JPH07335748A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPH07335748A
JPH07335748A JP12487394A JP12487394A JPH07335748A JP H07335748 A JPH07335748 A JP H07335748A JP 12487394 A JP12487394 A JP 12487394A JP 12487394 A JP12487394 A JP 12487394A JP H07335748 A JPH07335748 A JP H07335748A
Authority
JP
Japan
Prior art keywords
resist pattern
film
sog
oxide film
interlayer insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12487394A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kono
浩幸 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Miyazaki Oki Electric Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Miyazaki Oki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd, Miyazaki Oki Electric Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP12487394A priority Critical patent/JPH07335748A/en
Publication of JPH07335748A publication Critical patent/JPH07335748A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve the reliability of a metallic wiring by inhibiting the generation of voids in the metallic wiring by the out gas of SOG. CONSTITUTION:A first metallic wiring 10 is formed, and P-SiO 11 is formed. The surface of P-SiO 11 is spin-coated with an SOG film 12, and silicified. A resist pattern 13 is formed through photolithography, and through-holes are bored while using the resist pattern 13 as a mask. The resist pattern 13 is removed and sidewall protective films 14 are taken off by a release liquid. A TEOS oxide film 15 is shaped, and the SOG films 12 are capped. A resist pattern is formed, and the TEOS oxide film 15 is removed through wet etching and dry etching while employing the resist pattern as a mask. The resist pattern is taken off, and a second metallic wiring is formed through sputtering.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子の製造方法
に関し、特にコンタクトホール側壁部に絶縁物質よりな
るバリア壁を形成し、SOG(Spin On Glass)よりの水
分放出を防ぐことによって、良好な金属配線を形成する
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and particularly, it is preferable to form a barrier wall made of an insulating material on the side wall of a contact hole to prevent moisture release from SOG (Spin On Glass). The present invention relates to a method of forming a simple metal wiring.

【0002】[0002]

