JPH11260686A - Exposure method - Google Patents

Exposure method

Info

Publication number
JPH11260686A
JPH11260686A JP10059570A JP5957098A JPH11260686A JP H11260686 A JPH11260686 A JP H11260686A JP 10059570 A JP10059570 A JP 10059570A JP 5957098 A JP5957098 A JP 5957098A JP H11260686 A JPH11260686 A JP H11260686A
Authority
JP
Japan
Prior art keywords
resist
substrate
refractive index
optical system
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10059570A
Other languages
Japanese (ja)
Inventor
Soichi Inoue
Katsuya Okumura
Satoshi Tanaka
壮一 井上
勝弥 奥村
聡 田中
Original Assignee
Toshiba Corp
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, 株式会社東芝 filed Critical Toshiba Corp
Priority to JP10059570A priority Critical patent/JPH11260686A/en
Publication of JPH11260686A publication Critical patent/JPH11260686A/en
Application status is Pending legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To reduce variations of a resist film thickness dependente on a light quantity absorbed in a resist.
SOLUTION: In this method, a photomask cutting an LSI pattern is illuminated with an exposing light and the lights transmitting the photomask are exposed, so as to transfer a pattern to a resist film 6 formed in a processed substrate 3 in a projection optical system. In this case, a gap between a projection optical system 2 and the processed substrate 3 is filled up with monobromnaphthalene, having a refractive index greater than that of a member constituting a face closest to the processed substrate of the projection optical system 2 and smaller than that of the resist film 6 to transfer patterns.
COPYRIGHT: (C)1999,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、マスク上のパターンを被加工基板上に転写する露光方法に係わり、特にL The present invention relates to the involvement of the pattern on the mask to the exposure method of transferring on a substrate to be processed, in particular L
SIを製造するためのフォトリソグラフィ工程に好適な露光方法に関する。 Of the preferred exposure method in photolithography process for manufacturing the SI.

【0002】 [0002]

【従来の技術】半導体製造工程における光リソグラフィは、そのプロセス簡易性、低コスト等の利点によりデバイス生産に用いられている。 Optical lithography in the Related Art Semiconductor fabrication processes, the process simplicity, have been used in the device produced by the advantages of such a low cost. 光リソグラフィにおいては常に技術革新が続けられておりその発展はめざましく、 Always innovation has continued its development in optical lithography has been remarkable,
近年では光源の短波長化により例えばKrF光を用いることにより0.25μm以下の素子の微細化が達成されつつある。 In recent years, miniaturization of 0.25μm following elements by using, for example, KrF light by shortening the wavelength of the light source are being achieved. また、投影露光装置についても、スキャン型露光機の開発が進む中で、従来より一層大口径を有する投影光学系を使用することが可能となってきており、より微細なパターンをウェハ上に形成することが可能となってきている。 As for the projection exposure apparatus, in which the development of the scanning type exposure apparatus proceeds, form have become possible to use a projection optical system even more conventionally has a large diameter, a finer pattern on the wafer it has become possible to. 今後のさらなる微細化のためには、より微細なレジストパターンの形成とこれに付随する露光技術が必要となる。 For further miniaturization in the future, it is necessary exposure technique associated therewith and the formation of more fine resist pattern.

【0003】図7は従来の露光方法を説明するための図であり、従来のフォトリソグラフィ工程にて使用されてきた露光装置の概略構成を示している。 [0003] Figure 7 is a diagram for explaining a conventional exposure methods, shows a schematic arrangement of an exposure apparatus that has been used in a conventional photolithography process. 本図を用いて従来の露光方法について説明する。 It described conventional exposure method using this FIG. 図7に示す露光装置は、大きく分けてフォトマスク1,投影光学系2,被加工基板3から構成される。 Exposure apparatus shown in FIG. 7, the photomask 1 mainly includes a projection optical system 2, and a workpiece substrate 3.

【0004】フォトマスク1は露光光に対して透光性を有する石英基板4上に、例えばCr等からなる遮光性を有する遮光膜5で転写すべきLSIパターンが形成されている。 [0004] The photomask 1 on a quartz substrate 4 having a light-transmitting property against exposing light, the LSI pattern to be transferred by the light shielding film 5 having a light-shielding property made of, for example, Cr or the like are formed. このフォトマスク1を露光光で照明し、その透過光を投影光学系2を介して被加工基板3上に縮小転写する。 Illuminates the photomask 1 with exposure light, the transmitted light through the projection optical system 2 is reduced and transferred onto the processing substrate 3. 被加工基板3には、フォトマスク1のマスクパターンを転写するレジスト6、レジスト6表面と基板界面での多重反射を低減する反射防止膜7、被加工フィルム8がSiウェハ9上に上から順に形成されている。 The substrate to be processed 3, resist 6 for transferring a mask pattern of the photo mask 1, the resist 6 surface and the antireflection film 7 to reduce the multiple reflection at the substrate interface, from the top to be processed film 8 on the Si wafer 9 It is formed.

【0005】図8は図7の被加工基板3近傍での露光光の進路の詳細を示した図である。 [0005] FIG. 8 is a diagram showing the details of the path of the exposure light on the substrate to be processed 3 vicinity of Figure 7. 図8では図7で被加工基板3に対して左上から斜め方向に入射する光線の成分のみを図示している。 It shows only components of the light rays incident from the upper left oblique direction with respect to the substrate to be processed 3 in FIG. 7, FIG. 8. 他の光線の成分も以下に記述する内容と同様の振る舞いをする。 Components of other light also behaves similarly as described contents below. 投影光学系2中を進行し、投影レンズの被加工基板3に最も近い面(以下最終レンズ面と称する)と空気10との界面に入射角ψ 1にて斜めに入射した露光光は、その一部が反射率R 1 、反射角ψ 1で反射し、残りが屈折角ψ 2で屈折して空気中に進行する。 Proceed medium projection optical system 2, the exposure light incident obliquely at an incident angle [psi 1 at the interface between the surface closest to the substrate to be processed 3 (hereinafter referred to as the last lens surface) and air 10 of the projection lens, its some reflectance R 1, reflected by the reflection angle [psi 1, the remaining proceeds to refracted and air at a refraction angle [psi 2.

【0006】レジスト6に入射角ψ 2で到達した露光光の一部は、レジスト6と空気10の界面で反射角ψ 2で反射し、残りの露光光は屈折角ψ 3で屈折してレジスト6中を進行する。 [0006] Some of the exposure light reaching at an incident angle [psi 2 to resist 6, the resist 6 and reflected at the reflection angle [psi 2 in air interface 10, the remainder of the exposure light is refracted at refraction angle [psi 3 resist traveling through the middle 6. レジスト6中に入射角ψ 3で入射した露光光は、反射防止膜7により大部分について反射が低減されるが、その一部は反射防止膜7表面で反射する。 Resist exposure light incident at an incident angle [psi 3 in 6, the reflection is reduced for most anti-reflection film 7, a portion is reflected by the reflection preventing film 7 surface.
そして、この反射光はさらにレジスト6表面で反射し、 Then, reflected by the reflected light is further resist 6 surface,
結果としてレジスト6と空気10の界面との間で多重反射を引き起こす。 As a result causing multiple reflection between the surface of the resist 6 and the air 10. このようにレジスト6と空気10との界面で反射した露光光と反射防止膜7で反射した露光光をトータルした反射率はR 2となる。 Thus the resist 6 and the reflectance was total exposure light reflected by the reflection preventing film 7 and the exposure light reflected at the interface between the air 10 becomes R 2.

