JP2001007020A - Exposure method and aligner - Google Patents

Exposure method and aligner

Info

Publication number
JP2001007020A
JP2001007020A JP2000158941A JP2000158941A JP2001007020A JP 2001007020 A JP2001007020 A JP 2001007020A JP 2000158941 A JP2000158941 A JP 2000158941A JP 2000158941 A JP2000158941 A JP 2000158941A JP 2001007020 A JP2001007020 A JP 2001007020A
Authority
JP
Japan
Prior art keywords
exposure
pattern
beam interference
projection
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000158941A
Other languages
Japanese (ja)
Other versions
JP2001007020A5 (en
Inventor
Mitsuo Sugita
充朗 杉田
Akiyoshi Suzuki
章義 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000158941A priority Critical patent/JP2001007020A/en
Publication of JP2001007020A publication Critical patent/JP2001007020A/en
Publication of JP2001007020A5 publication Critical patent/JP2001007020A5/ja
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form a pattern, having a complicated shape on a wafer by using two exposure methods which are the two-beam interference exposure method and a normal exposure method. SOLUTION: When a photosensitive substrate is subjected to normal exposure after the substrate is subjected to two-beam interference exposure, a multilevel exposure distribution is given to the substrate. Here by 'multileverl' is meant that the exposure given to the substrate is not a binary value (two kinds, including the case where the exposure is zero), but a ternary or higher value (three or more kinds, including the case where the exposure is zero). Here 'normal exposure' means an exposure where it can be made in various patterns, which are different from those of the two beam interference exposure even through the resolution is lower than the that of two-beam interference exposure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,露光方法及び露光
装置に関し、特に微細な回路パタ−ンを感光基板上に露
光する露光方法および露光装置に関し、本発明の露光方
法及び露光装置は、例えばIC,LSI等の半導体チッ
プ、液晶パネル等の表示素子、磁気ヘッド等の検出素
子、CCD等の撮像素子といった各種デバイスの製造に
用いられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure method and an exposure apparatus, and more particularly to an exposure method and an exposure apparatus for exposing fine circuit patterns on a photosensitive substrate. It is used for manufacturing various devices such as semiconductor chips such as ICs and LSIs, display elements such as liquid crystal panels, detection elements such as magnetic heads, and image pickup elements such as CCDs.

【0002】[0002]

【従来の技術】従来より、IC、LSI、液晶パネル等のデ
バイスをフォトリソグラフィ−技術を用いて製造する時
には、フォトマスク又はレチクル等(以下、「マスク」
と記す。)の回路パタ−ンを投影光学系によってフォト
レジスト等が塗布されたシリコンウエハ又はガラスプレ
−ト等(以下、「ウエハ」と記す。)の感光基板上に投
影し、そこに転写する(露光する)投影露光方法及び投
影露光装置が使用されている。
2. Description of the Related Art Conventionally, when manufacturing devices such as ICs, LSIs, and liquid crystal panels using photolithography technology, a photomask or a reticle (hereinafter, referred to as a “mask”) is used.
It is written. The circuit pattern is projected onto a photosensitive substrate such as a silicon wafer or a glass plate (hereinafter, referred to as a "wafer") coated with a photoresist or the like by a projection optical system and transferred (exposed) there. 2.) A projection exposure method and a projection exposure apparatus are used.

【0003】上記デバイスの高集積化に対応して、ウエ
ハに転写するパタ−ンの微細化即ち高解像度化とウエハ
における1チップの大面積化とが要求されており、従っ
てウエハに対する微細加工技術の中心を成す上記投影露
光方法及び投影露光装置においても、現在、0.5μm以
下の寸法(線幅)の像を広範囲に形成するべく、解像度
と露光面積の向上が計られている。
In response to the high integration of the above-mentioned devices, there is a demand for a fine pattern, ie, a high resolution, to be transferred to a wafer and a large area of one chip on the wafer. In the above-mentioned projection exposure method and projection exposure apparatus, which are the center of the above, improvement in resolution and exposure area is being attempted to form an image having a dimension (line width) of 0.5 μm or less over a wide range.

【0004】従来の投影露光装置の摸式図を図19に示
す。図19中,191は遠紫外線露光用光源であるエキシ
マ−レ−ザ、192は照明光学系、193は照明光、194はマ
スク、195はマスク1944から出て光学系196に入射する
物体側露光光、196は縮小投影光学系、197は光学系196
から出て基板198に入射する像側露光光、198は感光基板
であるウエハ、199は感光基板を保持する基板ステージ
を、示す。
FIG. 19 shows a schematic view of a conventional projection exposure apparatus. In FIG. 19, reference numeral 191 denotes an excimer laser which is a light source for exposure to far ultraviolet rays, 192 denotes an illumination optical system, 193 denotes illumination light, 194 denotes a mask, and 195 denotes an object side exposure which exits from the mask 1944 and enters the optical system 196. Light, 196 is reduction projection optical system, 197 is optical system 196
198 denotes a wafer which is a photosensitive substrate, and 199 denotes a substrate stage for holding the photosensitive substrate.

【0005】エキシマレ−ザ191から出射したレ−ザ光
は、引き回し光学系によって照明光学系192に導光さ
れ、投影光学系192により所定の光強度分布、配光分
布、開き角(開口数NA)等を持つ照明光193となるよ
うに調整され、マスク194を照明する。マスク194にはウ
エハ198上に形成する微細パタ−ンを投影光学系192の投
影倍率の逆数倍(例えば2倍や4倍や5倍)した寸法のパ
ターンがクロム等によって石英基板上に形成されてお
り、照明光193はマスク194の微細パターンによって透過
回折され、物体側露光光195となる。投影光学系196は、
物体側露光光195を、マスク194の微細パターンを上記投
影倍率で且つ充分小さな収差でウエハ198上に結像する
像側露光光197に変換する。像側露光光197は図19の下部
の拡大図に示されるように、所定の開口数NA (=sinθ
)でウエハ198上に収束し,ウエハ198上に微細パターン
の像を結ぶ。基板ステ−ジ199は、ウエハ198の互いに異
なる複数の領域(ショット領域:1個又は複数のチップ
となる領域)に順次微細パタ−ンを形成する場合に、投
影光学系の像平面に沿ってステップ移動することにより
ウエハ198の投影光学系196に対する位置を変える。
The laser light emitted from the excimer laser 191 is guided to an illumination optical system 192 by a drawing optical system, and a predetermined light intensity distribution, a light distribution, and an opening angle (numerical aperture NA) are projected by a projection optical system 192. ) Is adjusted so as to become the illumination light 193, and illuminates the mask 194. On the mask 194, a pattern having a size obtained by reversing a fine pattern to be formed on the wafer 198 by a reciprocal number (for example, 2, 4, or 5 times) of the projection magnification of the projection optical system 192 is formed on a quartz substrate by chrome or the like. The illumination light 193 is transmitted and diffracted by the fine pattern of the mask 194, and becomes the object side exposure light 195. The projection optical system 196 is
The object-side exposure light 195 is converted into image-side exposure light 197 that forms a fine pattern on the mask 194 on the wafer 198 at the above-described projection magnification and with sufficiently small aberration. As shown in the enlarged view at the bottom of FIG. 19, the image-side exposure light 197 has a predetermined numerical aperture NA (= sin θ).
) Converges on the wafer 198 to form an image of a fine pattern on the wafer 198. The substrate stage 199 is formed along the image plane of the projection optical system when a fine pattern is sequentially formed in a plurality of different areas (shot areas: areas forming one or more chips) of the wafer 198. The position of the wafer 198 with respect to the projection optical system 196 is changed by the step movement.

【0006】しかしながら、現在主流の上記のエキシマ
レーザを光源とする投影露光装置は,0.15μm以下のパ
タ−ンを形成することが困難である。
However, it is difficult for a projection exposure apparatus using the above-described excimer laser as a light source to form a pattern of 0.15 μm or less.

【0007】投影光学系196は、露光(に用いる)波長
に起因する光学的な解像度と焦点深度との間のトレ−ド
オフによる解像度の限界がある。投影露光装置による解
像パタ−ンの解像度Rと焦点深度DOFは,次の(1)式
と(2)式の如きレ−リ−の式によって表される。
The projection optical system 196 has a resolution limit due to a trade-off between the optical resolution due to the exposure (used) wavelength and the depth of focus. The resolution R of the resolution pattern and the depth of focus DOF by the projection exposure apparatus are expressed by the following relay equations such as equations (1) and (2).