【従来の技術】図2(a)〜(d)は、従来の多層配線
構造を持った微細半導体素子の製造方法の工程図であ
る。この図2(a)〜(d)の工程(1)〜(4)を以
下に説明する。 (1) 図2(a)の工程 アルミニウム等の金属により第1金属配線1を形成した
後、第1層間絶縁膜としてプラズマ化学気相成長(以
下、プラズマCVDと呼ぶ)法により、SiH4、及び
2 Oを原料ガスとして、膜厚0.4μmのシリコン酸
化膜(P−SiO)2を形成する。次に、平坦度向上を
目的としてSOGをスピンコートし、第1金属配線1に
支障のない450゜C以下の温度で加熱し、硅素化して
SOG膜3を形成する。その後、再度、第1シリコン酸
化膜2と同様にして第2層間絶縁膜として第2シリコン
酸化膜4を0.4μm程度の厚さに気相成長させる。 (2) 図2(b)の工程 フォトリソグラフィ工程により、第1金属配線1と第2
金属配線との接続のためのスルーホールを開孔するため
のレジストパターン5を形成する。 (3) 図2(c)の工程 レジストパターン5をマスクとして、ウェットエッチン
グにより第2シリコン酸化膜4を除去し、端部をテーパ
形状する。その後、ドライエッチングにより残りの第2
シリコン酸化膜4、SOG膜3、及び第1シリコン酸化
膜2を順次エッチング除去し、スルーホールを開孔す
る。この時、第1シリコン酸化膜24、及び第2シリコ
ン酸化膜4の側壁に側壁保護膜6が形成される。次に、
レジストパターン5を除去し、その後、剥離液により側
壁保護膜6を除去する。 (4) 図2(d)の工程 アルミニウム等の第2金属配線7をスパッタリング法に
より形成し、第1金属配線1と第2金属配線7との間の
コンタクトを取る。
2. Description of the Related Art FIGS. 2A to 2D are process diagrams of a conventional method for manufacturing a fine semiconductor device having a multilayer wiring structure. The steps (1) to (4) of FIGS. 2A to 2D will be described below. (1) Step of FIG. 2A After forming the first metal wiring 1 with a metal such as aluminum, SiH 4 , as a first interlayer insulating film, is formed by a plasma chemical vapor deposition (hereinafter referred to as plasma CVD) method. And N 2 O are used as source gases to form a silicon oxide film (P—SiO) 2 having a film thickness of 0.4 μm. Next, SOG is spin-coated for the purpose of improving the flatness, and the first metal wiring 1 is heated at a temperature of 450 ° C. or lower, which does not hinder the process, and is siliconized to form the SOG film 3. Then, again, similarly to the first silicon oxide film 2, a second silicon oxide film 4 as a second interlayer insulating film is vapor-phase grown to a thickness of about 0.4 μm. (2) Step of FIG. 2B By the photolithography step, the first metal wiring 1 and the second metal wiring 1
A resist pattern 5 for forming through holes for connection with metal wiring is formed. (3) Step of FIG. 2C Using the resist pattern 5 as a mask, the second silicon oxide film 4 is removed by wet etching, and the end portion is tapered. After that, the remaining second by dry etching
The silicon oxide film 4, the SOG film 3 and the first silicon oxide film 2 are sequentially removed by etching to open a through hole. At this time, the sidewall protection film 6 is formed on the sidewalls of the first silicon oxide film 24 and the second silicon oxide film 4. next,
The resist pattern 5 is removed, and then the sidewall protection film 6 is removed with a stripping solution. (4) Step of FIG. 2D A second metal wiring 7 made of aluminum or the like is formed by a sputtering method, and a contact is made between the first metal wiring 1 and the second metal wiring 7.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
半導体素子の製造方法においては、次のような課題があ
った。図2(c)のスルーホールの開孔時において、S
OG膜3の露出部から水分脱離によるアウトガスが発生
するため、異方性エッチングの効果を高める側壁保護膜
6が形成されずSOG膜3のサイドエッチが進行する。
そのため、図2(d)の第2金属配線7をスパッタリン
グする際に、第2金属配線7のステップカバレッジが悪
化し、空洞(以下ボイドと呼ぶ)8が発生する。図3
は、図2(d)中のボイドの拡大図である。この図に示
すようにSOG膜3の露出部のサイドエッチにより、こ
の部分にボイド8が発生する。このボイド8のために、
第2金属配線7のエレクトロマイグレーション耐性劣化
による断線等が問題となる。
However, the conventional method for manufacturing a semiconductor device has the following problems. When the through hole shown in FIG. 2C is opened, S
Since outgas is generated from the exposed portion of the OG film 3 due to moisture desorption, the side wall protective film 6 that enhances the effect of anisotropic etching is not formed, and the side etching of the SOG film 3 proceeds.
Therefore, when the second metal wiring 7 in FIG. 2D is sputtered, the step coverage of the second metal wiring 7 is deteriorated and a cavity (hereinafter referred to as a void) 8 is generated. Figure 3
[Fig. 3] is an enlarged view of a void in Fig. 2 (d). As shown in this figure, due to side etching of the exposed portion of the SOG film 3, a void 8 is generated in this portion. For this void 8,
A problem such as disconnection due to electromigration resistance deterioration of the second metal wiring 7 becomes a problem.

【0004】[0004]

【課題を解決するための手段】本発明は、前記課題を解
決するために、P−SiO等の第1層間絶縁膜を形成す
る工程と、SOGを塗布し、硅素化する工程と、フォト
リソグラフィにより第1レジストパターンを形成する工
程と、前記第1レジストパターンをマスクとして前記S
OG、及び第1層間絶縁膜を順次エッチング除去し、例
えば第1スルーホールを開孔する工程と、前記第1レジ
ストパターンを除去する工程と、TEOS酸化膜等の第
2層間絶縁膜を形成する工程と、フォトリソグラフィに
より第2レジストパターンを形成する工程と、前記第2
レジストパターンをマスクとして前記第2層間絶縁膜を
エッチング除去し、例えば第2スルーホールを開孔する
工程と、前記第2レジストパターンを除去する工程と、
金属配線を形成する工程とを順に施すようにしている。
In order to solve the above-mentioned problems, the present invention comprises a step of forming a first interlayer insulating film such as P-SiO, a step of applying SOG and silicifying, and a photolithography process. A step of forming a first resist pattern by using the first resist pattern as a mask
OG and the first interlayer insulating film are sequentially removed by etching, for example, a step of opening a first through hole, a step of removing the first resist pattern, and a second interlayer insulating film such as a TEOS oxide film are formed. A step of forming a second resist pattern by photolithography, the second step
Etching the second interlayer insulating film using the resist pattern as a mask to form, for example, a second through hole, and removing the second resist pattern.
The steps of forming the metal wiring are sequentially performed.