【0007】以上に示した投影光学系2及び空気10 [0007] shown above the projection optical system 2 and the air 10
間、空気10及びレジスト6間での屈折率と入射角の関係はスネルの法則に支配されるため、sinψ 1 /si During, because the relationship of the refractive index and angle of incidence between the air 10 and the resist 6 is governed by the Snell's law, sinψ 1 / si
nψ 2 =n 2 /n 1 、sinψ 2 /sinψ 3 =n 3 nψ 2 = n 2 / n 1 , sinψ 2 / sinψ 3 = n 3 /
2が成立する。 n 2 is established.

【0008】このように、被加工基板3で発生する多重反射により、図5に示すようなレジスト中で吸収される光量のレジスト膜厚依存性(スウィングカーブ)が発生する。 [0008] Thus, the multiple reflections occurring in the substrate to be processed 3, the resist film thickness dependence of the amount of light absorbed in the resist as shown in FIG. 5 (swing curve) occurs. 図5の横軸はレジスト膜厚、縦軸はレジスト単位膜厚当たりのレジスト中での吸収光量を示しており、図中の実線が従来の露光方法におけるレジスト膜厚依存性を示す。 The horizontal axis resist film thickness in FIG. 5, the vertical axis represents the amount of light absorbed in the resist per resist unit film thickness, the solid line in FIG. Showing the resist film thickness dependency in the conventional exposure method. 図5において、露光波長は248nm、レジスト6の露光光での屈折率n 3は1.78、吸収係数は0.02、反射防止膜7の屈折率は1.78、吸収係数は0.24、被加工膜はAlを用い、屈折率が0.08 5, the exposure wavelength is 248 nm, the refractive index n 3 is 1.78 in the exposure light of the resist 6, the absorption coefficient is 0.02, the refractive index of the antireflection film 7 is 1.78, the absorption coefficient 0.24 , the processed film using Al, refractive index 0.08
9、吸収係数が2.35の場合を示す。 9, the absorption coefficient shows the case of 2.35. 投影光学系の最終レンズ面とレジスト6との間は空気(屈折率n 2 Between the last lens surface and the resist 6 of the projection optical system air (refractive index n 2 =
1)で満たされている。 It is filled with 1). 投影光学系2を構成するレンズ群の中の最終レンズの屈折率n 1 =1.5である。 The refractive index n 1 = 1.5 of the last lens in the lens group constituting the projection optical system 2.

【0009】この吸収光量のレジスト膜厚依存性に伴い、現像後のレジストパターンが適正寸法になるための露光量(適正露光量)も変動する。 [0009] With the resist film thickness dependence of the amount of light absorbed, the exposure amount for the resist pattern is properly dimension after development (proper exposure amount) also varies. 従来はこのようにスウィングカーブの振幅が大きかった為、レジスト膜厚をこのスウィングカーブの山か谷に相当するように高精度に塗布することによって、レジスト膜厚変動に対する露光光の吸収量依存性、ひいては適正露光量のレジスト膜厚依存性を低減する必要があった。 Conventionally for the amplitude of the swing curve so this is large, the resist film thickness by applying a high accuracy so as to correspond to the peaks or valleys of the swing curve, absorption dependency of the exposure light for the resist film thickness variation , it is necessary to reduce the resist film thickness dependence of the thus proper exposure amount.

【0010】また図3及び図4はそれぞれR 1のψ 1依存性、R 2のψ 2依存性を示している。 [0010] [psi 1 dependency of Figures 3 and 4, respectively R 1, shows a [psi 2 dependence of R 2. 各図において、 In each figure,
横軸はそれぞれ反射角ψ 1 ,ψ 2であり、縦軸は反射率R 1 ,R 2を示す。 Each horizontal axis reflection angle [psi 1, a [psi 2, the vertical axis represents the reflectivity R 1, R 2. また、図中の実線が従来例の場合を示している。 Further, the solid line in FIG. Showing the prior art. この図より、従来は、レジストに吸収されて感光する成分以外のロス分であるR 1 、R 2が非常に大きな値を示していたことが確認できる。 From this figure, conventionally, it can be confirmed that the R 1, R 2 is a loss in other than the component that is sensitive is absorbed by the resist showed a very large value.

【0011】 [0011]

【発明が解決しようとする課題】以上説明したように従来の露光方法では、レジスト中に入射した露光光は、その一部がレジスト下面に形成された反射防止膜において反射し、レジストと空気の界面との間で多重反射を引き起こし、レジスト表面での反射率R 2が実質的に大きくなる。 In the conventional exposure method as explained above 0008], the exposure light incident on the resist is reflected in the antireflection film a part of which is formed on the resist lower surface, the resist and the air causing multiple reflection between the surface, the reflectivity R 2 of the resist surface becomes substantially large. この反射率R 2は、その値が大きいほどレジスト中で吸収される光量のレジスト膜依存性のばらつきを生じさせる。 The reflectivity R 2 gives rise to a resist film dependency of variation in amount of light absorbed in the resist greater the value. その結果として、高精度の露光を行うためには、レジスト膜に対する露光量の均一性を確保する必要があり、従ってレジストの膜厚を高精度に均一化しなければならなかった。 As a result, in order to perform exposure with high accuracy, it is necessary to ensure uniformity of the exposure amount for the resist film, therefore the film thickness of the resist had to accurately uniform.

【0012】本発明は、上記課題を課題を解決するためになされたもので、その目的とするところは、レジスト中で吸収される光量のレジスト膜厚依存性のばらつきを低減する露光方法を提供することにある。 [0012] The present invention has been made to solve the problems of the above problems, it is an object of providing an exposure method for reducing the variation in the resist film thickness dependence of the amount of light absorbed in the resist It is to.

【0013】 [0013]

【課題を解決するための手段】本発明に係る露光方法は、フォトマスクを露光光で照明し、該フォトマスクを透過した光を投影光学系で被加工基板上に形成されたレジスト膜にパターン転写する露光方法において、前記投影光学系の前記被加工基板に最も近い面と前記被加工基板との間を、空気の屈折率よりも大きく、かつ前記レジスト膜の屈折率よりも小さい屈折率を有する媒質で満たしてパターン転写を行うことを特徴とする。 Exposure method according to the present invention SUMMARY OF THE INVENTION, the pattern of a photomask is illuminated with exposure light, the light transmitted through the photomask to the resist film formed on a substrate to be processed in the projection optical system the exposure method for transferring, between the surface closest to the substrate to be processed the substrate to be processed of said projection optical system is larger than the refractive index of air, and a refractive index lower than the refractive index of the resist film and performing pattern transfer meets a medium having.

