JP2836483B2 - Illumination optical apparatus - Google Patents

Illumination optical apparatus

Info

Publication number
JP2836483B2
JP2836483B2 JP6099816A JP9981694A JP2836483B2 JP 2836483 B2 JP2836483 B2 JP 2836483B2 JP 6099816 A JP6099816 A JP 6099816A JP 9981694 A JP9981694 A JP 9981694A JP 2836483 B2 JP2836483 B2 JP 2836483B2
Authority
JP
Japan
Prior art keywords
light
illumination
polarization
illumination optical
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6099816A
Other languages
Japanese (ja)
Other versions
JPH07307268A (en
Inventor
容由 田邊
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP6099816A priority Critical patent/JP2836483B2/en
Priority claimed from US08/394,942 external-priority patent/US5559583A/en
Publication of JPH07307268A publication Critical patent/JPH07307268A/en
Application granted granted Critical
Publication of JP2836483B2 publication Critical patent/JP2836483B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/70483Information management, control, testing, and wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control, in all parts of the microlithographic apparatus, e.g. pulse length control, light interruption
    • G03F7/70566Polarisation control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarization, phase or the like

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、半導体集積回路あるいは液晶表示素子等の製造工程で、回路パターンの転写に利用される露光装置の一部である照明光学装置に関するものである。 The present invention relates to a manufacturing process of semiconductor integrated circuits or liquid crystal display device, the present invention relates to an illumination optical system which is part of an exposure apparatus used to transfer the circuit pattern.

【0002】 [0002]

【従来の技術】半導体集積回路または液晶表示素子の露光工程では、露光装置を用いてマスク上の回路パターンを基板上に塗布したレジストに転写する。 In the exposure step of semiconductor integrated circuits or liquid crystal display element, a circuit pattern on the mask is transferred onto a resist applied on a substrate using an exposure apparatus. 半導体素子等は立体的構造を持つため、基板には段差が存在することが多い。 To have a semiconductor element such as a three-dimensional structure, often the substrate is present step. 基板段差部分に入射した光は斜め方向に反射するため、マスクで遮光した部分まで露光されてしまうという問題が生じる。 Since the light incident on the substrate step portion that reflects obliquely, a problem that is exposed to the portion shielded by the mask may occur. また、基板が平面的な場合でも基板の反射率が大きいと定在波の影響によりレジスト形状が劣化する。 The substrate and resist profile is deteriorated due to the influence of the standing wave is large reflectivity of the substrate even when flat. 従来、これらの問題を解決するため、基板上に反射防止膜を張る方法が知られている。 Conventionally, in order to solve these problems, a method of tensioning the antireflection film on a substrate is known. また、ダイ入りレジストを用ることにより、基板に到達する光を低下させる方法も知られている。 Further, by Yeoul die containing resist has been known a method of reducing the light reaching the substrate.

【0003】 [0003]

【発明が解決しようとする課題】反射防止膜を用いる方法は、工程によっては基板の汚染を生じるため使用できない場合がある。 A method using an antireflection film [0005], depending processes may not be used to produce contamination of the substrate. また、反射防止膜を張るための工数が増えてしまうという問題もある。 There is also a problem that is increasing man-hours for tensioning the antireflection film. ダイ入りレジストを用いて基板に到達する光を大きく低下させるためには、レジストの吸収率を大きくする必要がある。 To greatly reduce the light reaching the substrate using a die containing resist, it is necessary to increase the absorption rate of the resist. この結果、レジストプロファイルが垂直で無くなってしまう問題が発生する。 As a result, the resist profile will problem occurs that is lost in the vertical.

【0004】本発明の目的は、上記の問題を解決し、基板からの反射光を簡便な方法で低減する露光装置に使用される照明光学装置を提供することにある。 An object of the present invention is to solve the above problems, to provide an illumination optical apparatus used reflected light in an exposure apparatus for reducing in a simple manner from the substrate.