【0005】[0005]

【作用】本発明によれば、以上のように半導体素子の製
造方法を構成したので、フォトリソグラフィにより第1
レジストパターンを形成し、この第1レジストパターン
をマスクとしてSOG、及び第1層間絶縁膜を順次エッ
チング除去し第1コンタクトホールを開孔する。第1コ
ンタクトホールの開孔時において、SOGの露出部にお
いて水分脱離によりアウトガスが放出され、SOGのサ
イドエッチングが進行する。次に、第2層間絶縁膜を形
成し、SOGをキャッピングした後、フォトリソグラフ
ィにより第2レジストパターンを形成して、該第2レジ
ストパターンをマスクとして第2コンタクトホールを開
孔する。この第2コンタクトホール開孔時において、S
OGが第2層間絶縁膜によってキャッピングされている
ので、この第2層間絶縁膜が、SOGのサイドエッチを
抑制し、金属配線の形成時のボイドの発生を抑制する働
きがある。従って、前記課題を解決できるのである。
According to the present invention, since the method for manufacturing a semiconductor device is configured as described above, the first method using photolithography is used.
A resist pattern is formed, and the SOG and the first interlayer insulating film are sequentially removed by etching using the first resist pattern as a mask to open a first contact hole. At the time of opening the first contact hole, outgas is released due to moisture desorption in the exposed portion of SOG, and side etching of SOG proceeds. Next, after forming a second interlayer insulating film and capping the SOG, a second resist pattern is formed by photolithography, and a second contact hole is opened using the second resist pattern as a mask. When the second contact hole is opened, S
Since the OG is capped by the second interlayer insulating film, the second interlayer insulating film has a function of suppressing side etching of the SOG and suppressing generation of voids when forming the metal wiring. Therefore, the above problem can be solved.

【0006】[0006]