【0014】本発明の望ましい形態は、以下に示す通りである。 [0014] preferred embodiment of the present invention are as shown below. (1)投影光学系の被加工基板に最も近い面と被加工基板との間を、被加工基板に最も近い面を構成する部材の屈折率よりも大きく、かつレジスト膜の屈折率よりも小さい屈折率を有する媒質で満たす。 (1) between the closest surface and the substrate to be processed on the processing substrate in the projection optical system is larger than the refractive index of the member constituting the surface closest to the substrate to be processed, and is smaller than the refractive index of the resist film filled with a medium having a refractive index. (2)投影光学系の被加工基板に最も近い面と被加工基板との間を、レジスト膜の屈折率とほぼ同じ屈折率を有する媒質で満たす。 (2) between the closest surface and the substrate to be processed on the processing substrate in the projection optical system is filled with a medium having a refractive index substantially the same refractive index of the resist film. (3)被加工基板と投影光学系の被加工基板に最も近い面との間を満たす媒質として、被加工基板中のレジストを構成するベース樹脂を用いる。 (3) as the medium for filling the space between the surface closest to the substrate to be processed of the workpiece substrate and the projection optical system, using a base resin constituting the resist in the substrate to be processed. (4)レジストとして脂環式レジストを用い、被加工基板と投影光学系の被加工基板に最も近い面との間を満たす媒質として、脂環式ポリマーを用いる。 (4) resist using alicyclic resist as, as a medium satisfying between the surface closest to the substrate to be processed in the projection optical system and the substrate to be processed using the alicyclic polymer. (5)レジストと被加工基板との間に反射防止膜が形成されている。 (5) anti-reflection film is formed between the resist and the substrate to be processed. (6)投影光学系の比加工基板に最も近い面と被加工基板との間を水で満たす。 (6) filling the space between the surface closest the substrate to be processed on the ratio processed substrate of the projection optical system with water. (作用)本発明では、投影光学系の被加工基板に最も近い面(以下、最終レンズ面と称する)と被加工基板表面との間における屈折率を調整する。 (Operations) In the present invention, the surface closest to the substrate to be processed in the projection optical system (hereinafter, referred to as the last lens surface) to adjust the refractive index between the substrate to be processed surface. すなわち、空気の屈折率とレジストの屈折率の中間の屈折率を有する媒質で満たすことにより、最終レンズ面と媒質間の屈折率の差、媒質と被加工基板との屈折率の差が媒質を満たさない場合従来のものに比較して小さくなり、最終レンズ面と媒質との界面での反射が低減されると共に、レジストと前記媒質の界面での反射も低減される。 That is, by satisfying a medium having a refractive index and a resist refractive index of the intermediate refractive index of the air, the difference in refractive index between the final lens surface and the medium, the difference in refractive index between the medium and the substrate to be processed is a medium If is small compared to the conventional one does not satisfy, the reflection at the interface between the final lens surface and the medium is reduced, resist the reflection at the interface of the medium is reduced. 従って、レジストの実質的な感度が向上する。 Therefore, to improve the substantial sensitivity of the resist. また、レジストと媒質の界面での反射が低減されることによりレジストと下地との間のレジスト中での多重反射が低減され、レジスト中での吸収光量のレジスト膜厚依存性(スウィングカーブ)の振幅が低減する。 The reflection at the interface between the resist and the medium is multiple reflection in the resist is reduced between the resist and the underlying and by being reduced, the resist film thickness dependence of the amount of light absorbed in the resist (swing curve) amplitude is reduced. これにより、レジスト膜厚に要求される制御性が緩和される。 Accordingly, controllability is required on the thickness of the resist film is relaxed.

【0015】また、投影光学系の最終レンズ面とウェハの間を、レジストとほぼ同じ屈折率を有する媒質で満たすことにより、レジストと媒質の界面での反射が無くなり、レジストの実質的な感度が向上する。 Further, between the last lens surface of the projection optical system and the wafer, by filling with a medium having substantially the same refractive index as the resist, there is no reflection at the interface between the resist and the medium, substantial sensitivity of the resist improves. また、レジストと媒質の界面での反射が低減されることによりレジストと下地との間のレジスト中での多重反射が無くなり、 Further, there is no multiple reflection in the resist in between resist and underlying and by reflection at the interface between the resist and the medium is reduced,
レジスト中での吸収光量のレジスト膜厚依存性(スウィングカーブ)の振幅が無くなる。 The amplitude of the resist film thickness dependence of the amount of light absorbed in the resist (swing curve) is eliminated. これにより、レジスト膜厚に要求される制御性が緩和される。 Accordingly, controllability is required on the thickness of the resist film is relaxed.

【0016】 [0016]

【発明の実施の形態】以下、図面を参照しながら本発明の実施形態を説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention with reference to the drawings. (第1実施形態)図1は本発明の第1実施形態に係る露光方法に用いられる露光装置の全体構成を示す図であり、図2は図1に示す露光装置の被加工基板付近での露光光の進路を詳細に示す図である。 (First Embodiment) FIG. 1 is a diagram showing an entire configuration of an exposure apparatus used in the exposure method according to the first embodiment of the present invention, FIG. 2 is in the vicinity of the substrate to be processed in the exposure apparatus shown in FIG. 1 is a diagram showing the path of exposure light in detail.

【0017】図1に示すように本露光装置は、大きく分けてフォトマスク1、投影光学系2、被加工基板3から構成される。 [0017] The exposure apparatus as shown in FIG. 1, the photomask 1 mainly includes a projection optical system 2, and a workpiece substrate 3. フォトマスク1は露光光に対して透光性を有する石英基板4上に、例えばCr等からなる遮光性を有する遮光膜5で転写すべきLSIパターンが形成されている。 The photomask 1 on a quartz substrate 4 having a light-transmitting property against exposing light, the LSI pattern to be transferred by the light shielding film 5 having a light-shielding property made of, for example, Cr or the like are formed. このフォトマスク1を露光光で照明し、その透過光を投影光学系で被加工基板3上に縮小転写する。 The photomask 1 is illuminated with the exposure light is reduced and transferred onto the processing substrate 3 and the transmitted light in the projection optical system. 被加工基板3には、フォトマスク1のマスクパターンを転写するレジスト6、レジスト6表面と基板界面での多重反射を低減する反射防止膜7、被加工フィルム8がSi The substrate to be processed 3, the resist 6, the resist 6 surface and the antireflection film 7 to reduce the multiple reflection at the substrate interface to transfer the mask pattern of the photo mask 1, the processed film 8 is Si
ウェハ9上に上から順に形成されている。 It is formed from the top on the wafer 9.

