JPH06224107A - Method and device for projection aligner - Google Patents

Method and device for projection aligner

Info

Publication number
JPH06224107A
JPH06224107A JP5029612A JP2961293A JPH06224107A JP H06224107 A JPH06224107 A JP H06224107A JP 5029612 A JP5029612 A JP 5029612A JP 2961293 A JP2961293 A JP 2961293A JP H06224107 A JPH06224107 A JP H06224107A
Authority
JP
Japan
Prior art keywords
wavelength
light
wafer
optical system
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5029612A
Other languages
Japanese (ja)
Other versions
JP2894914B2 (en
Inventor
Yasuyoshi Tanabe
容由 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5029612A priority Critical patent/JP2894914B2/en
Publication of JPH06224107A publication Critical patent/JPH06224107A/en
Application granted granted Critical
Publication of JP2894914B2 publication Critical patent/JP2894914B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70466Multiple exposures, e.g. combination of fine and coarse exposures, double patterning or multiple exposures for printing a single feature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To decrease the effect of standing wave generated when a projection aligning operation is conducted using a single projection aligner by providing a means to move to axial direction at least one of a means, which changes the wavelength of light source, a glass substrate, a wafer and a projection optical system. CONSTITUTION:The image-forming position of a light 3 of wavelength (lambda0) and the image-forming position of a light 4 of wavelength (lambda1) are separated in the amount DELTAz. A wafer 1 on the stage of a projection exposing device is shifted to the direction of optical axis in order to compensate the variation of the above-mentioned focul position. Besides, a mask or a projection optical system may be shifted instead of shifting the stage. In order to effectively decrease the effect of standing wave, the reflected light, sent from a resit 2 by exposure using the light of wavelength (lambda1), is brought to the minimum by the variation of resist film thickness when the light sent from the resist 2 by the exposure using the light of wavelength (lambda2) becomes the maximum by the variation. As a result, a plurality of wavelength can be exposed using a single projection exposure device, and the dimensional variation of the resist pattern due to the effect of standing wave can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体等の作製における
投影露光に際して生じる定在波効果を低減化しえる投影
露光方法および装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure method and apparatus capable of reducing the standing wave effect generated during projection exposure in the production of semiconductors and the like.

【0002】[0002]