【実施例】図1(a)〜(c)、及び図4(a)〜
(c)は、本発明の実施例の半導体素子の製造方法を示
す工程図である。この図1(a)〜(c)、及び図4
(a)〜(c)の工程を以下(1)〜(6)に説明す
る。 (1) 図1(a)の工程 まず、アルミニウム等の金属により第1金属配線10を
形成する。その後、第1層間絶縁膜としてプラズマCV
D法により、原料ガスSiH4 、及びN2 O、圧力2.
0〜3.0Torrで、膜厚0.4μmのシリコン酸化
膜(P−SiO)11を形成する。このP−SiO11
は、層間絶縁膜としての働きの上に、次に形成するSO
G膜12の第1金属配線10への水分の透過を抑制する
働きもある。その後、平坦化のためにシリコン酸化膜1
1上にSOGをスピンコートし、温度400゜C、ドラ
イN2 雰囲気で、ベークしてSOG膜12を形成する。
ドライN2 雰囲気中でのベークは、水分の吸湿の抑制し
膜質の劣化を防止するためである。次に、第1スルーホ
ールを開孔するために、フォトリソグラフィ工程により
レジストパターン13を形成する。 (2) 図1(b)の工程 レジストパターン13をマスクとして、ドライエッチン
グにより、SOG膜12、及び第1シリコン酸化膜11
を順次エッチング除去し、第1スルーホールを開孔す
る。この時、第1シリコン酸化膜11とドライエッチン
グによるエッチングガスとの反応により、第1シリコン
酸化膜11の側壁部に、側壁部のオーバーエッチングを
抑制する異方性エッチングには好ましい側壁保護膜14
が形成される。一方、SOG膜12の露出部から水分脱
離によるアウトガスが発生するので側壁保護膜が形成さ
れず、サイドエッチングが進行し、アンダーカットが発
生する。
EXAMPLE FIG. 1 (a)-(c) and FIG. 4 (a)-
(C) is a process drawing showing a method for manufacturing a semiconductor device of an example of the present invention. 1 (a) to 1 (c) and FIG.
The steps (a) to (c) will be described below in (1) to (6). (1) Step of FIG. 1A First, the first metal wiring 10 is formed of a metal such as aluminum. After that, plasma CV is used as the first interlayer insulating film.
1. Source gas SiH 4 and N 2 O, pressure 2.
A silicon oxide film (P-SiO) 11 having a film thickness of 0.4 μm is formed at 0 to 3.0 Torr. This P-SiO11
Is an SO film to be formed next on the function as an interlayer insulating film.
It also has a function of suppressing the permeation of moisture into the first metal wiring 10 of the G film 12. After that, for planarization, silicon oxide film 1
1 is spin-coated with SOG and baked at 400 ° C. in a dry N 2 atmosphere to form an SOG film 12.
Baking in a dry N 2 atmosphere suppresses moisture absorption and prevents deterioration of film quality. Next, a resist pattern 13 is formed by a photolithography process in order to open the first through hole. (2) Step of FIG. 1B The SOG film 12 and the first silicon oxide film 11 are dry-etched by using the resist pattern 13 as a mask.
Are sequentially removed by etching to open a first through hole. At this time, the sidewall protection film 14 which is preferable for anisotropic etching for suppressing overetching of the sidewall of the first silicon oxide film 11 due to the reaction between the first silicon oxide film 11 and the etching gas by the dry etching.
Is formed. On the other hand, since outgas is generated from the exposed portion of the SOG film 12 due to water desorption, the side wall protective film is not formed, side etching proceeds, and undercut occurs.

【0007】(3) 図1(c)の工程 レジストパターン14を除去し、その後、剥離液により
側壁保護膜14を除去する。次に、以下のプロセス条件
でCVD法により、膜厚0.8μm以上のO3−TEO
S−NSG(Non Silicate Glass) 膜(以下、TEOS
酸化膜と呼ぶ)15を形成する。 TEOS酸化膜15のプロセス条件 TEOS流量 1.5SLM O2 流量 7.5SLM O3 流量 100g/m3 生成温度 400゜C これにより、TEOS酸化膜15がスルーホール内に平
坦性良く埋め込まれるとともに、SOG膜12の露出部
のアンダーカット部が、TEOS酸化膜15によりキャ
ッピングされる。 (4) 図4(a)の工程 フォトリソグラフィ工程により、第2スルーホール開孔
のためのレジストパターン16を形成する。
(3) Step of FIG. 1C The resist pattern 14 is removed, and then the side wall protective film 14 is removed with a stripping solution. Next, the O 3 -TEO film having a thickness of 0.8 μm or more is formed by the CVD method under the following process conditions.
S-NSG (Non Silicate Glass) film (hereinafter TEOS
A so-called oxide film) 15 is formed. Process condition of TEOS oxide film 15 TEOS flow rate 1.5 SLM O 2 flow rate 7.5 SLM O 3 flow rate 100 g / m 3 generation temperature 400 ° C. As a result, the TEOS oxide film 15 is embedded in the through hole with good flatness and SOG. The TEOS oxide film 15 caps the undercut portion of the exposed portion of the film 12. (4) Process of FIG. 4A A resist pattern 16 for forming the second through hole is formed by a photolithography process.

