WO2007052659A1 - Exposure apparatus, exposure method and device manufacturing method - Google Patents

Exposure apparatus, exposure method and device manufacturing method Download PDF

Info

Publication number
WO2007052659A1
WO2007052659A1 PCT/JP2006/321751 JP2006321751W WO2007052659A1 WO 2007052659 A1 WO2007052659 A1 WO 2007052659A1 JP 2006321751 W JP2006321751 W JP 2006321751W WO 2007052659 A1 WO2007052659 A1 WO 2007052659A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
concave surface
exposure
substrate
supply port
Prior art date
Application number
PCT/JP2006/321751
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Nagasaka
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2007542762A priority Critical patent/JPWO2007052659A1/en
Priority to EP06822680A priority patent/EP1950795A4/en
Publication of WO2007052659A1 publication Critical patent/WO2007052659A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages

Definitions

  • Exposure apparatus Exposure apparatus, exposure method, and device manufacturing method
  • the present invention relates to an exposure apparatus that exposes a substrate, an exposure method, and a device manufacturing method.
  • an immersion type exposure apparatus that fills an optical path space of exposure light with a liquid and exposes a substrate through the liquid as disclosed in the following patent document Is known.
  • Patent Document 1 Pamphlet of International Publication No. 99Z49504
  • an immersion type exposure apparatus if a gas (including bubbles) is present in the liquid arranged in the optical path space of the exposure light, exposure failure may occur.
  • An object of the present invention is to provide an exposure apparatus, an exposure method, and a device manufacturing method using the exposure apparatus that can fill an optical path space of exposure light with a liquid.
  • the present invention adopts the following configuration associated with each drawing shown in the embodiment.
  • the reference numerals with parentheses attached to each element are merely examples of the element and do not limit each element.
  • an exposure apparatus that irradiates a substrate with exposure light to expose the substrate, an optical element having a concave surface from which the exposure light is emitted, and the concave surface
  • a supply port that is provided in a facing object and supplies liquid to a space between the concave surface and the object, and a suction port that is provided in the object and sucks fluid between the concave surface and the object
  • an exposure apparatus including the above.
  • an exposure apparatus that exposes the substrate by irradiating exposure light onto the substrate includes an optical element having a concave surface from which the exposure light is emitted, and a convex surface.
  • An exposure apparatus is provided that includes an object, and a supply port that supplies liquid to a space between the concave surface and the convex surface in a state where the concave surface and the convex surface face each other.
  • the object in the exposure method of exposing the substrate by irradiating the substrate with exposure light through the optical element, the object is provided on an object that can face the concave surface of the optical element. Further, there is provided an exposure method for supplying a liquid to a space between the concave surface and the object and sucking a fluid between the concave surface and the object.
  • the object in the exposure method of exposing the substrate by irradiating the substrate with exposure light through the optical element, the object is arranged facing the concave surface of the optical element.
  • An exposure method is provided in which the liquid is supplied to a space between the concave surface and the object, and the liquid flows along the concave surface.
  • the object in the exposure method of exposing the substrate by irradiating the substrate with exposure light through the optical element, the object is disposed facing the concave surface of the optical element.
  • An exposure method for supplying liquid to a space between the concave surface and the object is provided so that the liquid is supplied to the concave surface side force with respect to the object.
  • the object in the exposure method of exposing the substrate by irradiating the substrate with exposure light through the optical element, the object is disposed facing the concave surface of the optical element. And supplying a liquid to the space between the concave surface and the object, the liquid supply path used when filling the space with the liquid is different from the liquid supply path used during the substrate exposure.
  • An exposure method is provided.
  • a seventh aspect of the present invention in an exposure method for exposing the substrate by irradiating the substrate with exposure light through the optical element, the light emitting surface between the optical element and an object are exposed.
  • An exposure method is provided in which a liquid is supplied to a space, and the interval between the optical element and the object is changed after the liquid supply is started until the space is filled with the liquid.
  • a predetermined portion of the optical path of the exposure light can be filled with the liquid, and the substrate can be satisfactorily exposed.
  • FIG. 1 is a schematic block diagram that shows an exposure apparatus according to a first embodiment.
  • FIG. 2A is a diagram showing an immersion system according to the first embodiment.
  • FIG. 2B is a diagram showing an immersion system according to the first embodiment.
  • FIG. 3 is a view for explaining the operation of the exposure apparatus according to the first embodiment.
  • FIG. 4A is a view for explaining the operation of the exposure apparatus according to the first embodiment.
  • FIG. 4B is a view for explaining the operation of the exposure apparatus according to the first embodiment.
  • FIG. 5A is a view for explaining the operation of the exposure apparatus according to the first embodiment.
  • FIG. 5B is a view for explaining the operation of the exposure apparatus according to the first embodiment.
  • FIG. 6 is a view for explaining the operation of the exposure apparatus according to the first embodiment.
  • FIG. 7 is a view for explaining the operation of the exposure apparatus according to the first embodiment.
  • FIG. 8A is a diagram for explaining the principle of the detection device according to the first embodiment.
  • FIG. 8B is a diagram for explaining the principle of the detection device according to the first embodiment.
  • FIG. 9 is a view showing a main part of an exposure apparatus according to a second embodiment.
  • FIG. 10 is a view showing a main part of an exposure apparatus according to a third embodiment.
  • FIG. 11A is a view showing a main part of an exposure apparatus according to a fourth embodiment.
  • FIG. 11B is a view showing a main part of the exposure apparatus according to the fourth embodiment.
  • FIG. 12A is a view for explaining the operation of the exposure apparatus according to the fourth embodiment.
  • FIG. 12B is a view for explaining the operation of the exposure apparatus according to the fourth embodiment.
  • FIG. 13A is a view for explaining the operation of the exposure apparatus according to the fourth embodiment.
  • FIG. 13B is a view for explaining the operation of the exposure apparatus according to the fourth embodiment.
  • FIG. 14 is a view showing a main part of an exposure apparatus according to a fifth embodiment.
  • FIG. 15 is a view showing a main part of an exposure apparatus according to a sixth embodiment.
  • FIG. 16 is a view showing a main part of an exposure apparatus according to a seventh embodiment.
  • FIG. 17 is a view for explaining the operation of the exposure apparatus according to the seventh embodiment.
  • FIG. 18 is a view showing a main part of an exposure apparatus according to an eighth embodiment.
  • FIG. 19 is a view showing a main part of an exposure apparatus according to a ninth embodiment.
  • FIG. 20 shows the essential parts of the exposure apparatus related to the tenth embodiment.
  • FIG. 21A is a view for explaining an operation of the exposure apparatus according to the tenth embodiment.
  • FIG. 21B is a view for explaining an operation of the exposure apparatus according to the tenth embodiment.
  • FIG. 22A is a view for explaining an operation of the exposure apparatus according to the tenth embodiment.
  • FIG. 22B is a view for explaining the operation of the exposure apparatus according to the tenth embodiment.
  • FIG. 23 shows the essential parts of the exposure apparatus related to the eleventh embodiment.
  • FIG. 24 is a view for explaining the operation of the exposure apparatus according to the eleventh embodiment.
  • FIG. 25 is a flowchart for explaining an example of a manufacturing process of a micro device.
  • an XYZ orthogonal coordinate system is set, and the positional relationship of each member will be described with reference to this XYZ orthogonal coordinate system.
  • the predetermined direction in the horizontal plane is the X axis direction, in the horizontal plane!
  • the direction perpendicular to the X-axis direction is the Y-axis direction, and the direction perpendicular to each of the X-axis direction and the Y-axis direction (that is, the vertical direction) is the Z-axis direction.
  • the rotation (tilt) directions around the X, Y, and Z axes are the ⁇ X, ⁇ Y, and 0Z directions, respectively.
  • FIG. 1 is a schematic diagram showing an exposure apparatus EX according to the first embodiment.
  • the exposure apparatus EX exposes a mask stage 3 that can move while holding the mask M, a substrate stage 4 that can move while holding the substrate P, and the mask M held by the mask stage 3.
  • Illumination system IL that illuminates with light EL
  • projection optical system PL that projects the pattern image of mask M illuminated with exposure light EL onto substrate P
  • controller 7 that controls the overall operation of exposure apparatus EX And
  • the substrate here includes a substrate such as a semiconductor wafer coated with a film such as a photosensitive material (photoresist) or a protective film.
  • the mask includes a reticle on which a device pattern to be reduced and projected on a substrate is formed.
  • a force reflection type mask using a transmission type mask as a mask may be used.
  • An exposure apparatus EX of the present embodiment is an immersion type exposure apparatus to which an immersion method is applied in order to substantially shorten the exposure wavelength to improve the resolution and substantially increase the depth of focus.
  • the substrate P is exposed by irradiating the substrate P with the exposure light EL through the projection optical system PL and the liquid LQ.
  • the liquid LQ is filled between the substrate P and the final optical element LSI closest to the image plane of the projection optical system PL among the plurality of optical element LSIs to LS7 of the projection optical system PL.
  • the final optical element LSI has a concave surface 2 from which the exposure light EL is emitted.
  • the exposure apparatus EX includes an immersion system 1 for filling a predetermined space between the concave surface 2 from which the exposure light EL of the final optical element LSI is emitted and the object facing the concave surface 2 with the liquid LQ. Yes.
  • the immersion system 1 is provided on the substrate stage 4 that can be opposed to the concave surface 2 of the final optical element LSI, the supply port 12 that supplies liquid LQ between the concave surface 2 and the substrate stage 4, and the substrate stage 4 And a suction port 22 for sucking a fluid between the concave surface 2 and the substrate stage 4.
  • the controller 7 uses the liquid immersion system 1 to fill the space between the concave surface 2 and the substrate stage 4 with the liquid LQ, and then the projection optical system PL and the substrate P.
  • the substrate stage 4 is moved in a predetermined direction in the XY plane with respect to the projection optical system PL and the liquid LQ so as to face each other, and held by the concave surface 2 of the final optical element LSI and the substrate stage 4 by the liquid LQ. It fills the specified space including the optical path K of the exposure light EL between the surface of the substrate P.
  • the exposure surface of the substrate P is an exposure surface coated with a photosensitive material.
  • the concave surface 2 and the surface of the substrate P are in contact with the liquid LQ that fills the optical path K.
  • the exposure apparatus EX exposes light between the concave surface 2 of the final optical element LSI and the surface of the substrate P while projecting the pattern image of the mask M onto the substrate P using at least the projection optical system PL.
  • the specified space including the EL optical path K is filled with liquid LQ.
  • the exposure apparatus EX irradiates the exposure light EL passed through the mask M onto the substrate P held on the substrate stage 4 through the projection optical system PL and the liquid LQ that satisfies the optical path K of the exposure light EL. Then, the pattern image of the mask M is projected onto the substrate P, and the substrate P is exposed.
  • the liquid LQ filled in the optical path K of the exposure light EL between the final optical element LSI and the substrate P is on the substrate P including the projection area AR of the projection optical system PL.
  • the optical axis AX and the Z-axis direction of the projection optical system PL are parallel to each other.
  • the plurality of optical elements LS1 to LS7 of the projection optical system PL are held by a lens barrel PK.
  • the lens barrel PK is a lower surface provided so as to face the surface of the substrate P disposed at a position where the exposure light EL can be irradiated, that is, a position facing the concave surface 2, and surround the optical path K of the exposure light EL.
  • the lower surface PKA is formed so as to surround the concave surface 2.
  • the exposure light EL between the concave surface 2 and the surface of the substrate P is filled with the liquid LQ to form the immersion area LR.
  • the interface LG of the liquid LQ that forms the immersion area LR is the liquid LQ. Is maintained between the surface of the substrate P and the lower surface PKA of the lens barrel PK.
  • the exposure apparatus EX exposes the exposure light EL on the substrate P via the projection optical system PL including the final optical element LSI and the liquid LQ filling the concave surface 2 of the final optical element LSI and the surface of the substrate P. Irradiate.
  • the illumination system IL illuminates a predetermined illumination area on the mask M with exposure light EL having a uniform illuminance distribution.
  • Illumination system IL force
  • exposure light EL emitted, for example, bright ultraviolet rays (g-line, h-line, i-line) emitted from mercury lamps and far ultraviolet light (DUV light) such as KrF excimer laser light (wavelength 248 nm), ArF excimer laser light (wavelength 193nm) and F laser light (wavelength 15)
  • Vacuum ultraviolet light such as 7 nm
  • ArF excimer laser light is used as the exposure light EL.
  • the mask stage 3 can be moved in the X-axis, Y-axis, and ⁇ -Z directions while holding the mask M by driving a mask stage driving device including an actuator such as a linear motor. It is.
  • the position information of the mask stage 3 (and hence the mask M) is measured by the laser interferometer 3L.
  • the laser interferometer 3L measures the position information of the mask stage 3 using a moving mirror 3K provided on the mask stage 3.
  • the control device 7 drives the mask stage drive device 3D based on the measurement result of the laser interferometer 3L, and controls the position of the mask M held by the mask stage 3.
  • the movable mirror 3K may include not only a plane mirror but also a corner cube (retro reflector). Instead of fixing the movable mirror 3K to the mask stage 3, for example, an end face (side surface) of the mask stage 3 is used. ) May be used as a reflecting surface formed by mirror finishing. Further, the mask stage 3 may be configured to be capable of coarse and fine movement disclosed in, for example, JP-A-8-130179 (corresponding US Pat. No. 6,721,034).
  • the substrate stage 4 includes a stage body 4B, a substrate table 4T mounted on the stage body 4B, and a substrate holder 4H provided on the substrate table 4T and holding the substrate P.
  • the substrate holder 4H is disposed in a recess 4R provided on the substrate table 4T, and the upper surface 4F around the recess 4R of the substrate table 4T is substantially the same as the surface of the substrate P held by the substrate holder 4H. It is a flat surface that is height (level). There may be a step between the surface of the substrate P held by the substrate holder 4H and the upper surface 4F of the substrate table 4T.
  • the upper surface 4F of the substrate stage 4 may be substantially the same height as the surface of the substrate P only in a part thereof, for example, a predetermined region surrounding the substrate P.
  • the substrate holder 4H may be formed integrally with a part of the substrate stage 4.
  • the substrate holder 4H and the substrate stage 4 are separately configured, for example, by vacuum suction or the like. 4H is fixed to the recess 4R.
  • the stage body 4B is supported in a non-contact manner on the upper surface (guide surface) of the base member BP by the air bearing 4A.
  • the upper surface of the base member BP is substantially parallel to the XY plane, and the substrate stage 4 is movable in the XY direction within a predetermined region on the base member B P including the position facing the concave surface 2 of the final optical element LSI.
  • the substrate stage 4 is movable on the base member BP while the substrate P is held on the substrate holder 4H by driving a substrate stage driving device including an actuator such as a linear motor.
  • the substrate stage drive unit uses the stage body 4B as the X axis on the base member BP.
  • the first drive that can move the substrate table 4 ⁇ mounted on the stage body 4 ⁇ in the X-axis direction, ⁇ -axis direction, and ⁇ - ⁇ direction by moving in the direction, Y-axis direction, and ⁇ ⁇ direction
  • a second drive system capable of moving the substrate table 4 ⁇ in the axial direction, ⁇ X direction, and ⁇ direction relative to the stage body 4 ⁇ .
  • the first drive system includes an actuator such as a linear motor, and can drive the stage body 4B supported in a non-contact manner on the base member BP in the X-axis direction, the Y-axis direction, and the ⁇ Z direction.
  • the second drive system is interposed between the stage main body 4B and the substrate table 4T, for example, an actuator 4V such as a voice coil motor, and a measuring device (not shown) that measures the drive amount of each actuator.
  • the substrate table 4T is supported on the stage body 4B by at least three actuators 4V.
  • Each of the actuators 4V can drive the substrate table 4T independently in the Z-axis direction with respect to the stage body 4B, and the control device 7 adjusts the driving amount of each of the three actuators 4V to adjust the stage body.
  • the substrate table 4T is driven in the Z axis direction, ⁇ X direction, and ⁇ Y direction with respect to 4B.
  • the substrate stage driving apparatus including the first and second drive systems is capable of moving the substrate table 4T of the substrate stage 4 on the X axis, the Y axis, the Z axis, 0 X, ⁇ Y, and 0 Z directions. It can move in the direction of degrees.
  • the control device 7 controls the substrate stage driving device to control the X axis, Y axis, Z axis, 0 X, ⁇ Y, and ⁇ Z of the surface of the substrate P held by the substrate holder 4H of the substrate table 4T. It is possible to control the position in the direction of 6 degrees of freedom.
  • the position information of the substrate table 4T (and hence the substrate P) of the substrate stage 4 is measured by the laser interferometer 4L.
  • the laser interferometer 4L uses the moving mirror 4K provided on the substrate table 4T to measure position information regarding the X-axis, Y-axis, and ⁇ Z directions of the substrate table 4T.
  • the surface position information (position information about the Z axis, ⁇ X, and ⁇ Y directions) of the surface of the substrate P held by the substrate holder 4H of the substrate table 4T is obtained by a focus leveling detection system (not shown). Detected.
  • the control device 7 Based on the measurement result of the laser interferometer 4L and the detection result of the focus / leveling detection system, the control device 7 drives the substrate stage driving device and controls the position of the substrate P held by the substrate holder 4H. Do.
  • the laser interferometer 4L has a position in the Z-axis direction of the substrate stage 4 and 0 X and 0 Y directions.
  • the details of making it possible to measure rotation information are disclosed in, for example, JP 2001-510577 Gazette (corresponding to International Publication No. 1999Z28790).
  • a reflecting surface formed by mirror-treating a part (side surface, etc.) of the substrate stage 4 may be used instead of fixing the movable mirror 4K to the substrate stage 4, for example.
  • the focus' leveling detection system measures the position information of the substrate P in the Z-axis direction at each of the plurality of measurement points, so that the tilt information (rotation of the substrate P in the ⁇ X and ⁇ Y directions)
  • the plurality of measurement points may be set at least partially within the immersion area LR (or projection area AR), or all of the measurement points may be in the immersion area LR. It may be set outside.
  • the laser interferometer 4L can measure the position information of the substrate P in the Z axis, ⁇ X and ⁇ Y directions
  • the position information in the Z axis direction can be measured during the exposure operation of the substrate P.
  • the position control of the substrate P in the Z axis, ⁇ X and 0 Y directions is performed using the measurement result of the laser interferometer 4L during the exposure operation, at least during the exposure operation. Even so,
  • the projection optical system PL of the present embodiment is a reduction system whose projection magnification is, for example, 1Z4, 1/5, 1/8, etc., and a mask pattern is formed in the projection area AR conjugate with the illumination area described above. Form a reduced image.
  • the projection optical system PL may be any of a reduction system, a unity magnification system, and an enlargement system. Further, the projection optical system PL may be any of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, and a catadioptric system that includes a reflective optical element and a refractive optical element. Further, the projection optical system PL may form either an inverted image or an erect image.
  • the refractive index of the liquid LQ with respect to the exposure light EL is appropriately referred to as the refractive index of the liquid LQ
  • the refractive index of the exposure light EL of the final optical element LSI is referred to as the refractive index of the final optical element LSI.
  • the rate is referred to as appropriate.
  • the refractive index of the liquid LQ with respect to the exposure light EL is higher than the refractive index of the final optical element LSI with respect to the exposure light EL.
  • K is filled with a liquid LQ having a refractive index higher than that of the final optical element LSI.
  • the refractive index of quartz is about 1.5, so the liquid LQ has a refractive index higher than that of quartz, for example 1.6.
  • about ⁇ 2.0 is used.
  • the optical path on the + Z side (object plane side, mask side) of the final optical element LS 1 is filled with a gas (for example, nitrogen), and the optical path on the Z side (image plane side, substrate side) of the final optical element LS I Is filled with liquid LQ.
  • the shape on the + Z side (object surface side) of the final optical element LS I (hereinafter referred to as the first surface) is a convex shape that bulges toward the object surface side (mask side) of the projection optical system PL. This is a curved shape so that all the rays to be imaged on the surface (image plane) of the substrate P are incident.
  • the shape of the surface (hereinafter referred to as the second surface) on the Z side (image surface side) of the final optical element LS I is a concave surface 2 that is recessed away from the substrate P. That is, the second surface (concave surface 2) of the final optical element LSI is also a convex curved surface directed toward the object surface side (mask side).
  • the shape of the second surface (concave surface 2) is such that all light rays to be imaged on the surface of the substrate P are incident, similar to the shape of the first surface.
  • the curved surface shapes of the first surface and the second surface of the final optical element LSI can be determined as appropriate so that the projection optical system PL can obtain the desired performance.
  • Each of the surfaces may be spherical with the same center of curvature! /, May be spherical with different centers of curvature, or may be aspheric.
  • the numerical aperture NA on the image plane side of the projection optical system PL is expressed by the following equation.
  • NA n-sin 0... (1)
  • n is the refractive index of the liquid LQ and ⁇ is the convergence half angle.
  • the resolution Ra and the depth of focus ⁇ are expressed by the following equations, respectively.
  • is an exposure wavelength
  • k and k are process coefficients.
  • the second surface facing the substrate P of the final optical element LS I is almost perpendicular to the optical axis AX. If it is a flat surface, a part of the exposure light EL will be absorbed by the interface between the final optical element LSI and the liquid LQ (that is, the second surface). ), And cannot reach the image plane of the projection optical system PL.
  • the refractive index of the final optical element LSI is n
  • the refractive index of the liquid LQ is n
  • the final optical element LSI and the liquid LQ are
  • the numerical aperture ⁇ of the projection optical system PL is the refractive index ⁇ of the liquid LQ and is incident on the liquid LQ.
  • NA n sin 0... (5)
  • the interface (second surface) between the final optical element LSI and the liquid LQ is a flat surface substantially perpendicular to the optical axis AX, and the numerical aperture NA of the projection optical system PL If is larger than the refractive index n of the final optical element LSI, a part of the exposure light EL cannot enter the liquid LQ.
  • the second surface of the final optical element LSI of the present embodiment has the concave surface 2
  • the numerical aperture NA force of the projection optical system PL is larger than the refractive index n of the final optical element LSI. Even in such a case, since the incident angle of the light beam incident on the interface between the final optical element LSI and the liquid LQ is small, the outermost light beam of the exposure light EL can reach the image plane well.
  • the numerical aperture NA of the projection optical system PL in which the refractive index of the liquid LQ with respect to the exposure light EL is higher than the refractive index with respect to the exposure light EL of the final optical element LSI is the exposure light of the final optical element LSI. If the refractive index is higher than the refractive index of EL, the exposure light EL can reach the substrate P well by providing the final optical element LSI with the concave surface 2.
  • the liquid LQ is, for example, a predetermined liquid having a C—H bond and a Z or O—H bond, such as isopropanol having a refractive index of about 1.50 and glycerol (glycerin) having a refractive index of about 1.61.
  • Specific liquids (organic solvents) such as hexane, heptane, and decane, and predetermined liquids such as decalin and nanocyclohexyl are listed.
  • any two or more of these predetermined liquids may be mixed, or the predetermined liquid may be added (mixed) to pure water. It may be what was done.
  • the liquid LQ may be one obtained by adding (mixing) a base or acid such as H +, Cs +, K +, CI ", SO2_ , PO2_, etc. to pure water.
  • liquid LQs can transmit ArF excimer laser light.
  • the liquid LQ should be stable to the photosensitive material V, which is applied to the surface of the projection optical systems PL and Z or the substrate P, which has a small light absorption coefficient and a small temperature dependency.
  • the final optical element LSI can be formed of, for example, quartz (silica). Alternatively, it may be formed of a single crystal material of a fluoride compound such as calcium fluoride (fluorite), barium fluoride, strontium fluoride, lithium fluoride, sodium fluoride, and BaLiF. More
  • a fluoride compound such as calcium fluoride (fluorite), barium fluoride, strontium fluoride, lithium fluoride, sodium fluoride, and BaLiF. More
  • the final optical element LSI may be formed of lutetium aluminum garnet (LuAG). And a single crystal material of a fluorinated compound such as sodium fluoride. Further, the optical elements LS2 to LS7 can be formed of the above-described materials. Further, for example, the optical elements LS2 to LS7 may be formed of fluorite, the optical element LSI may be formed of quartz, the optical elements LS2 to LS7 may be formed of quartz, and the optical element LSI may be formed of fluorite. Alternatively, all of the optical elements LS 1 to LS5 may be made of quartz (or fluorite)!
  • optical element of the projection optical system PL including the final optical element LSI, quartz and
  • the final optical element LSI may be formed of a material having a refractive index higher than that of Z or fluorite (eg, 1.6 or more).
  • the optical element of the projection optical system can be formed using sapphire, germanium dioxide, or the like as disclosed in International Publication No. 2005Z059617.
  • the optical element of the projection optical system can be formed using potassium chloride (refractive index: about 1.75) or the like as disclosed in WO 2005/059618.
  • FIG. 2A and 2B show the immersion system 1, FIG. 2A is a side sectional view, and FIG. 2B is a plan view showing an upward force.
  • the immersion system 1 is provided on the upper surface 4F of the substrate table 4T (substrate stage 4) that can face the concave surface 2 of the final optical element LSI, and the liquid LQ is provided between the concave surface 2 and the substrate table 4T.
  • a suction port 22 for suctioning fluid (including liquid LQ and gas GS) between the concave surface 2 and the substrate table 4T, and a substrate port 4T.
  • a liquid supply device 11 that supplies liquid LQ to 12 and a suction device 21 that can suck fluid through a suction port 22 and a suction channel 24 formed inside the substrate table 4T are provided.
  • the liquid supply device 11 includes a temperature adjustment device that adjusts the temperature of the liquid LQ to be supplied, and a filter unit that removes foreign matter in the liquid LQ, and can supply clean and temperature-adjusted liquid LQ.
  • the suction device 21 includes a vacuum system and the like, and can suck fluid.
  • glycerol glycerin
  • the suction port 22 is provided in the vicinity of the supply port 12.
  • the suction port 22 is provided in an annular shape so as to surround the supply port 12 in the vicinity of the supply port 12.
  • the suction port 22 is formed in an annular shape (annular shape) so as to surround the supply port 12, but may be formed in a rectangular shape (rectangular shape).
  • a plurality of suction ports 22 having a predetermined diameter should be formed side by side so as to surround the supply port 12.
  • the liquid immersion system 1 further includes a detection device 30 that detects whether or not the predetermined space between the concave surface 2 and the substrate table 4T is filled with the liquid LQ.
  • the detection device 30 of the present embodiment detects the presence or absence of gas (including bubbles) in a predetermined space between the concave surface 2 and the substrate table 4T by detecting the state of the fluid flowing through the suction flow path 24.
  • the detection result of the detection device 30 is output to the control device 7.
  • the control device 7 determines the presence or absence of gas in the liquid LQ that fills between the concave surface 2 and the substrate table 4T. Further, the control device 7 controls at least one of the supply operation of the supply port 12 and the suction operation of the suction port 22 based on the detection result of the detection device 30.
  • FIG. 3 is a diagram showing an example of a state in which the supply port 12 and the suction port 22 on the substrate table 4T are opposed to the concave surface 2 of the final optical element LSI.
  • the suction port 22 is disposed in the vicinity of the supply port 12, and the control device 7 controls the substrate stage driving device to drive the substrate stage 4, thereby supplying the supply port 12 and the suction port on the substrate table 4T. 22 and the concave surface 2 of the final optical element LS 1 can be made to face each other.
  • the control device 7 arranges the supply port 12 on the optical axis AX of the final optical element LSI.
  • the control device 7 controls the substrate stage driving device while measuring the position information of the substrate table 4T using the laser interferometer 4L, and thereby the optical axis A of the final optical element LSI.
  • a supply port 12 can be arranged on X.
  • the projection optical system PL including the final optical element LSI has the optical axis AX parallel to the vertical direction.
  • the optical axis AX passes through a position AT (hereinafter referred to as apex position) AT farthest from the upper surface 4F of the substrate table 4T among the concave surfaces 2 of the final optical element LSI.
  • the supply port 12 disposed on the optical axis AX of the final optical element LSI is disposed at a position facing the vertex position AT of the concave surface 2.
  • Supply port 12 starts supplying liquid LQ while being placed on the optical axis AX of the final optical element LSI
  • the control device 7 uses the liquid immersion system 1 to fill the predetermined space SP on the light exit side of the concave surface 2 of the final optical element LSI including the optical path K of the exposure light EL with the liquid LQ.
  • the liquid LQ does not exist in the predetermined space SP including the optical path K.
  • the control device 7 allows the liquid from the supply port 12 to the optical path K where no liquid LQ exists, with the concave surface 2 of the final optical element LSI facing the supply port 12 and the suction port 22 on the substrate table 4T. LQ is supplied, and the specified space SP including the optical path K is filled with liquid LQ.
  • initial filling operation the operation of supplying the liquid LQ to the predetermined space SP in order to fill the predetermined space SP including the optical path K of the exposure light EL in the initial state where the liquid LQ does not exist with the liquid LQ.
  • the control device 7 drives the substrate stage 4 and, as shown in FIG. 3, the concave surface 2 of the final optical element LSI, the supply port 12 on the substrate table 4T, and the suction
  • the supply port 12 is arranged on the optical axis AX of the final optical element LSI with the port 22 facing.
  • the control device 7 drives the liquid supply device 11 of the liquid immersion system 1 and starts supplying the liquid LQ to the predetermined space SP between the concave surface 2 and the substrate table 4T.
  • the liquid LQ delivered from the liquid supply device 11 flows through the supply flow path 14 and is then supplied from the supply port 12 to the predetermined space SP.
  • the supply port 12 supplies the liquid LQ to the predetermined space SP in order to fill the predetermined space SP between the concave surface 2 and the substrate table 4T with the liquid LQ.
  • FIG. 4A shows a state immediately after the supply of the liquid LQ from the supply port 12 is started.
  • the liquid immersion system 1 ejects the liquid LQ from the supply port 12 so as to hit the apex position AT of the concave surface 2.
  • the distance HI (see FIG. 3) between the supply port 12 and the vertex position AT of the concave surface 2 is set to about 50 to 60 mm, and the diameter of the concave surface 2 is set to about 100 to 120 mm.
  • the immersion system 1 ejects liquid (glycerin) LQ from the supply port 12 at a flow velocity of lmZs ec. Or more. Thereby, the immersion system 1 can eject the liquid LQ from the supply port 12 so as to hit the concave surface 2.
  • the control device 7 starts driving the suction device 21 at a predetermined timing with respect to the time when the supply of the liquid LQ from the supply port 12 is started, and starts sucking the fluid from the suction port 22.
  • the control device 7 starts sucking the fluid from the suction port 22 almost simultaneously with the start of the supply of the liquid LQ from the supply port 12.
  • the suction port 22 mainly sucks the gas GS.
  • the suction port 22 sucks (exhausts) the fluid (gas GS) in the predetermined space SP between the concave surface 2 and the substrate table 4T.
  • the fluid sucked from the suction port 22 by driving the suction device 21 flows through the suction flow path 24 and is then sucked into the suction device 21.
  • timing of starting the suction operation from the suction port 22 may be before or after the supply operation of the liquid LQ using the supply port 12 is started.
  • the control device 7 continues the supply operation of the supply port 12 and the suction operation of the suction port 22. Since the flow of the liquid LQ ejected between the concave surface 2 and the substrate table 4T from the supply port 12 is a high flow velocity of several mZsec., The pressure in the space near the supply port 12 decreases. Therefore, the pressure in the space near the suction port 22 provided near the supply port 12 also decreases.
  • the gas GS in the liquid LQ gathers in the vicinity of the suction port 22 because it gathers in a space where the pressure is low.
  • the flow of the liquid LQ supplied from the supply port 12 to the predetermined space SP reduces the pressure in the vicinity of the suction port 22 provided in the vicinity of the supply port 12, thereby bringing the liquid LQ near the suction port 22.
  • Gas GS ⁇ in liquid LQ can be removed. That is, in the present embodiment, the suction port 22 is provided in the vicinity of the position where the gas GS gathers due to the flow of the liquid LQ supplied from the supply port 12 between the concave surface 2 and the substrate table 4T. The By continuing the supply of the liquid LQ from the supply port 12, the predetermined space SP between the concave surface 2 and the substrate table 4T is gradually filled with the liquid LQ.
  • FIG. 4B shows a state immediately before the predetermined space SP is filled with the liquid LQ.
  • a predetermined space SP between the concave surface 2 and the substrate table 4T has a predetermined liquid LQ according to the flow of the liquid LQ supplied from the supply port 12, the shape of the concave surface 2, and the like. A flow is generated. Further, by providing the suction port 22 near the position where the gas GS gathers, as shown in FIG. 4B, the gas (including bubbles) GS in the liquid LQ that fills the predetermined space SP is passed through the suction port 22. It is possible to discharge smoothly from the predetermined space SP.
  • the control device 7 moves between the lower surface PKA of the lens barrel PK and the upper surface 4F of the substrate table 4T. Is set to the predetermined gap D1.
  • the lower surface PKA of the lens barrel PK is the surface closest to the upper surface 4F of the substrate table 4T among the members facing the upper surface 4F of the substrate table 4T.
  • Liquid LQ physical properties surface tension, density, etc.
  • amount of liquid LQ that fills the specified space SP distance HI between supply port 12 and concave surface 2 apex position AT, size of immersion area LR
  • top surface 4F Maintaining the edge LG of the immersion area LR between the upper surface 4 F and the lower surface PKA by optimally setting the gap D1 according to the contact angle to the liquid LQ, the contact angle of the lower surface PKA to the liquid LQ, etc. And the outflow of liquid LQ can be suppressed.
  • the control device 7 performs the supply operation of the supply port 12 and the suction port 22 Continue the suction operation of the fluid (including liquid LQ and gas GS).
  • the liquid immersion system 1 discharges (exhausts) the gas GS in the predetermined space SP while performing the supply operation of the liquid LQ, so that the gas GS in the predetermined space SP can be discharged well through the suction port 22.
  • the predetermined space SP between the concave surface 2 and the substrate table 4T can be satisfactorily filled with the liquid LQ supplied from the supply port 12 without leaving the gas GS in the predetermined space SP. it can.
  • the immersion system 1 includes a detection device 30 that detects the presence or absence of gas GS in the predetermined space SP between the concave surface 2 and the substrate table 4T. 7 controls the supply operation of the supply port 12 and the suction operation of the suction port 22 based on the detection result of the detection device 30. In other words, the control device 7 performs a predetermined operation based on the detection result of the detection device 30. The supply operation of the supply port 12 and the suction operation of the suction port 22 are continued until it is determined that the gas GS in the constant space SP has run out (until it is determined that the predetermined space SP is filled with the liquid LQ).
  • FIGS. 8A and 8B are diagrams showing an example of the detection device 30.
  • the detection device 30 of the present embodiment optically detects the state of the fluid flowing through the suction channel 24 connecting the suction port 22 and the suction device 21 using the detection light La.
  • the detection device 30 includes a projection system 31 capable of emitting the detection light La and a light receiving system 32 provided at a predetermined position with respect to the detection light La emitted from the projection system 31 and capable of receiving the detection light La. ing.
  • at least a part of the suction channel 24 of the present embodiment is formed of a tube member 24K made of a material having a predetermined refractive index with respect to the detection light La and capable of transmitting the detection light La.
  • the projection system 31 irradiates the detection light La from the outside of the tube member 24K to the inside of the tube member 24K at a predetermined incident angle.
  • the detection device 30 receives the light received by the light receiving system 32. Based on the result, it is possible to determine whether the liquid gas LGS exists inside the tube member 24K or the force gas GS exists. For example, as shown in FIG. 8A, when the gas GS is present inside the pipe member 24K, the detection light La emitted from the projection system 31 is generated at the interface between the pipe member 24K and the gas GS inside the gas GS. Reflected and reaches the light receiving system 32 with the first light quantity. On the other hand, as shown in FIG.
  • the detection light La emitted from the projection system 31 passes through the interface between the tube member 24K and the liquid LQ inside the tube member 24K. For example, it passes and does not reach the light receiving system 32, or reaches the second light quantity different from the first light quantity.
  • the light receiving state of the detection light La by the light receiving system 32 is different between the case where the liquid LQ is present inside the tube member 24K and the case where the gas GS is present.
  • the control device 7 can determine the presence or absence of the gas GS in the predetermined space SP between the concave surface 2 and the substrate table 4T based on the detection result of the detection device 30.
  • control device 7 is configured to supply only the liquid LQ from the suction port 22 until only the liquid LQ flows into the tube member 24K of the suction flow path 24. 12 supply operation and suction port 22 suction operation are continued for a predetermined time.
  • the control device 7 When it is determined that there is no gas GS in the predetermined space SP between the concave surface 2 and the substrate table 4T based on the detection result of the detection device 30, the control device 7, as shown in FIG. Stop the supply operation of 12 and the suction operation of the suction port 22. This completes the initial filling operation.
  • the control device 7 determines that there is gas GS in the predetermined space SP filling the space between the concave surface 2 and the substrate table 4T based on the detection result of the detection device 30, the control device 7 until the gas GS in the predetermined space SP is exhausted. The supply operation at the supply port 12 and the suction operation at the suction port 22 are continued until the detection device 30 no longer detects the gas GS.
  • the control device 7 sets a predetermined gap D2 between the lower surface PKA of the lens barrel PK and the surface of the substrate P. be able to.
  • the gap D1 is larger than the gap D2. That is, when the supply operation of the supply port 12 is stopped, the predetermined space SP between the concave surface 2 and the substrate tape 4T is made smaller than when the supply operation of the supply port 12 is executed. In other words, when the supply operation of the supply port 12 is executed, the concave surface 2 and the substrate table are set so that the predetermined space SP between the concave surface 2 and the substrate table 4T is larger than when the supply operation of the supply port 12 is stopped. The positional relationship with 4T is adjusted.
  • the gap D2 when the supply operation of the supply port 12 is stopped is also the physical properties (surface tension, density, etc.) of the liquid LQ, the amount of the liquid LQ that satisfies the predetermined space SP (the apex position AT of the supply port 12 and the concave surface 2) Distance, the size of the immersion area LR), the contact angle of the upper surface 4F of the substrate table 4T with the liquid LQ, the contact angle of the lower surface PKA with the liquid LQ, etc., are optimally set. Thereby, the edge LG of the liquid immersion area LR can be maintained between the upper surface 4F and the lower surface PKA of the substrate table 4T, and the outflow of the liquid LQ can be suppressed.
  • the edge LG of the liquid immersion area LR can be maintained between the upper surface 4F and the lower surface PKA of the substrate table 4T, and the outflow of the liquid LQ can be suppressed.
  • the control device 7 After filling the predetermined space SP between the concave surface 2 and the substrate table 4T with the liquid LQ and stopping the supply operation of the supply port 12 and the suction operation of the suction port 22, the control device 7 Opposite the surface.
  • the control device 7 moves the substrate stage 4 in the X and Y directions relative to the projection optical system PL and the liquid LQ, thereby forming the concave surface 2 and the surface of the substrate P as shown in FIG. Can be made to face each other.
  • the control device 7 then exposes the exposure light onto the substrate P via the projection optical system PL including the final optical element LSI having the concave surface 2 and the liquid LQ, with the concave surface 2 facing the surface of the substrate P. Irradiate EL.
  • the control device 7 stops the supply of the liquid LQ and the suction (collection) operation to the predetermined space SP between the concave surface 2 and the surface of the substrate P, and the concave surface 2 and the base
  • the substrate P is exposed through the liquid LQ held between the surface of the plate P.
  • the Z-axis direction between the projection optical system PL and the substrate P is used in order to obtain a predetermined positional relationship between the image plane formed via the projection optical system PL and the liquid LQ and the surface of the substrate P. , And the positional relationship in the ⁇ X and ⁇ Y directions are adjusted.
  • Gap D2 ' is smaller than gap D1. That is, when the supply operation of the supply port 12 is stopped such as when the substrate P is exposed, the predetermined space SP between the concave surface 2 and the substrate P is smaller than when the supply operation of the supply port 12 is performed such as during the initial filling operation. The positional relationship between the concave surface 2 and the substrate P is adjusted so as to decrease. Note that the gap D2 ′ may be the same as or different from the gap D2.
  • the gap D2 'at the time of exposure of the substrate P also depends on the physical properties (surface tension, density, etc.) of the liquid LQ and the amount of the liquid LQ that satisfies the predetermined space SP (the supply port 12 and the vertex position AT of the concave surface 2). It is optimally set according to the distance, the size of the immersion area LR), the contact angle of the surface of the substrate P to the liquid LQ, the contact angle of the lower surface PKA to the liquid LQ, etc. Accordingly, the edge LG of the liquid immersion region LR can be maintained between the front surface and the lower surface PKA of the substrate P, and the outflow of the liquid LQ can be suppressed even when the substrate P is exposed.
  • control device 7 allows the liquid supply operation of the supply port 12 and the fluid of the suction port 22 (mainly the liquid LQ in a state where the predetermined space SP is filled with the liquid LQ. )
  • the control device 7 moves the substrate stage 4 in the XY direction with respect to the projection optical system PL so that the concave surface 2, the supply port 12, and the suction port 22 face each other.
  • the control device 7 performs the supply operation of the supply port 12 and the suction operation of the suction port 22 in parallel with the concave surface 2, the supply port 12 and the suction port 22 facing each other, and the liquid filling the predetermined space SP.
  • control device 7 performs the supply operation of the supply port 12 and the suction operation of the suction port 22 in parallel in a state where the predetermined space SP is filled with the liquid LQ.
  • LQ replacement exchange
  • all the liquid LQs filling the predetermined space SP may be replaced (complete replacement), or a part of the liquid LQ may be replaced (partial replacement).
  • an operation of performing the supply operation of the supply port 12 and the suction operation of the suction port 22 in parallel may be performed every predetermined time interval, every predetermined number of processed substrates, or every lot.