【0008】 R=k1(λ/NA) ……(1) DOF=k2(λ/NA2) ……(2) ここで、λは露光波長、NAは投影光学系196の明るさを
表す像側の開口数、k1、k2はウエハ198の現像プロセ
ス特性等によって決まる定数であり,通常0.5〜0.7程度
の値である。この(1)式と(2)式から、解像度Rを小さい
値とする高解像度化には開口数NAを大きくする「高NA
化」があるが、実際の露光では投影光学系196の焦点深
度DOFをある程度以上の値にする必要があるため、高NA
化をある程度以上進めることは不可能となることと、高
解像度化には結局露光波長λを小さくする「短波長化」
が必要となることとが分かる。
R = k 1 (λ / NA) (1) DOF = k 2 (λ / NA 2 ) (2) where λ is the exposure wavelength, and NA is the brightness of the projection optical system 196. The numerical aperture on the image side, k 1 , and k 2, which are represented, are constants determined by the development process characteristics of the wafer 198 and the like, and are usually about 0.5 to 0.7. From Equations (1) and (2), it can be seen from the equations (1) and (2) that the numerical aperture NA should be increased by increasing the numerical aperture NA to increase the resolution R to a small value.
However, in actual exposure, the depth of focus DOF of the projection optical system 196 needs to be set to a certain value or more, so a high NA
It is not possible to advance the process beyond a certain level, and to increase the resolution, the exposure wavelength λ is eventually reduced.
Is required.

【0009】ところが短波長化を進めていくと重大な問
題が発生する。この問題とは投影光学系196のレンズの
硝材がなくなってしまうことである。殆どの硝材の透過
率は遠紫外線領域では0に近く、特別な製造方法を用い
て露光装置用(露光波長約248nm)に製造された硝材と
して溶融石英が現存するが,この溶融石英の透過率も波
長193nm以下の露光波長に対しては急激に低下するし,
0.15μm以下の微細パタ−ンに対応する露光波長150nm
以下の領域では実用的な硝材の開発は非常に困難であ
る。また遠紫外線領域で使用される硝材は、透過率以外
にも、耐久性,屈折率均一性,光学的歪み,加工性等の
複数条件を満たす必要があり、この事から、実用的な硝
材の存在が危ぶまれている。
However, as the wavelength becomes shorter, a serious problem arises. This problem is that the glass material of the lens of the projection optical system 196 runs out. The transmittance of most glass materials is close to 0 in the deep ultraviolet region, and fused quartz currently exists as a glass material manufactured for exposure equipment (exposure wavelength: about 248 nm) using a special manufacturing method. Also decreases sharply for exposure wavelengths below 193 nm,
Exposure wavelength 150nm corresponding to fine pattern of 0.15μm or less
In the following areas, it is very difficult to develop a practical glass material. In addition, the glass material used in the deep ultraviolet region must satisfy various conditions such as durability, uniformity of refractive index, optical distortion, workability, etc., in addition to transmittance. Existence is at stake.

【0010】このように従来の投影露光方法及び投影露
光装置では、ウエハ198に0.15μm以下のパタ−ンを形
成する為には150nm程度以下まで露光波長の短波長化
が必要であるのに対し、この波長領域では実用的な硝材
が存在しないので、ウエハ198に0.15μm以下のパター
ンを形成することができなかった。
As described above, in the conventional projection exposure method and projection exposure apparatus, in order to form a pattern of 0.15 μm or less on the wafer 198, it is necessary to shorten the exposure wavelength to about 150 nm or less. Since there is no practical glass material in this wavelength region, a pattern of 0.15 μm or less cannot be formed on the wafer 198.

【0011】米国特許第5415835号公報は2光束干渉露光
によって微細パターンを形成する技術を開示しおり、2
光束干渉露光によれば、ウエハに0.15μm以下のパター
ンを形成することができる。
US Pat. No. 5,415,835 discloses a technique for forming a fine pattern by two-beam interference exposure.
According to the light beam interference exposure, a pattern of 0.15 μm or less can be formed on the wafer.

【0012】2光束干渉露光の原理を図15を用いて説明
する。2光束干渉露光は、レーザ151からの可干渉性を有
し且つ平行光線束であるレーザ光をハーフミラー152に
よって2光束に分割し、2光束を夫々平面ミラー153に
よって反射することにより2個のレーザ光(可干渉性平
行光線束)を0より大きく90度未満のある角度を成して
交差させることにより交差部分に干渉縞を形成し、この
干渉縞(の光強度分布)によってウエハ154を露光して
感光させることで干渉縞の光強度分布に応じた微細な周
期パタ−ンをウエハに形成するものである。
The principle of two-beam interference exposure will be described with reference to FIG. The two-beam interference exposure is performed by dividing a laser beam having coherence from the laser 151 and being a parallel beam into two beams by a half mirror 152 and reflecting the two beams by a plane mirror 153, respectively. The laser beam (coherent parallel light beam) crosses at an angle greater than 0 and less than 90 degrees to form an interference fringe at the intersection, and the wafer 154 is formed by the interference fringe (light intensity distribution). By exposing and exposing, a fine periodic pattern according to the light intensity distribution of the interference fringes is formed on the wafer.

【0013】2光束がウエハ面の立てた垂線に対して互
いに逆方向に同じ角度だけ傾いた状態でウエハ面で交差
する場合、この2光束干渉露光における解像度Rは次の
(3)式で表される。
When the two light beams intersect on the wafer surface in the opposite direction to the vertical line of the wafer surface at the same angle in the opposite direction, the resolution R in the two light beam interference exposure is expressed by the following equation (3). Is done.

【0014】 ここで、RはL&S(ライン・アンド・スペース)の夫々の幅
即ち干渉縞の明部と暗部の夫々の幅を、θは2光束の夫
々の像面に対する入射角度(絶対値)を表し、NA=sinθ
である。
[0014] Here, R represents the width of each of L & S (line and space), that is, the width of each of the bright and dark portions of the interference fringes, and θ represents the incident angle (absolute value) of each of the two light beams with respect to each image plane, NA = sinθ
It is.

【0015】通常の投影露光における解像度の式である
(1)式と2光束干渉露光における解像度の式である(3)
式とを比較すると、2光束干渉露光の解像度Rは(1)
式においてk1 = 0.25とした場合に相当するから、2光
束干渉露光では k1=0.5〜0.7である通常の投影露光の
解像度より2倍以上の解像度を得ることが可能である。
上記米国特許には開示されていないが、例えばλ= 0.24
8nm(KrFエキシマ)でNA = 0.6の時は、R =0.10μ
mが得られる。
Expression for resolution in normal projection exposure
Equation (1) and equation for resolution in two-beam interference exposure (3)
Comparing with the equation, the resolution R of the two-beam interference exposure is (1)
Since this corresponds to the case where k 1 = 0.25 in the equation, it is possible to obtain a resolution twice or more as high as that of a normal projection exposure in which k 1 = 0.5 to 0.7 in two-beam interference exposure.
Although not disclosed in the above U.S. patent, for example, λ = 0.24
When NA = 0.6 at 8 nm (KrF excimer), R = 0.10μ
m is obtained.

【0016】[0016]

【発明が解決しようとしている課題】しかしながら2光
束干渉露光は、基本的に干渉縞の光強度分布(露光量分
布)に相当する単純な縞パターンしか得られないので、
所望の形状の回路パタ−ンをウエハに形成することがで
きない。
However, the two-beam interference exposure basically obtains only a simple fringe pattern corresponding to the light intensity distribution (exposure amount distribution) of the interference fringes.
A circuit pattern having a desired shape cannot be formed on a wafer.

【0017】そこで上記米国特許第5415835号公報は、2
光束干渉露光によって単純な縞パターン即ち2値的な露
光量分布をウエハ(のレジスト)に与えた後、ある開口
が形成されたマスクを用いて通常リソグラフィー(露
光)を行なって更に別の2値的な露光量分布をウエハに
与えることにより、孤立の線(パターン)を得ることを
提案している。
The above-mentioned US Pat. No. 5,415,835 discloses that
After giving a simple fringe pattern, that is, a binary exposure amount distribution to the wafer (resist) by light beam interference exposure, a normal lithography (exposure) is performed using a mask having a certain opening, and then another binary is performed. It is proposed to obtain an isolated line (pattern) by giving a typical exposure distribution to a wafer.

【0018】しかしながら上記米国特許第5415835号公
報の露光方法は、2光束干渉露光と通常露光の2つの露光
法の夫々において通常の2値的な露光量分布しか形成し
ていないので、より複雑な形状の回路パターンを得るこ
とができなかった。
However, the exposure method disclosed in the above-mentioned US Pat. No. 5,415,835 is more complicated because only the ordinary binary exposure amount distribution is formed in each of the two exposure methods of the two-beam interference exposure and the normal exposure. A circuit pattern having a shape could not be obtained.

【0019】また、上記米国特許第5415835号公報は2光
束干渉露光と通常露光の2つの露光法を組み合わせるこ
とは開示しているが、このような組み合せを達成する露
光装置を具体的に示してはいない。
Although the above-mentioned US Pat. No. 5,415,835 discloses that two exposure methods, two-beam interference exposure and normal exposure, are combined, an exposure apparatus which achieves such a combination is specifically shown. Not.

【0020】本発明の目的は、2光束干渉露光と通常露
光の2つの露光法を用いてより複雑な形状のパタ−ンを
ウエハに形成することが可能な露光方法及び露光装置を
提供することにある。
An object of the present invention is to provide an exposure method and an exposure apparatus capable of forming a pattern having a more complicated shape on a wafer by using two exposure methods, two-beam interference exposure and normal exposure. It is in.