【0008】(5) 図4(b)の工程 レジストパターン16をマスクとして、まず0.2μm
程度のTEOS酸化膜15を以下の条件でウェットエッ
チングし、TEOS酸化膜15の端部をテーパ形状にす
る。 TEOS酸化膜15のウェットエッチングの条件 NH4 HF2 10〜11% NH4 F 14% CH3 COOH 32〜33% H2 O 残り の混合溶剤 次に、以下の条件のドライエッチングにより、レジスト
パターン16をマスクとして、残ったTEOS酸化膜1
5を除去して第2スルーホールを開孔する。 TEOS酸化膜15のドライエッチングの条件 真空度 100mTorr RFパワー 750W Arガス 800sccm CHF3 ガス 60sccm CF4 ガス 60sccm この時、TEOS酸化膜15、シリコン酸化膜11の露
出部に側壁保護膜17が形成され、エッチング形状が良
くなる。また、SOG膜12の露出部のアンダーカット
部が、TEOS酸化膜15によりキャッピングされてい
るためSOG膜12のアウトガスによるサイドエッチン
グは発生しない。 (6) 図4(c)の工程 レジストパターン16を除去し、その後、剥離液により
側壁保護膜17を除去する。次に、アルミニウム等の金
属をスパッタリングして第2金属配線18を形成する。
この時、SOG膜12がTEOS酸化膜15によりキャ
ピングされているため、第2金属配線18のステップカ
バレッジが悪化することもなく、ボイドの発生を抑制す
ることができる。
(5) Step of FIG. 4B Using the resist pattern 16 as a mask, first, 0.2 μm
The TEOS oxide film 15 is wet-etched under the following conditions to make the end portion of the TEOS oxide film 15 into a tapered shape. Conditions for wet etching of TEOS oxide film 15 NH 4 HF 2 10 to 11% NH 4 F 14% CH 3 COOH 32 to 33% H 2 O Remaining mixed solvent Next, dry etching is performed under the following conditions to form a resist pattern 16 The remaining TEOS oxide film 1 is used as a mask
5 is removed and the second through hole is opened. Conditions for dry etching of TEOS oxide film 15 Vacuum degree 100 mTorr RF power 750 W Ar gas 800 sccm CHF 3 gas 60 sccm CF 4 gas 60 sccm At this time, the sidewall protective film 17 is formed on the exposed portions of the TEOS oxide film 15 and the silicon oxide film 11. The etching shape is improved. Moreover, since the undercut portion of the exposed portion of the SOG film 12 is capped by the TEOS oxide film 15, side etching due to outgas of the SOG film 12 does not occur. (6) Step of FIG. 4C The resist pattern 16 is removed, and then the sidewall protection film 17 is removed with a stripping solution. Next, a metal such as aluminum is sputtered to form the second metal wiring 18.
At this time, since the SOG film 12 is capped by the TEOS oxide film 15, the step coverage of the second metal wiring 18 is not deteriorated and the generation of voids can be suppressed.

【0009】以上説明したように、本実施例では、P−
SiO11、SOG膜12を形成し、第1スルーホール
を開孔し、その後、TEOS酸化膜15を形成すること
により、SOG膜12の露出部をTEOS酸化膜15で
キャッピングする。そして、第2スルーホールを開孔し
て、第2金属配線18を形成するので、以下の利点があ
る。 (a)第2金属配線18のステップカバレッジが悪化す
ることなく、ボイドの発生を抑制することができ、多層
配線の信頼性を向上させ、半導体素子の歩留まりを向上
させることができる。 (b)第2層間絶縁膜をTEOS酸化膜15とすること
により、第2層間絶縁膜が平坦になり、第2スルーホー
ルへの埋め込み性が良くなるとともに、第2金属配線1
8の形成後の熱処理において、SOG膜12内の残留水
分はP−SiO11で阻止され、その代わりにTEOS
酸化膜中に拡散するので、SOG膜12内の加熱による
残留水分による第1金属配線10への影響も低減するこ
とができる。なお、本発明は、上記実施例に限定されず
種々の変形が可能である。その変形例としては、例えば
次のようなものがある。 (i) 金属配線の層間絶縁膜が、第1層間絶縁膜/S
OG膜/第2層間絶縁膜から構成され、該構造を持つ層
間絶縁膜にコンタクトホールを開孔し、金属配線を埋め
込む場合であれば、本発明を適用することができる。 (ii) 第2層間絶縁膜は、TEOS酸化膜以外の絶縁
膜、例えば、P−Si0、またはPSG膜等であっても
よい。
As described above, in this embodiment, P-
The SiO 11 and SOG film 12 are formed, the first through holes are opened, and then the TEOS oxide film 15 is formed, so that the exposed portion of the SOG film 12 is capped with the TEOS oxide film 15. Then, since the second through hole is opened to form the second metal wiring 18, there are the following advantages. (A) It is possible to suppress the generation of voids without deteriorating the step coverage of the second metal wiring 18, improve the reliability of the multilayer wiring, and improve the yield of semiconductor elements. (B) By using the TEOS oxide film 15 as the second interlayer insulating film, the second interlayer insulating film becomes flat, the filling property in the second through hole is improved, and the second metal wiring 1 is formed.
In the heat treatment after the formation of No. 8, residual water in the SOG film 12 is blocked by P-SiO11, and TEOS is used instead.
Since it diffuses into the oxide film, it is possible to reduce the influence of the residual moisture due to the heating in the SOG film 12 on the first metal wiring 10. The present invention is not limited to the above embodiment, and various modifications can be made. The following are examples of such modifications. (I) The interlayer insulating film of the metal wiring is the first interlayer insulating film / S
The present invention can be applied to the case where the contact hole is formed in the interlayer insulating film having the structure and is formed of the OG film / second interlayer insulating film and the metal wiring is embedded. (Ii) The second interlayer insulating film may be an insulating film other than the TEOS oxide film, such as a P-Si0 film or a PSG film.

