JPH11260686A - Exposure method - Google Patents

Exposure method

Info

Publication number
JPH11260686A
JPH11260686A JP10059570A JP5957098A JPH11260686A JP H11260686 A JPH11260686 A JP H11260686A JP 10059570 A JP10059570 A JP 10059570A JP 5957098 A JP5957098 A JP 5957098A JP H11260686 A JPH11260686 A JP H11260686A
Authority
JP
Japan
Prior art keywords
resist
refractive index
substrate
optical system
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10059570A
Other languages
Japanese (ja)
Inventor
Soichi Inoue
壮一 井上
Satoshi Tanaka
聡 田中
Katsuya Okumura
勝弥 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10059570A priority Critical patent/JPH11260686A/en
Publication of JPH11260686A publication Critical patent/JPH11260686A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce variations of a resist film thickness dependente on a light quantity absorbed in a resist. SOLUTION: In this method, a photomask cutting an LSI pattern is illuminated with an exposing light and the lights transmitting the photomask are exposed, so as to transfer a pattern to a resist film 6 formed in a processed substrate 3 in a projection optical system. In this case, a gap between a projection optical system 2 and the processed substrate 3 is filled up with monobromnaphthalene, having a refractive index greater than that of a member constituting a face closest to the processed substrate of the projection optical system 2 and smaller than that of the resist film 6 to transfer patterns.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マスク上のパター
ンを被加工基板上に転写する露光方法に係わり、特にL
SIを製造するためのフォトリソグラフィ工程に好適な
露光方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure method for transferring a pattern on a mask onto a substrate to be processed.
The present invention relates to an exposure method suitable for a photolithography process for manufacturing SI.

【0002】[0002]

【従来の技術】半導体製造工程における光リソグラフィ
は、そのプロセス簡易性、低コスト等の利点によりデバ
イス生産に用いられている。光リソグラフィにおいては
常に技術革新が続けられておりその発展はめざましく、
近年では光源の短波長化により例えばKrF光を用いる
ことにより0.25μm以下の素子の微細化が達成され
つつある。また、投影露光装置についても、スキャン型
露光機の開発が進む中で、従来より一層大口径を有する
投影光学系を使用することが可能となってきており、よ
り微細なパターンをウェハ上に形成することが可能とな
ってきている。今後のさらなる微細化のためには、より
微細なレジストパターンの形成とこれに付随する露光技
術が必要となる。
2. Description of the Related Art Optical lithography in a semiconductor manufacturing process is used for device production because of its advantages such as simplicity of the process and low cost. In optical lithography, technological innovation is always continuing and its development is remarkable,
In recent years, miniaturization of elements of 0.25 μm or less has been achieved by using, for example, KrF light by shortening the wavelength of a light source. As for the projection exposure apparatus, it has become possible to use a projection optical system with a larger diameter than ever before, as the development of scan type exposure equipment progresses, and it is possible to form finer patterns on wafers. Is becoming possible. For further miniaturization in the future, formation of a finer resist pattern and an accompanying exposure technology are required.

【0003】図7は従来の露光方法を説明するための図
であり、従来のフォトリソグラフィ工程にて使用されて
きた露光装置の概略構成を示している。本図を用いて従
来の露光方法について説明する。図7に示す露光装置
は、大きく分けてフォトマスク1,投影光学系2,被加
工基板3から構成される。
FIG. 7 is a view for explaining a conventional exposure method, and shows a schematic configuration of an exposure apparatus used in a conventional photolithography process. A conventional exposure method will be described with reference to FIG. The exposure apparatus shown in FIG. 7 is roughly composed of a photomask 1, a projection optical system 2, and a substrate 3 to be processed.

【0004】フォトマスク1は露光光に対して透光性を
有する石英基板4上に、例えばCr等からなる遮光性を
有する遮光膜5で転写すべきLSIパターンが形成され
ている。このフォトマスク1を露光光で照明し、その透
過光を投影光学系2を介して被加工基板3上に縮小転写
する。被加工基板3には、フォトマスク1のマスクパタ
ーンを転写するレジスト6、レジスト6表面と基板界面
での多重反射を低減する反射防止膜7、被加工フィルム
8がSiウェハ9上に上から順に形成されている。
The photomask 1 has an LSI pattern to be transferred by a light-shielding film 5 made of, for example, Cr, on a quartz substrate 4 having a light-transmitting property with respect to exposure light. The photomask 1 is illuminated with exposure light, and the transmitted light is reduced and transferred onto the substrate 3 via the projection optical system 2. On the substrate 3 to be processed, a resist 6 for transferring the mask pattern of the photomask 1, an antireflection film 7 for reducing multiple reflection at the interface between the surface of the resist 6 and the substrate, and a film 8 to be processed are arranged on the Si wafer 9 in order from the top. Is formed.

【0005】図8は図7の被加工基板3近傍での露光光
の進路の詳細を示した図である。図8では図7で被加工
基板3に対して左上から斜め方向に入射する光線の成分
のみを図示している。他の光線の成分も以下に記述する
内容と同様の振る舞いをする。投影光学系2中を進行
し、投影レンズの被加工基板3に最も近い面(以下最終
レンズ面と称する)と空気10との界面に入射角ψ1
て斜めに入射した露光光は、その一部が反射率R1 、反
射角ψ1 で反射し、残りが屈折角ψ2 で屈折して空気中
に進行する。
FIG. 8 is a diagram showing details of the path of exposure light in the vicinity of the substrate 3 shown in FIG. FIG. 8 shows only components of light rays obliquely incident on the substrate 3 from the upper left in FIG. Other components of the light ray behave in the same manner as described below. Exposure light that travels through the projection optical system 2 and obliquely enters the interface between the surface of the projection lens closest to the substrate 3 to be processed 3 (hereinafter referred to as the final lens surface) and the air 10 at an angle of incidence ψ 1 , some reflectance R 1, reflected by the reflection angle [psi 1, the remaining proceeds to refracted and air at a refraction angle [psi 2.

【0006】レジスト6に入射角ψ2 で到達した露光光
の一部は、レジスト6と空気10の界面で反射角ψ2
反射し、残りの露光光は屈折角ψ3 で屈折してレジスト
6中を進行する。レジスト6中に入射角ψ3 で入射した
露光光は、反射防止膜7により大部分について反射が低
減されるが、その一部は反射防止膜7表面で反射する。
そして、この反射光はさらにレジスト6表面で反射し、
結果としてレジスト6と空気10の界面との間で多重反
射を引き起こす。このようにレジスト6と空気10との
界面で反射した露光光と反射防止膜7で反射した露光光
をトータルした反射率はR2 となる。
A part of the exposure light that reaches the resist 6 at an incident angle ψ 2 is reflected at an interface between the resist 6 and the air 10 at a reflection angle ψ 2 , and the remaining exposure light is refracted at a refraction angle ψ 3 and Go through 6. Resist exposure light incident at an incident angle [psi 3 in 6, the reflection is reduced for most anti-reflection film 7, a portion is reflected by the reflection preventing film 7 surface.
This reflected light is further reflected on the surface of the resist 6,
As a result, multiple reflection occurs between the interface between the resist 6 and the air 10. Thus, the total reflectance of the exposure light reflected on the interface between the resist 6 and the air 10 and the exposure light reflected on the antireflection film 7 is R 2 .