【0021】また本発明の他の目的は線幅0.15μm以下
の部分を備える回路パタ−ンを得ることが可能な露光方
法及び露光装置を提供することにある。
Another object of the present invention is to provide an exposure method and an exposure apparatus capable of obtaining a circuit pattern having a portion having a line width of 0.15 μm or less.

【0022】また本発明の他の目的は2光束干渉露光と
通常露光の2つの露光法が実施できる露光装置を提供す
ることにある。
Another object of the present invention is to provide an exposure apparatus capable of performing two exposure methods, two-beam interference exposure and normal exposure.

【0023】[0023]

【課題を解決するための手段】本発明の露光方法及び露
光装置は、被露光基板(感光基板)に対して2光束干渉
露光と通常の露光を行なう時に、前記二つの露光の少な
くとも一方の露光において前記感光基板に多値的な露光
量分布を与えることを特徴とする。「多値的」とは、感
光基板に与える露光量が2値(露光量ゼロの場合も含め
て2種類)ではなく、与える露光量が3値以上(露光量ゼ
ロの場合も含めて3種類以上)であること意味する。ま
た、「通常の露光」とは2光束干渉露光より解像度が低
いが2光束干渉露光とは異なるパターンで露光が行なえ
る露光であり、代表的なものとして図19に示した投影光
学系によってマスクのパターンを投影する投影露光が挙
げられる。
An exposure method and an exposure apparatus according to the present invention perform two-beam interference exposure and normal exposure on a substrate to be exposed (photosensitive substrate), and perform at least one of the two exposures. Wherein a multilevel exposure amount distribution is given to the photosensitive substrate. "Multi-valued" means that the exposure given to the photosensitive substrate is not binary (two types including zero exposure), but the exposure given is three or more (three types including zero exposure). Above). In addition, `` normal exposure '' is exposure in which the resolution is lower than that of the two-beam interference exposure, but exposure can be performed in a pattern different from that of the two-beam interference exposure, and is typically masked by the projection optical system shown in FIG. Projection exposure for projecting the above pattern.

【0024】本発明の露光方法及び露光装置の前記2光
束干渉露光と前記通常露光の夫々は一回又は複数回の露
光段階より成り、複数回の露光段階を採る場合は、各露
光段階毎に異なる露光量分布を感光基板に与える。
Each of the two-beam interference exposure and the normal exposure in the exposure method and the exposure apparatus of the present invention comprises one or more exposure steps. Different exposure distributions are given to the photosensitive substrate.

【0025】また本発明の露光方法及び露光装置の前記
2光束干渉露光と前記通常露光はどちらを先に行なって
も良い。
Further, the exposure method and the exposure apparatus of the present invention
Either the two-beam interference exposure or the normal exposure may be performed first.

【0026】また本発明の露光方法及び露光装置の前記
第1露光と前記第2露光の露光波長は、第2露光が投影露
光の場合、双方とも400nm以下であり、好ましくは25
0nm以下である。250nm以下の露光波長の光を得るには
KrFエキシマレーザ(約248nm)やArFエキシマレ
ーザ(約193nm)を用いる。
When the second exposure is a projection exposure, the exposure wavelength of the first exposure and the second exposure of the exposure method and the exposure apparatus of the present invention are both 400 nm or less, preferably 25 nm or less.
0 nm or less. A KrF excimer laser (about 248 nm) or an ArF excimer laser (about 193 nm) is used to obtain light having an exposure wavelength of 250 nm or less.

【0027】尚、本願で「投影露光」というのは、マス
クに形成された任意のパタ−ンからの3個以上の平行光
線束が互いに異なる様々な角度で像面に入射して露光が
行なわれるものである。
In the present application, "projection exposure" means that three or more parallel light beams from an arbitrary pattern formed on a mask are incident on an image plane at various angles different from each other to perform exposure. It is what is done.

【0028】本発明の露光装置はマスクのパターンをウ
エハに投影する投影光学系と、部分的コヒーレント照明
とコヒーレント照明の双方の照明が可能なマスク照明光
学系とを有し、部分的コヒーレント照明によって通常の
露光を行ない、コヒーレント照明によって2光束干渉露
光を行なうことを特徴とする。「部分的コヒーレント照
明」とはσ(=照明光学系の開口数/投影光学系の開口
数)の値がゼロより大きく1より小さい照明であり、
「コヒーレント照明」とは、σの値がゼロまたはそれに
近い値であり、部分的コヒーレント照明のσに比べて相
当小さい値である。
The exposure apparatus of the present invention has a projection optical system for projecting a mask pattern onto a wafer, and a mask illumination optical system capable of performing both partial coherent illumination and coherent illumination. It is characterized by performing normal exposure and performing two-beam interference exposure by coherent illumination. “Partial coherent illumination” is illumination in which the value of σ (= numerical aperture of the illumination optical system / numerical aperture of the projection optical system) is greater than zero and less than 1.
The term “coherent illumination” means that the value of σ is zero or a value close thereto, and is considerably smaller than σ of partially coherent illumination.

【0029】この露光装置の露光波長は、400nm以下で
あり、好ましくは250nm以下である。250nm以下の露
光波長の光を得るにはKrFエキシマレーザ(約248n
m)やArFエキシマレーザ(約193nm)を用いる。
The exposure wavelength of this exposure apparatus is 400 nm or less, preferably 250 nm or less. To obtain light with an exposure wavelength of 250 nm or less, use a KrF excimer laser (about 248 nm).
m) or an ArF excimer laser (about 193 nm).

【0030】後述する発明の実施の形態においては、マ
スク照明光学系として部分的コヒーレント照明とコヒー
レント照明とが切換え可能な光学系を開示している。
In an embodiment of the invention described later, an optical system capable of switching between partially coherent illumination and coherent illumination is disclosed as a mask illumination optical system.

【0031】本発明の他の露光装置は2光束干渉露光装
置と通常(投影)露光装置と両装置で共用される被露光
基板(感光基板)を保持する移動ステージとを有するこ
とを特徴とする。この露光装置の露光波長も、400nm以
下であり、好ましくは250nm以下である。250nm以下
の露光波長の光を得るにはKrFエキシマレーザ(約24
8nm)やArFエキシマレーザ(約193nm)を用いる。
Another exposure apparatus of the present invention is characterized by having a two-beam interference exposure apparatus, a normal (projection) exposure apparatus, and a moving stage for holding a substrate to be exposed (photosensitive substrate) shared by both apparatuses. . The exposure wavelength of this exposure apparatus is also 400 nm or less, preferably 250 nm or less. In order to obtain light having an exposure wavelength of 250 nm or less, a KrF excimer laser (about 24
8 nm) or an ArF excimer laser (about 193 nm).

【0032】[0032]

【発明の実施の形態】最初に図1乃至図9を用いて本発明
の露光方法の一実施形態を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, an embodiment of an exposure method according to the present invention will be described with reference to FIGS.

【0033】図1は本発明の露光方法を示すフロ−チャ
−トである。図1には本発明の露光方法を構成する2光
束干渉露光ステップ、投影露光ステップ(通常露光ステ
ップ)、現像ステップの各ブロックとその流れが示して
あるが、2光束干渉露光ステップと投影露光ステップの
順序は、図1の逆でもいいし、どちらか一方のステップ
が複数回の露光段階を含む場合は各ステップを交互に行
うことも可能である。また,各露光ステップ間には精密
な位置合わせを行なうステップ等があるが、ここでは図
示を略した。
FIG. 1 is a flowchart showing the exposure method of the present invention. FIG. 1 shows the two-beam interference exposure step, the projection exposure step (normal exposure step), and the development step, which constitute the exposure method of the present invention, and the flow thereof. The two-beam interference exposure step and the projection exposure step May be reversed from that shown in FIG. 1, or if either one of the steps includes a plurality of exposure steps, the steps may be performed alternately. Although there is a step of performing precise alignment between each exposure step, it is not shown here.

【0034】図1のフロ−に従って露光を行なう場合、
まず2光束干渉露光によりウエハ(感光基板)を図2に示
すような周期的パタ−ン(干渉縞)で露光する。図2中
の数字は露光量を表しており、図2(A)の斜線部は露
光量1(実際は任意)で白色部は露光量0である。
When performing exposure according to the flow of FIG.
First, a wafer (photosensitive substrate) is exposed by a two-beam interference exposure with a periodic pattern (interference fringes) as shown in FIG. The numbers in FIG. 2 represent the exposure amount, and the hatched portions in FIG. 2A indicate the exposure amount 1 (actually arbitrary) and the white portions indicate the exposure amount 0.

【0035】このような周期パタ−ンのみを露光後現像
する場合、通常,感光基板のレジストの露光しきい値E
thは図2(B)の下部のグラフに示す通り露光量0と1
の間に設定する。尚、図2(B)の上部は最終的に得ら
れるリソグラフィーパターン(凹凸パターン)を示して
いる。
When developing only such a periodic pattern after exposure, usually, the exposure threshold value E of the resist on the photosensitive substrate is used.
th is the exposure amount 0 and 1 as shown in the lower graph of FIG.
Set between. The upper part of FIG. 2B shows a finally obtained lithography pattern (concavo-convex pattern).