【0010】[0010]

【発明の効果】以上詳細に説明したように、本発明によ
れば、SOG、及び第1層間絶縁膜を順次エッチング除
去し第1コンタクトホールを開孔した後、第2層間絶縁
膜によりSOGをキャッピングして、第2コンタクトホ
ールを開孔し、金属配線を形成するので、金属配線のス
テップカバレッジが悪化することもなく、ボイドの発生
を抑制することができる。したがって、金属配線の信頼
性を向上させることができる。
As described above in detail, according to the present invention, the SOG and the first interlayer insulating film are sequentially removed by etching to open the first contact hole, and then the SOG is removed by the second interlayer insulating film. Since the second contact hole is capped and the metal wiring is formed, the step coverage of the metal wiring is not deteriorated and the generation of voids can be suppressed. Therefore, the reliability of the metal wiring can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の半導体素子製造方法を示す工
程図である。
FIG. 1 is a process drawing showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.

【図2】従来の半導体素子の製造方法を示す工程図であ
る。
FIG. 2 is a process chart showing a conventional method for manufacturing a semiconductor device.

【図3】図2(d)中のボイドを示す図である。FIG. 3 is a diagram showing voids in FIG. 2 (d).

【図4】本発明の実施例の半導体素子製造方法を示す工
程図である。
FIG. 4 is a process drawing showing the method for manufacturing a semiconductor device according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 第1金属配線 11 第1層間絶縁膜(P−SiO) 12 SOG膜 13,16 レジストパターン 15 第2層間絶縁膜(TEOS酸化膜) 18 第2金属配線 Reference Signs List 10 first metal wiring 11 first interlayer insulating film (P-SiO) 12 SOG film 13 and 16 resist pattern 15 second interlayer insulating film (TEOS oxide film) 18 second metal wiring

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1層間絶縁膜を形成する工程と、 SOGを塗布し、硅素化する工程と、 フォトリソグラフィにより第1レジストパターンを形成
する工程と、 前記第1レジストパターンをマスクとして前記SOG、
及び第1層間絶縁膜を順次エッチング除去し第1コンタ
クトホールを開孔する工程と、 前記第1レジストパターンを除去する工程と、 第2層間絶縁膜を形成する工程と、 フォトリソグラフィにより第2レジストパターンを形成
する工程と、 前記第2レジストパターンをマスクとして前記第2層間
絶縁膜をエッチング除去し第2コンタクトホールを開孔
する工程と、 前記第2レジストパターンを除去する工程と、 金属配線を形成する工程とを、 順に施すことを特徴とする半導体素子の製造方法。
1. A step of forming a first interlayer insulating film, a step of applying SOG and silicifying, a step of forming a first resist pattern by photolithography, and a step of using the first resist pattern as a mask. ,
And a step of sequentially removing the first interlayer insulating film by etching to open a first contact hole, a step of removing the first resist pattern, a step of forming a second interlayer insulating film, and a second resist by photolithography. A step of forming a pattern; a step of etching away the second interlayer insulating film by using the second resist pattern as a mask to open a second contact hole; a step of removing the second resist pattern; A method of manufacturing a semiconductor element, which comprises sequentially performing a forming step.
JP12487394A 1994-06-07 1994-06-07 Manufacture of semiconductor element Withdrawn JPH07335748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12487394A JPH07335748A (en) 1994-06-07 1994-06-07 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12487394A JPH07335748A (en) 1994-06-07 1994-06-07 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPH07335748A true JPH07335748A (en) 1995-12-22