  • the gas GS in the predetermined space SP is quickly exhausted (exhausted) during the initial filling operation, and the predetermined space SP is obtained. In this way, it is possible to suppress the remaining gas portion (including bubbles) and to satisfactorily fill the optical path K of the exposure light EL with the liquid LQ.
  • the supply of the liquid LQ at the supply port 12 and the suction of the fluid at the suction port 22 are performed in parallel. (Bubbles) can be removed and liquid LQ can be replaced (replaced).
  • the suction port 22 is provided at or near the position where the gases GS and Z or foreign substances gather due to the flow of the liquid LQ supplied between the concave surface 2 and the substrate table 4T from the supply port 12, so The gas GS and Z in the space SP or foreign matter can be sucked and discharged well.
  • the supply port 12 is arranged on the optical axis AX of the final optical element LSI and the liquid LQ is ejected from the supply port 12 so as to contact the concave surface 2, the liquid LQ that hits the concave surface 2 is discharged. Flows along the concave surface 2. Therefore, the concave surface 2 can be well wetted with the liquid LQ, and the liquid LQ can be satisfactorily filled up to the vicinity of the vertex position AT.
  • the control device 7 Since the detection device 30 for detecting the presence or absence of gas GS in the predetermined space SP between the concave surface 2 and the substrate table 4T is provided, the control device 7 does not perform liquid until the predetermined space SP is filled with the liquid LQ. LQ supply operation can be performed. Further, it is possible to prevent the initial filling operation from being continued even though the predetermined space SP is filled with the liquid LQ.
  • the space between the concave surface 2 and the object (substrate table 4T, substrate ⁇ ) facing the concave surface 2 is larger than when the supply operation of the supply port 12 is stopped.
  • the positional relationship between the concave surface 2 and the object is adjusted, it is possible to suppress the influence on the final optical element LSI or the like due to the liquid supply operation of the supply port 12, for example. . That is, when the supply operation of the supply port 12 is executed, such as during the initial filling operation, the liquid LQ supplied (spouted) from the supply port 12 is caused between the concave surface 2 and the object facing the concave surface 2. Liquid LQ pressure may increase.
  • the pressure of the liquid LQ between the concave surface 2 and the object rises, for example, the liquid LQ force on the final optical element LSI. May significantly affect the final optical element LSI.
  • the lower surface of the lens barrel PK is set so that the predetermined space SP between the concave surface 2 and the object is larger than when the supply operation of the supply port 12 is stopped.
  • An excessive pressure increase in the predetermined space SP at the time of execution can be suppressed.
  • the supply operation of the supply port 12 is stopped, the outflow of the liquid LQ in the predetermined space SP can be suppressed, and gaps D2 and D2 ′ are formed so as to be the desired positions with respect to the object (substrate). Can do.
  • the immersion system 1 of the present embodiment is similar to the first embodiment described above in that the supply port 12 disposed on the optical axis AX of the final optical element LSI and the supply port And suction port 22 provided so as to surround 12.
  • a recess 40 is provided in a part of the upper surface 4F of the substrate table 4T.
  • the recess 40 is provided in the vicinity of the suction port 22.
  • the recess 40 is provided so as to surround the outside of the suction port 22.
  • the concave portion 40 is provided at a position that can face the concave surface 2 of the final optical element LSI when the supply port 12 is disposed on the optical axis AX of the final optical element LSI.
  • the inner surface of the recess 40 is a curved surface that is recessed away from the final optical element LSI.
  • the inner surface of the recess 40 may have a shape in which a plurality of planes facing different directions are combined, for example.
  • the flow of the liquid LQ supplied from the supply port 12 to the predetermined space SP reduces the pressure in the space near the suction port 22 provided in the vicinity of the supply port 12, thereby reducing the suction port.
  • 2 Gas GS can be collected in the vicinity of 2.
  • the liquid LQ ejected from the supply port 12 hits the concave surface 2 of the final optical element LSI and flows toward the upper surface 4F of the substrate table 4T along the concave surface 2, so that the liquid LQ near the periphery of the concave surface 2
  • the vortex of the LQ is generated and the gas GS (bubble) stays in the center of the vortex.
  • the recess 40 since the recess 40 is provided, even if the vortex of the liquid LQ is generated The center of the vortex is formed in the vicinity of the upper surface 4F of the substrate table 4T (in the vicinity of the suction port 22). Therefore, the gas GS (bubbles) in the liquid LQ that fills the predetermined space SP can be quickly discharged through the suction port 22 during the initial filling operation or the like.
  • a third embodiment will be described with reference to FIG.
  • components that are the same as or equivalent to those in the above-described embodiment are denoted by the same reference numerals, and description thereof is simplified or omitted.
  • at least a part of the supply flow path 14 connected to the supply port 12 can be gradually expanded in a taper shape (trumpet shape) toward the supply port 12.
  • the flow of the liquid LQ for filling the predetermined space SP can be brought into a desired state during the initial filling operation or the like. It is possible to suppress the residual gas GS.
  • the remaining of the gas GS in the predetermined space SP can also be suppressed by optimizing the diameter of the supply port 12 according to the diameter of the concave surface 2 of the final optical element LSI. For example, by making the diameter of the supply port 12 equal to or greater than 1Z3 of the diameter of the concave surface 2 of the final optical element LSI, the remaining gas GS in the predetermined space SP can be suppressed.
  • the control device 7 when performing the initial filling operation of the predetermined space SP, the control device 7 arranges the supply port 12 at a predetermined position facing the peripheral edge of the concave surface 2 of the final optical element LSI.
  • the supply port 12 supplies the liquid LQ in a state where the supply port 12 is disposed at a predetermined position facing the peripheral portion of the concave surface 2 of the final optical element LSI.
  • the suction port 22 is provided in the vicinity of the supply port 12.
  • the suction port 22 is disposed between the optical axis AX of the final optical element LSI and the supply port 12 when the supply port 12 is disposed at a predetermined position facing the peripheral edge of the concave surface 2.
  • the control device 7 controls the substrate stage driving device to drive the substrate stage 4, and the supply port 12 and the suction port 22 on the substrate table 4T The concave surface 2 of the final optical element LSI is opposed.
  • each of the supply port 12 and the suction port 22 is formed in an arcuate slit shape on the upper surface 4F of the substrate table 4T.
  • the supply port 12 is formed larger than the suction port 22.
  • the control device 7 drives the substrate stage 4 and, as shown in FIGS. 11A and 11B, the concave surface 2 of the final optical element LSI, the supply port 12 on the substrate table 4T, and the suction.
  • the supply port 12 is arranged at a predetermined position facing the peripheral edge of the concave surface 2 of the final optical element LSI.
  • the control device 7 drives the liquid supply device 11 of the liquid immersion system 1 and starts supplying the liquid LQ to the predetermined space SP between the concave surface 2 and the substrate table 4T.
  • the liquid LQ delivered from the liquid supply device 11 is After flowing through the supply flow path 14, it is supplied from the supply port 12 to the predetermined space SP.
  • FIG. 12A shows a state immediately after the supply of the liquid LQ from the supply port 12 is started.
  • the liquid immersion system 1 spouts the liquid LQ from the supply port 12 so as to hit the peripheral edge of the concave surface 2.
  • the distance between the supply port 12 and the vertex position AT of the concave surface 2 is set to about 50 to 60 mm
  • the diameter of the concave surface 2 is set to about 100 to 120 mm
  • the immersion system 1 is Liquid (glycerin) LQ is ejected from supply port 12 at a flow velocity of lmZsec. Or more.
  • the supply port 12 can eject the liquid LQ so as to hit the peripheral edge of the concave surface 2, and the liquid LQ supplied to the peripheral edge of the concave surface 2 is positioned along the concave surface 2 at the apex position of the concave surface 2. Can reach AT.
  • control device 7 starts driving the suction device 21 at a predetermined timing with respect to the time when the supply of the liquid LQ from the supply port 12 is started, and starts sucking the fluid from the suction port 22.
  • the suction port 22 sucks (exhausts) a fluid (gas GS) in a predetermined space between the concave surface 2 and the substrate table 4T in parallel with the supply operation of the liquid LQ from the supply port 12.
  • the liquid LQ supplied (spouted) from the supply port 12 to the predetermined space SP flows along the concave surface 2 after hitting the concave surface 2.
  • the control device 7 continues the supply operation of the supply port 12 and the suction operation of the suction port 22. Also in this embodiment, since the flow of the liquid LQ supplied from the supply port 12 to the predetermined space SP is a high flow rate of several mZsec., The pressure in the space near the suction port 22 provided in the vicinity of the supply port 12 The gas GS in the liquid LQ can be placed near the suction port 22.
  • the suction port 22 is provided in the vicinity of the position where the gas GS gathers due to the flow of the liquid LQ supplied from the supply port 12 between the concave surface 2 and the substrate table 4T. .
  • the predetermined space SP between the concave surface 2 and the substrate table 4T is gradually filled with the liquid LQ.
  • FIG. 12B shows a state immediately before the predetermined space SP is filled with the liquid LQ.
  • a predetermined space SP between the concave surface 2 and the substrate table 4T has a predetermined liquid LQ according to the flow of the liquid LQ supplied from the supply port 12, the shape of the concave surface 2, and the like. A flow is generated.
  • the suction port 22 in the vicinity of the position where the gas GS gathers, as shown in FIG. 12B, the gas (including bubbles) GS in the predetermined space SP is passed through the suction port 22 as shown in FIG. It can be discharged more smoothly than SP.
  • the control device 7 performs the supply operation and suction of the liquid LQ at the supply port 12.
  • the suction operation of fluid (including liquid LQ and gas GS) in port 22 can discharge the gas GS in the predetermined space SP through the suction port 22 by performing the supply operation of the liquid LQ while discharging (exhausting) the gas GS in the predetermined space SP. As shown in FIG.
  • the predetermined space SP between the concave surface 2 and the substrate table 4T is satisfactorily filled with the liquid LQ supplied from the supply port 12 without leaving the gas GS in the liquid LQ in the predetermined space SP. I can do it. Also in the present embodiment, the control device 7 determines that the gas GS has disappeared in the predetermined space SP based on the detection result of the detection device 30 (until it is determined that the predetermined space SP is filled with the liquid LQ). The supply operation at the supply port 12 and the suction operation at the suction port 22 are continued.
  • control device 7 adjusts the gap between the lower surface PKA of the lens barrel PK and the surface of the substrate P, and when the supply operation of the supply port 12 is stopped, the supply port 12
  • the predetermined space SP between the concave surface 2 and the substrate table 4T can be made smaller than when performing the supply operation.
  • the liquid LQ is supplied from the supply port 12 with the concave surface 2 and the substrate table 4T facing each other, the liquid LQ is sucked from the suction port 22 and the predetermined space SP between the concave surface 2 and the substrate table 4T is formed by the liquid LQ.
  • the substrate table 4T is moved in the XY direction, and the control device 7 makes the concave surface 2 and the surface of the substrate P face each other. .
  • the control device 7 then exposes the exposure light on the substrate P via the projection optical system PL including the final optical element LSI having the concave surface 2 and the liquid LQ, with the concave surface 2 facing the surface of the substrate. Irradiate EL.
  • control device 7 includes the concave surface 2, the supply port 12, and the suction port 22.
  • the liquid supply operation of the supply port 12 and the suction (collection) operation of the fluid (mainly liquid LQ) of the suction port 22 are performed in parallel while the predetermined space SP is filled with the liquid LQ. Therefore, it is possible to remove (collect) foreign matters such as bubbles or particles in the liquid LQ, and it is possible to replace (exchange) the liquid LQ that fills the predetermined space SP.
  • the liquid immersion system 1 of the present embodiment is similar to the above-described fourth embodiment, and includes a supply port 12 disposed at a predetermined position facing the peripheral edge of the concave surface 2 of the final optical element LSI, A suction port 22 is provided between the supply port 12 and the optical axis AX of the final optical element LSI.
  • a recess 40 ′ is provided in a part of the upper surface 4F of the substrate table 4T. The recess 40 ′ is provided in the vicinity of the suction port 22.
  • the recess 40 ′ is provided in the vicinity of the suction port 22 and on the opposite side of the supply port 12 with respect to the suction port 22.
  • the concave portion 40 ′ is provided at a position that can face the concave surface 2 of the final optical element LSI when the supply port 12 is disposed at a predetermined position facing the peripheral edge portion of the concave surface 2 of the final optical element LS1.
  • the inner surface of the recess 40 ' is a curved surface that is recessed away from the final optical element LSI.
  • the inner surface of the recess 40 ′ may have, for example, a shape in which a plurality of planes facing different directions are combined.
  • the liquid LQ ejected from the supply port 12 flows toward the upper surface 4F of the substrate table 4T along the concave surface 2 of the final optical element LSI, so that the final optical element LSI and the substrate table 4T There is a possibility that the vortex of the liquid LQ is generated between the two and the gas GS (bubble) stays in the center of the vortex.
  • the recess 40 ' since the recess 40 'is provided, the vortex of the liquid LQ Even if this occurs, the center of the vortex can be formed in the vicinity of the upper surface 4F of the substrate table 4T (in the vicinity of the suction port 22). Therefore, the gas GS (bubbles) in the liquid LQ that fills the predetermined space SP can be more quickly discharged through the suction port 22 during the initial filling operation or the like.
  • the liquid immersion system 1 according to the present embodiment is similar to the fourth embodiment described above, and the supply port 12 disposed at a predetermined position facing the peripheral edge of the concave surface 2 of the final optical element LSI, A suction port 22 is provided between the supply port 12 and the optical axis AX of the final optical element LSI.
  • a second suction port 23 is provided on the opposite side of the supply port 12 with respect to the optical axis AX of the final optical element LSI. Yes.
  • the second suction port 23 is provided on the upper surface 4F of the substrate table 4T.
  • the control device 7 supplies the supply port 12 while adjusting the suction force of the suction port 22 (fluid suction amount per unit time) and the suction force of the second suction port 23.
  • the flow of the liquid LQ in the predetermined space SP is controlled by performing the operation, the suction operation of the suction port 22 and the suction operation of the second suction port 23 in parallel, and the pressure in the vicinity of the suction port 22 is low.
  • a space can be formed, and the gas GS in the liquid LQ that fills the predetermined space SP can be collected near the suction port 22.
  • the suction operation of the second suction port 23 it is possible to suppress the generation of the flow of the downward force liquid LQ in the vicinity of the suction port 22, and gas (bubbles etc.) is generated from the suction port 22. It can suppress moving away.
  • the suction port 22 is used when the liquid LQ is completely removed (recovered) from the predetermined space SP on the light exit surface side of the final optical element LSI. it can . That is, the liquid LQ in the predetermined space SP can be recovered by recovering the liquid LQ from the suction port 22 with the concave surface 2 of the final optical element LSI and the suction port 22 facing each other.
  • the supply port 12 can be connected to a vacuum device (suction device), and the liquid LQ in the predetermined space SP can be recovered using both the supply port 12 and the suction port 22.
  • the immersion system 1 is provided on the substrate table 4T and has a supply member 52 having a supply port 12 for supplying the liquid LQ, and drives the supply member 52.
  • a drive device 54 that moves the supply port 12 relative to the concave surface 2 is provided.
  • the supply member 52 is a tubular member, and is disposed inside a hole 55 provided in a part of the upper surface 4F of the substrate table 4T. The upper end of the supply member 52 is the supply port 12.
  • the supply member 52 can be moved in the vertical direction (Z-axis direction) by the driving force of the driving device 54, and the supply port 12 protrudes and protrudes from the upper surface 4F of the substrate table 4T. .
  • the supply port 12 at the upper end of the supply member 52 is substantially the same as the upper surface 4F of the substrate table 4T. It will be the same.
  • the supply member 52 may be movable in an oblique direction with respect to the Z-axis direction.
  • the supply port 12 provided on the upper surface 4F of the substrate table 4T can be opposed to the concave surface 2 of the final optical element LSI by moving the substrate table 4T (substrate stage 4).
  • the lower end of the supply member 52 is connected to the liquid supply apparatus 11 via the pipe member 56.
  • a part of the pipe member 56 is provided with a telescopic mechanism 57 that can be expanded and contracted so as not to hinder the movement of the supply member 52.
  • the control device 7 drives the substrate stage 4 so that the concave surface 2 of the final optical element LSI and the supply port 12 on the substrate table 4T face each other. Then, the control device 7 uses the drive device 54 to move (raise) the supply member 52 in the + Z direction, and brings the supply port 12 provided at the upper end of the supply member 52 closer to the concave surface 2. Then, as shown in FIG. 17, the control device 7 starts supplying the liquid LQ with the supply port 12 brought closer to the concave surface 2 by a predetermined distance (for example, about 1 mm). In the present embodiment, the control device 7 brings the apex position AT of the concave surface 2 close to the supply port 12.
  • a predetermined distance for example, about 1 mm
  • the control device 7 gradually moves (lowers) the supply member 52 in the ⁇ Z direction while ejecting the liquid LQ from the supply port 12. In this way, the predetermined space SP between the concave surface 2 and the substrate table 4T can be satisfactorily filled with the liquid LQ. Then, after filling the predetermined space SP with the liquid LQ and lowering the supply member 52 until the supply port 12 and the upper surface 4F of the substrate table 4T are substantially flush, the control device 7 stops supplying the liquid LQ and Then, the substrate stage 4 is moved in the XY direction so that the concave surface 2 and the surface of the substrate P face each other, and exposure of the substrate P is started.
  • the gas GS in the liquid LQ is above the predetermined space SP ( There is a high possibility of staying in the vicinity of the apex position AT of the concave surface 2).
  • the gas GS is prevented from staying above the predetermined space SP (in the vicinity of the vertex position AT of the concave surface 2). be able to.
  • the detection device 30 is provided to detect the presence or absence of the gas GS (including bubbles) in the predetermined space SP, and from the supply port 12 based on the detection result.
  • the liquid supply may be controlled.
  • the immersion system 1 is provided on the substrate table 4T, and has a suction member 62 having a suction port 22 for sucking fluid, and the suction member 22 is driven to the concave surface 2 by driving the suction member 62.
  • a drive device 64 that moves relatively.
  • the suction member 62 is a tubular member, and is disposed inside a hole provided in a part of the upper surface 4F of the substrate table 4T. The upper end of the suction member 62 is the suction port 22.
  • the suction member 62 can be moved in the Z-axis direction by the driving force of the drive device 64, and the suction port 22 protrudes and appears with respect to the upper surface 4F of the substrate table 4T.
  • the suction port 22 at the upper end of the suction member 62 is substantially the same as the upper surface 4F of the substrate table 4T. It will be the same.
  • the suction member 62 may be movable in an oblique direction with respect to the Z-axis direction.
  • the suction port 22 provided on the upper surface 4F of the substrate table 4T can be opposed to the concave surface 2 of the final optical element LSI by the movement of the substrate table 4T (substrate stage 4).
  • the lower end of the suction member 62 is connected to the suction device 21 via the pipe member 66.
  • a telescopic mechanism 67 that can be expanded and contracted is provided in a part of the pipe member 66 so as not to prevent the movement of the suction member 62.
  • the gas GS may remain in the liquid LQ after the liquid LQ is supplied to the predetermined space SP between the concave surface 2 and the substrate table 4T.
  • a gas GS having a specific gravity smaller than that of the liquid LQ is likely to stay at or near the highest position (vertex position) AT of the concave surface 2.
  • the suction port 22 of the suction member 62 provided at a position different from the supply member 52 and the concave surface 2 are opposed to each other.
  • the control device 7 moves (raises) the suction member 62 in the + Z direction, and brings the suction port 22 provided at the upper end of the suction member 62 closer to the concave surface 2. That is, the control device 7 arranges the suction port 22 of the suction member 62 in the vicinity of the position where the gas exists, that is, near the vertex position AT of the concave surface 2. The control device 7 sucks and removes the gas GS remaining in the liquid LQ in the predetermined space SP while the suction port 22 is brought closer to the concave surface 2 by a predetermined distance (for example, about 1 mm).
  • a predetermined distance for example, about 1 mm
  • the control device 7 moves (lowers) the suction member 62 in the ⁇ Z direction.
  • the control device 7 lowers the suction member 62 until the suction port 22 and the upper surface 4F of the substrate table 4T are substantially flush with each other, and then moves the substrate stage 4 in the XY direction to move the concave surface 2 and the surface of the substrate P. And exposure of the substrate P is started.
  • the suction operation using the suction port 22 of the suction member 62 is performed.
  • the suction operation using the suction port 22 of the suction member 62 can also be executed when removing foreign substances (including bubbles) in the liquid LQ filling the predetermined space SP.
  • the supply port 12 of the supply member 52 and the suction port 22 of the suction member 62 can be opposed to the concave surface 2 together.
  • the suction port 22 of the suction member 62 may be disposed in the vicinity. Accordingly, the supply operation of the supply port 12 and the suction operation of the suction port 22 can be performed in a state where the supply port 12 and the suction port 22 are brought close to the concave surface 2.
  • the liquid LQ in the predetermined space SP can be exchanged (replaced).
  • suction member 62 suction port 22
  • suction port 22 liquid immersion system 1 described in the first to sixth embodiments.
  • the immersion system 1 includes a supply member 52 having a supply port 12 for supplying a liquid LQ, and a suction member 62 having a suction port 22 for sucking fluid, which is provided on the substrate table 4T.
  • the supply member 52 is a tubular member
  • the suction member 62 is a tubular member disposed outside the supply member 52. That is, in the present embodiment, the supply member 52 and the suction member 62 are double tubes.
  • Each of the supply member 52 and the suction member 62 can be moved in the Z-axis direction by a predetermined driving device. In the present embodiment, the supply member 52 and the suction member 62 can move independently of each other.
  • the control device 7 When performing the initial filling operation, the control device 7 brings the supply port 12 of the supply member 52 and the suction port 22 of the suction member 62 closer to the concave surface 2, respectively. Then, the control device 7 performs the liquid supply operation using the supply port 12 and the sucking I operation using the sucking I port 22 while the supply port 12 and the suction port 22 are close to the concave surface 2. Execute. In this embodiment! As shown in FIG. 19, the control device 7 performs the liquid supply operation using the supply port 12 in the state where the upper end of the supply member 52 is arranged closer to the concave surface 2 than the upper end of the suction member 62. A suction operation using the suction port 22 is executed.
  • control device 7 gradually moves (lowers) each of the supply member 52 and the suction member 62 in the ⁇ Z direction while performing the liquid supply operation using the supply port 12 and the suction operation using the suction port 22. ) By doing so, the predetermined space SP between the concave surface 2 and the substrate table 4T can be satisfactorily filled with the liquid LQ.
  • the control device 7 After the predetermined space SP is filled with the liquid LQ and the supply member 52 and the suction member 62 are lowered until the supply port 12 and the suction port 22 are substantially flush with the upper surface 4F of the substrate table 4T, the control device 7 Then, the supply operation of the supply port 12 and the suction operation of the suction port 22 are stopped, and the substrate stage 4 is moved in the XY direction so that the concave surface 2 and the surface of the substrate P face each other, and the exposure of the substrate P is started. Start.
  • the supply member 52 and the suction member 62 can be moved independently of each other, but the relative positional relationship between the supply member 52 and the suction member 62 is fixed to a predetermined value. It is possible to move the supply member 52 and the suction member 62 together using the driving device of In the present embodiment, the supply operation of the supply member 52 from the supply port 12 and the suction operation of the suction member 62 from the suction port 22 are performed in parallel.
  • the liquid LQ may be supplied from 12, and the suction operation from the suction port 22 of the suction member 62 may be started in a state where the predetermined space SP is substantially filled with the liquid LQ.
  • the detection device 30 is provided to detect the presence or absence of gas GS (bubbles) in the predetermined space SP, and based on the detection result, supply of liquid from the supply port 12 You may control.
  • the predetermined space SP is executed by performing the supply operation of the supply port 12 and the suction operation of the suction port 22 in a state where the predetermined space SP is filled with the liquid LQ. Liquid LQ bubbles or particles can be removed. In addition, at least a part of the liquid LQ in the predetermined space SP can be replaced (exchanged).
  • the suction port 22 of the suction member 62 is changed. You may use it.
  • the predetermined space SP is directly irradiated with detection light to detect whether or not the predetermined space SP is filled with the liquid LQ. You can also use what you do.
  • the predetermined space SP is filled with the liquid LQ by continuing the supply operation of the supply port 12 and the suction operation of the Z or the suction port 22 for a predetermined time. If possible, you can omit the detector 30.
  • the exposure apparatus EX is installed on the substrate table 4T.
  • the convex surface 71 is a curved surface along the concave surface 2, and is formed in a spherical shape or an aspherical shape in the present embodiment.
  • the predetermined member 70 is disposed inside a hole 73 provided in a part of the upper surface 4F of the substrate table 4T.
  • the predetermined member 70 can be moved in the Z-axis direction by the driving force of the driving device 72, and appears and disappears with respect to the upper surface 4F of the substrate table 4T.
  • a portion other than the convex surface 71 is formed in a cylindrical shape (columnar shape).
  • the upper surface 4F of the substrate table 4T is disposed around the convex surface 71 of the predetermined member 70 so as to surround the convex surface 71.
  • the surface of the predetermined member 70 including the convex surface 71 is lyophilic with respect to the liquid LQ.
  • the surface of the predetermined member 70 including the convex surface 71 is covered with a film of a predetermined material having lyophilicity with respect to the liquid LQ, thereby imparting lyophilicity to the convex surface 71 and the like. Yes.
  • the exposure apparatus EX is provided so as to surround the final optical element LS1 and the lens barrel PK, and has a supply port 82 that can supply the liquid LQ and a recovery port 84 that can recover the liquid LQ. Equipped with 80.
  • the nozzle member 80 is formed so as to surround the concave surface 2 of the final optical element LSI, and has a lower surface 81 facing the upper surface 4F of the substrate table 4T.
  • the lower surface 81 of the nozzle member 80 and the lower surface PKA of the lens barrel PK are substantially flush with each other, and these lower surfaces PKA and 81 are arranged so as to surround the concave surface 2.
  • Each of the supply port 82 and the recovery port 84 is provided on the lower surface 81 of the nozzle member 80.
  • the supply port 82 is provided on each of the + Y side and the ⁇ Y side with respect to the optical path K.
  • the recovery port 84 is provided outside the supply port 82 with respect to the optical path K, and is formed in an annular shape so as to surround the optical path K. Note that a porous member or a mesh member can be disposed in the recovery port 84.
  • the supply port 82 is provided so as to be able to supply the liquid LQ between the lower surface PKA of the lens barrel PK and the upper surface 4F of the substrate table 4T facing the lower surface PKA.
  • the supply port 82 is a liquid between the lower surface PKA of the lens barrel PK and the upper surface 4F of the substrate table 4T.
  • the liquid LQ is supplied in an oblique direction by directing the light path K.
  • the control device 7 drives the substrate stage 4 in the XY directions so that the concave surface 2 of the final optical element LSI and the convex surface 71 provided on the substrate table 4T face each other. Then, using the driving device 72, the control device 7 moves (raises) the predetermined member 70 in the + Z direction, and brings the convex surface 71 of the predetermined member 70 closer to the concave surface 2 of the final optical element LSI. Then, as shown in FIG.
  • the control device 7 sets the first distance G1 (about 0.5 mm) between the concave surface 2 and the convex surface 71, so that the concave surface 2 and the convex surface 71 by the supply port 82 are set.
  • the liquid LQ supply operation to and from is started.
  • control device 7 starts collecting (suctioning) fluid (including liquid LQ and gas GS) through the collection port 84. That is, the control device 7 performs recovery (suction) by the recovery port 84 in parallel with the supply of the liquid LQ from the supply port 82.
  • the lower surface PKA (81) is formed so as to surround the concave surface 2
  • the upper surface 4F of the substrate table 4T is formed so as to surround the convex surface 71.
  • the supply port 82 fills the space between the concave surface 2 and the convex surface 71 with the liquid LQ by supplying the liquid LQ between the lower surface PKA and the upper surface 4F.
  • the liquid LQ when performing the initial filling operation, is supplied from a predetermined position (one direction) between the lower surface PKA and the upper surface 4F.
  • the control device 7 supplies the liquid LQ from the supply port 82 disposed on the + Y side with respect to the optical path K.
  • the liquid LQ supplied between the lower surface PKA and the upper surface 4F from the supply port 82 flows between the concave surface 2 and the convex surface 71 and wets and spreads between the concave surface 2 and the convex surface 71.
  • the first distance G1 between the concave surface 2 and the convex surface 71 is equal to the upper surface PKA and the upper surface.
  • the liquid LQ supplied between the lower surface PKA smaller than the second distance G2 between the surface 4F and the upper surface 4F spreads between the concave surface 2 and the convex surface 71 due to, for example, capillary action.
  • the convex surface 71 is lyophilic with respect to the liquid LQ
  • the concave surface 2 is also lyophilic with respect to the liquid LQ. Therefore, the liquid LQ is between the concave surface 2 and the convex surface 71. It spreads well. Therefore, the liquid LQ that has flowed between the concave surface 2 and the convex surface 71 can be satisfactorily adhered to the concave surface 2 as shown in FIG. 21B.
  • the liquid LQ which is supplied from the supply port 82 on the + Y side with respect to the optical path K and has wet spread S between the concave surface 2 and the convex surface 71, is eventually arranged on the Y side with respect to the optical path K. Collected at collection port 84. In parallel with the liquid supply operation of the supply port 82, the recovery operation of the fluid (liquid LQ) by the recovery port 84 is executed, so that the liquid LQ is prevented from flowing out of the recovery port 84.
  • the control device 7 gradually moves the predetermined member 70 in the Z direction while performing the liquid supply operation of the supply port 82 and the liquid recovery operation of the recovery port 84 in parallel. Move (down). That is, the control device 7 gradually increases the distance between the concave surface 2 and the convex surface 71 while continuing the liquid supply operation of the supply port 82 and the liquid recovery operation of the recovery port 84.
  • the control device 7 performs the supply operation of the supply port 82 provided on each of the + Y side and the Y side with respect to the optical path K and the recovery operation of the recovery port 84 in parallel. By doing so, the liquid LQ can be smoothly filled with the liquid LQ while the liquid LQ is prevented from flowing out to the outside of the recovery port 84 and the concave surface 2 and the convex surface 71 are filled.
  • the control device In step 7 the substrate stage 4 is moved in the XY direction so that the concave surface 2 and the surface of the substrate P face each other, and exposure of the substrate P is started.
  • control device 7 finishes the initial filling operation and performs the supply operation of the supply port 82 and the recovery operation of the recovery port 84 in parallel even when the substrate P is exposed. And do it.
  • the convex surface 71 is arranged at a position facing the concave surface 2, and the liquid LQ is supplied between the concave surface 2 and the convex surface 71, so that the predetermined space SP
  • the liquid LQ can be satisfactorily filled up to the upper side (near the vertex position AT).
  • the force that the liquid LQ supplied from the supply port 82 of the nozzle member 80 fills between the concave surface 2 and the convex surface 71 is provided on the upper surface of the substrate table 4T.
  • the liquid LQ supplied from the supply port 12 may be filled between the concave surface 2 and the convex surface 71.
  • a supply port may be provided on the convex surface 71 of the predetermined member 70 so that the liquid supplied from the supply port of the convex surface 71 fills the space between the concave surface 2 and the convex surface 71.
  • the nozzle member 80 of the present embodiment may be used in combination with the liquid immersion system 1 of the first to ninth embodiments described above.
  • the measurement stage 5 in which the supply port 12 and the suction port 22 for filling the predetermined space SP described in any of the first to ninth embodiments with the liquid LQ can move independently of the substrate stage 4. It is provided above.
  • the measurement stage 5 is equipped with a measuring instrument for exposure processing and can be moved on the base member BP. Note that an exposure apparatus provided with a measurement stage is disclosed in detail, for example, in JP-A-11-135400 and JP-A-2000-164504 (corresponding US Pat. No. 6,897,963).
  • the measurement stage 5 is provided with an observation power mesa 100 that can observe the state of the liquid LQ that fills the predetermined space SP.
  • the observation power mela 100 is arranged in the internal space of the measurement stage 5.
  • An opening connected to the internal space is formed on the upper surface 5F of the measurement stage 5, and a transparent member 103 having a quartz isotropic force is disposed in the opening.
  • the upper surface of the transparent member 103 is flat and forms a part of the upper surface 5F of the measurement stage 5.
  • the observation power mela 100 indicates the state of the liquid LQ in the immersion region LR formed on the upper surface 5F of the measurement stage 5 including the upper surface of the transparent member 103, that is, the state of the liquid LQ that satisfies the predetermined space SP. Can be observed.
  • the observation power mela 100 includes an optical system 102 and an image sensor 101 constituted by a CCD (charge coupled device) or the like.
  • the image sensor 101 can acquire an image (optical image) of the liquid LQ, the final optical element LSI, and the like via the transparent member 103 and the optical system 102.
  • the image sensor 101 can acquire the acquired image information.
  • Information is output to the control device 7.
  • the control device 7 can determine the state of the liquid LQ that fills the predetermined space SP based on the imaging result of the observation power mela 100.
  • the control device 7 observes the presence or absence of gas (including bubbles) GS in the liquid LQ that fills the space between the concave surface 2 of the final optical element LSI and the upper surface 5F of the measurement stage 5. Detect using force Mela 100. That is, the control device 7 performs the initial filling operation of the predetermined space SP using the supply port 12 and the suction port 22, and then moves the measurement stage 5 in the XY direction so that the concave surface 2 and the transparent member 103 face each other. . As a result, the liquid immersion area LR is formed on the transparent member 103. The observation power mela 100 acquires an image of the liquid LQ in the liquid immersion area LR via the transparent member 103. Based on the output of the observation power mela 100, the control device 7 can determine whether or not the gas (bubble) GS is present in the liquid LQ that fills the predetermined space SP.
  • the controller 7 determines that gas (bubbles) GS is present in the liquid LQ that fills the predetermined space SP, moves the measurement stage 5 in the XY direction, The concave surface 2 and the suction port 22 on the measurement stage 5 are made to face each other, and for example, a predetermined process for eliminating a gas portion in the liquid LQ is performed. Then, after executing the processing, again, the concave surface 2 and the transparent member 103 are opposed to each other, and the state of the liquid LQ that fills the predetermined space SP is observed using the observation power mela 100.
  • the control device 7 determines that there is no gas (bubble) GS in the liquid LQ in the predetermined space SP, and the substrate P on the substrate stage 4 and the concave surface 2 The liquid immersion area LR is moved onto the substrate P so as to face each other.
  • the control device 7 brings the upper surface 4F of the substrate stage 4 and the upper surface 5F of the measurement stage 5 close to or in contact with each other within a predetermined region including the position immediately below the projection optical system PL.
  • the immersion stage LR can be moved between the upper surface 4F of the substrate stage 4 and the upper surface 5F of the measurement stage 5 by moving the substrate stage 4 and the measurement stage 5 together in the XY direction. . Therefore, after the initial filling operation is performed on the measurement stage 5, the immersion region LR can be moved onto the substrate P held on the substrate stage 4 by executing the operation as shown in FIG. .
  • the control device 7 After moving the liquid LQ in the immersion area LR onto the substrate P, the control device 7 starts exposure of the substrate P via the projection optical system PL and the liquid LQ.
  • the observation power mela 100 can also detect foreign matter in the liquid LQ, and the control device 7 executes a predetermined process based on the detection result of the observation power mela 100.
  • the measurement stage 5 of the present embodiment may be applied to the above-described tenth embodiment.
  • the predetermined member 70 can be provided on the measurement stage 5.
  • the interface LG forming the liquid immersion region LR is the lower surface PKA of the lens barrel PK formed so as to surround the concave surface 2 and is opposed to the lower surface PKA.
  • the projection optical system PL includes, for example, a part of the final optical element LSI (for example, a flange surface) force of the upper surface of the substrate table 4T.
  • the interface LG of the immersion region LR is formed between a part of the final optical element LSI and the upper surface 4F of the substrate table 4T.
  • the supply port supplies a part of the final optical element LSI (flange surface) and the upper surface of the substrate table 4T in order to supply the liquid LQ between the concave surface 2 and the convex surface 71.
  • Liquid LQ can be supplied between 4F.
  • the optical path between the optical element LSI and the optical element LS2 may be filled with the liquid LQ.
  • the liquid that fills the space between the optical element LSI and the optical element LS 2 may be the same as or different from the liquid LQ that fills the predetermined space SP described above.
  • the refractive index is smaller than the liquid LQ satisfying SP.
  • the substrate table 4T is not provided with movable members (such as the supply member 52, the suction member 62, and the predetermined member 70) as shown in the seventh to tenth embodiments, so that no foreign matter such as particles is generated.
  • the space between the concave surface 2 of the final optical element LSI and the object can be filled with the liquid LQ.
  • an ArF excimer laser is used as the exposure light EL.
  • various exposure lights such as an F laser may be employed.
  • the liquid LQ that fills the optical path K can be optimized according to the exposure light (exposure beam) EL, the number of apertures in the projection optical system PL, the refractive index of the final optical element LSI with respect to the exposure light EL, etc. It can be used properly.
  • the position information of the mask stage 3 and the substrate stage 4 is measured using the interferometer system (3L, 4L).
  • You may use the encoder system which detects the scale (diffraction grating) provided.
  • the encoder system which detects the scale (diffraction grating) provided.
  • the position control of the stage may be performed by switching between the interferometer system and the encoder system or using both.
  • the substrate P in each of the above embodiments is used not only for semiconductor wafers for manufacturing semiconductor devices but also for glass substrates for display devices, ceramic wafers for thin film magnetic heads, or exposure apparatuses. Mask or reticle master (synthetic quartz, silicon wafer), etc. are applied.
  • the exposure apparatus EX in addition to a step-and-scan type scanning exposure apparatus (scanning stepper) that performs mask exposure by scanning the mask M and the substrate P in synchronization with each other, a mask is used.
  • the present invention can also be applied to a step-and-repeat projection exposure apparatus (steno) in which the pattern of the mask M is collectively exposed while M and the substrate P are stationary, and the substrate P is sequentially moved stepwise.
  • a reduced image of the first pattern is projected in a state where the first pattern and the substrate P are almost stationary (for example, a refractive type that does not include a reflective element at a 1Z8 reduction magnification). It can also be applied to an exposure apparatus that uses a projection optical system) to perform batch exposure on the substrate P. In this case, after that, with the second pattern and the substrate P almost stationary, a reduced image of the second pattern is collectively exposed on the substrate P by partially overlapping the first pattern using the projection optical system. It can also be applied to a stitch type batch exposure apparatus. In addition, the stitch type exposure apparatus can also be applied to a step 'and' stitch type exposure apparatus in which at least two patterns are partially overlapped and transferred on the substrate P, and the substrate P is sequentially moved.
  • the exposure apparatus provided with the projection optical system PL has been described as an example.
  • the present invention is applied to an exposure apparatus and an exposure method that do not use the projection optical system PL. You can. Even when the projection optical system is not used, the exposure light is irradiated onto the substrate through an optical member such as a mask or a lens, and an immersion region is formed in a predetermined space between the optical member and the substrate.
  • an optical member such as a mask or a lens
  • the present invention relates to, for example, Japanese Patent Laid-Open Nos. 10-163099 and 10-214783 (corresponding US Pat. No. 6,590,634) and Japanese Translation of PCT International Publication No. 2000-505958 (corresponding US Pat. 5, 969, 441), US Pat. No. 6,208,407, etc., and can be applied to a multi-stage type exposure apparatus having a plurality of substrate stages.
  • the liquid immersion system 1 described above may be provided on all stages or only on some stages.
  • the type of exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern onto a substrate P.
  • force using a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern 'dimming pattern) is formed on a light-transmitting substrate is used instead of this mask.
  • a predetermined light-shielding pattern or phase pattern 'dimming pattern
  • an electronic mask (variable molding mask) that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed.
  • a DMD Digital Micro-mirror Device
  • spatial light modulator spatial light modulator
  • an exposure apparatus that exposes a line 'and' space pattern on the substrate P by forming interference fringes on the substrate P.
  • the present invention can also be applied to a system.
  • the exposure apparatus EX has various mechanical subsystems including the respective constituent elements recited in the claims of the present application with predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling to keep. In order to ensure these various accuracies, before and after the assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, various electrical systems Is adjusted to achieve electrical accuracy.
  • the assembly process from various subsystems to the exposure system includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies for the entire exposure apparatus. It is desirable to manufacture the exposure apparatus in a clean room in which the temperature and cleanliness are controlled.
  • a microdevice such as a semiconductor device includes a step 201 for performing a function / performance design of the microdevice, a step 202 for manufacturing a mask (reticle) based on this design step, Step 203 for manufacturing a substrate that is a base material of the device, a step of exposing the mask pattern to the substrate by the exposure apparatus EX of the above-described embodiment, a step of developing the exposed substrate, heating (curing) of the developed substrate, and It is manufactured through a step 204 including a substrate processing process such as an etching process, a device assembly step (including processing processes such as a dicing process, a bonding process, and a knocking process) 205, an inspection step 206, and the like.
  • a substrate processing process such as an etching process
  • a device assembly step including processing processes such as a dicing process, a bonding process, and a knocking process

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

An exposure apparatus (EX) is provided for exposing a substrate (P) by irradiating the substrate with exposure light (EL). The exposure apparatus is provided with an optical element (LS1) having a recessed surface (2) for applying the exposure light; a supply port (12) arranged on an object (4), which can face the recessed surface, for supplying a space between the recessed surface and the object with a liquid; and a suction port (22), which is arranged on the object and sucks a fluid between the recessed surface and the object.