【0036】図3に、この場合の感光基板のレジストに
関して、現像後の膜厚の露光量依存性と露光しきい値と
をポジ型レジスト(以下、「ポジ型」と記す。)とネガ
型レジスト(以下、「ネガ型」記す。)の各々について
示してあり、ポジト型の場合は露光しきい値以上の場合
に、ネガ型の場合は露光しきい値以下の場合に、現像後
の膜厚が0となる。
FIG. 3 shows the dependence of the film thickness after development on the amount of exposure and the exposure threshold value of the resist on the photosensitive substrate in this case, with the positive resist (hereinafter referred to as "positive") and the negative resist. Each of the resists (hereinafter referred to as “negative type”) is shown, and the film after development is indicated when the positive type is equal to or more than the exposure threshold, and when the negative type is equal to or less than the exposure threshold. The thickness becomes 0.

【0037】図4はこのような露光を行った場合の現像
とエッチングプロセスを経てリソグラフィ−パタ−ンが
形成される様子を、ネガ型とポジ型の場合に関して示し
た摸式図である。
FIG. 4 is a schematic diagram showing a state in which a lithography pattern is formed through the development and etching processes in the case of performing such exposure, for a negative type and a positive type.

【0038】本実施形態においては、この通常の露光感
度設定とは異なり、図5(図2(A)と同じ図面)及び
図6に示す通り、2光束干渉露光での最大露光量を1とし
た時、感光基板のレジストの露光しきい値Ethを1よ
りも大きく設定する。この感光基板は図2に示す2光束干
渉露光のみ行った露光パタ−ン(露光量分布)を現像し
た場合は露光量が不足するので、多少の膜厚変動はある
ものの現像によって膜厚が0となる部分は生じず、エッ
チングによってリソグラフィーパタ−ンは形成されな
い。これは即ち2光束干渉露光パタ−ンの消失と見做す
ことができる(尚、ここではネガ型を用いた場合の例を
用いて本発明の説明を行うが、本発明はポジ型の場合で
も実施できる。)。尚、図6において、上部はリソグラ
フィーパターンを示し(何もできない)、下部のグラフ
は露光量分布と露光しきい値の関係を示す。尚、下部に
記載のE1は2光束干渉露光における露光量を、E2は通
常の投影露光における露光量を表わしている。
In this embodiment, unlike the normal exposure sensitivity setting, as shown in FIGS. 5 (same as FIG. 2A) and FIG. 6, the maximum exposure amount in the two-beam interference exposure is set to 1. Then, the exposure threshold value Eth of the resist on the photosensitive substrate is set to be larger than 1. When the exposure pattern (exposure amount distribution) obtained by performing only the two-beam interference exposure shown in FIG. 2 is developed, the exposure amount becomes insufficient. Does not occur, and no lithography pattern is formed by etching. This can be considered as the disappearance of the two-beam interference exposure pattern (the present invention will be described using an example in which a negative type is used. But you can do it.) In FIG. 6, the upper part shows the lithography pattern (nothing can be done), and the lower part shows the relationship between the exposure amount distribution and the exposure threshold. Incidentally, E 1 according to bottom the exposure amount in the two-beam interference exposure, E 2 represents an exposure amount in the conventional projection exposure.

【0039】本実施形態の特徴は、2光束干渉露光のみ
では一見消失する高解像度の露光パタ−ンを通常の投影
露光による露光パタ−ンと融合して所望の領域のみ選択
的にレジストの露光しきい値以上露光し、最終的に所望
のリソグラフィ−パタ−ンを形成できるところにある。
The feature of this embodiment is that a high-resolution exposure pattern, which is apparently lost only by two-beam interference exposure, is fused with an exposure pattern by ordinary projection exposure to selectively expose a desired region only in a resist. Exposure is performed at a threshold value or more to finally form a desired lithography pattern.

【0040】図7(A)は通常の投影露光による露光パ
タ−ンであり、本実施形態では、通常の投影露光の解像
度は2光束干渉露光の約半分としている為、ここでは投
影露光による露光パターンの線幅が2光束干渉露光のに
よる露光パターンの線幅の約2倍として図示示してあ
る。
FIG. 7A shows an exposure pattern by ordinary projection exposure. In this embodiment, the resolution of ordinary projection exposure is about half that of two-beam interference exposure. The line width of the pattern is shown as approximately twice as large as the line width of the exposure pattern obtained by the two-beam interference exposure.

【0041】図7(A)の露光パタ−ンを作る投影露光
を、図5の2光束干渉露光の後に、現像工程なしで、同一
レジストの同一領域に重ねて行ったとすると、このレジ
ストの合計の露光量分布は図7(B)の下部のグラフの
ようになる。尚、ここでは2光束干渉露光の露光量E1
投影露光の露光量E2の比が1:1、レジストの露光しきい
値Ethが露光量E1(=1)と露光量E1と投影露光の露
光量E2の和(=2)の間に設定されている為、図7
(B)の上部に示したリソグラフィーパタ−ンが形成さ
れる。図7(B)の上部に示す孤立線パタ−ンは、解像
度が2光束干渉露光のものであり且つ単純な周期的パタ
−ンもない。従って通常の投影露光で実現できる解像度
以上の高解像度のパタ−ンが得られたことになる。
Assuming that the projection exposure for forming the exposure pattern shown in FIG. 7A is performed over the same region of the same resist without the development step after the two-beam interference exposure shown in FIG. Is shown in the lower graph of FIG. 7B. Here, the ratio of the exposure amount E 2 of the exposure amount E 1 and the projection exposure of two-beam interference exposure is 1: 1, the resist exposure threshold E th exposure amount E 1 (= 1) and the exposure amount E 1 7 is set to the sum (= 2) of the exposure amount E 2 of the projection exposure and FIG.
The lithography pattern shown in the upper part of (B) is formed. The isolated line pattern shown in the upper part of FIG. 7B has a resolution of two-beam interference exposure, and has no simple periodic pattern. Therefore, a pattern having a resolution higher than that which can be realized by ordinary projection exposure is obtained.

【0042】ここで仮に、図8の露光パターンを作る投
影露光(図5の露光パターンの2倍の線幅で露光しきい
値以上(ここではしきい値の2倍の露光量)の投影露光)
を、図5の2光束干渉露光の後に、現像工程なしで、同一
レジストの同一領域に重ねて行ったとすると、このレジ
ストの合計の露光量分布は図8(B)のようになり、2
光束干渉露光の露光パタ−ンは消失して最終的に投影露
光によるリソグラフィーパタ−ンのみが形成される。
Here, suppose that the projection exposure for forming the exposure pattern shown in FIG. 8 (the line width twice as large as that of the exposure pattern shown in FIG. 5 and the exposure threshold or more (here, the exposure amount twice as large as the threshold)). )
Is performed over the same region of the same resist without the development step after the two-beam interference exposure in FIG. 5, the total exposure distribution of the resist is as shown in FIG.
The exposure pattern of the light beam interference exposure disappears, and finally only the lithography pattern by the projection exposure is formed.

【0043】また、図9に示すように図5の露光パター
ンの3倍の線幅で行う場合も理屈は同様であり,4倍以
上の線幅の露光パターンでは、基本的に2倍の線幅の露
光パターンと3倍の線幅の露光パターンの組み合わせか
ら、最終的に得られるリソグラフィーパターンの線幅は
自明であり、投影露光で実現できるリソグラフィーパタ
−ンは全て、本実施形態でも、形成可能である。
As shown in FIG. 9, the same principle applies to the case where the exposure is performed with a line width three times as large as the exposure pattern of FIG. The line width of the finally obtained lithography pattern is obvious from the combination of the exposure pattern having the width and the exposure pattern having the triple line width, and all the lithography patterns that can be realized by the projection exposure are formed in the present embodiment. It is possible.

【0044】以上簡潔に説明した2光束干渉露光と投影
露光の夫々による露光量分布(絶対値及び分布)と感光
基板のレジストのしきい値の調整を行うことにより、図
6、図7(B)、図8(B)、及び図9(B)で示したよう
な多種のパターンの組み合せより成り且つ最小線幅が2
光束干渉露光の解像度(図7(B)のパターン)となる
回路パタ−ンを形成することができる。
By adjusting the exposure amount distribution (absolute value and distribution) and the threshold value of the resist on the photosensitive substrate by the two-beam interference exposure and the projection exposure briefly described above,
6, consisting of a combination of various patterns as shown in FIGS. 7 (B), 8 (B) and 9 (B), and having a minimum line width of 2
A circuit pattern having the resolution of the light beam interference exposure (the pattern of FIG. 7B) can be formed.