【0007】以上に示した投影光学系2及び空気10
間、空気10及びレジスト6間での屈折率と入射角の関
係はスネルの法則に支配されるため、sinψ1 /si
nψ2=n2 /n1 、sinψ2 /sinψ3 =n3
2 が成立する。
The above-described projection optical system 2 and air 10
During, because the relationship of the refractive index and angle of incidence between the air 10 and the resist 6 is governed by the Snell's law, sinψ 1 / si
2 = n 2 / n 1 , sinψ 2 / sinψ 3 = n 3 /
n 2 holds.

【0008】このように、被加工基板3で発生する多重
反射により、図5に示すようなレジスト中で吸収される
光量のレジスト膜厚依存性(スウィングカーブ)が発生
する。図5の横軸はレジスト膜厚、縦軸はレジスト単位
膜厚当たりのレジスト中での吸収光量を示しており、図
中の実線が従来の露光方法におけるレジスト膜厚依存性
を示す。図5において、露光波長は248nm、レジス
ト6の露光光での屈折率n3 は1.78、吸収係数は
0.02、反射防止膜7の屈折率は1.78、吸収係数
は0.24、被加工膜はAlを用い、屈折率が0.08
9、吸収係数が2.35の場合を示す。投影光学系の最
終レンズ面とレジスト6との間は空気(屈折率n2
1)で満たされている。投影光学系2を構成するレンズ
群の中の最終レンズの屈折率n1 =1.5である。
As described above, due to the multiple reflections occurring on the substrate 3 to be processed, the dependency of the amount of light absorbed in the resist on the resist film thickness (swing curve) occurs as shown in FIG. The horizontal axis in FIG. 5 shows the resist film thickness, and the vertical axis shows the amount of absorbed light in the resist per unit film thickness of the resist, and the solid line in the figure shows the resist film thickness dependency in the conventional exposure method. In FIG. 5, the exposure wavelength is 248 nm, the refractive index n 3 of the resist 6 in the exposure light is 1.78, the absorption coefficient is 0.02, the refractive index of the antireflection film 7 is 1.78, and the absorption coefficient is 0.24. The film to be processed is made of Al and has a refractive index of 0.08.
9, the case where the absorption coefficient is 2.35. The space between the final lens surface of the projection optical system and the resist 6 is air (refractive index n 2 =
1) is satisfied. The refractive index of the last lens in the lens group constituting the projection optical system 2 is n 1 = 1.5.

【0009】この吸収光量のレジスト膜厚依存性に伴
い、現像後のレジストパターンが適正寸法になるための
露光量(適正露光量)も変動する。従来はこのようにス
ウィングカーブの振幅が大きかった為、レジスト膜厚を
このスウィングカーブの山か谷に相当するように高精度
に塗布することによって、レジスト膜厚変動に対する露
光光の吸収量依存性、ひいては適正露光量のレジスト膜
厚依存性を低減する必要があった。
With the dependence of the absorbed light amount on the resist film thickness, the exposure amount (appropriate exposure amount) required for the resist pattern after development to have an appropriate size also varies. Conventionally, the amplitude of the swing curve was large in this way, so the resist film thickness was applied with high precision so as to correspond to the peaks or valleys of this swing curve. Therefore, it is necessary to reduce the dependency of the proper exposure amount on the resist film thickness.

【0010】また図3及び図4はそれぞれR1 のψ1
存性、R2 のψ2 依存性を示している。各図において、
横軸はそれぞれ反射角ψ1 ,ψ2 であり、縦軸は反射率
1,R2 を示す。また、図中の実線が従来例の場合を
示している。この図より、従来は、レジストに吸収され
て感光する成分以外のロス分であるR1 、R2 が非常に
大きな値を示していたことが確認できる。
[0010] [psi 1 dependency of Figures 3 and 4, respectively R 1, shows a [psi 2 dependence of R 2. In each figure,
The horizontal axis represents the reflection angles ψ 1 and ψ 2 , and the vertical axis represents the reflectances R 1 and R 2 . The solid line in the figure shows the case of the conventional example. From this figure, it can be confirmed that in the related art, R 1 and R 2 , which are the loss components other than the components absorbed and exposed to the resist, showed extremely large values.

【0011】[0011]

【発明が解決しようとする課題】以上説明したように従
来の露光方法では、レジスト中に入射した露光光は、そ
の一部がレジスト下面に形成された反射防止膜において
反射し、レジストと空気の界面との間で多重反射を引き
起こし、レジスト表面での反射率R2が実質的に大きく
なる。この反射率R2 は、その値が大きいほどレジスト
中で吸収される光量のレジスト膜依存性のばらつきを生
じさせる。その結果として、高精度の露光を行うために
は、レジスト膜に対する露光量の均一性を確保する必要
があり、従ってレジストの膜厚を高精度に均一化しなけ
ればならなかった。
As described above, in the conventional exposure method, a part of the exposure light incident on the resist is reflected by the antireflection film formed on the lower surface of the resist, and the resist is exposed to the air. This causes multiple reflections at the interface and the reflectance R 2 on the resist surface is substantially increased. The greater the value of the reflectance R 2 , the more the variation in the amount of light absorbed in the resist depends on the resist film. As a result, in order to perform high-precision exposure, it is necessary to ensure uniformity of the exposure amount with respect to the resist film, and therefore, the thickness of the resist film must be uniformed with high precision.

【0012】本発明は、上記課題を課題を解決するため
になされたもので、その目的とするところは、レジスト
中で吸収される光量のレジスト膜厚依存性のばらつきを
低減する露光方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an exposure method for reducing variations in the resist film thickness dependence of the amount of light absorbed in a resist. Is to do.

【0013】[0013]

【課題を解決するための手段】本発明に係る露光方法
は、フォトマスクを露光光で照明し、該フォトマスクを
透過した光を投影光学系で被加工基板上に形成されたレ
ジスト膜にパターン転写する露光方法において、前記投
影光学系の前記被加工基板に最も近い面と前記被加工基
板との間を、空気の屈折率よりも大きく、かつ前記レジ
スト膜の屈折率よりも小さい屈折率を有する媒質で満た
してパターン転写を行うことを特徴とする。
According to an exposure method of the present invention, a photomask is illuminated with exposure light, and light transmitted through the photomask is patterned on a resist film formed on a substrate to be processed by a projection optical system. In the exposing method for transferring, between the surface of the projection optical system closest to the substrate to be processed and the substrate to be processed, a refractive index larger than the refractive index of air and smaller than the refractive index of the resist film. It is characterized in that pattern transfer is performed by filling the medium with the medium.