Family

ID=14896216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12487394A Withdrawn JPH07335748A (en) 1994-06-07 1994-06-07 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPH07335748A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9500960B2 (en) 2003-04-11 2016-11-22 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9551943B2 (en) 2003-06-19 2017-01-24 Nikon Corporation Exposure apparatus and device manufacturing method
US9632431B2 (en) 2004-02-02 2017-04-25 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
USRE46933E1 (en) 2005-04-08 2018-07-03 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US11187991B2 (en) 2008-05-28 2021-11-30 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9500960B2 (en) 2003-04-11 2016-11-22 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9946163B2 (en) 2003-04-11 2018-04-17 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US10191388B2 (en) 2003-06-19 2019-01-29 Nikon Corporation Exposure apparatus, and device manufacturing method
US9551943B2 (en) 2003-06-19 2017-01-24 Nikon Corporation Exposure apparatus and device manufacturing method
US10007188B2 (en) 2003-06-19 2018-06-26 Nikon Corporation Exposure apparatus and device manufacturing method
US9810995B2 (en) 2003-06-19 2017-11-07 Nikon Corporation Exposure apparatus and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9665016B2 (en) 2004-02-02 2017-05-30 Nikon Corporation Lithographic apparatus and method having substrate table and sensor table to hold immersion liquid
US9684248B2 (en) 2004-02-02 2017-06-20 Nikon Corporation Lithographic apparatus having substrate table and sensor table to measure a patterned beam
US9632431B2 (en) 2004-02-02 2017-04-25 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US10007196B2 (en) 2004-02-02 2018-06-26 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US10139737B2 (en) 2004-02-02 2018-11-27 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
USRE46933E1 (en) 2005-04-08 2018-07-03 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
USRE47943E1 (en) 2005-04-08 2020-04-14 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US11187991B2 (en) 2008-05-28 2021-11-30 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus

Similar Documents

Publication Publication Date Title
JPH07335748A (en) Manufacture of semiconductor element
JPH11150101A (en) Manufacture of semiconductor device
JPH10173052A (en) Semiconductor device and its manufacture
US6235644B1 (en) Method of improving etch back process
JPH04307934A (en) Forming method of tungsten plug
US6803307B1 (en) Method of avoiding enlargement of top critical dimension in contact holes using spacers
JP4285946B2 (en) Manufacturing method of semiconductor device
JPH01100946A (en) Manufacture of semiconductor device
KR100382543B1 (en) method for forming contact plug of semiconductor device
JPH07297281A (en) Method for manufacturing connection hole
JP3565316B2 (en) Method of forming tungsten plug
JPH07176502A (en) Manufacture of semiconductor device
JP3567635B2 (en) Contact formation method
JP2003031651A (en) Method for manufacturing semiconductor device
JPH09321141A (en) Manufacture of semiconductor device
JPH0799178A (en) Manufacture of semiconductor device
JP2001351974A (en) Manufacturing method of semiconductor device
KR100223772B1 (en) Method for forming a contact hole of semiconductor device
JPH11307516A (en) Manufacture of semiconductor device
JP2000133711A (en) Semiconductor device and its manufacture
JPH0547759A (en) Manufacture of semiconductor device
JPH05190514A (en) Manufacture of semiconductor device
JP2001223270A (en) Manufacturing method for bit line
JP2998719B2 (en) Semiconductor device
JPH0831930A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904