Description

明 細 書  Specification
露光装置、露光方法、及びデバイス製造方法  Exposure apparatus, exposure method, and device manufacturing method
技術分野  Technical field
[0001] 本発明は、基板を露光する露光装置、露光方法、及びデバイス製造方法に関する ものである。  The present invention relates to an exposure apparatus that exposes a substrate, an exposure method, and a device manufacturing method.
本願は、 2005年 11月 1日に出願された特願 2005— 318139号に基づき優先権 を主張し、その内容をここに援用する。  This application claims priority based on Japanese Patent Application No. 2005-318139 filed on November 1, 2005, the contents of which are incorporated herein by reference.
背景技術  Background art
[0002] フォトリソグラフイエ程で用いられる露光装置において、下記特許文献に開示されて いるような、露光光の光路空間を液体で満たし、その液体を介して基板を露光する液 浸式の露光装置が知られて 、る。  In an exposure apparatus used in the photolithography process, an immersion type exposure apparatus that fills an optical path space of exposure light with a liquid and exposes a substrate through the liquid as disclosed in the following patent document Is known.
特許文献 1:国際公開第 99Z49504号パンフレット  Patent Document 1: Pamphlet of International Publication No. 99Z49504
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 液浸式の露光装置においては、露光光の光路空間に配置される液体中に気体 (気 泡を含む)が存在すると、露光不良が発生する可能性がある。 In an immersion type exposure apparatus, if a gas (including bubbles) is present in the liquid arranged in the optical path space of the exposure light, exposure failure may occur.
[0004] 本発明は、露光光の光路空間を液体で満たすことができる露光装置、露光方法、 及びにその露光装置を用いるデバイス製造方法を提供することを目的とする。 [0004] An object of the present invention is to provide an exposure apparatus, an exposure method, and a device manufacturing method using the exposure apparatus that can fill an optical path space of exposure light with a liquid.
課題を解決するための手段  Means for solving the problem
[0005] 本発明は実施の形態に示す各図に対応付けした以下の構成を採用している。但し 、各要素に付した括弧付き符号はその要素の例示に過ぎず、各要素を限定するもの ではない。 [0005] The present invention adopts the following configuration associated with each drawing shown in the embodiment. However, the reference numerals with parentheses attached to each element are merely examples of the element and do not limit each element.
[0006] 本発明の第 1の態様に従えば、基板上に露光光を照射して前記基板を露光する露 光装置において、前記露光光が射出される凹面を有する光学素子と、前記凹面と対 向可能な物体に設けられ、前記凹面と前記物体との間の空間に液体を供給する供 給口と、前記物体に設けられ、前記凹面と前記物体との間の流体を吸引する吸引口 と、を備えた露光装置が提供される。 [0007] 本発明の第 2の態様に従えば、基板上に露光光を照射して前記基板を露光する露 光装置において、前記露光光が射出される凹面を有する光学素子と、凸面を含む物 体と、前記凹面と前記凸面が対向した状態で、前記凹面と前記凸面との間の空間に 液体を供給する供給口と、を備えた露光装置が提供される。 [0006] According to a first aspect of the present invention, in an exposure apparatus that irradiates a substrate with exposure light to expose the substrate, an optical element having a concave surface from which the exposure light is emitted, and the concave surface A supply port that is provided in a facing object and supplies liquid to a space between the concave surface and the object, and a suction port that is provided in the object and sucks fluid between the concave surface and the object And an exposure apparatus including the above. [0007] According to a second aspect of the present invention, an exposure apparatus that exposes the substrate by irradiating exposure light onto the substrate includes an optical element having a concave surface from which the exposure light is emitted, and a convex surface. An exposure apparatus is provided that includes an object, and a supply port that supplies liquid to a space between the concave surface and the convex surface in a state where the concave surface and the convex surface face each other.
[0008] 本発明の第 3の態様に従えば、光学素子を介して露光光を基板上に照射して前記 基板を露光する露光方法において、前記光学素子の凹面に対向可能な物体に設け られた供給ロカ 前記凹面と前記物体との間の空間に液体を供給し、前記物体に設 けられた吸引ロカ 前記凹面と前記物体との間の流体を吸引する露光方法が提供さ れる。  [0008] According to the third aspect of the present invention, in the exposure method of exposing the substrate by irradiating the substrate with exposure light through the optical element, the object is provided on an object that can face the concave surface of the optical element. Further, there is provided an exposure method for supplying a liquid to a space between the concave surface and the object and sucking a fluid between the concave surface and the object.
[0009] 本発明の第 4の態様に従えば、光学素子を介して露光光を基板上に照射して前記 基板を露光する露光方法において、前記光学素子の凹面に対向して物体を配置し 、前記凹面と物体との間の空間に前記液体を供給して、前記液体を前記凹面に沿つ て流す露光方法が提供される。  [0009] According to the fourth aspect of the present invention, in the exposure method of exposing the substrate by irradiating the substrate with exposure light through the optical element, the object is arranged facing the concave surface of the optical element. An exposure method is provided in which the liquid is supplied to a space between the concave surface and the object, and the liquid flows along the concave surface.
[0010] 本発明の第 5の態様に従えば、光学素子を介して露光光を基板上に照射して前記 基板を露光する露光方法において、前記光学素子の凹面に対向して物体を配置し [0010] According to the fifth aspect of the present invention, in the exposure method of exposing the substrate by irradiating the substrate with exposure light through the optical element, the object is disposed facing the concave surface of the optical element.
、液体の供給が前記物体に対して前記凹面側力 行われるように、前記凹面と物体 との間の空間に液体を供給する露光方法が提供される。 An exposure method for supplying liquid to a space between the concave surface and the object is provided so that the liquid is supplied to the concave surface side force with respect to the object.
[0011] 本発明の第 6の態様に従えば、光学素子を介して露光光を基板上に照射して前記 基板を露光する露光方法において、前記光学素子の凹面に対向して物体を配置す ることと、前記凹面と物体との間の空間に液体を供給することと、を含み、前記空間に 液体を満たす時に使われる液体供給経路と、前記基板露光時に使われる液体供給 経路とを異ならせる露光方法が提供される。  [0011] According to the sixth aspect of the present invention, in the exposure method of exposing the substrate by irradiating the substrate with exposure light through the optical element, the object is disposed facing the concave surface of the optical element. And supplying a liquid to the space between the concave surface and the object, the liquid supply path used when filling the space with the liquid is different from the liquid supply path used during the substrate exposure. An exposure method is provided.
[0012] 本発明の第 7の態様に従えば、光学素子を介して露光光を基板上に照射して前記 基板を露光する露光方法において、前記光学素子の光射出面と物体との間の空間 に液体を供給し、前記液体の供給開始後、前記空間が前記液体で満たされるまでの 間に、前記光学素子と前記物体との間隔を変更する露光方法が提供される。  [0012] According to a seventh aspect of the present invention, in an exposure method for exposing the substrate by irradiating the substrate with exposure light through the optical element, the light emitting surface between the optical element and an object are exposed. An exposure method is provided in which a liquid is supplied to a space, and the interval between the optical element and the object is changed after the liquid supply is started until the space is filled with the liquid.
[0013] 本発明の第 8の態様に従えば、上記の露光方法を用いるデバイス製造方法が提供 される。 発明の効果 [0013] According to an eighth aspect of the present invention, there is provided a device manufacturing method using the above exposure method. The invention's effect
[0014] 本発明によれば、露光光の光路の所定部分を液体で満たすことができ、基板を良 好に露光することができる。  [0014] According to the present invention, a predetermined portion of the optical path of the exposure light can be filled with the liquid, and the substrate can be satisfactorily exposed.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]第 1実施形態に係る露光装置を示す概略構成図である。  FIG. 1 is a schematic block diagram that shows an exposure apparatus according to a first embodiment.
[図 2A]第 1実施形態に係る液浸システムを示す図である。  FIG. 2A is a diagram showing an immersion system according to the first embodiment.
[図 2B]第 1実施形態に係る液浸システムを示す図である。  FIG. 2B is a diagram showing an immersion system according to the first embodiment.
[図 3]第 1実施形態に係る露光装置の動作を説明するための図である。  FIG. 3 is a view for explaining the operation of the exposure apparatus according to the first embodiment.
[図 4A]第 1実施形態に係る露光装置の動作を説明するための図である。  FIG. 4A is a view for explaining the operation of the exposure apparatus according to the first embodiment.
[図 4B]第 1実施形態に係る露光装置の動作を説明するための図である。  FIG. 4B is a view for explaining the operation of the exposure apparatus according to the first embodiment.
[図 5A]第 1実施形態に係る露光装置の動作を説明するための図である。  FIG. 5A is a view for explaining the operation of the exposure apparatus according to the first embodiment.
[図 5B]第 1実施形態に係る露光装置の動作を説明するための図である。  FIG. 5B is a view for explaining the operation of the exposure apparatus according to the first embodiment.
[図 6]第 1実施形態に係る露光装置の動作を説明するための図である。  FIG. 6 is a view for explaining the operation of the exposure apparatus according to the first embodiment.
[図 7]第 1実施形態に係る露光装置の動作を説明するための図である。  FIG. 7 is a view for explaining the operation of the exposure apparatus according to the first embodiment.
[図 8A]第 1実施形態に係る検出装置の原理を説明するための図である。  FIG. 8A is a diagram for explaining the principle of the detection device according to the first embodiment.
[図 8B]第 1実施形態に係る検出装置の原理を説明するための図である。  FIG. 8B is a diagram for explaining the principle of the detection device according to the first embodiment.
[図 9]第 2実施形態に係る露光装置の要部を示す図である。  FIG. 9 is a view showing a main part of an exposure apparatus according to a second embodiment.
[図 10]第 3実施形態に係る露光装置の要部を示す図である。  FIG. 10 is a view showing a main part of an exposure apparatus according to a third embodiment.
[図 11A]第 4実施形態に係る露光装置の要部を示す図である。  FIG. 11A is a view showing a main part of an exposure apparatus according to a fourth embodiment.
[図 11B]第 4実施形態に係る露光装置の要部を示す図である。  FIG. 11B is a view showing a main part of the exposure apparatus according to the fourth embodiment.
[図 12A]第 4実施形態に係る露光装置の動作を説明するための図である。  FIG. 12A is a view for explaining the operation of the exposure apparatus according to the fourth embodiment.
[図 12B]第 4実施形態に係る露光装置の動作を説明するための図である。  FIG. 12B is a view for explaining the operation of the exposure apparatus according to the fourth embodiment.
[図 13A]第 4実施形態に係る露光装置の動作を説明するための図である。  FIG. 13A is a view for explaining the operation of the exposure apparatus according to the fourth embodiment.
[図 13B]第 4実施形態に係る露光装置の動作を説明するための図である。  FIG. 13B is a view for explaining the operation of the exposure apparatus according to the fourth embodiment.
[図 14]第 5実施形態に係る露光装置の要部を示す図である。  FIG. 14 is a view showing a main part of an exposure apparatus according to a fifth embodiment.
[図 15]第 6実施形態に係る露光装置の要部を示す図である。  FIG. 15 is a view showing a main part of an exposure apparatus according to a sixth embodiment.
[図 16]第 7実施形態に係る露光装置の要部を示す図である。  FIG. 16 is a view showing a main part of an exposure apparatus according to a seventh embodiment.
[図 17]第 7実施形態に係る露光装置の動作を説明するための図である。 [図 18]第 8実施形態に係る露光装置の要部を示す図である。 FIG. 17 is a view for explaining the operation of the exposure apparatus according to the seventh embodiment. FIG. 18 is a view showing a main part of an exposure apparatus according to an eighth embodiment.
[図 19]第 9実施形態に係る露光装置の要部を示す図である。  FIG. 19 is a view showing a main part of an exposure apparatus according to a ninth embodiment.
[図 20]第 10実施形態に係る露光装置の要部を示す図である。  FIG. 20 shows the essential parts of the exposure apparatus related to the tenth embodiment.
[図 21A]第 10実施形態に係る露光装置の動作を説明するための図である。  FIG. 21A is a view for explaining an operation of the exposure apparatus according to the tenth embodiment.
[図 21B]第 10実施形態に係る露光装置の動作を説明するための図である。  FIG. 21B is a view for explaining an operation of the exposure apparatus according to the tenth embodiment.
[図 22A]第 10実施形態に係る露光装置の動作を説明するための図である。  FIG. 22A is a view for explaining an operation of the exposure apparatus according to the tenth embodiment.
[図 22B]第 10実施形態に係る露光装置の動作を説明するための図である。  FIG. 22B is a view for explaining the operation of the exposure apparatus according to the tenth embodiment.
[図 23]第 11実施形態に係る露光装置の要部を示す図である。  FIG. 23 shows the essential parts of the exposure apparatus related to the eleventh embodiment.
[図 24]第 11実施形態に係る露光装置の動作を説明するための図である。  FIG. 24 is a view for explaining the operation of the exposure apparatus according to the eleventh embodiment.
[図 25]マイクロデバイスの製造工程の一例を説明するためのフローチャート図である 符号の説明  FIG. 25 is a flowchart for explaining an example of a manufacturing process of a micro device.
[0016] 1…液浸システム、 2…凹面、 4…基板ステージ、 4F…上面、 4T…基板テーブル、 5…計測ステージ、 7…制御装置、 12…供給口、 22…吸引口、 23…第 2供給口、 30 …検出装置、 40· ··凹部、 54· ··駆動装置、 64· ··駆動装置、 70…所定部材、 71…凸 面、 82· ··供給口、 84…回収口、 AX…光軸、 EL…露光光、 EX…露光装置、 K…光 路、 LG…界面、 LQ…液体、 LR…液浸領域、 LSI…最終光学素子、 P…基板、 PK …鏡筒、 PKA…下面、 PL…投影光学系、 SP…所定空間  [0016] 1 ... immersion system, 2 ... concave surface, 4 ... substrate stage, 4F ... top surface, 4T ... substrate table, 5 ... measurement stage, 7 ... control device, 12 ... supply port, 22 ... suction port, 23 ... first 2 supply port, 30 ... detection device, 40 ··· concave portion, 54 ··· drive device, 64 ··· drive device, 70 ··· predetermined member, 71 ··· convex surface, 82 ··· supply port, 84 ··· recovery port AX ... optical axis, EL ... exposure light, EX ... exposure device, K ... optical path, LG ... interface, LQ ... liquid, LR ... immersion area, LSI ... final optical element, P ... substrate, PK ... lens barrel, PKA ... bottom surface, PL ... projection optical system, SP ... predetermined space
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれ に限定されない。なお、以下の説明においては、 XYZ直交座標系を設定し、この XY Z直交座標系を参照しつつ各部材の位置関係について説明する。そして、水平面内 における所定方向を X軸方向、水平面内にお!ヽて X軸方向と直交する方向を Y軸方 向、 X軸方向及び Y軸方向のそれぞれに直交する方向(すなわち鉛直方向)を Z軸 方向とする。また、 X軸、 Y軸、及び Z軸まわりの回転 (傾斜)方向をそれぞれ、 Θ X、 θ Y,及び 0 Z方向とする。  Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. In the following description, an XYZ orthogonal coordinate system is set, and the positional relationship of each member will be described with reference to this XYZ orthogonal coordinate system. And the predetermined direction in the horizontal plane is the X axis direction, in the horizontal plane! The direction perpendicular to the X-axis direction is the Y-axis direction, and the direction perpendicular to each of the X-axis direction and the Y-axis direction (that is, the vertical direction) is the Z-axis direction. The rotation (tilt) directions around the X, Y, and Z axes are the ΘX, θY, and 0Z directions, respectively.
[0018] <第 1実施形態 >  [0018] <First embodiment>
第 1実施形態について説明する。図 1は第 1実施形態に係る露光装置 EXを示す概 略構成図である。図 1において、露光装置 EXは、マスク Mを保持して移動可能なマ スクステージ 3と、基板 Pを保持して移動可能な基板ステージ 4と、マスクステージ 3に 保持されているマスク Mを露光光 ELで照明する照明系 ILと、露光光 ELで照明され たマスク Mのパターン像を基板 P上に投影する投影光学系 PLと、露光装置 EX全体 の動作を制御する制御装置 7とを備えて 、る。 A first embodiment will be described. FIG. 1 is a schematic diagram showing an exposure apparatus EX according to the first embodiment. FIG. In FIG. 1, the exposure apparatus EX exposes a mask stage 3 that can move while holding the mask M, a substrate stage 4 that can move while holding the substrate P, and the mask M held by the mask stage 3. Illumination system IL that illuminates with light EL, projection optical system PL that projects the pattern image of mask M illuminated with exposure light EL onto substrate P, and controller 7 that controls the overall operation of exposure apparatus EX And
[0019] なお、ここでいう基板は半導体ウェハ等の基材上に感光材 (フォトレジスト)、保護膜 などの膜が塗布されたものを含む。マスクは基板上に縮小投影されるデバイスパター ンが形成されたレチクルを含む。また、本実施形態においては、マスクとして透過型 のマスクを用いる力 反射型のマスクを用いてもよい。 Note that the substrate here includes a substrate such as a semiconductor wafer coated with a film such as a photosensitive material (photoresist) or a protective film. The mask includes a reticle on which a device pattern to be reduced and projected on a substrate is formed. In the present embodiment, a force reflection type mask using a transmission type mask as a mask may be used.
[0020] 本実施形態の露光装置 EXは、露光波長を実質的に短くして解像度を向上するとと もに焦点深度を実質的に広くするために液浸法を適用した液浸式の露光装置であつ て、投影光学系 PLと液体 LQとを介して基板 P上に露光光 ELを照射して基板 Pを露 光する。本実施形態において、液体 LQは、投影光学系 PLの複数の光学素子 LSI 〜LS7のうち、投影光学系 PLの像面に最も近い最終光学素子 LSIと、基板 Pとの間 に満たされる。また、本実施形態においては、最終光学素子 LSIは、露光光 ELが射 出される凹面 2を有している。  [0020] An exposure apparatus EX of the present embodiment is an immersion type exposure apparatus to which an immersion method is applied in order to substantially shorten the exposure wavelength to improve the resolution and substantially increase the depth of focus. The substrate P is exposed by irradiating the substrate P with the exposure light EL through the projection optical system PL and the liquid LQ. In the present embodiment, the liquid LQ is filled between the substrate P and the final optical element LSI closest to the image plane of the projection optical system PL among the plurality of optical element LSIs to LS7 of the projection optical system PL. In the present embodiment, the final optical element LSI has a concave surface 2 from which the exposure light EL is emitted.
[0021] 露光装置 EXは、最終光学素子 LSIの露光光 ELが射出される凹面 2とその凹面 2 と対向する物体との間の所定空間を液体 LQで満たすための液浸システム 1を備えて いる。液浸システム 1は、最終光学素子 LSIの凹面 2と対向可能な基板ステージ 4上 に設けられ、凹面 2と基板ステージ 4との間に液体 LQを供給する供給口 12と、基板 ステージ 4上に設けられ、凹面 2と基板ステージ 4との間の流体を吸引する吸引口 22 とを備えている。後述するように、基板 Pを露光するときにおいては、制御装置 7は、 液浸システム 1を用いて凹面 2と基板ステージ 4との間を液体 LQで満たした後、投影 光学系 PLと基板 Pとが対向するように、投影光学系 PL及び液体 LQに対して基板ス テージ 4を XY平面内の所定方向に移動して、液体 LQで最終光学素子 LSIの凹面 2と基板ステージ 4に保持された基板 Pの表面との間の露光光 ELの光路 Kを含む所 定空間を満たす。基板 Pの露光面とは、感光材が塗布された露光面である。凹面 2及 び基板 Pの表面は、光路 Kを満たす液体 LQと接触する。 [0022] 露光装置 EXは、少なくとも投影光学系 PLを用いてマスク Mのパターン像を基板 P 上に投影している間、最終光学素子 LSIの凹面 2と基板 Pの表面との間の露光光 EL の光路 Kを含む所定空間を液体 LQで満たす。露光装置 EXは、投影光学系 PLと露 光光 ELの光路 Kを満たす液体 LQとを介してマスク Mを通過した露光光 ELを基板ス テージ 4に保持された基板 P上に照射することによって、マスク Mのパターン像を基 板 P上に投影して、基板 Pを露光する。また、本実施形態の露光装置 EXは、最終光 学素子 LSIと基板 Pとの間の露光光 ELの光路 Kに満たされた液体 LQが、投影光学 系 PLの投影領域 ARを含む基板 P上の一部の領域に、投影領域 ARよりも大きく且 つ基板 Pよりも小さ ヽ液浸領域 LRを局所的に形成する局所液浸方式を採用して ヽる The exposure apparatus EX includes an immersion system 1 for filling a predetermined space between the concave surface 2 from which the exposure light EL of the final optical element LSI is emitted and the object facing the concave surface 2 with the liquid LQ. Yes. The immersion system 1 is provided on the substrate stage 4 that can be opposed to the concave surface 2 of the final optical element LSI, the supply port 12 that supplies liquid LQ between the concave surface 2 and the substrate stage 4, and the substrate stage 4 And a suction port 22 for sucking a fluid between the concave surface 2 and the substrate stage 4. As will be described later, when exposing the substrate P, the controller 7 uses the liquid immersion system 1 to fill the space between the concave surface 2 and the substrate stage 4 with the liquid LQ, and then the projection optical system PL and the substrate P. The substrate stage 4 is moved in a predetermined direction in the XY plane with respect to the projection optical system PL and the liquid LQ so as to face each other, and held by the concave surface 2 of the final optical element LSI and the substrate stage 4 by the liquid LQ. It fills the specified space including the optical path K of the exposure light EL between the surface of the substrate P. The exposure surface of the substrate P is an exposure surface coated with a photosensitive material. The concave surface 2 and the surface of the substrate P are in contact with the liquid LQ that fills the optical path K. The exposure apparatus EX exposes light between the concave surface 2 of the final optical element LSI and the surface of the substrate P while projecting the pattern image of the mask M onto the substrate P using at least the projection optical system PL. The specified space including the EL optical path K is filled with liquid LQ. The exposure apparatus EX irradiates the exposure light EL passed through the mask M onto the substrate P held on the substrate stage 4 through the projection optical system PL and the liquid LQ that satisfies the optical path K of the exposure light EL. Then, the pattern image of the mask M is projected onto the substrate P, and the substrate P is exposed. Further, in the exposure apparatus EX of the present embodiment, the liquid LQ filled in the optical path K of the exposure light EL between the final optical element LSI and the substrate P is on the substrate P including the projection area AR of the projection optical system PL. Adopt a local liquid immersion method that locally forms a liquid immersion area LR that is larger than the projection area AR and smaller than the substrate P.
[0023] 本実施形態においては、投影光学系 PLの光軸 AXと Z軸方向とは平行となってい る。また、投影光学系 PLの複数の光学素子 LS1〜LS7は鏡筒 PKで保持されている 。鏡筒 PKは、露光光 ELが照射可能な位置、すなわち凹面 2と対向する位置に配置 された基板 Pの表面と対向するように、且つ露光光 ELの光路 Kを囲むように設けられ た下面 PKAを有している。下面 PKAは、凹面 2を囲むように形成されている。凹面 2 と基板 Pの表面との間の露光光 ELの光路 Kを液体 LQで満たして液浸領域 LRを形 成したときに、液浸領域 LRを形成する液体 LQの界面 LGは、液体 LQの表面張力に より、基板 Pの表面と鏡筒 PKの下面 PKAとの間に維持される。露光装置 EXは、最 終光学素子 LSIを含む投影光学系 PLと、最終光学素子 LSIの凹面 2と基板 Pの表 面との間を満たす液体 LQとを介して、基板 P上に露光光 ELを照射する。 In the present embodiment, the optical axis AX and the Z-axis direction of the projection optical system PL are parallel to each other. Further, the plurality of optical elements LS1 to LS7 of the projection optical system PL are held by a lens barrel PK. The lens barrel PK is a lower surface provided so as to face the surface of the substrate P disposed at a position where the exposure light EL can be irradiated, that is, a position facing the concave surface 2, and surround the optical path K of the exposure light EL. Have PKA. The lower surface PKA is formed so as to surround the concave surface 2. The exposure light EL between the concave surface 2 and the surface of the substrate P is filled with the liquid LQ to form the immersion area LR. When the immersion area LR is formed, the interface LG of the liquid LQ that forms the immersion area LR is the liquid LQ. Is maintained between the surface of the substrate P and the lower surface PKA of the lens barrel PK. The exposure apparatus EX exposes the exposure light EL on the substrate P via the projection optical system PL including the final optical element LSI and the liquid LQ filling the concave surface 2 of the final optical element LSI and the surface of the substrate P. Irradiate.
[0024] 照明系 ILは、マスク M上の所定の照明領域を均一な照度分布の露光光 ELで照明 するものである。照明系 IL力 射出される露光光 ELとしては、例えば水銀ランプから 射出される輝線 (g線、 h線、 i線)及び KrFエキシマレーザ光 (波長 248nm)等の遠 紫外光(DUV光)、 ArFエキシマレーザ光(波長 193nm)及び Fレーザ光(波長 15  The illumination system IL illuminates a predetermined illumination area on the mask M with exposure light EL having a uniform illuminance distribution. Illumination system IL force As exposure light EL emitted, for example, bright ultraviolet rays (g-line, h-line, i-line) emitted from mercury lamps and far ultraviolet light (DUV light) such as KrF excimer laser light (wavelength 248 nm), ArF excimer laser light (wavelength 193nm) and F laser light (wavelength 15)
2  2
7nm)等の真空紫外光 (VUV光)などが用いられる。本実施形態においては、露光 光 ELとして、 ArFエキシマレーザ光が用いられる。  Vacuum ultraviolet light (VUV light) such as 7 nm) is used. In the present embodiment, ArF excimer laser light is used as the exposure light EL.
[0025] マスクステージ 3は、リニアモータ等のァクチユエータを含むマスクステージ駆動装 置の駆動により、マスク Mを保持した状態で、 X軸、 Y軸、及び θ Z方向に移動可能 である。マスクステージ 3 (ひいてはマスク M)の位置情報は、レーザ干渉計 3Lによつ て計測される。レーザ干渉計 3Lは、マスクステージ 3上に設けられた移動鏡 3Kを用 いてマスクステージ 3の位置情報を計測する。制御装置 7は、レーザ干渉計 3Lの計 測結果に基づ 、てマスクステージ駆動装置 3Dを駆動し、マスクステージ 3に保持さ れて 、るマスク Mの位置制御を行う。 [0025] The mask stage 3 can be moved in the X-axis, Y-axis, and θ-Z directions while holding the mask M by driving a mask stage driving device including an actuator such as a linear motor. It is. The position information of the mask stage 3 (and hence the mask M) is measured by the laser interferometer 3L. The laser interferometer 3L measures the position information of the mask stage 3 using a moving mirror 3K provided on the mask stage 3. The control device 7 drives the mask stage drive device 3D based on the measurement result of the laser interferometer 3L, and controls the position of the mask M held by the mask stage 3.
[0026] なお、移動鏡 3Kは平面鏡のみでなくコーナーキューブ(レトロリフレクタ)を含むも のとしてもよいし、移動鏡 3Kをマスクステージ 3に固設する代わりに、例えばマスクス テージ 3の端面 (側面)を鏡面加工して形成される反射面を用いてもよい。また、マス クステージ 3は、例えば特開平 8— 130179号公報 (対応米国特許第 6, 721, 034 号)に開示される粗微動可能な構成としてもよい。  The movable mirror 3K may include not only a plane mirror but also a corner cube (retro reflector). Instead of fixing the movable mirror 3K to the mask stage 3, for example, an end face (side surface) of the mask stage 3 is used. ) May be used as a reflecting surface formed by mirror finishing. Further, the mask stage 3 may be configured to be capable of coarse and fine movement disclosed in, for example, JP-A-8-130179 (corresponding US Pat. No. 6,721,034).
[0027] 基板ステージ 4は、ステージ本体 4Bと、ステージ本体 4B上に搭載された基板テー ブル 4Tと、基板テーブル 4Tに設けられ、基板 Pを保持する基板ホルダ 4Hとを備え ている。基板ホルダ 4Hは、基板テーブル 4T上に設けられた凹部 4Rに配置されてお り、基板テーブル 4Tの凹部 4Rの周囲の上面 4Fは、基板ホルダ 4Hに保持された基 板 Pの表面とほぼ同じ高さ(面一)になるような平坦面となっている。なお、基板ホルダ 4Hに保持された基板 Pの表面と基板テーブル 4Tの上面 4Fとの間に段差があっても よい。また、基板ステージ 4の上面 4Fはその一部、例えば基板 Pを囲む所定領域の み、基板 Pの表面とほぼ同じ高さとしてもよい。さら〖こ、基板ホルダ 4Hを基板ステージ 4の一部と一体に形成してもよ 、が、本実施形態では基板ホルダ 4Hと基板ステージ 4とを別々に構成し、例えば真空吸着などによって基板ホルダ 4Hを凹部 4Rに固定し ている。  The substrate stage 4 includes a stage body 4B, a substrate table 4T mounted on the stage body 4B, and a substrate holder 4H provided on the substrate table 4T and holding the substrate P. The substrate holder 4H is disposed in a recess 4R provided on the substrate table 4T, and the upper surface 4F around the recess 4R of the substrate table 4T is substantially the same as the surface of the substrate P held by the substrate holder 4H. It is a flat surface that is height (level). There may be a step between the surface of the substrate P held by the substrate holder 4H and the upper surface 4F of the substrate table 4T. In addition, the upper surface 4F of the substrate stage 4 may be substantially the same height as the surface of the substrate P only in a part thereof, for example, a predetermined region surrounding the substrate P. Further, the substrate holder 4H may be formed integrally with a part of the substrate stage 4. However, in this embodiment, the substrate holder 4H and the substrate stage 4 are separately configured, for example, by vacuum suction or the like. 4H is fixed to the recess 4R.
[0028] ステージ本体 4Bは、エアベアリング 4Aにより、ベース部材 BPの上面(ガイド面)に 対して非接触支持されて!、る。ベース部材 BPの上面は XY平面とほぼ平行であり、 基板ステージ 4は、最終光学素子 LSIの凹面 2と対向する位置を含むベース部材 B P上の所定領域内で XY方向に移動可能である。  [0028] The stage body 4B is supported in a non-contact manner on the upper surface (guide surface) of the base member BP by the air bearing 4A. The upper surface of the base member BP is substantially parallel to the XY plane, and the substrate stage 4 is movable in the XY direction within a predetermined region on the base member B P including the position facing the concave surface 2 of the final optical element LSI.
[0029] 基板ステージ 4は、リニアモータ等のァクチユエータを含む基板ステージ駆動装置 の駆動により、基板ホルダ 4Hに基板 Pを保持した状態で、ベース部材 BP上で移動 可能である。基板ステージ駆動装置は、ステージ本体 4Bをベース部材 BP上で X軸 方向、 Y軸方向、及び θ Ζ方向に移動することによって、そのステージ本体 4Β上に搭 載されている基板テーブル 4Τを X軸方向、 Υ軸方向、及び θ Ζ方向に移動可能な第 1駆動系と、ステージ本体 4Βに対して基板テーブル 4Τを Ζ軸方向、 θ X方向、及び θ Υ方向に移動可能な第 2駆動系とを備えている。 [0029] The substrate stage 4 is movable on the base member BP while the substrate P is held on the substrate holder 4H by driving a substrate stage driving device including an actuator such as a linear motor. The substrate stage drive unit uses the stage body 4B as the X axis on the base member BP. The first drive that can move the substrate table 4 Ζ mounted on the stage body 4 に in the X-axis direction, Ζ-axis direction, and θ-Ζ direction by moving in the direction, Y-axis direction, and θ Ζ direction And a second drive system capable of moving the substrate table 4Τ in the axial direction, θ X direction, and θΥ direction relative to the stage body 4Β.
[0030] 第 1駆動系は、リニアモータ等のァクチユエータを含み、ベース部材 BP上に非接触 支持されているステージ本体 4Bを X軸方向、 Y軸方向、及び θ Z方向に駆動可能で ある。第 2駆動系は、ステージ本体 4Bと基板テーブル 4Tとの間に介在された、例え ばボイスコイルモータ等のァクチユエータ 4Vと、各ァクチユエータの駆動量を計測す る不図示の計測装置 (エンコーダなど)とを含む。基板テーブル 4Tは、少なくとも 3つ のァクチユエータ 4Vによってステージ本体 4B上に支持される。ァクチユエータ 4Vの それぞれは、ステージ本体 4Bに対して基板テーブル 4Tを Z軸方向に独立して駆動 可能であり、制御装置 7は、 3つのァクチユエータ 4Vそれぞれの駆動量を調整するこ とによって、ステージ本体 4Bに対して基板テーブル 4Tを、 Z軸方向、 θ X方向、及び θ Y方向に駆動する。このように、第 1、第 2駆動系を含む基板ステージ駆動装置は、 基板ステージ 4の基板テーブル 4Tを、 X軸、 Y軸、 Z軸、 0 X、 θ Y,及び 0 Z方向の 6自由度の方向に移動可能である。制御装置 7は、基板ステージ駆動装置を制御す ることにより、基板テーブル 4Tの基板ホルダ 4Hに保持された基板 Pの表面の X軸、 Y軸、 Z軸、 0 X、 θ Y,及び θ Z方向の 6自由度の方向に関する位置を制御可能で ある。 [0030] The first drive system includes an actuator such as a linear motor, and can drive the stage body 4B supported in a non-contact manner on the base member BP in the X-axis direction, the Y-axis direction, and the θZ direction. The second drive system is interposed between the stage main body 4B and the substrate table 4T, for example, an actuator 4V such as a voice coil motor, and a measuring device (not shown) that measures the drive amount of each actuator. Including. The substrate table 4T is supported on the stage body 4B by at least three actuators 4V. Each of the actuators 4V can drive the substrate table 4T independently in the Z-axis direction with respect to the stage body 4B, and the control device 7 adjusts the driving amount of each of the three actuators 4V to adjust the stage body. The substrate table 4T is driven in the Z axis direction, θ X direction, and θ Y direction with respect to 4B. As described above, the substrate stage driving apparatus including the first and second drive systems is capable of moving the substrate table 4T of the substrate stage 4 on the X axis, the Y axis, the Z axis, 0 X, θ Y, and 0 Z directions. It can move in the direction of degrees. The control device 7 controls the substrate stage driving device to control the X axis, Y axis, Z axis, 0 X, θ Y, and θ Z of the surface of the substrate P held by the substrate holder 4H of the substrate table 4T. It is possible to control the position in the direction of 6 degrees of freedom.
[0031] 基板ステージ 4の基板テーブル 4T (ひ ヽては基板 P)の位置情報は、レーザ干渉計 4Lによって計測される。レーザ干渉計 4Lは、基板テーブル 4Tに設けられた移動鏡 4Kを用いて、基板テーブル 4Tの X軸、 Y軸、及び θ Z方向に関する位置情報を計 測する。また、基板テーブル 4Tの基板ホルダ 4Hに保持されている基板 Pの表面の 面位置情報 (Z軸、 Θ X、及び Θ Y方向に関する位置情報)は、不図示のフォーカス' レべリング検出系によって検出される。制御装置 7は、レーザ干渉計 4Lの計測結果 及びフォーカス'レべリング検出系の検出結果に基づいて、基板ステージ駆動装置を 駆動し、基板ホルダ 4Hに保持されて ヽる基板 Pの位置制御を行う。  [0031] The position information of the substrate table 4T (and hence the substrate P) of the substrate stage 4 is measured by the laser interferometer 4L. The laser interferometer 4L uses the moving mirror 4K provided on the substrate table 4T to measure position information regarding the X-axis, Y-axis, and θZ directions of the substrate table 4T. In addition, the surface position information (position information about the Z axis, Θ X, and Θ Y directions) of the surface of the substrate P held by the substrate holder 4H of the substrate table 4T is obtained by a focus leveling detection system (not shown). Detected. Based on the measurement result of the laser interferometer 4L and the detection result of the focus / leveling detection system, the control device 7 drives the substrate stage driving device and controls the position of the substrate P held by the substrate holder 4H. Do.
[0032] なお、レーザ干渉計 4Lは基板ステージ 4の Z軸方向の位置、及び 0 X、 0 Y方向の 回転情報をも計測可能としてよぐその詳細は、例えば特表 2001— 510577号公報 (対応国際公開第 1999Z28790号パンフレット)に開示されている。さらに、移動鏡 4Kを基板ステージ 4に固設する代わりに、例えば基板ステージ 4の一部 (側面など) を鏡面加工して形成される反射面を用いてもよ!ヽ。 Note that the laser interferometer 4L has a position in the Z-axis direction of the substrate stage 4 and 0 X and 0 Y directions. The details of making it possible to measure rotation information are disclosed in, for example, JP 2001-510577 Gazette (corresponding to International Publication No. 1999Z28790). Further, instead of fixing the movable mirror 4K to the substrate stage 4, for example, a reflecting surface formed by mirror-treating a part (side surface, etc.) of the substrate stage 4 may be used.
[0033] また、フォーカス'レべリング検出系はその複数の計測点でそれぞれ基板 Pの Z軸方 向の位置情報を計測することで、基板 Pの Θ X及び Θ Y方向の傾斜情報(回転角)を 検出するものであるが、この複数の計測点はその少なくとも一部が液浸領域 LR (又 は投影領域 AR)内に設定されてもよいし、あるいはその全てが液浸領域 LRの外側 に設定されてもよい。さらに、例えばレーザ干渉計 4Lが基板 Pの Z軸、 θ X及び θ Y 方向の位置情報を計測可能であるときは、基板 Pの露光動作中にその Z軸方向の位 置情報が計測可能となるようにフォーカス'レペリング検出系を設けなくてもよぐ少な くとも露光動作中はレーザ干渉計 4Lの計測結果を用いて Z軸、 θ X及び 0 Y方向に 関する基板 Pの位置制御を行うようにしてもょ 、。  [0033] In addition, the focus' leveling detection system measures the position information of the substrate P in the Z-axis direction at each of the plurality of measurement points, so that the tilt information (rotation of the substrate P in the Θ X and Θ Y directions) The plurality of measurement points may be set at least partially within the immersion area LR (or projection area AR), or all of the measurement points may be in the immersion area LR. It may be set outside. Furthermore, for example, when the laser interferometer 4L can measure the position information of the substrate P in the Z axis, θ X and θ Y directions, the position information in the Z axis direction can be measured during the exposure operation of the substrate P. The position control of the substrate P in the Z axis, θ X and 0 Y directions is performed using the measurement result of the laser interferometer 4L during the exposure operation, at least during the exposure operation. Even so,
[0034] なお、本実施形態の投影光学系 PLは、その投影倍率が例えば 1Z4、 1/5, 1/8 等の縮小系であり、前述の照明領域と共役な投影領域 ARにマスクパターンの縮小 像を形成する。なお、投影光学系 PLは縮小系、等倍系及び拡大系のいずれでもよ い。また、投影光学系 PLは、反射光学素子を含まない屈折系、屈折光学素子を含ま ない反射系、反射光学素子と屈折光学素子とを含む反射屈折系のいずれであって もよい。また、投影光学系 PLは、倒立像と正立像とのいずれを形成してもよい。  Note that the projection optical system PL of the present embodiment is a reduction system whose projection magnification is, for example, 1Z4, 1/5, 1/8, etc., and a mask pattern is formed in the projection area AR conjugate with the illumination area described above. Form a reduced image. The projection optical system PL may be any of a reduction system, a unity magnification system, and an enlargement system. Further, the projection optical system PL may be any of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, and a catadioptric system that includes a reflective optical element and a refractive optical element. Further, the projection optical system PL may form either an inverted image or an erect image.
