 2012-07-04 株式会社ニコン Measuring member, the sensor, the measuring method, an exposure apparatus, exposure method, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
JP5267029B2 (en) 2007-10-12 2013-08-21 株式会社ニコン Illumination optical apparatus, exposure apparatus and device manufacturing method
CN101681123B (en) 2007-10-16 2013-06-12 株式会社尼康 Illumination optical system, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
CN101910817B (en) 2008-05-28 2016-03-09 株式会社尼康 An illumination optical system, exposure apparatus and device manufacturing method
EP2128703A1 (en) 2008-05-28 2009-12-02 ASML Netherlands BV Lithographic Apparatus and a Method of Operating the Apparatus
NL2003363A (en) 2008-09-10 2010-03-15 Asml Netherlands Bv Lithographic apparatus, method of manufacturing an article for a lithographic apparatus and device manufacturing method.
US8435723B2 (en) 2008-09-11 2013-05-07 Nikon Corporation Pattern forming method and device production method
US8384875B2 (en) 2008-09-29 2013-02-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP5783376B2 (en) 2009-11-05 2015-09-24 株式会社ニコン Focus test mask, focus measurement method, an exposure apparatus, and exposure method

Also Published As

Publication number Publication date Type
WO1999023692A1 (en) 1999-05-14 application
JPH11135400A (en) 1999-05-21 application

Similar Documents

Publication Publication Date Title
US5650840A (en) Focus detecting method and apparatus
US6992751B2 (en) Scanning exposure apparatus
US5917580A (en) Scan exposure method and apparatus
US6665054B2 (en) Two stage method
US5841520A (en) Exposure apparatus and method that use mark patterns to determine image formation characteristics of the apparatus prior to exposure
US5739899A (en) Projection exposure apparatus correcting tilt of telecentricity
US6538740B1 (en) Adjusting method for position detecting apparatus
US5877843A (en) Exposure apparatus
US5966201A (en) Mark for position detection, and mark detecting method and apparatus
US6549271B2 (en) Exposure apparatus and method
US6426790B1 (en) Stage apparatus and holder, and scanning exposure apparatus and exposure apparatus
US6727980B2 (en) Apparatus and method for pattern exposure and method for adjusting the apparatus
US5914774A (en) Projection exposure apparatus with function to measure imaging characteristics of projection optical system
US5677754A (en) Scanning exposure apparatus
US5969800A (en) Scanning exposure apparatus and method
US6191429B1 (en) Projection exposure apparatus and method with workpiece area detection
US5550633A (en) Optical measuring apparatus having a partitioning wall for dividing gas flow in an environmental chamber
US6897963B1 (en) Stage device and exposure apparatus
US6416912B1 (en) Method of manufacturing microdevice utilizing combined alignment mark
US6040909A (en) Surface position detecting system and device manufacturing method using the same
US20020101574A1 (en) Irradiance photometer and exposure apparatus
US5850280A (en) Stage unit, drive table, and scanning exposure and apparatus using same
US4708466A (en) Exposure apparatus
US5581324A (en) Thermal distortion compensated projection exposure method and apparatus for manufacturing semiconductors
US6483571B1 (en) Exposure apparatus and method for transferring a pattern from a plurality of masks onto at least one substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141107

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141107

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees