JP2000021742A - Method of exposure and exposure equipment - Google Patents

Method of exposure and exposure equipment

Info

Publication number
JP2000021742A
JP2000021742A JP10198104A JP19810498A JP2000021742A JP 2000021742 A JP2000021742 A JP 2000021742A JP 10198104 A JP10198104 A JP 10198104A JP 19810498 A JP19810498 A JP 19810498A JP 2000021742 A JP2000021742 A JP 2000021742A
Authority
JP
Japan
Prior art keywords
light
exposure
amount
light source
patterns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10198104A
Other languages
Japanese (ja)
Inventor
Keiji Yoshimura
圭司 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10198104A priority Critical patent/JP2000021742A/en
Publication of JP2000021742A publication Critical patent/JP2000021742A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Abstract

PROBLEM TO BE SOLVED: To expose a plurality of patterns to a substrate to be exposed to produce a superposed pattern on the same shot, by dividing a luminous flux emitted from a single light source into each for each pattern, which is illuminated separately by a divided luminous flux, wherein desired exposing conditions are set up for each luminous flux by an optical system located in an optical path of each divided luminous flux. SOLUTION: In exposing a plurality of patterns substantially concurrently on a substrate to be exposed, a luminous flux emitted from a single exposure light source 1 is divided into each for each pattern, which is illuminated separately by a divided luminous flux, and desired exposing conditions are set up for each luminous flux by each of optical systems 9, 10 located in an optical path of each luminous flux. The words 'substantially concurrently' in a static exposure (batch exposure) obviously includes the case where the longest pattern exposure time covers exposure times of all other patterns, and also includes the case where at least a part of exposure times of all patterns is concurrent, i.e., superposed. As stated above, a plurality of patterns are exposed substantially concurrently using a plurality of illumination systems.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、露光方法および露
光装置に関し、特に微細な回路パターンを被露光基板上
に露光する露光方法および露光装置に関する。このよう
な露光方法および露光装置は、例えば、ICやLSI等
の半導体チップ、液晶パネル等の表示素子、磁気ヘッド
等の検出素子、およびCCD等の撮像素子といった各種
デバイスの製造に用いられる。
The present invention relates to an exposure method and an exposure apparatus, and more particularly to an exposure method and an exposure apparatus for exposing a fine circuit pattern onto a substrate to be exposed. Such an exposure method and an exposure apparatus are used, for example, in the manufacture of various devices such as semiconductor chips such as ICs and LSIs, display elements such as liquid crystal panels, detection elements such as magnetic heads, and imaging elements such as CCDs.

【0002】[0002]

【従来の技術】ICやLSIおよび液晶パネル等のデバ
イスをフォトリソグラフィ技術を用いて製造する際用い
られる投影露光装置は、現在、エキシマレーザを光源と
するものが主流となっている。しかしながら、このエキ
シマレーザを光源とする投影露光装置では、線幅0.1
5μm以下の微細パターンを形成することは困難であ
る。
2. Description of the Related Art At present, the mainstream of a projection exposure apparatus used for manufacturing devices such as ICs, LSIs and liquid crystal panels by using a photolithography technique uses an excimer laser as a light source. However, in a projection exposure apparatus using this excimer laser as a light source, a line width of 0.1
It is difficult to form a fine pattern of 5 μm or less.

【0003】解像度を上げるには、理論上では、投影光
学系のNA(開口数)を大きくしたり、露光光の波長を
小さくすれば良いのであるが、現実には、NAを大きく
したり、露光光の波長を小さくすることは容易ではな
い。すなわち、投影光学系の焦点深度はNAの自乗に反
比例し、波長λに比例するため、特に投影光学系のNA
を大きくすると焦点深度が小さくなり、焦点合わせが困
難になって生産性が低下する。また、殆どの硝材の透過
率は、遠紫外領域では極端に低く、例えば、λ=248
nm(KrFエキシマレーザ)で用いられる熔融石英で
さえ、λ=193nm以下では殆ど0まで低下する。現
在、通常露光による線幅0.15μm以下の微細パター
ンに対応する露光波長λ=150nm以下の領域で実用
可能な硝材は実現していない。
In order to increase the resolution, it is theoretically necessary to increase the NA (numerical aperture) of the projection optical system or to reduce the wavelength of the exposure light. It is not easy to reduce the wavelength of the exposure light. That is, the depth of focus of the projection optical system is inversely proportional to the square of NA and proportional to the wavelength λ.
Is increased, the depth of focus becomes smaller, focusing becomes difficult, and productivity decreases. Also, the transmittance of most glass materials is extremely low in the far ultraviolet region, for example, λ = 248
Even fused silica used in nm (KrF excimer laser) drops to almost zero below λ = 193 nm. At present, a glass material that can be used practically in a region of an exposure wavelength λ = 150 nm or less corresponding to a fine pattern having a line width of 0.15 μm or less by ordinary exposure has not been realized.

【0004】そこで、被露光基板に対して、2光束干渉
露光と通常の露光との二重露光を行ない、かつその時に
被露光基板に多値的な露光量分布を与えることによっ
て、より高解像度の露光を行なう方法が本出願人により
特願平9−304232号「露光方法及び露光装置」
(以下、先願という)として出願されている。この方法
によれば、露光波長λが248nm(KrFエキシマレ
ーザ)、投影光学系の像側NAが0.6の投影露光装置
を用いて、最小線幅0.10μmのパターンを形成する
ことができる。
Therefore, by performing double exposure of two-beam interference exposure and normal exposure on the substrate to be exposed, and by giving a multi-level exposure amount distribution to the substrate to be exposed at that time, higher resolution is achieved. Is disclosed in Japanese Patent Application No. 9-304232, "Exposure method and exposure apparatus".
(Hereinafter referred to as the prior application). According to this method, a pattern having a minimum line width of 0.10 μm can be formed by using a projection exposure apparatus in which the exposure wavelength λ is 248 nm (KrF excimer laser) and the image side NA of the projection optical system is 0.6. .

【0005】[0005]

【発明が解決しようとする課題】ところで、先願の実施
例では2光束干渉露光は線幅0.1μmL&S(ライン
アンドスペース)の位相シフトマスクを用いて所謂コヒ
ーレント照明で露光し、その後、最小線幅0.1μmの
実素子パターンを形成されたマスクを用いて通常の露光
(例えば部分コヒーレント照明による露光)を行なって
いる。このように二重露光方式では1つのパターンを形
成するために各ショットごとに露光条件の異なる2回の
露光工程を必要とする。先願では2台の露光装置を用い
る方法と1台の露光装置の照明系を切り替えて用いる方
法を提案している。しかしながら、先願の二重露光方式
は、1台の露光装置を用いる場合であっても、照明系を
切り替えて露光を行なっているため、スループットが遅
くなってしまうという問題があった。本発明は、複数種
類のパターンを被露光基板上の同一ショットに重ね焼き
して1種類のパターンを形成する多重露光方式のスルー
プットを向上させることを目的とする。
By the way, in the embodiment of the prior application, the two-beam interference exposure is performed by so-called coherent illumination using a phase shift mask having a line width of 0.1 .mu.mL & S (line and space), and then the minimum line is exposed. Normal exposure (for example, exposure by partial coherent illumination) is performed using a mask on which a real element pattern having a width of 0.1 μm is formed. As described above, the double exposure method requires two exposure steps under different exposure conditions for each shot in order to form one pattern. The prior application proposes a method using two exposure apparatuses and a method using the illumination system of one exposure apparatus by switching. However, in the double exposure method of the prior application, even when one exposure apparatus is used, the exposure is performed by switching the illumination system. SUMMARY OF THE INVENTION It is an object of the present invention to improve the throughput of a multiple exposure method in which a plurality of types of patterns are overprinted on the same shot on a substrate to be exposed to form one type of pattern.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、複数の照明系を用いて複数のパターン
を実質同時に焼き付けるようにしている。より具体的に
は、複数のパターンを被露光基板上に実質同時に露光す
る際、単一の露光光源から出射される光束を分割して各
パターンを別々の光束で照明するとともに分割した各光
束の光路中に配置した照明系によって各光束ごとに所望
の露光条件を設定するようにしている。
In order to achieve the above object, according to the present invention, a plurality of patterns are printed substantially simultaneously using a plurality of illumination systems. More specifically, when a plurality of patterns are exposed on a substrate to be exposed substantially simultaneously, a light beam emitted from a single exposure light source is divided, each pattern is illuminated with a separate light beam, and each of the divided light beams is Desired exposure conditions are set for each light beam by an illumination system arranged in the optical path.

【0007】本発明の「実質同時」とは、静止露光(一
括露光)において、露光時間が最長のパターンの露光期
間内に他の全パターンの露光期間が含まれる場合は勿論
のこと、全部のパターンの露光期間の少なくとも一部が
同時、すなわち重複している場合も含むものとする。ま
た、走査露光においては、複数のパターンを一回の走査
で露光する場合であれば、たとえ複数のパターンが走査
方向に配列されて、これらが時間差をもって順次露光さ
れる場合であっても、本発明の「実質同時」に含むもの
とする。
The term “substantially simultaneous” in the present invention means, in static exposure (batch exposure), not only the case where the exposure period of the pattern having the longest exposure time includes the exposure period of all other patterns but also all the exposure periods. This includes a case where at least a part of the pattern exposure period is simultaneous, that is, overlaps. In the scanning exposure, if a plurality of patterns are exposed in one scan, even if a plurality of patterns are arranged in the scanning direction and they are sequentially exposed with a time difference, the present invention is not limited to this. It is included in the “substantially simultaneous” of the invention.

【0008】[0008]

【発明の実施の形態】本発明の好ましい実施の形態にお
いて、前記複数のパターンは、少なくとも1つが他のパ
ターンと露光条件の異なる種類のパターンである。ま
た、前記露光条件は露光量を含み、各露光量は、分割さ
れた各光束ごとに透過率が離散的に変化する減光手段の
透過率と前記露光光源の出射光量とを前記所望の露光量
に応じて算出し、各減光手段の透過率を設定し、各光束
への分割比を前記算出された出射光量の比に応じた値に
設定し、かつ前記光源の出射光量を前記分割比が変化し
たことによる各光束ごとの光量の前記算出された出射光
量からの変化分を補正した値に設定する。あるいは、各
減光手段の透過率を設定するところまでは同様である
が、その後、前記光源の出射光量を前記分割された光束
の1つについて算出された出射光量に設定するととも
に、該1つの分割光束以外の各光束については各光束ご
とにその光路中に透過率が連続的に変化する減光手段を
配置し該減光手段の透過率を算出された出射光量と設定
された出射光量との差分を補正するように設定する。
In a preferred embodiment of the present invention, at least one of the plurality of patterns is a pattern of a type having different exposure conditions from other patterns. Further, the exposure condition includes an exposure amount, and each exposure amount is obtained by setting the transmittance of the dimming unit in which the transmittance changes discretely for each of the divided light beams and the amount of light emitted from the exposure light source to the desired exposure value. Calculate according to the amount, set the transmittance of each dimming unit, set the division ratio to each light flux to a value corresponding to the calculated ratio of the emitted light amount, and divide the emitted light amount of the light source into the divided light amount. The amount of change in the light amount for each light beam from the calculated output light amount due to the change in the ratio is set to a corrected value. Alternatively, the same is true up to setting the transmittance of each dimming unit. Thereafter, the output light amount of the light source is set to the output light amount calculated for one of the divided light fluxes, and For each light beam other than the split light beam, a light reducing means whose transmittance continuously changes in the light path for each light beam is arranged, and the light emitting amount and the set light emitting amount are calculated by calculating the transmittance of the light reducing means. Is set so as to correct the difference.

【0009】本発明の好ましい実施の形態に係る露光装
置は、光源としてKrFエキシマレーザなどのパルス光
源を用いた、走査型または静止型の多重露光装置であ
る。
An exposure apparatus according to a preferred embodiment of the present invention is a scanning or stationary multiple exposure apparatus using a pulse light source such as a KrF excimer laser as a light source.

【0010】[0010]

【作用】本発明によれば、複数のパターンをそれらの露
光条件が異なる場合でも実質同時に露光することができ
るため、従来の各種類のパターンを別々に露光する場合
に比較してスループットを格段に向上させることができ
る。
According to the present invention, a plurality of patterns can be exposed at substantially the same time even when their exposure conditions are different, so that the throughput is much higher than in the conventional case where each type of pattern is separately exposed. Can be improved.

【0011】[0011]

【実施例】以下、図面を用いて本発明の実施例を説明す
る。第1の実施例 図1は本発明の一実施例に係る走査型多重露光装置の構
成を示す。同図において、1は光源であり、例えばKr
Fエキシマレーザのようなパルス光源である。2は偏光
ビームスプリッタ、3,4は減光フィルタ、5,7はハ
ーフミラー、6,8は光量センサ、9,10は照明光学
系、11,12はレチクル、13はビームスプリッタ、
14は投影レンズ、15はウエハである。ここで、偏光
ビームスプリッタ2は、レチクル11を照明する照明系
(以下、第1の照明系という)にp偏光を、レチクル1
2を照明する照明系(以下、第2の照明系という)にs
偏光を入射するものとする。レチクル11,12はレチ
クルステージに、ウエハ15はウエハステージにそれぞ
れ搭載され、レチクル(すなわちレチクルステージ)1
1,12とウエハ(すなわちウエハステージ)15が投
影レンズ14の倍率に相当する速度比で投影レンズ14
の物面と像面を互いに逆方向に同期して走査することに
より、レチクル11,12のパターン像がウエハ15上
に露光される。ビームスプリッタ13はレチクル11お
よび12のパターン像をそれぞれ投影レンズ14を介し
てウエハ15上の2つのショット位置に投影させるため
のものである。また、レチクルステージはZ方向(光軸
に平行な方向)に移動し、レチクル11,12のフォー
カス差を補正する仕組みも具備している。
Embodiments of the present invention will be described below with reference to the drawings. First Embodiment FIG. 1 shows the configuration of a scanning multiple exposure apparatus according to one embodiment of the present invention. In the figure, reference numeral 1 denotes a light source, for example, Kr
It is a pulse light source such as an F excimer laser. 2 is a polarization beam splitter, 3 and 4 are dimming filters, 5 and 7 are half mirrors, 6 and 8 are light quantity sensors, 9 and 10 are illumination optical systems, 11 and 12 are reticles, 13 is a beam splitter,
14 is a projection lens, and 15 is a wafer. Here, the polarization beam splitter 2 applies p-polarized light to an illumination system (hereinafter, referred to as a first illumination system) that illuminates the reticle 11, and the reticle 1
Lighting system (hereinafter, referred to as a second lighting system) to illuminate 2
It is assumed that polarized light is incident. Reticles 11 and 12 are mounted on a reticle stage, and wafer 15 is mounted on a wafer stage, respectively, and reticle (that is, reticle stage) 1
1, 12 and the wafer (ie, wafer stage) 15 are projected at a speed ratio corresponding to the magnification of the projection lens 14.
By scanning the object surface and the image surface in synchronization with each other in opposite directions, the pattern images of the reticles 11 and 12 are exposed on the wafer 15. The beam splitter 13 is for projecting the pattern images of the reticles 11 and 12 via the projection lens 14 onto two shot positions on the wafer 15. The reticle stage also has a mechanism for moving in the Z direction (a direction parallel to the optical axis) to correct the focus difference between the reticles 11 and 12.

【0012】図1の露光装置は、レチクルを2枚同時に
用いること、ならびに照明系およびレチクルステージが
2枚の各レチクルに対応して2系統設けられ、かつ光透
過率およびσ(照明光学系の出射側開口角と投影光学系
の入射側開口角との比)を各照明系ごとに可変にしたこ
とを除き、基本的に従来の走査型露光装置と同様に構成
され、同様に動作する。図1の露光装置は、2枚の各レ
チクルのパターン像が同じ場合にも用いることができる
が、特に露光条件の異なる2個のレチクルパターンを一
走査で露光する場合に効果的である。一走査で露光する
とは、2個のレチクルパターンを走査方向に対し並列に
配置してウエハ上の走査方向と直交する方向で隣接する
2つのショットに同時に露光する場合と、2個のレチク
ルパターンを直列に配置してウエハ上の走査方向に隣接
するかまたは1以上のショットを挟んで配列された2つ
のショットを連続的に露光する場合、2つのレチクルパ
ターンを1つのショットに同時に露光する場合もを含
む。
The exposure apparatus shown in FIG. 1 uses two reticles simultaneously, has two illumination systems and two reticle stages corresponding to each of the two reticles, and has a light transmittance and σ (of the illumination optical system). Except that the ratio of the exit-side aperture angle to the entrance-side aperture angle of the projection optical system is varied for each illumination system, it is basically configured and operates in the same manner as a conventional scanning type exposure apparatus. Although the exposure apparatus shown in FIG. 1 can be used even when the pattern images of two reticles are the same, it is particularly effective when two reticles having different exposure conditions are exposed in one scan. Exposure in one scan refers to a case where two reticle patterns are arranged in parallel with the scanning direction and two adjacent reticle patterns are simultaneously exposed in a direction orthogonal to the scanning direction on the wafer. When two shots arranged in series and adjacent to each other in the scanning direction on a wafer or arranged with one or more shots interposed therebetween are continuously exposed, two reticle patterns may be simultaneously exposed to one shot. including.

【0013】図1の露光装置を用いて最小線幅が0.1
μmの微細パターンをウエハに転写する場合、レチクル
11としては、最小線幅が0.1μmと狭いパターンが
形成されていることを除き、従来のものと同様のレチク
ルを用いる。一方、レチクル12としては、所謂レベン
ソン型等の位相シフトパターン(回折格子)を形成され
たレチクルを用いる。この場合、レチクル12を照明す
る照明系の最適なσは0.3〜0.2、レチクル11を
照明する照明系の最適なσは0.6〜0.8であるこ
と、およびレチクル11の最適露光量はレチクル12の
2〜3倍であることが本発明者らの実験により確認され
ている。そこで、各照明系のσを適切な値に設定する。
σの設定は従来法にしたがって例えば絞りの開度や形状
等を選択して行なう。
A minimum line width of 0.1 using the exposure apparatus of FIG.
When transferring a fine pattern of μm onto a wafer, a reticle similar to the conventional one is used as the reticle 11, except that a pattern having a narrow minimum line width of 0.1 μm is formed. On the other hand, as the reticle 12, a reticle having a so-called Levenson type phase shift pattern (diffraction grating) is used. In this case, the optimal σ of the illumination system that illuminates the reticle 12 is 0.3 to 0.2, the optimal σ of the illumination system that illuminates the reticle 11 is 0.6 to 0.8, and It has been confirmed by experiments of the present inventors that the optimum exposure amount is two to three times that of the reticle 12. Therefore, σ of each illumination system is set to an appropriate value.
The setting of σ is performed by selecting, for example, the opening degree and shape of the aperture according to the conventional method.

【0014】次に、図2および3を参照してレチクル1
1および12の露光量を設定するための露光条件設定処
理を説明する。ここでは、レチクル11の目標露光量D
ose1がレチクル12の目標露光量Dose2以上
(Dose1≧Dose2)であり、かつ減光フィルタ
3,4として透過率が離散的に切り替わる離散型減光手
段を用いた場合について説明する。このような離散型減
光手段として、ここでは、透過率が互いに異なる複数個
のNDフィルタを円盤上に配置し、この円盤を回転する
ことにより、照明光路中に位置させるNDフィルタを順
次切り替えるように構成したものを用いている。また、
これらの処理を実行する前に、各照明系のNDフィルタ
無し(またはNDフィルタの透過率100%)、ノミナ
ルな発振周波数FNom、ノミナルなスキャンスピード
SpeedNomの条件下での露光量(ノミナルドーズ
量DoseNom)を計測しておく。
Next, referring to FIGS. 2 and 3, reticle 1
An exposure condition setting process for setting the exposure amounts 1 and 12 will be described. Here, the target exposure amount D of the reticle 11
A case will be described in which the case 1 is greater than or equal to the target exposure dose Dose2 of the reticle 12 (Dose1 ≧ Dose2), and the dimming filters 3 and 4 use discrete dimming means whose transmittance is discretely switched. Here, as such discrete type dimming means, here, a plurality of ND filters having different transmittances are arranged on a disk, and by rotating this disk, the ND filters located in the illumination light path are sequentially switched. Is used. Also,
Before executing these processes, the exposure amount (nominal dose amount DoseNom) under the conditions of no ND filter (or 100% transmittance of the ND filter), a nominal oscillation frequency FNom, and a nominal scan speed SpeedNom of each illumination system. ) Is measured.

【0015】パルス光源を用いた走査露光では、走査速
度Speedとパルス光源のパルス1発あたりの光量が
一定であると仮定すると、発振周波数と量は比例関係に
ある。さらに、減光手段(NDフィルタ等)によりパル
ス光源の出力を離散的に変化させると、発振周波数とド
ーズ量の関係は図15に示すようになる。図15では、
横軸がドーズ量(Dose)、縦軸がパルス光源の発振
周波数(Freq)で、比例関係にある。パルス光源の
発振周波数を減少させると、それに比例してドーズ量が
減少する。発振周波数には、発光最大周波数による上限
値FMAX が光源装置の定格値にとして定められており、
また、発光むらを考慮した発光最低周波数FMIN が設計
上定まる。そのため、ドーズ量が変化して発振周波数を
変更していくと最大周波数FMAX または最低周波数F
MIN のリミットに引っかかる。その場合には、減光手段
の透過率を切り替えてパルス1発あたりの光量を減少ま
たは増加させ、隣の比例直線に変更する。
In scanning exposure using a pulse light source, assuming that the scanning speed and the amount of light per pulse of the pulse light source are constant, the oscillation frequency and the amount are in a proportional relationship. Further, when the output of the pulse light source is discretely changed by the dimming means (such as an ND filter), the relationship between the oscillation frequency and the dose is as shown in FIG. In FIG.
The horizontal axis represents the dose (Dose), and the vertical axis represents the oscillation frequency (Freq) of the pulse light source, which is in a proportional relationship. When the oscillation frequency of the pulse light source is reduced, the dose decreases in proportion thereto. For the oscillation frequency, the upper limit value F MAX based on the maximum emission frequency is defined as the rated value of the light source device.
In addition, the lowest emission frequency F MIN in consideration of uneven light emission is determined by design. Therefore, when the dose changes and the oscillation frequency changes, the maximum frequency F MAX or the minimum frequency F
Get caught in the MIN limit. In this case, the transmittance of the dimming means is switched to reduce or increase the amount of light per pulse, and change to an adjacent proportional straight line.

【0016】図2を参照して、露光条件設定処理を開始
し、目標光量(Dose1,Dose2)が入力される
(ステップS1)と、照明系ごとの好ましい露光条件、
すなわちパルス発振周波数とNDフィルタ値を算出す
る。図3にその露光条件計算処理の詳細を示す。図3の
露光条件計算処理においては、一方の照明系(ここでは
レチクル11を照明する第1の照明系)について、透過
率Nd[i]のNDフィルタを用いて最適露光を行なう
ための発振周波数FTemp=(Dose×Speed
×FNom)/(DoseNom×SpeedNom×
Nd[i])を算出する。ここで、Doseはドーズ
量、Speedはスキャンスピード、FNomはノミナ
ル発振周波数、DoseNomはノミナルドーズ量、S
peedNomはノミナルスキャンスピード、Nd
[i]はi番目のNDフィルタの透過率である。露光条
件の計算は1番目のNDフィルタから順に行なう。算出
されたFTempが最小発振周波数FMIN 以上かつ最大
発振周波数FMAX 以下であれば、このFTempを第1
の照明系の発振周波数の算出値(Freq1)として決
定し、その照明系で用いるNDフィルタの番号もそのと
きの番号iに決定して、この露光条件計算処理を終了す
る。もし、FTempが最小発振周波数FMIN より小さ
いか、または最大発振周波数FMAX より大きければ、i
をインクリメントして次のNDフィルタで減光した場合
の発振周波数FTempの算出ならびに算出値FTem
pとFMAX およびFMIN との比較を繰り返す。最後(i
=NDMAX )のNDフィルタについても、算出値FTe
mpが最小発振周波数FMIN 以上かつ最大発振周波数F
MAX 以下の範囲に入らなければ、適切な発振周波数はな
いのであるから「解無し(NG)」と判定して、この露
光条件計算処理を終了する。一方の照明系について上述
の処理を終了すると、次に他方の照明系(ここではレチ
クル12を照明する第2の照明系)についても同様にし
てFTempおよびiを決定し、これをそれぞれFre
q2およびjとする。なお、上述の算出の順序は一例で
あって、第1および第2の照明系のいずれが先でも構わ
ない。双方の照明系について、露光条件計算処理を終了
すると、図2の処理に戻る。
Referring to FIG. 2, the exposure condition setting process is started, and when target light amounts (Dose1, Dose2) are input (step S1), preferred exposure conditions for each illumination system are set.
That is, the pulse oscillation frequency and the ND filter value are calculated. FIG. 3 shows details of the exposure condition calculation process. In the exposure condition calculation processing of FIG. 3, an oscillation frequency for performing an optimal exposure using one illuminating system (here, a first illuminating system for illuminating the reticle 11) using an ND filter having a transmittance Nd [i]. FTemp = (Dose × Speed)
× FNom) / (DoseNom × SpeedNom ×
Nd [i]) is calculated. Here, Dose is a dose amount, Speed is a scan speed, FNom is a nominal oscillation frequency, DoseNom is a nominal dose amount, S
speedNom is the nominal scan speed, Nd
[I] is the transmittance of the i-th ND filter. Exposure conditions are calculated in order from the first ND filter. If the calculated FTemp is equal to or higher than the minimum oscillation frequency F MIN and equal to or lower than the maximum oscillation frequency F MAX , this FTemp is set to the first
Is determined as the calculated value (Freq1) of the oscillation frequency of the illumination system, and the number of the ND filter used in the illumination system is also determined to the number i at that time, and the exposure condition calculation processing ends. If FTemp is smaller than the minimum oscillation frequency F MIN or larger than the maximum oscillation frequency F MAX , i
Of the oscillation frequency FTemp and the calculated value FTem when the light is reduced by the next ND filter
The comparison between p and F MAX and F MIN is repeated. Last (i
= ND MAX ), the calculated value FTe
mp is equal to or higher than the minimum oscillation frequency F MIN and the maximum oscillation frequency F
If the value does not fall within the range of MAX or less, there is no appropriate oscillation frequency, so it is determined that there is no solution (NG), and the exposure condition calculation processing ends. When the above-described processing is completed for one illumination system, FTemp and i are similarly determined for the other illumination system (here, the second illumination system that illuminates the reticle 12), and these are determined by Fre respectively.
q2 and j. Note that the above-described calculation order is an example, and any one of the first and second illumination systems may be used first. When the exposure condition calculation processing is completed for both illumination systems, the processing returns to the processing in FIG.

【0017】図2を参照して、上記の露光条件計算の結
果、もし、少なくとも一方の照明系の発振周波数算出結
果が「NG」であれば、警報を鳴らすなど解無しエラー
処理を実行してこの露光条件設定処理を終了する。双方
の照明系の発振周波数Freq1およびFreq2が算
出されていれば、次にFreq1とFreq2を比較す
る。Freq1=Freq2であれば、双方の照明系に
好適な発振周波数が同じであるから、光源1の発振周波
数FreqをFreq1(=Freq2)に設定し、そ
れぞれの照明系で用いるNDフィルタの番号もiおよび
jのものに設定する。
Referring to FIG. 2, if the result of the above exposure condition calculation is that the oscillation frequency calculation result of at least one of the illumination systems is "NG", error-free error processing such as sounding an alarm is executed. This exposure condition setting processing ends. If the oscillation frequencies Freq1 and Freq2 of both illumination systems have been calculated, then Freq1 and Freq2 are compared. If Freq1 = Freq2, the oscillation frequencies suitable for both illumination systems are the same. Therefore, the oscillation frequency Freq of the light source 1 is set to Freq1 (= Freq2), and the number of the ND filter used in each illumination system is also i. And j.

【0018】図4および5は、各発振周波数Freq
1,Freq2と目標光量Dose1,Dose2との
関係を示す。図4および5においてNDフィルタNd1
の露光量(Dose)/発振周波数(Freq)特性を
示す直線Nd1上の白丸で示すように、第1の照明系の
目標光量Dose1に対してNDフィルタがNd1、発
振周波数がFreq1に決定した場合に、第1の照明系
の目標光量Dose1と異なる第2の照明系の目標光量
Dose2に対して都合よく図4および5の直線Nd2
上の黒丸で示すように、他のNDフィルタNd2で、発
振周波数が同じFreq1と算出されることは稀であ
る。多くの場合、第2の照明系の発振周波数Freq2
は図4および5の直線Nd2上の白丸で示すようにFr
eq1とは異なる値が算出される。このときパルス光源
は1つなので、発振周波数Freq1とFreq2を同
時に実現することはできず、そのままでは所望の露光結
果を得られないことになる。この欠点を取り除くために
第1および第2の照明系に入射されるパルス1発あたり
の光量比を変化させる。
FIGS. 4 and 5 show the respective oscillation frequencies Freq.
1 shows the relationship between Freq2 and target light amounts Dose1 and Dose2. 4 and 5, the ND filter Nd1
When the ND filter is determined to be Nd1 and the oscillation frequency to be Freq1 with respect to the target light amount Dose1 of the first illumination system, as indicated by a white circle on the straight line Nd1 indicating the exposure amount (Dose) / oscillation frequency (Freq) characteristic of In addition, the target light amount Dose2 of the second illumination system different from the target light amount Dose1 of the first illumination system is conveniently adjusted to the straight line Nd2 of FIGS.
As shown by the upper black circle, the ND filter Nd2 rarely calculates the same oscillation frequency Freq1. In many cases, the oscillation frequency Freq2 of the second illumination system
Is Fr as shown by the white circle on the straight line Nd2 in FIGS.
A value different from eq1 is calculated. At this time, since there is one pulse light source, the oscillation frequencies Freq1 and Freq2 cannot be simultaneously realized, and a desired exposure result cannot be obtained as it is. In order to eliminate this drawback, the light amount ratio per pulse incident on the first and second illumination systems is changed.

【0019】図1の装置では、偏光ビームスプリッタ2
の偏光軸を回転させることにより、偏光ビームスプリッ
タ2で反射する光(p偏光)とこれを透過する光(s偏
光)との割合p:sを連続的に可変する。図2を参照し
て、露光条件計算結果がFreq1=Freq2でない
場合には、偏光ビームスプリッタ2をその法線を軸とし
て、その偏光特性がp:s=Freq1:Freq2と
なる位置まで回転させる。そして、パルス光源1の発振
周波数Freqをs0 ×Freq2/sに設定し、それ
ぞれの照明系で用いるNDフィルタの番号もiおよびj
のものに設定して処理を終了する。ここで、p0 :s0
は上記Freq1およびFreq2を算出した際の前提
条件となるp偏光とs偏光の割合であり、p0 +s0
p+s=100とする。s0 :p0 は例えば50:50
に設定する。なお、各照明系で用いるNDフィルタは図
3の計算処理が終了した時点でそれぞれ番号iおよびj
のものに設定するようにしてもよい。
In the apparatus shown in FIG. 1, the polarizing beam splitter 2
, The ratio p: s of the light (p-polarized light) reflected by the polarization beam splitter 2 and the light (s-polarized light) transmitted therethrough is continuously varied. Referring to FIG. 2, when the calculation result of the exposure condition is not Freq1 = Freq2, the polarization beam splitter 2 is rotated around its normal line to a position where its polarization characteristic becomes p: s = Freq1: Freq2. Then, the oscillation frequency Freq of the pulse light source 1 is set to s 0 × Freq2 / s, and the numbers of the ND filters used in the respective illumination systems are i and j.
And terminate the process. Here, p 0 : s 0
Is the ratio of p-polarized light to s-polarized light, which is a prerequisite when calculating Freq1 and Freq2, and p 0 + s 0 =
Let p + s = 100. s 0 : p 0 is, for example, 50:50
Set to. The ND filters used in each illumination system have numbers i and j at the time when the calculation process of FIG.
May be set.

【0020】第2の実施例 図6は本発明の第2の実施例に係る走査型多重露光装置
の構成を示す。同図の装置は、図1のものに対し、偏光
ビームスプリッタ2をハーフミラー20に置き換え、第
2の照明系の光路中に透過率を連続的に可変できる減光
手段16を付加したものである。減光手段16として
は、透過率が連続的に変化する連続型NDフィルタを用
いている。
Second Embodiment FIG. 6 shows the configuration of a scanning multiple exposure apparatus according to a second embodiment of the present invention. The device shown in the figure is different from the device shown in FIG. 1 in that the polarizing beam splitter 2 is replaced by a half mirror 20, and a dimming means 16 capable of continuously changing the transmittance in the optical path of the second illumination system is added. is there. As the dimming means 16, a continuous ND filter whose transmittance continuously changes is used.

【0021】図7は図6の装置における露光条件設定処
理を示す。同図の処理において、ステップS1〜S5の
処理は図2におけるステップS1〜S5の処理と全く同
様に行なわれる。ステップS4における判定の結果、F
req1=Freq2でなければ、ステップS11にお
いて、Freq1とFreq2の大小を判定する。もし
Freq1の方が大きければ、連続型NDフィルタ16
の透過率をFreq2/Freq1に設定した後、パル
ス光源1の発信周波数FreqをFreq1に設定し、
それぞれの照明系で用いるNDフィルタの番号もiおよ
びjのものに設定する。一方、Freq2の方が大きけ
れば、連続型NDフィルタ16の透過率を(Freq2
×Nd2[j])/(Freq1×Nd2[j−1])
に設定し、第1の照明系のNDフィルタは番号iのもの
に、第2の照明系のNDフィルタを計算された番号jよ
りも透過率が1段大きいNd2[j−1]を有する番号
j−1のものに設定または切り替えた後、パルス光源1
の発信周波数FreqをFreq1に設定する。
FIG. 7 shows an exposure condition setting process in the apparatus shown in FIG. In the process of FIG. 7, the processes of steps S1 to S5 are performed in exactly the same manner as the processes of steps S1 to S5 in FIG. As a result of the determination in step S4, F
If req1 is not equal to Freq2, the magnitude of Freq1 and Freq2 is determined in step S11. If Freq1 is larger, continuous ND filter 16
Is set to Freq2 / Freq1, the transmission frequency Freq of the pulse light source 1 is set to Freq1,
The number of the ND filter used in each illumination system is also set to i and j. On the other hand, if Freq2 is larger, the transmittance of the continuous ND filter 16 is set to (Freq2
× Nd2 [j]) / (Freq1 × Nd2 [j-1])
, The ND filter of the first illumination system has the number i, and the ND filter of the second illumination system has the number Nd2 [j-1] that is one step larger than the calculated number j. After setting or switching to j−1, the pulse light source 1
Is set to Freq1.

【0022】第3の実施例 図8は本発明の第3の実施例に係る静止型多重露光装置
の構成を示す。同図において、1は光源、例えばKrF
エキシマレーザのようなパルス光源である。2は偏光ビ
ームスプリッタ、3,4は減光フィルタ、5,7はハー
フミラー、6,8は光量センサ、9,10は照明光学
系、11,12はレチクル、13はビームスプリッタ、
14は投影レンズ、15はウエハである。ビームスプリ
ッタ13はレチクル11および12のパターン像をそれ
ぞれ投影レンズ14を介してウエハ15上の隣接する2
つのショット位置に投影させるためのものである。図8
の装置においては、ウエハ15をステップ移動させなが
らウエハ15上の各隣接する2ショット位置でパルス光
源1を発光させるステップアンドリピートによってその
2ショットにレチクル11および12のパターン像を露
光する。したがって、例えばレチクル11および12の
パターン像の配列方向に1ショットずつずらしながら露
光すると、2回の露光で両端のショットを除く各ショッ
トにレチクル11のパターン像とレチクル12のパター
ン像を重ねて露光(二重露光)することや、2つのレチ
クルパターンを1つのショットに同時に露光することが
できる。なお、レチクルステージはZ方向(光軸に平行
な方向)に移動し、レチクル11,12のフォーカス差
を補正する仕組みも具備している。
Third Embodiment FIG. 8 shows the configuration of a static multiple exposure apparatus according to a third embodiment of the present invention. In the figure, 1 is a light source, for example, KrF
It is a pulse light source such as an excimer laser. 2 is a polarization beam splitter, 3 and 4 are dimming filters, 5 and 7 are half mirrors, 6 and 8 are light quantity sensors, 9 and 10 are illumination optical systems, 11 and 12 are reticles, 13 is a beam splitter,
14 is a projection lens, and 15 is a wafer. The beam splitter 13 converts the pattern images of the reticles 11 and 12 into two adjacent ones on a wafer 15 via a projection lens 14.
This is for projecting to one shot position. FIG.
In the apparatus described above, the pattern images of the reticles 11 and 12 are exposed on the two shots by step-and-repeat in which the pulse light source 1 emits light at two adjacent shot positions on the wafer 15 while moving the wafer 15 stepwise. Therefore, for example, if the exposure is performed while shifting one shot at a time in the arrangement direction of the pattern images of the reticles 11 and 12, the pattern image of the reticle 11 and the pattern image of the reticle 12 are superimposed on each shot excluding the shots at both ends by two exposures. (Double exposure) and two reticle patterns can be simultaneously exposed to one shot. Note that the reticle stage also has a mechanism for moving in the Z direction (a direction parallel to the optical axis) to correct the focus difference between the reticles 11 and 12.

【0023】図8の装置は従来の所謂ステッパに対し、
レチクルを2枚同時に用いること、ならびに照明系およ
びレチクルステージが2枚の各レチクルに対応して設
け、そのため、光源1からの出射する光束を光を2つの
照明系に分割するための偏光ビームスプリッタ2と、2
つの照明系およびレチクルを通過した光を投影レンズ1
4に導くためのビームスプリッタ13が設けられている
こと、さらに、各照明系ごとに露光条件を設定できるよ
うにしたことを除き、基本的に従来のステッパと同様に
構成され、同様に動作する。
The device shown in FIG. 8 is different from a conventional so-called stepper.
A polarizing beam splitter for simultaneously using two reticles and providing an illumination system and a reticle stage corresponding to each of the two reticles, so that a light beam emitted from the light source 1 is split into two illumination systems. 2 and 2
Light passing through two illumination systems and a reticle
4 is basically configured and operates in the same manner as a conventional stepper, except that a beam splitter 13 for guiding the light to the light source 4 is provided, and that an exposure condition can be set for each illumination system. .

【0024】図8の装置においても、位相シフトパター
ンなどの微細パターン(以下、ファインパターンと呼
ぶ)と所望の最小線幅のパターン(以下、ラフパターン
という)とを同一ショットに二重に露光することによ
り、ラフパターンの最小線幅で決まる例えば最小線幅
0.1μmの微細パターンを形成することができる。
In the apparatus shown in FIG. 8, a fine pattern such as a phase shift pattern (hereinafter referred to as a fine pattern) and a pattern having a desired minimum line width (hereinafter referred to as a rough pattern) are double-exposed to the same shot. Thus, a fine pattern having a minimum line width of, for example, 0.1 μm determined by the minimum line width of the rough pattern can be formed.

【0025】以下、図9および10を参照してレチクル
11および12の露光条件設定方法を説明する。ここで
は、レチクル11の露光量Dose1がレチクル12の
露光量Dose2以上(Dose1≧Dose2)であ
り、かつ減光フィルタ3,4として図1のものと同様の
複数個のNDフィルタにより透過率を離散的に切り替え
る場合について説明する。
Hereinafter, a method of setting exposure conditions for reticles 11 and 12 will be described with reference to FIGS. Here, the exposure amount Dose1 of the reticle 11 is equal to or more than the exposure amount Dose2 of the reticle 12 (Dose1 ≧ Dose2), and the transmittance is discrete by a plurality of ND filters similar to those in FIG. The case where the switching is performed will be described.

【0026】図9を参照して、露光条件設定処理を開始
し、目標光量(Dose1,Dose2)が入力される
と、照明系ごとに好ましい露光条件を算出する。図10
にその露光条件算出処理の詳細を示す。1つのショット
を露光するパルス発光の回数は、多い方が細かい調整が
利くため、露光精度の点から、設計時、最小発振パルス
数(発光回数)NMIN が実験的または理論的に定めてあ
る。
Referring to FIG. 9, the exposure condition setting process is started, and when the target light amounts (Dose1, Dose2) are input, preferred exposure conditions are calculated for each illumination system. FIG.
The details of the exposure condition calculation process are shown in FIG. The number of times of pulse emission for exposing one shot is finer as the number increases, so that the minimum number of oscillation pulses (number of times of emission) N MIN is experimentally or theoretically determined at the time of design from the viewpoint of exposure accuracy. .

【0027】図10の露光条件算出処理においては、ま
ず、一方の照明系(ここではレチクル11を照明する第
1の照明系とする)について、透過率Nd[i]のND
フィルタを用いて最適露光を行なうための発振パルス数
NTemp=Dose/(PlsDose×Nd
[i])を算出する。ここで、PlsDoseは1パル
ス当たりのノミナルな発光量であり、NDフィルタは透
過率最大のもの(i=1)から始める。算出されたNT
empが最小発振パルス数NMIN 以上であれば、このN
Tempを第1の照明系の発振パルス数の算出値(N
1)として決定する。また、第1の照明系で用いるND
フィルタの番号もそのときのiに設定する。もし、最小
発振パルス数NMIN に達していない場合は、透過率が次
に小さいNDフィルタについて、上述と同様に発振パル
ス数NTempの算出および最小発振パルス数NMIN
の比較を行なう。透過率最小のNDフィルタ(i=ND
MAX )を用いても算出発振パルス数NTempが最小発
振パルス数NMIN に足りない場合は、「解無し」と判定
してこの露光条件算出処理を終了する。第1の照明系に
ついて上述の処理を終了すると、次に第2の照明系(こ
こではレチクル12を照明する照明系とする)について
も同様にしてNTempおよびiを決定し、これらをそ
れぞれN2およびjとする。なお、上述の算出の順序は
一例であって、第1および第2の照明系のいずれが先で
も構わない。双方の照明系について、露光条件計算処理
を終了すると、図9のステップS32に戻る。
In the exposure condition calculating process shown in FIG. 10, first, the ND of the transmittance Nd [i] for one illumination system (here, the first illumination system for illuminating the reticle 11) is used.
Number of oscillation pulses NTemp = Dose / (PlsDose × Nd) for performing optimal exposure using a filter
[I]) is calculated. Here, PlsDose is a nominal light emission amount per pulse, and the ND filter starts from the one with the maximum transmittance (i = 1). Calculated NT
If em is equal to or more than the minimum oscillation pulse number N MIN , this N
Temp is calculated as the calculated value (N) of the number of oscillation pulses of the first illumination system.
Determined as 1). ND used in the first illumination system
The filter number is also set to i at that time. If the minimum oscillation pulse number N MIN has not been reached, the calculation of the oscillation pulse number NTemp and the comparison with the minimum oscillation pulse number N MIN are performed for the ND filter having the next smallest transmittance in the same manner as described above. ND filter with minimum transmittance (i = ND
If the calculated number of oscillation pulses NTemp is less than the minimum number of oscillation pulses N MIN even if MAX ) is used, it is determined that there is no solution and the exposure condition calculation process is terminated. After the above-described processing is completed for the first illumination system, NTemp and i are similarly determined for the second illumination system (here, the illumination system for illuminating the reticle 12), and these are determined as N2 and N2, respectively. j. Note that the above-described calculation order is an example, and any one of the first and second illumination systems may be used first. Upon completion of the exposure condition calculation processing for both illumination systems, the process returns to step S32 in FIG.

【0028】図9を参照して、ステップS32において
は、もし、少なくとも一方の照明系(通常、第2の照明
系)の発振パルス数算出結果が「解無し」であれば、警
報を鳴らすなど解無しエラー処理を実行してこの露光条
件設定処理を終了する。双方の照明系の発振パルス数N
1およびN2が算出されていれば、次にN1とN2を比
較する。N1=N2であれば、双方の照明系に好適な発
振パルス数が同じであるから、光源1の発振パルス数N
をN1=N2に決定する。
Referring to FIG. 9, in step S32, if the result of calculating the number of oscillation pulses of at least one of the illumination systems (usually, the second illumination system) is "no solution", an alarm is sounded. The no-solution error process is executed, and the exposure condition setting process ends. Number of oscillation pulses N of both illumination systems
If 1 and N2 have been calculated, then N1 and N2 are compared. If N1 = N2, the number of oscillation pulses suitable for both illumination systems is the same.
Is determined to be N1 = N2.

【0029】通常は、図4および5において、2つの照
明系の目標光量Dose1,Dose2から算出される
発振周波数Freq1およびFreq2について述べた
と同様に、上記発振パルス数N1およびN2についても
これらが一致することはむしろ稀であり、殆どの場合は
異なる。算出された発振パルス数N1とN2が異なる場
合には、偏光ビームスプリッタ2をその法線を軸として
回転することにより、偏光ビームスプリッタ2で反射す
る光(p偏光)とこれを透過する光(s偏光)との割合
p:sを連続的に可変する。すなわち、図9を参照し
て、ステップS34の判定がN1=N2でない場合に
は、偏光ビームスプリッタ2を回転してその偏光特性
を、p:s=p0 ×Dose1/Nd1[i]/Pls
Dose1:s0 ×Dose2/Nd2[j]/Pls
Dose2に設定する。そして、パルス光源1の発振パ
ルス数Nを(Dose1×p0 )/(PlsDose1
×p)に設定する。ここで、p0 :s0 は上記N1およ
びN2を算出した際の前提条件となるp偏光とs偏光の
割合であり、p0 +s0 =p+s=100とする。s
0 :p0 は例えば50:50に設定する。
Normally, in FIGS. 4 and 5, as with the oscillation frequencies Freq1 and Freq2 calculated from the target light amounts Dose1 and Dose2 of the two illumination systems, these coincide with the oscillation pulse numbers N1 and N2. Things are rather rare and in most cases different. When the calculated number of oscillation pulses N1 and N2 are different, the polarization beam splitter 2 is rotated about its normal line to rotate the light reflected by the polarization beam splitter 2 (p-polarized light) and the light transmitted therethrough (p-polarized light). (s-polarized light) is continuously varied. That is, referring to FIG. 9, if the determination in step S34 is not N1 = N2 has its polarization characteristics by rotating the polarization beam splitter 2, p: s = p 0 × Dose1 / Nd1 [i] / Pls
Dose1: s 0 × Dose2 / Nd2 [j] / Pls
Set to Dose2. Then, the number N of oscillation pulses of the pulse light source 1 is set to (Dose1 × p 0 ) / (PlsDose1
× p). Here, p 0 : s 0 is a ratio between p-polarized light and s-polarized light, which is a prerequisite for calculating the above N1 and N2, and it is assumed that p 0 + s 0 = p + s = 100. s
0 : p 0 is set to, for example, 50:50.

【0030】第4の実施例 図11は本発明の第4の実施例に係る静止型多重露光装
置の構成を示す。同図の装置は、図8のものに対し、偏
光ビームスプリッタ2をハーフミラー20に置き換え、
第2の照明系の光路中に透過率を連続的に可変できる減
光手段16を付加したものである。減光手段16として
は、透過率が連続的に変化する連続型NDフィルタを用
いている。
Fourth Embodiment FIG. 11 shows the configuration of a static multiple exposure apparatus according to a fourth embodiment of the present invention. The device shown in the figure is different from the device shown in FIG. 8 in that the polarization beam splitter 2 is replaced with a half mirror 20.
A light reducing means 16 capable of continuously changing the transmittance is provided in the optical path of the second illumination system. As the dimming means 16, a continuous ND filter whose transmittance continuously changes is used.

【0031】図12は図11の装置における露光条件設
定処理を示す。同図の処理において、ステップS31〜
S35の処理は図9におけるステップS31〜S35の
処理と全く同様に行なわれる。ステップS34における
判定の結果、N1=N2でなければ、ステップS41に
おいて、連続型NDフィルタ16の透過率を(PlsD
ose1×Dose2×Nd1[i])/(PlsDo
se2×Dose12×Nd2[j])に設定し、パル
ス光源1の発振パルス数をN=Dose1/(PlsD
ose1×Nd1[i])に設定し、それぞれの照明系
で用いるNDフィルタの番号もiおよびjのものに設定
する。
FIG. 12 shows an exposure condition setting process in the apparatus shown in FIG. In the process of FIG.
The processing in S35 is performed in exactly the same manner as the processing in steps S31 to S35 in FIG. If the result of determination in step S34 is that N1 is not equal to N2, in step S41, the transmittance of the continuous ND filter 16 is set to (PlsD
oose1 × Dose2 × Nd1 [i]) / (PlsDo
se2 × Dose12 × Nd2 [j]), and set the number of oscillation pulses of the pulse light source 1 to N = Dose1 / (PlsD).
(ose1 × Nd1 [i]), and the numbers of the ND filters used in the respective illumination systems are also set to i and j.

【0032】第5の実施例 図13は本発明の第5の実施例に係る静止型多重露光装
置の構成を示す。同図の装置は、図8のものに対し、偏
光ビームスプリッタ2をハーフミラー20に置き換え、
第1および第2の照明系の光路中にそれぞれシャッタ2
1,22を配置したものである。
Fifth Embodiment FIG. 13 shows the configuration of a static multiple exposure apparatus according to a fifth embodiment of the present invention. The device shown in the figure is different from the device shown in FIG. 8 in that the polarization beam splitter 2 is replaced with a half mirror 20.
A shutter 2 is provided in each of the optical paths of the first and second illumination systems.
1 and 22 are arranged.