[0035] 次に、液体 LQ及び最終光学素子 LSIについて説明する。以下の説明においては 、簡単のため、液体 LQの露光光 ELに対する屈折率を、液体 LQの屈折率、と適宜 称し、最終光学素子 LSIの露光光 ELに屈折率を、最終光学素子 LSIの屈折率、と 適宜称する。  Next, the liquid LQ and the final optical element LSI will be described. In the following description, for the sake of simplicity, the refractive index of the liquid LQ with respect to the exposure light EL is appropriately referred to as the refractive index of the liquid LQ, and the refractive index of the exposure light EL of the final optical element LSI is referred to as the refractive index of the final optical element LSI. The rate is referred to as appropriate.
[0036] 本実施形態にお!、ては、液体 LQの露光光 EL (ArFエキシマレーザ光:波長 193η m)に対する屈折率は、最終光学素子 LSIの露光光 ELに対する屈折率よりも高ぐ 光路 Kは、最終光学素子 LSIの屈折率よりも高い屈折率を有する液体 LQで満たさ れる。例えば、最終光学素子 LSIが石英で形成される場合には、石英の屈折率は 1 . 5程度なので、液体 LQとしてはその屈折率が石英の屈折率よりも高い例えば 1. 6 〜2. 0程度のものが使用される。 In this embodiment, the refractive index of the liquid LQ with respect to the exposure light EL (ArF excimer laser light: wavelength 193 ηm) is higher than the refractive index of the final optical element LSI with respect to the exposure light EL. K is filled with a liquid LQ having a refractive index higher than that of the final optical element LSI. For example, when the final optical element LSI is made of quartz, the refractive index of quartz is about 1.5, so the liquid LQ has a refractive index higher than that of quartz, for example 1.6. About ~ 2.0 is used.
[0037] 最終光学素子 LS 1の +Z側(物体面側、マスク側)の光路は気体 (例えば窒素)で 満たされ、最終光学素子 LS Iの Z側 (像面側、基板側)の光路は液体 LQで満たさ れる。最終光学素子 LS Iの +Z側 (物体面側)の面 (以下、第 1面と称する)の形状は 、投影光学系 PLの物体面側(マスク側)に向力つて膨らむような凸状の曲面形状であ り、基板 Pの表面 (像面)に結像すべき全ての光線が入射するような形状となっている [0037] The optical path on the + Z side (object plane side, mask side) of the final optical element LS 1 is filled with a gas (for example, nitrogen), and the optical path on the Z side (image plane side, substrate side) of the final optical element LS I Is filled with liquid LQ. The shape on the + Z side (object surface side) of the final optical element LS I (hereinafter referred to as the first surface) is a convex shape that bulges toward the object surface side (mask side) of the projection optical system PL. This is a curved shape so that all the rays to be imaged on the surface (image plane) of the substrate P are incident.
[0038] 最終光学素子 LS Iの Z側 (像面側)の面 (以下、第 2面と称する)の形状は、基板 Pから離れるように凹んだ凹面 2となっている。すなわち最終光学素子 LS Iの第 2面( 凹面 2)も、物体面側 (マスク側)に向力つて凸状の曲面形状である。そして、第 2面( 凹面 2)の形状は、第 1面の形状と同様に、基板 Pの表面に結像すべき全ての光線が 入射するような形状となって 、る。 The shape of the surface (hereinafter referred to as the second surface) on the Z side (image surface side) of the final optical element LS I is a concave surface 2 that is recessed away from the substrate P. That is, the second surface (concave surface 2) of the final optical element LSI is also a convex curved surface directed toward the object surface side (mask side). The shape of the second surface (concave surface 2) is such that all light rays to be imaged on the surface of the substrate P are incident, similar to the shape of the first surface.
[0039] なお、最終光学素子 LS Iの第 1面及び第 2面の曲面形状は、投影光学系 PLが所 望の性能を得られるように適宜決定することができ、第 1面及び第 2面のそれぞれが、 同じ曲率中心を有する球面状でもよ!/、し、異なる曲率中心を有する球面状であつて もよいし、非球面形状でもよい。 [0039] The curved surface shapes of the first surface and the second surface of the final optical element LSI can be determined as appropriate so that the projection optical system PL can obtain the desired performance. Each of the surfaces may be spherical with the same center of curvature! /, May be spherical with different centers of curvature, or may be aspheric.
[0040] 投影光学系 PLの像面側の開口数 NAは以下の式で表される。 [0040] The numerical aperture NA on the image plane side of the projection optical system PL is expressed by the following equation.
NA=n - sin 0 … ( 1)  NA = n-sin 0… (1)
ここで、 nは液体 LQの屈折率であり、 Θは収束半角である。また、解像度 Ra、及び 焦点深度 δはそれぞれ以下の式で表される。  Where n is the refractive index of the liquid LQ and Θ is the convergence half angle. The resolution Ra and the depth of focus δ are expressed by the following equations, respectively.
Ra = k · λ /ΝΑ … (2)  Ra = k · λ / ΝΑ… (2)
δ = ±k - λ /NA2 … (3) δ = ± k-λ / NA 2 … (3)
2  2
ここで、 λは露光波長、 k、 kはプロセス係数である。このように、高い屈折率 (n)を  Here, λ is an exposure wavelength, and k and k are process coefficients. Thus, a high refractive index (n)
1 2  1 2
有する液体 LQによって開口数 NAを約 n倍にすることで、(2)式、(3)式より、解像度 及び焦点深度を大幅に向上することができる。  By increasing the numerical aperture NA by about n times with the liquid LQ, the resolution and depth of focus can be greatly improved from Equations (2) and (3).
[0041] 最終光学素子 LS Iの屈折率以上の投影光学系 PLの開口数 NAを得ようとした場 合、最終光学素子 LS Iの基板 Pと対向する第 2面が光軸 AXとほぼ垂直な平坦面で あると、露光光 ELの一部が、最終光学素子 LS Iと液体 LQとの界面 (すなわち第 2面 )で全反射して、投影光学系 PLの像面まで到達することができない。例えば、最終光 学素子 LSIの屈折率を n、液体 LQの屈折率を n、最終光学素子 LSIと液体 LQと [0041] When trying to obtain the numerical aperture NA of the projection optical system PL equal to or higher than the refractive index of the final optical element LS I, the second surface facing the substrate P of the final optical element LS I is almost perpendicular to the optical axis AX. If it is a flat surface, a part of the exposure light EL will be absorbed by the interface between the final optical element LSI and the liquid LQ (that is, the second surface). ), And cannot reach the image plane of the projection optical system PL. For example, the refractive index of the final optical element LSI is n, the refractive index of the liquid LQ is n, the final optical element LSI and the liquid LQ are
1 2  1 2
の界面 (第 2面)へ入射する露光光 ELの最外の光線の光軸 AXに対する角度を 0 、 その界面力 射出する (液体 LQへ入射する)最外の光線の光軸 AXに対する角度を Θ とすると、スネルの法則により以下の式が成立する。  The angle with respect to the optical axis AX of the outermost light beam of the exposure light EL incident on the interface (second surface) of the outer surface is 0, and the angle with respect to the optical axis AX of the outermost light beam that emerges (incident on the liquid LQ) If Θ, the following formula is established according to Snell's law.
2  2
n sin θ =n sin θ … (4)  n sin θ = n sin θ… (4)
1 1 2 2  1 1 2 2
また、投影光学系 PLの開口数 ΝΑは、液体 LQの屈折率 η、液体 LQへ入射する  In addition, the numerical aperture 投影 of the projection optical system PL is the refractive index η of the liquid LQ and is incident on the liquid LQ.
2  2
最外の光線の光軸 AXに対する角度 0 を使うと次式で表される。  Using the angle 0 with respect to the optical axis AX of the outermost ray, it is expressed as
2  2
NA=n sin 0 … (5)  NA = n sin 0… (5)
2 2  twenty two
(4)、(5)式より以下の式が成立する。  From the equations (4) and (5), the following equation is established.
sin 0 =NA/n … (6)  sin 0 = NA / n… (6)
したがって、(6)式からも明らかなように、最終光学素子 LSIと液体 LQとの界面 (第 2面)が光軸 AXとほぼ垂直な平坦面であって、投影光学系 PLの開口数 NAが最終 光学素子 LSIの屈折率 nよりも大きい場合には、露光光 ELの一部が液体 LQに入 射することができない。これに対して、本実施形態の最終光学素子 LSIの第 2面は凹 面 2を有しているので、投影光学系 PLの開口数 NA力 最終光学素子 LSIの屈折率 nよりも大きい場合であっても、最終光学素子 LSIと液体 LQとの界面に入射する光 線の入射角が小さ 、ので、露光光 ELの最外の光線も像面まで良好に到達すること ができる。  Therefore, as is clear from equation (6), the interface (second surface) between the final optical element LSI and the liquid LQ is a flat surface substantially perpendicular to the optical axis AX, and the numerical aperture NA of the projection optical system PL If is larger than the refractive index n of the final optical element LSI, a part of the exposure light EL cannot enter the liquid LQ. On the other hand, since the second surface of the final optical element LSI of the present embodiment has the concave surface 2, the numerical aperture NA force of the projection optical system PL is larger than the refractive index n of the final optical element LSI. Even in such a case, since the incident angle of the light beam incident on the interface between the final optical element LSI and the liquid LQ is small, the outermost light beam of the exposure light EL can reach the image plane well.
[0042] このように、液体 LQの露光光 ELに対する屈折率が、最終光学素子 LSIの露光光 ELに対する屈折率よりも高ぐ投影光学系 PLの開口数 NAが、最終光学素子 LSI の露光光 ELに対する屈折率よりも高 ヽ場合にぉ 、て、最終光学素子 LSIに凹面 2 を設けることにより、露光光 ELを基板 P上まで良好に到達させることができる。  [0042] Thus, the numerical aperture NA of the projection optical system PL in which the refractive index of the liquid LQ with respect to the exposure light EL is higher than the refractive index with respect to the exposure light EL of the final optical element LSI is the exposure light of the final optical element LSI. If the refractive index is higher than the refractive index of EL, the exposure light EL can reach the substrate P well by providing the final optical element LSI with the concave surface 2.
[0043] 液体 LQとしては、例えば、屈折率が約 1. 50のイソプロパノール、屈折率が約 1. 6 1のグリセロール (グリセリン)といった C— H結合及び Z又は O— H結合を持つ所定 液体、へキサン、ヘプタン、デカン等の所定液体 (有機溶剤)、デカリン、ノ ィサイクロ へクシル等の所定液体が挙げられる。あるいは、これら所定液体のうち任意の 2種類 以上の液体が混合されたものであってもよいし、純水に上記所定液体が添加(混合) されたものであってもよい。あるいは、液体 LQとしては、純水に、 H+、 Cs+、 K+、 CI" 、 SO 2_、 PO 2_等の塩基又は酸を添加(混合)したものであってもよい。更には、純[0043] The liquid LQ is, for example, a predetermined liquid having a C—H bond and a Z or O—H bond, such as isopropanol having a refractive index of about 1.50 and glycerol (glycerin) having a refractive index of about 1.61. Specific liquids (organic solvents) such as hexane, heptane, and decane, and predetermined liquids such as decalin and nanocyclohexyl are listed. Alternatively, any two or more of these predetermined liquids may be mixed, or the predetermined liquid may be added (mixed) to pure water. It may be what was done. Alternatively, the liquid LQ may be one obtained by adding (mixing) a base or acid such as H +, Cs +, K +, CI ", SO2_ , PO2_, etc. to pure water.
4 4 4 4
水に A1酸ィ匕物等の微粒子を添加(混合)したものであってもよ ヽ。これら液体 LQは、 ArFエキシマレーザ光を透過可能である。また、液体 LQとしては、光の吸収係数が 小さぐ温度依存性が少なぐ投影光学系 PL及び Z又は基板 Pの表面に塗布されて V、る感光材に対して安定なものであることが好ま 、。  It is possible to add (mix) fine particles of water such as A1 acid to water. These liquid LQs can transmit ArF excimer laser light. In addition, the liquid LQ should be stable to the photosensitive material V, which is applied to the surface of the projection optical systems PL and Z or the substrate P, which has a small light absorption coefficient and a small temperature dependency. Favored ,.
[0044] また、最終光学素子 LSIは、例えば石英 (シリカ)で形成することができる。あるいは 、フッ化カルシウム(蛍石)、フッ化バリウム、フッ化ストロンチウム、フッ化リチウム、フッ 化ナトリウム、及び BaLiF等のフッ化化合物の単結晶材料で形成されてもよい。更に [0044] The final optical element LSI can be formed of, for example, quartz (silica). Alternatively, it may be formed of a single crystal material of a fluoride compound such as calcium fluoride (fluorite), barium fluoride, strontium fluoride, lithium fluoride, sodium fluoride, and BaLiF. More
3  Three
、最終光学素子 LSIは、ルテチウムアルミニウムガーネット (LuAG)で形成されても よい。及びフッ化ナトリウム等のフッ化化合物の単結晶材料で形成されてもよい。また 、光学素子 LS2〜LS7を、上述の材料で形成することができる。また、例えば光学素 子 LS2〜LS7を蛍石で形成し、光学素子 LSIを石英で形成してもよいし、光学素子 LS2〜LS7を石英で形成し、光学素子 LSIを蛍石で形成してもよいし、光学素子 LS 1〜LS5の全てを石英(あるいは蛍石)で形成してもよ!/、。  The final optical element LSI may be formed of lutetium aluminum garnet (LuAG). And a single crystal material of a fluorinated compound such as sodium fluoride. Further, the optical elements LS2 to LS7 can be formed of the above-described materials. Further, for example, the optical elements LS2 to LS7 may be formed of fluorite, the optical element LSI may be formed of quartz, the optical elements LS2 to LS7 may be formed of quartz, and the optical element LSI may be formed of fluorite. Alternatively, all of the optical elements LS 1 to LS5 may be made of quartz (or fluorite)!
[0045] また、最終光学素子 LSIを含む投影光学系 PLの光学素子として、石英及び [0045] Further, as an optical element of the projection optical system PL including the final optical element LSI, quartz and
Z又は蛍石よりも屈折率が高い (例えば 1. 6以上)材料で最終光学素子 LSIを形成 してもよい。例えば、国際公開第 2005Z059617号パンフレットに開示されているよ うな、サファイア、二酸化ゲルマニウム等を用いて投影光学系の光学素子を形成する ことができる。あるいは、国際公開第 2005/059618号パンフレットに開示されてい るような、塩化カリウム (屈折率約 1. 75)等を用いて、投影光学系の光学素子を形成 することができる。  The final optical element LSI may be formed of a material having a refractive index higher than that of Z or fluorite (eg, 1.6 or more). For example, the optical element of the projection optical system can be formed using sapphire, germanium dioxide, or the like as disclosed in International Publication No. 2005Z059617. Alternatively, the optical element of the projection optical system can be formed using potassium chloride (refractive index: about 1.75) or the like as disclosed in WO 2005/059618.
[0046] 図 2A及び 2Bは液浸システム 1を示し、図 2Aは側断面図、図 2Bは上方力も見た平 面図である。図 2A及び 2Bにおいて、液浸システム 1は、最終光学素子 LSIの凹面 2 と対向可能な基板テーブル 4T (基板ステージ 4)の上面 4Fに設けられ、凹面 2と基板 テーブル 4Tとの間に液体 LQを供給する供給口 12と、基板テーブル 4Tの上面 4Fに 設けられ、凹面 2と基板テーブル 4Tとの間の流体 (液体 LQ、気体 GSを含む)を吸引 する吸引口 22と、基板テーブル 4Tの内部に形成された供給流路 14を介して供給口 12に液体 LQを供給する液体供給装置 11と、吸引口 22及び基板テーブル 4Tの内 部に形成された吸引流路 24を介して流体を吸引可能な吸引装置 21とを備えている 。液体供給装置 11は、供給する液体 LQの温度を調整する温度調整装置、及び液 体 LQ中の異物を取り除くフィルタユニット等を備えており、清浄で温度調整された液 体 LQを供給可能である。吸引装置 21は、真空系等を備えており、流体を吸引可能 である。本実施形態においては、液体 LQとしてグリセロール (グリセリン)を用いる。 2A and 2B show the immersion system 1, FIG. 2A is a side sectional view, and FIG. 2B is a plan view showing an upward force. 2A and 2B, the immersion system 1 is provided on the upper surface 4F of the substrate table 4T (substrate stage 4) that can face the concave surface 2 of the final optical element LSI, and the liquid LQ is provided between the concave surface 2 and the substrate table 4T. A suction port 22 for suctioning fluid (including liquid LQ and gas GS) between the concave surface 2 and the substrate table 4T, and a substrate port 4T. Supply port through supply channel 14 formed inside A liquid supply device 11 that supplies liquid LQ to 12 and a suction device 21 that can suck fluid through a suction port 22 and a suction channel 24 formed inside the substrate table 4T are provided. The liquid supply device 11 includes a temperature adjustment device that adjusts the temperature of the liquid LQ to be supplied, and a filter unit that removes foreign matter in the liquid LQ, and can supply clean and temperature-adjusted liquid LQ. . The suction device 21 includes a vacuum system and the like, and can suck fluid. In this embodiment, glycerol (glycerin) is used as the liquid LQ.
[0047] 吸引口 22は、供給口 12の近傍に設けられている。本実施形態においては、図 2B に示すように、吸引口 22は、供給口 12の近傍において、供給口 12を囲むように環状 に設けられている。なお、本実施形態においては、吸引口 22は、供給口 12を囲むよ うに環状(円環状)に形成されているが、矩形状 (矩形の環状)に形成されていてもよ い。また、所定の径を有する吸引口 22を、供給口 12を囲むように複数並べて形成す るようにしてちょい。 The suction port 22 is provided in the vicinity of the supply port 12. In the present embodiment, as shown in FIG. 2B, the suction port 22 is provided in an annular shape so as to surround the supply port 12 in the vicinity of the supply port 12. In the present embodiment, the suction port 22 is formed in an annular shape (annular shape) so as to surround the supply port 12, but may be formed in a rectangular shape (rectangular shape). Also, a plurality of suction ports 22 having a predetermined diameter should be formed side by side so as to surround the supply port 12.
[0048] また、液浸システム 1は、凹面 2と基板テーブル 4Tとの間の所定空間が液体 LQで 満たされた力否かを検出する検出装置 30を備えている。本実施形態の検出装置 30 は、吸引流路 24を流れる流体の状態を検出することによって、凹面 2と基板テーブル 4Tとの間の所定空間の気体 (気泡を含む)の有無を検出する。検出装置 30の検出 結果は制御装置 7に出力される。制御装置 7は、検出装置 30の検出結果に基づい て、凹面 2と基板テーブル 4Tとの間を満たす液体 LQ中の気体の有無を判別する。 また、制御装置 7は、検出装置 30の検出結果に基づいて、供給口 12の供給動作及 び吸引口 22の吸引動作の少なくとも一方を制御する。  [0048] The liquid immersion system 1 further includes a detection device 30 that detects whether or not the predetermined space between the concave surface 2 and the substrate table 4T is filled with the liquid LQ. The detection device 30 of the present embodiment detects the presence or absence of gas (including bubbles) in a predetermined space between the concave surface 2 and the substrate table 4T by detecting the state of the fluid flowing through the suction flow path 24. The detection result of the detection device 30 is output to the control device 7. Based on the detection result of the detection device 30, the control device 7 determines the presence or absence of gas in the liquid LQ that fills between the concave surface 2 and the substrate table 4T. Further, the control device 7 controls at least one of the supply operation of the supply port 12 and the suction operation of the suction port 22 based on the detection result of the detection device 30.
[0049] 図 3は基板テーブル 4T上の供給口 12及び吸引口 22と最終光学素子 LSIの凹面 2とが対向している状態の一例を示す図である。吸引口 22は供給口 12の近傍に配 置されており、制御装置 7は、基板ステージ駆動装置を制御して基板ステージ 4を駆 動することにより、基板テーブル 4T上の供給口 12及び吸引口 22と最終光学素子 LS 1の凹面 2とを対向させることができる。本実施形態においては、供給口 12から液体 L Qを供給するとき、制御装置 7は、最終光学素子 LSIの光軸 AX上に供給口 12を配 置する。制御装置 7は、レーザ干渉計 4Lを用いて基板テーブル 4Tの位置情報を計 測しつつ、基板ステージ駆動装置を制御することにより、最終光学素子 LSIの光軸 A X上に供給口 12を配置することができる。上述のように、最終光学素子 LSIを含む 投影光学系 PLは、鉛直方向に平行な光軸 AXを有している。光軸 AXは、最終光学 素子 LSIの凹面 2のうち、基板テーブル 4Tの上面 4Fに対して最も遠い位置(以下、 頂点位置、と称する) ATを通る。したがって、最終光学素子 LSIの光軸 AX上に配置 された供給口 12は、凹面 2の頂点位置 ATと対向する位置に配置される。供給口 12 は、最終光学素子 LSIの光軸 AX上に配置された状態で液体 LQの供給を開始する FIG. 3 is a diagram showing an example of a state in which the supply port 12 and the suction port 22 on the substrate table 4T are opposed to the concave surface 2 of the final optical element LSI. The suction port 22 is disposed in the vicinity of the supply port 12, and the control device 7 controls the substrate stage driving device to drive the substrate stage 4, thereby supplying the supply port 12 and the suction port on the substrate table 4T. 22 and the concave surface 2 of the final optical element LS 1 can be made to face each other. In the present embodiment, when the liquid LQ is supplied from the supply port 12, the control device 7 arranges the supply port 12 on the optical axis AX of the final optical element LSI. The control device 7 controls the substrate stage driving device while measuring the position information of the substrate table 4T using the laser interferometer 4L, and thereby the optical axis A of the final optical element LSI. A supply port 12 can be arranged on X. As described above, the projection optical system PL including the final optical element LSI has the optical axis AX parallel to the vertical direction. The optical axis AX passes through a position AT (hereinafter referred to as apex position) AT farthest from the upper surface 4F of the substrate table 4T among the concave surfaces 2 of the final optical element LSI. Accordingly, the supply port 12 disposed on the optical axis AX of the final optical element LSI is disposed at a position facing the vertex position AT of the concave surface 2. Supply port 12 starts supplying liquid LQ while being placed on the optical axis AX of the final optical element LSI
[0050] 次に、上述の構成を有する露光装置 EXを用いて基板 Pを露光する方法について、 図 4A〜図 7の模式図を参照しながら説明する。 Next, a method for exposing the substrate P using the exposure apparatus EX having the above-described configuration will be described with reference to the schematic diagrams of FIGS. 4A to 7.
[0051] まず、制御装置 7は、液浸システム 1を用いて、露光光 ELの光路 Kを含む最終光学 素子 LSIの凹面 2の光射出側の所定空間 SPを液体 LQで満たす。露光に関する所 定の動作を行う前の露光装置 EXの初期状態においては、光路 Kを含む所定空間 S Pには液体 LQは存在していない。制御装置 7は、最終光学素子 LSIの凹面 2と基板 テーブル 4T上の供給口 12及び吸引口 22とを対向させた状態で、液体 LQが存在し ていない光路 Kに対して供給口 12から液体 LQを供給し、その光路 Kを含む所定空 間 SPを液体 LQで満たす。以下の説明においては、液体 LQが存在していない初期 状態における露光光 ELの光路 Kを含む所定空間 SPを液体 LQで満たすために、そ の所定空間 SPに対して液体 LQを供給する動作を適宜、初期満たし動作、と称する  First, the control device 7 uses the liquid immersion system 1 to fill the predetermined space SP on the light exit side of the concave surface 2 of the final optical element LSI including the optical path K of the exposure light EL with the liquid LQ. In the initial state of the exposure apparatus EX before performing a predetermined operation relating to exposure, the liquid LQ does not exist in the predetermined space SP including the optical path K. The control device 7 allows the liquid from the supply port 12 to the optical path K where no liquid LQ exists, with the concave surface 2 of the final optical element LSI facing the supply port 12 and the suction port 22 on the substrate table 4T. LQ is supplied, and the specified space SP including the optical path K is filled with liquid LQ. In the following description, the operation of supplying the liquid LQ to the predetermined space SP in order to fill the predetermined space SP including the optical path K of the exposure light EL in the initial state where the liquid LQ does not exist with the liquid LQ. Where appropriate, referred to as initial filling operation
[0052] 初期満たし動作を行う際には、制御装置 7は、基板ステージ 4を駆動し、図 3に示し たように、最終光学素子 LSIの凹面 2と基板テーブル 4T上の供給口 12及び吸引口 22とを対向させ、供給口 12を最終光学素子 LSIの光軸 AX上に配置する。そして、 制御装置 7は、液浸システム 1の液体供給装置 11を駆動し、凹面 2と基板テーブル 4 Tとの間の所定空間 SPに対する液体 LQの供給を開始する。液体供給装置 11から 送出された液体 LQは、供給流路 14を流れた後、供給口 12より所定空間 SPに供給 される。供給口 12は、凹面 2と基板テーブル 4Tとの間の所定空間 SPを液体 LQで満 たすために、その所定空間 SPに対して液体 LQを供給する。 When performing the initial filling operation, the control device 7 drives the substrate stage 4 and, as shown in FIG. 3, the concave surface 2 of the final optical element LSI, the supply port 12 on the substrate table 4T, and the suction The supply port 12 is arranged on the optical axis AX of the final optical element LSI with the port 22 facing. Then, the control device 7 drives the liquid supply device 11 of the liquid immersion system 1 and starts supplying the liquid LQ to the predetermined space SP between the concave surface 2 and the substrate table 4T. The liquid LQ delivered from the liquid supply device 11 flows through the supply flow path 14 and is then supplied from the supply port 12 to the predetermined space SP. The supply port 12 supplies the liquid LQ to the predetermined space SP in order to fill the predetermined space SP between the concave surface 2 and the substrate table 4T with the liquid LQ.
[0053] 図 4Aは、供給口 12から液体 LQの供給を開始した直後の状態を示す。図 4Aに示 すように、液浸システム 1は、供給口 12から液体 LQを凹面 2の頂点位置 ATに当てる ように噴き出す。本実施形態においては、供給口 12と凹面 2の頂点位置 ATとの距離 HI (図 3参照)は、 50〜60mm程度に設定され、凹面 2の直径は 100〜120mm程 度に設定されており、液浸システム 1は、供給口 12から液体 (グリセリン) LQを lmZs ec.以上の流速で噴き出す。これにより、液浸システム 1は、供給口 12から液体 LQを 凹面 2に当てるように噴き出すことができる。 FIG. 4A shows a state immediately after the supply of the liquid LQ from the supply port 12 is started. Shown in Figure 4A Thus, the liquid immersion system 1 ejects the liquid LQ from the supply port 12 so as to hit the apex position AT of the concave surface 2. In this embodiment, the distance HI (see FIG. 3) between the supply port 12 and the vertex position AT of the concave surface 2 is set to about 50 to 60 mm, and the diameter of the concave surface 2 is set to about 100 to 120 mm. The immersion system 1 ejects liquid (glycerin) LQ from the supply port 12 at a flow velocity of lmZs ec. Or more. Thereby, the immersion system 1 can eject the liquid LQ from the supply port 12 so as to hit the concave surface 2.
[0054] また、制御装置 7は、供給口 12からの液体 LQの供給を開始した時点に対して所定 のタイミングで、吸引装置 21の駆動を開始し、吸引口 22からの流体の吸引を開始す る。本実施形態では、制御装置 7は、供給口 12から液体 LQの供給を開始した時点と ほぼ同時に、吸引口 22からの流体の吸引を開始する。供給口 12からの液体 LQの 供給動作を開始した直後においては、吸引口 22は主に気体 GSを吸引する。吸引口 22は、供給口 12からの液体 LQの供給動作と並行して、凹面 2と基板テーブル 4Tと の間の所定空間 SPの流体 (気体 GS)を吸引(排気)する。吸引装置 21を駆動するこ とにより吸引口 22から吸引された流体は、吸引流路 24を流れた後、吸引装置 21に 吸引される。 Further, the control device 7 starts driving the suction device 21 at a predetermined timing with respect to the time when the supply of the liquid LQ from the supply port 12 is started, and starts sucking the fluid from the suction port 22. The In the present embodiment, the control device 7 starts sucking the fluid from the suction port 22 almost simultaneously with the start of the supply of the liquid LQ from the supply port 12. Immediately after the supply operation of the liquid LQ from the supply port 12 is started, the suction port 22 mainly sucks the gas GS. In parallel with the operation of supplying the liquid LQ from the supply port 12, the suction port 22 sucks (exhausts) the fluid (gas GS) in the predetermined space SP between the concave surface 2 and the substrate table 4T. The fluid sucked from the suction port 22 by driving the suction device 21 flows through the suction flow path 24 and is then sucked into the suction device 21.
[0055] なお、吸引口 22からの吸引動作を開始するタイミングとしては、供給口 12を用いた 液体 LQの供給動作が開始される前又は後であってもよい。  Note that the timing of starting the suction operation from the suction port 22 may be before or after the supply operation of the liquid LQ using the supply port 12 is started.
[0056] 供給口 12から所定空間 SPに供給された (噴き出された)液体 LQは、凹面 2に当た つた後、凹面 2に沿うように流れる。制御装置 7は、供給口 12の供給動作と、吸引口 2 2の吸引動作とを継続する。供給口 12から凹面 2と基板テーブル 4Tとの間に噴き出 される液体 LQの流れは、数 mZsec.の高流速であるため、供給口 12近傍の空間の 圧力は低下する。そのため、供給口 12近傍に設けられた吸引口 22近傍の空間の圧 力も低下する。液体 LQ中の気体 GSは、圧力が低い空間に集まるため、吸引口 22 の近傍に集まる。換言すれば、供給口 12から所定空間 SPに供給された液体 LQの 流れにより、その供給口 12の近傍に設けられた吸引口 22付近の圧力を低下させるこ とによって、吸引口 22の近傍に液体 LQ中の気体 GS^^めることができる。すなわち 、本実施形態においては、吸引口 22は、供給口 12から凹面 2と基板テーブル 4Tと の間に供給された液体 LQの流れにより気体 GSが集まる位置の近傍に設けられてい る。供給口 12からの液体 LQの供給を継続することにより、凹面 2と基板テーブル 4T との間の所定空間 SPは徐々に液体 LQで満たされる。 The liquid LQ supplied (spouted) from the supply port 12 to the predetermined space SP flows along the concave surface 2 after hitting the concave surface 2. The control device 7 continues the supply operation of the supply port 12 and the suction operation of the suction port 22. Since the flow of the liquid LQ ejected between the concave surface 2 and the substrate table 4T from the supply port 12 is a high flow velocity of several mZsec., The pressure in the space near the supply port 12 decreases. Therefore, the pressure in the space near the suction port 22 provided near the supply port 12 also decreases. The gas GS in the liquid LQ gathers in the vicinity of the suction port 22 because it gathers in a space where the pressure is low. In other words, the flow of the liquid LQ supplied from the supply port 12 to the predetermined space SP reduces the pressure in the vicinity of the suction port 22 provided in the vicinity of the supply port 12, thereby bringing the liquid LQ near the suction port 22. Gas GS ^^ in liquid LQ can be removed. That is, in the present embodiment, the suction port 22 is provided in the vicinity of the position where the gas GS gathers due to the flow of the liquid LQ supplied from the supply port 12 between the concave surface 2 and the substrate table 4T. The By continuing the supply of the liquid LQ from the supply port 12, the predetermined space SP between the concave surface 2 and the substrate table 4T is gradually filled with the liquid LQ.
[0057] 図 4Bは、所定空間 SPが液体 LQで満たされる直前の状態を示す。図 4Bに示すよ うに、凹面 2と基板テーブル 4Tとの間の所定空間 SPには、供給口 12から供給された 液体 LQの流れ、及び凹面 2の形状等に応じて、液体 LQの所定の流れが生成される 。また、気体 GSが集まる位置の近傍に吸引口 22を設けたことにより、図 4Bに示すよ うに、所定空間 SPを満たす液体 LQ中の気体 (気泡を含む) GSを、吸引口 22を介し て所定空間 SPより円滑に排出することができる。  [0057] FIG. 4B shows a state immediately before the predetermined space SP is filled with the liquid LQ. As shown in FIG. 4B, a predetermined space SP between the concave surface 2 and the substrate table 4T has a predetermined liquid LQ according to the flow of the liquid LQ supplied from the supply port 12, the shape of the concave surface 2, and the like. A flow is generated. Further, by providing the suction port 22 near the position where the gas GS gathers, as shown in FIG. 4B, the gas (including bubbles) GS in the liquid LQ that fills the predetermined space SP is passed through the suction port 22. It is possible to discharge smoothly from the predetermined space SP.
[0058] 所定空間 SPを液体 LQで満たすために、供給口 12の液体供給動作を実行して ヽ るときには、制御装置 7は、鏡筒 PKの下面 PKAと基板テーブル 4Tの上面 4Fとの間 を所定のギャップ D1に設定する。ここで、本実施形態においては、鏡筒 PKの下面 P KAは、基板テーブル 4Tの上面 4Fに対向する部材のうち、基板テーブル 4Tの上面 4Fに最も近い面である。液体 LQの物性 (表面張力、密度等)、所定空間 SPを満た す液体 LQの量 (供給口 12と凹面 2の頂点位置 ATとの距離 HI、液浸領域 LRの大き さ)、上面 4Fの液体 LQに対する接触角、下面 PKAの液体 LQに対する接触角等に 応じて、ギャップ D1を最適に設定することにより、液浸領域 LRのエッジ LGを、上面 4 Fと下面 PKAとの間に維持することができ、液体 LQの流出を抑制することができる。  [0058] When the liquid supply operation of the supply port 12 is performed in order to fill the predetermined space SP with the liquid LQ, the control device 7 moves between the lower surface PKA of the lens barrel PK and the upper surface 4F of the substrate table 4T. Is set to the predetermined gap D1. Here, in the present embodiment, the lower surface PKA of the lens barrel PK is the surface closest to the upper surface 4F of the substrate table 4T among the members facing the upper surface 4F of the substrate table 4T. Liquid LQ physical properties (surface tension, density, etc.), amount of liquid LQ that fills the specified space SP (distance HI between supply port 12 and concave surface 2 apex position AT, size of immersion area LR), top surface 4F Maintaining the edge LG of the immersion area LR between the upper surface 4 F and the lower surface PKA by optimally setting the gap D1 according to the contact angle to the liquid LQ, the contact angle of the lower surface PKA to the liquid LQ, etc. And the outflow of liquid LQ can be suppressed.
[0059] そして、所定空間 SPの気体 GSが無くなるまで (あるいは気体 GSの量が予め定めら れた許容値以下となるまで)、制御装置 7は、供給口 12の供給動作と吸引口 22の流 体 (液体 LQ、気体 GSを含む)の吸引動作とを継続する。液浸システム 1は、所定空 間 SPの気体 GSを排出 (排気)しつつ、液体 LQの供給動作を行うことにより、所定空 間 SPの気体 GSを吸引口 22を介して良好に排出することができ、図 5Aに示すように 、所定空間 SPに気体 GSを残存させることなぐ供給口 12から供給した液体 LQで凹 面 2と基板テーブル 4Tとの間の所定空間 SPを良好に満たすことができる。  [0059] Until the gas GS in the predetermined space SP runs out (or until the amount of the gas GS becomes equal to or less than a predetermined allowable value), the control device 7 performs the supply operation of the supply port 12 and the suction port 22 Continue the suction operation of the fluid (including liquid LQ and gas GS). The liquid immersion system 1 discharges (exhausts) the gas GS in the predetermined space SP while performing the supply operation of the liquid LQ, so that the gas GS in the predetermined space SP can be discharged well through the suction port 22. As shown in FIG. 5A, the predetermined space SP between the concave surface 2 and the substrate table 4T can be satisfactorily filled with the liquid LQ supplied from the supply port 12 without leaving the gas GS in the predetermined space SP. it can.
[0060] 図 2A及び 2Bに示したように、液浸システム 1は、凹面 2と基板テーブル 4Tとの間の 所定空間 SPの気体 GSの有無を検出する検出装置 30を備えており、制御装置 7は、 検出装置 30の検出結果に基づいて、供給口 12の供給動作及び吸引口 22の吸引 動作を制御する。すなわち、制御装置 7は、検出装置 30の検出結果に基づいて、所 定空間 SPの気体 GSが無くなつたと判断するまで (所定空間 SPが液体 LQで満たさ れたと判断するまで)、供給口 12の供給動作と吸引口 22の吸引動作とを継続する。 [0060] As shown in FIGS. 2A and 2B, the immersion system 1 includes a detection device 30 that detects the presence or absence of gas GS in the predetermined space SP between the concave surface 2 and the substrate table 4T. 7 controls the supply operation of the supply port 12 and the suction operation of the suction port 22 based on the detection result of the detection device 30. In other words, the control device 7 performs a predetermined operation based on the detection result of the detection device 30. The supply operation of the supply port 12 and the suction operation of the suction port 22 are continued until it is determined that the gas GS in the constant space SP has run out (until it is determined that the predetermined space SP is filled with the liquid LQ).
[0061] 図 8A及び 8Bは検出装置 30の一例を示す図である。本実施形態の検出装置 30は 、吸引口 22と吸引装置 21とを接続する吸引流路 24を流れる流体の状態を検出光 L aを用いて光学的に検出する。検出装置 30は、検出光 Laを射出可能な投射系 31と 、投射系 31から射出される検出光 Laに対して所定の位置に設けられ、検出光 Laを 受光可能な受光系 32とを備えている。また、本実施形態の吸引流路 24の少なくとも 一部は、検出光 Laに対して所定の屈折率を有し、検出光 Laを透過可能な材料の管 部材 24Kで形成されている。吸引口 22から吸引された流体 (液体 LQ、気体 GSを含 む)は、管部材 24Kの内側を流れる。投射系 31は、管部材 24Kの外側より、管部材 24Kの内側に対して所定の入射角度で検出光 Laを照射する。  FIGS. 8A and 8B are diagrams showing an example of the detection device 30. FIG. The detection device 30 of the present embodiment optically detects the state of the fluid flowing through the suction channel 24 connecting the suction port 22 and the suction device 21 using the detection light La. The detection device 30 includes a projection system 31 capable of emitting the detection light La and a light receiving system 32 provided at a predetermined position with respect to the detection light La emitted from the projection system 31 and capable of receiving the detection light La. ing. In addition, at least a part of the suction channel 24 of the present embodiment is formed of a tube member 24K made of a material having a predetermined refractive index with respect to the detection light La and capable of transmitting the detection light La. The fluid (including liquid LQ and gas GS) sucked from the suction port 22 flows inside the pipe member 24K. The projection system 31 irradiates the detection light La from the outside of the tube member 24K to the inside of the tube member 24K at a predetermined incident angle.