【0014】本発明の望ましい形態は、以下に示す通り
である。 (1)投影光学系の被加工基板に最も近い面と被加工基
板との間を、被加工基板に最も近い面を構成する部材の
屈折率よりも大きく、かつレジスト膜の屈折率よりも小
さい屈折率を有する媒質で満たす。 (2)投影光学系の被加工基板に最も近い面と被加工基
板との間を、レジスト膜の屈折率とほぼ同じ屈折率を有
する媒質で満たす。 (3)被加工基板と投影光学系の被加工基板に最も近い
面との間を満たす媒質として、被加工基板中のレジスト
を構成するベース樹脂を用いる。 (4)レジストとして脂環式レジストを用い、被加工基
板と投影光学系の被加工基板に最も近い面との間を満た
す媒質として、脂環式ポリマーを用いる。 (5)レジストと被加工基板との間に反射防止膜が形成
されている。 (6)投影光学系の比加工基板に最も近い面と被加工基
板との間を水で満たす。 (作用)本発明では、投影光学系の被加工基板に最も近
い面(以下、最終レンズ面と称する)と被加工基板表面
との間における屈折率を調整する。すなわち、空気の屈
折率とレジストの屈折率の中間の屈折率を有する媒質で
満たすことにより、最終レンズ面と媒質間の屈折率の
差、媒質と被加工基板との屈折率の差が媒質を満たさな
い場合従来のものに比較して小さくなり、最終レンズ面
と媒質との界面での反射が低減されると共に、レジスト
と前記媒質の界面での反射も低減される。従って、レジ
ストの実質的な感度が向上する。また、レジストと媒質
の界面での反射が低減されることによりレジストと下地
との間のレジスト中での多重反射が低減され、レジスト
中での吸収光量のレジスト膜厚依存性(スウィングカー
ブ)の振幅が低減する。これにより、レジスト膜厚に要
求される制御性が緩和される。
Preferred embodiments of the present invention are as follows. (1) The refractive index between the surface of the projection optical system closest to the substrate to be processed and the substrate to be processed is larger than the refractive index of the member constituting the surface closest to the substrate to be processed and smaller than the refractive index of the resist film. Fill with a medium having a refractive index. (2) The space between the surface of the projection optical system closest to the substrate to be processed and the substrate to be processed is filled with a medium having a refractive index substantially equal to the refractive index of the resist film. (3) As a medium filling the space between the substrate to be processed and the surface of the projection optical system closest to the substrate to be processed, a base resin constituting a resist in the substrate to be processed is used. (4) An alicyclic resist is used as a resist, and an alicyclic polymer is used as a medium filling a space between a substrate to be processed and a surface of the projection optical system closest to the substrate to be processed. (5) An antireflection film is formed between the resist and the substrate to be processed. (6) The space between the surface of the projection optical system closest to the processing substrate and the substrate to be processed is filled with water. (Operation) In the present invention, the refractive index between the surface of the projection optical system closest to the substrate to be processed (hereinafter, referred to as a final lens surface) and the surface of the substrate to be processed is adjusted. That is, by filling with a medium having a refractive index intermediate between the refractive index of air and the refractive index of the resist, the difference in the refractive index between the final lens surface and the medium, and the difference in the refractive index between the medium and the substrate to be processed cause the medium to be filled. If it is not satisfied, the size is smaller than that of the related art, and the reflection at the interface between the final lens surface and the medium is reduced, and the reflection at the interface between the resist and the medium is also reduced. Therefore, the substantial sensitivity of the resist is improved. Further, since the reflection at the interface between the resist and the medium is reduced, the multiple reflection in the resist between the resist and the base is reduced, and the dependency of the amount of absorbed light in the resist on the resist film thickness (swing curve) is reduced. The amplitude decreases. Thereby, the controllability required for the resist film thickness is relaxed.

【0015】また、投影光学系の最終レンズ面とウェハ
の間を、レジストとほぼ同じ屈折率を有する媒質で満た
すことにより、レジストと媒質の界面での反射が無くな
り、レジストの実質的な感度が向上する。また、レジス
トと媒質の界面での反射が低減されることによりレジス
トと下地との間のレジスト中での多重反射が無くなり、
レジスト中での吸収光量のレジスト膜厚依存性(スウィ
ングカーブ)の振幅が無くなる。これにより、レジスト
膜厚に要求される制御性が緩和される。
Further, by filling the space between the final lens surface of the projection optical system and the wafer with a medium having substantially the same refractive index as the resist, reflection at the interface between the resist and the medium is eliminated, and the substantial sensitivity of the resist is reduced. improves. In addition, since reflection at the interface between the resist and the medium is reduced, multiple reflection in the resist between the resist and the base is eliminated,
The amplitude of the dependency of the amount of light absorbed in the resist on the resist film thickness (swing curve) is eliminated. Thereby, the controllability required for the resist film thickness is relaxed.

【0016】[0016]

【発明の実施の形態】以下、図面を参照しながら本発明
の実施形態を説明する。 (第1実施形態)図1は本発明の第1実施形態に係る露
光方法に用いられる露光装置の全体構成を示す図であ
り、図2は図1に示す露光装置の被加工基板付近での露
光光の進路を詳細に示す図である。
Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1 is a view showing the overall configuration of an exposure apparatus used in an exposure method according to a first embodiment of the present invention, and FIG. 2 is a view of the exposure apparatus shown in FIG. It is a figure which shows the course of exposure light in detail.

【0017】図1に示すように本露光装置は、大きく分
けてフォトマスク1、投影光学系2、被加工基板3から
構成される。フォトマスク1は露光光に対して透光性を
有する石英基板4上に、例えばCr等からなる遮光性を
有する遮光膜5で転写すべきLSIパターンが形成され
ている。このフォトマスク1を露光光で照明し、その透
過光を投影光学系で被加工基板3上に縮小転写する。被
加工基板3には、フォトマスク1のマスクパターンを転
写するレジスト6、レジスト6表面と基板界面での多重
反射を低減する反射防止膜7、被加工フィルム8がSi
ウェハ9上に上から順に形成されている。
As shown in FIG. 1, the present exposure apparatus mainly comprises a photomask 1, a projection optical system 2, and a substrate 3 to be processed. In the photomask 1, an LSI pattern to be transferred by a light-shielding film 5 made of, for example, Cr and having a light-shielding property is formed on a quartz substrate 4 having a light-transmitting property with respect to exposure light. The photomask 1 is illuminated with exposure light, and the transmitted light is reduced and transferred onto the substrate 3 by a projection optical system. A resist 6 for transferring a mask pattern of the photomask 1, an antireflection film 7 for reducing multiple reflection at the interface between the surface of the resist 6 and the substrate, and a film 8 to be processed are formed on the substrate 3.
It is formed on the wafer 9 in order from the top.

【0018】図2に示すように、レジスト6の露光光で
の屈折率n3 は1.78、吸収係数は0.02、反射防
止膜7の屈折率は1.78、吸収係数は0.24、被加
工膜8はAlで、屈折率が0.089、吸収係数が2.
35である。投影光学系2を構成するレンズ群の中の最
終レンズの屈折率n1 =1.5である。本実施形態にお
いては、投影光学系2の最終レンズ面とレジストとに挟
まれた空間が、投影光学系の最終レンズの材料である石
英の屈折率n1 とレジスト6の屈折率n3 の中間の屈折
率n2 =1.658のモノブロムナフタレン11という
媒質で満たされているのが従来例と異なる点である。従
って、各部位の屈折率の関係は、n1 <n2 <n3 とな
る。
As shown in FIG. 2, the resist 6 has a refractive index n 3 of 1.78, an absorption coefficient of 0.02, an antireflection film 7 of 1.78 and an absorption coefficient of 0.02. 24, the film 8 to be processed is Al, the refractive index is 0.089, and the absorption coefficient is 2.
35. The refractive index of the last lens in the lens group constituting the projection optical system 2 is n 1 = 1.5. In the present embodiment, the space between the final lens surface of the projection optical system 2 and the resist is an intermediate between the refractive index n 1 of quartz which is the material of the final lens of the projection optical system and the refractive index n 3 of the resist 6. This is different from the conventional example in that the medium is filled with a medium called monobromonaphthalene 11 having a refractive index n 2 of 1.658. Therefore, the relationship between the refractive indices of the respective parts is n 1 <n 2 <n 3 .