【0033】図14は図13の装置における露光条件設
定処理を示す。同図の処理において、ステップS31〜
S35の処理は図9におけるステップS31〜S35の
処理と全く同様に行なわれる。ステップS34における
判定の結果、N1=N2でなければ、ステップS51に
おいて、パルス光源1の発振パルス数を算出された発振
パルス数N1とN2のうちの大きい方に設定する。さら
に小さい方の発振パルス数が指定された照明系の露光シ
ャッタ21または22を駆動して発振パルス数N1とN
2の差分の数のパルス光を遮光する。例えば、パルス光
源1の発振周波数を一定にして、大きいほうの発振パル
ス数の発生期間中に小さい方の発振パルス数に相当する
時間だけ露光シャッタを開くようにする。
FIG. 14 shows an exposure condition setting process in the apparatus shown in FIG. In the process of FIG.
The processing in S35 is performed in exactly the same manner as the processing in steps S31 to S35 in FIG. If the result of determination in step S34 is not N1 = N2, in step S51, the number of oscillation pulses of the pulse light source 1 is set to the larger one of the calculated number of oscillation pulses N1 and N2. By driving the exposure shutter 21 or 22 of the illumination system in which the smaller number of oscillation pulses is designated, the number of oscillation pulses N1 and N
The pulse light of the difference number of 2 is shielded. For example, the oscillation frequency of the pulse light source 1 is kept constant, and the exposure shutter is opened for a time corresponding to the smaller number of oscillation pulses during the generation period of the larger number of oscillation pulses.

【0034】デバイス生産方法の実施例 次に上記説明した投影露光装置または方法を利用したデ
バイスの生産方法の実施例を説明する。図16は微小デ
バイス(ICやLSI等の半導体チップ、液晶パネル、
CCD、薄膜磁気ヘッド、マイクロマシン等)の製造の
フローを示す。ステップ1(回路設計)ではデバイスの
パターン設計を行なう。ステップ2(マスク製作)では
設計したパターンを形成したマスクを製作する。一方、
ステップ3(ウエハ製造)ではシリコンやガラス等の材
料を用いてウエハを製造する。ステップ4(ウエハプロ
セス)は前工程と呼ばれ、上記用意したマスクとウエハ
を用いて、リソグラフィ技術によってウエハ上に実際の
回路を形成する。次のステップ5(組み立て)は後工程
と呼ばれ、ステップ4によって作製されたウエハを用い
て半導体チップ化する工程であり、アッセンブリ工程
(ダイシング、ボンディング)、パッケージング工程
(チップ封入)等の工程を含む。ステップ6(検査)で
はステップ5で作製された半導体デバイスの動作確認テ
スト、耐久性テスト等の検査を行なう。こうした工程を
経て半導体デバイスが完成し、これが出荷(ステップ
7)される。
Embodiment of Device Production Method Next, an embodiment of a device production method using the above-described projection exposure apparatus or method will be described. FIG. 16 shows a micro device (a semiconductor chip such as an IC or an LSI, a liquid crystal panel,
2 shows a flow of manufacturing a CCD, a thin-film magnetic head, a micromachine, and the like. In step 1 (circuit design), a device pattern is designed. Step 2 is a process for making a mask on the basis of the designed pattern. on the other hand,
In step 3 (wafer manufacture), a wafer is manufactured using a material such as silicon or glass. Step 4 (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by lithography using the prepared mask and wafer. The next step 5 (assembly) is called a post-process, and is a process of forming a semiconductor chip using the wafer produced in step 4, and includes processes such as an assembly process (dicing and bonding) and a packaging process (chip encapsulation). including. In step 6 (inspection), inspections such as an operation confirmation test and a durability test of the semiconductor device manufactured in step 5 are performed. Through these steps, a semiconductor device is completed and shipped (step 7).

【0035】図17は上記ウエハプロセスの詳細なフロ
ーを示す。ステップ11(酸化)ではウエハの表面を酸
化させる。ステップ12(CVD)ではウエハ表面に絶
縁膜を形成する。ステップ13(電極形成)ではウエハ
上に電極を蒸着によって形成する。ステップ14(イオ
ン打込み)ではウエハにイオンを打ち込む。ステップ1
5(レジスト処理)ではウエハに感光剤を塗布する。ス
テップ16(露光)では上記説明した露光装置または方
法によってマスクの回路パターンをウエハに焼付露光す
る。ステップ17(現像)では露光したウエハを現像す
る。ステップ18(エッチング)では現像したレジスト
像以外の部分を削り取る。ステップ19(レジスト剥
離)ではエッチングが済んで不要となったレジストを取
り除く。これらのステップを繰り返し行なうことによっ
て、ウエハ上に多重に回路パターンが形成される。
FIG. 17 shows a detailed flow of the wafer process. Step 11 (oxidation) oxidizes the wafer's surface. Step 12 (CVD) forms an insulating film on the wafer surface. Step 13 (electrode formation) forms electrodes on the wafer by vapor deposition. In step 14 (ion implantation), ions are implanted into the wafer. Step 1
In 5 (resist processing), a photosensitive agent is applied to the wafer. In step 16 (exposure), the circuit pattern of the mask is printed on the wafer by exposure using the above-described exposure apparatus or method. Step 17 (development) develops the exposed wafer. In step 18 (etching), portions other than the developed resist image are removed. In step 19 (resist stripping), unnecessary resist after etching is removed. By repeating these steps, multiple circuit patterns are formed on the wafer.

【0036】本実施例の生産方法を用いれば、従来は製
造が難しかった高集積度のデバイスを低コストに製造す
ることができる。
By using the production method of this embodiment, it is possible to produce a highly integrated device which was conventionally difficult to produce at low cost.

【0037】[0037]

【発明の効果】以上のように本発明によれば、単一の露
光光源を用いて複数のパターンを実質同時に露光するこ
とができるため、露光回数を減少させることができ、ス
ループットを向上させることができる。また、露光条件
の異なる複数種類のパターンを複数のショットに実質同
時に露光する場合であってもショットごとまたは露光ご
とに照明系の設定を変える必要がなく、この点からもス
ループットを向上させることができる。
As described above, according to the present invention, since a plurality of patterns can be exposed substantially simultaneously using a single exposure light source, the number of exposures can be reduced and the throughput can be improved. Can be. In addition, even when a plurality of types of patterns having different exposure conditions are exposed to a plurality of shots substantially simultaneously, it is not necessary to change the setting of the illumination system for each shot or for each exposure. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例に係る走査型多重露光装置
の構成図である。
FIG. 1 is a configuration diagram of a scanning multiple exposure apparatus according to an embodiment of the present invention.

【図2】 図1の装置における露光量設定処理を示すフ
ローチャートである。
FIG. 2 is a flowchart showing an exposure amount setting process in the apparatus of FIG.

【図3】 図2の処理における露光条件計算処理の詳細
を示すフローチャートである。
FIG. 3 is a flowchart showing details of an exposure condition calculation process in the process of FIG. 2;

【図4】 図3の処理で算出される露光条件の一例を示
すグラフである。
FIG. 4 is a graph showing an example of an exposure condition calculated in the process of FIG.

【図5】 図3の処理で算出される露光条件の他の例を
示すグラフである。
FIG. 5 is a graph showing another example of the exposure condition calculated in the process of FIG.

【図6】 本発明の第2の実施例に係る走査型多重露光
装置の構成図である。
FIG. 6 is a configuration diagram of a scanning multiple exposure apparatus according to a second embodiment of the present invention.

【図7】 図6の装置における露光量設定処理を示すフ
ローチャートである。
FIG. 7 is a flowchart showing an exposure amount setting process in the apparatus of FIG. 6;

【図8】 本発明の第3の実施例に係る静止型多重露光
装置の構成図である。
FIG. 8 is a configuration diagram of a static multiple exposure apparatus according to a third embodiment of the present invention.

【図9】 図8の装置における露光量設定処理を示すフ
ローチャートである。
FIG. 9 is a flowchart showing an exposure amount setting process in the apparatus of FIG. 8;

【図10】 図9の処理における露光条件計算処理の詳
細を示すフローチャートである。
FIG. 10 is a flowchart showing details of an exposure condition calculation process in the process of FIG. 9;

【図11】 本発明の第4の実施例に係る静止型多重露
光装置の構成図である。
FIG. 11 is a configuration diagram of a static multiple exposure apparatus according to a fourth embodiment of the present invention.

【図12】 図11の装置における露光量設定処理を示
すフローチャートである。
FIG. 12 is a flowchart showing an exposure amount setting process in the apparatus of FIG. 11;

【図13】 本発明の第5の実施例に係る静止型多重露
光装置の構成図である。
FIG. 13 is a configuration diagram of a static multiple exposure apparatus according to a fifth embodiment of the present invention.

【図14】 図13の装置における露光量設定処理を示
すフローチャートである。
FIG. 14 is a flowchart showing an exposure amount setting process in the apparatus of FIG.

【図15】 走査型露光装置における露光量設定の状態
を示すグラフである。
FIG. 15 is a graph showing an exposure amount setting state in the scanning exposure apparatus.

【図16】 微小デバイスの製造の流れを示す図であ
る。
FIG. 16 is a diagram showing a flow of manufacturing a micro device.