【0005】 [0005]

【課題を解決するための手段】本発明の証明光学装置は、照明光学系からの照明光により物体上の所定領域を均一に照明する照明光学装置において、光源から出た光の偏光面を回転させる偏光回転素子と、回転軸が互いに直交するように配置された回転機構と、前記回転機構に Proof optical device of the present invention SUMMARY OF THE INVENTION are rotated in the illumination optical system to uniformly illuminate a predetermined area on the object by the illumination light from the illumination optical system, the polarization plane of the light emitted from the light source a polarization rotating element for a rotary mechanism for rotating shaft is arranged so as to be perpendicular to each other, the rotation mechanism
取り付けられた反射鏡と、前記偏光回転素子と前記回転 A reflector mounted, the rotation and the polarization rotation element
機構と前記反射鏡により、照明光学系への照明光が常に入射平面内で直線偏光となるように制御することを特徴とする。 The mechanism and the reflective mirror, and controls such that the linearly polarized light in the illumination light to the illumination optical system is always incident plane. また照明光の偏光が入射平面に対しP偏光であることを特徴とする。 The polarization of the illumination light is characterized in that the incident plane is P-polarized light. また前記光源と前記偏光回転素子の間に偏光素子を有することを特徴とする。 Also characterized in that it has a polarizing element between the light source the polarization rotation element.

【0006】 [0006]

【作用】照明光はマスク上のパターンにより回折される。 SUMMARY OF illumination light is diffracted by the pattern on the mask. マスクパターンが微細になると回折角が大きくなる。 Mask pattern diffraction angle increases and becomes finer. このため、図2(a)に示すように直入射照明光2 Thus, FIG. 2 normally incident illumination light 2 as shown in (a)
1では0次光25しか投影光学系27を通過しないためウエファ28上に像が形成されない。 1, 0 order light 25 only the image is not formed on the wafer 28 because it does not pass through the projection optical system 27. これに対し、図2 On the other hand, as shown in FIG. 2
(b)のような斜入射照明光29の場合には0次光25 In the case of oblique illumination light 29, such as (b) 0-order light 25
以外に+1次光26または−1次光24が投影光学系を通過するためウエファ28上に像が形成される。 Order light 26 or -1 order light 24 is imaged on the wafer 28 to pass the projection optical system in addition.

【0007】そこで、照明光学系の2次光源として図3 [0007] Therefore, FIG. 3 as a secondary light source of the illumination optical system
(a)、(b)に示される2種類のものを考える。 (A), consider the two that shown in (b).

【0008】開口部31および32は2次光源30の中心から離れているため、照明光はマスクに対し斜め方向から入射する。 [0008] Since the openings 31 and 32 are away from the center of the secondary light source 30, the illumination light is obliquely incident to the mask. 開口部の位置は、通常用いられるコヒーレント因子σで表した場合、σ=0.5〜0.6の部分に相当する。 Position of the opening, when expressed in a coherent factor normally used sigma, which corresponds to a portion of the sigma = 0.5 to 0.6. 図3(a)と図3(b)の違いは照明光の偏光方向にある。 Differences in FIGS. 3 (a) and FIG. 3 (b) is in the polarization direction of the illumination light. 図3(a)では開口部31を通過する光は入射平面に対しP偏光となっているが、図3(b) Although light passing through the 3 opening 31 in (a) has a P-polarized to the incident plane, and FIG. 3 (b)
では開口部32を通過する光は入射平面に対しS偏光となっている。 In light passing through the opening 32 has a S-polarized with respect to the incident plane.

【0009】このような照明光を図4のマスクに照射し、投影光学系により段差を持ったSi基板53上のレジスト膜52に結像したときの電場強度分布51を図5 [0009] Figure 5 an electric field intensity distribution 51 when irradiated with such illumination light to the mask of FIG. 4 were imaged on the resist film 52 on the Si substrate 53 having a step by the projection optical system
および図6に示す。 And it is shown in FIG. 段差方向は反射の影響が最も大きくなる様に、照明光の入射平面と直交する方向に配置している。 Step direction as the influence of the reflection is greatest, are arranged in a direction perpendicular to the plane of incidence of the illumination light. 図5はP偏光、図6はS偏光に対応している。 Figure 5 is P-polarized light, FIG. 6 corresponds to the S-polarized light. 図4のマスク上の遮光部23および透明部41の幅は、ウエファ上に投影した場合に0.2μm となっている。 The width of the light shielding unit 23 and the transparent portion 41 of the mask of Figure 4 has a 0.2μm when projected onto the wafer. また、照明光はKrFエキシマレーザ光(波長248n Further, the illumination light is KrF excimer laser beam (wavelength: 248n
m)、投影光学系の開口数は0.6である。 m), the numerical aperture of the projection optical system is 0.6. レジストは電場に対し反応し、磁場はレジストの感光に寄与しないことが知られている。 Resist reacts to an electric field, a magnetic field is known to not contribute to the exposure of the resist. レジスト内の電場強度分布を見ると、S偏光では反射光が遮光部分まで侵入してしまうのに対し、P偏光では侵入していない。 Looking at the electric field intensity distribution in the resist, while the S-polarized light invades the reflected light to the light shielding portion does not penetrate the P-polarized light. このため、図3 For this reason, as shown in FIG. 3
(a)の照明光学系を用いれば、基板反射の影響を低減することができる。 With the illumination optical system (a), it is possible to reduce the influence of substrate reflection.