【0045】以上の露光方法の原理をまとめると、 1. 投影露光をしないパタ−ン領域即ちレジストの露
光しきい値以下の2光束干渉露光パタ−ンは現像により
消失する。 2. レジストの露光しきい値以下の露光量で行った投
影露光のパタ−ン領域に関しては投影露光と2光束干渉
露光のパタ−ンの組み合わせにより決まる2光束干渉露
光の解像度を持つ露光パタ−ンが形成される。 3. 露光しきい値以上の露光量で行った投影露光のパ
タ−ン領域は投影露光のみの場合と同様に(マスクに対
応する)任意のパタ−ンを形成する。 ということになる。更に露光方法の利点として,最も解
像力の高い2光束干渉露光の部分では、通常の露光に比
してはるかに大きい焦点深度が得られることが挙げられ
る。
The principles of the above exposure method can be summarized as follows: The pattern area where projection exposure is not performed, that is, the two-beam interference exposure pattern which is equal to or less than the exposure threshold value of the resist disappears by development. 2. Regarding the pattern area of the projection exposure performed with the exposure amount equal to or less than the exposure threshold value of the resist, the exposure pattern having the resolution of the two beam interference exposure determined by the combination of the pattern of the projection exposure and the two beam interference exposure is used. It is formed. 3. The pattern area of the projection exposure performed with the exposure amount equal to or larger than the exposure threshold value forms an arbitrary pattern (corresponding to the mask) as in the case of the projection exposure alone. It turns out that. Further, an advantage of the exposure method is that a much larger depth of focus can be obtained in the two-beam interference exposure portion having the highest resolution than in the normal exposure.

【0046】以上の説明では2光束干渉露光と投影露光
の順番は2光束干渉露光を先としたが、この順番に限定
されない。
In the above description, the two-beam interference exposure and the projection exposure are performed in the order of the two-beam interference exposure, but are not limited to this order.

【0047】次に他の実施形態を説明する。Next, another embodiment will be described.

【0048】本実施形態は露光により得られる回路パタ
−ン(リソグラフィーパターン)として、図10に示す所
謂ゲート型のパタ−ンを対象としている。
The present embodiment is directed to a so-called gate type pattern shown in FIG. 10 as a circuit pattern (lithographic pattern) obtained by exposure.

【0049】図10のゲートパタ−ンは横方向の即ち図
中A-A'方向の最小線幅が0.1μmであるのに対して、縦
方向では0.2μm以上である。本発明によれば、このよ
うな1次元方向のみ高解像度を求められる2次元パタ−
ンに対しては2光束干渉露光をかかる高解像度の必要な1
次元方向のみで行うばいい。
In the gate pattern of FIG. 10, the minimum line width in the horizontal direction, that is, in the AA 'direction in the figure is 0.1 μm, whereas in the vertical direction, it is 0.2 μm or more. According to the present invention, such a two-dimensional pattern that requires high resolution only in the one-dimensional direction is used.
Need high resolution which requires two beam interference exposure
It only has to be done in the dimension direction.

【0050】本実施形態では、図11を用いて1次元方
向のみの2光束干渉露光と通常の投影露光の組み合わせ
の一例を示す。
In this embodiment, an example of a combination of two-beam interference exposure only in one-dimensional direction and normal projection exposure will be described with reference to FIG.

【0051】図11において、図11(A))は1次元方向の
みの2光束干渉露光による周期的な露光パタ−ンを示
す。この露光パターンの周期は0.2μmであり、この露
光パターンは線幅0.1μmL&Sパターンに相当する。図
11の下部における数値は露光量を表すものである。
FIG. 11A shows a periodic exposure pattern by two-beam interference exposure only in one-dimensional direction. The period of this exposure pattern is 0.2 μm, and this exposure pattern corresponds to a line width of 0.1 μmL & S pattern. Numerical values in the lower part of FIG. 11 represent exposure amounts.

【0052】このような2光束干渉露光を実現する露光
装置としては、図15で示すような、レ−ザ151、ハ−フ
ミラ−152、平面ミラ−1534による干渉計型の分波合波
光学系を備えるものや、図16で示すような、投影露光装
置においてマスクと照明方法を図17又は図18のように構
成した装置がある。
As an exposure apparatus for realizing such two-beam interference exposure, an interferometer-type demultiplexing / multiplexing optics using a laser 151, a half mirror 152, and a plane mirror 1534 as shown in FIG. There is an apparatus having a system and an apparatus in which a mask and an illumination method are configured as shown in FIG. 17 or FIG. 18 in a projection exposure apparatus as shown in FIG.

【0053】図15の露光装置について説明を行なう。The exposure apparatus shown in FIG. 15 will be described.

【0054】図15の露光装置では前述した通り合波する
2光束の夫々が角度θでウエハ154に斜入射し、ウエ
ハ154に形成できる干渉縞パターン(露光パタ−ンの)
線幅は前記(3)式で表される。角度θと分波合波光学系
の像面側のNAとの関係はNA=sinθである。角度θは一対
の平面ミラ−153の夫々の角度を変えることにより任意
に調整、設定可能で、一対の平面ミラー角度θの値を大
きく設定すれば干渉縞パタ−ンの夫々の縞の線幅は小さ
くなる。例えば2光束の波長が248nm(KrFエキシマ)の
場合、θ=38度でも各縞の線幅は約0.1μmの干渉縞パタ
ーンが形成できる。尚、この時のNA=sinθ=0.62であ
る。角度θを38度よりも大きく設定すれば、より高い解
像度が得られることは言うまでもない。
In the exposure apparatus shown in FIG. 15, multiplexing is performed as described above.
Each of the two light beams obliquely enters the wafer 154 at an angle θ and forms an interference fringe pattern (of an exposure pattern) that can be formed on the wafer 154.
The line width is represented by the above equation (3). The relationship between the angle θ and the NA on the image plane side of the demultiplexing / multiplexing optical system is NA = sin θ. The angle θ can be arbitrarily adjusted and set by changing the angle of each of the pair of plane mirrors 153. If the value of the pair of plane mirrors θ is set to a large value, the line width of each fringe of the interference fringe pattern is set. Becomes smaller. For example, when the wavelength of the two light beams is 248 nm (KrF excimer), an interference fringe pattern having a line width of about 0.1 μm can be formed even at θ = 38 degrees. In this case, NA = sin θ = 0.62. If the angle θ is set to be larger than 38 degrees, it goes without saying that higher resolution can be obtained.

【0055】次に図16乃至図18の露光装置に関して説明
する。
Next, the exposure apparatus shown in FIGS. 16 to 18 will be described.

【0056】図16の露光装置は例えば通常の縮小投影光
学系(多数枚のレンズより成る)を用いた投影露光装置
であり、現状で露光波長248nmに対してNA0.6以上のもの
が存在する。
The exposure apparatus shown in FIG. 16 is a projection exposure apparatus using, for example, a normal reduction projection optical system (consisting of a large number of lenses). .

【0057】図16中、161はマスク、162はマスク161
から出て光学系163に入射する物体側露光光、163は投影
光学系、164は開口絞り、165は投影光学系163から出て
ウエハ166に入射する像側露光光、166は感光基板である
ウエハを示し、167は絞り164の円形開口に相当する瞳面
での光束の位置を一対の黒点で示した説明図である。図
16は2光束干渉露光を行っている状態の摸式図であ
り、物体側露光光162と像側露光光165は双方とも、図19
の通常の投影露光とは異なり、2つの平行光線束だけか
ら成っている。
In FIG. 16, reference numeral 161 denotes a mask, and 162 denotes a mask 161.
163 is a projection optical system, 164 is an aperture stop, 165 is an image side exposure light coming out of the projection optical system 163 and incident on the wafer 166, and 166 is a photosensitive substrate. 167 is an explanatory diagram showing the position of the light beam on the pupil plane corresponding to the circular opening of the stop 164 by a pair of black dots. FIG. 16 is a schematic diagram showing a state in which two-beam interference exposure is being performed. Both the object-side exposure light 162 and the image-side exposure light 165 are shown in FIG.
Unlike normal projection exposure, it consists of only two parallel light beams.

【0058】図16に示すような通常の投影露光装置にお
いて2光束干渉露光を行うためには,マスクとその照明
方法を図17又は図18のように設定すればよい以下これら
3種の例について説明する。
In order to perform two-beam interference exposure in a normal projection exposure apparatus as shown in FIG. 16, a mask and its illumination method may be set as shown in FIG. 17 or FIG.
Three examples will be described.

【0059】図17はレベンソン型の位相シフトマスクを
示しており、クロムより成る遮光部171のピッチPOが
(4)式で0、位相シフタ172のピッチPOSが(5)
式で表わされるマスクである。
FIG. 17 shows a Levenson-type phase shift mask. The pitch PO of the light-shielding portion 171 made of chromium is 0 in the equation (4), and the pitch POS of the phase shifter 172 is (5).
This is a mask represented by an equation.

【0060】 PO=MP=2MR=Mλ/(2NA) ……(4) POS=2PO=Mλ/(NA) ……(5) ここで、Mは投影光学系163の投影倍率、λは露光波長、
NAは投影光学系163の像側の開口数を示す。
P O = MP = 2 MR = Mλ / (2NA) (4) P OS = 2P O = Mλ / (NA) (5) where M is the projection magnification of the projection optical system 163 and λ Is the exposure wavelength,
NA indicates the numerical aperture on the image side of the projection optical system 163.