【0019】上記実施形態の動作を説明する。図1に示
すように、図示しない照明光学系から照射された露光光
はフォトマスク1を透過し、所望のマスクパターンを有
する光学像を形成して投影光学系に入射する。この光学
像は投影光学系2により縮小投影され、モノブロムナフ
タレン11を介して被加工基板3に入射する。
The operation of the above embodiment will be described. As shown in FIG. 1, exposure light emitted from an illumination optical system (not shown) transmits through a photomask 1, forms an optical image having a desired mask pattern, and is incident on a projection optical system. This optical image is reduced and projected by the projection optical system 2 and is incident on the substrate 3 through the monobromonaphthalene 11.

【0020】次に、図1の被加工基板3近傍での露光光
の進路を図2を用いて詳細に説明する。図2では図1に
おいて左上から斜めに被加工基板3に入射する光線の成
分のみを図示している。なお、他の入射角を有する露光
光の成分も、図2に示す内容と同様の振る舞いをする。
Next, the course of the exposure light near the substrate 3 shown in FIG. 1 will be described in detail with reference to FIG. FIG. 2 shows only the components of the light beam obliquely incident on the substrate 3 from the upper left in FIG. The components of the exposure light having other angles of incidence behave similarly to the contents shown in FIG.

【0021】投影光学系2中を進行し、投影光学系2の
レンズ最終面とモノブロムナフタレン11との界面に入
射角ψ1 にて入射した露光光は、一部が反射率R1 、反
射角ψ1 で反射する。その残りの露光光は、スネルの法
則によりsinψ1 /sinψ2 =n2 /n1 の関係を
満たす屈折角ψ2 で屈折してモノブロムナフタレン11
中に進入する。
Exposure light that travels through the projection optical system 2 and enters the interface between the final lens surface of the projection optical system 2 and the monobromonaphthalene 11 at an incident angle ψ 1 is partially reflected by the reflectance R 1 . It is reflected by the corner ψ 1. The remainder of the exposure light, Sinpusai by Snell's law 1 / sinψ 2 = n 2 / n mono bromonaphthalene 11 is refracted relationship refraction angle [psi 2 satisfying 1
Enter inside.

【0022】レジスト6に入射角ψ2 で到達した露光光
の一部はレジスト6とモノブロムナフタレン11の界面
で反射角ψ2 で反射し、残りはsinψ2 /sinψ3
=n3 /n2 を満たす屈折角ψ3 で屈折してレジスト6
に入射する。レジスト6を進行する露光光は反射防止膜
7により大部分について反射が低減されるが、その一部
は反射防止膜7表面で反射し、レジスト6とモノブロム
ナフタレン11の界面との間で多重反射を引き起こし、
トータルとして反射率R2 となる。
A part of the exposure light that reaches the resist 6 at an incident angle ψ 2 is reflected at an interface between the resist 6 and the monobromonaphthalene 11 at a reflection angle ψ 2 , and the rest is sinψ 2 / sinψ 3.
= Is refracted at refraction angle [psi 3 satisfying n 3 / n 2 resist 6
Incident on. Most of the exposure light traveling through the resist 6 is reduced in reflection by the anti-reflection film 7, but a part of the light is reflected on the surface of the anti-reflection film 7 and multiplexed between the resist 6 and the interface between the monobromonaphthalene 11. Cause a reflection,
The reflectance R 2 as a whole.

【0023】次に、モノブロムナフタレン11,レジス
ト6への入射角ψ1 ,ψ2 と反射率R1 ,R2 との関係
を図3,4に示す。各図において、横軸はそれぞれ反射
角ψ1 ,ψ2 であり、縦軸は反射率R1 ,R2 を示す。
また、図中の破線が本実施形態に係る場合を示してい
る。図3,4から分かるように、最終レンズ面とモノブ
ロムナフタレン11との屈折率の差及びモノブロムナフ
タレン11とレジスト6との屈折率の差が投影光学系2
の最終レンズ面とレジスト6との間に何も満たさない従
来の場合に比較して小さくなるため、入射角ψ1 ,ψ2
にかかわらず従来の場合よりも一様に反射率R1 ,R2
は大きく低減されている。
Next, FIGS. 3 and 4 show the relationship between the angles of incidence ψ 1 , ψ 2 on the monobromonaphthalene 11 and the resist 6 and the reflectances R 1 , R 2 . In each figure, the horizontal axis represents the reflection angles ψ 1 and ψ 2 , and the vertical axis represents the reflectances R 1 and R 2 .
A broken line in the drawing indicates a case according to the present embodiment. As can be seen from FIGS. 3 and 4, the difference in the refractive index between the final lens surface and the monobromonaphthalene 11 and the difference in the refractive index between the monobromonaphthalene 11 and the resist 6 are determined by the projection optical system 2.
Is smaller than that in the conventional case where nothing is filled between the final lens surface and the resist 6, so that the incident angles ψ 1 and ψ 2
Regardless of the conventional case, the reflectances R 1 and R 2 are more uniform than in the conventional case.
Has been greatly reduced.

【0024】次に、レジスト中で吸収される光量のレジ
スト膜厚依存性(スウィングカーブ)を図5に示す。図
5の横軸はレジスト膜厚、縦軸はレジスト単位膜厚当た
りのレジスト中での吸収光量を示しており、図中の破線
が本実施形態の場合を示す。露光波長が248nmの露
光光を用いた。この吸収光量のレジスト膜厚依存性に従
って、現像後のレジストパターンが適正寸法になるため
の露光量(適正露光量)も変動するが、図4に示すよう
に反射率R2 が大きく低減された結果として、実線に示
した従来の場合に比較して格段にスウィングカーブの振
幅が減少した。
Next, the dependency of the amount of light absorbed in the resist on the resist film thickness (swing curve) is shown in FIG. The horizontal axis in FIG. 5 shows the resist film thickness, and the vertical axis shows the amount of absorbed light in the resist per unit resist film thickness, and the broken line in the figure shows the case of this embodiment. Exposure light having an exposure wavelength of 248 nm was used. According to the dependency of the absorbed light amount on the resist film thickness, the exposure amount (appropriate exposure amount) for the developed resist pattern to have an appropriate size also changes, but as shown in FIG. 4, the reflectance R 2 is greatly reduced. As a result, the swing curve amplitude is significantly reduced as compared with the conventional case shown by the solid line.