【従来の技術】半導体集積回路などの微細パターンの加
工には、生産効率の高い投影露光装置が広く用いられて
いる。上記装置では、投影光学系として屈折光学系を用
いることがあるが、この場合、光源の波長の帯域幅が広
いと色収差の発生が見られ、解像度の低下を招く。そこ
で、高解像度を得るために、高圧水銀ランプを光源とす
る場合は光源からの光を極めて狭い帯域幅のフィルタを
通し、レーザを光源とする場合は回折格子、プリズム、
エタロン等を用いて狭帯域化している。このように狭帯
域な光を光源として用いると、レジストへの入射光とレ
ジスト/ウエハ界面からの反射光との干渉による定在波
の影響で、レジスト膜厚の僅かな変動に伴ってレジスト
中へ吸収される実効的光量が大きく変動する。これはレ
ジストパターン寸法の変動や解像不良の原因となる。投
影光学系として屈折光学系の代わりに反射屈折光学系を
用いれば色収差の問題が軽減され、光源の波長を広帯域
にとれる。光源の波長を広帯域にとると、異なる波長の
光では定在波の生じ方が異なるため定在波効果が低減さ
れる。このような反射屈折光学系としては、例えば特開
昭63−163319号(文献1)に開示されている。
また、特開昭63−198324号(文献2)には定在
波効果を低減する方法として、被露光パターンを有する
ガラス基板(マスク)を通して波長λ0の光を照射量D0
で露光する前後に、λ0と異なる波長λ1の光をD0より
少ない照射量D1でレジスト全面あるいはパターン形成
予定領域に照射する方法が述べられている。
2. Description of the Related Art A projection exposure apparatus with high production efficiency is widely used for processing fine patterns such as semiconductor integrated circuits. In the above apparatus, a refraction optical system may be used as the projection optical system, but in this case, if the wavelength band width of the light source is wide, chromatic aberration occurs and the resolution is lowered. Therefore, in order to obtain high resolution, when a high-pressure mercury lamp is used as a light source, light from the light source is passed through a filter having an extremely narrow bandwidth, and when a laser is used as a light source, a diffraction grating, a prism,
Narrow band using etalon. When light with a narrow band is used as a light source in this way, due to the effect of standing waves due to the interference between the light incident on the resist and the light reflected from the resist / wafer interface, there is a slight change in the resist film thickness The effective amount of light absorbed by the light fluctuates greatly. This causes variations in resist pattern size and defective resolution. If a catadioptric system is used as the projection optical system instead of the dioptric system, the problem of chromatic aberration is reduced, and the wavelength of the light source can be in a wide band. When the wavelength of the light source is in a wide band, the standing wave effect is reduced because the standing waves are generated differently in light of different wavelengths. Such a catadioptric optical system is disclosed in, for example, JP-A-63-163319 (reference 1).
Further, Japanese Patent Laid-Open No. 63-198324 (reference 2) discloses a method of reducing the standing wave effect by irradiating a light having a wavelength λ 0 through a glass substrate (mask) having an exposed pattern with a dose D 0.
A method of irradiating the entire surface of a resist or a pattern formation region with a light beam having a wavelength λ 1 different from λ 0 with a dose D 1 smaller than D 0 is described before and after exposure.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、文献1
に述べられている反射屈折光学系は、光学系のアライメ
ントが難しく、また開口数を大きくするのが設計上難し
いという問題がある。また、文献2の方法は屈折光学系
にも適用可能だが、レジスト全面に光を照射した場合、
像のコントラストが下がり解像力が劣化する問題があ
る。パターン形成予定領域のみに選択的に波長λ1の光
を照射すればコントラストの劣化は防げるが、λ0と異
なる波長λ1の光をパターン形成予定領域のみに照射す
る具体的方法は文献2中に述べられていない。単純に波
長λ0用に設計した投影露光装置と波長λ1用に設計した
投影露光装置の2種類を用いて2回露光すると工数が増
え、またレジストを塗布したウエハを2種類の異なる投
影露光装置間で移動すると位置合わせが難しくなるとい
う問題がある。本発明の目的は定在波効果を低減するた
めの複数波長での露光を、単一の投影露光装置で実現す
る投影露光方法および投影露光装置を提供することにあ
る。
DISCLOSURE OF THE INVENTION Problem to be Solved by the Invention
The catadioptric optical system described in (1) has the problems that alignment of the optical system is difficult and it is difficult to increase the numerical aperture in terms of design. Also, the method of Reference 2 can be applied to a refraction optical system, but when the entire surface of the resist is irradiated with light,
There is a problem that the image contrast is lowered and the resolution is deteriorated. If selectively irradiated with light of wavelength lambda 1 only in the pattern formation region deterioration of contrast prevented, but concrete method of irradiating lambda 0 different wavelengths lambda 1 of light only in the pattern formation region is in the literature 2 Not mentioned in. The number of man-hours increases when two exposures are performed by using a projection exposure apparatus simply designed for the wavelength λ 0 and a projection exposure apparatus designed for the wavelength λ 1 , and a resist-coated wafer is exposed in two different types. There is a problem in that alignment becomes difficult when moving between devices. An object of the present invention is to provide a projection exposure method and a projection exposure apparatus that realize exposure with a plurality of wavelengths to reduce the standing wave effect with a single projection exposure apparatus.

【0004】[0004]

【課題を解決するための手段】本発明による第1の発明
は、光源から出た光により照明されたガラス基板上の被
露光パターンを、レジストを塗布したウエハ上に投影光
学系を用いて結像させる投影露光方法において、前記光
源から出る第1の波長の光で照明された前記被露光パタ
ーンを前記ウエハ上に結像させる第1の工程と、前記ガ
ラス基板、ウエハおよび投影光学系のうちの少なくとも
一つを光軸方向に移動させて前記光源から出る第2の波
長の光で照明された前記被露光パターンを前記ウエハ上
に結像させる第2の工程とを有してなることを特徴とす
る投影露光方法である。
According to a first aspect of the present invention, an exposed pattern on a glass substrate illuminated by light emitted from a light source is formed on a resist-coated wafer by using a projection optical system. In the projection exposure method of forming an image, a first step of forming an image of the exposed pattern illuminated by light of a first wavelength emitted from the light source on the wafer, and the glass substrate, the wafer, and the projection optical system. A second step of moving at least one of them in the optical axis direction to form an image of the exposed pattern illuminated with the light of the second wavelength emitted from the light source on the wafer. It is a characteristic projection exposure method.

【0005】本発明による第2の発明は、被露光パター
ンを有するガラス基板と、レジストを塗布したウエハ
と、光源および投影光学系を少なくとも備え、前記光源
の波長を変える手段と、前記ガラス基板、ウエハおよび
投影光学系のうちの少なくとも一つを光軸方向に移動さ
せる手段とを備えてなることを特徴とする投影露光装置
である。
A second invention according to the present invention comprises at least a glass substrate having a pattern to be exposed, a resist-coated wafer, a light source and a projection optical system, means for changing the wavelength of the light source, the glass substrate, A projection exposure apparatus comprising: means for moving at least one of a wafer and a projection optical system in an optical axis direction.