【0061】一方、図17(B)が示すマスクは、クロ
ムより成る遮光部のないシフタエッジ型の位相シフトマ
スクであり、レベンソン型と同様に位相シフタ181のピ
ッチPOSを上記(5)式を満たすように構成したもの
である。
On the other hand, the mask shown in FIG. 17 (B) is a shifter edge type phase shift mask made of chrome without a light-shielding portion, and the pitch POS of the phase shifter 181 satisfies the above equation (5) as in the Levenson type. It is configured as follows.

【0062】図17(A)、(B)の夫々の位相シフトマ
スクを用いて2光束干渉露光を行なうには、これらのマ
スクをσ=0(又は0に近い値)所謂コヒーレント照明
を行なう。具体的には、マスク面に対して垂直な方向
(光軸に平行な方向)から平行光線束をマスクに照射す
る。
In order to perform two-beam interference exposure using the phase shift masks shown in FIGS. 17A and 17B, these masks are subjected to so-called coherent illumination with σ = 0 (or a value close to 0). Specifically, the mask is irradiated with a parallel light beam from a direction perpendicular to the mask surface (a direction parallel to the optical axis).

【0063】このような照明を行なうと、マスクから上
記垂直な方向に出る0次透過回折光に関しては、位相シ
フタにより隣り合う透過光の位相差がπとなって打ち消
し合い存在しなくなり、±1次の透過回折光の2平行光
線束はマスクから投影光学系163の光軸に対して対称に
発生し、図16の2個の物体側露光光ぶった井川zする。
また2次以上の高次の回折光は投影光学系163の開口絞り
164の開口に入射しないので結像には寄与しない。
When such illumination is performed, with respect to the 0th-order transmitted diffracted light emitted from the mask in the above-described vertical direction, the phase difference between the adjacent transmitted lights becomes π by the phase shifter, and they cancel each other out. The next two parallel ray bundles of the transmitted diffracted light are generated symmetrically from the mask with respect to the optical axis of the projection optical system 163, and the two object-side exposure lights in FIG.
In addition, second-order or higher-order diffracted light is used for the aperture stop of the projection optical system 163.
Since it does not enter the aperture 164, it does not contribute to imaging.

【0064】図18に示したマスクは、クロムより成る遮
光部の遮光部のピッチPOが、(4)式と同様の(6)
式で表わされるマスクである。
In the mask shown in FIG. 18, the pitch PO of the light-shielding portion of the light-shielding portion made of chrome is the same as that of the expression (4) (6).
This is a mask represented by an equation.

【0065】 PO=MP=2MR=Mλ/(2NA) ……(6) ここで、Mは投影光学系163の投影倍率、λは露光波長、
NAは投影光学系163の像側の開口数を示す。
P O = MP = 2MR = Mλ / (2NA) (6) where M is the projection magnification of the projection optical system 163, λ is the exposure wavelength,
NA indicates the numerical aperture on the image side of the projection optical system 163.

【0066】図18の位相シフタを有していないマスクに
は、1個又は2個の平行光線束による斜入射照明とする。
この場合の平行光線束のマスクへの入射角θ0は、
(7)式を満たすように設定される。2個の平行光線束
を用いる場合が、光軸を基準にして互いに逆方向にθ0
傾いた平行光線束によりマスクを照明する。
The mask having no phase shifter shown in FIG. 18 is subjected to oblique incidence illumination using one or two parallel light beams.
In this case, the incident angle θ 0 of the parallel light beam to the mask is
It is set so as to satisfy the expression (7). In the case where two parallel light beams are used, θ0 is opposite to each other with respect to the optical axis.
The mask is illuminated by the oblique parallel light beam.

【0067】sinθ0=M/NA ……(7) ここでも、Mは投影光学系163の投影倍率、NAは投影光学
系163の像側の開口数を示す。
Sin θ 0 = M / NA (7) Here, M is the projection magnification of the projection optical system 163, and NA is the image-side numerical aperture of the projection optical system 163.

【0068】図18が示す位相シフタを有していないマス
クを上記(7)式を満たす平行光線束により斜入射照明
を行なうと、マスクからは、光軸に対して角度θ0で直
進する0次透過回折光とこの0次透過回折光の光路と投
影光学系の光軸に関して対称な光路に沿って進む(光軸
に対して角度−θ0で進む)-1次透過回折光の2光束が図
16の2個の物体側露光光162として生じ、この2光束が
投影光学系163の開口絞り164の開口部に入射し、結像が
行なわれる。
When a mask having no phase shifter shown in FIG. 18 is subjected to oblique incidence illumination with a parallel light beam satisfying the above equation (7), the mask travels straight at an angle θ 0 with respect to the optical axis. 2 light fluxes of the first-order transmitted diffracted light and the 0th-order transmitted diffracted light traveling along an optical path symmetrical with respect to the optical axis of the projection optical system (advancing at an angle −θ 0 with respect to the optical axis) Is a figure
The two light beams are generated as 16 object-side exposure light beams 162, and these two light beams enter the aperture of the aperture stop 164 of the projection optical system 163 to form an image.

【0069】尚、本発明においてはこのような1個又は2
個の平行光線束による斜入射照明も「コヒーレント照
明」として取り扱う。
In the present invention, such one or two
Oblique incidence illumination by a bundle of parallel rays is also treated as "coherent illumination".

【0070】以上が通常の投影露光装置を用いて2光束
干渉露光を行う技術であり、図19に示したような通常
の投影露光装置の照明光学系は部分的コヒーレント照明
を行なうように構成してあるので、図19の照明光学系
の0<σ<1に対応する不図示の開口絞りをσ≒0に対
応する特殊開口絞りに交換可能にする等して、投影露光
装置において実質的にコヒーレント照明を行なうよう構
成することができる。
The technique for performing two-beam interference exposure using a normal projection exposure apparatus has been described above. The illumination optical system of the normal projection exposure apparatus as shown in FIG. 19 is configured to perform partial coherent illumination. 19, the aperture stop (not shown) corresponding to 0 <σ <1 of the illumination optical system in FIG. 19 can be replaced with a special aperture stop corresponding to σ ≒ 0, etc. It can be configured to provide coherent illumination.

【0071】図10及び図11が示す実施形態の説明に
戻る。
Returning to the description of the embodiment shown in FIGS.

【0072】本実施形態では前述した2光束干渉露光の
次に行なう通常の投影露光(例えば図19の装置でマス
クに対して部分的コヒーレント照明を行なうもの)によ
って図11(B)が示す「工」の字型のパタ−ンの露光を
行う。図11(B)の上部には2光束干渉露光による露光
パターンとの相対的位置関係と通常の投影露光の露光パ
ターンの5領域での露光量を示し、同図の下部は、通常
の投影露光によるウエハのレジストに対する露光量を縦
横0.1μmピッチの分解能でマップ化したものである。
In the present embodiment, a normal projection exposure (for example, a device in which partial coherent illumination is performed on a mask with the apparatus shown in FIG. 19) performed after the above-described two-beam interference exposure is performed by using the process shown in FIG. Is exposed. The upper part of FIG. 11B shows the relative positional relationship with the exposure pattern by two-beam interference exposure and the exposure amount in five areas of the exposure pattern of the normal projection exposure, and the lower part of the figure shows the normal projection exposure. Is a map of the exposure amount of the wafer on the resist with a resolution of 0.1 μm vertically and horizontally.

【0073】この投影露光による露光パタ−ンの線幅は
2光束干渉露光の場合の2倍の0.2μmである。このよう
な領域毎に露光量が異なる、多値の露光量分布を生じさ
せる(露光量が0と1と2の3値あるから多値)投影露
光を行う方法としては、図中1で示した領域に対応する
マスクの開口部の透過率をT%、図中2で示した領域に対
応するマスクの開口部に透過率を2T%とした複数段の透
過率を持つ特殊マスクを用いる方法があり、この方法で
は投影露光を一回の露光で完了することができ、この特
殊マスクを用いる場合の各露光での露光量比はウエハ
(感光基板)上で、2光束干渉露光:透過率Tの開口部で
の投影露光:透過率2Tでの投影露光=1:1:2である。
The line width of the exposure pattern by this projection exposure is
It is 0.2 μm, which is twice that in the case of two-beam interference exposure. A method of performing projection exposure for generating a multi-level exposure amount distribution in which the exposure amount differs for each region (multi-value because the exposure amount has three values of 0, 1, and 2) is shown in FIG. Using a special mask with multiple stages of transmittance, where the transmittance of the mask opening corresponding to the region indicated by T% is T%, and the transmittance of the mask corresponding to the region indicated by 2 in the figure is 2T% In this method, the projection exposure can be completed in one exposure, and when using this special mask, the exposure amount ratio in each exposure is two-beam interference exposure: transmittance on the wafer (photosensitive substrate). Projection exposure at an opening of T: projection exposure at a transmittance of 2T = 1: 1: 2.