【0018】図2に示すように、レジスト6の露光光での屈折率n 3は1.78、吸収係数は0.02、反射防止膜7の屈折率は1.78、吸収係数は0.24、被加工膜8はAlで、屈折率が0.089、吸収係数が2. As shown in FIG. 2, the refractive index n 3 is 1.78 in the exposure light of the resist 6, the absorption coefficient is 0.02, the refractive index of the antireflection film 7 is 1.78, the absorption coefficient 0. 24, the film to be processed 8 is Al, the refractive index is 0.089, absorption coefficient 2.
35である。 It is 35. 投影光学系2を構成するレンズ群の中の最終レンズの屈折率n 1 =1.5である。 The refractive index n 1 = 1.5 of the last lens in the lens group constituting the projection optical system 2. 本実施形態においては、投影光学系2の最終レンズ面とレジストとに挟まれた空間が、投影光学系の最終レンズの材料である石英の屈折率n 1とレジスト6の屈折率n 3の中間の屈折率n 2 =1.658のモノブロムナフタレン11という媒質で満たされているのが従来例と異なる点である。 In the present embodiment, the projection final lens surface and the resist and sandwiched by spaces of the optical system 2, an intermediate refractive index n 3 of the refractive index n 1 and the resist 6 of quartz which is a material of the final lens of the projection optical system that of being filled with a medium that mono bromonaphthalene 11 of refractive index n 2 = 1.658 is different from the conventional example. 従って、各部位の屈折率の関係は、n 1 <n 2 <n 3となる。 Therefore, the relationship of the refractive index of each part becomes n 1 <n 2 <n 3 .

【0019】上記実施形態の動作を説明する。 [0019] To explain the operation of the above embodiment. 図1に示すように、図示しない照明光学系から照射された露光光はフォトマスク1を透過し、所望のマスクパターンを有する光学像を形成して投影光学系に入射する。 As shown in FIG. 1, the exposure light emitted from the illumination optical system (not shown) through the photomask 1, it enters the projection optical system to form an optical image having a desired mask pattern. この光学像は投影光学系2により縮小投影され、モノブロムナフタレン11を介して被加工基板3に入射する。 The optical image is reduced and projected by the projection optical system 2, is incident on a processable substrate 3 via a mono bromonaphthalene 11.

【0020】次に、図1の被加工基板3近傍での露光光の進路を図2を用いて詳細に説明する。 Next, it will be described in detail with reference to FIG. 2 the path of exposure light in the substrate to be processed 3 vicinity of Figure 1. 図2では図1において左上から斜めに被加工基板3に入射する光線の成分のみを図示している。 It shows only components of the light rays incident on the workpiece substrate 3 from the upper left diagonally 1 in FIG. なお、他の入射角を有する露光光の成分も、図2に示す内容と同様の振る舞いをする。 Incidentally, components of the exposure light having other incident angles may be the same behavior as the contents shown in FIG.

【0021】投影光学系2中を進行し、投影光学系2のレンズ最終面とモノブロムナフタレン11との界面に入射角ψ 1にて入射した露光光は、一部が反射率R 1 、反射角ψ 1で反射する。 The progress of the middle projection optical system 2, the exposure light incident on the interface between the last lens surface and the mono-bromonaphthalene 11 of the projection optical system 2 at an incident angle [psi 1 is partially reflectivity R 1, the reflection It is reflected by the corner ψ 1. その残りの露光光は、スネルの法則によりsinψ 1 /sinψ 2 =n 2 /n 1の関係を満たす屈折角ψ 2で屈折してモノブロムナフタレン11 The remainder of the exposure light, Sinpusai by Snell's law 1 / sinψ 2 = n 2 / n mono bromonaphthalene 11 is refracted relationship refraction angle [psi 2 satisfying 1
中に進入する。 Entering into.

【0022】レジスト6に入射角ψ 2で到達した露光光の一部はレジスト6とモノブロムナフタレン11の界面で反射角ψ 2で反射し、残りはsinψ 2 /sinψ 3 The resist 6 part of the exposure light reaching at an incident angle [psi 2 The reflected at the reflection angle [psi 2 at the interface between the resist 6 and mono-bromonaphthalene 11, rest sinψ 2 / sinψ 3
=n 3 /n 2を満たす屈折角ψ 3で屈折してレジスト6 = Is refracted at refraction angle [psi 3 satisfying n 3 / n 2 resist 6
に入射する。 Incident on. レジスト6を進行する露光光は反射防止膜7により大部分について反射が低減されるが、その一部は反射防止膜7表面で反射し、レジスト6とモノブロムナフタレン11の界面との間で多重反射を引き起こし、 The exposure light traveling through the resist 6 is reflected for the most part is reduced by the anti-reflection film 7, a portion is reflected by the reflection preventing film 7 surface, multiplexed between the interface of the resist 6 and mono-bromonaphthalene 11 causing the reflection,
トータルとして反射率R 2となる。 The reflectance R 2 as a whole.

【0023】次に、モノブロムナフタレン11,レジスト6への入射角ψ 1 ,ψ 2と反射率R 1 ,R 2との関係を図3,4に示す。 [0023] Next, mono- bromonaphthalene 11, the incident angle [psi 1 to resist 6, the relationship between [psi 2 and the reflectivity R 1, R 2 in FIGS. 各図において、横軸はそれぞれ反射角ψ 1 ,ψ 2であり、縦軸は反射率R 1 ,R 2を示す。 In each figure, each horizontal axis represents the reflection angle [psi 1, a [psi 2, the vertical axis represents the reflectivity R 1, R 2.
また、図中の破線が本実施形態に係る場合を示している。 Further, the broken line in figure shows the case of the present embodiment. 図3,4から分かるように、最終レンズ面とモノブロムナフタレン11との屈折率の差及びモノブロムナフタレン11とレジスト6との屈折率の差が投影光学系2 As it can be seen from FIGS. 3 and 4, the last lens surface and the refractive index difference is the projection optical system and the difference and mono bromonaphthalene 11 and the resist 6 in the refractive index between mono bromonaphthalene 11 2
の最終レンズ面とレジスト6との間に何も満たさない従来の場合に比較して小さくなるため、入射角ψ 1 ,ψ 2 To become smaller than that in the conventional case of not satisfying nothing between the last lens surface and the resist 6, the incident angle [psi 1, [psi 2
にかかわらず従来の場合よりも一様に反射率R 1 ,R 2 Uniform reflectivity than the conventional regardless R 1, R 2
は大きく低減されている。 It has been reduced greatly.

【0024】次に、レジスト中で吸収される光量のレジスト膜厚依存性(スウィングカーブ)を図5に示す。 [0024] Next, the resist film thickness dependence of the amount of light absorbed in the resist (swing curve) in FIG. 図5の横軸はレジスト膜厚、縦軸はレジスト単位膜厚当たりのレジスト中での吸収光量を示しており、図中の破線が本実施形態の場合を示す。 The horizontal axis resist film thickness in FIG. 5, the vertical axis represents the amount of light absorbed in the resist per resist unit film thickness, the broken line in FIG. Showing the case of the present embodiment. 露光波長が248nmの露光光を用いた。 Exposure wavelength using the exposure light of 248 nm. この吸収光量のレジスト膜厚依存性に従って、現像後のレジストパターンが適正寸法になるための露光量(適正露光量)も変動するが、図4に示すように反射率R 2が大きく低減された結果として、実線に示した従来の場合に比較して格段にスウィングカーブの振幅が減少した。 According resist film thickness dependence of the amount of light absorbed, but also varies the exposure amount for the resist pattern is properly dimension after development (proper exposure amount), the reflectance R 2 as shown in FIG. 4 was greatly reduced as a result, much the amplitude of the swing curve as compared to the conventional case shown in the solid line is decreased.