【0006】本発明による第3の発明は、光源から出た
光により照明されたガラス基板上の被露光パターンを、
レジストを塗布したウエハ上に投影光学系を用いて結像
させる投影露光方法において、前記光源から出る第1の
波長の光で照明された前記被露光パターンを前記ウエハ
上に結像させる第1の工程と、前記ガラス基板とウエハ
との間に空気と異なる屈折率を有する物質を挿入して前
記光源から出る第2の波長の光で照明された前記被露光
パターンを前記ウエハ上に結像させる第2の工程とを有
してなることを特徴とする投影露光方法である。
A third invention according to the present invention is to expose an exposed pattern on a glass substrate illuminated by light emitted from a light source,
In a projection exposure method for forming an image on a resist-coated wafer using a projection optical system, a first method for forming an image on the wafer by exposing the exposed pattern illuminated with light of a first wavelength emitted from the light source. A step of inserting a substance having a refractive index different from that of air between the glass substrate and the wafer, and forming an image of the exposed pattern illuminated by the light of the second wavelength emitted from the light source on the wafer. A projection exposure method comprising a second step.

【0007】本発明による第4の発明は、被露光パター
ンを有するガラス基板と、レジストを塗布したウエハ
と、光源および投影光学系を少なくとも備え、前記光源
の波長を変える手段と、前記ガラス基板とウエハとの間
に空気と異なる屈折率を有する物質を挿入する手段とを
備えてなることを特徴とする投影露光装置である。
According to a fourth aspect of the present invention, there is provided a glass substrate having a pattern to be exposed, a resist-coated wafer, a light source and a projection optical system, and means for changing the wavelength of the light source, and the glass substrate. A projection exposure apparatus comprising a means for inserting a substance having a refractive index different from that of air between the wafer and the wafer.

【0008】本発明による第5の発明は、光源から出た
光により照明されたガラス基板上の被露光パターンを、
レジストを塗布したウエハ上に投影光学系を用いて結像
させる投影露光方法において、前記投影光学系に複数の
位置に結像させる多焦点レンズを用い、前記光源より出
る相異なる第1の波長および第2の波長の光により1回
あるいは複数回露光することよりなり、前記多焦点レン
ズは、第1の波長でウエハ上に結像し、第2の波長でも
ウエハ上に結像することを特徴とする投影露光方法であ
る。
According to a fifth aspect of the present invention, the exposed pattern on the glass substrate illuminated by the light emitted from the light source,
In a projection exposure method for forming an image on a resist-coated wafer by using a projection optical system, a multifocal lens for forming images at a plurality of positions on the projection optical system is used, and different first wavelengths emitted from the light source and The multi-focal lens forms an image on the wafer at the first wavelength and an image on the wafer at the second wavelength as well, by performing exposure once or plural times with light of the second wavelength. Projection exposure method.

【0009】本発明による第6の発明は、被露光パター
ンを有するガラス基板と、レジストを塗布したウエハ
と、光源および投影光学系を少なくとも備え、前記光源
の波長を相異なる第1の波長または第2の波長にする手
段を備え、前記投影光学系は、前記第1の波長および第
2の波長のいずれでもウエハ上に結像する多焦点レンズ
で構成されていることを特徴とする投影露光装置であ
る。
A sixth invention according to the present invention comprises at least a glass substrate having a pattern to be exposed, a resist-coated wafer, a light source and a projection optical system, wherein the wavelength of the light source is different from the first wavelength or the first wavelength. A projection exposure apparatus, which is provided with a unit for setting a wavelength of 2 and the projection optical system is composed of a multifocal lens that forms an image on a wafer at both the first wavelength and the second wavelength. Is.

【0010】[0010]

【作用】定在波効果を低減するために複数波長での露光
を単一の屈折光学系で行うと、色収差の影響で焦点位置
が移動する。第1および第2の発明においては、焦点位
置の移動をマスク、ウエハおよび投影光学系の少なくと
も一つを光軸方向に移動することにより補償している。
第3および第4の発明においては、焦点位置の移動をマ
スクとウエハとの間に空気と異なる屈折率を有する物質
を挿入することにより補償している。第5および第6の
発明においては、投影光学系として多焦点レンズを用い
ることにより、色収差により焦点位置が移動してもウエ
ハ上に結像するようにしている。
When the exposure with a plurality of wavelengths is performed by a single refracting optical system to reduce the standing wave effect, the focal position moves due to the influence of chromatic aberration. In the first and second inventions, the movement of the focal position is compensated by moving at least one of the mask, the wafer and the projection optical system in the optical axis direction.
In the third and fourth aspects of the invention, the movement of the focal position is compensated by inserting a substance having a refractive index different from that of air between the mask and the wafer. In the fifth and sixth inventions, a multifocal lens is used as the projection optical system so that an image is formed on the wafer even if the focal position moves due to chromatic aberration.