[0062] 管部材 24Kの内側に液体 LQが存在する場合と気体 GSが存在する場合とでは、 受光系 32による検出光 Laの受光状態が互いに異なるため、検出装置 30は、受光系 32の受光結果に基づいて、管部材 24Kの内側に液体 LQが存在するの力気体 GS が存在するのかを判別することができる。例えば、図 8Aに示すように、管部材 24Kの 内側に気体 GSが存在する場合には、投射系 31から射出された検出光 Laは、管部 材 24Kとその内側の気体 GSとの界面で反射し、受光系 32に第 1の光量で到達する 。一方、図 8Bに示すように、管部材 24Kの内側に液体 LQが存在する場合には、投 射系 31から射出された検出光 Laは、管部材 24Kとその内側の液体 LQとの界面を 例えば通過し、受光系 32に到達しない、あるいは第 1の光量とは異なる第 2の光量で 到達する。このように、管部材 24Kの内側に液体 LQが存在する場合と気体 GSが存 在する場合とでは、受光系 32による検出光 Laの受光状態が互いに異なる。  [0062] Since the light receiving state of the detection light La by the light receiving system 32 is different between the case where the liquid LQ is present inside the tube member 24K and the case where the gas GS is present, the detection device 30 receives the light received by the light receiving system 32. Based on the result, it is possible to determine whether the liquid gas LGS exists inside the tube member 24K or the force gas GS exists. For example, as shown in FIG. 8A, when the gas GS is present inside the pipe member 24K, the detection light La emitted from the projection system 31 is generated at the interface between the pipe member 24K and the gas GS inside the gas GS. Reflected and reaches the light receiving system 32 with the first light quantity. On the other hand, as shown in FIG. 8B, when the liquid LQ exists inside the tube member 24K, the detection light La emitted from the projection system 31 passes through the interface between the tube member 24K and the liquid LQ inside the tube member 24K. For example, it passes and does not reach the light receiving system 32, or reaches the second light quantity different from the first light quantity. Thus, the light receiving state of the detection light La by the light receiving system 32 is different between the case where the liquid LQ is present inside the tube member 24K and the case where the gas GS is present.
[0063] 所定空間 SPに対して供給口 12の供給動作及び吸引口 22の吸引動作を継続して 行っている状態において、所定空間 SPに気体 GSが存在する場合には、管部材 24 Kには気体 GSが流れる。一方、所定空間 SPが全て液体 LQで満たされた場合には 、管部材 24Kには液体 LQのみが流れることになる。したがって、制御装置 7は、検出 装置 30の検出結果に基づいて、凹面 2と基板テーブル 4Tとの間の所定空間 SPの 気体 GSの有無を判別することができる。 [0064] 制御装置 7は、所定空間 SPの気体 GSが無くなった後も、吸引口 22から液体 LQの みが吸引され、吸引流路 24の管部材 24Kに液体 LQのみが流れるまで、供給口 12 の供給動作と吸引口 22の吸引動作とを所定時間継続する。 [0063] In a state where the supply operation of the supply port 12 and the suction operation of the suction port 22 are continuously performed with respect to the predetermined space SP, when the gas GS exists in the predetermined space SP, the tube member 24K Gas GS flows. On the other hand, when the predetermined space SP is entirely filled with the liquid LQ, only the liquid LQ flows through the pipe member 24K. Therefore, the control device 7 can determine the presence or absence of the gas GS in the predetermined space SP between the concave surface 2 and the substrate table 4T based on the detection result of the detection device 30. [0064] Even after the gas GS in the predetermined space SP is exhausted, the control device 7 is configured to supply only the liquid LQ from the suction port 22 until only the liquid LQ flows into the tube member 24K of the suction flow path 24. 12 supply operation and suction port 22 suction operation are continued for a predetermined time.
[0065] 検出装置 30の検出結果に基づいて、凹面 2と基板テーブル 4Tとの間の所定空間 SPに気体 GSが無いと判断したとき、制御装置 7は、図 5Bに示すように、供給口 12 の供給動作、及び吸引口 22の吸引動作を停止する。これにより、初期満たし動作が 終了する。一方、制御装置 7は、検出装置 30の検出結果に基づいて、凹面 2と基板 テーブル 4Tとの間を満たす所定空間 SPに気体 GSが有ると判断したとき、所定空間 SPの気体 GSが無くなるまで (検出装置 30が気体 GSを検出しなくなるまで)、供給口 12の供給動作、及び吸引口 22の吸引動作を継続する。  [0065] When it is determined that there is no gas GS in the predetermined space SP between the concave surface 2 and the substrate table 4T based on the detection result of the detection device 30, the control device 7, as shown in FIG. Stop the supply operation of 12 and the suction operation of the suction port 22. This completes the initial filling operation. On the other hand, when the control device 7 determines that there is gas GS in the predetermined space SP filling the space between the concave surface 2 and the substrate table 4T based on the detection result of the detection device 30, the control device 7 until the gas GS in the predetermined space SP is exhausted. The supply operation at the supply port 12 and the suction operation at the suction port 22 are continued until the detection device 30 no longer detects the gas GS.
[0066] また、図 5Bに示すように、供給口 12の供給動作を停止したときには、制御装置 7は 、鏡筒 PKの下面 PKAと基板 Pの表面との間を所定のギャップ D2に設定することが できる。ここで、ギャップ D1はギャップ D2よりも大きい。すなわち、供給口 12の供給 動作の停止時には、供給口 12の供給動作の実行時に比べて、凹面 2と基板テープ ル 4Tとの間の所定空間 SPを小さくする。換言すれば、供給口 12の供給動作の実行 時には、供給口 12の供給動作の停止時に比べて、凹面 2と基板テーブル 4Tとの間 の所定空間 SPが大きくなるように、凹面 2と基板テーブル 4Tとの位置関係が調整さ れる。  Further, as shown in FIG. 5B, when the supply operation of the supply port 12 is stopped, the control device 7 sets a predetermined gap D2 between the lower surface PKA of the lens barrel PK and the surface of the substrate P. be able to. Here, the gap D1 is larger than the gap D2. That is, when the supply operation of the supply port 12 is stopped, the predetermined space SP between the concave surface 2 and the substrate tape 4T is made smaller than when the supply operation of the supply port 12 is executed. In other words, when the supply operation of the supply port 12 is executed, the concave surface 2 and the substrate table are set so that the predetermined space SP between the concave surface 2 and the substrate table 4T is larger than when the supply operation of the supply port 12 is stopped. The positional relationship with 4T is adjusted.
[0067] 供給口 12の供給動作の停止時におけるギャップ D2も、液体 LQの物性 (表面張力 、密度等)、所定空間 SPを満たす液体 LQの量 (供給口 12と凹面 2の頂点位置 ATと の距離、液浸領域 LRの大きさ)、基板テーブル 4Tの上面 4Fの液体 LQに対する接 触角、下面 PKAの液体 LQに対する接触角等に応じて、最適に設定されている。こ れにより、液浸領域 LRのエッジ LGを、基板テーブル 4Tの上面 4Fと下面 PKAとの 間に維持することができ、液体 LQの流出を抑制することができる。  [0067] The gap D2 when the supply operation of the supply port 12 is stopped is also the physical properties (surface tension, density, etc.) of the liquid LQ, the amount of the liquid LQ that satisfies the predetermined space SP (the apex position AT of the supply port 12 and the concave surface 2) Distance, the size of the immersion area LR), the contact angle of the upper surface 4F of the substrate table 4T with the liquid LQ, the contact angle of the lower surface PKA with the liquid LQ, etc., are optimally set. Thereby, the edge LG of the liquid immersion area LR can be maintained between the upper surface 4F and the lower surface PKA of the substrate table 4T, and the outflow of the liquid LQ can be suppressed.
[0068] 凹面 2と基板テーブル 4Tとの間の所定空間 SPを液体 LQで満たし、供給口 12の 供給動作及び吸引口 22の吸引動作を停止した後、制御装置 7は、凹面 2と基板 Pの 表面とを対向させる。制御装置 7は、投影光学系 PL及び液体 LQに対して基板ステ ージ 4を XY方向に移動することによって、図 6に示すように、凹面 2と基板 Pの表面と を対向させることができる。そして、制御装置 7は、凹面 2と基板 Pの表面とを対向させ た状態で、凹面 2を有する最終光学素子 LSIを含む投影光学系 PLと液体 LQとを介 して基板 P上に露光光 ELを照射する。 [0068] After filling the predetermined space SP between the concave surface 2 and the substrate table 4T with the liquid LQ and stopping the supply operation of the supply port 12 and the suction operation of the suction port 22, the control device 7 Opposite the surface. The control device 7 moves the substrate stage 4 in the X and Y directions relative to the projection optical system PL and the liquid LQ, thereby forming the concave surface 2 and the surface of the substrate P as shown in FIG. Can be made to face each other. The control device 7 then exposes the exposure light onto the substrate P via the projection optical system PL including the final optical element LSI having the concave surface 2 and the liquid LQ, with the concave surface 2 facing the surface of the substrate P. Irradiate EL.
[0069] 本実施形態においては、制御装置 7は、凹面 2と基板 Pの表面との間の所定空間 S Pに対する液体 LQの供給動作及び吸引(回収)動作を停止した状態で、凹面 2と基 板 Pの表面との間に保持された液体 LQを介して、基板 Pを露光する。基板 Pを露光 するときには、投影光学系 PL及び液体 LQを介して形成される像面と基板 Pの表面と を所定の位置関係にするために、投影光学系 PLと基板 Pとの Z軸方向、及び Θ X、 Θ Y方向の位置関係が調整される。  [0069] In the present embodiment, the control device 7 stops the supply of the liquid LQ and the suction (collection) operation to the predetermined space SP between the concave surface 2 and the surface of the substrate P, and the concave surface 2 and the base The substrate P is exposed through the liquid LQ held between the surface of the plate P. When exposing the substrate P, the Z-axis direction between the projection optical system PL and the substrate P is used in order to obtain a predetermined positional relationship between the image plane formed via the projection optical system PL and the liquid LQ and the surface of the substrate P. , And the positional relationship in the Θ X and Θ Y directions are adjusted.
[0070] 図 6に示すように、基板 Pの露光時など、供給口 12の供給動作が停止しているとき には、鏡筒 PKの下面 PKAと基板 Pの表面との間は所定のギャップ D2'に設定され る。ギャップ D2'はギャップ D1よりも小さい。すなわち、基板 Pの露光時など供給口 1 2の供給動作の停止時には、初期満たし動作時など供給口 12の供給動作の実行時 に比べて、凹面 2と基板 Pとの間の所定空間 SPが小さくなるように、凹面 2と基板 Pと の位置関係が調整される。なお、ギャップ D2'は、ギャップ D2と同じであってもよいし 、異なっていてもよい。  [0070] As shown in FIG. 6, when the supply operation of the supply port 12 is stopped, such as during exposure of the substrate P, a predetermined gap is provided between the lower surface PKA of the lens barrel PK and the surface of the substrate P. Set to D2 '. Gap D2 'is smaller than gap D1. That is, when the supply operation of the supply port 12 is stopped such as when the substrate P is exposed, the predetermined space SP between the concave surface 2 and the substrate P is smaller than when the supply operation of the supply port 12 is performed such as during the initial filling operation. The positional relationship between the concave surface 2 and the substrate P is adjusted so as to decrease. Note that the gap D2 ′ may be the same as or different from the gap D2.
[0071] また、基板 Pの露光時におけるギャップ D2'も、液体 LQの物性 (表面張力、密度等 )、所定空間 SPを満たす液体 LQの量 (供給口 12と凹面 2の頂点位置 ATとの距離、 液浸領域 LRの大きさ)、基板 Pの表面の液体 LQに対する接触角、下面 PKAの液体 LQに対する接触角等に応じて、最適に設定されている。これにより、液浸領域 LRの エッジ LGを、基板 Pの表面と下面 PKAとの間に維持することができ、基板 Pを露光す るときにおいても、液体 LQの流出を抑制することができる。  [0071] Further, the gap D2 'at the time of exposure of the substrate P also depends on the physical properties (surface tension, density, etc.) of the liquid LQ and the amount of the liquid LQ that satisfies the predetermined space SP (the supply port 12 and the vertex position AT of the concave surface 2). It is optimally set according to the distance, the size of the immersion area LR), the contact angle of the surface of the substrate P to the liquid LQ, the contact angle of the lower surface PKA to the liquid LQ, etc. Accordingly, the edge LG of the liquid immersion region LR can be maintained between the front surface and the lower surface PKA of the substrate P, and the outflow of the liquid LQ can be suppressed even when the substrate P is exposed.
[0072] なお、本実施形態にぉ 、ては、制御装置 7は、所定空間 SPが液体 LQで満たされ た状態で、供給口 12の液体供給動作と吸引口 22の流体 (主に液体 LQ)の吸引(回 収)動作とを並行して行うことによって、所定空間 SPの液体 LQ中の気泡、あるいは パーティクル等の異物を、吸引口 22を介して回収(除去)することができる。例えば、 図 7に示すように、制御装置 7は、投影光学系 PLに対して基板ステージ 4を XY方向 に移動することによって、凹面 2と供給口 12及び吸引口 22とを対向させる。そして、 制御装置 7は、凹面 2と供給口 12と吸引口 22とを対向させた状態で、供給口 12の供 給動作と吸引口 22の吸引動作とを並行して行い、所定空間 SPを満たす液体 LQ中 の気泡(異物)等を、吸引口 22より液体 LQとともに吸引することによって、所定空間 S Pを満たす液体 LQ中より、その気泡 (異物)を除去することができる。 Note that in this embodiment, the control device 7 allows the liquid supply operation of the supply port 12 and the fluid of the suction port 22 (mainly the liquid LQ in a state where the predetermined space SP is filled with the liquid LQ. ) In parallel with the suction (recovery) operation, foreign matter such as bubbles or particles in the liquid LQ in the predetermined space SP can be collected (removed) through the suction port 22. For example, as shown in FIG. 7, the control device 7 moves the substrate stage 4 in the XY direction with respect to the projection optical system PL so that the concave surface 2, the supply port 12, and the suction port 22 face each other. And The control device 7 performs the supply operation of the supply port 12 and the suction operation of the suction port 22 in parallel with the concave surface 2, the supply port 12 and the suction port 22 facing each other, and the liquid filling the predetermined space SP. By sucking bubbles (foreign matter) and the like in the LQ together with the liquid LQ from the suction port 22, the bubbles (foreign matter) can be removed from the liquid LQ filling the predetermined space SP.
[0073] また、制御装置 7は、所定空間 SPを液体 LQで満たした状態で、供給口 12の供給 動作と吸引口 22の吸引動作とを並行して行うことにより、所定空間 SPを満たす液体 LQの置換 (交換)を行うことができる。所定空間 SPの液体 LQを置換するときには、 所定空間 SPを満たす全ての液体 LQを交換 (全置換)してもよいし、一部の液体 LQ を交換 (部分置換)してもょ 、。  [0073] Further, the control device 7 performs the supply operation of the supply port 12 and the suction operation of the suction port 22 in parallel in a state where the predetermined space SP is filled with the liquid LQ. LQ replacement (exchange) can be performed. When replacing the liquid LQ in the predetermined space SP, all the liquid LQs filling the predetermined space SP may be replaced (complete replacement), or a part of the liquid LQ may be replaced (partial replacement).
[0074] なお、所定空間 SPを液体 LQで満たした状態で、供給口 12の供給動作と吸引口 2 2の吸引動作とを並行して行う動作 (異物の除去動作、液体 LQの置換動作を含む) は、例えば所定時間間隔毎に行ってもよいし、所定処理基板枚数毎に行ってもよい し、ロット毎等に行ってもよい。  [0074] In the state where the predetermined space SP is filled with the liquid LQ, an operation of performing the supply operation of the supply port 12 and the suction operation of the suction port 22 in parallel (the foreign matter removal operation and the liquid LQ replacement operation are performed). For example) may be performed every predetermined time interval, every predetermined number of processed substrates, or every lot.
[0075] 以上説明したように、最終光学素子 LSIの凹面 2と対向可能な基板テーブル 4T上 に、露光光 ELの光路 Kを含む所定空間 SPに液体 LQを供給する供給口 12と、流体 LQ、 GSを吸引する吸引口 22とを設けたので、凹面 2の光射出側の所定空間 SPを 液体 LQで良好に満たすことができる。したがって、露光光 ELを基板 P上まで良好に IJ達させることができる。  [0075] As described above, the supply port 12 for supplying the liquid LQ to the predetermined space SP including the optical path K of the exposure light EL on the substrate table 4T that can face the concave surface 2 of the final optical element LSI, and the fluid LQ Since the suction port 22 for sucking GS is provided, the predetermined space SP on the light exit side of the concave surface 2 can be satisfactorily filled with the liquid LQ. Therefore, the exposure light EL can reach IJ well up to the substrate P.
[0076] また、供給口 12の供給動作と、吸引口 22の吸引動作とを並行して行うことで、初期 満たし動作時には、所定空間 SPの気体 GSを素早く排出 (排気)し、所定空間 SPに 気体部分 (気泡を含む)が残存するのを抑え、露光光 ELの光路 Kを液体 LQで良好 に満たすことができる。また、凹面 2の内側の所定空間 SPを液体 LQで満たした状態 で、供給口 12の液体 LQの供給と、吸引口 22の流体の吸引とを並行して行うことで、 液体 LQ中の異物 (気泡)を除去したり、液体 LQの交換 (置換)を行うことができる。  [0076] Further, by performing the supply operation of the supply port 12 and the suction operation of the suction port 22 in parallel, the gas GS in the predetermined space SP is quickly exhausted (exhausted) during the initial filling operation, and the predetermined space SP is obtained. In this way, it is possible to suppress the remaining gas portion (including bubbles) and to satisfactorily fill the optical path K of the exposure light EL with the liquid LQ. In addition, in a state where the predetermined space SP inside the concave surface 2 is filled with the liquid LQ, the supply of the liquid LQ at the supply port 12 and the suction of the fluid at the suction port 22 are performed in parallel. (Bubbles) can be removed and liquid LQ can be replaced (replaced).
[0077] 吸引口 22は、供給口 12から凹面 2と基板テーブル 4Tとの間に供給された液体 LQ の流れにより気体 GS及び Z又は異物が集まる位置、あるいはその近傍に設けたの で、所定空間 SPの気体 GS及び Z又は異物を良好に吸引し、排出することができる [0078] また、供給口 12を最終光学素子 LSIの光軸 AX上に配置し、その供給口 12から液 体 LQを凹面 2に当てるように噴き出すようにしたので、凹面 2に当たった液体 LQは 凹面 2に沿うように流れる。したがって、凹面 2を液体 LQで良好に濡らすことができ、 頂点位置 AT近傍まで液体 LQを良好に満たすことができる。 [0077] The suction port 22 is provided at or near the position where the gases GS and Z or foreign substances gather due to the flow of the liquid LQ supplied between the concave surface 2 and the substrate table 4T from the supply port 12, so The gas GS and Z in the space SP or foreign matter can be sucked and discharged well. [0078] Further, since the supply port 12 is arranged on the optical axis AX of the final optical element LSI and the liquid LQ is ejected from the supply port 12 so as to contact the concave surface 2, the liquid LQ that hits the concave surface 2 is discharged. Flows along the concave surface 2. Therefore, the concave surface 2 can be well wetted with the liquid LQ, and the liquid LQ can be satisfactorily filled up to the vicinity of the vertex position AT.
[0079] 凹面 2と基板テーブル 4Tとの間の所定空間 SPの気体 GSの有無を検出する検出 装置 30を設けたので、制御装置 7は、所定空間 SPが液体 LQで満たされるまで、液 体 LQの供給動作を行うことができる。また、所定空間 SPが液体 LQで満たされたにも かかわらず、初期満たし動作を継続してしまうといったことを抑制することもできる。  [0079] Since the detection device 30 for detecting the presence or absence of gas GS in the predetermined space SP between the concave surface 2 and the substrate table 4T is provided, the control device 7 does not perform liquid until the predetermined space SP is filled with the liquid LQ. LQ supply operation can be performed. Further, it is possible to prevent the initial filling operation from being continued even though the predetermined space SP is filled with the liquid LQ.
[0080] 供給口 12の供給動作の実行時には、供給口 12の供給動作の停止時に比べて、 凹面 2とその凹面 2と対向する物体 (基板テーブル 4T、基板 Ρ)との間の空間が大きく なるように、凹面 2と物体との位置関係を調整するようにしたので、例えば供給口 12 の液体供給動作に起因して、最終光学素子 LSI等に影響を及ぼすことを抑制するこ とができる。すなわち、初期満たし動作時など、供給口 12の供給動作の実行時には 、供給口 12から供給 (噴出)される液体 LQに起因して、凹面 2とその凹面 2に対向す る物体との間の液体 LQの圧力が上昇する可能性がある。供給口 12の供給動作の 実行時に、凹面 2と物体との間の空間を小さくした場合、凹面 2と物体との間の液体 L Qの圧力が上昇し、例えば最終光学素子 LSIに液体 LQの力が大きく作用し、最終 光学素子 LSIに影響を及ぼす可能性がある。本実施形態においては、供給口 12の 供給動作の実行時には、供給口 12の供給動作の停止時に比べて、凹面 2と物体と の間の所定空間 SPが大きくなるように、鏡筒 PKの下面 PKAと物体とのギャップを調 整して、鏡筒 PKの下面と基板テーブル 4Tの上面 4Fとの間に形成される液体 LQの 界面が動きやすくしているので、供給口 12の供給動作の実行時における所定空間 S Pの過剰な圧力上昇を抑制することができる。そして、供給口 12の供給動作の停止 時には、所定空間 SPの液体 LQの流出を抑えることができ、物体 (基板)に対して所 望の位置となるようなギャップ D2、 D2'を形成することができる。  [0080] When the supply operation of the supply port 12 is executed, the space between the concave surface 2 and the object (substrate table 4T, substrate Ρ) facing the concave surface 2 is larger than when the supply operation of the supply port 12 is stopped. As described above, since the positional relationship between the concave surface 2 and the object is adjusted, it is possible to suppress the influence on the final optical element LSI or the like due to the liquid supply operation of the supply port 12, for example. . That is, when the supply operation of the supply port 12 is executed, such as during the initial filling operation, the liquid LQ supplied (spouted) from the supply port 12 is caused between the concave surface 2 and the object facing the concave surface 2. Liquid LQ pressure may increase. If the space between the concave surface 2 and the object is reduced during the supply operation of the supply port 12, the pressure of the liquid LQ between the concave surface 2 and the object rises, for example, the liquid LQ force on the final optical element LSI. May significantly affect the final optical element LSI. In the present embodiment, when the supply operation of the supply port 12 is performed, the lower surface of the lens barrel PK is set so that the predetermined space SP between the concave surface 2 and the object is larger than when the supply operation of the supply port 12 is stopped. By adjusting the gap between the PKA and the object, the interface of the liquid LQ formed between the lower surface of the lens barrel PK and the upper surface 4F of the substrate table 4T is easy to move. An excessive pressure increase in the predetermined space SP at the time of execution can be suppressed. When the supply operation of the supply port 12 is stopped, the outflow of the liquid LQ in the predetermined space SP can be suppressed, and gaps D2 and D2 ′ are formed so as to be the desired positions with respect to the object (substrate). Can do.
[0081] <第 2実施形態 >  [0081] <Second Embodiment>
第 2実施形態について図 9を参照して説明する。以下の説明において、上述の実 施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略 若しくは省略する。 A second embodiment will be described with reference to FIG. In the following description, the same reference numerals are given to the same or equivalent components as those in the above-described embodiment, and the description is simplified. Or omitted.
[0082] 図 9に示すように、本実施形態の液浸システム 1は、上述の第 1実施形態同様、最 終光学素子 LSIの光軸 AX上に配置される供給口 12と、その供給口 12を囲むように 設けられた吸引口 22とを備えている。そして、基板テーブル 4Tの上面 4Fの一部に は凹部 40が設けられている。凹部 40は、吸引口 22の近傍に設けられている。本実 施形態においては、凹部 40は、吸引口 22の外側を囲むように設けられている。凹部 40は、供給口 12を最終光学素子 LSIの光軸 AX上に配置したときに、最終光学素 子 LSIの凹面 2と対向可能な位置に設けられている。  As shown in FIG. 9, the immersion system 1 of the present embodiment is similar to the first embodiment described above in that the supply port 12 disposed on the optical axis AX of the final optical element LSI and the supply port And suction port 22 provided so as to surround 12. A recess 40 is provided in a part of the upper surface 4F of the substrate table 4T. The recess 40 is provided in the vicinity of the suction port 22. In the present embodiment, the recess 40 is provided so as to surround the outside of the suction port 22. The concave portion 40 is provided at a position that can face the concave surface 2 of the final optical element LSI when the supply port 12 is disposed on the optical axis AX of the final optical element LSI.
[0083] 本実施形態においては、凹部 40の内面は、最終光学素子 LSIから離れるように凹 む曲面となっている。なお、凹部 40の内面は、例えば互いに異なる方向を向く複数 の平面を組み合わせた形状であってもよ 、。  In the present embodiment, the inner surface of the recess 40 is a curved surface that is recessed away from the final optical element LSI. Note that the inner surface of the recess 40 may have a shape in which a plurality of planes facing different directions are combined, for example.
[0084] 上述したように、供給口 12から所定空間 SPに供給された液体 LQの流れにより、そ の供給口 12の近傍に設けられた吸引口 22付近の空間の圧力を低下させ、吸引口 2 2の近傍に気体 GSを集めることができる。また、供給口 12から噴き出された液体 LQ は、最終光学素子 LSIの凹面 2に当たり、凹面 2に沿うように、基板テーブル 4Tの上 面 4Fに向かって流れるため、凹面 2の周縁近傍において液体 LQの渦が発生して、 その渦の中心に気体 GS (気泡)が滞留する可能性があるが、本実施形態において は、凹部 40を設けているので、液体 LQの渦が発生したとしても、その渦の中心は基 板テーブル 4Tの上面 4Fの近傍(吸引口 22の近傍)に形成される。したがって、初期 満たし動作時などにおいて、所定空間 SPを満たす液体 LQ中の気体 GS (気泡)を、 吸引口 22を介してより素早く排出することができる。  [0084] As described above, the flow of the liquid LQ supplied from the supply port 12 to the predetermined space SP reduces the pressure in the space near the suction port 22 provided in the vicinity of the supply port 12, thereby reducing the suction port. 2 Gas GS can be collected in the vicinity of 2. In addition, the liquid LQ ejected from the supply port 12 hits the concave surface 2 of the final optical element LSI and flows toward the upper surface 4F of the substrate table 4T along the concave surface 2, so that the liquid LQ near the periphery of the concave surface 2 There is a possibility that the vortex of the LQ is generated and the gas GS (bubble) stays in the center of the vortex. However, in this embodiment, since the recess 40 is provided, even if the vortex of the liquid LQ is generated The center of the vortex is formed in the vicinity of the upper surface 4F of the substrate table 4T (in the vicinity of the suction port 22). Therefore, the gas GS (bubbles) in the liquid LQ that fills the predetermined space SP can be quickly discharged through the suction port 22 during the initial filling operation or the like.
[0085] <第 3実施形態 >  [0085] <Third embodiment>
第 3実施形態について図 10を参照して説明する。以下の説明において、上述の実 施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略 若しくは省略する。図 10に示すように、供給口 12に接続された供給流路 14の少なく とも一部を、供給口 12に向かうにつれて漸次拡カ ¾テーパ状 (ラッパ状)に形成する ことができる。これにより、初期満たし動作時などにおいて、所定空間 SPを満たすた めの液体 LQの流れを所望状態にすることができ、所定空間 SPを満たす液体 LQ中 に気体 GSが残存するのを抑制することができる。 A third embodiment will be described with reference to FIG. In the following description, components that are the same as or equivalent to those in the above-described embodiment are denoted by the same reference numerals, and description thereof is simplified or omitted. As shown in FIG. 10, at least a part of the supply flow path 14 connected to the supply port 12 can be gradually expanded in a taper shape (trumpet shape) toward the supply port 12. As a result, the flow of the liquid LQ for filling the predetermined space SP can be brought into a desired state during the initial filling operation or the like. It is possible to suppress the residual gas GS.
[0086] また、供給口 12の径を、最終光学素子 LSIの凹面 2の径に応じて最適化すること によっても、所定空間 SPの気体 GSの残存を抑制することができる。例えば、供給口 12の直径を、最終光学素子 LSIの凹面 2の直径の 1Z3以上にすることにより、所定 空間 SPの気体 GSの残存を抑制することができる。  [0086] The remaining of the gas GS in the predetermined space SP can also be suppressed by optimizing the diameter of the supply port 12 according to the diameter of the concave surface 2 of the final optical element LSI. For example, by making the diameter of the supply port 12 equal to or greater than 1Z3 of the diameter of the concave surface 2 of the final optical element LSI, the remaining gas GS in the predetermined space SP can be suppressed.
[0087] <第 4実施形態 >  [0087] <Fourth embodiment>
次に、第 4実施形態について図 11A〜図 13Bを参照して説明する。以下の説明に おいて、上述の実施形態と同一又は同等の構成部分については同一の符号を付し 、その説明を簡略若しくは省略する。本実施形態においては、所定空間 SPの初期 満たし動作を行うとき、制御装置 7は、最終光学素子 LSIの凹面 2の周縁部と対向す る所定位置に供給口 12を配置する。供給口 12は、最終光学素子 LSIの凹面 2の周 縁部と対向する所定位置に配置された状態で液体 LQの供給を行う。  Next, a fourth embodiment will be described with reference to FIGS. 11A to 13B. In the following description, the same or equivalent components as those in the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted. In the present embodiment, when performing the initial filling operation of the predetermined space SP, the control device 7 arranges the supply port 12 at a predetermined position facing the peripheral edge of the concave surface 2 of the final optical element LSI. The supply port 12 supplies the liquid LQ in a state where the supply port 12 is disposed at a predetermined position facing the peripheral portion of the concave surface 2 of the final optical element LSI.
[0088] 吸引口 22は、供給口 12の近傍に設けられている。本実施形態では、吸引口 22は 、供給口 12が凹面 2の周縁部と対向する所定位置に配置されたときに、最終光学素 子 LSIの光軸 AXと供給口 12との間に配置される。このように、本実施形態において も、初期満たし動作を行うときには、制御装置 7は、基板ステージ駆動装置を制御し て基板ステージ 4を駆動し、基板テーブル 4T上の供給口 12及び吸引口 22と最終光 学素子 LSIの凹面 2とを対向させる。  The suction port 22 is provided in the vicinity of the supply port 12. In the present embodiment, the suction port 22 is disposed between the optical axis AX of the final optical element LSI and the supply port 12 when the supply port 12 is disposed at a predetermined position facing the peripheral edge of the concave surface 2. The As described above, also in this embodiment, when performing the initial filling operation, the control device 7 controls the substrate stage driving device to drive the substrate stage 4, and the supply port 12 and the suction port 22 on the substrate table 4T The concave surface 2 of the final optical element LSI is opposed.
[0089] 本実施形態にぉ 、ては、供給口 12及び吸引口 22のそれぞれは、基板テーブル 4 Tの上面 4Fにおいて、円弧状のスリット状に形成されている。また、本実施形態にお いては、供給口 12は吸引口 22よりも大きく形成されている。  In the present embodiment, each of the supply port 12 and the suction port 22 is formed in an arcuate slit shape on the upper surface 4F of the substrate table 4T. In the present embodiment, the supply port 12 is formed larger than the suction port 22.
[0090] 次に、初期満たし動作の手順について、図 12A、 12B、 13 A,及び 13の模式図を 参照しながら説明する。初期満たし動作を行う際には、制御装置 7は、基板ステージ 4を駆動し、図 11A及び 11Bに示したように、最終光学素子 LSIの凹面 2と基板テー ブル 4T上の供給口 12及び吸引口 22とを対向させ、供給口 12を最終光学素子 LSI の凹面 2の周縁部と対向する所定位置に配置する。そして、制御装置 7は、液浸シス テム 1の液体供給装置 11を駆動し、凹面 2と基板テーブル 4Tとの間の所定空間 SP に対する液体 LQの供給を開始する。液体供給装置 11から送出された液体 LQは、 供給流路 14を流れた後、供給口 12より所定空間 SPに供給される。 Next, the procedure of the initial filling operation will be described with reference to the schematic diagrams of FIGS. 12A, 12B, 13 A, and 13. When performing the initial filling operation, the control device 7 drives the substrate stage 4 and, as shown in FIGS. 11A and 11B, the concave surface 2 of the final optical element LSI, the supply port 12 on the substrate table 4T, and the suction. The supply port 12 is arranged at a predetermined position facing the peripheral edge of the concave surface 2 of the final optical element LSI. Then, the control device 7 drives the liquid supply device 11 of the liquid immersion system 1 and starts supplying the liquid LQ to the predetermined space SP between the concave surface 2 and the substrate table 4T. The liquid LQ delivered from the liquid supply device 11 is After flowing through the supply flow path 14, it is supplied from the supply port 12 to the predetermined space SP.
[0091] 図 12Aは、供給口 12からの液体 LQの供給を開始した直後の状態を示す。図 12A に示すように、液浸システム 1は、供給口 12から液体 LQを凹面 2の周縁部に当てる ように噴き出す。本実施形態においても、供給口 12と凹面 2の頂点位置 ATとの距離 は、 50〜60mm程度に設定され、凹面 2の直径は 100〜120mm程度に設定されて おり、液浸システム 1は、供給口 12から液体 (グリセリン) LQを lmZsec.以上の流速 で噴き出す。これにより、供給口 12は、液体 LQを凹面 2の周縁部に当てるように噴き 出すことができ、凹面 2の周縁部に供給された液体 LQは、凹面 2に沿って、凹面 2の 頂点位置 ATまで到達することができる。  FIG. 12A shows a state immediately after the supply of the liquid LQ from the supply port 12 is started. As shown in FIG. 12A, the liquid immersion system 1 spouts the liquid LQ from the supply port 12 so as to hit the peripheral edge of the concave surface 2. Also in this embodiment, the distance between the supply port 12 and the vertex position AT of the concave surface 2 is set to about 50 to 60 mm, the diameter of the concave surface 2 is set to about 100 to 120 mm, and the immersion system 1 is Liquid (glycerin) LQ is ejected from supply port 12 at a flow velocity of lmZsec. Or more. Thus, the supply port 12 can eject the liquid LQ so as to hit the peripheral edge of the concave surface 2, and the liquid LQ supplied to the peripheral edge of the concave surface 2 is positioned along the concave surface 2 at the apex position of the concave surface 2. Can reach AT.
[0092] また、制御装置 7は、供給口 12からの液体 LQの供給を開始した時点に対して所定 のタイミングで、吸引装置 21の駆動を開始し、吸引口 22からの流体の吸引を開始す る。吸引口 22は、供給口 12からの液体 LQの供給動作と並行して、凹面 2と基板テー ブル 4Tとの間の所定空間の流体 (気体 GS)を吸引(排気)する。  In addition, the control device 7 starts driving the suction device 21 at a predetermined timing with respect to the time when the supply of the liquid LQ from the supply port 12 is started, and starts sucking the fluid from the suction port 22. The The suction port 22 sucks (exhausts) a fluid (gas GS) in a predetermined space between the concave surface 2 and the substrate table 4T in parallel with the supply operation of the liquid LQ from the supply port 12.
[0093] 供給口 12から所定空間 SPに供給された (噴き出された)液体 LQは、凹面 2に当た つた後、凹面 2に沿うように流れる。制御装置 7は、供給口 12の供給動作と、吸引口 2 2の吸引動作とを継続する。本実施形態においても、供給口 12から所定空間 SPに 供給された液体 LQの流れは、数 mZsec.と高流速であるため、供給口 12近傍に設 けられた吸引口 22付近の空間の圧力を低下させることができ、吸引口 22の近傍に 液体 LQ中の気体 GS めることができる。このように、本実施形態においても、吸 引口 22は、供給口 12から凹面 2と基板テーブル 4Tとの間に供給された液体 LQの 流れにより気体 GSが集まる位置の近傍に設けられている。供給口 12からの液体 LQ の供給を継続することにより、凹面 2と基板テーブル 4Tとの間の所定空間 SPは徐々 に液体 LQで満たされる。  The liquid LQ supplied (spouted) from the supply port 12 to the predetermined space SP flows along the concave surface 2 after hitting the concave surface 2. The control device 7 continues the supply operation of the supply port 12 and the suction operation of the suction port 22. Also in this embodiment, since the flow of the liquid LQ supplied from the supply port 12 to the predetermined space SP is a high flow rate of several mZsec., The pressure in the space near the suction port 22 provided in the vicinity of the supply port 12 The gas GS in the liquid LQ can be placed near the suction port 22. Thus, also in the present embodiment, the suction port 22 is provided in the vicinity of the position where the gas GS gathers due to the flow of the liquid LQ supplied from the supply port 12 between the concave surface 2 and the substrate table 4T. . By continuing the supply of the liquid LQ from the supply port 12, the predetermined space SP between the concave surface 2 and the substrate table 4T is gradually filled with the liquid LQ.
[0094] 図 12Bは、所定空間 SPが液体 LQで満たされる直前の状態を示す。図 12Bに示す ように、凹面 2と基板テーブル 4Tとの間の所定空間 SPには、供給口 12から供給され た液体 LQの流れ、及び凹面 2の形状等に応じて、液体 LQの所定の流れが生成され る。また、気体 GSが集まる位置の近傍に吸引口 22を設けたことにより、図 12Bに示 すように、所定空間 SPの気体 (気泡を含む) GSを、その吸引口 22を介して所定空間 SPより円滑に排出することができる。 FIG. 12B shows a state immediately before the predetermined space SP is filled with the liquid LQ. As shown in FIG. 12B, a predetermined space SP between the concave surface 2 and the substrate table 4T has a predetermined liquid LQ according to the flow of the liquid LQ supplied from the supply port 12, the shape of the concave surface 2, and the like. A flow is generated. Further, by providing the suction port 22 in the vicinity of the position where the gas GS gathers, as shown in FIG. 12B, the gas (including bubbles) GS in the predetermined space SP is passed through the suction port 22 as shown in FIG. It can be discharged more smoothly than SP.
[0095] そして、所定空間 SPの気体 GSが無くなるまで (あるいは気体 GSの量が予め定めら れた許容値以下となるまで)、制御装置 7は、供給口 12の液体 LQの供給動作と吸引 口 22の流体 (液体 LQ、気体 GSを含む)の吸引動作とを継続する。液浸システム 1は 、所定空間 SPの気体 GSを排出 (排気)しつつ、液体 LQの供給動作を行うことにより 、所定空間 SPの気体 GSを吸引口 22を介して良好に排出することができ、図 13Aに 示すように、所定空間 SPの液体 LQ中に気体 GSを残存させることなぐ供給口 12か ら供給した液体 LQで凹面 2と基板テーブル 4Tとの間の所定空間 SPを良好に満た すことができる。本実施形態においても、制御装置 7は、検出装置 30の検出結果に 基づいて、所定空間 SPに気体 GSが無くなつたと判断するまで (所定空間 SPが液体 LQで満たされたと判断するまで)、供給口 12の供給動作と吸引口 22の吸引動作と を継続する。 [0095] Then, until the gas GS in the predetermined space SP is exhausted (or until the amount of the gas GS falls below a predetermined allowable value), the control device 7 performs the supply operation and suction of the liquid LQ at the supply port 12. Continue the suction operation of fluid (including liquid LQ and gas GS) in port 22. The liquid immersion system 1 can discharge the gas GS in the predetermined space SP through the suction port 22 by performing the supply operation of the liquid LQ while discharging (exhausting) the gas GS in the predetermined space SP. As shown in FIG. 13A, the predetermined space SP between the concave surface 2 and the substrate table 4T is satisfactorily filled with the liquid LQ supplied from the supply port 12 without leaving the gas GS in the liquid LQ in the predetermined space SP. I can do it. Also in the present embodiment, the control device 7 determines that the gas GS has disappeared in the predetermined space SP based on the detection result of the detection device 30 (until it is determined that the predetermined space SP is filled with the liquid LQ). The supply operation at the supply port 12 and the suction operation at the suction port 22 are continued.