【0025】したがってレジスト膜厚変動に対する露光光の吸収量依存性、ひいてはレジスト膜厚変動に対する適正露光量の依存性を低減できるようになった。 [0025] Accordingly absorption dependency of the exposure light for the resist film thickness variation was able to reduce the proper exposure amount of dependency on with the resist film thickness variation. 以上説明したように本実施形態によれば、投影光学系2の最終レンズ面及びレジスト6表面との間を両者の屈折率の中間の屈折率の媒質であるモノブロムナフタレン11で満たすことにより、最終レンズ面とモノブロムナフタレン11との屈折率の差及びモノブロムナフタレン11とレジスト6との屈折率の差がモノブロムナフタレン11を満たさない従来の場合に比較して小さくなるため、反射率R 1 ,R 2が大きく低減され、レジストの実質的な感度が向上する。 According to the present embodiment as described above, by filling the space between the final lens surface and the resist 6 surface of the projection optical system 2 with mono bromonaphthalene 11 is a medium having a refractive index of the intermediate refractive index between the two, the difference in refractive index between the difference and mono bromonaphthalene 11 and the resist 6 in the refractive index between the final lens surface and the mono-bromonaphthalene 11 is reduced as compared with the conventional case does not satisfy the mono bromonaphthalene 11, reflectance R 1, R 2 is greatly reduced, thereby improving the substantial sensitivity of the resist. また、反射率R 2が低減された結果としてレジストの吸収光量のレジスト膜厚依存性のばらつきが小さくなる。 Further, variation in resist film thickness dependence of the amount of light absorbed in the resist decreases as a result of the reflectance R 2 is reduced. 従って、レジストの膜厚に要求される膜厚精度が緩和される。 Accordingly, the thickness accuracy required for the film thickness of the resist is reduced.

【0026】なお、本実施形態において好適な媒質としてはモノブロムナフタレン11を用いたが、本実施形態を限定するものではなく、投影光学系2の最終レンズ面とレジスト6との間が、空気の屈折率とレジスト6の屈折率n 3の中間の屈折率を有する媒質で満たされていれば良い。 [0026] Incidentally, although suitable medium in the present embodiment using a mono-bromonaphthalene 11, not intended to limit the present embodiment, between the final lens surface and the resist 6 of the projection optical system 2, the air it is sufficient filled with a medium having a refractive index and the refractive index of the intermediate refractive index n 3 of the resist 6. また、n 1 ,n 3も上記に示した値に限定されない。 Further, n 1, n 3 is not limited to the values shown above.

【0027】(第2実施形態)図1は本発明の第2実施形態に係る露光方法に用いられる露光装置の全体構成を示す断面図であり、図6は図1に示す露光装置の被加工基板付近での露光光の進路を詳細に示す図である。 [0027] (Second Embodiment) FIG. 1 is a sectional view showing the overall configuration of an exposure apparatus used in the exposure method according to the second embodiment of the present invention, FIG. 6 is the work of the exposure apparatus shown in FIG. 1 is a diagram showing the path of the exposure light in the vicinity of the substrate in detail. なお、図1は第1実施形態を説明するための図でもあり、 Incidentally, FIG. 1 is also a diagram for explaining a first embodiment,
モノブロムナフタレン11を他の媒質に置き換えることにより本実施形態に対応したものとなり、他の構成は何ら異ならないため、図1の説明は省略する。 For mono bromine naphthalene 11 would correspond to the present embodiment by replacing the other media, other configurations are not different in any way, the description of FIG. 1 will be omitted.

【0028】図6に示すように、本実施形態における露光方法は、投影光学系2の最終レンズ面とレジスト6との間をレジスト6と同じ屈折率の媒質で満たす点が第1 As shown in FIG. 6, the exposure method of this embodiment, the projection optical system 2 of the last lens surface and the resist 6 and the point to meet a medium having the same refractive index as the resist 6 between the first
実施形態と異なる点である。 It is different from the embodiment. なお、レジスト6と同じ屈折率の媒質として、具体的にはレジスト6を構成するベース樹脂61を使用した。 As a medium of the same refractive index as the resist 6, specifically using the base resin 61 constituting the resist 6.

【0029】また、レジスト36の露光光での屈折率n Further, the refractive index n of the exposure light of the resist 36
3は1.78、吸収係数は0.02、反射防止膜7の屈折率は1.78、吸収係数は0.24、被加工膜8はA 3 1.78, the absorption coefficient of 0.02, refractive index 1.78 of the antireflection film 7, the absorption coefficient 0.24, the film to be processed 8 A
lで、屈折率が0.089、吸収係数が2.35ある。 In l, refractive index of 0.089, the absorption coefficient is 2.35.
また、上述したようにベース樹脂61の屈折率n2 はレジスト6の屈折率n 3と同じであるのでn 2 =1.78 Further, n 2 = 1.78 Since the refractive index n2 of the base resin 61 as described above is the same as the refractive index n 3 of the resist 6
であり、n 1 <n 2 =n 3の関係が成り立つ。 , And the relationship of n 1 <n 2 = n 3 is established. この場合のベース樹脂61の吸収係数は0である。 Absorption coefficient of the base resin 61 in this case is 0.

【0030】上記実施形態の動作を説明する。 [0030] To explain the operation of the above embodiment. なお、図1における動作は第1実施形態と同じであるので省略し、図1の被加工基板3近傍での露光光の進路を図6を用いて詳細に説明する。 The operation in FIG. 1 is omitted because it is same as the first embodiment will be described in detail with reference to FIG. 6 the path of exposure light in the substrate to be processed 3 vicinity of Figure 1. 図6では図1で左上から斜めに被加工基板3に入射する光線の成分のみを図示しているが、他の角度で入射した光線の成分も以下に記述する内容と同様の振る舞いをする。 Figure 6, from the top left in FIG. 1 shows only components of the light rays incident on the workpiece substrate 3 obliquely, but the same behavior as described content or less components of light incident at other angles.

【0031】図6に示すように、投影光学系2中を進行し、投影光学系2のレンズ最終面とベース樹脂61との界面に入射角ψ 1にて入射した露光光は、一部が反射率R 1 、反射角ψ 1で反射する。 As shown in FIG. 6, travels through the middle projection optical system 2, the exposure light incident at an incident angle [psi 1 at the interface between the last lens surface and the base resin 61 of the projection optical system 2, a part reflectance R 1, is reflected at a reflection angle [psi 1. 残りの露光光は、スネルの法則によりスネルの法則によりsinψ 1 /sinψ The remaining exposure light, sinψ 1 / sinψ by Snell's law by Snell's law
2 =n 2 /n 1の関係を満たす屈折角ψ 2で屈折してベース樹脂61中に進入する。 2 = refracted by n 2 / n refraction angle [psi 2 satisfying the relation of 1 enters into the base resin 61.