【0011】[0011]

【実施例】次に、本発明の実施例について説明する。第
1の発明の実施例を図1に示す。投影露光装置の光源と
してはKrFエキシマレーザを用いる。KrFエキシマ
レーザは中心波長248.3nm、半値幅350pmで
発振するが、色収差を抑えるため半値幅3pmまで狭帯
域化している。狭帯域化素子を微小回転することにより
中心波長λ0=248.4nmおよびλ1=248.2n
mでの発振が可能になる。このときの焦点位置変動Δz
は次式で与えられる。
EXAMPLES Next, examples of the present invention will be described. An embodiment of the first invention is shown in FIG. A KrF excimer laser is used as the light source of the projection exposure apparatus. The KrF excimer laser oscillates with a center wavelength of 248.3 nm and a half width of 350 pm, but has a narrow band to a half width of 3 pm to suppress chromatic aberration. The center wavelengths λ 0 = 248.4 nm and λ 1 = 248.2n are obtained by finely rotating the band-narrowing element.
Oscillation at m becomes possible. Focus position variation Δz at this time
Is given by

【0012】[0012]

【数1】 [Equation 1]

【0013】ここでmおよびfは投影光学系の倍率およ
び焦点距離であり、それぞれ1/5および100mmで
ある。また、nおよびdn/dλはレンズに用いる合成
石英のλ=248.3nmにおける屈折率および屈折率
分散であり、それぞれ1.51および0.24μm-1
なる。上式にλ1とλ0の波長差Δλ=−200pmを代
入すると焦点位置変動は10.5μmとなる。図1で波
長λ0の光3の結像位置と波長λ1の光4の結像位置とは
Δzだけ離れている。この焦点位置変動を補償するため
図1に示す実施例では投影露光装置のステージ上のウエ
ハ1を光軸方向に移動している。なお、ステージの移動
の代わりにマスクまたは投影光学系を移動しても良い。
定在波効果を2波長の光を用いて最も効果的に低減する
には、レジスト膜厚の変動により波長λ0の光での露光
によるレジスト2からの反射光が最大(最小)になると
き、波長λ1の光での露光によるレジスト2からの反射
光が最小(最大)になるようにすればよい。このような
条件を満たすレジスト膜厚dは次式で与えられる。
Here, m and f are the magnification and focal length of the projection optical system, which are ⅕ and 100 mm, respectively. Further, n and dn / dλ are the refractive index and the refractive index dispersion at λ = 248.3 nm of the synthetic quartz used for the lens, which are 1.51 and 0.24 μm −1 , respectively. Substituting the wavelength difference Δλ = −200 pm between λ 1 and λ 0 into the above equation, the focal position fluctuation becomes 10.5 μm. In FIG. 1, the image forming position of the light 3 having the wavelength λ 0 and the image forming position of the light 4 having the wavelength λ 1 are separated by Δz. In order to compensate for this focus position fluctuation, in the embodiment shown in FIG. 1, the wafer 1 on the stage of the projection exposure apparatus is moved in the optical axis direction. The mask or the projection optical system may be moved instead of moving the stage.
The most effective way to reduce the standing wave effect by using light of two wavelengths is when the reflected light from the resist 2 due to exposure to light of wavelength λ 0 becomes maximum (minimum) due to fluctuations in the resist film thickness. The light reflected from the resist 2 due to the exposure with the light having the wavelength λ 1 may be minimized (maximum). The resist film thickness d satisfying such a condition is given by the following equation.

【0014】[0014]

【数2】 [Equation 2]

【0015】ここでlは0または任意の正の整数、nr
はレジスト2の屈折率である。最も薄いレジスト膜厚を
選ぶため、l=0としてレジストの屈折率nr=1.6
を代入すると、レジスト膜厚は48μmとなる。レジス
ト現像後に残って欲しいレジスト膜厚は1μm程度なの
で、図2のようにレジストを2層レジストとして下層の
感光剤含有部分5(1μm厚)と上層の透明樹脂部分6
(47μm厚)とに分ける必要がある。
Where l is 0 or any positive integer, n r
Is the refractive index of the resist 2. In order to select the thinnest resist film thickness, the refractive index n r of the resist is set to n r = 1.6
Is substituted, the resist film thickness becomes 48 μm. Since the resist film thickness desired to remain after resist development is about 1 μm, the resist is a two-layer resist as shown in FIG. 2, and the lower layer photosensitive agent containing portion 5 (1 μm thick) and the upper transparent resin portion 6 are used.
(47 μm thick).

【0016】以上の条件でのレジスト表面での反射率を
図3に示す。レジスト膜厚の僅かな変動により波長λ0
の反射率7と波長λ1の反射率8は大きく変動するが、
その平均値9の変動はきわめて小さい。このように第1
の発明の露光方法を用いると、レジスト中に吸収される
実効的光量が膜厚に関わらずほぼ一定となり、定在波効
果を大きく低減することが可能となる。
The reflectance on the resist surface under the above conditions is shown in FIG. Wavelength λ 0 due to slight variation in resist film thickness
The reflectance 7 of and the reflectance 8 of the wavelength λ 1 vary greatly,
The fluctuation of the average value 9 is extremely small. Like this first
When the exposure method of the invention is used, the effective light amount absorbed in the resist becomes substantially constant regardless of the film thickness, and the standing wave effect can be greatly reduced.