[0096] 検出装置 30の検出結果に基づいて、凹面 2と基板テーブル 4Tとの間の所定空間 SPに気体 GSが無いと判断したとき、制御装置 7は、図 13Bに示すように、供給口 12 の供給動作、及び吸引口 22の吸引動作を停止する。これにより、初期満たし動作が 終了する。  [0096] When it is determined that there is no gas GS in the predetermined space SP between the concave surface 2 and the substrate table 4T based on the detection result of the detection device 30, the control device 7, as shown in FIG. Stop the supply operation of 12 and the suction operation of the suction port 22. This completes the initial filling operation.
[0097] また、図 13Bに示すように、制御装置 7は、鏡筒 PKの下面 PKAと基板 Pの表面との 間のギャップを調整し、供給口 12の供給動作の停止時には、供給口 12の供給動作 の実行時に比べて、凹面 2と基板テーブル 4Tとの間の所定空間 SPを小さくすること ができる。  Further, as shown in FIG. 13B, the control device 7 adjusts the gap between the lower surface PKA of the lens barrel PK and the surface of the substrate P, and when the supply operation of the supply port 12 is stopped, the supply port 12 The predetermined space SP between the concave surface 2 and the substrate table 4T can be made smaller than when performing the supply operation.
[0098] 凹面 2と基板テーブル 4Tとを対向させた状態で供給口 12より液体 LQを供給すると ともに吸引口 22より吸引して凹面 2と基板テーブル 4Tとの間の所定空間 SPを液体 L Qで満たし、供給口 12の供給動作及び吸引口 22の吸引動作を停止した後、基板テ 一ブル 4Tを XY方向に移動して、制御装置 7は、凹面 2と基板 Pの表面とを対向させ る。そして、制御装置 7は、凹面 2と基板の表面とを対向させた状態で、凹面 2を有す る最終光学素子 LSIを含む投影光学系 PLと液体 LQとを介して基板 P上に露光光 E Lを照射する。  [0098] When the liquid LQ is supplied from the supply port 12 with the concave surface 2 and the substrate table 4T facing each other, the liquid LQ is sucked from the suction port 22 and the predetermined space SP between the concave surface 2 and the substrate table 4T is formed by the liquid LQ. After satisfying and stopping the supply operation of the supply port 12 and the suction operation of the suction port 22, the substrate table 4T is moved in the XY direction, and the control device 7 makes the concave surface 2 and the surface of the substrate P face each other. . The control device 7 then exposes the exposure light on the substrate P via the projection optical system PL including the final optical element LSI having the concave surface 2 and the liquid LQ, with the concave surface 2 facing the surface of the substrate. Irradiate EL.
[0099] また、本実施形態においても、制御装置 7は、凹面 2と供給口 12及び吸引口 22とを 対向させるとともに、所定空間 SPを液体 LQで満たした状態で、供給口 12の液体供 給動作と吸引口 22の流体 (主に液体 LQ)の吸引(回収)動作とを並行して行うことに よって、液体 LQ中の気泡、あるいはパーティクル等の異物を除去 (捕集)することが できるし、所定空間 SPを満たす液体 LQの置換 (交換)を行うことができる。 Also in the present embodiment, the control device 7 includes the concave surface 2, the supply port 12, and the suction port 22. The liquid supply operation of the supply port 12 and the suction (collection) operation of the fluid (mainly liquid LQ) of the suction port 22 are performed in parallel while the predetermined space SP is filled with the liquid LQ. Therefore, it is possible to remove (collect) foreign matters such as bubbles or particles in the liquid LQ, and it is possible to replace (exchange) the liquid LQ that fills the predetermined space SP.
[0100] <第 5実施形態 >  [0100] <Fifth Embodiment>
次に、第 5実施形態について図 14を参照して説明する。以下の説明において、上 述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明 を簡略若しくは省略する。図 14に示すように、本実施形態の液浸システム 1は、上述 の第 4実施形態同様、最終光学素子 LSIの凹面 2の周縁部と対向する所定位置に 配置される供給口 12と、その供給口 12と最終光学素子 LSIの光軸 AXとの間に配 置された吸引口 22とを備えている。そして、基板テーブル 4Tの上面 4Fの一部には 凹部 40'が設けられている。凹部 40'は、吸引口 22の近傍に設けられている。本実 施形態においては、凹部 40'は、吸引口 22の近傍であって、その吸引口 22に関し て供給口 12の反対側に設けられている。凹部 40'は、供給口 12を最終光学素子 LS 1の凹面 2の周縁部と対向する所定位置に配置したときに、最終光学素子 LSIの凹 面 2と対向可能な位置に設けられている。  Next, a fifth embodiment will be described with reference to FIG. In the following description, components that are the same as or equivalent to those in the above embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted. As shown in FIG. 14, the liquid immersion system 1 of the present embodiment is similar to the above-described fourth embodiment, and includes a supply port 12 disposed at a predetermined position facing the peripheral edge of the concave surface 2 of the final optical element LSI, A suction port 22 is provided between the supply port 12 and the optical axis AX of the final optical element LSI. A recess 40 ′ is provided in a part of the upper surface 4F of the substrate table 4T. The recess 40 ′ is provided in the vicinity of the suction port 22. In the present embodiment, the recess 40 ′ is provided in the vicinity of the suction port 22 and on the opposite side of the supply port 12 with respect to the suction port 22. The concave portion 40 ′ is provided at a position that can face the concave surface 2 of the final optical element LSI when the supply port 12 is disposed at a predetermined position facing the peripheral edge portion of the concave surface 2 of the final optical element LS1.
[0101] 本実施形態においては、凹部 40'の内面は、最終光学素子 LSIから離れるように 凹む曲面となっている。なお、凹部 40'の内面は、例えば互いに異なる方向を向く複 数の平面を組み合わせた形状であってもよ 、。  [0101] In the present embodiment, the inner surface of the recess 40 'is a curved surface that is recessed away from the final optical element LSI. Note that the inner surface of the recess 40 ′ may have, for example, a shape in which a plurality of planes facing different directions are combined.
[0102] 供給口 12から噴き出された液体 LQは、最終光学素子 LSIの凹面 2に沿うように、 基板テーブル 4Tの上面 4Fに向力つて流れるため、最終光学素子 LSIと基板テープ ル 4Tとの間に液体 LQの渦が発生して、その渦の中心に気体 GS (気泡)が滞留する 可能性があるが、本実施形態においては、凹部 40'を設けているので、液体 LQの渦 が発生したとしても、その渦の中心を基板テーブル 4Tの上面 4Fの近傍(吸引口 22 の近傍)に形成することができる。したがって、初期満たし動作時などにおいて、所定 空間 SPを満たす液体 LQ中の気体 GS (気泡)を吸引口 22を介してより素早く排出す ることがでさる。  [0102] The liquid LQ ejected from the supply port 12 flows toward the upper surface 4F of the substrate table 4T along the concave surface 2 of the final optical element LSI, so that the final optical element LSI and the substrate table 4T There is a possibility that the vortex of the liquid LQ is generated between the two and the gas GS (bubble) stays in the center of the vortex. However, in this embodiment, since the recess 40 'is provided, the vortex of the liquid LQ Even if this occurs, the center of the vortex can be formed in the vicinity of the upper surface 4F of the substrate table 4T (in the vicinity of the suction port 22). Therefore, the gas GS (bubbles) in the liquid LQ that fills the predetermined space SP can be more quickly discharged through the suction port 22 during the initial filling operation or the like.
[0103] <第 6実施形態 > 次に、第 6実施形態について図 15を参照して説明する。以下の説明において、上 述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明 を簡略若しくは省略する。図 15に示すように、本実施形態の液浸システム 1は、上述 の第 4実施形態同様、最終光学素子 LSIの凹面 2の周縁部と対向する所定位置に 配置される供給口 12と、その供給口 12と最終光学素子 LSIの光軸 AXとの間に配 置された吸引口 22とを備えている。そして、供給口 12が凹面 2の周縁部と対向する 所定位置に配置されたときにおいて、最終光学素子 LSIの光軸 AXに関して供給口 12の反対側には、第 2吸引口 23が設けられている。第 2吸引口 23は基板テーブル 4 Tの上面 4Fに設けられて!/、る。 [0103] <Sixth Embodiment> Next, a sixth embodiment will be described with reference to FIG. In the following description, components that are the same as or equivalent to those in the above embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted. As shown in FIG. 15, the liquid immersion system 1 according to the present embodiment is similar to the fourth embodiment described above, and the supply port 12 disposed at a predetermined position facing the peripheral edge of the concave surface 2 of the final optical element LSI, A suction port 22 is provided between the supply port 12 and the optical axis AX of the final optical element LSI. Then, when the supply port 12 is disposed at a predetermined position facing the peripheral edge of the concave surface 2, a second suction port 23 is provided on the opposite side of the supply port 12 with respect to the optical axis AX of the final optical element LSI. Yes. The second suction port 23 is provided on the upper surface 4F of the substrate table 4T.
[0104] 制御装置 7は、初期満たし動作時において、吸引口 22の吸引力(単位時間当たり の流体吸引量)及び第 2吸引口 23の吸引力のそれぞれを調整しつつ、供給口 12の 供給動作と、吸引口 22の吸引動作と、第 2吸引口 23の吸引動作とを並行して行うこ とにより、所定空間 SPの液体 LQの流れを制御し、吸引口 22の近傍に圧力が低い空 間を形成することができ、吸引口 22の近傍に、所定空間 SPを満たす液体 LQ中の気 体 GSを集めることができる。例えば、第 2吸引口 23の吸引動作により、吸引口 22の 近傍において、下力も上へ向力 液体 LQの流れが生成されるのを抑えることができ、 気体 (気泡など)が吸引口 22から離れるように移動するのを抑えることができる。  [0104] During the initial filling operation, the control device 7 supplies the supply port 12 while adjusting the suction force of the suction port 22 (fluid suction amount per unit time) and the suction force of the second suction port 23. The flow of the liquid LQ in the predetermined space SP is controlled by performing the operation, the suction operation of the suction port 22 and the suction operation of the second suction port 23 in parallel, and the pressure in the vicinity of the suction port 22 is low. A space can be formed, and the gas GS in the liquid LQ that fills the predetermined space SP can be collected near the suction port 22. For example, by the suction operation of the second suction port 23, it is possible to suppress the generation of the flow of the downward force liquid LQ in the vicinity of the suction port 22, and gas (bubbles etc.) is generated from the suction port 22. It can suppress moving away.
[0105] なお、上述の第 1〜第 6実施形態において、最終光学素子 LSIの光射出面側の所 定空間 SPから液体 LQを完全に除去(回収)する場合に吸引口 22を使うことができる 。すなわち、最終光学素子 LSIの凹面 2と吸引口 22とを対向させた状態で吸引口 2 2から液体 LQを回収することによって、所定空間 SPの液体 LQを回収することができ る。このとき、供給口 12を真空装置(吸引装置)に接続して、供給口 12と吸引口 22と の両方を使って所定空間 SPの液体 LQの回収を行うことができる。  [0105] In the first to sixth embodiments described above, the suction port 22 is used when the liquid LQ is completely removed (recovered) from the predetermined space SP on the light exit surface side of the final optical element LSI. it can . That is, the liquid LQ in the predetermined space SP can be recovered by recovering the liquid LQ from the suction port 22 with the concave surface 2 of the final optical element LSI and the suction port 22 facing each other. At this time, the supply port 12 can be connected to a vacuum device (suction device), and the liquid LQ in the predetermined space SP can be recovered using both the supply port 12 and the suction port 22.
[0106] <第 7実施形態 >  <Seventh Embodiment>
次に、第 7実施形態について図 16を参照して説明する。以下の説明において、上 述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明 を簡略若しくは省略する。図 16において、液浸システム 1は、基板テーブル 4Tに設 けられ、液体 LQを供給する供給口 12を有する供給部材 52と、供給部材 52を駆動 することによって、凹面 2に対して供給口 12を相対的に移動する駆動装置 54とを備 えている。供給部材 52は管状の部材であり、基板テーブル 4Tの上面 4Fの一部に設 けられた穴 55の内側に配置されている。供給部材 52の上端が供給口 12である。供 給部材 52は、駆動装置 54の駆動力によって、上下方向(Z軸方向)に移動可能とな つており、供給口 12は、基板テーブル 4Tの上面 4Fに対して出没するようになってい る。本実施形態においては、供給部材 52が下降して穴 55の内側に配置されている ときには、図 16に示すように、供給部材 52の上端の供給口 12は、基板テーブル 4T の上面 4Fとほぼ面一となる。なお、供給部材 52は、 Z軸方向に関して斜め方向に移 動可能であってもよい。 Next, a seventh embodiment will be described with reference to FIG. In the following description, components that are the same as or equivalent to those in the above embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted. In FIG. 16, the immersion system 1 is provided on the substrate table 4T and has a supply member 52 having a supply port 12 for supplying the liquid LQ, and drives the supply member 52. Thus, a drive device 54 that moves the supply port 12 relative to the concave surface 2 is provided. The supply member 52 is a tubular member, and is disposed inside a hole 55 provided in a part of the upper surface 4F of the substrate table 4T. The upper end of the supply member 52 is the supply port 12. The supply member 52 can be moved in the vertical direction (Z-axis direction) by the driving force of the driving device 54, and the supply port 12 protrudes and protrudes from the upper surface 4F of the substrate table 4T. . In the present embodiment, when the supply member 52 is lowered and disposed inside the hole 55, as shown in FIG. 16, the supply port 12 at the upper end of the supply member 52 is substantially the same as the upper surface 4F of the substrate table 4T. It will be the same. The supply member 52 may be movable in an oblique direction with respect to the Z-axis direction.
[0107] また、基板テーブル 4Tの上面 4Fに設けられた供給口 12は、基板テーブル 4T (基 板ステージ 4)の移動によって、最終光学素子 LSIの凹面 2と対向可能である。一方 、供給部材 52の下端は、管部材 56を介して液体供給装置 11に接続されている。ま た、管部材 56の一部には、供給部材 52の移動を妨げないように、伸縮可能な伸縮 機構 57が設けられている。  Further, the supply port 12 provided on the upper surface 4F of the substrate table 4T can be opposed to the concave surface 2 of the final optical element LSI by moving the substrate table 4T (substrate stage 4). On the other hand, the lower end of the supply member 52 is connected to the liquid supply apparatus 11 via the pipe member 56. Further, a part of the pipe member 56 is provided with a telescopic mechanism 57 that can be expanded and contracted so as not to hinder the movement of the supply member 52.
[0108] 所定空間 SPの初期満たし動作を行う際には、制御装置 7は、基板ステージ 4を駆 動し、最終光学素子 LSIの凹面 2と基板テーブル 4T上の供給口 12とを対向させる。 そして、制御装置 7は、駆動装置 54を用いて、供給部材 52を +Z方向へ移動(上昇) し、供給部材 52の上端に設けられている供給口 12を凹面 2に近づける。そして、図 1 7に示すように、制御装置 7は、凹面 2に対して供給口 12を所定距離 (例えば lmm程 度)近づけた状態で、液体 LQの供給を開始する。本実施形態においては、制御装 置 7は、凹面 2の頂点位置 ATと供給口 12とを近づける。そして、制御装置 7は、供給 口 12から液体 LQを噴き出しつつ、供給部材 52を徐々に—Z方向へ移動(下降)す る。こうすること〖こより、凹面 2と基板テーブル 4Tとの間の所定空間 SPを液体 LQで良 好に満たすことができる。そして、所定空間 SPを液体 LQで満たし、供給口 12と基板 テーブル 4Tの上面 4Fとがほぼ面一となるまで供給部材 52を下降した後、制御装置 7は、液体 LQの供給を停止するとともに、基板ステージ 4を XY方向に移動して、凹 面 2と基板 Pの表面とを対向させ、基板 Pの露光を開始する。  When performing the initial filling operation of the predetermined space SP, the control device 7 drives the substrate stage 4 so that the concave surface 2 of the final optical element LSI and the supply port 12 on the substrate table 4T face each other. Then, the control device 7 uses the drive device 54 to move (raise) the supply member 52 in the + Z direction, and brings the supply port 12 provided at the upper end of the supply member 52 closer to the concave surface 2. Then, as shown in FIG. 17, the control device 7 starts supplying the liquid LQ with the supply port 12 brought closer to the concave surface 2 by a predetermined distance (for example, about 1 mm). In the present embodiment, the control device 7 brings the apex position AT of the concave surface 2 close to the supply port 12. Then, the control device 7 gradually moves (lowers) the supply member 52 in the −Z direction while ejecting the liquid LQ from the supply port 12. In this way, the predetermined space SP between the concave surface 2 and the substrate table 4T can be satisfactorily filled with the liquid LQ. Then, after filling the predetermined space SP with the liquid LQ and lowering the supply member 52 until the supply port 12 and the upper surface 4F of the substrate table 4T are substantially flush, the control device 7 stops supplying the liquid LQ and Then, the substrate stage 4 is moved in the XY direction so that the concave surface 2 and the surface of the substrate P face each other, and exposure of the substrate P is started.
[0109] 初期満たし動作時などにおいては、液体 LQ中の気体 GSは、所定空間 SPの上方( 凹面 2の頂点位置 ATの近傍)に滞留する可能性が高い。本実施形態では、凹面 2 に供給口 12を近づけた状態で液体 LQを供給しているので、所定空間 SPの上方( 凹面 2の頂点位置 ATの近傍)に気体 GSが滞留するのを抑制することができる。 [0109] During the initial filling operation, the gas GS in the liquid LQ is above the predetermined space SP ( There is a high possibility of staying in the vicinity of the apex position AT of the concave surface 2). In the present embodiment, since the liquid LQ is supplied with the supply port 12 approaching the concave surface 2, the gas GS is prevented from staying above the predetermined space SP (in the vicinity of the vertex position AT of the concave surface 2). be able to.
[0110] なお、第 7実施形態においても、検出装置 30を設けて、所定空間 SPの気体 GS (気 泡を含む)の有無を検出して、その検出結果に基づいて、供給口 12からの液体供給 を制御してもよい。  [0110] Also in the seventh embodiment, the detection device 30 is provided to detect the presence or absence of the gas GS (including bubbles) in the predetermined space SP, and from the supply port 12 based on the detection result. The liquid supply may be controlled.
[0111] <第 8実施形態 >  <Eighth Embodiment>
次に、第 8実施形態について図 18を参照して説明する。以下の説明において、上 述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明 を簡略若しくは省略する。図 18において、液浸システム 1は、基板テーブル 4Tに設 けられ、流体を吸引する吸引口 22を有する吸引部材 62と、吸引部材 62を駆動する ことによって、凹面 2に対して吸引口 22を相対的に移動する駆動装置 64とを備えて いる。吸引部材 62は管状の部材であり、基板テーブル 4Tの上面 4Fの一部に設けら れた穴の内側に配置されている。吸引部材 62の上端が吸引口 22である。吸引部材 62は、駆動装置 64の駆動力によって、 Z軸方向に移動可能となっており、吸引口 22 は、基板テーブル 4Tの上面 4Fに対して出没するようになっている。本実施形態にお いては、吸引部材 62が下降して基板テーブル 4Tの穴の内側に配置されているとき には、吸引部材 62の上端の吸引口 22は、基板テーブル 4Tの上面 4Fとほぼ面一と なる。なお、吸引部材 62は、 Z軸方向に関して斜め方向に移動可能であってもよい。  Next, an eighth embodiment will be described with reference to FIG. In the following description, components that are the same as or equivalent to those in the above embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted. In FIG. 18, the immersion system 1 is provided on the substrate table 4T, and has a suction member 62 having a suction port 22 for sucking fluid, and the suction member 22 is driven to the concave surface 2 by driving the suction member 62. And a drive device 64 that moves relatively. The suction member 62 is a tubular member, and is disposed inside a hole provided in a part of the upper surface 4F of the substrate table 4T. The upper end of the suction member 62 is the suction port 22. The suction member 62 can be moved in the Z-axis direction by the driving force of the drive device 64, and the suction port 22 protrudes and appears with respect to the upper surface 4F of the substrate table 4T. In the present embodiment, when the suction member 62 is lowered and disposed inside the hole of the substrate table 4T, the suction port 22 at the upper end of the suction member 62 is substantially the same as the upper surface 4F of the substrate table 4T. It will be the same. The suction member 62 may be movable in an oblique direction with respect to the Z-axis direction.
[0112] また、基板テーブル 4Tの上面 4Fに設けられた吸引口 22は、基板テーブル 4T (基 板ステージ 4)の移動によって、最終光学素子 LSIの凹面 2と対向可能である。一方 、吸引部材 62の下端は、管部材 66を介して吸引装置 21に接続されている。また、管 部材 66の一部には、吸引部材 62の移動を妨げないように、伸縮可能な伸縮機構 67 が設けられている。  Further, the suction port 22 provided on the upper surface 4F of the substrate table 4T can be opposed to the concave surface 2 of the final optical element LSI by the movement of the substrate table 4T (substrate stage 4). On the other hand, the lower end of the suction member 62 is connected to the suction device 21 via the pipe member 66. In addition, a telescopic mechanism 67 that can be expanded and contracted is provided in a part of the pipe member 66 so as not to prevent the movement of the suction member 62.
[0113] 図 18に示すように、初期満たし動作時において、凹面 2と基板テーブル 4Tとの間 の所定空間 SPに液体 LQを供給した後、液体 LQ中に気体 GSが残存する可能性が ある。液体 LQよりも比重が小さい気体 GSは、凹面 2の最も高い位置 (頂点位置) AT 、あるいはその近傍に滞留する可能性が高い。 [0114] 例えば、制御装置 7は、図 16等に示した供給部材 52を用いて、凹面 2と基板テー ブル 4Tとの間の所定空間 SPに液体 LQを供給した後、基板テーブル 4Tを XY方向 に移動して、供給部材 52とは別の位置に設けられた吸引部材 62の吸引口 22と凹面 2とを対向させる。そして、制御装置 7は、吸引部材 62を +Z方向に移動(上昇)し、 吸引部材 62の上端に設けられている吸引口 22を凹面 2に近づける。すなわち、制御 装置 7は、吸引部材 62の吸引口 22を、気体が存在する位置近傍、すなわち、凹面 2 の頂点位置 ATの近くに配置する。そして、制御装置 7は、凹面 2に対して吸引口 22 を所定距離 (例えば lmm程度)近づけた状態で、所定空間 SPの液体 LQ中に残存 する気体 GSを吸引して除去する。 [0113] As shown in FIG. 18, in the initial filling operation, there is a possibility that the gas GS may remain in the liquid LQ after the liquid LQ is supplied to the predetermined space SP between the concave surface 2 and the substrate table 4T. . A gas GS having a specific gravity smaller than that of the liquid LQ is likely to stay at or near the highest position (vertex position) AT of the concave surface 2. For example, after supplying the liquid LQ to the predetermined space SP between the concave surface 2 and the substrate table 4T using the supply member 52 shown in FIG. The suction port 22 of the suction member 62 provided at a position different from the supply member 52 and the concave surface 2 are opposed to each other. Then, the control device 7 moves (raises) the suction member 62 in the + Z direction, and brings the suction port 22 provided at the upper end of the suction member 62 closer to the concave surface 2. That is, the control device 7 arranges the suction port 22 of the suction member 62 in the vicinity of the position where the gas exists, that is, near the vertex position AT of the concave surface 2. The control device 7 sucks and removes the gas GS remaining in the liquid LQ in the predetermined space SP while the suction port 22 is brought closer to the concave surface 2 by a predetermined distance (for example, about 1 mm).
[0115] そして、液体 LQ中の気体の除去動作が完了した後、すなわち、初期満たし動作が 完了した後、制御装置 7は、吸引部材 62を— Z方向へ移動(下降)する。制御装置 7 は、吸引口 22と基板テーブル 4Tの上面 4Fとがほぼ面一となるまで吸引部材 62を下 降した後、基板ステージ 4を XY方向に移動して、凹面 2と基板 Pの表面とを対向させ 、基板 Pの露光を開始する。  Then, after the operation of removing the gas in the liquid LQ is completed, that is, after the initial filling operation is completed, the control device 7 moves (lowers) the suction member 62 in the −Z direction. The control device 7 lowers the suction member 62 until the suction port 22 and the upper surface 4F of the substrate table 4T are substantially flush with each other, and then moves the substrate stage 4 in the XY direction to move the concave surface 2 and the surface of the substrate P. And exposure of the substrate P is started.
[0116] なお、本実施形態においては、初期満たし動作時に所定空間 SPに残存する気体 ( 気泡を含む) GSを除去するときに、吸引部材 62の吸引口 22を用いた吸引動作を実 行しているが、所定空間 SPを満たしている液体 LQ中に存在する異物 (気泡を含む) を除去するときにも、吸引部材 62の吸引口 22を用いた吸引動作を実行することがで きる。  [0116] In the present embodiment, when the gas (including bubbles) GS remaining in the predetermined space SP during the initial filling operation is removed, the suction operation using the suction port 22 of the suction member 62 is performed. However, the suction operation using the suction port 22 of the suction member 62 can also be executed when removing foreign substances (including bubbles) in the liquid LQ filling the predetermined space SP.
[0117] なお、供給部材 52の供給口 12と吸引部材 62の吸引口 22とが凹面 2に対して一緒 に対向可能となるように、基板テーブル 4T上において、供給部材 52の供給口 12の 近傍に吸引部材 62の吸引口 22を配置してもよい。これにより、凹面 2に対して供給 口 12及び吸引口 22のそれぞれを近づけた状態で、供給口 12の供給動作及び吸引 口 22の吸引動作のそれぞれを実行することができる。また、所定空間 SPの液体 LQ の交換 (置換)を行うこともできる。  [0117] On the substrate table 4T, the supply port 12 of the supply member 52 and the suction port 22 of the suction member 62 can be opposed to the concave surface 2 together. The suction port 22 of the suction member 62 may be disposed in the vicinity. Accordingly, the supply operation of the supply port 12 and the suction operation of the suction port 22 can be performed in a state where the supply port 12 and the suction port 22 are brought close to the concave surface 2. In addition, the liquid LQ in the predetermined space SP can be exchanged (replaced).
[0118] また、上述の第 1〜第 6実施形態で説明した液浸システム 1に、本実施形態の吸引 部材 62 (吸引口 22)を組み合わせてもよい。  [0118] Furthermore, the suction member 62 (suction port 22) of the present embodiment may be combined with the liquid immersion system 1 described in the first to sixth embodiments.
[0119] <第 9実施形態 > 次に、第 9実施形態について図 19を参照して説明する。以下の説明において、上 述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明 を簡略若しくは省略する。図 19において、液浸システム 1は、基板テーブル 4Tに設 けられ、液体 LQを供給する供給口 12を有する供給部材 52と、流体を吸引する吸引 口 22を有する吸引部材 62とを備えている。供給部材 52は管状の部材であり、吸引 部材 62は供給部材 52の外側に配置された管状の部材である。すなわち、本実施形 態においては、供給部材 52と吸引部材 62とは二重管となっている。また、供給部材 52は及び吸引部材 62のそれぞれは、所定の駆動装置によって Z軸方向に移動可能 である。本実施形態においては、供給部材 52と吸引部材 62とは互いに独立して移 動可能である。 <Ninth embodiment> Next, a ninth embodiment will be described with reference to FIG. In the following description, components that are the same as or equivalent to those in the above embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted. In FIG. 19, the immersion system 1 includes a supply member 52 having a supply port 12 for supplying a liquid LQ, and a suction member 62 having a suction port 22 for sucking fluid, which is provided on the substrate table 4T. . The supply member 52 is a tubular member, and the suction member 62 is a tubular member disposed outside the supply member 52. That is, in the present embodiment, the supply member 52 and the suction member 62 are double tubes. Each of the supply member 52 and the suction member 62 can be moved in the Z-axis direction by a predetermined driving device. In the present embodiment, the supply member 52 and the suction member 62 can move independently of each other.
[0120] 初期満たし動作を行う際には、制御装置 7は、供給部材 52の供給口 12及び吸引 部材 62の吸引口 22のそれぞれを凹面 2に近づける。そして、制御装置 7は、凹面 2 に対して供給口 12及び吸引口 22のそれぞれを近づけた状態で、供給口 12を用い た液体供給動作及び吸弓 I口 22を用 ヽた吸弓 I動作を実行する。本実施形態にお!/、 ては、図 19に示すように、制御装置 7は、供給部材 52の上端を吸引部材 62の上端 よりも凹面 2に近くに配置した状態で、供給口 12を用いた液体供給動作及び吸引口 22を用いた吸引動作を実行する。そして、制御装置 7は、供給口 12を用いた液体供 給動作及び吸引口 22を用いた吸引動作を実行しつつ、供給部材 52及び吸引部材 62のそれぞれを徐々に— Z方向へ移動(下降)する。こうすることにより、凹面 2と基板 テーブル 4Tとの間の所定空間 SPを液体 LQで良好に満たすことができる。そして、 所定空間 SPを液体 LQで満たし、供給口 12及び吸引口 22と基板テーブル 4Tの上 面 4Fとがほぼ面一となるまで供給部材 52及び吸引部材 62を下降した後、制御装置 7は、供給口 12の供給動作及び吸引口 22の吸引動作を停止するとともに、基板ステ ージ 4を XY方向に移動して、凹面 2と基板 Pの表面とを対向させ、基板 Pの露光を開 始する。  [0120] When performing the initial filling operation, the control device 7 brings the supply port 12 of the supply member 52 and the suction port 22 of the suction member 62 closer to the concave surface 2, respectively. Then, the control device 7 performs the liquid supply operation using the supply port 12 and the sucking I operation using the sucking I port 22 while the supply port 12 and the suction port 22 are close to the concave surface 2. Execute. In this embodiment! As shown in FIG. 19, the control device 7 performs the liquid supply operation using the supply port 12 in the state where the upper end of the supply member 52 is arranged closer to the concave surface 2 than the upper end of the suction member 62. A suction operation using the suction port 22 is executed. Then, the control device 7 gradually moves (lowers) each of the supply member 52 and the suction member 62 in the −Z direction while performing the liquid supply operation using the supply port 12 and the suction operation using the suction port 22. ) By doing so, the predetermined space SP between the concave surface 2 and the substrate table 4T can be satisfactorily filled with the liquid LQ. After the predetermined space SP is filled with the liquid LQ and the supply member 52 and the suction member 62 are lowered until the supply port 12 and the suction port 22 are substantially flush with the upper surface 4F of the substrate table 4T, the control device 7 Then, the supply operation of the supply port 12 and the suction operation of the suction port 22 are stopped, and the substrate stage 4 is moved in the XY direction so that the concave surface 2 and the surface of the substrate P face each other, and the exposure of the substrate P is started. Start.
[0121] なお、本実施形態においては、供給部材 52と吸引部材 62とは互いに独立して移 動可能であるが、供給部材 52と吸引部材 62との相対的な位置関係を固定し、所定 の駆動装置を用いて供給部材 52と吸引部材 62とを一緒に移動するようにしてもょ 、 [0122] なお、本実施形態においては、供給部材 52の供給口 12からの供給動作と吸引部 材 62の吸引口 22からの吸引動作とを並行して行っている力 供給部材 52の供給口 12から液体 LQを供給して、所定空間 SPがほぼ液体 LQで満たされた状態で、吸引 部材 62の吸引口 22からの吸引動作を開始するようにしてもよい。 [0121] In the present embodiment, the supply member 52 and the suction member 62 can be moved independently of each other, but the relative positional relationship between the supply member 52 and the suction member 62 is fixed to a predetermined value. It is possible to move the supply member 52 and the suction member 62 together using the driving device of In the present embodiment, the supply operation of the supply member 52 from the supply port 12 and the suction operation of the suction member 62 from the suction port 22 are performed in parallel. The liquid LQ may be supplied from 12, and the suction operation from the suction port 22 of the suction member 62 may be started in a state where the predetermined space SP is substantially filled with the liquid LQ.
[0123] また、第 9実施形態においても、検出装置 30を設けて、所定空間 SPの気体 GS (気 泡)の有無を検出して、その検出結果に基づいて、供給口 12からの液体供給を制御 してちよい。  [0123] Also in the ninth embodiment, the detection device 30 is provided to detect the presence or absence of gas GS (bubbles) in the predetermined space SP, and based on the detection result, supply of liquid from the supply port 12 You may control.
[0124] また、本実施形態にぉ 、ても、所定空間 SPが液体 LQで満たされた状態で、供給 口 12の供給動作と吸引口 22の吸引動作とを実行することによって、所定空間 SPの 液体 LQの気泡、あるいはパーティクルなどの異物を除去することができる。また、所 定空間 SPの液体 LQの少なくとも一部を置換 (交換)することもできる。  [0124] Further, even in the present embodiment, the predetermined space SP is executed by performing the supply operation of the supply port 12 and the suction operation of the suction port 22 in a state where the predetermined space SP is filled with the liquid LQ. Liquid LQ bubbles or particles can be removed. In addition, at least a part of the liquid LQ in the predetermined space SP can be replaced (exchanged).
[0125] なお、第 8及び第 9実施形態において、最終光学素子 LSIの光射出面側の所定空 間 SPから液体 LQを完全に除去(回収)する場合に、吸引部材 62の吸引口 22を使う ようにしてもよい。  [0125] In the eighth and ninth embodiments, when the liquid LQ is completely removed (recovered) from the predetermined space SP on the light exit surface side of the final optical element LSI, the suction port 22 of the suction member 62 is changed. You may use it.
[0126] また、上述の第 1〜第 9実施形態において、所定空間 SPから液体 LQを完全に除 去(回収)する場合に、基板テーブル 4Tを動力しながら、吸引口 22の吸引動作を実 行してちょい。  [0126] Further, in the first to ninth embodiments described above, when the liquid LQ is completely removed (collected) from the predetermined space SP, the suction operation of the suction port 22 is performed while the substrate table 4T is powered. Please go.
[0127] また、上述の第 1〜第 9実施形態において、検出装置 30として、例えば所定空間 S Pに直接検出光を照射して、その所定空間 SPが液体 LQで満たされているか否かを 検出するものを使うこともできる。  [0127] Also, in the first to ninth embodiments described above, as the detection device 30, for example, the predetermined space SP is directly irradiated with detection light to detect whether or not the predetermined space SP is filled with the liquid LQ. You can also use what you do.
[0128] また、上述の第 1〜第 9実施形態において、供給口 12の供給動作及び Z又は吸引 口 22の吸引動作を所定時間継続することによって、所定空間 SPが液体 LQで満たさ れたと判断できるならば、検出装置 30を省 、てもよ 、。  Further, in the first to ninth embodiments described above, it is determined that the predetermined space SP is filled with the liquid LQ by continuing the supply operation of the supply port 12 and the suction operation of the Z or the suction port 22 for a predetermined time. If possible, you can omit the detector 30.
[0129] <第 10実施形態 >  [0129] <Tenth embodiment>
次に、第 10実施形態について図 20を参照して説明する。以下の説明において、 上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説 明を簡略若しくは省略する。図 20において、露光装置 EXは、基板テーブル 4Tに設 けられ、最終光学素子 LSIの凹面 2に対向可能な凸面 71を有する所定部材 70と、 所定部材 70を駆動することによって、凹面 2に対して凸面 71を相対的に移動する駆 動装置 72とを備えている。凸面 71は、凹面 2に沿う曲面であり、本実施形態におい ては、球面状又は非球面状に形成されている。 Next, a tenth embodiment will be described with reference to FIG. In the following description, the same or equivalent components as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted. In FIG. 20, the exposure apparatus EX is installed on the substrate table 4T. A predetermined member 70 having a convex surface 71 that can be opposed to the concave surface 2 of the final optical element LSI, and a driving device 72 that moves the convex surface 71 relative to the concave surface 2 by driving the predetermined member 70. It has. The convex surface 71 is a curved surface along the concave surface 2, and is formed in a spherical shape or an aspherical shape in the present embodiment.
[0130] 所定部材 70は、基板テーブル 4Tの上面 4Fの一部に設けられた穴 73の内側に配 置されている。所定部材 70は、駆動装置 72の駆動力によって、 Z軸方向に移動可能 となっており、基板テーブル 4Tの上面 4Fに対して出没するようになっている。所定部 材 70のうち、凸面 71以外の部分は円筒状(円柱状)に形成されている。また、所定部 材 70の凸面 71の周囲には、この凸面 71を囲むように基板テーブル 4Tの上面 4Fが 配置される。 [0130] The predetermined member 70 is disposed inside a hole 73 provided in a part of the upper surface 4F of the substrate table 4T. The predetermined member 70 can be moved in the Z-axis direction by the driving force of the driving device 72, and appears and disappears with respect to the upper surface 4F of the substrate table 4T. Of the predetermined member 70, a portion other than the convex surface 71 is formed in a cylindrical shape (columnar shape). Further, the upper surface 4F of the substrate table 4T is disposed around the convex surface 71 of the predetermined member 70 so as to surround the convex surface 71.
[0131] 凸面 71を含む所定部材 70の表面は、液体 LQに対して親液性を有している。本実 施形態においては、凸面 71を含む所定部材 70の表面に、液体 LQに対して親液性 を有する所定の材料の膜を被覆することによって、凸面 71等に親液性が付与されて いる。  [0131] The surface of the predetermined member 70 including the convex surface 71 is lyophilic with respect to the liquid LQ. In the present embodiment, the surface of the predetermined member 70 including the convex surface 71 is covered with a film of a predetermined material having lyophilicity with respect to the liquid LQ, thereby imparting lyophilicity to the convex surface 71 and the like. Yes.