【0032】レジスト6に入射角ψ 2で到達した露光光は、レジスト6とベース樹脂61の屈折率n 2 ,n 3が同じであるため、レジスト6とベース樹脂61の界面でほとんど反射することなく、かつ屈折することもなくそのままレジスト6中に直進する(厳密には、ベース樹脂61とレジスト6の吸収係数が若干異なるため、両者の界面でわずかに反射する)。 The exposure light reaching at an incident angle [psi 2 to resist 6, since the resist 6 and the refractive index n 2, n 3 of the base resin 61 is the same, with little reflection at the interface between the resist 6 and the base resin 61 no and it goes straight into the resist 6 without being refracted (strictly, the absorption coefficient of the base resin 61 and the resist 6 is slightly different, slightly reflected at the interface between them). レジスト6中に入射した露光光は反射防止膜7により大部分について反射が低減されるが、その一部は反射防止膜7表面で反射する。 The exposure light incident on the resist 6 is reflected for the most part is reduced by the anti-reflection film 7, a portion is reflected by the reflection preventing film 7 surface. この反射光は、さらにベース樹脂61とレジスト6の界面に達するが、この界面においてもn 2 =n 3の関係により、ほとんど多重反射を引き起こすことなくベース樹脂61に直進する。 The reflected light is further reached the interface of the base resin 61 and the resist 6, the relationship of n 2 = n 3 In this interface, straight to the base resin 61 without causing almost multiple reflection. 従って、反射率R 2は多重反射の影響を考慮することのない値を示す。 Accordingly, the reflectivity R 2 is a value that does not consider the effects of multiple reflection.

【0033】次に、ベース樹脂61,レジスト6への入射角ψ 1 ,ψ 2と反射率R 1 ,R 2との関係を図3,4 Next, the base resin 61, the incident angle [psi 1 to resist 6, [psi 2 and the reflectivity R 1, Figure a relationship between R 2 3, 4
に示す。 To show. 各図において、横軸はそれぞれ反射角ψ 1 ,ψ In each figure, each horizontal axis represents the reflection angle [psi 1, [psi
2であり、縦軸は反射率R 1 ,R 2を示す。 2, the vertical axis represents the reflectivity R 1, R 2. また、図中の点線が本実施形態に係る場合を示している。 The dotted line in the figure shows the case of the present embodiment. 図3,4 FIGS. 3 and 4
から分かるように、最終レンズ面とベース樹脂61との屈折率の差がなりかり、またベース樹脂61とレジスト6との屈折率の差が投影光学系2の最終レンズ面とレジスト6との間に何も満たさない従来の場合に比較して小さくなるため、入射角ψ 1 ,ψ 2にかかわらず従来の場合よりも一様に反射率R 1 ,R 2は大きく低減されている。 As can be seen from, borrow the difference in refractive index between the final lens surface and the base resin 61 is, also between the difference in refractive index between the base resin 61 and the resist 6 is the final lens surface and the resist 6 of the projection optical system 2 to become smaller than that in the conventional case of not satisfying anything, the incident angle [psi 1, uniformly reflectivity than the conventional regardless ψ 2 R 1, R 2 is greatly reduced.

【0034】次に、レジスト中で吸収される光量のレジスト膜厚依存性(スウィングカーブ)を図5に示す。 [0034] Next, the resist film thickness dependence of the amount of light absorbed in the resist (swing curve) in FIG. 図5の横軸はレジスト膜厚、縦軸はレジスト単位膜厚当たりのレジスト中での吸収光量を示しており、図中の点線が本実施形態の場合を示す。 The horizontal axis resist film thickness in FIG. 5, the vertical axis represents the amount of light absorbed in the resist per resist unit film thickness, the dotted line in the figure shows the case of the present embodiment. 露光波長が248nmの露光光を用いた。 Exposure wavelength using the exposure light of 248 nm. この吸収光量のレジスト膜厚依存性に従って、現像後のレジストパターンが適正寸法になるための露光量(適正露光量)も変動するが、図3,4に示すように反射率R 1 ,R 2が大きく低減された結果として、実線に示した従来の場合に比較して格段にスウィングカーブの振幅が減少した。 According resist film thickness dependence of the amount of light absorbed, but also varies the exposure amount for the resist pattern is properly dimension after development (proper exposure amount), the reflectance as shown in FIG. 3, 4 R 1, R 2 as a result of is greatly reduced, significantly swing curve amplitude as compared to the conventional case shown in the solid line is decreased.

【0035】以上説明したように本実施形態によれば、 [0035] According to the present embodiment as described above,
投影光学系2の最終レンズ面及びレジスト6表面との間を両者の屈折率の中間の屈折率の媒質であるモノブロムナフタレン11で満たすことにより、反射率R 1 ,R 2 By filling the space between the final lens surface and the resist 6 surface of the projection optical system 2 with mono bromonaphthalene 11 is a medium having a refractive index between the refractive indices of both reflectance R 1, R 2
が大きく低減され、結果としてレジストの吸収光量のレジスト膜厚依存性のばらつきがほとんどなくなる。 Is greatly reduced, the result variation in resist film thickness dependence of the amount of light absorbed in the resist is hardly a. 従って、レジストの膜厚を高精度に管理する必要が全く無くなるので、効率的にLSI製造プロセスを開発することが可能となった。 Therefore, the need to manage the thickness of the resist with high precision at all eliminated became effectively possible to develop the LSI manufacturing process.

【0036】なお、本実施形態において好適な媒質としては使用するレジスト6のベース樹脂61を用いたが、 [0036] Although suitable medium in the present embodiment using the base resin 61 of the resist 6 to be used,
本実施形態を限定するものではなく、投影光学系2の最終レンズ面とレジスト6との間が、レジスト6の屈折率と同じ屈折率を有する媒質で満たされていればよい。 Not intended to limit the present embodiment, between the final lens surface and the resist 6 of the projection optical system 2, it is sufficient that filled with a medium having the same refractive index as the refractive index of the resist 6. 例えば、レジスト6として脂環式レジストを使用した場合には、ベース樹脂61として脂環式ポリマーを使用すると、上記露光波長における透過率はほぼ100%を確保できる。 For example, when using an alicyclic resist as a resist 6 that the use of alicyclic polymer as the base resin 61, the transmittance at the exposure wavelength can ensure nearly 100%. また、フォトマスクの種類もCOGに限定されず、レベンソン型、ハーフトーン型マスク等何でもよい。 In addition, the type of photo mask is not limited to the COG, Levenson type, anything good such as a half-tone type mask.

【0037】また、投影光学系2の最終レンズ面と被加工基板3との間を水で満たすことにより、上記第1,2 Further, by filling the space between the final lens surface and the substrate to be processed 3 of the projection optical system 2 with water, the first and second
実施形態に類する効果が得られると共に、露光後の基板洗浄工程が多の媒質を用いた場合に比較して非常に簡易になるという効果を奏する。 An effect similar to the embodiment is obtained an effect that becomes very simple as compared with the case where the substrate cleaning step after exposure using a multi-media.

【0038】 [0038]

【発明の効果】以上説明したように本発明に係る露光方法によれば、投影光学系とレジストとの間が、空気よりも屈折率が大きく、かつレジストの屈折率よりも小さく設定することにより、投影光学系の被加工基板に最も近い面とレジスト間における屈折率の差が媒質を満たさない従来の場合に比較して小さくなるので、レジストと媒質の界面での反射が低減され、レジストと下地との間のレジスト中での多重反射が低減される。 According to the exposure method of the present invention as described above, according to the present invention, between the projection optical system and the resist, by refractive index than air is large and is set to be smaller than the refractive index of the resist , the difference in refractive index between the surface closest the resist substrate to be processed in the projection optical system is reduced as compared with the conventional case does not satisfy the medium, reflection at the interface between the resist and the medium is reduced, resist and multiple reflection at the resist in between the base is reduced. 従って、レジスト中に吸収される光量のレジスト膜厚依存性が低減し、 Therefore, the resist film thickness dependence of the amount of light absorbed in the resist is reduced,
レジスト膜厚に要求される膜厚精度が緩和される。 Thickness precision required for the resist film thickness is reduced.