【0017】図4は第1の発明の露光方法を実現するた
めの、第2の発明の投影露光装置の実施例である。Kr
Fエキシマレーザ光源10は回折格子、プリズム、エタ
ロン等よりなる波長狭帯域化素子11により狭帯域化さ
れている。光源10の中心波長は波長狭帯域化素子11
を微小回転することにより可変となる。反射鏡12によ
り反射された光は空間的に不均一な分布をしているため
ホモジナイザ13で光強度分布を均一にする。照明光学
系14より出た光は平行光となりマスク15を照らし、
投影光学系16を通り縮小されたのち、レジストを塗布
したウエハ17上に結像する。ステージ18を上下動す
ることにより光源10の波長変動に伴う焦点位置の変動
を補償することができる。
FIG. 4 shows an embodiment of the projection exposure apparatus of the second invention for realizing the exposure method of the first invention. Kr
The F excimer laser light source 10 is band-narrowed by a wavelength band narrowing element 11 made of a diffraction grating, a prism, an etalon, or the like. The central wavelength of the light source 10 is the wavelength narrowing element 11
It can be changed by rotating a minute. Since the light reflected by the reflecting mirror 12 has a spatially non-uniform distribution, the homogenizer 13 makes the light intensity distribution uniform. The light emitted from the illumination optical system 14 becomes parallel light and illuminates the mask 15.
After being reduced through the projection optical system 16, an image is formed on the resist-coated wafer 17. By moving the stage 18 up and down, it is possible to compensate the fluctuation of the focus position due to the wavelength fluctuation of the light source 10.

【0018】第3の発明の実施例を図5に示す。第1の
発明では波長変動に伴う焦点位置変動をステージ等の移
動で補償していたが、第3の発明ではマスクとウエハの
間に空気と異なる屈折率を有する薄膜19を挿入し、光
路長を延ばすことにより補償する。ステージ等を移動す
る必要がないので移動に伴う位置ずれが生じない。光路
長をΔzだけ延ばすのに必要な薄膜の厚さtは次式で与
えられる。
An embodiment of the third invention is shown in FIG. In the first invention, the focus position variation due to the wavelength variation is compensated by the movement of the stage or the like, but in the third invention, the thin film 19 having a refractive index different from that of air is inserted between the mask and the wafer to obtain the optical path length. Compensate by extending. Since it is not necessary to move the stage or the like, there is no displacement due to movement. The thickness t of the thin film required to extend the optical path length by Δz is given by the following equation.

【0019】[0019]

【数3】 [Equation 3]

【0020】ここでnfは薄膜19の屈折率である。薄
膜19として合成石英を用いるとその膜厚は20.6μ
mとなる。図5に示すように、1回目の波長λ0の光3
による露光では薄膜19を挿入せずに露光し、2回目の
露光の際に薄膜19を挿入することにより第1の発明と
同様の効果を得ることができる。なお、薄膜19として
合成石英だけではなく、代わりに各種の無機薄膜、有機
薄膜あるいは空気と屈折率の異なる気体を挿入しても良
い。
Here, n f is the refractive index of the thin film 19. If synthetic quartz is used as the thin film 19, the film thickness is 20.6 μm.
m. As shown in FIG. 5, the light 3 of the first wavelength λ 0
By the exposure by (1), the thin film 19 is not inserted, and the thin film 19 is inserted in the second exposure, and the same effect as the first invention can be obtained. As the thin film 19, not only synthetic quartz but various inorganic thin films, organic thin films, or gases having a refractive index different from that of air may be inserted instead.

【0021】図6は第3の発明の露光方法を実現するた
めの、第4の発明の投影露光装置の実施例である。第2
の発明の投影露光装置と異なる点はステージ18を複数
回露光の間に移動する必要がなく、代わりに薄膜19を
投影光学系16とウエハ17の間に挿入する機構が付け
加わったことである。なお、薄膜19は投影光学系16
とウエハ17の間だけではなくマスク15とウエハ17
の間ならばどこに配置しても良い。
FIG. 6 shows an embodiment of the projection exposure apparatus of the fourth invention for realizing the exposure method of the third invention. Second
The difference from the projection exposure apparatus of the invention is that it is not necessary to move the stage 18 during a plurality of exposures, and a mechanism for inserting the thin film 19 between the projection optical system 16 and the wafer 17 is added instead. The thin film 19 is the projection optical system 16
And the wafer 17 as well as between the mask 15 and the wafer 17
You can place it anywhere between.