[0132] また、露光装置 EXは、最終光学素子 LS 1及び鏡筒 PKを囲むように設けられ、液 体 LQを供給可能な供給口 82及び液体 LQを回収可能な回収口 84を有するノズル 部材 80を備えている。ノズル部材 80は、最終光学素子 LSIの凹面 2を囲むように形 成され、基板テーブル 4Tの上面 4Fと対向する下面 81を有している。ノズル部材 80 の下面 81と鏡筒 PKの下面 PKAとはほぼ面一となつており、これら下面 PKA、 81は 凹面 2を囲むように配置されて 、る。  [0132] Further, the exposure apparatus EX is provided so as to surround the final optical element LS1 and the lens barrel PK, and has a supply port 82 that can supply the liquid LQ and a recovery port 84 that can recover the liquid LQ. Equipped with 80. The nozzle member 80 is formed so as to surround the concave surface 2 of the final optical element LSI, and has a lower surface 81 facing the upper surface 4F of the substrate table 4T. The lower surface 81 of the nozzle member 80 and the lower surface PKA of the lens barrel PK are substantially flush with each other, and these lower surfaces PKA and 81 are arranged so as to surround the concave surface 2.
[0133] 供給口 82及び回収口 84のそれぞれは、ノズル部材 80の下面 81に設けられている 。本実施形態においては、供給口 82は、光路 Kに対して +Y側及び— Y側のそれぞ れに設けられている。また、本実施形態においては、回収口 84は、光路 Kに対して 供給口 82の外側に設けられており、光路 Kを囲むように環状に形成されている。なお 、回収口 84に、多孔部材又はメッシュ部材を配置することができる。  [0133] Each of the supply port 82 and the recovery port 84 is provided on the lower surface 81 of the nozzle member 80. In the present embodiment, the supply port 82 is provided on each of the + Y side and the −Y side with respect to the optical path K. In the present embodiment, the recovery port 84 is provided outside the supply port 82 with respect to the optical path K, and is formed in an annular shape so as to surround the optical path K. Note that a porous member or a mesh member can be disposed in the recovery port 84.
[0134] 供給口 82は、鏡筒 PKの下面 PKAと、その下面 PKAと対向する基板テーブル 4T の上面 4Fとの間に液体 LQを供給可能なように設けられて 、る。本実施形態にお!ヽ ては、供給口 82は、鏡筒 PKの下面 PKAと基板テーブル 4Tの上面 4Fとの間に液体 LQを供給可能なように、光路 Kに向力つて斜め方向に液体 LQを供給する。 The supply port 82 is provided so as to be able to supply the liquid LQ between the lower surface PKA of the lens barrel PK and the upper surface 4F of the substrate table 4T facing the lower surface PKA. In this embodiment, the supply port 82 is a liquid between the lower surface PKA of the lens barrel PK and the upper surface 4F of the substrate table 4T. In order to be able to supply LQ, the liquid LQ is supplied in an oblique direction by directing the light path K.
[0135] 次に、初期満たし動作を含む露光装置 EXの動作について説明する。初期満たし 動作を実行する際、制御装置 7は、基板ステージ 4を XY方向に駆動し、最終光学素 子 LSIの凹面 2と基板テーブル 4Tに設けられた凸面 71とを対向させる。そして、制 御装置 7は、駆動装置 72を用いて、所定部材 70を +Z方向へ移動 (上昇)し、所定 部材 70の凸面 71を最終光学素子 LSIの凹面 2に近づける。そして、図 21Aに示す ように、制御装置 7は、凹面 2と凸面 71との間を第 1の距離 G1 (約 0. 5mm)に設定し た状態で、供給口 82による凹面 2と凸面 71との間への液体 LQの供給動作を開始す る。 Next, the operation of the exposure apparatus EX including the initial filling operation will be described. When executing the initial filling operation, the control device 7 drives the substrate stage 4 in the XY directions so that the concave surface 2 of the final optical element LSI and the convex surface 71 provided on the substrate table 4T face each other. Then, using the driving device 72, the control device 7 moves (raises) the predetermined member 70 in the + Z direction, and brings the convex surface 71 of the predetermined member 70 closer to the concave surface 2 of the final optical element LSI. Then, as shown in FIG. 21A, the control device 7 sets the first distance G1 (about 0.5 mm) between the concave surface 2 and the convex surface 71, so that the concave surface 2 and the convex surface 71 by the supply port 82 are set. The liquid LQ supply operation to and from is started.
[0136] また、制御装置 7は、回収口 84による流体 (液体 LQ、気体 GSを含む)の回収(吸 引)を開始する。すなわち、制御装置 7は、供給口 82からの液体 LQの供給と並行し て、回収口 84による回収(吸引)を行う。  [0136] Further, the control device 7 starts collecting (suctioning) fluid (including liquid LQ and gas GS) through the collection port 84. That is, the control device 7 performs recovery (suction) by the recovery port 84 in parallel with the supply of the liquid LQ from the supply port 82.
[0137] 上述のように、凹面 2を囲むように下面 PKA(81)が形成されており、凸面 71を囲 むように基板テーブル 4Tの上面 4Fが形成されている。供給口 82は、下面 PKAと上 面 4Fとの間に液体 LQを供給することによって、凹面 2と凸面 71との間を液体 LQで 満たす。  [0137] As described above, the lower surface PKA (81) is formed so as to surround the concave surface 2, and the upper surface 4F of the substrate table 4T is formed so as to surround the convex surface 71. The supply port 82 fills the space between the concave surface 2 and the convex surface 71 with the liquid LQ by supplying the liquid LQ between the lower surface PKA and the upper surface 4F.
[0138] 凹面 2と凸面 71との間を第 1の距離 G1に設定した状態で凹面 2と凸面 71との間へ の液体 LQの供給動作を開始するとき、鏡筒 PKの下面 PKAと基板テーブル 4Tの上 面 4Fとの間は第 2の距離 G2 (約 lmm)に設定されている。ここで、第 1の距離 G1は 第 2の距離 G2よりも小さい。制御装置 7は、凹面 2と凸面 71との間を第 1の距離 G1に 設定するとともに、下面 PKAと上面 4Fとの間を第 2の距離 G2に設定した状態で、供 給口 82を用いた下面 PKAと上面 4Fとの間への液体 LQの供給動作を開始する。  [0138] When the liquid LQ supply operation is started between the concave surface 2 and the convex surface 71 with the first distance G1 between the concave surface 2 and the convex surface 71, the lower surface PKA of the lens barrel PK and the substrate The distance from the upper surface 4F of the table 4T is set to the second distance G2 (about lmm). Here, the first distance G1 is smaller than the second distance G2. The control device 7 uses the supply port 82 in a state where the distance between the concave surface 2 and the convex surface 71 is set to the first distance G1, and the distance between the lower surface PKA and the upper surface 4F is set to the second distance G2. The liquid LQ supply operation between the lower surface PKA and the upper surface 4F was started.
[0139] 本実施形態においては、初期満たし動作を行う際、下面 PKAと上面 4Fとの間のう ち、所定の一箇所 (一方向)から液体 LQが供給される。例えば、図 21Aに示すように 、制御装置 7は、光路 Kに対して +Y側に配置されている供給口 82から液体 LQを供 給する。供給口 82から下面 PKAと上面 4Fとの間に供給された液体 LQは、凹面 2と 凸面 71との間に流入し、凹面 2と凸面 71との間に濡れ拡がる。  In the present embodiment, when performing the initial filling operation, the liquid LQ is supplied from a predetermined position (one direction) between the lower surface PKA and the upper surface 4F. For example, as shown in FIG. 21A, the control device 7 supplies the liquid LQ from the supply port 82 disposed on the + Y side with respect to the optical path K. The liquid LQ supplied between the lower surface PKA and the upper surface 4F from the supply port 82 flows between the concave surface 2 and the convex surface 71 and wets and spreads between the concave surface 2 and the convex surface 71.
[0140] 本実施形態においては、凹面 2と凸面 71との間の第 1の距離 G1は、下面 PKAと上 面 4Fとの間の第 2の距離 G2よりも小さぐ下面 PKAと上面 4Fとの間に供給された液 体 LQは、例えば毛管現象によって、凹面 2と凸面 71との間に濡れ拡がる。凸面 71は 液体 LQに対して親液性を有しており、凹面 2も液体 LQに対して親液性を有して!/、る ため、液体 LQは凹面 2と凸面 71との間で良好に濡れ拡がる。したがって、凹面 2と凸 面 71との間に流入した液体 LQを、図 21Bに示すように、凹面 2に良好に密着させる ことができる。 [0140] In the present embodiment, the first distance G1 between the concave surface 2 and the convex surface 71 is equal to the upper surface PKA and the upper surface. The liquid LQ supplied between the lower surface PKA smaller than the second distance G2 between the surface 4F and the upper surface 4F spreads between the concave surface 2 and the convex surface 71 due to, for example, capillary action. The convex surface 71 is lyophilic with respect to the liquid LQ, and the concave surface 2 is also lyophilic with respect to the liquid LQ. Therefore, the liquid LQ is between the concave surface 2 and the convex surface 71. It spreads well. Therefore, the liquid LQ that has flowed between the concave surface 2 and the convex surface 71 can be satisfactorily adhered to the concave surface 2 as shown in FIG. 21B.
[0141] 光路 Kに対して +Y側の供給口 82から供給され、凹面 2と凸面 71との間に濡れ拡 力 Sつた液体 LQは、やがて光路 Kに対して Y側に配置されている回収口 84に回収 される。供給口 82の液体供給動作と並行して、回収口 84による流体 (液体 LQ)の回 収動作が実行されているため、液体 LQが回収口 84の外側に流出することが抑制さ れる。  [0141] The liquid LQ, which is supplied from the supply port 82 on the + Y side with respect to the optical path K and has wet spread S between the concave surface 2 and the convex surface 71, is eventually arranged on the Y side with respect to the optical path K. Collected at collection port 84. In parallel with the liquid supply operation of the supply port 82, the recovery operation of the fluid (liquid LQ) by the recovery port 84 is executed, so that the liquid LQ is prevented from flowing out of the recovery port 84.
[0142] そして、図 22Aに示すように、制御装置 7は、供給口 82の液体供給動作と回収口 8 4の液体回収動作とを並行して行いつつ、所定部材 70を徐々に Z方向へ移動(下 降)する。すなわち、制御装置 7は、供給口 82の液体供給動作と回収口 84の液体回 収動作とを継続しつつ、凹面 2と凸面 71との間の距離を漸次大きくする。制御装置 7 は、光路 Kに対して +Y側及び Y側のそれぞれに設けられた供給口 82の供給動 作と、回収口 84の回収動作とを並行して行う。こうすることにより、液体 LQの回収口 8 4の外側への流出を抑制しつつ、凹面 2と凸面 71との間を液体 LQで円滑に満たすこ とがでさる。  Then, as shown in FIG. 22A, the control device 7 gradually moves the predetermined member 70 in the Z direction while performing the liquid supply operation of the supply port 82 and the liquid recovery operation of the recovery port 84 in parallel. Move (down). That is, the control device 7 gradually increases the distance between the concave surface 2 and the convex surface 71 while continuing the liquid supply operation of the supply port 82 and the liquid recovery operation of the recovery port 84. The control device 7 performs the supply operation of the supply port 82 provided on each of the + Y side and the Y side with respect to the optical path K and the recovery operation of the recovery port 84 in parallel. By doing so, the liquid LQ can be smoothly filled with the liquid LQ while the liquid LQ is prevented from flowing out to the outside of the recovery port 84 and the concave surface 2 and the convex surface 71 are filled.
[0143] そして、図 22Bに示すように、所定空間 SPを液体 LQで満たし、凸面 71の上端が 基板テーブル 4Tの上面 4Fとほぼ同じ高さとなるまで所定部材 70を下降した後、制 御装置 7は、基板ステージ 4を XY方向に移動して、凹面 2と基板 Pの表面とを対向さ せ、基板 Pの露光を開始する。  Then, as shown in FIG. 22B, after the predetermined member 70 is lowered until the predetermined space SP is filled with the liquid LQ and the upper end of the convex surface 71 becomes substantially the same height as the upper surface 4F of the substrate table 4T, the control device In step 7, the substrate stage 4 is moved in the XY direction so that the concave surface 2 and the surface of the substrate P face each other, and exposure of the substrate P is started.
[0144] 本実施形態においては、制御装置 7は、初期満たし動作を終了し、基板 Pを露光す るときにぉ 、ても、供給口 82の供給動作と回収口 84の回収動作とを並行して行う。  In the present embodiment, the control device 7 finishes the initial filling operation and performs the supply operation of the supply port 82 and the recovery operation of the recovery port 84 in parallel even when the substrate P is exposed. And do it.
[0145] 以上説明したように、初期満たし動作において、凹面 2と対向する位置に凸面 71を 配置し、その凹面 2と凸面 71との間に液体 LQを供給するようにしたので、所定空間 S Pの上方 (頂点位置 ATの近傍)まで、液体 LQを良好に満たすことができる。 [0146] なお、本実施形態にぉ ヽては、ノズル部材 80の供給口 82から供給された液体 LQ が凹面 2と凸面 71との間を満たしている力 基板テーブル 4Tの上面に設けられた供 給口 12から供給された液体 LQで凹面 2と凸面 71との間を満たすようにしてもよい。 また、所定部材 70の凸面 71に供給口を設け、凸面 71の供給口から供給された液体 で凹面 2と凸面 71との間を満たすようにしてもよい。 As described above, in the initial filling operation, the convex surface 71 is arranged at a position facing the concave surface 2, and the liquid LQ is supplied between the concave surface 2 and the convex surface 71, so that the predetermined space SP The liquid LQ can be satisfactorily filled up to the upper side (near the vertex position AT). Note that, in the present embodiment, the force that the liquid LQ supplied from the supply port 82 of the nozzle member 80 fills between the concave surface 2 and the convex surface 71 is provided on the upper surface of the substrate table 4T. The liquid LQ supplied from the supply port 12 may be filled between the concave surface 2 and the convex surface 71. Alternatively, a supply port may be provided on the convex surface 71 of the predetermined member 70 so that the liquid supplied from the supply port of the convex surface 71 fills the space between the concave surface 2 and the convex surface 71.
[0147] なお、本実施形態のノズル部材 80を、上述の第 1〜第 9実施形態の液浸システム 1 と併用してもよい。  [0147] The nozzle member 80 of the present embodiment may be used in combination with the liquid immersion system 1 of the first to ninth embodiments described above.
[0148] く第 11実施形態 >  [0148] Eleventh Embodiment>
次に、第 11実施形態について図 23を参照しながら説明する。以下の説明におい て、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、そ の説明を簡略若しくは省略する。図 23において、第 1〜第 9実施形態のいずれかで 説明した所定空間 SPを液体 LQで満たすための供給口 12及び吸引口 22が、基板 ステージ 4とは独立して移動可能な計測ステージ 5上に設けられて 、る。計測ステー ジ 5は、露光処理に関する計測器を搭載して、ベース部材 BP上で移動可能である。 なお、計測ステージを備えた露光装置については、例えば特開平 11— 135400号 公報、特開 2000— 164504号公報 (対応米国特許第 6, 897, 963号)等により詳細 に開示されている。  Next, an eleventh embodiment will be described with reference to FIG. In the following description, the same or equivalent components as those in the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted. In FIG. 23, the measurement stage 5 in which the supply port 12 and the suction port 22 for filling the predetermined space SP described in any of the first to ninth embodiments with the liquid LQ can move independently of the substrate stage 4. It is provided above. The measurement stage 5 is equipped with a measuring instrument for exposure processing and can be moved on the base member BP. Note that an exposure apparatus provided with a measurement stage is disclosed in detail, for example, in JP-A-11-135400 and JP-A-2000-164504 (corresponding US Pat. No. 6,897,963).
[0149] また、本実施形態にぉ ヽては、計測ステージ 5には、所定空間 SPを満たす液体 LQ の状態を観察可能な観察力メラ 100が設けられている。観察力メラ 100は計測ステー ジ 5の内部空間に配置されている。計測ステージ 5の上面 5Fには、内部空間に接続 する開口が形成されており、その開口には石英等力もなる透明部材 103が配置され ている。透明部材 103の上面は平坦であり、計測ステージ 5の上面 5Fの一部を形成 している。観察力メラ 100は、透明部材 103の上面を含む計測ステージ 5の上面 5F に形成された液浸領域 LRの液体 LQの状態、すなわち、所定空間 SPを満たす液体 LQの状態を、透明部材 103を介して観察可能である。観察力メラ 100は、光学系 10 2と、 CCD (charge coupled device)等によって構成される撮像素子 101とを備えてい る。撮像素子 101は、液体 LQ及び最終光学素子 LSI等の画像 (光学像)を透明部 材 103及び光学系 102を介して取得可能である。撮像素子 101は、取得した画像情 報を制御装置 7に出力する。制御装置 7は、観察力メラ 100の撮像結果に基づいて、 所定空間 SPを満たす液体 LQの状態を求めることができる。 [0149] Further, for the present embodiment, the measurement stage 5 is provided with an observation power mesa 100 that can observe the state of the liquid LQ that fills the predetermined space SP. The observation power mela 100 is arranged in the internal space of the measurement stage 5. An opening connected to the internal space is formed on the upper surface 5F of the measurement stage 5, and a transparent member 103 having a quartz isotropic force is disposed in the opening. The upper surface of the transparent member 103 is flat and forms a part of the upper surface 5F of the measurement stage 5. The observation power mela 100 indicates the state of the liquid LQ in the immersion region LR formed on the upper surface 5F of the measurement stage 5 including the upper surface of the transparent member 103, that is, the state of the liquid LQ that satisfies the predetermined space SP. Can be observed. The observation power mela 100 includes an optical system 102 and an image sensor 101 constituted by a CCD (charge coupled device) or the like. The image sensor 101 can acquire an image (optical image) of the liquid LQ, the final optical element LSI, and the like via the transparent member 103 and the optical system 102. The image sensor 101 can acquire the acquired image information. Information is output to the control device 7. The control device 7 can determine the state of the liquid LQ that fills the predetermined space SP based on the imaging result of the observation power mela 100.
[0150] 本実施形態においては、制御装置 7は、最終光学素子 LSIの凹面 2と計測ステー ジ 5の上面 5Fとの間を満たす液体 LQ中の気体 (気泡を含む) GSの有無を、観察力 メラ 100を用いて検出する。すなわち、制御装置 7は、供給口 12と吸引口 22とを用い て所定空間 SPの初期満たし動作を行った後、計測ステージ 5を XY方向に移動し、 凹面 2と透明部材 103とを対向させる。これにより、液浸領域 LRが透明部材 103上に 形成される。観察力メラ 100は、透明部材 103を介して、液浸領域 LRの液体 LQの画 像を取得する。制御装置 7は、観察力メラ 100の出力に基づいて、所定空間 SPを満 たす液体 LQ中に気体 (気泡) GSが有る力否かを判別することができる。  [0150] In the present embodiment, the control device 7 observes the presence or absence of gas (including bubbles) GS in the liquid LQ that fills the space between the concave surface 2 of the final optical element LSI and the upper surface 5F of the measurement stage 5. Detect using force Mela 100. That is, the control device 7 performs the initial filling operation of the predetermined space SP using the supply port 12 and the suction port 22, and then moves the measurement stage 5 in the XY direction so that the concave surface 2 and the transparent member 103 face each other. . As a result, the liquid immersion area LR is formed on the transparent member 103. The observation power mela 100 acquires an image of the liquid LQ in the liquid immersion area LR via the transparent member 103. Based on the output of the observation power mela 100, the control device 7 can determine whether or not the gas (bubble) GS is present in the liquid LQ that fills the predetermined space SP.
[0151] 制御装置 7は、観察力メラ 100の出力に基づいて、所定空間 SPを満たす液体 LQ 中に気体 (気泡) GSが有ると判断した場合、計測ステージ 5を XY方向に移動して、 凹面 2と計測ステージ 5上の吸引口 22とを対向させ、例えば液体 LQ中の気体部分を 無くすための所定の処理を行う。そして、その処理を実行した後、再び、凹面 2と透明 部材 103とを対向させ、観察力メラ 100を用いて、所定空間 SPを満たす液体 LQの 状態を観察する。  [0151] Based on the output of the observation power mela 100, the controller 7 determines that gas (bubbles) GS is present in the liquid LQ that fills the predetermined space SP, moves the measurement stage 5 in the XY direction, The concave surface 2 and the suction port 22 on the measurement stage 5 are made to face each other, and for example, a predetermined process for eliminating a gas portion in the liquid LQ is performed. Then, after executing the processing, again, the concave surface 2 and the transparent member 103 are opposed to each other, and the state of the liquid LQ that fills the predetermined space SP is observed using the observation power mela 100.
[0152] 制御装置 7は、観察力メラ 100の出力に基づいて、所定空間 SPの液体 LQ中に気 体 (気泡) GSが無いと判断した場合、凹面 2と基板ステージ 4上の基板 Pとを対向させ るために、液浸領域 LRを基板 P上に移動する。  [0152] Based on the output of the observation power mela 100, the control device 7 determines that there is no gas (bubble) GS in the liquid LQ in the predetermined space SP, and the substrate P on the substrate stage 4 and the concave surface 2 The liquid immersion area LR is moved onto the substrate P so as to face each other.
[0153] 図 24に示すように、制御装置 7は、投影光学系 PLの直下の位置を含む所定領域 内で、基板ステージ 4の上面 4Fと計測ステージ 5の上面 5Fとを接近又は接触させた 状態で、基板ステージ 4と計測ステージ 5とを XY方向に一緒に移動することにより、 液浸領域 LRを、基板ステージ 4の上面 4Fと計測ステージ 5の上面 5Fとの間で移動 することができる。したがって、計測ステージ 5上で初期満たし動作を行った後、図 24 に示すような動作を実行することにより、液浸領域 LRを基板ステージ 4に保持されて いる基板 P上に移動することができる。そして、液浸領域 LRの液体 LQを基板 P上に 移動した後、制御装置 7は、投影光学系 PL及び液体 LQを介した基板 Pの露光を開 始する。 [0154] なお、本実施形態において、観察力メラ 100は、液体 LQ中の異物を検出することも でき、制御装置 7は、観察力メラ 100の検出結果に基づいて、所定の処理を実行する [0153] As shown in FIG. 24, the control device 7 brings the upper surface 4F of the substrate stage 4 and the upper surface 5F of the measurement stage 5 close to or in contact with each other within a predetermined region including the position immediately below the projection optical system PL. In this state, the immersion stage LR can be moved between the upper surface 4F of the substrate stage 4 and the upper surface 5F of the measurement stage 5 by moving the substrate stage 4 and the measurement stage 5 together in the XY direction. . Therefore, after the initial filling operation is performed on the measurement stage 5, the immersion region LR can be moved onto the substrate P held on the substrate stage 4 by executing the operation as shown in FIG. . Then, after moving the liquid LQ in the immersion area LR onto the substrate P, the control device 7 starts exposure of the substrate P via the projection optical system PL and the liquid LQ. [0154] In the present embodiment, the observation power mela 100 can also detect foreign matter in the liquid LQ, and the control device 7 executes a predetermined process based on the detection result of the observation power mela 100.
[0155] なお、上述の第 10実施形態に本実施形態の計測ステージ 5を適用してもよい。この 場合、所定部材 70を計測ステージ 5に設けることができる。 Note that the measurement stage 5 of the present embodiment may be applied to the above-described tenth embodiment. In this case, the predetermined member 70 can be provided on the measurement stage 5.
[0156] なお、上述の各実施形態にお!ヽては、液浸領域 LRを形成する界面 LGは、凹面 2 を囲むように形成された鏡筒 PKの下面 PKAと、その下面 PKAと対向する物体 (基 板、基板ステージ、計測ステージ)との間に形成されているが、投影光学系 PLのうち 、例えば、最終光学素子 LSIの一部(例えばフランジ面)力 基板テーブル 4Tの上 面 4Fなどに最も近い位置に設けられている場合には、液浸領域 LRの界面 LGは、そ の最終光学素子 LSIの一部と基板テーブル 4Tの上面 4Fとの間に形成される。この 場合、上述の第 10実施形態において、供給口は、凹面 2と凸面 71との間に液体 LQ を供給するために、最終光学素子 LSIの一部(フランジ面)と基板テーブル 4Tの上 面 4Fとの間に液体 LQを供給することができる。  Note that in each of the above-described embodiments, the interface LG forming the liquid immersion region LR is the lower surface PKA of the lens barrel PK formed so as to surround the concave surface 2 and is opposed to the lower surface PKA. The projection optical system PL includes, for example, a part of the final optical element LSI (for example, a flange surface) force of the upper surface of the substrate table 4T. When provided at a position closest to 4F or the like, the interface LG of the immersion region LR is formed between a part of the final optical element LSI and the upper surface 4F of the substrate table 4T. In this case, in the tenth embodiment described above, the supply port supplies a part of the final optical element LSI (flange surface) and the upper surface of the substrate table 4T in order to supply the liquid LQ between the concave surface 2 and the convex surface 71. Liquid LQ can be supplied between 4F.
[0157] なお、上述の各実施形態において、光学素子 LSIと光学素子 LS2との間の光路を 液体 LQで満たすようにしてもよい。この場合、光学素子 LSIと光学素子 LS 2との間 の空間を満たす液体は、上述の所定空間 SPを満たす液体 LQと同じであってもよ ヽ し、異なっていてもよく、上述の所定空間 SPを満たす液体 LQよりも屈折率が小さくて ちょい。  [0157] In the above-described embodiments, the optical path between the optical element LSI and the optical element LS2 may be filled with the liquid LQ. In this case, the liquid that fills the space between the optical element LSI and the optical element LS 2 may be the same as or different from the liquid LQ that fills the predetermined space SP described above. The refractive index is smaller than the liquid LQ satisfying SP.
[0158] また、上述の第 1〜第 6実施形態においては、最終光学素子 LSIと対向させる物体  [0158] In the first to sixth embodiments described above, the object that faces the final optical element LSI
(例えば基板テーブル 4T)に、第 7〜第 10実施形態に示したような可動部材 (供給 部材 52、吸引部材 62、所定部材 70など)が設けられていないため、パーティクル等 の異物の発生無しに、最終光学素子 LSIの凹面 2と物体 (例えば基板テーブル 4T) との間を液体 LQで満たすことができる。  (For example, the substrate table 4T) is not provided with movable members (such as the supply member 52, the suction member 62, and the predetermined member 70) as shown in the seventh to tenth embodiments, so that no foreign matter such as particles is generated. In addition, the space between the concave surface 2 of the final optical element LSI and the object (for example, the substrate table 4T) can be filled with the liquid LQ.
[0159] また、上述の各実施形態においては、露光光 ELとして ArFエキシマレーザを用い ているが、上述したように、 Fレーザなどの各種露光光 (露光ビーム)を採用すること  [0159] In each of the above embodiments, an ArF excimer laser is used as the exposure light EL. However, as described above, various exposure lights (exposure beams) such as an F laser may be employed.
2  2
ができ、光路 Kを満たす液体 LQは、露光光 (露光ビーム) EL、投影光学系 PLの開 口数、最終光学素子 LSIの露光光 ELに対する屈折率などに応じて最適なものを適 宜使用することができる。 The liquid LQ that fills the optical path K can be optimized according to the exposure light (exposure beam) EL, the number of apertures in the projection optical system PL, the refractive index of the final optical element LSI with respect to the exposure light EL, etc. It can be used properly.
[0160] なお、上記各実施形態では干渉計システム(3L、 4L)を用いてマスクステージ 3、 及び基板ステージ 4の各位置情報を計測するものとしたが、これに限らず、例えば各 ステージに設けられるスケール(回折格子)を検出するエンコーダシステムを用いても よい。この場合、干渉計システムとエンコーダシステムの両方を備えるハイブリッドシス テムとし、干渉計システムの計測結果を用いてエンコーダシステムの計測結果の較正 (キャリブレーション)を行うことが好ましい。また、干渉計システムとエンコーダシステ ムとを切り替えて用いる、あるいはその両方を用いて、ステージの位置制御を行うよう にしてもよい。  [0160] In the above embodiments, the position information of the mask stage 3 and the substrate stage 4 is measured using the interferometer system (3L, 4L). You may use the encoder system which detects the scale (diffraction grating) provided. In this case, it is preferable that a hybrid system including both the interferometer system and the encoder system is used, and the measurement result of the encoder system is calibrated using the measurement result of the interferometer system. Further, the position control of the stage may be performed by switching between the interferometer system and the encoder system or using both.
[0161] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板、薄膜磁気ヘッド用のセラミックゥェ ノ、、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリコン ウェハ)等が適用される。  [0161] The substrate P in each of the above embodiments is used not only for semiconductor wafers for manufacturing semiconductor devices but also for glass substrates for display devices, ceramic wafers for thin film magnetic heads, or exposure apparatuses. Mask or reticle master (synthetic quartz, silicon wafer), etc. are applied.
[0162] 露光装置 EXとしては、マスク Mと基板 Pとを同期移動してマスク Mのパターンを走 查露光するステップ ·アンド'スキャン方式の走査型露光装置 (スキャニングステツパ) の他に、マスク Mと基板 Pとを静止した状態でマスク Mのパターンを一括露光し、基 板 Pを順次ステップ移動させるステップ ·アンド ·リピート方式の投影露光装置 (ステツ ノ )にも適用することができる。  [0162] As the exposure apparatus EX, in addition to a step-and-scan type scanning exposure apparatus (scanning stepper) that performs mask exposure by scanning the mask M and the substrate P in synchronization with each other, a mask is used. The present invention can also be applied to a step-and-repeat projection exposure apparatus (steno) in which the pattern of the mask M is collectively exposed while M and the substrate P are stationary, and the substrate P is sequentially moved stepwise.
[0163] また、露光装置 EXとしては、第 1パターンと基板 Pとをほぼ静止した状態で第 1バタ ーンの縮小像を投影光学系 (例えば 1Z8縮小倍率で反射素子を含まな 、屈折型投 影光学系)を用 、て基板 P上に一括露光する方式の露光装置にも適用できる。この 場合、更にその後に、第 2パターンと基板 Pとをほぼ静止した状態で第 2パターンの 縮小像をその投影光学系を用いて、第 1パターンと部分的に重ねて基板 P上に一括 露光するスティツチ方式の一括露光装置にも適用できる。また、ステイッチ方式の露 光装置としては、基板 P上で少なくとも 2つのパターンを部分的に重ねて転写し、基 板 Pを順次移動させるステップ 'アンド'ステイッチ方式の露光装置にも適用できる。  [0163] In addition, as the exposure apparatus EX, a reduced image of the first pattern is projected in a state where the first pattern and the substrate P are almost stationary (for example, a refractive type that does not include a reflective element at a 1Z8 reduction magnification). It can also be applied to an exposure apparatus that uses a projection optical system) to perform batch exposure on the substrate P. In this case, after that, with the second pattern and the substrate P almost stationary, a reduced image of the second pattern is collectively exposed on the substrate P by partially overlapping the first pattern using the projection optical system. It can also be applied to a stitch type batch exposure apparatus. In addition, the stitch type exposure apparatus can also be applied to a step 'and' stitch type exposure apparatus in which at least two patterns are partially overlapped and transferred on the substrate P, and the substrate P is sequentially moved.
[0164] また、上記各実施形態では投影光学系 PLを備えた露光装置を例に挙げて説明し てきたが、投影光学系 PLを用いない露光装置及び露光方法に本発明を適用するこ とができる。投影光学系を用いない場合であっても、露光光はマスク又はレンズなど の光学部材を介して基板に照射され、そのような光学部材と基板との間の所定空間 に液浸領域が形成される。 Further, in each of the embodiments described above, the exposure apparatus provided with the projection optical system PL has been described as an example. However, the present invention is applied to an exposure apparatus and an exposure method that do not use the projection optical system PL. You can. Even when the projection optical system is not used, the exposure light is irradiated onto the substrate through an optical member such as a mask or a lens, and an immersion region is formed in a predetermined space between the optical member and the substrate. The
[0165] また、本発明は、例えば特開平 10— 163099号公報及び特開平 10— 214783号 公報(対応米国特許第 6, 590, 634号)、特表 2000— 505958号公報(対応米国 特許第 5, 969, 441号)、米国特許第 6, 208, 407号などに開示されているような複 数の基板ステージを備えたマルチステージ型の露光装置にも適用できる。この場合、 上述の液浸システム 1を、全てのステージに設けてもよいし、一部のステージに設け るだけでもよい。  In addition, the present invention relates to, for example, Japanese Patent Laid-Open Nos. 10-163099 and 10-214783 (corresponding US Pat. No. 6,590,634) and Japanese Translation of PCT International Publication No. 2000-505958 (corresponding US Pat. 5, 969, 441), US Pat. No. 6,208,407, etc., and can be applied to a multi-stage type exposure apparatus having a plurality of substrate stages. In this case, the liquid immersion system 1 described above may be provided on all stages or only on some stages.
[0166] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の 露光装置、薄膜磁気ヘッド、撮像素子 (CCD)、マイクロマシン、 MEMS, DNAチッ プ、あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用で きる。  [0166] The type of exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern onto a substrate P. An exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, an imaging It can be widely applied to exposure devices for manufacturing devices (CCD), micromachines, MEMS, DNA chips, reticles or masks.
[0167] なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン (又 は位相パターン '減光パターン)を形成した光透過型マスクを用いた力 このマスクに 代えて、例えば米国特許第 6, 778, 257号公報に開示されているように、露光すベ きパターンの電子データに基づ 、て透過パターン又は反射パターン、あるいは発光 パターンを形成する電子マスク(可変成形マスクとも呼ばれ、例えば非発光型画像表 示素子(空間光変調器)の一種である DMD (Digital Micro-mirror Device)などを含 む)を用いてもよい。  In the above-described embodiment, force using a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern 'dimming pattern) is formed on a light-transmitting substrate is used instead of this mask. For example, as disclosed in US Pat. No. 6,778,257, an electronic mask (variable molding mask) that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed. For example, a DMD (Digital Micro-mirror Device) which is a kind of non-light emitting image display element (spatial light modulator) may be used.
[0168] また、例えば国際公開第 2001Z035168号パンフレットに開示されているように、 干渉縞を基板 P上に形成することによって、基板 P上にライン 'アンド'スペースパター ンを露光する露光装置 (リソグラフィシステム)にも本発明を適用することができる。  [0168] Further, as disclosed in, for example, pamphlet of International Publication No. 2001Z035168, an exposure apparatus (lithography) that exposes a line 'and' space pattern on the substrate P by forming interference fringes on the substrate P. The present invention can also be applied to a system.
[0169] さらに、例えば特表 2004— 519850号公報(対応米国特許第 6, 611, 316号)に 開示されているように、 2つのマスクのパターンを、投影光学系を介して基板上で合 成し、 1回のスキャン露光によって基板上の 1つのショット領域をほぼ同時に二重露光 する露光装置にも本発明を適用することができる。 [0170] なお、本国際出願で指定又は選択された国の法令で許容される限りにおいて、上 記各実施形態及び変形例で引用した露光装置などに関する全ての公開公報及び 米国特許の開示を援用して本文の記載の一部とする。 [0169] Further, as disclosed in, for example, JP-T-2004-519850 (corresponding US Pat. No. 6,611,316), two mask patterns are combined on a substrate via a projection optical system. The present invention can also be applied to an exposure apparatus that performs double exposure of one shot area on the substrate almost simultaneously by one scan exposure. [0170] To the extent permitted by the laws and regulations of the country designated or selected in this international application, the disclosures of all published publications and US patents related to the exposure apparatus and the like cited in the above embodiments and modifications are incorporated. As a part of the description of the text.
[0171] 以上のように、本願実施形態の露光装置 EXは、本願請求の範囲に挙げられた各 構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精 度を保つように、組み立てることで製造される。これら各種精度を確保するために、こ の組み立ての前後には、各種光学系については光学的精度を達成するための調整 、各種機械系については機械的精度を達成するための調整、各種電気系について は電気的精度を達成するための調整が行われる。各種サブシステムから露光装置へ の組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、 気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立 て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各 種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露 光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびク リーン度等が管理されたクリーンルームで行うことが望ましい。  [0171] As described above, the exposure apparatus EX according to the embodiment of the present application has various mechanical subsystems including the respective constituent elements recited in the claims of the present application with predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling to keep. In order to ensure these various accuracies, before and after the assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, various electrical systems Is adjusted to achieve electrical accuracy. The assembly process from various subsystems to the exposure system includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies for the entire exposure apparatus. It is desirable to manufacture the exposure apparatus in a clean room in which the temperature and cleanliness are controlled.
[0172] 半導体デバイス等のマイクロデバイスは、図 25〖こ示すよう〖こ、マイクロデバイスの機 能 ·性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチクル)を製 作するステップ 202、デバイスの基材である基板を製造するステップ 203、前述した 実施形態の露光装置 EXによりマスクのパターンを基板に露光する工程、露光した基 板を現像する工程、現像した基板の加熱 (キュア)及びエッチング工程などの基板処 理プロセスを含むステップ 204、デバイス組み立てステップ(ダイシング工程、ボンデ イング工程、ノ ッケージ工程などの加工プロセスを含む) 205、検査ステップ 206等を 経て製造される。  [0172] As shown in FIG. 25, a microdevice such as a semiconductor device includes a step 201 for performing a function / performance design of the microdevice, a step 202 for manufacturing a mask (reticle) based on this design step, Step 203 for manufacturing a substrate that is a base material of the device, a step of exposing the mask pattern to the substrate by the exposure apparatus EX of the above-described embodiment, a step of developing the exposed substrate, heating (curing) of the developed substrate, and It is manufactured through a step 204 including a substrate processing process such as an etching process, a device assembly step (including processing processes such as a dicing process, a bonding process, and a knocking process) 205, an inspection step 206, and the like.