【0039】また、投影光学系の被加工基板に最も近い面とレジストとの間がレジストと同じ屈折率とすることにより、レジスト表面での反射が無くなり、かつレジストと下地との間のレジスト中での多重反射が無くなり、 Further, by between surface closest the resist substrate to be processed in the projection optical system is the same as the refractive index of the resist, there is no reflection at the resist surface, and the resist between the resist and the underlying there is no multiple reflection,
レジスト中に吸収される光量のレジスト膜依存性が低減し、レジスト膜に要求される膜厚精度が緩和される。 Resist resist film dependency of the absorbed amount of light is reduced in thickness precision required is reduced to the resist film.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の第1実施形態に係る露光方法に用いられる露光装置の全体構成を示す図。 It shows an overall configuration of an exposure apparatus used in the exposure method according to the first embodiment of the present invention; FIG.

【図2】同実施形態における被加工基板付近での露光光の進路を詳細に示す図。 Figure 2 illustrates in detail the path of exposure light in the vicinity of the substrate to be processed in the same embodiment.

【図3】反射率R 1の入射角ψ 1依存性を示す図。 FIG. 3 shows the incident angle [psi 1 dependence of the reflectance R 1.

【図4】反射率R 2の入射角ψ 2依存性を示す図。 FIG. 4 shows the incident angle [psi 2 dependence of the reflectance R 2.

【図5】レジスト中で吸収される光量のレジスト膜厚依存性を示す図。 5 is a diagram showing a resist film thickness dependence of the amount of light absorbed in the resist.

【図6】本発明の第2実施形態に係る被加工基板付近での露光光の進路を詳細に示す図。 6 shows in detail the path of exposure light in the vicinity of the substrate to be processed according to a second embodiment of the present invention.

【図7】従来の露光方法に用いられる露光装置の全体構成を示す図。 7 is a diagram illustrating the overall configuration of an exposure apparatus used in the conventional exposure method.

【図8】図7における被加工基板付近での露光光の進路を詳細に示す図。 8 shows in detail the path of exposure light in the vicinity of the substrate to be processed in Fig.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 フォトマスク 2 投影光学系 3 被加工基板 4 石英基板 5 遮光膜 6 レジスト 7 反射防止膜 8 被加工フィルム 9 ウェハ 11 モノブロムナフタレン 61 ベース樹脂 1 photomask second projection optical system 3 to be processed substrate 4 a quartz substrate 5 light shielding film 6 resist 7 antireflective film 8 to be processed film 9 wafer 11 mono bromonaphthalene 61 base resin

Claims (3)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 フォトマスクを露光光で照明し、該フォトマスクを透過した光を投影光学系で被加工基板上に形成されたレジスト膜にパターン転写する露光方法において、 前記投影光学系の前記被加工基板に最も近い面と前記被加工基板との間を、空気の屈折率よりも大きく、かつ前記レジスト膜の屈折率よりも小さい屈折率を有する媒質で満たしてパターン転写を行うことを特徴とする露光方法。 1. A illuminates a photomask with an exposure light, the exposure method of pattern transfer the light transmitted through the photomask to the resist film formed on a substrate to be processed in the projection optical system, said of the projection optical system between the surface closest to the substrate to be processed and the processed substrate, characterized in that air larger than the refractive index, and the pattern transfer meets a medium having a refractive index less than the refractive index of the resist film exposure method to be.
  2. 【請求項2】 フォトマスクを露光光で照明し、該フォトマスクを透過した光を投影光学系で被加工基板上に形成されたレジスト膜にパターン転写する露光方法において、 前記投影光学系の前記被加工基板に最も近い面と前記被加工基板との間を、前記投影光学系の前記被加工基板に最も近い面を構成する部材の屈折率よりも大きく、かつ前記レジスト膜の屈折率よりも小さい屈折率を有する媒質で満たしてパターン転写を行うことを特徴とする露光方法。 Wherein illuminating the photomask with an exposure light, the exposure method of pattern transfer the light transmitted through the photomask to the resist film formed on a substrate to be processed in the projection optical system, said of the projection optical system between the surface closest to the substrate to be processed and the processed substrate, is larger than the refractive index of a member constituting the surface closest the substrate to be processed of said projection optical system, and than the refractive index of the resist film exposure method and performing pattern transfer meets a medium having a small refractive index.
  3. 【請求項3】 フォトマスクを露光光で照明し、該フォトマスクを透過した光を投影光学系で被加工基板上に形成されたレジスト膜にパターン転写する露光方法において、 前記投影光学系の前記被加工基板に最も近い面と前記被加工基板との間を、前記レジスト膜の屈折率とほぼ同じ屈折率を有する媒質で満たしてパターン転写を行うことを特徴とする露光方法。 3. illuminates a photomask with an exposure light, the exposure method of pattern transfer the light transmitted through the photomask to the resist film formed on a substrate to be processed in the projection optical system, said of the projection optical system exposure method characterized in that between the surface closest to the substrate to be processed and the processed substrate, transferring a pattern filled with a medium having substantially the same refractive index as the refractive index of the resist film.
JP10059570A 1998-03-11 1998-03-11 Exposure method Pending JPH11260686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10059570A JPH11260686A (en) 1998-03-11 1998-03-11 Exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10059570A JPH11260686A (en) 1998-03-11 1998-03-11 Exposure method

Publications (1)

Publication Number Publication Date
JPH11260686A true JPH11260686A (en) 1999-09-24

Family

ID=13117038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10059570A Pending JPH11260686A (en) 1998-03-11 1998-03-11 Exposure method

Country Status (1)