【0074】領域毎に露光量が異なる投影露光を行うた
めの別の方法としては、図11(D)の上部と下部とに示
す露光パターンが生じる2種類のマスクを用いて順次露
光する方法である、この場合には各マスクによる露光量
は一段で良いため、マスクの開口部の透過率も1段で済
む。この場合の露光量比はウエハ(感光基板)上で、2
光束干渉露光:第1回投影露光:第2回投影露光= 1:1:1で
ある。
As another method for performing projection exposure in which the exposure amount differs for each region, a method of sequentially exposing using two types of masks that produce an exposure pattern shown in the upper part and the lower part of FIG. In this case, since the exposure amount of each mask may be one step, the transmittance of the opening of the mask may be one step. In this case, the exposure ratio is 2 on the wafer (photosensitive substrate).
Light beam interference exposure: first projection exposure: second projection exposure = 1: 1: 1.

【0075】以上説明した2光束干渉露光と通常の投影
露光の組み合わせによって図10の微細回路パタ−ンが
形成される様子について述べる。本実施形態においては
2光束干渉露光と通常の投影露光の間には現像過程はな
い。従って各露光の露光パタ−ンが重なる領域での露光
量は加算され、加算後の露光量(分布)により新たな露
光パタ−ンが生じることとなる。
The manner in which the fine circuit pattern shown in FIG. 10 is formed by a combination of the two-beam interference exposure described above and ordinary projection exposure will be described. In this embodiment,
There is no development process between two-beam interference exposure and normal projection exposure. Therefore, the exposure amounts in the areas where the exposure patterns of each exposure overlap each other are added, and a new exposure pattern is generated depending on the added exposure amount (distribution).

【0076】図11(C)の上部は本実施形態の図11
(A)の露光パターンと図11(B)の露光パターンの
露光量の加算した結果生じる露光量分布(露光パター
ン)を示しており、図11(C)の下部はこの露光パタ
−ンに対して現像を行った結果のパタ−ンを灰色で示し
たものであり、本実施形態ではウエハのレジストは露光
しきい値が1より大きく2未満であるものを用いており、
そのため現像によって露光量が1より大きい部分のみが
パターンとして現れている。図11(C)の下部に灰色
で示したパタ−ンの形状と寸法は図10に示したゲートパ
タ−ンの形状と寸法と一致しており、本発明の露光方法
によって、0.1μmといった微細な線幅を有する回路
パターンが、例えば部分的コヒーレント照明とコヒーレ
ント照明が切換え可能な照明光学系を有する投影露光装
置を用いて、形成可能となった。
The upper part of FIG. 11C is the same as FIG.
FIG. 11A shows an exposure amount distribution (exposure pattern) obtained by adding the exposure amounts of the exposure pattern of FIG. 11B and the exposure pattern of FIG. 11B, and the lower part of FIG. The pattern obtained as a result of performing the development is shown in gray. In this embodiment, the resist of the wafer has an exposure threshold greater than 1 and less than 2,
Therefore, only the portion where the exposure amount is greater than 1 appears as a pattern due to development. The shape and size of the pattern shown in gray in the lower part of FIG. 11C match the shape and size of the gate pattern shown in FIG. 10, and are as fine as 0.1 μm by the exposure method of the present invention. For example, a circuit pattern having a wide line width can be formed using a projection exposure apparatus having an illumination optical system capable of switching between partially coherent illumination and coherent illumination.

【0077】本発明の更に別の実施形態について図12
乃至図14を用いて説明する。この別の実施形態は、2
度の2光束干渉露光によって縦縞の干渉縞パターンと横
縞の干渉縞パタ−ンを重ねた多値(露光量が0と1と2
と3の4値あるから多値)の露光量分布の露光パターン
を形成する点が特徴である。
FIG. 12 shows still another embodiment of the present invention.
This will be described with reference to FIGS. This alternative embodiment is based on 2
A multi-value (exposure amounts of 0, 1, and 2) obtained by superimposing vertical fringe interference fringe patterns and horizontal fringe interference fringe patterns by two-beam interference exposure
This is characterized in that an exposure pattern having an exposure amount distribution of (4 values of 3 and 3) is formed.

【0078】図12は2度の2光束干渉露光によって縦縞
の干渉縞パターンと横縞の干渉縞パタ−ンを重ねた時の
露光パタ−ンを露光量分布をマップ化したものである。
ここでは、2光束干渉露光と通常露光の重ね合わせによ
って最終的に得られる露光パタ−ン(リソグラフィーパ
ターン)のバリエ−ションを増やすために、縦縞の干渉
縞パターンの明部の露光量(2)を横縞の干渉縞パタ−
ンの明部の露光量(1)の2倍としているが。この2種
類の明部の露光量の本実施形態のものに限定されない。
FIG. 12 shows an exposure pattern obtained by mapping the exposure pattern when the vertical fringe interference fringe pattern and the horizontal fringe interference fringe pattern are overlapped by two two-beam interference exposures.
Here, in order to increase the variation of the exposure pattern (lithography pattern) finally obtained by the superposition of the two-beam interference exposure and the normal exposure, the exposure amount of the bright portion of the vertical stripe interference fringe pattern (2) To the horizontal fringe pattern
The exposure amount (1) in the bright part of the image is twice as large. The exposure amounts of the two types of bright portions are not limited to those of the present embodiment.

【0079】図12が露光パタ−ンでは2度の2光束干渉
露光の結果、露光量は0から3までの4段階となってい
る。このような2光束干渉露光に対して充分に効果のあ
る投影露光の露光量段数は5段以上である。この場合ウ
エハ(感光基板)のレジストの露光しきい値は、2光束
干渉露光の露光量の最大値である3より大きく且つ投影
露光の露光量(0と1と2と3と4)の最大値4未満に
設定する。
FIG. 12 shows that the exposure pattern has four exposure levels of 0 to 3 as a result of two double-beam interference exposures in the exposure pattern. The number of exposure steps in projection exposure that is sufficiently effective for such two-beam interference exposure is five or more. In this case, the exposure threshold value of the resist on the wafer (photosensitive substrate) is larger than 3 which is the maximum value of the exposure amount of the two-beam interference exposure, and the maximum value of the exposure amount (0, 1, 2, 3 and 4) of the projection exposure. Set to a value less than 4.

【0080】このような5段階(0,1,2,3,4)の露光量での
投影露光を行った結果得られる露光パタ−ンの各露光量
を図13に示した。また図13のハッチング部は露光しき
い値以上の場所を表し、これが最終的な露光パタ−ンと
なる。なお,図13は投影露光の解像度を2光束干渉露光
の半分として図12の2倍の長さの辺を持つブロック単
位で表わしたものである。
FIG. 13 shows the respective exposure amounts of the exposure pattern obtained as a result of performing the projection exposure with such five stages (0, 1, 2, 3, 4). The hatched portion in FIG. 13 indicates a location above the exposure threshold, which is the final exposure pattern. Note that FIG. 13 shows the resolution of the projection exposure as half of that of the two-beam interference exposure in units of blocks having sides twice as long as those in FIG.

【0081】このようなブロック単位で投影露光の露光
量を変化させてより広い面積に露光パタ−ン(リソグラ
フィーパターン)を形成した例が図14に示されており、
図14から、本実施形態によれば、2光束干渉露光の解
像度を持ち、周期パタ−ン以外のバリエ−ション豊かな
パタ−ンを含む回路パターンが形成できることが、分か
る。
FIG. 14 shows an example in which an exposure pattern (lithography pattern) is formed over a wider area by changing the exposure amount of the projection exposure in such a block unit.
From FIG. 14, it can be seen that according to the present embodiment, it is possible to form a circuit pattern having a resolution of two-beam interference exposure and containing a variety of patterns other than the periodic pattern.

【0082】本実施形態では通常露光は2光束干渉露光
の線幅の2倍のブロックを単位として行ったが、これに
限定されることなく投影露光の解像度内の任意の露光パ
タ−ンの投影露光を行うことができる。
In the present embodiment, the normal exposure is performed in units of a block twice as large as the line width of the two-beam interference exposure. However, the present invention is not limited to this. Exposure can be performed.

【0083】また本実施例では2光束干渉露光による露
光パターンの線幅は縦縞と横縞とで同一として説明した
が、夫々の線幅は互いに異なっていてもいい。又、2種
類の縞の角度も任意に選ぶことができる。
In this embodiment, the line width of the exposure pattern by the two-beam interference exposure is described as being the same for the vertical stripes and the horizontal stripes. However, the respective line widths may be different from each other. Also, the angles of the two types of stripes can be arbitrarily selected.