Claims

請求の範囲  The scope of the claims
[I] 基板上に露光光を照射して前記基板を露光する露光装置において、  [I] In an exposure apparatus that exposes the substrate by irradiating the substrate with exposure light,
前記露光光が射出される凹面を有する光学素子と、  An optical element having a concave surface from which the exposure light is emitted;
前記凹面と対向可能な物体に設けられ、前記凹面と前記物体との間の空間に液体 を供給する供給口と、  A supply port that is provided in an object that can face the concave surface, and that supplies liquid to a space between the concave surface and the object;
前記物体に設けられ、前記凹面と前記物体との間の流体を吸引する吸引口と、を 備えた露光装置。  An exposure apparatus comprising: a suction port that is provided in the object and sucks a fluid between the concave surface and the object.
[2] 前記吸引口は、前記供給ロカもの液体の供給と並行して、前記凹面と前記物体と の間の前記流体を吸引する請求項 1記載の露光装置。  [2] The exposure apparatus according to [1], wherein the suction port sucks the fluid between the concave surface and the object in parallel with the supply of the liquid of the supply locus.
[3] 前記流体は、気体を含む請求項 2記載の露光装置。 3. The exposure apparatus according to claim 2, wherein the fluid includes a gas.
[4] 前記吸引口は、前記空間における前記気体が集まる位置に配置される請求項 3記 載の露光装置。  4. The exposure apparatus according to claim 3, wherein the suction port is arranged at a position where the gas gathers in the space.
[5] 前記吸引口は、前記供給口の近傍に配置される請求項 1から 4のいずれか一項記 載の露光装置。  [5] The exposure apparatus according to any one of [1] to [4], wherein the suction port is disposed in the vicinity of the supply port.
[6] 前記液体の供給時、前記供給口は前記光学素子の光軸上に配置される請求項 1 から 5の 、ずれか一項記載の露光装置。  6. The exposure apparatus according to claim 1, wherein when supplying the liquid, the supply port is disposed on the optical axis of the optical element.
[7] 前記吸引口は、前記供給口を囲むように設けられている請求項 6記載の露光装置 7. The exposure apparatus according to claim 6, wherein the suction port is provided so as to surround the supply port.
[8] 前記液体の供給時、前記供給口は前記凹面の周縁部に対向して配置される請求 項 1から 5の 、ずれか一項記載の露光装置。 8. The exposure apparatus according to any one of claims 1 to 5, wherein when supplying the liquid, the supply port is disposed to face a peripheral portion of the concave surface.
[9] 前記吸引口は、前記供給口と前記光学素子の光軸との間に配置される請求項 8記 載の露光装置。 9. The exposure apparatus according to claim 8, wherein the suction port is disposed between the supply port and the optical axis of the optical element.
[10] 前記吸引口は、前記供給口と前記光学素子の光軸との間に配置される第 1の吸引 口と、前記光軸に関して、前記供給口の反対側に配置される第 2の吸引口と、を有す る請求項 8記載の露光装置。  [10] The suction port includes a first suction port disposed between the supply port and the optical axis of the optical element, and a second suction port disposed on the opposite side of the supply port with respect to the optical axis. The exposure apparatus according to claim 8, further comprising a suction port.
[II] 前記物体は凹部を有する請求項 1から 10のいずれか一項記載の露光装置。  [II] The exposure apparatus according to any one of claims 1 to 10, wherein the object has a recess.
[12] 前記凹部は前記吸引口の近傍に設けられている請求項 11記載の露光装置。 12. The exposure apparatus according to claim 11, wherein the recess is provided in the vicinity of the suction port.
[13] 前記凹面に対して前記供給口を相対的に移動する第 1駆動装置を備えた請求項 1 力も 12のいずれか一項記載の露光装置。 13. The apparatus according to claim 1, further comprising a first driving device that moves the supply port relative to the concave surface. 13. The exposure apparatus according to any one of 12 above.
[14] 前記第 1駆動装置は、前記凹面に近づけるように前記供給口を移動する請求項 13 記載の露光装置。 14. The exposure apparatus according to claim 13, wherein the first driving device moves the supply port so as to approach the concave surface.
[15] 前記供給口は、前記液体を前記凹面に当てるように噴出す請求項 1から 14のいず れか一項記載の露光装置。  15. The exposure apparatus according to any one of claims 1 to 14, wherein the supply port ejects the liquid so as to contact the concave surface.
[16] 前記凹面に対して前記吸引口を相対的に移動する第 2駆動装置を備えた請求項 1 力 15のいずれか一項記載の露光装置。 16. The exposure apparatus according to claim 1, further comprising a second drive device that moves the suction port relative to the concave surface.
[17] 前記第 2駆動装置は、前記凹面に近づけるように前記吸引口を移動する請求項 16 記載の露光装置。 17. The exposure apparatus according to claim 16, wherein the second driving device moves the suction port so as to approach the concave surface.
[18] 前記空間における前記液体中の気体を検出する検出装置と、前記検出結果に基 づいて、前記液体の供給及び前記流体の吸引の少なくとも一方を制御する制御装 置とを備えた請求項 1から 17のいずれか一項記載の露光装置。  18. A detection device that detects a gas in the liquid in the space, and a control device that controls at least one of supply of the liquid and suction of the fluid based on the detection result. The exposure apparatus according to any one of 1 to 17.
[19] 前記空間が前記液体で満たされた後、前記液体の供給と前記流体の吸引とが停 止し、前記凹面と前記基板の表面とが対向し、前記光学素子と前記液体とを介して 前記基板上に前記露光光が照射する請求項 1から 18のいずれか一項記載の露光 装置。  [19] After the space is filled with the liquid, the supply of the liquid and the suction of the fluid stop, the concave surface and the surface of the substrate face each other, and the optical element and the liquid are interposed therebetween. The exposure apparatus according to claim 1, wherein the exposure light irradiates the substrate.
[20] 前記液体の供給動作の実行時には、前記液体の供給動作の停止時に比べて、前 記凹面と前記物体との間の空間が大きくなるように、前記凹面と前記物体との位置関 係を調整する請求項 19記載の露光装置。  [20] When the liquid supply operation is performed, the positional relationship between the concave surface and the object is such that a space between the concave surface and the object is larger than when the liquid supply operation is stopped. 20. The exposure apparatus according to claim 19, wherein the exposure apparatus is adjusted.
[21] 前記物体は、前記凹面に対向可能な凸面を含み、前記凹面と前記凸面との間の 空間への液体の供給動作を継続しつつ、前記凹面と前記凸面との間の距離を大きく する請求項 1から 20のいずれか一項記載の露光装置。 [21] The object includes a convex surface that can be opposed to the concave surface, and the distance between the concave surface and the convex surface is increased while continuing the liquid supply operation to the space between the concave surface and the convex surface. 21. The exposure apparatus according to any one of claims 1 to 20.
[22] 基板上に露光光を照射して前記基板を露光する露光装置にお!、て、 [22] In an exposure apparatus that exposes the substrate by exposing the substrate to exposure light!
前記露光光が射出される凹面を有する光学素子と、  An optical element having a concave surface from which the exposure light is emitted;
凸面を含む物体と、  An object including a convex surface;
前記凹面と前記凸面が対向した状態で、前記凹面と前記凸面との間の空間に液体 を供給する供給口と、を備えた露光装置。  An exposure apparatus comprising: a supply port that supplies liquid to a space between the concave surface and the convex surface in a state where the concave surface and the convex surface face each other.
[23] 前記凹面と前記凸面との間の空間への液体の供給動作を継続しつつ、前記凹面と 前記凸面との間の距離を大きくする請求項 22記載の露光装置。 [23] While continuing the liquid supply operation to the space between the concave surface and the convex surface, 23. The exposure apparatus according to claim 22, wherein the distance between the convex surface is increased.
[24] 前記凹面を囲むように形成された第 1面と、 [24] a first surface formed to surround the concave surface;
前記凸面を囲むように前記物体に形成された第 2面とを有し、  A second surface formed on the object so as to surround the convex surface,
前記供給口は、前記第 1面と前記第 2面との間の空間に液体を供給することによつ て、前記凹面と前記凸面との間の空間に液体を供給する請求項 22又は 23記載の露 光装置。  The supply port supplies the liquid to the space between the concave surface and the convex surface by supplying the liquid to the space between the first surface and the second surface. The described exposure apparatus.
[25] 前記凹面と前記凸面との間を第 1の距離に設定するとともに、前記第 1面と前記第 2 面との間を第 2の距離に設定した状態で前記第 1面と前記第 2面との間の空間への 液体の供給動作を開始し、  [25] A first distance is set between the concave surface and the convex surface, and a second distance is set between the first surface and the second surface. Start supplying liquid to the space between the two surfaces,
前記第 1の距離は前記第 2の距離よりも小さい請求項 24記載の露光装置。  25. The exposure apparatus according to claim 24, wherein the first distance is smaller than the second distance.
[26] 前記供給口とは別の位置に設けられ、前記第 1面と前記第 2面との間の液体を回 収する回収口を備えた請求項 24又は 25記載の露光装置。 26. The exposure apparatus according to claim 24 or 25, further comprising a recovery port that is provided at a position different from the supply port and collects the liquid between the first surface and the second surface.
[27] 前記凸面は、前記液体に対して親液性を有する請求項 21から 26のいずれか一項 記載の露光装置。 27. The exposure apparatus according to claim 21, wherein the convex surface is lyophilic with respect to the liquid.
[28] 前記液体の前記露光光に対する屈折率は、前記光学素子の前記露光光に対する 屈折率よりも高い請求項 1から 27のいずれか一項記載の露光装置。  28. The exposure apparatus according to claim 1, wherein a refractive index of the liquid with respect to the exposure light is higher than a refractive index of the optical element with respect to the exposure light.
[29] パターン像を前記基板上に投影する投影光学系を備え、 [29] a projection optical system that projects a pattern image onto the substrate;
前記光学素子は、前記投影光学系の複数の光学素子のうち、該投影光学系の像 面に最も近い光学素子であり、  The optical element is an optical element closest to the image plane of the projection optical system among the plurality of optical elements of the projection optical system,
前記投影光学系の開口数は、前記光学素子の前記露光光に対する屈折率よりも 大き 、請求項 1から 28の 、ずれか一項記載の露光装置。  29. The exposure apparatus according to claim 1, wherein the numerical aperture of the projection optical system is larger than a refractive index of the optical element with respect to the exposure light.
[30] 前記物体は、前記凹面と対向する位置を含む所定領域内で二次元方向に移動可 能である請求項 1から 29のいずれか一項記載の露光装置。 30. The exposure apparatus according to claim 1, wherein the object is movable in a two-dimensional direction within a predetermined region including a position facing the concave surface.
[31] 前記物体は、前記基板を保持して移動可能な第 1可動部材、及び露光処理に関 する計測を行う計測器を搭載して移動可能な第 2可動部材の少なくとも一方を含む 請求項 30記載の露光装置。 [31] The object includes at least one of a first movable member that is movable while holding the substrate, and a second movable member that is movable by mounting a measuring instrument that performs measurement related to exposure processing. 30. The exposure apparatus according to 30.
[32] 光学素子を介して露光光を基板上に照射して前記基板を露光する露光方法にお いて、 前記光学素子の凹面に対向可能な物体に設けられた供給口から前記凹面と前記 物体との間の空間に液体を供給し、前記物体に設けられた吸引口から前記凹面と前 記物体との間の流体を吸引する露光方法。 [32] In an exposure method of exposing the substrate by irradiating the substrate with exposure light through an optical element, Liquid is supplied to a space between the concave surface and the object from a supply port provided in an object capable of facing the concave surface of the optical element, and the concave surface and the object are connected from a suction port provided in the object. An exposure method for sucking the fluid between.
[33] 前記液体の供給と並行して、前記流体を吸引する請求項 32記載の露光方法。  33. The exposure method according to claim 32, wherein the fluid is sucked in parallel with the supply of the liquid.
[34] 前記流体は、気体を含む請求項 32又は 33記載の露光方法。 34. The exposure method according to claim 32 or 33, wherein the fluid contains a gas.
[35] 前記空間における前記気体が集まる位置近傍から前記気体が吸引される請求項 3 4記載の露光方法。 35. The exposure method according to claim 34, wherein the gas is sucked from near the position where the gas gathers in the space.
[36] 前記供給口の近傍から前記流体が吸引される請求項 32から 34のいずれか一項記 載の露光方法。  36. The exposure method according to claim 32, wherein the fluid is sucked from the vicinity of the supply port.
[37] 前記光学素子の光軸上に配置された前記供給口を介して前記液体が供給される 請求項 32から 36のいずれか一項記載の露光方法。  37. The exposure method according to any one of claims 32 to 36, wherein the liquid is supplied through the supply port disposed on the optical axis of the optical element.
[38] 前記供給口を囲むように配置された前記吸引口を介して前記流体が吸引される請 求項 37記載の露光方法。 [38] The exposure method according to claim 37, wherein the fluid is sucked through the suction port arranged so as to surround the supply port.
[39] 前記液体は、前記供給口を介して前記凹面に当てられる請求項 32から 38のいず れか一項記載の露光方法。 [39] The exposure method according to any one of claims 32 to 38, wherein the liquid is applied to the concave surface through the supply port.
[40] 前記供給口を前記凹面に対して近づけた状態で、前記液体が供給される請求項 340. The liquid is supplied in a state where the supply port is brought close to the concave surface.
2から 39の 、ずれか一項記載の露光方法。 40. The exposure method according to any one of 2 to 39.
[41] 前記吸引口を前記凹面に対して近づけた状態で、前記流体が吸引される請求項 341. The fluid is sucked in a state where the suction port is brought close to the concave surface.
2から 40の 、ずれか一項記載の露光方法。 The exposure method according to any one of 2 to 40.
[42] 前記液体は、前記凹面の周縁部力も前記凹面に沿って流される請求項 32から 36 の!、ずれか一項記載の露光方法。 42. The exposure method according to claim 32, wherein the liquid is also caused to cause a peripheral edge force of the concave surface to flow along the concave surface.
[43] 前記空間が前記液体で満たされた後、前記液体の供給と前記流体の吸引とが停 止し、前記凹面と前記基板の表面とが対向し、前記光学素子と前記液体とを介して 前記基板上に前記露光光が照射される請求項 32から 42のいずれか一項記載の露 光方法。 [43] After the space is filled with the liquid, the supply of the liquid and the suction of the fluid stop, the concave surface and the surface of the substrate face each other, and the optical element and the liquid are interposed therebetween. 43. The exposure method according to any one of claims 32 to 42, wherein the exposure light is irradiated onto the substrate.
[44] 前記供給口の供給動作の実行時には、前記供給口の供給動作の停止時に比べて 、前記凹面と前記物体との間の空間が大きくなるように、前記凹面と前記物体との位 置関係を調整する請求項 43記載の露光方法。 [44] When the supply operation of the supply port is executed, the position of the concave surface and the object is set so that a space between the concave surface and the object becomes larger than when the supply operation of the supply port is stopped. 44. The exposure method according to claim 43, wherein the relationship is adjusted.
[45] 前記凹面と前記物体の凸面とが対向した状態で、前記凹面と前記凸面との間の空 間に前記液体を供給する供給動作を継続しつつ、前記凹面と前記凸面との間の距 離を大きくする請求項 32から 44のいずれか一項記載の露光方法。 [45] With the concave surface and the convex surface of the object facing each other, the supply operation for supplying the liquid to the space between the concave surface and the convex surface is continued, while the concave surface and the convex surface are 45. The exposure method according to any one of claims 32 to 44, wherein the distance is increased.
[46] 光学素子を介して露光光を基板上に照射して前記基板を露光する露光方法にお いて、  [46] In an exposure method of exposing the substrate by irradiating the substrate with exposure light through an optical element,
前記光学素子の凹面に対向して物体を配置し、前記凹面と物体との間の空間に前 記液体を供給して、前記液体を前記凹面に沿って流す露光方法。  An exposure method in which an object is disposed opposite to the concave surface of the optical element, the liquid is supplied to a space between the concave surface and the object, and the liquid flows along the concave surface.
[47] 光学素子を介して露光光を基板上に照射して前記基板を露光する露光方法にお いて、 [47] In an exposure method of exposing the substrate by irradiating the substrate with exposure light through an optical element,
前記光学素子の凹面に対向して物体を配置し、液体の供給が前記物体に対して 前記凹面側から行われるように、前記凹面と物体との間の空間に液体を供給する露 光方法。  An exposure method in which an object is disposed facing the concave surface of the optical element, and the liquid is supplied to the space between the concave surface and the object so that the liquid is supplied from the concave surface side to the object.
[48] 前記液体供給の開始時に、前記液体を前記凹面に沿って流す請求項 46又は 47 記載の露光方法。  48. The exposure method according to claim 46 or 47, wherein the liquid is caused to flow along the concave surface when the liquid supply is started.
[49] 前記液体の供給は、前記液体を供給する供給口を前記凹面に対して近づけた状 態で行われる請求項 46から 48のいずれか一項記載の露光方法。  [49] The exposure method according to any one of [46] to [48], wherein the liquid is supplied in a state in which a supply port for supplying the liquid is brought close to the concave surface.
[50] 前記液体は、前記供給口を介して前記凹面に当てられる請求項 46から 49のいず れか一項記載の露光方法。  50. The exposure method according to any one of claims 46 to 49, wherein the liquid is applied to the concave surface through the supply port.
[51] 前記液体は、前記凹面の周縁部力 前記凹面に沿って流される請求項 46又 47記 載の露光方法。  51. The exposure method according to claim 46 or 47, wherein the liquid is caused to flow along a peripheral edge force of the concave surface.
[52] 前記空間への液体の供給動作を継続しつつ、前記凹面と前記物体との間隔を変 える請求項 46から 51のいずれか一項記載の露光方法。  [52] The exposure method according to any one of [46] to [51], wherein the distance between the concave surface and the object is changed while continuing the operation of supplying the liquid to the space.
[53] 前記凹面と前記物体の凸面とが対向した状態で、前記凹面と前記凸面との間の空 間に前記液体を供給する請求項 46又は 47記載の露光方法。 53. The exposure method according to claim 46 or 47, wherein the liquid is supplied to a space between the concave surface and the convex surface in a state where the concave surface and the convex surface of the object face each other.
[54] 前記凹面と前記凸面との間の空間への液体の供給動作を継続しつつ、前記凹面と 前記凸面との間の距離を大きくする請求項 53記載の露光方法。 54. The exposure method according to claim 53, wherein the distance between the concave surface and the convex surface is increased while continuing the liquid supply operation to the space between the concave surface and the convex surface.
[55] 前記凹面を囲むように形成された第 1面と、前記凸面を囲むように前記物体に形成 された第 2面との間の空間に液体を供給することによって、前記凹面と前記凸面との 間に液体を供給する請求項 53から 54の 、ずれか一項記載の露光方法。 [55] By supplying a liquid to a space between a first surface formed so as to surround the concave surface and a second surface formed on the object so as to surround the convex surface, the concave surface and the convex surface are provided. With The exposure method according to any one of claims 53 to 54, wherein a liquid is supplied therebetween.
[56] 前記第 1面と前記第 2面との間の液体は、前記物体に対向配置された回収口を介 して回収される請求項 55記載の露光方法。 [56] The exposure method according to [55], wherein the liquid between the first surface and the second surface is recovered through a recovery port disposed to face the object.
[57] 前記液体は、前記物体に設けられた供給口を介して供給される請求項 46から 56 の!、ずれか一項記載の露光方法。 57. The exposure method according to claim 46, wherein the liquid is supplied through a supply port provided in the object.
[58] 光学素子を介して露光光を基板上に照射して前記基板を露光する露光方法にお いて、 [58] In the exposure method of exposing the substrate by irradiating the substrate with exposure light through an optical element,
前記光学素子の凹面に対向して物体を配置することと、前記凹面と物体との間の 空間に液体を供給することと、を含み、  Disposing an object opposite the concave surface of the optical element, and supplying a liquid to a space between the concave surface and the object,
前記空間に液体を満たす時に使われる液体供給経路と、前記基板露光時に使わ れる液体供給経路とを異ならせる露光方法。  An exposure method in which a liquid supply path used for filling the space with a liquid is different from a liquid supply path used for the substrate exposure.
[59] 前記物体に設けられた供給口を介して前記空間に液体を満たす請求項 58記載の 露光方法。 59. The exposure method according to claim 58, wherein the space is filled with a liquid via a supply port provided in the object.
[60] 前記物体に対向配置された供給口を介して前記露光時に液体が供給される請求 項 58又は 59記載の露光方法。  60. The exposure method according to claim 58 or 59, wherein the liquid is supplied during the exposure through a supply port disposed to face the object.
[61] 前記凹面を囲むように形成された第 1面に配置された供給口を介して前記露光時 に液体が供給される.請求項 58から 60の 、ずれか一項記載の露光方法。 [61] The exposure method according to any one of [58] to [60], wherein the liquid is supplied during the exposure through a supply port disposed on a first surface formed so as to surround the concave surface.
[62] 前記第 1面と、前記物体に形成された第 2面との間の空間に前記第 1面に配置され た供給口を介して液体を供給する請求項 61記載の露光方法。 62. The exposure method according to claim 61, wherein a liquid is supplied to a space between the first surface and a second surface formed on the object through a supply port disposed on the first surface.
[63] 光学素子を介して露光光を基板上に照射して前記基板を露光する露光方法にお いて、 [63] In an exposure method of exposing the substrate by irradiating the substrate with exposure light through an optical element,
前記光学素子の光射出面と物体との間の空間に液体を供給し、前記液体の供給 開始後、前記空間が前記液体で満たされるまでの間に、前記光学素子と前記物体と の間隔を変更する露光方法。  The liquid is supplied to the space between the light emitting surface of the optical element and the object, and the interval between the optical element and the object is increased after the supply of the liquid is started until the space is filled with the liquid. The exposure method to be changed.
[64] 前記光学素子の光射出面は凹面である請求項 63記載の露光方法。 64. The exposure method according to claim 63, wherein the light exit surface of the optical element is a concave surface.
[65] 前記凹面と前記物体の凸面とが対向した状態で、前記凹面と前記凸面との間の空 間に前記液体を供給する請求項 64記載の露光方法。 65. The exposure method according to claim 64, wherein the liquid is supplied to a space between the concave surface and the convex surface in a state where the concave surface and the convex surface of the object face each other.
[66] 前記凹面と前記凸面との間の空間への前記液体の供給動作を継続しつつ、前記 凹面と前記凸面との間の距離を大きくする請求項 65記載の露光方法。 [66] While continuing the operation of supplying the liquid to the space between the concave surface and the convex surface, 66. The exposure method according to claim 65, wherein a distance between the concave surface and the convex surface is increased.
[67] 前記液体の供給は、前記液体を供給する供給口を前記凹面に対して近づけた状 態で行われる請求項 63記載の露光方法。 [67] The exposure method according to [63], wherein the supply of the liquid is performed in a state where a supply port for supplying the liquid is brought close to the concave surface.
[68] 前記液体の前記露光光に対する屈折率は、前記光学素子の前記露光光に対する 屈折率よりも高い請求項 32から 67のいずれか一項記載の露光方法。 68. The exposure method according to claim 32, wherein a refractive index of the liquid with respect to the exposure light is higher than a refractive index of the optical element with respect to the exposure light.
[69] 前記光学素子は、パターン像を前記基板上に投影する投影光学系の像面に最も 近い光学素子であり、 [69] The optical element is an optical element closest to an image plane of a projection optical system that projects a pattern image on the substrate.
前記投影光学系の開口数は、前記光学素子の前記露光光に対する屈折率よりも 大き 、請求項 32から 68の 、ずれか一項記載の露光方法。  69. The exposure method according to claim 32, wherein a numerical aperture of the projection optical system is larger than a refractive index of the optical element with respect to the exposure light.
[70] 請求項 32から 69の 、ずれか一項記載の露光方法を用いるデバイス製造方法。 [70] A device manufacturing method using the exposure method according to any one of [32] to [69].
PCT/JP2006/321751 2005-11-01 2006-10-31 Exposure apparatus, exposure method and device manufacturing method WO2007052659A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007542762A JPWO2007052659A1 (en) 2005-11-01 2006-10-31 Exposure apparatus, exposure method, and device manufacturing method
EP06822680A EP1950795A4 (en) 2005-11-01 2006-10-31 Exposure apparatus, exposure method and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-318139 2005-11-01
JP2005318139 2005-11-01

Publications (1)

Publication Number Publication Date
WO2007052659A1 true WO2007052659A1 (en) 2007-05-10

Family

ID=38005812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321751 WO2007052659A1 (en) 2005-11-01 2006-10-31 Exposure apparatus, exposure method and device manufacturing method

Country Status (5)

Country Link
EP (1) EP1950795A4 (en)
JP (1) JPWO2007052659A1 (en)
KR (1) KR20080063304A (en)
TW (1) TW200720856A (en)
WO (1) WO2007052659A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2023207A1 (en) * 2007-08-10 2009-02-11 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
EP2131242A1 (en) * 2008-06-02 2009-12-09 ASML Netherlands B.V. Substrate table, lithographic apparatus and device manufacturing method
JP2011514672A (en) 2008-02-22 2011-05-06 セマテック インコーポレイテッド Immersion lithography using hafnium-based nanoparticles

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130179A (en) 1994-11-01 1996-05-21 Nikon Corp Stage device
JPH10163099A (en) 1996-11-28 1998-06-19 Nikon Corp Light-exposure device and light-exposure method
JPH10214783A (en) 1996-11-28 1998-08-11 Nikon Corp Device and method for projection alignment
JPH11135400A (en) 1997-10-31 1999-05-21 Nikon Corp Exposure system
WO1999028790A1 (en) 1997-12-02 1999-06-10 Asm Lithography B.V. Interferometer system and lithographic apparatus comprising such a system
WO1999049504A1 (en) 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
US5969441A (en) 1996-12-24 1999-10-19 Asm Lithography Bv Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
JP2000164504A (en) 1998-11-30 2000-06-16 Nikon Corp Stage device and aligner and positioning method using the stage device
US6208407B1 (en) 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
US6590634B1 (en) 1996-11-28 2003-07-08 Nikon Corporation Exposure apparatus and method
US6611316B2 (en) 2001-02-27 2003-08-26 Asml Holding N.V. Method and system for dual reticle image exposure
US6721034B1 (en) 1994-06-16 2004-04-13 Nikon Corporation Stage unit, drive table, and scanning exposure apparatus using the same
WO2004055803A1 (en) * 2002-12-13 2004-07-01 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer
US6778257B2 (en) 2001-07-24 2004-08-17 Asml Netherlands B.V. Imaging apparatus
JP2004335746A (en) * 2003-05-08 2004-11-25 Nikon Corp Projection optical system, aligner, and exposure method
WO2004102646A1 (en) * 2003-05-15 2004-11-25 Nikon Corporation Exposure apparatus and method for manufacturing device
WO2004114380A1 (en) * 2003-06-19 2004-12-29 Nikon Corporation Exposure device and device producing method
US6897963B1 (en) 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
WO2005059618A2 (en) 2003-12-19 2005-06-30 Carl Zeiss Smt Ag Microlithography projection objective with crystal lens
WO2005059617A2 (en) 2003-12-15 2005-06-30 Carl Zeiss Smt Ag Projection objective having a high aperture and a planar end surface
JP2005191394A (en) * 2003-12-26 2005-07-14 Canon Inc Exposing method and equipment
JP2005318139A (en) 2004-04-28 2005-11-10 Funai Electric Co Ltd Digital television broadcast signal receiving device
JP2006222222A (en) * 2005-02-09 2006-08-24 Canon Inc Projection optical system and exposure apparatus having the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4352874B2 (en) * 2002-12-10 2009-10-28 株式会社ニコン Exposure apparatus and device manufacturing method
DE10324477A1 (en) * 2003-05-30 2004-12-30 Carl Zeiss Smt Ag Microlithographic projection exposure system
JP2007522508A (en) * 2004-02-13 2007-08-09 カール・ツアイス・エスエムテイ・アーゲー Projection objective for a microlithographic projection exposure apparatus
WO2006053751A2 (en) * 2004-11-18 2006-05-26 Carl Zeiss Smt Ag Projection lens system of a microlithographic projection exposure installation

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6721034B1 (en) 1994-06-16 2004-04-13 Nikon Corporation Stage unit, drive table, and scanning exposure apparatus using the same
JPH08130179A (en) 1994-11-01 1996-05-21 Nikon Corp Stage device
JPH10163099A (en) 1996-11-28 1998-06-19 Nikon Corp Light-exposure device and light-exposure method
JPH10214783A (en) 1996-11-28 1998-08-11 Nikon Corp Device and method for projection alignment
US6590634B1 (en) 1996-11-28 2003-07-08 Nikon Corporation Exposure apparatus and method
JP2000505958A (en) 1996-12-24 2000-05-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Two-dimensional balance positioning device having two article holders and lithographic device having this positioning device
US5969441A (en) 1996-12-24 1999-10-19 Asm Lithography Bv Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
JPH11135400A (en) 1997-10-31 1999-05-21 Nikon Corp Exposure system
JP2001510577A (en) 1997-12-02 2001-07-31 エイエスエム リトグラフィー ベスローテン フエンノートシャップ Interferometer system and lithographic apparatus including such a system
WO1999028790A1 (en) 1997-12-02 1999-06-10 Asm Lithography B.V. Interferometer system and lithographic apparatus comprising such a system
US6897963B1 (en) 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
US6208407B1 (en) 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
WO1999049504A1 (en) 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
JP2000164504A (en) 1998-11-30 2000-06-16 Nikon Corp Stage device and aligner and positioning method using the stage device
US6611316B2 (en) 2001-02-27 2003-08-26 Asml Holding N.V. Method and system for dual reticle image exposure
JP2004519850A (en) 2001-02-27 2004-07-02 エイエスエムエル ユーエス, インコーポレイテッド Method and apparatus for exposing a dual reticle image
US6778257B2 (en) 2001-07-24 2004-08-17 Asml Netherlands B.V. Imaging apparatus
WO2004055803A1 (en) * 2002-12-13 2004-07-01 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer
JP2004335746A (en) * 2003-05-08 2004-11-25 Nikon Corp Projection optical system, aligner, and exposure method
WO2004102646A1 (en) * 2003-05-15 2004-11-25 Nikon Corporation Exposure apparatus and method for manufacturing device
WO2004114380A1 (en) * 2003-06-19 2004-12-29 Nikon Corporation Exposure device and device producing method
WO2005059617A2 (en) 2003-12-15 2005-06-30 Carl Zeiss Smt Ag Projection objective having a high aperture and a planar end surface
WO2005059618A2 (en) 2003-12-19 2005-06-30 Carl Zeiss Smt Ag Microlithography projection objective with crystal lens
JP2005191394A (en) * 2003-12-26 2005-07-14 Canon Inc Exposing method and equipment
JP2005318139A (en) 2004-04-28 2005-11-10 Funai Electric Co Ltd Digital television broadcast signal receiving device
JP2006222222A (en) * 2005-02-09 2006-08-24 Canon Inc Projection optical system and exposure apparatus having the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1950795A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2023207A1 (en) * 2007-08-10 2009-02-11 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
JP2011514672A (en) 2008-02-22 2011-05-06 セマテック インコーポレイテッド Immersion lithography using hafnium-based nanoparticles
EP2131242A1 (en) * 2008-06-02 2009-12-09 ASML Netherlands B.V. Substrate table, lithographic apparatus and device manufacturing method
JP2009295978A (en) * 2008-06-02 2009-12-17 Asml Netherlands Bv Substrate table, lithographic equipment, and method for manufacturing device

Also Published As

Publication number Publication date
JPWO2007052659A1 (en) 2009-04-30
EP1950795A1 (en) 2008-07-30
TW200720856A (en) 2007-06-01
KR20080063304A (en) 2008-07-03
EP1950795A4 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
JP5741875B2 (en) Exposure apparatus and device manufacturing method
JP5545320B2 (en) Exposure apparatus and device manufacturing method
TWI397945B (en) A liquid recovery member, an exposure apparatus, an exposure method, and an element manufacturing method
JP5194792B2 (en) Exposure apparatus and method, exposure apparatus maintenance method, and device manufacturing method
WO2007132862A1 (en) Projection optical system, exposure method, exposure apparatus, and method for manufacturing device
US20160124317A1 (en) Exposure condition determination method, exposure method, exposure apparatus, and device manufacturing method involving detection of the situation of a liquid immersion region
JP2007053193A (en) Exposure apparatus and device manufacturing method
WO2007083592A1 (en) Substrate holding apparatus, exposure apparatus, and device production method
US20070127135A1 (en) Exposure apparatus, exposure method and device manufacturing method
JP4961709B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP4544303B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2006310588A (en) Substrate-holding device and exposure device, and device manufacturing method
WO2007052659A1 (en) Exposure apparatus, exposure method and device manufacturing method
US20130050666A1 (en) Exposure apparatus, liquid holding method, and device manufacturing method
JP5029870B2 (en) Exposure method and apparatus, immersion member, exposure apparatus maintenance method, and device manufacturing method
JPWO2007139017A1 (en) Liquid recovery member, substrate holding member, exposure apparatus, and device manufacturing method
JP5375843B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2007088339A (en) Aligner, and method for manufacturing device
JP2008243912A (en) Exposure device, exposure method, and manufacturing method for device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087008505

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2007542762

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006822680

Country of ref document: EP