【0025】したがってレジスト膜厚変動に対する露光
光の吸収量依存性、ひいてはレジスト膜厚変動に対する
適正露光量の依存性を低減できるようになった。以上説
明したように本実施形態によれば、投影光学系2の最終
レンズ面及びレジスト6表面との間を両者の屈折率の中
間の屈折率の媒質であるモノブロムナフタレン11で満
たすことにより、最終レンズ面とモノブロムナフタレン
11との屈折率の差及びモノブロムナフタレン11とレ
ジスト6との屈折率の差がモノブロムナフタレン11を
満たさない従来の場合に比較して小さくなるため、反射
率R1 ,R2 が大きく低減され、レジストの実質的な感
度が向上する。また、反射率R2 が低減された結果とし
てレジストの吸収光量のレジスト膜厚依存性のばらつき
が小さくなる。従って、レジストの膜厚に要求される膜
厚精度が緩和される。
Therefore, it is possible to reduce the dependence of the exposure light absorption on the variation of the resist film thickness and the dependence of the appropriate exposure on the variation of the resist film thickness. As described above, according to the present embodiment, the space between the final lens surface of the projection optical system 2 and the surface of the resist 6 is filled with the monobromonaphthalene 11 which is a medium having an intermediate refractive index between the two. Since the difference in the refractive index between the final lens surface and the monobromonaphthalene 11 and the difference in the refractive index between the monobromonaphthalene 11 and the resist 6 are smaller than in the conventional case where the monobromonaphthalene 11 is not filled, the reflectance R 1 and R 2 are greatly reduced, and the substantial sensitivity of the resist is improved. Further, variation in resist film thickness dependence of the amount of light absorbed in the resist decreases as a result of the reflectance R 2 is reduced. Therefore, the accuracy of the thickness required for the thickness of the resist is reduced.

【0026】なお、本実施形態において好適な媒質とし
てはモノブロムナフタレン11を用いたが、本実施形態
を限定するものではなく、投影光学系2の最終レンズ面
とレジスト6との間が、空気の屈折率とレジスト6の屈
折率n3 の中間の屈折率を有する媒質で満たされていれ
ば良い。また、n1 ,n3 も上記に示した値に限定され
ない。
In this embodiment, monobromonaphthalene 11 is used as a suitable medium. However, the present embodiment is not limited to this, and the air between the final lens surface of the projection optical system 2 and the resist 6 is air. And a medium having a refractive index intermediate between the refractive index of the resist 6 and the refractive index n 3 of the resist 6. Also, n 1 and n 3 are not limited to the values described above.

【0027】(第2実施形態)図1は本発明の第2実施
形態に係る露光方法に用いられる露光装置の全体構成を
示す断面図であり、図6は図1に示す露光装置の被加工
基板付近での露光光の進路を詳細に示す図である。な
お、図1は第1実施形態を説明するための図でもあり、
モノブロムナフタレン11を他の媒質に置き換えること
により本実施形態に対応したものとなり、他の構成は何
ら異ならないため、図1の説明は省略する。
(Second Embodiment) FIG. 1 is a sectional view showing the entire configuration of an exposure apparatus used in an exposure method according to a second embodiment of the present invention. FIG. 6 is a sectional view of the exposure apparatus shown in FIG. FIG. 3 is a diagram illustrating in detail a path of exposure light near a substrate. FIG. 1 is also a diagram for explaining the first embodiment,
By replacing the monobromonaphthalene 11 with another medium, it corresponds to the present embodiment, and the other configuration is not different at all, so the description of FIG. 1 is omitted.

【0028】図6に示すように、本実施形態における露
光方法は、投影光学系2の最終レンズ面とレジスト6と
の間をレジスト6と同じ屈折率の媒質で満たす点が第1
実施形態と異なる点である。なお、レジスト6と同じ屈
折率の媒質として、具体的にはレジスト6を構成するベ
ース樹脂61を使用した。
As shown in FIG. 6, the exposure method according to the present embodiment is characterized in that the space between the final lens surface of the projection optical system 2 and the resist 6 is filled with a medium having the same refractive index as that of the resist 6.
This is a different point from the embodiment. Note that, as a medium having the same refractive index as the resist 6, a base resin 61 constituting the resist 6 was specifically used.

【0029】また、レジスト36の露光光での屈折率n
3 は1.78、吸収係数は0.02、反射防止膜7の屈
折率は1.78、吸収係数は0.24、被加工膜8はA
lで、屈折率が0.089、吸収係数が2.35ある。
また、上述したようにベース樹脂61の屈折率n2 はレ
ジスト6の屈折率n3 と同じであるのでn2 =1.78
であり、n1 <n2 =n3 の関係が成り立つ。この場合
のベース樹脂61の吸収係数は0である。
Also, the refractive index n of the resist 36 with the exposure light
3 is 1.78, the absorption coefficient is 0.02, the refractive index of the antireflection film 7 is 1.78, the absorption coefficient is 0.24, and the film 8 is A
At 1, the refractive index is 0.089 and the absorption coefficient is 2.35.
Further, n 2 = 1.78 Since the refractive index n2 of the base resin 61 as described above is the same as the refractive index n 3 of the resist 6
And the relationship of n 1 <n 2 = n 3 holds. In this case, the absorption coefficient of the base resin 61 is 0.

【0030】上記実施形態の動作を説明する。なお、図
1における動作は第1実施形態と同じであるので省略
し、図1の被加工基板3近傍での露光光の進路を図6を
用いて詳細に説明する。図6では図1で左上から斜めに
被加工基板3に入射する光線の成分のみを図示している
が、他の角度で入射した光線の成分も以下に記述する内
容と同様の振る舞いをする。
The operation of the above embodiment will be described. The operation in FIG. 1 is the same as that in the first embodiment, and therefore will be omitted. The path of the exposure light near the substrate 3 in FIG. 1 will be described in detail with reference to FIG. FIG. 6 shows only the components of the light beam incident on the substrate 3 obliquely from the upper left in FIG. 1, but the components of the light beams incident at other angles also behave in the same manner as described below.

【0031】図6に示すように、投影光学系2中を進行
し、投影光学系2のレンズ最終面とベース樹脂61との
界面に入射角ψ1 にて入射した露光光は、一部が反射率
1、反射角ψ1 で反射する。残りの露光光は、スネル
の法則によりスネルの法則によりsinψ1 /sinψ
2 =n2 /n1 の関係を満たす屈折角ψ2 で屈折してベ
ース樹脂61中に進入する。
As shown in FIG. 6, travels through the middle projection optical system 2, the exposure light incident at an incident angle [psi 1 at the interface between the last lens surface and the base resin 61 of the projection optical system 2, a part reflectance R 1, is reflected at a reflection angle [psi 1. The remaining exposure light is sin { 1 / sin} according to Snell's law.
2 = refracted by n 2 / n refraction angle [psi 2 satisfying the relation of 1 enters into the base resin 61.