【図17】 図16におけるウエハプロセスの詳細な流
れを示す図である。
FIG. 17 is a diagram showing a detailed flow of the wafer process in FIG. 16;

【符号の説明】[Explanation of symbols]

1:光源、2:偏光ビームスプリッタ、3,4:離散的
可変型の減光フィルタ、5,7:ハーフミラー、6,
8:光量センサ、9,10:照明光学系、11,12:
レチクル、13,20:ビームスプリッタ、14:投影
レンズ、15:ウエハ、16:連続的可変型の減光フィ
ルタ、21,22:露光シャッタ。
1: light source, 2: polarizing beam splitter, 3, 4: discrete variable type neutral density filter, 5, 7: half mirror, 6,
8: light intensity sensor, 9, 10: illumination optical system, 11, 12:
Reticles, 13, 20: beam splitter, 14: projection lens, 15: wafer, 16: continuously variable neutral density filter, 21, 22: exposure shutter.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 複数のパターンを被露光基板上に実質同
時に露光する際、単一の露光光源から出射される光束を
分割して各パターンを別々の光束で照明するとともに分
割した各光束の光路中に配置された照明系によって各光
束ごとに所望の露光条件を設定することを特徴とする露
光方法。
When a plurality of patterns are exposed on a substrate to be exposed substantially simultaneously, a light beam emitted from a single exposure light source is divided, each pattern is illuminated with a separate light beam, and an optical path of each of the divided light beams is provided. An exposure method, wherein a desired exposure condition is set for each light beam by an illumination system disposed therein.
【請求項2】 前記露光条件が露光量を含み、分割され
た各光束ごとに透過率が離散的に変化する減光手段の透
過率と前記光源の出射光量とを前記所望の露光量に応じ
て算出し、各減光手段の透過率を設定し、各光束への分
割比を前記算出された出射光量の比に応じた値に設定
し、かつ前記光源の出射光量値を、前記分割比が変化し
たことによる各光束ごとの光量の前記算出された出射光
量からの変化分を補正する値に設定することを特徴とす
る請求項1記載の露光方法。
2. The method according to claim 1, wherein the exposure condition includes an exposure amount, and a transmittance of the dimming unit in which a transmittance changes discretely for each of the divided light fluxes and an output light amount of the light source according to the desired exposure amount. Calculate, set the transmittance of each dimming means, set the division ratio to each light flux to a value corresponding to the calculated ratio of the emitted light amount, and set the emission light amount value of the light source to the division ratio 2. The exposure method according to claim 1, wherein a change in the amount of light from each of the luminous fluxes due to the change in the amount of light from the calculated outgoing light amount is set to a value for correcting the amount of change.
【請求項3】 前記露光条件が露光量を含み、分割され
た各光束ごとに透過率が離散的に変化する減光手段の透
過率と前記光源の出射光量とを前記所望の露光量に応じ
て算出し、各減光手段の透過率を設定し、前記光源の出
射光量を前記分割された光束の1つについて算出された
出射光量に設定し、かつ該1つの分割光束以外の各光束
については各光束ごとにその光路中に透過率が連続的に
変化する減光手段を配置し該連続的減光手段の透過率を
各光束ごとに算出された出射光量と前記光源に設定され
た出射光量との差を補正するように設定することを特徴
とする請求項1記載の露光方法。
3. The exposure condition includes an exposure amount, and the transmittance of the dimming means whose transmittance changes discretely for each of the divided light fluxes and the output light amount of the light source are determined according to the desired exposure amount. The transmittance is set for each of the dimming means, the emission light amount of the light source is set to the emission light amount calculated for one of the divided light beams, and for each light beam other than the one split light beam. Is provided with a dimming means whose transmittance continuously changes in the optical path for each light flux, and the transmittance of the continuous dimming means is determined by the amount of emitted light calculated for each light flux and the emission set by the light source. 2. The exposure method according to claim 1, wherein the setting is made so as to correct the difference from the light amount.
【請求項4】 前記光源としてパルス光源を用い、前記
複数のパターンを形成された単数または複数の原版と前
記被露光基板とを同期して投影光学系と相対的に走査す
ることにより該被露光基板上に該複数のパターンの像を
露光する走査型投影露光方法であって、前記出射光量と
して前記光源の発振周波数を算出することを特徴とする
請求項2または3記載の投影露光方法。
4. A method according to claim 1, wherein a pulsed light source is used as the light source, and the exposure is performed by synchronously scanning one or more originals on which the plurality of patterns are formed and the substrate to be exposed relative to a projection optical system. 4. The projection exposure method according to claim 2, wherein an oscillation frequency of the light source is calculated as the amount of emitted light, the method being a scanning projection exposure method for exposing images of the plurality of patterns on a substrate.
【請求項5】 前記光源としてパルス光源を用い、前記
複数のパターンを形成された単数または複数の原版を静
止し、前記被露光基板を順次ステップ移動することによ
り該被露光基板上に該複数のパターンの像をステップア
ンドリピート露光する静止型投影露光方法であって、前
記出射光量として前記光源の発振回数を算出することを
特徴とする請求項2または3記載の投影露光方法。
5. A method according to claim 1, wherein a pulse light source is used as the light source, the one or more originals on which the plurality of patterns are formed are stopped, and the plurality of the plurality of patterns are formed on the exposed substrate by sequentially moving the exposed substrate. 4. The projection exposure method according to claim 2, wherein a static projection exposure method for performing step-and-repeat exposure of a pattern image, wherein the number of oscillations of the light source is calculated as the amount of emitted light.
【請求項6】 前記複数のパターンは、少なくとも1つ
が他のパターンと露光条件の異なる種類のパターンであ
ることを特徴とする請求項1〜5のいずれかに記載の露
光方法。
6. The exposure method according to claim 1, wherein at least one of the plurality of patterns is a type of pattern having different exposure conditions from other patterns.
【請求項7】 複数のパターンを実質同時に被露光基板
上に露光する露光装置であって、単一の露光光源から出
射される光束を複数個に分割する手段と、分割された光
束ごとに所望の露光条件を設定する照明系とを具備する
ことを特徴とする露光装置。
7. An exposure apparatus for exposing a plurality of patterns onto a substrate to be exposed substantially simultaneously, comprising: means for dividing a light beam emitted from a single exposure light source into a plurality of light beams; And an illumination system for setting the exposure conditions.
【請求項8】 前記照明系は、分割された光束ごとに、
透過率が離散的に変化する減光手段と、前記所望の露光
量に応じて該減光手段の透過率および前記光源の出射光
量を算出する手段とを備え、かつ全部の算出値に応じて
前記単一の光源の出射光量および各減光手段の透過率を
設定する手段を有することを特徴とする請求項7記載の
露光装置。
8. The illumination system according to claim 1, wherein
A dimming means whose transmittance changes discretely, and a means for calculating the transmissivity of the dimming means and the emission light amount of the light source according to the desired exposure amount, and according to all the calculated values 8. An exposure apparatus according to claim 7, further comprising means for setting the amount of light emitted from said single light source and the transmittance of each light reducing means.
【請求項9】 前記設定手段は、前記各減光手段ごとに
算出された透過率を設定する透過率設定手段と、各光束
への分割比を前記算出された出射光量の比に応じた値に
設定する分割比設定手段と、前記光源の出射光量を、該
分割比が変化したことによる各光束ごとの光量の前記算
出された出射光量からの変化分を補償する値に設定する
出射光量設定手段とを有することを特徴とする請求項8
記載の露光装置。
9. The transmittance setting means for setting a transmittance calculated for each of the dimming means, and a dividing ratio for each light flux according to a ratio of the calculated emitted light amount. And an emission light amount setting for setting the emission light amount of the light source to a value that compensates for a change from the calculated emission light amount of the light amount for each light beam due to a change in the division ratio. And means.
Exposure apparatus according to the above.
【請求項10】 前記設定手段は、少なくとも前記分割
された光束のうち主たる光束以外の各光束の光路中に配
置され透過率が連続的に変化する連続型減光手段と、前
記各離散型減光手段ごとに算出された透過率を設定する
離散型透過率設定手段と、前記光源の出射光量を前記主
たる光束について算出された出射光量に設定する出射光
量設定手段と、前記主たる光束以外の各光束について算
出された出射光量と前記主たる光束について算出された
出射光量との差を補償すべく前記連続型減光手段の透過
率を可変する光量補償手段とを有することを特徴とする
請求項8記載の露光装置。
10. The continuous type dimming means which is arranged in at least the optical path of each light beam other than the main light beam among the divided light beams and whose transmittance continuously changes, and wherein each of the discrete type light reducing devices is provided. Discrete transmittance setting means for setting the transmittance calculated for each light means, emission light quantity setting means for setting the emission light quantity of the light source to the emission light quantity calculated for the main light flux, and each of the light fluxes other than the main light flux 9. A light amount compensating means for varying the transmittance of the continuous type dimming means so as to compensate for a difference between the outgoing light amount calculated for the light beam and the outgoing light amount calculated for the main light beam. Exposure apparatus according to the above.
【請求項11】 前記光源がパルス光源であり、前記複
数のパターンを形成された単数または複数の原版と前記
被露光基板とを同期して投影光学系と相対的に走査する
ことにより該被露光基板上に該複数のパターンの像を露
光する走査型投影露光装置であって、前記出射光量設定
手段は、前記光源の発振周波数を設定することを特徴と
する請求項9または10記載の露光装置。
11. The exposure apparatus according to claim 1, wherein the light source is a pulse light source, and the exposure is performed by synchronously scanning one or more masters on which the plurality of patterns are formed and the substrate to be exposed relative to a projection optical system. 11. The exposure apparatus according to claim 9, wherein the scanning projection exposure apparatus exposes the images of the plurality of patterns on a substrate, wherein the emission light amount setting unit sets an oscillation frequency of the light source. .
【請求項12】 前記光源がパルス光源であり、前記複
数のパターンを形成された単数または複数の原版を静止
し、前記被露光基板を順次ステップ移動することにより
該複数のパターンの像を該被露光基板上にステップアン
ドリピート露光する静止型投影露光装置であって、前記
出射光量として前記光源の発振回数を算出することを特
徴とする請求項9または10記載の投影露光装置。
12. The method according to claim 11, wherein the light source is a pulsed light source, and the one or more originals on which the plurality of patterns are formed are stopped, and the images of the plurality of patterns are formed by sequentially moving the substrate to be exposed. 11. The projection exposure apparatus according to claim 9, wherein the projection exposure apparatus is a static projection exposure apparatus that performs step-and-repeat exposure on an exposure substrate, wherein the number of oscillations of the light source is calculated as the amount of emitted light.
【請求項13】 前記複数のパターンは、少なくとも1
つが他のパターンと露光条件の異なる種類のパターンで
あることを特徴とする請求項7〜12のいずれかに記載
の露光方法。
13. The method according to claim 13, wherein the plurality of patterns are at least one.
13. The exposure method according to claim 7, wherein one of the patterns is a pattern of a type having different exposure conditions from the other patterns.
【請求項14】 請求項1〜6のいずれかに記載の露光
方法または請求項7〜13のいずれかに記載の露光装置
を用いてデバイスを製造することを特徴とするデバイス
製造方法。
14. A device manufacturing method, wherein a device is manufactured using the exposure method according to claim 1 or the exposure apparatus according to claim 7.
【請求項15】 請求項14に記載のデバイス製造方法
により製造されたことを特徴とするデバイス。
15. A device manufactured by the device manufacturing method according to claim 14.
JP10198104A 1998-06-30 1998-06-30 Method of exposure and exposure equipment Pending JP2000021742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10198104A JP2000021742A (en) 1998-06-30 1998-06-30 Method of exposure and exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10198104A JP2000021742A (en) 1998-06-30 1998-06-30 Method of exposure and exposure equipment