【0010】このような現象の生じる理由を以下に説明する。 [0010] to explain why of occurrence of such a phenomenon in the following. 光の反射率は偏光状態により大きく異なることが知られている。 Reflectance of light differ is known largely by the polarization state. 例えば、吸収を持たない媒質にブリュースター角で光を入射すると、P偏光の反射率は0となる。 For example, when incident light at Brewster angle medium no absorption, the zero reflectance of P-polarized light. 半導体基板は一般的に光を吸収するのでブリュースター角は存在しないが、光が斜めに入射した場合、P偏光の反射率はS偏光に比べずっと小さくなる。 Although not present Brewster angle since the semiconductor substrate is generally absorb light, when light is incident obliquely, the reflectance of P-polarized light is much smaller than the S-polarized light. 具体的にレジスト(屈折率n=1.76、吸収係数k=0.01 Specifically resist (refractive index n = 1.76, the absorption coefficient k = 0.01
2)とSi(n=1.41、k=3.35)との境界面での反射率を計算した結果を図7に示す。 2) and Si (n = 1.41, the results of the reflectance was calculated at the interface between the k = 3.35) is shown in FIG. 計算に用いた屈折率はKrFエキシマレーザの波長λ=248nmにおける値である。 Refractive index used for the calculation are the values ​​at a wavelength lambda = 248 nm of the KrF excimer laser. 入射角が60度付近ではP偏光の反射率はS偏光の半分程度に下がっている。 The reflectance of P-polarized light in the vicinity of the incident angle of 60 degrees is decreased to about a half of the S-polarized light. 物理的説明としては、S偏光の場合には境界面で生じる誘導電流の向きと電場の向きが一致するため大きな誘導電流が生じ反射率が大きくなるが、P偏光の場合には一致しないため誘導電流が生じ難くなり反射率が落ちる。 Derived for a physical explanation, direction and field reflectance large induced current is generated because the orientation matching of the induced current generated at the interface is increased in the case of S-polarized light, which does not coincide in the case of P-polarized light reflectance becomes current is less likely to occur fall. 図7の反射率の計算は平面的な基板に斜め方向から光が入射した場合に相当するが、段差を持った基板の場合にも誘導電流の向きを考慮すると同様な現象が生じる。 Calculation of the reflectance of FIG. 7 corresponds to the case where the incident light from an oblique direction to the planar substrate, but produces the same phenomena when considering the direction of the induced current in the case of a substrate having a step.

【0011】 [0011]

【実施例】本発明の照明光学装置の原理を説明するため EXAMPLES To illustrate the principle of the illumination optical apparatus of the present invention
の参考例を図8に示す。 Showing a reference example in FIG. 狭帯域化したKrFエキシマレーザ光源81を出た光は直線偏光している。 Light exiting the KrF excimer laser light source 81 narrowing is linearly polarized. この光はコリメータレンズ82を通りフライアイレンズ83に入射する。 This light enters the collimator lens 82 as a fly-eye lens 83. フライアイレンズ83の後ろに置かれた空間フィルタ11により入射平面内に偏光回転された光はコンデンサレンズ84を通りマスク85を照明する。 Light polarized rotated to the incident plane by the spatial filter 11 placed behind the fly-eye lens 83 to illuminate the streets mask 85 a condenser lens 84. 空間フィルタ11の上面図を図1に示す。 A top view of the spatial filter 11 shown in FIG. フライアイレンズ83 Fly-eye lens 83
に対応する小開口部には偏光方向がそれぞれの入射平面内で直線偏光となるように1/2λ板12、13、14 As the polarization direction is linearly polarized light in each of the incident plane to the small openings corresponding to 1/2 [lambda] plate 12, 13, 14
がはめられている。 It is fitted. 空間フィルタ11の代わりに図9に示す空間フィルタ91を用いると輪帯照明の効果により解像力が向上する。 The resolution is enhanced by the effect of the annular illumination With spatial filter 91 shown in FIG. 9 in place of the spatial filter 11. 図中の92〜95は1/2λ板である。 92 to 95 in the figure are the 1/2 [lambda] plate.