【0032】レジスト6に入射角ψ2 で到達した露光光
は、レジスト6とベース樹脂61の屈折率n2 ,n3
同じであるため、レジスト6とベース樹脂61の界面で
ほとんど反射することなく、かつ屈折することもなくそ
のままレジスト6中に直進する(厳密には、ベース樹脂
61とレジスト6の吸収係数が若干異なるため、両者の
界面でわずかに反射する)。レジスト6中に入射した露
光光は反射防止膜7により大部分について反射が低減さ
れるが、その一部は反射防止膜7表面で反射する。この
反射光は、さらにベース樹脂61とレジスト6の界面に
達するが、この界面においてもn2 =n3 の関係によ
り、ほとんど多重反射を引き起こすことなくベース樹脂
61に直進する。従って、反射率R2 は多重反射の影響
を考慮することのない値を示す。
Exposure light reaching the resist 6 at an incident angle ψ 2 is almost reflected at the interface between the resist 6 and the base resin 61 because the refractive index n 2 and n 3 of the resist 6 and the base resin 61 are the same. The light does not refract and goes straight into the resist 6 as it is (strictly, because the absorption coefficients of the base resin 61 and the resist 6 are slightly different, the light is slightly reflected at the interface between the two). Most of the exposure light that has entered the resist 6 is reduced in reflection by the antireflection film 7, but part of the light is reflected on the surface of the antireflection film 7. The reflected light further reaches the interface between the base resin 61 and the resist 6, but also at this interface, due to the relationship of n 2 = n 3 , goes straight to the base resin 61 with almost no multiple reflection. Therefore, the reflectivity R 2 shows a value without considering the influence of multiple reflection.

【0033】次に、ベース樹脂61,レジスト6への入
射角ψ1 ,ψ2 と反射率R1 ,R2との関係を図3,4
に示す。各図において、横軸はそれぞれ反射角ψ1 ,ψ
2 であり、縦軸は反射率R1 ,R2 を示す。また、図中
の点線が本実施形態に係る場合を示している。図3,4
から分かるように、最終レンズ面とベース樹脂61との
屈折率の差がなりかり、またベース樹脂61とレジスト
6との屈折率の差が投影光学系2の最終レンズ面とレジ
スト6との間に何も満たさない従来の場合に比較して小
さくなるため、入射角ψ1 ,ψ2 にかかわらず従来の場
合よりも一様に反射率R1 ,R2 は大きく低減されてい
る。
Next, the relationship between the angles of incidence ψ 1 , ψ 2 on the base resin 61 and the resist 6 and the reflectances R 1 , R 2 is shown in FIGS.
Shown in In each figure, the horizontal axis represents the reflection angles ψ 1 and ψ, respectively.
2 , and the vertical axis indicates the reflectances R 1 and R 2 . Further, a dotted line in the drawing indicates a case according to the present embodiment. Figures 3 and 4
As can be seen from the figure, the difference in the refractive index between the final lens surface and the base resin 61 is different, and the difference in the refractive index between the base resin 61 and the resist 6 is between the final lens surface of the projection optical system 2 and the resist 6. , The reflectivities R 1 and R 2 are greatly reduced more uniformly than in the conventional case regardless of the incident angles ψ 1 and ψ 2 .

【0034】次に、レジスト中で吸収される光量のレジ
スト膜厚依存性(スウィングカーブ)を図5に示す。図
5の横軸はレジスト膜厚、縦軸はレジスト単位膜厚当た
りのレジスト中での吸収光量を示しており、図中の点線
が本実施形態の場合を示す。露光波長が248nmの露
光光を用いた。この吸収光量のレジスト膜厚依存性に従
って、現像後のレジストパターンが適正寸法になるため
の露光量(適正露光量)も変動するが、図3,4に示す
ように反射率R1 ,R2 が大きく低減された結果とし
て、実線に示した従来の場合に比較して格段にスウィン
グカーブの振幅が減少した。
FIG. 5 shows the dependency of the amount of light absorbed in the resist on the resist film thickness (swing curve). The horizontal axis in FIG. 5 shows the resist film thickness, and the vertical axis shows the amount of absorbed light in the resist per unit resist film thickness, and the dotted line in the figure shows the case of the present embodiment. Exposure light having an exposure wavelength of 248 nm was used. According to the dependency of the absorbed light amount on the resist film thickness, the exposure amount (appropriate exposure amount) for the resist pattern after development to have an appropriate size also varies, but the reflectances R 1 and R 2 as shown in FIGS. As a result, the amplitude of the swing curve was significantly reduced as compared with the conventional case shown by the solid line.

【0035】以上説明したように本実施形態によれば、
投影光学系2の最終レンズ面及びレジスト6表面との間
を両者の屈折率の中間の屈折率の媒質であるモノブロム
ナフタレン11で満たすことにより、反射率R1 ,R2
が大きく低減され、結果としてレジストの吸収光量のレ
ジスト膜厚依存性のばらつきがほとんどなくなる。従っ
て、レジストの膜厚を高精度に管理する必要が全く無く
なるので、効率的にLSI製造プロセスを開発すること
が可能となった。
As described above, according to this embodiment,
By filling the space between the final lens surface of the projection optical system 2 and the surface of the resist 6 with monobromonaphthalene 11, which is a medium having an intermediate refractive index between the two, the reflectances R 1 and R 2 are obtained.
Is greatly reduced, and as a result, there is almost no variation in the dependency of the absorbed light amount of the resist on the resist film thickness. Therefore, there is no need to control the thickness of the resist film with high precision, and it is possible to efficiently develop an LSI manufacturing process.

【0036】なお、本実施形態において好適な媒質とし
ては使用するレジスト6のベース樹脂61を用いたが、
本実施形態を限定するものではなく、投影光学系2の最
終レンズ面とレジスト6との間が、レジスト6の屈折率
と同じ屈折率を有する媒質で満たされていればよい。例
えば、レジスト6として脂環式レジストを使用した場合
には、ベース樹脂61として脂環式ポリマーを使用する
と、上記露光波長における透過率はほぼ100%を確保
できる。また、フォトマスクの種類もCOGに限定され
ず、レベンソン型、ハーフトーン型マスク等何でもよ
い。
In this embodiment, the base resin 61 of the resist 6 used is used as a suitable medium.
This embodiment is not limited, and it is sufficient that the space between the final lens surface of the projection optical system 2 and the resist 6 is filled with a medium having the same refractive index as the resist 6. For example, in the case where an alicyclic resist is used as the resist 6, if an alicyclic polymer is used as the base resin 61, the transmittance at the above-described exposure wavelength can be almost 100%. Further, the type of the photomask is not limited to COG, but may be any type such as a Levenson type or a halftone type mask.

【0037】また、投影光学系2の最終レンズ面と被加
工基板3との間を水で満たすことにより、上記第1,2
実施形態に類する効果が得られると共に、露光後の基板
洗浄工程が多の媒質を用いた場合に比較して非常に簡易
になるという効果を奏する。
By filling the space between the final lens surface of the projection optical system 2 and the substrate 3 to be processed with water,
An effect similar to that of the embodiment can be obtained, and the effect that the substrate cleaning step after exposure is significantly simplified as compared with the case where many media are used.