【0022】第5の発明の実施例を図7に示す。第5の
発明では投影光学系に多焦点レンズを用いている。本実
施例では多焦点レンズとして二重焦点レンズを用い、二
つの焦点間の距離を波長変動に伴う焦点移動距離Δzと
等しくなるようにしている。このようにすると、1回目
の露光では波長λ0の光でウエハ上に結像する光20と
ウエハ上方の空気中で結像する光21が存在する。2回
目の露光では波長変動により焦点位置が移動するため、
ウエハ上で結像していた光20は結像することのない波
長λ1の光22となり、ウエハ上方の空気中で結像して
いた光21がウエハ上で結像する波長λ1の光23とな
る。なお、露光を2回に分ける必要はなく、2波長で発
振しているレーザ光源を用いれば露光は1回ですむ。こ
の露光方法を用いると第1の発明で必要であったステー
ジ移動等に必要な時間は削減されるが、結像しない光が
存在するため像のコントラストは悪くなる。
An embodiment of the fifth invention is shown in FIG. In the fifth invention, a multifocal lens is used in the projection optical system. In the present embodiment, a bifocal lens is used as the multifocal lens, and the distance between the two focal points is made equal to the focal point moving distance Δz due to wavelength fluctuation. In this way, in the first exposure, there are light 20 which forms an image on the wafer and light 21 which forms an image in the air above the wafer with the light having the wavelength λ 0 . In the second exposure, the focus position moves due to wavelength fluctuations,
Light 20 which has been imaged on the wafer becomes light 22 that no wavelength lambda 1 for imaging, light of the wavelength lambda 1 to the light 21 which has been imaged wafer above the air is imaged on the wafer 23. Incidentally, it is not necessary to divide the exposure into two, and if the laser light source that oscillates at two wavelengths is used, only one exposure is required. When this exposure method is used, the time required for moving the stage and the like required in the first invention is reduced, but the contrast of the image is deteriorated because there is light that does not form an image.

【0023】図8は第5の発明の露光方法を実現するた
めの、第6の発明の投影露光装置の実施例である。第2
の発明の投影露光装置と異なる点はステージ18を複数
回露光の間に移動する必要がなく、投影光学系16を多
焦点レンズ24に置き換えたことである。
FIG. 8 shows an embodiment of the projection exposure apparatus of the sixth invention for realizing the exposure method of the fifth invention. Second
The difference from the projection exposure apparatus of the invention is that the stage 18 does not need to be moved during a plurality of exposures, and the projection optical system 16 is replaced with a multifocal lens 24.

【0024】なお、以上の第1から第6の発明に関する
実施例では光源としてKrFエキシマレーザを用いた
が、ArFエキシマレーザ、高圧水銀ランプのi線など
を代わりに用いることもできる。また、露光波長も2波
長だけではなく、複数波長あるいは連続波長として複数
回あるいは連続して露光しても同様の効果が得られる。
Although the KrF excimer laser is used as the light source in the above-mentioned first to sixth embodiments, an ArF excimer laser, an i-line of a high pressure mercury lamp or the like may be used instead. Further, the exposure wavelength is not limited to two wavelengths, and the same effect can be obtained by exposing a plurality of wavelengths or continuous wavelengths a plurality of times or continuously.

【0025】[0025]

【発明の効果】以上詳述したように、本発明の投影露光
方法および装置によれば、投影光学系に屈折光学系を用
いても単一の投影露光装置で複数波長の露光が可能であ
り、その結果として、定在波効果によるレジストの現像
残りおよびレジストパターンの寸法変動を著しく低減す
ることができる。
As described in detail above, according to the projection exposure method and apparatus of the present invention, it is possible to perform exposure with a plurality of wavelengths with a single projection exposure apparatus even if a refractive optical system is used as the projection optical system. As a result, the undeveloped resist and the dimensional variation of the resist pattern due to the standing wave effect can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の発明の説明図である。FIG. 1 is an explanatory diagram of a first invention.

【図2】第1の発明に用いられるレジストを塗布したウ
エハの断面図である。
FIG. 2 is a cross-sectional view of a wafer coated with a resist used in the first invention.

【図3】波長λ0とλ1の光をレジストを塗布したウエハ
に照射したときのレジストからの反射率およびその平均
値を示す図である。
FIG. 3 is a diagram showing a reflectance from a resist and an average value thereof when a resist-coated wafer is irradiated with light having wavelengths λ 0 and λ 1 .

【図4】第2の発明による投影露光装置の構成図であ
る。
FIG. 4 is a configuration diagram of a projection exposure apparatus according to a second invention.

【図5】第3の発明の説明図である。FIG. 5 is an explanatory diagram of a third invention.

【図6】第4の発明による投影露光装置の構成図であ
る。
FIG. 6 is a configuration diagram of a projection exposure apparatus according to a fourth invention.

【図7】第5の発明の説明図である。FIG. 7 is an explanatory diagram of a fifth invention.

【図8】第6の発明による投影露光装置の構成図であ
る。
FIG. 8 is a configuration diagram of a projection exposure apparatus according to a sixth invention.