【0012】図10は本発明の照明光学装置の第の実施例である。 [0012] FIG. 10 is a first embodiment of the illumination optical apparatus of the present invention. 狭帯域化したKrFエキシマレーザ光源8 KrF excimer laser light source 8 which is narrowed
1を出た光は直線偏光している。 Light exiting the 1 is linearly polarized. この光は偏光回転素子101を通ることにより偏光面が回転する。 This light polarization plane is rotated by passing through the polarization rotation element 101. 偏光回転量は偏光回転制御部102により制御される。 Polarization rotation amount is controlled by the polarization rotation control section 102. また、同時に反射鏡103と105を回転機構104および106 The rotation mechanism 104 and 106 at the same time reflecting mirror 103 and 105
によりそれぞれ直交方向に回転することにより、レーザ光がフライアイレンズ83の全面あるいはその一部を走査している。 By rotating the orthogonal direction, the laser beam is scanning the entire surface or part of the fly's eye lens 83. 偏光回転制御部102と回転機構104および106のタイミングを合わせることにより、フライアイレンズ83からの照明光が常に入射平面内で直線偏光となるように制御されている。 By timing the polarization rotation control section 102 rotating mechanism 104 and 106 are controlled so as to be linearly polarized in a constantly incident plane illumination light from the fly-eye lens 83. 偏光回転素子101と制御部102の組み合わせとしては、例えば1/2λ板と回転機構などを用いることができる。 Examples of the combination of polarization rotation element 101 and the control unit 102, can be used, for example 1/2 [lambda] plate and the rotating mechanism.

【0013】なお、以上の実施例では光源としてKrF [0013] In the above embodiments KrF as the light source
エキシマレーザを用いたが、ArFエキシマレーザ、高圧水銀ランプのi線、g線、あるいはX線などを代わりに用いることもできる。 While using an excimer laser, can be used ArF excimer laser, i-rays of a high pressure mercury lamp, g rays or X-rays or the like instead. 光源が偏光していない場合には、偏光板などの偏光素子を光源と偏光回転素子の間に挿入すれば良い。 If the light source is not polarized, a polarizing element such as a polarizing plate may be inserted between the polarization rotation element as a light source. 基板もSiに限らず、Al、SiO 2 Substrate is not limited to Si, Al, SiO 2
などあらゆるものに適用できる。 Such as can be applied to everything.

【0014】 [0014]

【発明の効果】以上詳述したように本発明の照明光学装置によれば、反射防止膜やダイ入りレジストを用いずとも、基板からの反射光を著しくかつ簡便に低減できる。 According As described in detail above in the illumination optical apparatus of the present invention, without using an antireflection film or a die containing resist, can be significantly and easily reduce the reflected light from the substrate.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の原理を説明するための参考例である照明光学装置に用いられる空間フィルタの第1の例を示す図。 It shows a first example of a spatial filter used in the illumination optical apparatus is a reference example for explaining the principle of the present invention; FIG.

【図2】直入射照明と斜入射照明による回折光の進行方向を示す図。 FIG. 2 shows the traveling direction of the light diffracted by the normal incidence illumination and oblique illumination.

【図3】斜入射照明における2次光源の形状と偏光方向を示す図。 FIG. 3 is a diagram showing the shape and the polarization direction of the secondary light sources in oblique incidence illumination.

【図4】遮光部および透明部よりなるマスク。 [4] the light shielding portion and a mask made of a transparent portion.

【図5】P偏光による斜入射照明をした場合のレジスト内電場強度分布図。 [5] resist in an electric field intensity distribution diagram when the oblique incident illumination by the P-polarized light.

【図6】S偏光による斜入射照明をした場合のレジスト内電場強度分布図。 [6] resist in an electric field intensity distribution diagram when the oblique incident illumination by the S-polarized light.

【図7】反射光の偏光依存性を示す図。 7 is a diagram showing polarization dependency of the reflected light.

【図8】本発明の原理を説明するための参考例である照明光学装置を説明するための図。 Diagram for explaining the illumination optical system 8 is a reference example for explaining the principle of the present invention.

【図9】本発明の原理を説明するための参考例である照明光学装置に用いられる空間フィルタの第2の例を示す図。 9 is a diagram illustrating a second example of a spatial filter used principle in the illumination optical apparatus is a reference example for explaining the present invention.