【0038】[0038]

【発明の効果】以上説明したように本発明に係る露光方
法によれば、投影光学系とレジストとの間が、空気より
も屈折率が大きく、かつレジストの屈折率よりも小さく
設定することにより、投影光学系の被加工基板に最も近
い面とレジスト間における屈折率の差が媒質を満たさな
い従来の場合に比較して小さくなるので、レジストと媒
質の界面での反射が低減され、レジストと下地との間の
レジスト中での多重反射が低減される。従って、レジス
ト中に吸収される光量のレジスト膜厚依存性が低減し、
レジスト膜厚に要求される膜厚精度が緩和される。
As described above, according to the exposure method of the present invention, the refractive index between the projection optical system and the resist is set to be larger than that of air and smaller than that of the resist. Since the difference in refractive index between the surface of the projection optical system closest to the substrate to be processed and the resist is smaller than in the conventional case where the medium is not filled, reflection at the interface between the resist and the medium is reduced, and Multiple reflections in the resist between the base and the base are reduced. Therefore, the dependence of the amount of light absorbed in the resist on the resist film thickness is reduced,
The film thickness accuracy required for the resist film thickness is relaxed.

【0039】また、投影光学系の被加工基板に最も近い
面とレジストとの間がレジストと同じ屈折率とすること
により、レジスト表面での反射が無くなり、かつレジス
トと下地との間のレジスト中での多重反射が無くなり、
レジスト中に吸収される光量のレジスト膜依存性が低減
し、レジスト膜に要求される膜厚精度が緩和される。
Further, since the refractive index between the resist and the surface of the projection optical system closest to the substrate to be processed has the same refractive index as that of the resist, the reflection on the resist surface is eliminated, and the resist between the resist and the underlayer is removed. The multiple reflections at
The dependence of the amount of light absorbed in the resist on the resist film is reduced, and the required film thickness accuracy of the resist film is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態に係る露光方法に用いら
れる露光装置の全体構成を示す図。
FIG. 1 is a diagram showing an overall configuration of an exposure apparatus used in an exposure method according to a first embodiment of the present invention.

【図2】同実施形態における被加工基板付近での露光光
の進路を詳細に示す図。
FIG. 2 is a diagram showing in detail a path of exposure light near a substrate to be processed in the embodiment.

【図3】反射率R1 の入射角ψ1 依存性を示す図。FIG. 3 shows the incident angle [psi 1 dependence of the reflectance R 1.

【図4】反射率R2 の入射角ψ2 依存性を示す図。FIG. 4 is a diagram showing the dependency of the reflectance R 2 on the angle of incidence ψ 2 .

【図5】レジスト中で吸収される光量のレジスト膜厚依
存性を示す図。
FIG. 5 is a diagram showing the dependence of the amount of light absorbed in the resist on the resist film thickness.

【図6】本発明の第2実施形態に係る被加工基板付近で
の露光光の進路を詳細に示す図。
FIG. 6 is a diagram showing in detail a path of exposure light near a substrate to be processed according to a second embodiment of the present invention.

【図7】従来の露光方法に用いられる露光装置の全体構
成を示す図。
FIG. 7 is a diagram showing an overall configuration of an exposure apparatus used in a conventional exposure method.

【図8】図7における被加工基板付近での露光光の進路
を詳細に示す図。
FIG. 8 is a view showing in detail a path of exposure light in the vicinity of a substrate to be processed in FIG. 7;

【符号の説明】[Explanation of symbols]

1 フォトマスク 2 投影光学系 3 被加工基板 4 石英基板 5 遮光膜 6 レジスト 7 反射防止膜 8 被加工フィルム 9 ウェハ 11 モノブロムナフタレン 61 ベース樹脂 DESCRIPTION OF SYMBOLS 1 Photomask 2 Projection optical system 3 Substrate to be processed 4 Quartz substrate 5 Light shielding film 6 Resist 7 Antireflection film 8 Film to be processed 9 Wafer 11 Monobromonaphthalene 61 Base resin

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 フォトマスクを露光光で照明し、該フォ
トマスクを透過した光を投影光学系で被加工基板上に形
成されたレジスト膜にパターン転写する露光方法におい
て、 前記投影光学系の前記被加工基板に最も近い面と前記被
加工基板との間を、空気の屈折率よりも大きく、かつ前
記レジスト膜の屈折率よりも小さい屈折率を有する媒質
で満たしてパターン転写を行うことを特徴とする露光方
法。
An exposure method for illuminating a photomask with exposure light and transferring the light transmitted through the photomask to a resist film formed on a substrate to be processed by a projection optical system. The pattern transfer is performed by filling a space between the surface closest to the processing substrate and the processing substrate with a medium having a refractive index larger than the refractive index of air and smaller than the refractive index of the resist film. Exposure method.
【請求項2】 フォトマスクを露光光で照明し、該フォ
トマスクを透過した光を投影光学系で被加工基板上に形
成されたレジスト膜にパターン転写する露光方法におい
て、 前記投影光学系の前記被加工基板に最も近い面と前記被
加工基板との間を、前記投影光学系の前記被加工基板に
最も近い面を構成する部材の屈折率よりも大きく、かつ
前記レジスト膜の屈折率よりも小さい屈折率を有する媒
質で満たしてパターン転写を行うことを特徴とする露光
方法。
2. An exposure method for illuminating a photomask with exposure light and transferring the light transmitted through the photomask to a resist film formed on a substrate to be processed by a projection optical system. Between the surface closest to the processing substrate and the processing substrate, the refractive index of the member constituting the surface of the projection optical system closest to the processing substrate is larger than the refractive index of the resist film, and An exposure method characterized by performing pattern transfer by filling with a medium having a small refractive index.
【請求項3】 フォトマスクを露光光で照明し、該フォ
トマスクを透過した光を投影光学系で被加工基板上に形
成されたレジスト膜にパターン転写する露光方法におい
て、 前記投影光学系の前記被加工基板に最も近い面と前記被
加工基板との間を、前記レジスト膜の屈折率とほぼ同じ
屈折率を有する媒質で満たしてパターン転写を行うこと
を特徴とする露光方法。
3. An exposure method in which a photomask is illuminated with exposure light, and the light transmitted through the photomask is pattern-transferred to a resist film formed on a substrate to be processed by a projection optical system. An exposure method, wherein a pattern transfer is performed by filling a space between a surface closest to a substrate to be processed and the substrate to be processed with a medium having a refractive index substantially equal to the refractive index of the resist film.
JP10059570A 1998-03-11 1998-03-11 Exposure method Pending JPH11260686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10059570A JPH11260686A (en) 1998-03-11 1998-03-11 Exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10059570A JPH11260686A (en) 1998-03-11 1998-03-11 Exposure method

Publications (1)

Publication Number Publication Date
JPH11260686A true JPH11260686A (en) 1999-09-24

Family

ID=13117038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10059570A Pending JPH11260686A (en) 1998-03-11 1998-03-11 Exposure method

Country Status (1)