Country Link
JP (1) JPH11260686A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076322A1 (en) * 2004-02-09 2005-08-18 Yoshihiko Okamoto Aligner and semiconductor device manufacturing method using the aligner
JP2005294520A (en) * 2004-03-31 2005-10-20 Tokyo Electron Ltd Application/image pickup device and application/development method
WO2005122220A1 (en) * 2004-06-10 2005-12-22 Nikon Corporation Exposure apparatus, exposure method, and device producing method
WO2006009169A1 (en) * 2004-07-21 2006-01-26 Nikon Corporation Exposure method and method for producing device
JP2006024915A (en) * 2004-06-10 2006-01-26 Nikon Corp Exposure system, exposing method, and device manufacturing method
JP2006190921A (en) * 2004-12-06 2006-07-20 Dainippon Screen Mfg Co Ltd Device and method for treating substrate
JP2006310723A (en) * 2004-11-10 2006-11-09 Dainippon Screen Mfg Co Ltd Substrate processing equipment and method
JP2006310724A (en) * 2004-11-10 2006-11-09 Dainippon Screen Mfg Co Ltd Substrate processing equipment and method
JP2007165934A (en) * 2003-08-29 2007-06-28 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
JP2007527611A (en) * 2003-07-08 2007-09-27 株式会社ニコン Wafer table for immersion lithography
JP2008020512A (en) * 2006-07-11 2008-01-31 Seiko Epson Corp Image forming apparatus
JP2008098681A (en) * 2003-07-28 2008-04-24 Asml Netherlands Bv Lithographic apparatus, device manufacturing method, and substrate
JP2009065188A (en) * 2003-05-30 2009-03-26 Asml Netherlands Bv Lithographic device and device manufacturing method
US7713685B2 (en) 2004-06-09 2010-05-11 Panasonic Corporation Exposure system and pattern formation method
US7852456B2 (en) 2004-10-13 2010-12-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
CN102591156A (en) * 2011-12-05 2012-07-18 深圳市华星光电技术有限公司 Exposure device and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9703199B2 (en) 2004-12-06 2017-07-11 Screen Semiconductor Solutions Co., Ltd. Substrate processing apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
JP4551470B2 (en) * 2003-05-30 2010-09-29 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method
JP2009065188A (en) * 2003-05-30 2009-03-26 Asml Netherlands Bv Lithographic device and device manufacturing method
JP4697138B2 (en) * 2003-07-08 2011-06-08 株式会社ニコン Immersion lithographic apparatus, the immersion lithographic process, a device manufacturing method
JP2007527611A (en) * 2003-07-08 2007-09-27 株式会社ニコン Wafer table for immersion lithography
JP2010232679A (en) * 2003-07-08 2010-10-14 Nikon Corp Wafer table for immersion lithography
JP2008098681A (en) * 2003-07-28 2008-04-24 Asml Netherlands Bv Lithographic apparatus, device manufacturing method, and substrate
JP4586032B2 (en) * 2003-08-29 2010-11-24 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method
JP2007165934A (en) * 2003-08-29 2007-06-28 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP4529141B2 (en) * 2004-02-09 2010-08-25 好彦 岡本 Manufacturing method for an exposure apparatus and a semiconductor device using the same
WO2005076322A1 (en) * 2004-02-09 2005-08-18 Yoshihiko Okamoto Aligner and semiconductor device manufacturing method using the aligner
JP2010153922A (en) * 2004-02-09 2010-07-08 Yoshihiko Okamoto Method of manufacturing semiconductor device
JPWO2005076322A1 (en) * 2004-02-09 2008-02-21 好彦 岡本 Manufacturing method for an exposure apparatus and a semiconductor device using the same
US7665916B2 (en) 2004-03-31 2010-02-23 Tokyo Electron Limited Coater/developer and coating/developing method
JP2005294520A (en) * 2004-03-31 2005-10-20 Tokyo Electron Ltd Application/image pickup device and application/development method
KR100839886B1 (en) 2004-03-31 2008-06-19 도쿄엘렉트론가부시키가이샤 Coater/developer and coating/developing method
WO2005101467A1 (en) * 2004-03-31 2005-10-27 Tokyo Electron Limited Coater/developer and coating/developing method
JP4535489B2 (en) * 2004-03-31 2010-09-01 東京エレクトロン株式会社 Coating and developing apparatus
US8088565B2 (en) 2004-06-09 2012-01-03 Panasonic Corporation Exposure system and pattern formation method
US7713685B2 (en) 2004-06-09 2010-05-11 Panasonic Corporation Exposure system and pattern formation method
JP2006024915A (en) * 2004-06-10 2006-01-26 Nikon Corp Exposure system, exposing method, and device manufacturing method
TWI412895B (en) * 2004-06-10 2013-10-21 尼康股份有限公司
WO2005122220A1 (en) * 2004-06-10 2005-12-22 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US9411247B2 (en) 2004-06-10 2016-08-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP4677987B2 (en) * 2004-07-21 2011-04-27 株式会社ニコン Exposure method and device manufacturing method
WO2006009169A1 (en) * 2004-07-21 2006-01-26 Nikon Corporation Exposure method and method for producing device
US7914972B2 (en) 2004-07-21 2011-03-29 Nikon Corporation Exposure method and device manufacturing method
JPWO2006009169A1 (en) * 2004-07-21 2008-05-01 株式会社ニコン Exposure method and device manufacturing method
US7852456B2 (en) 2004-10-13 2010-12-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2006310724A (en) * 2004-11-10 2006-11-09 Dainippon Screen Mfg Co Ltd Substrate processing equipment and method
JP2006310723A (en) * 2004-11-10 2006-11-09 Dainippon Screen Mfg Co Ltd Substrate processing equipment and method
JP2006190921A (en) * 2004-12-06 2006-07-20 Dainippon Screen Mfg Co Ltd Device and method for treating substrate
US9703199B2 (en) 2004-12-06 2017-07-11 Screen Semiconductor Solutions Co., Ltd. Substrate processing apparatus
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7567774B2 (en) 2006-07-11 2009-07-28 Seiko Epson Corporation Image forming apparatus
JP2008020512A (en) * 2006-07-11 2008-01-31 Seiko Epson Corp Image forming apparatus
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
CN102591156A (en) * 2011-12-05 2012-07-18 深圳市华星光电技术有限公司 Exposure device and exposure method

Similar Documents

Publication Publication Date Title
US6475704B1 (en) Method for forming fine structure
US5422205A (en) Micropattern forming method
US4362809A (en) Multilayer photoresist process utilizing an absorbant dye
JP3105234B2 (en) A method of manufacturing a semiconductor device
US4370405A (en) Multilayer photoresist process utilizing an absorbant dye
US5686209A (en) Phase shifting mask and method of forming a pattern using the same
JP2698521B2 (en) Catadioptric optical system and a projection exposure apparatus including an optical system
US20040048194A1 (en) Mehod for forming a tunable deep-ultraviolet dielectric antireflection layer for image transfer processing
US20080094599A1 (en) Projection System with Compensation of Intensity Variations and Compensation Element Therefor
JP3047541B2 (en) Reflective mask and defect correction method
US6641959B2 (en) Absorberless phase-shifting mask for EUV
US5413898A (en) Method of forming a pattern on a substrate having a step change in height
KR940002733B1 (en) Mask for exposure of light and manufacturing method thereof
KR100413906B1 (en) Optical lithography beyond conventional resolution limits
JP3262302B2 (en) Phase shift photomask, blanks for phase shift photomask and a process for their preparation
EP0585872B1 (en) Process for fabricating a phase shift photomask or phase shift photomask blank
US20070103769A1 (en) Optical element having antireflection film, and exposure apparatus
KR101029162B1 (en) Photomask blank, photomask, and pattern transfer method using photomask
JP2004521376A (en) Structure and method for correcting the proximity effect in birds tone attenuated phase shift mask
US6674514B2 (en) Illumination optical system in exposure apparatus
US5837405A (en) Reticle
JPH06175347A (en) Photomask and pattern forming method using the same
JP2866243B2 (en) Method of manufacturing a projection exposure apparatus and a semiconductor device
CN1516827A (en) Damascene extreme ultraviolet lithography alternative phase shift photomask and method of making
DD206607A1 (en) Method and device for eliminating interference effects