【図10】本発明の第の実施例である照明光学装置を説明するための図。 [Figure 10] Figure 1 for an illumination optical apparatus that is Embodiment be described of the present invention.

【符号の説明】 DESCRIPTION OF SYMBOLS

11 空間フィルタ 12、13、14 1/2λ板 21 直入射照明光 22 ガラス基板 23 遮光部 24 −1次光 25 0次光 26 +1次光 27 投影光学系 28 ウェファ 29 斜入射照明光 30 2次光源 31、32 開口部 41 透明部 51 電場強度分布 52 レジスト膜 53 Si基板 81 レーザ光源 82 コリメータレンズ 83 フライアイレンズ 84 コンデンサレンズ 85 マスク 91 空間フィルタ 92、93、94、95 1/2λ板 101 偏光回転素子 102 偏光回転制御部 103、105 反射鏡 104、106 回転機構 11 The spatial filter 12, 13, 14 1/2 [lambda] plate 21 normally incident illumination light 22 glass substrate 23 light shielding portion 24 -1 order light 25 0 order light 26 +1 order light 27 projection optical system 28 wafer 29 obliquely incident illuminating light 30 secondary light sources 31, 32 opening 41 transparent portions 51 field intensity distribution 52 resist film 53 Si substrate 81 the laser light source 82 collimator lens 83 fly-eye lens 84 condenser lens 85 mask 91 spatial filter 92, 93, 94 and 95 1/2 [lambda] plate 101 polarized rotator 102 polarization rotation control section 103, 105 reflectors 104 and 106 rotating mechanism

Claims (3)

    (57)【特許請求の範囲】 (57) [the claims]
  1. 【請求項1】照明光学系からの照明光により物体上の所定領域を均一に照明する照明光学装置において、光源から出た光の偏光面を回転させる偏光回転素子と、回転軸が互いに直交するように配置された回転機構と、前記回 1. A lighting optical apparatus for uniformly illuminating a predetermined area on the object by the illumination light from the illumination optical system, a polarization rotating element for rotating the polarization plane of the light emitted from the light source, the rotational axes are perpendicular to each other rotation mechanism and the times which are arranged to
    転機構に取り付けられた反射鏡と、前記偏光回転素子と A reflector attached to the rotation mechanism, and the polarization rotation element
    前記回転機構と前記反射鏡により、照明光学系への照明光が常に入射平面内で直線偏光となるように制御することを特徴とする照明光学装置。 Wherein the rotation mechanism and the reflective mirror, illumination optical apparatus, characterized by controlling so that the linearly polarized light in the illumination light is always incident plane of the illumination optical system.
  2. 【請求項2】 照明光の偏光が入射平面に対しP偏光であることを特徴とする請求項1記載の照明光学装置。 2. The illumination optical apparatus according to claim 1, wherein the polarization of the illumination light, characterized in that the incident plane is P-polarized light.
  3. 【請求項3】 前記光源と前記偏光回転素子の間に偏光素子を有することを特徴とする請求項1または2記載の照明光学装置。 3. The illumination optical apparatus according to claim 1, wherein further comprising a polarizing element between the light source and the polarization-rotating element.
JP6099816A 1994-05-13 1994-05-13 Illumination optical apparatus Expired - Lifetime JP2836483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6099816A JP2836483B2 (en) 1994-05-13 1994-05-13 Illumination optical apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6099816A JP2836483B2 (en) 1994-05-13 1994-05-13 Illumination optical apparatus
US08/394,942 US5559583A (en) 1994-02-24 1995-02-24 Exposure system and illuminating apparatus used therein and method for exposing a resist film on a wafer
KR1019950003742A KR0173168B1 (en) 1994-02-24 1995-02-24 Exposure system and illuminating apparatus used therein and method for exposing a resist film on a wafer

Publications (2)

Publication Number Publication Date
JPH07307268A JPH07307268A (en) 1995-11-21
JP2836483B2 true JP2836483B2 (en) 1998-12-14

Family

ID=14257375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6099816A Expired - Lifetime JP2836483B2 (en) 1994-05-13 1994-05-13 Illumination optical apparatus

Country Status (1)

Country Link
JP (1) JP2836483B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7072040B2 (en) 2003-10-07 2006-07-04 Kabushiki Kaisha Toshiba Mask for inspecting an exposure apparatus, a method of inspecting an exposure apparatus, and an exposure apparatus