Country Link
JP (1) JPH11260686A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076322A1 (en) * 2004-02-09 2005-08-18 Yoshihiko Okamoto Aligner and semiconductor device manufacturing method using the aligner
JP2005294520A (en) * 2004-03-31 2005-10-20 Tokyo Electron Ltd Application/image pickup device and application/development method
WO2005122220A1 (en) * 2004-06-10 2005-12-22 Nikon Corporation Exposure apparatus, exposure method, and device producing method
JP2006024915A (en) * 2004-06-10 2006-01-26 Nikon Corp Exposure system, exposing method, and device manufacturing method
WO2006009169A1 (en) * 2004-07-21 2006-01-26 Nikon Corporation Exposure method and method for producing device
JP2006190921A (en) * 2004-12-06 2006-07-20 Dainippon Screen Mfg Co Ltd Device and method for treating substrate
JP2006310724A (en) * 2004-11-10 2006-11-09 Dainippon Screen Mfg Co Ltd Substrate processing equipment and method
JP2006310723A (en) * 2004-11-10 2006-11-09 Dainippon Screen Mfg Co Ltd Substrate processing equipment and method
JP2007165934A (en) * 2003-08-29 2007-06-28 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
JP2007527611A (en) * 2003-07-08 2007-09-27 株式会社ニコン Wafer table for immersion lithography
JP2008020512A (en) * 2006-07-11 2008-01-31 Seiko Epson Corp Image forming apparatus
JP2008098681A (en) * 2003-07-28 2008-04-24 Asml Netherlands Bv Lithographic apparatus, device manufacturing method, and substrate
JP2009065188A (en) * 2003-05-30 2009-03-26 Asml Netherlands Bv Lithographic device and device manufacturing method
US7713685B2 (en) 2004-06-09 2010-05-11 Panasonic Corporation Exposure system and pattern formation method
US7852456B2 (en) 2004-10-13 2010-12-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
CN102591156A (en) * 2011-12-05 2012-07-18 深圳市华星光电技术有限公司 Exposure device and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9703199B2 (en) 2004-12-06 2017-07-11 Screen Semiconductor Solutions Co., Ltd. Substrate processing apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
JP2009065188A (en) * 2003-05-30 2009-03-26 Asml Netherlands Bv Lithographic device and device manufacturing method
JP4551470B2 (en) * 2003-05-30 2010-09-29 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method
JP2010232679A (en) * 2003-07-08 2010-10-14 Nikon Corp Wafer table for immersion lithography
JP2007527611A (en) * 2003-07-08 2007-09-27 株式会社ニコン Wafer table for immersion lithography
JP4697138B2 (en) * 2003-07-08 2011-06-08 株式会社ニコン Immersion lithography apparatus, immersion lithography method, and device manufacturing method
JP2008098681A (en) * 2003-07-28 2008-04-24 Asml Netherlands Bv Lithographic apparatus, device manufacturing method, and substrate
JP2007165934A (en) * 2003-08-29 2007-06-28 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
JP4586032B2 (en) * 2003-08-29 2010-11-24 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JPWO2005076322A1 (en) * 2004-02-09 2008-02-21 好彦 岡本 Exposure apparatus and method of manufacturing semiconductor device using the same
WO2005076322A1 (en) * 2004-02-09 2005-08-18 Yoshihiko Okamoto Aligner and semiconductor device manufacturing method using the aligner
JP2010153922A (en) * 2004-02-09 2010-07-08 Yoshihiko Okamoto Method of manufacturing semiconductor device
JP4529141B2 (en) * 2004-02-09 2010-08-25 好彦 岡本 Exposure apparatus and method of manufacturing semiconductor device using the same
WO2005101467A1 (en) * 2004-03-31 2005-10-27 Tokyo Electron Limited Coater/developer and coating/developing method
JP4535489B2 (en) * 2004-03-31 2010-09-01 東京エレクトロン株式会社 Coating / developing equipment
JP2005294520A (en) * 2004-03-31 2005-10-20 Tokyo Electron Ltd Application/image pickup device and application/development method
KR100839886B1 (en) * 2004-03-31 2008-06-19 도쿄엘렉트론가부시키가이샤 Coater/developer and coating/developing method
US7665916B2 (en) 2004-03-31 2010-02-23 Tokyo Electron Limited Coater/developer and coating/developing method
US7713685B2 (en) 2004-06-09 2010-05-11 Panasonic Corporation Exposure system and pattern formation method
US8088565B2 (en) 2004-06-09 2012-01-03 Panasonic Corporation Exposure system and pattern formation method
TWI412895B (en) * 2004-06-10 2013-10-21 尼康股份有限公司 An exposure apparatus, an exposure method, and an element manufacturing method
WO2005122220A1 (en) * 2004-06-10 2005-12-22 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US9411247B2 (en) 2004-06-10 2016-08-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2006024915A (en) * 2004-06-10 2006-01-26 Nikon Corp Exposure system, exposing method, and device manufacturing method
JP4677987B2 (en) * 2004-07-21 2011-04-27 株式会社ニコン Exposure method and device manufacturing method
JPWO2006009169A1 (en) * 2004-07-21 2008-05-01 株式会社ニコン Exposure method and device manufacturing method
WO2006009169A1 (en) * 2004-07-21 2006-01-26 Nikon Corporation Exposure method and method for producing device
US7914972B2 (en) 2004-07-21 2011-03-29 Nikon Corporation Exposure method and device manufacturing method
US7852456B2 (en) 2004-10-13 2010-12-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2006310723A (en) * 2004-11-10 2006-11-09 Dainippon Screen Mfg Co Ltd Substrate processing equipment and method
JP2006310724A (en) * 2004-11-10 2006-11-09 Dainippon Screen Mfg Co Ltd Substrate processing equipment and method
US9703199B2 (en) 2004-12-06 2017-07-11 Screen Semiconductor Solutions Co., Ltd. Substrate processing apparatus
JP2006190921A (en) * 2004-12-06 2006-07-20 Dainippon Screen Mfg Co Ltd Device and method for treating substrate
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2008020512A (en) * 2006-07-11 2008-01-31 Seiko Epson Corp Image forming apparatus
US7567774B2 (en) 2006-07-11 2009-07-28 Seiko Epson Corporation Image forming apparatus
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
CN102591156A (en) * 2011-12-05 2012-07-18 深圳市华星光电技术有限公司 Exposure device and exposure method

Similar Documents

Publication Publication Date Title
JPH11260686A (en) Exposure method
US6818361B2 (en) Photomasking
KR940007066B1 (en) Reflection type photomask and photolithography method thereby
JP2004207593A (en) Mask for extreme ultra-violet exposure, blank, and method for pattern transfer
JP2008270564A (en) Exposure apparatus, and device manufacturing method
US6686101B2 (en) Non absorbing reticle and method of making same
US6627356B2 (en) Photomask used in manufacturing of semiconductor device, photomask blank, and method of applying light exposure to semiconductor wafer by using said photomask
US5279911A (en) Photomask
JP2004054092A (en) Mask and its manufacturing method
JP2901201B2 (en) Photo mask
JP2002048907A (en) Method for manufacturing diffractive optical device
JPS6161375B2 (en)
KR100550715B1 (en) Projection optical system
JP3110245B2 (en) Reflective exposure mask and pattern forming method
JPH0792655A (en) Optical mask and mask blank and their production
JP3178516B2 (en) Phase shift mask
US7629090B2 (en) Reticle and method of manufacturing method the same
KR20050007176A (en) Reticle, semiconductor exposure apparatus and method, and semiconductor device manufacturing method
JPH04269749A (en) Photomask and its manufacture
US8368869B2 (en) Lithography apparatus with an optical fiber module
KR100304499B1 (en) Reflective mask for etching photograph and method for pattern-exposing semiconductor using the same
JP2000258608A (en) Method for formation of film on optical device
JPH06224107A (en) Method and device for projection aligner
JP2009054739A (en) Optical element and exposure apparatus
JP4273776B2 (en) Extreme UV exposure mask