【符号の説明】[Explanation of symbols]

1 ウエハ 2 レジスト 3 波長λ0の光 4 波長λ1の光 5 感光剤含有部分 6 透明樹脂部分 7 波長λ0の反射率 8 波長λ1の反射率 9 平均値 10 KrFエキシマレーザ光源 11 波長狭帯域化素子 12 反射鏡 13 ホモジナイザ 14 照明光学系 15 マスク 16 投影光学系 17 ウエハ 18 ステージ 19 薄膜 24 多焦点レンズ1 Wafer 2 Resist 3 Light of wavelength λ 0 4 Light of wavelength λ 1 5 Photosensitive agent containing portion 6 Transparent resin portion 7 Reflectivity of wavelength λ 0 8 Reflectivity of wavelength λ 1 9 Average value 10 KrF excimer laser light source 11 Narrow wavelength Band-passing element 12 Reflector 13 Homogenizer 14 Illumination optical system 15 Mask 16 Projection optical system 17 Wafer 18 Stage 19 Thin film 24 Multifocal lens

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光源から出た光により照明されたガラス
基板上の被露光パターンを、レジストを塗布したウエハ
上に投影光学系を用いて結像させる投影露光方法におい
て、前記光源から出る第1の波長の光で照明された前記
被露光パターンを前記ウエハ上に結像させる第1の工程
と、前記ガラス基板、ウエハおよび投影光学系のうちの
少なくとも一つを光軸方向に移動させて前記光源から出
る第2の波長の光で照明された前記被露光パターンを前
記ウエハ上に結像させる第2の工程とを有してなること
を特徴とする投影露光方法。
1. A projection exposure method for forming an image of a pattern to be exposed on a glass substrate illuminated by light emitted from a light source on a resist-coated wafer using a projection optical system. A first step of forming an image of the exposed pattern illuminated with light of wavelength on the wafer, and moving at least one of the glass substrate, the wafer, and the projection optical system in the optical axis direction. A second step of forming an image of the exposed pattern illuminated with light of a second wavelength emitted from a light source on the wafer.
【請求項2】 被露光パターンを有するガラス基板と、
レジストを塗布したウエハと、光源および投影光学系を
少なくとも備え、前記光源の波長を変える手段と、前記
ガラス基板、ウエハおよび投影光学系のうちの少なくと
も一つを光軸方向に移動させる手段とを備えてなること
を特徴とする投影露光装置。
2. A glass substrate having an exposed pattern,
A wafer coated with a resist, at least a light source and a projection optical system, means for changing the wavelength of the light source, and means for moving at least one of the glass substrate, the wafer and the projection optical system in the optical axis direction. A projection exposure apparatus, which comprises:
【請求項3】 光源から出た光により照明されたガラス
基板上の被露光パターンを、レジストを塗布したウエハ
上に投影光学系を用いて結像させる投影露光方法におい
て、前記光源から出る第1の波長の光で照明された前記
被露光パターンを前記ウエハ上に結像させる第1の工程
と、前記ガラス基板とウエハとの間に空気と異なる屈折
率を有する物質を挿入して前記光源から出る第2の波長
の光で照明された前記被露光パターンを前記ウエハ上に
結像させる第2の工程とを有してなることを特徴とする
投影露光方法。
3. A projection exposure method for forming an image of a pattern to be exposed on a glass substrate, which is illuminated by light emitted from a light source, on a resist-coated wafer by using a projection optical system. From the light source by inserting a substance having a refractive index different from that of air between the glass substrate and the wafer; And a second step of forming an image of the exposed pattern illuminated by the emitted light of the second wavelength on the wafer.
【請求項4】 被露光パターンを有するガラス基板と、
レジストを塗布したウエハと、光源および投影光学系を
少なくとも備え、前記光源の波長を変える手段と、前記
ガラス基板とウエハとの間に空気と異なる屈折率を有す
る物質を挿入する手段とを備えてなることを特徴とする
投影露光装置。
4. A glass substrate having an exposed pattern,
A resist coated wafer; a light source and a projection optical system; and means for changing the wavelength of the light source; and means for inserting a substance having a refractive index different from air between the glass substrate and the wafer. A projection exposure apparatus characterized in that
【請求項5】 光源から出た光により照明されたガラス
基板上の被露光パターンを、レジストを塗布したウエハ
上に投影光学系を用いて結像させる投影露光方法におい
て、前記投影光学系に複数の位置に結像させる多焦点レ
ンズを用い、前記光源より出る相異なる第1の波長およ
び第2の波長の光により1回あるいは複数回露光するこ
とよりなり、前記多焦点レンズは、第1の波長でウエハ
上に結像し、第2の波長でもウエハ上に結像することを
特徴とする投影露光方法。
5. A projection exposure method for forming an image of an exposed pattern on a glass substrate illuminated by light emitted from a light source on a resist-coated wafer by using a projection optical system, wherein a plurality of projection optical systems are provided. Of the first wavelength and the second wavelength of light emitted from the light source, which are different from each other, and the multifocal lens is exposed once or a plurality of times. A projection exposure method, wherein an image is formed on a wafer with a wavelength and an image is formed on a wafer with a second wavelength.
【請求項6】 被露光パターンを有するガラス基板と、
レジストを塗布したウエハと、光源および投影光学系を
少なくとも備え、前記光源の波長を相異なる第1の波長
または第2の波長にする手段を備え、前記投影光学系
は、前記第1の波長および第2の波長のいずれでもウエ
ハ上に結像する多焦点レンズで構成されていることを特
徴とする投影露光装置。
6. A glass substrate having an exposed pattern,
A resist-coated wafer, at least a light source and a projection optical system, and means for setting the wavelength of the light source to different first wavelengths or second wavelengths, wherein the projection optical system includes the first wavelength and the second wavelength. A projection exposure apparatus comprising a multifocal lens that forms an image on a wafer at any of the second wavelengths.
JP5029612A 1993-01-27 1993-01-27 Projection exposure method and apparatus Expired - Lifetime JP2894914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5029612A JP2894914B2 (en) 1993-01-27 1993-01-27 Projection exposure method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5029612A JP2894914B2 (en) 1993-01-27 1993-01-27 Projection exposure method and apparatus