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19535392A1 (en) 1995-09-23 1997-03-27 Zeiss Carl Fa Radial polarization-rotating optical arrangement and microlithography projection exposure system so
KR101532824B1 (en) 2003-04-09 2015-07-01 가부시키가이샤 니콘 Exposure method and apparatus, and device manufacturing method
JP4323903B2 (en) * 2003-09-12 2009-09-02 キヤノン株式会社 An illumination optical system and an exposure apparatus using the same
TWI569308B (en) 2003-10-28 2017-02-01 尼康股份有限公司 Optical illumination device, exposure device, exposure method and device manufacturing method
TWI519819B (en) 2003-11-20 2016-02-01 尼康股份有限公司 Light beam converter, optical illuminating apparatus, exposure device, and exposure method
US20070019179A1 (en) 2004-01-16 2007-01-25 Damian Fiolka Polarization-modulating optical element
KR101233879B1 (en) 2004-01-16 2013-02-15 칼 짜이스 에스엠티 게엠베하 Polarization-modulating optical element
TWI505329B (en) 2004-02-06 2015-10-21 尼康股份有限公司 Optical illumination apparatus, light-exposure apparatus, light-exposure method and device manufacturing method
US7324280B2 (en) 2004-05-25 2008-01-29 Asml Holding N.V. Apparatus for providing a pattern of polarization
JP2006269853A (en) * 2005-03-25 2006-10-05 Sony Corp Exposure apparatus and method of exposure
EP2660853B1 (en) 2005-05-12 2017-07-05 Nikon Corporation Projection optical system, exposure apparatus and exposure method
EP1857879A1 (en) * 2006-05-15 2007-11-21 Advanced Mask Technology Center GmbH & Co. KG An illumination system and a photolithography apparatus
JP5267029B2 (en) 2007-10-12 2013-08-21 株式会社ニコン Illumination optical apparatus, exposure apparatus and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP5557188B2 (en) * 2010-02-25 2014-07-23 株式会社ブイ・テクノロジー Laser irradiation apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2796005B2 (en) * 1992-02-10 1998-09-10 三菱電機株式会社 Projection exposure apparatus and the polarizer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7072040B2 (en) 2003-10-07 2006-07-04 Kabushiki Kaisha Toshiba Mask for inspecting an exposure apparatus, a method of inspecting an exposure apparatus, and an exposure apparatus

Also Published As

Publication number Publication date
JPH07307268A (en) 1995-11-21

Similar Documents

Publication Publication Date Title
JP2642034B2 (en) Phase shift mask
JP4913041B2 (en) Projection system and the compensation element therefor involves compensation of intensity variation
US5328784A (en) Reflection mask, method of producing mask and method of forming pattern using the mask
US5048926A (en) Illuminating optical system in an exposure apparatus
KR101020455B1 (en) Illumination optical system, projection exposure apparatus, exposure method, and device manufacturing method
JP3589680B2 (en) Catadioptric optical reduction system
KR100532076B1 (en) Hybrid illumination system for use in photolithography
JP3078163B2 (en) Lithographic reflection mask and a reduction projection exposure apparatus
US6191880B1 (en) Radial polarization-rotating optical arrangement and microlithographic projection exposure system incorporating said arrangement
JP3005203B2 (en) Illumination device, an exposure apparatus and device manufacturing method
US5677755A (en) Method and apparatus for pattern exposure, mask used therefor, and semiconductor integrated circuit produced by using them
US20040057036A1 (en) Exposure method
KR0137348B1 (en) Refflection and refraction optical system and projection exposure apparatus using the same
JP3246615B2 (en) Illumination optical apparatus, exposure apparatus, and exposure method
JP3326614B2 (en) Liquid crystal light valve projection apparatus and a correction means and the counter electrode substrate composition
JP4264071B2 (en) Lithographic apparatus
KR100243965B1 (en) Method and apparatus of transforming fine pattern
US5241423A (en) High resolution reduction catadioptric relay lens
US6970233B2 (en) System and method for custom-polarized photolithography illumination
EP0465882A2 (en) High resolution reduction catadioptric relay lens
KR101134174B1 (en) Projection exposure method and projection exposure system therefor
US5863677A (en) Aligner and patterning method using phase shift mask
JP2796005B2 (en) Projection exposure apparatus and the polarizer
JP2884947B2 (en) Projection exposure apparatus, a manufacturing method of an exposure method and a semiconductor integrated circuit
US7411656B2 (en) Optically polarizing retardation arrangement, and a microlithography projection exposure machine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980908