Publications (1)

Publication Number Publication Date
JP2000021742A true JP2000021742A (en) 2000-01-21

Family

ID=16385563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10198104A Pending JP2000021742A (en) 1998-06-30 1998-06-30 Method of exposure and exposure equipment

Country Status (1)

Country Link
JP (1) JP2000021742A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133201A (en) * 2001-10-19 2003-05-09 Advanced Lcd Technologies Development Center Co Ltd Optical recording apparatus and its method
JP2005268781A (en) * 2004-03-16 2005-09-29 Carl Zeiss Smt Ag Multiple exposure method, microlithographic projection aligner, and projection system
KR100729263B1 (en) * 2005-07-14 2007-06-15 삼성전자주식회사 Substrate exposure apparatus
WO2007077875A1 (en) * 2005-12-28 2007-07-12 Nikon Corporation Exposure apparatus, exposure method, and device production method
JP2007201457A (en) * 2005-12-28 2007-08-09 Nikon Corp Exposure apparatus, exposure method, and device production method
WO2007094414A1 (en) * 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
WO2007094431A1 (en) * 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
WO2007094407A1 (en) * 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
JP2007251151A (en) * 2006-02-16 2007-09-27 Nikon Corp Exposure apparatus, exposure method and method of manufacturing device
WO2007108414A1 (en) * 2006-03-17 2007-09-27 Nikon Corporation Exposure apparatus and device production method
WO2007119466A1 (en) * 2006-04-14 2007-10-25 Nikon Corporation Exposure device, device-manufacturing method, and exposing method
JP2007287760A (en) * 2006-04-12 2007-11-01 Nikon Corp Illumination optical device, projection aligner, projection optical system and device manufacturing method
JP2007294813A (en) * 2006-04-27 2007-11-08 Nikon Corp Measurement and test method, measurement and test device, exposure device, and device manufacturing processing apparatus
JP2007318069A (en) * 2005-12-06 2007-12-06 Nikon Corp Exposure apparatus, exposure method, device producing method, and projection optical system
WO2008004654A1 (en) * 2006-07-07 2008-01-10 Nikon Corporation Illuminating optical apparatus, exposure apparatus and device manufacturing method
KR100832901B1 (en) 2005-12-20 2008-05-28 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus and device manufacturing method using multiple exposures and multiple exposure types
JPWO2008001593A1 (en) * 2006-06-30 2009-11-26 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
JPWO2008007633A1 (en) * 2006-07-12 2009-12-10 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
US7714982B2 (en) 2006-02-16 2010-05-11 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US7782442B2 (en) 2005-12-06 2010-08-24 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device producing method
US7884921B2 (en) 2006-04-12 2011-02-08 Nikon Corporation Illumination optical apparatus, projection exposure apparatus, projection optical system, and device manufacturing method
US7916270B2 (en) 2006-03-03 2011-03-29 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8023103B2 (en) 2006-03-03 2011-09-20 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8305559B2 (en) 2008-06-10 2012-11-06 Nikon Corporation Exposure apparatus that utilizes multiple masks
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8736813B2 (en) 2008-08-26 2014-05-27 Nikon Corporation Exposure apparatus with an illumination system generating multiple illumination beams
US9195069B2 (en) 2006-04-17 2015-11-24 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133201A (en) * 2001-10-19 2003-05-09 Advanced Lcd Technologies Development Center Co Ltd Optical recording apparatus and its method
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8634060B2 (en) 2004-03-16 2014-01-21 Carl Zeiss Smt Gmbh Method for a multiple exposure, microlithography projection exposure installation and a projection system
US7875418B2 (en) 2004-03-16 2011-01-25 Carl Zeiss Smt Ag Method for a multiple exposure, microlithography projection exposure installation and a projection system
JP2011029655A (en) * 2004-03-16 2011-02-10 Carl Zeiss Smt Gmbh Multi-exposure method, microlithography projection exposure apparatus, and projection system
JP2005268781A (en) * 2004-03-16 2005-09-29 Carl Zeiss Smt Ag Multiple exposure method, microlithographic projection aligner, and projection system
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
KR100729263B1 (en) * 2005-07-14 2007-06-15 삼성전자주식회사 Substrate exposure apparatus
JP2007318069A (en) * 2005-12-06 2007-12-06 Nikon Corp Exposure apparatus, exposure method, device producing method, and projection optical system
US7782442B2 (en) 2005-12-06 2010-08-24 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device producing method
KR100832901B1 (en) 2005-12-20 2008-05-28 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus and device manufacturing method using multiple exposures and multiple exposure types
US7932994B2 (en) 2005-12-28 2011-04-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
WO2007077875A1 (en) * 2005-12-28 2007-07-12 Nikon Corporation Exposure apparatus, exposure method, and device production method
JP2007201457A (en) * 2005-12-28 2007-08-09 Nikon Corp Exposure apparatus, exposure method, and device production method
WO2007094407A1 (en) * 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
US8390779B2 (en) 2006-02-16 2013-03-05 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
WO2007094431A1 (en) * 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
JP2007251151A (en) * 2006-02-16 2007-09-27 Nikon Corp Exposure apparatus, exposure method and method of manufacturing device
WO2007094414A1 (en) * 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
US8027020B2 (en) 2006-02-16 2011-09-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2007251152A (en) * 2006-02-16 2007-09-27 Nikon Corp Exposure apparatus, exposure method and method of manufacturing device
US7714982B2 (en) 2006-02-16 2010-05-11 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JP2007251153A (en) * 2006-02-16 2007-09-27 Nikon Corp Exposure apparatus, exposure method and method of manufacturing device
US7916270B2 (en) 2006-03-03 2011-03-29 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8023103B2 (en) 2006-03-03 2011-09-20 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
WO2007108414A1 (en) * 2006-03-17 2007-09-27 Nikon Corporation Exposure apparatus and device production method
US8982322B2 (en) 2006-03-17 2015-03-17 Nikon Corporation Exposure apparatus and device manufacturing method
US7884921B2 (en) 2006-04-12 2011-02-08 Nikon Corporation Illumination optical apparatus, projection exposure apparatus, projection optical system, and device manufacturing method
JP2007287760A (en) * 2006-04-12 2007-11-01 Nikon Corp Illumination optical device, projection aligner, projection optical system and device manufacturing method
WO2007119466A1 (en) * 2006-04-14 2007-10-25 Nikon Corporation Exposure device, device-manufacturing method, and exposing method
US9195069B2 (en) 2006-04-17 2015-11-24 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2007294813A (en) * 2006-04-27 2007-11-08 Nikon Corp Measurement and test method, measurement and test device, exposure device, and device manufacturing processing apparatus
JPWO2008001593A1 (en) * 2006-06-30 2009-11-26 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
JP5105316B2 (en) * 2006-07-07 2012-12-26 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
WO2008004654A1 (en) * 2006-07-07 2008-01-10 Nikon Corporation Illuminating optical apparatus, exposure apparatus and device manufacturing method
US8223318B2 (en) 2006-07-07 2012-07-17 Nikon Corporation Illuminating optical apparatus, exposure apparatus and device manufacturing method
JPWO2008007633A1 (en) * 2006-07-12 2009-12-10 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8305559B2 (en) 2008-06-10 2012-11-06 Nikon Corporation Exposure apparatus that utilizes multiple masks
US8736813B2 (en) 2008-08-26 2014-05-27 Nikon Corporation Exposure apparatus with an illumination system generating multiple illumination beams

Similar Documents

Publication Publication Date Title
JP2000021742A (en) Method of exposure and exposure equipment
JP3969855B2 (en) Exposure method and exposure apparatus
US7095481B2 (en) Exposure method and apparatus
JP2940553B2 (en) Exposure method
JP2000021748A (en) Method of exposure and exposure equipment
KR20040050884A (en) Exposure apparatus and method
JP2009117801A (en) Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
JPH11143085A (en) Exposure method and exposure system
KR20080068006A (en) Exposure apparatus, exposure method and device manufacturing method
JP2001297976A (en) Method of exposure and aligner
JP2010004008A (en) Optical unit, illumination optical device, exposure apparatus, exposure method and production process of device
JP2006324664A (en) Lithographic apparatus and device manufacturing method
US20040248043A1 (en) Exposure method, exposure apparatus and device manufacturing method
JP3123548B2 (en) Exposure method and exposure apparatus
WO1999034417A1 (en) Exposure method and exposure apparatus
TW200809919A (en) Exposure apparatus
JP3647272B2 (en) Exposure method and exposure apparatus
JP2000021720A (en) Exposure method and manufacture of aligner
JP3296296B2 (en) Exposure method and exposure apparatus
JP2000021716A (en) Exposure device and device manufacturing method using the exposure device
JP2001007020A (en) Exposure method and aligner
JP2000031028A (en) Exposure method and exposure apparatus
JP3647270B2 (en) Exposure method and exposure apparatus
JP2009043933A (en) Exposure system, adjusting method, exposure method, and method for manufacturing device
JP2000021761A (en) Exposure method and apparatus