Publications (2)

Publication Number Publication Date
JPH06224107A true JPH06224107A (en) 1994-08-12
JP2894914B2 JP2894914B2 (en) 1999-05-24

Family

ID=12280899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5029612A Expired - Lifetime JP2894914B2 (en) 1993-01-27 1993-01-27 Projection exposure method and apparatus

Country Status (1)

Country Link
JP (1) JP2894914B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013162109A (en) * 2012-02-09 2013-08-19 Topcon Corp Exposure device and exposure method
JP2014534613A (en) * 2011-09-30 2014-12-18 パインブルック イメージング インコーポレイテッド Lighting system
TWI471900B (en) * 2004-02-20 2015-02-01 尼康股份有限公司 Exposure method, exposure apparatus, exposure system, and device manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028613A (en) * 1983-07-27 1985-02-13 Nippon Kogaku Kk <Nikon> Projection optical device
JPS63213928A (en) * 1987-03-03 1988-09-06 Canon Inc Exposure system
JPS6410624A (en) * 1987-07-02 1989-01-13 Nikon Corp Projection optical device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028613A (en) * 1983-07-27 1985-02-13 Nippon Kogaku Kk <Nikon> Projection optical device
JPS63213928A (en) * 1987-03-03 1988-09-06 Canon Inc Exposure system
JPS6410624A (en) * 1987-07-02 1989-01-13 Nikon Corp Projection optical device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI471900B (en) * 2004-02-20 2015-02-01 尼康股份有限公司 Exposure method, exposure apparatus, exposure system, and device manufacturing method
JP2014534613A (en) * 2011-09-30 2014-12-18 パインブルック イメージング インコーポレイテッド Lighting system
US9907152B2 (en) 2011-09-30 2018-02-27 Applied Materials, Inc. Illumination system with monitoring optical output power
JP2013162109A (en) * 2012-02-09 2013-08-19 Topcon Corp Exposure device and exposure method

Also Published As

Publication number Publication date
JP2894914B2 (en) 1999-05-24

Similar Documents

Publication Publication Date Title
US6992750B2 (en) Exposure apparatus and method
KR0137348B1 (en) Refflection and refraction optical system and projection exposure apparatus using the same
US7095481B2 (en) Exposure method and apparatus
US7079220B2 (en) Illumination optical system and method, and exposure apparatus
JP2852169B2 (en) Projection exposure method and apparatus
US7468781B2 (en) Exposure apparatus
KR100585461B1 (en) A microlithography projection apparatus
JP2000021742A (en) Method of exposure and exposure equipment
JP3413160B2 (en) Illumination apparatus and scanning exposure apparatus using the same
JP3123548B2 (en) Exposure method and exposure apparatus
US20080143987A1 (en) Exposure apparatus and device fabrication method
US8085384B2 (en) Exposure apparatus
US7518707B2 (en) Exposure apparatus
JP2002353090A (en) Illumination device, aligner, method for manufacturing the device and aligner
US7027227B2 (en) Three-dimensional structure forming method
JP2894914B2 (en) Projection exposure method and apparatus
KR100550715B1 (en) Projection optical system
US7580115B2 (en) Exposure apparatus and method, and device manufacturing method
JP2006351990A (en) Exposure device and manufacturing method thereof
JP4307039B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method
JPH0550127B2 (en)
JP2000021757A (en) Method of exposure and aligner
JP2000021759A (en) Exposure method and apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19950718