【0084】図20は2光束干渉露光用の露光装置の一
例を示す概略図であり、図20において、201は2光
束干渉露光光学系で、基本構成は図15の光学系と同じ
である。202は、KrF又はArFエキシマレーザ
ー、203はハーフミラー、204は平面ミラー、20
5は光学系201との位置関係が固定又は適宜ベースラ
イン(量)として検出できるオフアクシス型の位置合わ
せ光学系で、ウエハ206上の2光束干渉用位置合わせ
マークを観察し、その位置を検出する。206は感光基
板であるウエハ、207は光学系201の光軸に直交す
る平面及びこの光軸方向に移動可能なXYZステージ
で、レーザー干渉計等を用いてその位置が正確に制御さ
れる。装置205と207の構成や機能は周知なので具
体的な説明は略す。
FIG. 20 is a schematic view showing an example of an exposure apparatus for two-beam interference exposure. In FIG. 20, reference numeral 201 denotes a two-beam interference exposure optical system, and its basic configuration is the same as the optical system of FIG. 202 is a KrF or ArF excimer laser, 203 is a half mirror, 204 is a plane mirror, 20
Reference numeral 5 denotes an off-axis type alignment optical system whose positional relationship with the optical system 201 is fixed or can be appropriately detected as a base line (amount). The off-axis type alignment optical system 5 observes a two-beam interference alignment mark on the wafer 206 and detects its position. I do. Reference numeral 206 denotes a wafer serving as a photosensitive substrate, and 207, a plane orthogonal to the optical axis of the optical system 201 and an XYZ stage movable in the optical axis direction. The position of the XYZ stage is accurately controlled using a laser interferometer or the like. Since the configurations and functions of the devices 205 and 207 are well known, a detailed description is omitted.

【0085】図21は2光束干渉用露光装置と通常の投
影露光装置より成る高解像度露光装置を示す概略図であ
る。
FIG. 21 is a schematic view showing a high-resolution exposure apparatus comprising a two-beam interference exposure apparatus and a normal projection exposure apparatus.

【0086】図21において、212は図20の光学系
201、205を備える2光束干渉露光装置であり、2
13は、不図示の照明光学系とレチクル位置合わせ光学
系214、ウエハ位置合わせ光学系(オフアクシス位置
合わせ光学系)217とマスク215の回路パターンを
ウエハ218上に縮小投影する投影光学系216とを備
える通常の投影露光装置である。
In FIG. 21, reference numeral 212 denotes a two-beam interference exposure apparatus having the optical systems 201 and 205 shown in FIG.
Reference numeral 13 denotes an illumination optical system (not shown), a reticle positioning optical system 214, a wafer positioning optical system (off-axis positioning optical system) 217, and a projection optical system 216 for reducing and projecting the circuit pattern of the mask 215 onto the wafer 218. This is a normal projection exposure apparatus including:

【0087】レチクル位置合わせ光学系214はマスク
215上の位置合わせマークを観察し、その位置を検出
する。ウエハ位置合わせ光学系217はウエハ206上
の投影露光用又は2光束干渉と兼用の位置合わせマーク
を観察し、その位置を検出する。光学系214、21
6、217の構成や機能は周知なので、具体的な説明は
略す。
The reticle positioning optical system 214 observes the positioning mark on the mask 215 and detects the position. The wafer alignment optical system 217 observes an alignment mark for projection exposure or dual light beam interference on the wafer 206 and detects its position. Optical systems 214 and 21
Since the configurations and functions of the modules 6 and 217 are well known, a specific description is omitted.

【0088】図21の219は2光束干渉用露光装置2
12と投影露光装置213で共用される一つのXYZス
テージであり、このステージ219は、装置212、2
13の各光軸に直交する平面及びこの光軸方向に移動可
能で、レーザー干渉計等を用いてそのXY方向の位置が
正確に制御される。
Reference numeral 219 in FIG. 21 denotes a two-beam interference exposure apparatus 2
12 is one XYZ stage shared by the projection exposure apparatus 213, and this stage 219
A plane orthogonal to each optical axis 13 and the optical axis can be moved in the optical axis direction, and its position in the XY directions is accurately controlled using a laser interferometer or the like.

【0089】ウエハ218を保持したステージ219
は、図21の位置(1)に送り込まれてその位置が正確
に測定され、測定結果に基いて位置(2)で示す装置2
12の露光位置に送り込まれてウエハ218へ2光束干
渉露光が行なわれ、その後、位置(3)に送り込まれて
その位置が正確に測定され位置(4)で示す装置213
の露光位置に送り込まれてウエハ218へ投影露光が行
なわれる。
Stage 219 Holding Wafer 218
Is an apparatus 2 which is fed to a position (1) in FIG. 21 and whose position is accurately measured, and which is indicated by a position (2) based on the measurement result.
12, the two-beam interference exposure is performed on the wafer 218, and then the wafer 218 is sent to the position (3) where the position is accurately measured and the device 213 indicated by the position (4) is detected.
And the wafer 218 is subjected to projection exposure.

【0090】装置213においては、オフアクシスの位
置合わせ光学系217の代わりに、投影光学系216を
介してウエハ218上の位置合わせマークを観察し、そ
の位置を検出する不図示のTTLの位置合わせ光学系
や、投影光学系216とマスク(レチクル)215とを
介してウエハ218上の位置合わせマークを観察し、そ
の位置を検出する不図示のTTRの位置合わせ光学系も
使用できる。
In the apparatus 213, instead of the off-axis positioning optical system 217, a positioning mark on the wafer 218 is observed via the projection optical system 216, and a TTL positioning (not shown) for detecting the position is detected. An optical system or a TTR alignment optical system (not shown) for observing the alignment mark on the wafer 218 via the projection optical system 216 and the mask (reticle) 215 and detecting the position can also be used.

【0091】図22は2光束干渉用露光と通常の投影露
光の双方が行なえる高解像度露光装置を示す概略図であ
る。
FIG. 22 is a schematic view showing a high-resolution exposure apparatus capable of performing both two-beam interference exposure and normal projection exposure.

【0092】図22において、221はKrF又はAr
Fエキシマレーザ、」222は照明光学系、223はマ
スク(レチクル)、224はマスクステージ、227は
マスク223の回路パターンをウエハ228上に縮小投
影する投影光学系、225はマスク(レチクル)チェン
ジャであり、ステージ224に、通常のレチクルと前述
したレベンソン型位相シフトマスク(レチクル)又はエ
ッジシフタ型マスク(レチクル)又は位相シフタを有し
ていない周期パターンマスク(レチクル)の一方を選択
的に供給するために設けてある。
In FIG. 22, reference numeral 221 denotes KrF or Ar
F excimer laser, 222 is an illumination optical system, 223 is a mask (reticle), 224 is a mask stage, 227 is a projection optical system for reducing and projecting the circuit pattern of the mask 223 onto the wafer 228, and 225 is a mask (reticle) changer. In order to selectively supply the stage 224 with a normal reticle and one of the aforementioned Levenson type phase shift mask (reticle), edge shifter type mask (reticle), or periodic pattern mask (reticle) having no phase shifter. It is provided in.

【0093】図22の229は2光束干渉露光と投影露
光で共用される一つのXYZステージであり、このステ
ージ229は、光学系227の光軸に直交する平面及び
この光軸方向に移動可能で、レーザー干渉計等を用いて
そのXY方向の位置が正確に制御される。
Reference numeral 229 in FIG. 22 denotes one XYZ stage shared by the two-beam interference exposure and the projection exposure. This stage 229 is movable in a plane orthogonal to the optical axis of the optical system 227 and in the optical axis direction. The position in the XY directions is accurately controlled using a laser interferometer or the like.

【0094】また、図22の装置は、不図示のレチクル
位置合わせ光学系、ウエハ位置合わせ光学系(図21で
説明したオフアクシス位置合わせ光学系とTTL位置合
わせ光学系とTTR位置合わせ光学系)とを備える。
The apparatus shown in FIG. 22 includes a reticle positioning optical system (not shown) and a wafer positioning optical system (the off-axis positioning optical system, the TTL positioning optical system, and the TTR positioning optical system described with reference to FIG. 21). And

【0095】図22の装置の照明光学系222は部分的
コヒーレント照明とコヒーレント照明とを切換え可能に
構成してあり、コヒーレント照明の場合には、ブロック
230内の図示した前述した(1a)又は(1b)の照明
光を、前述したレベンソン型位相シフトレチクル又はエ
ッジシフタ型レチクル又は位相シフタを有していない周
期パターンレチクルの一つに供給し、部分的コヒーレン
ト照明の場合にはブロック230内に図示した(2)の
照明光を所望のレチクルに供給する。部分的コヒーレン
ト照明からコヒーレント照明とを切換えは、通常光学系
222のフライアイレンズの直後に置かれる開口絞り
を、この絞りに比して開口径が十分に小さいコヒーレン
ト照明用絞りと交換すればいい。
The illumination optical system 222 of the apparatus shown in FIG. 22 is configured to be able to switch between partially coherent illumination and coherent illumination. In the case of coherent illumination, the above-mentioned (1a) or (1) shown in the block 230 is used. The illumination light of 1b) is supplied to one of the aforementioned Levenson-type phase shift reticles or edge shifter-type reticles or one of the periodic pattern reticles having no phase shifter, and is illustrated in a block 230 in the case of partial coherent illumination. The illumination light of (2) is supplied to a desired reticle. Switching from partial coherent illumination to coherent illumination can be achieved by replacing the aperture stop, which is usually placed immediately after the fly-eye lens of the optical system 222, with a coherent illumination stop having an aperture diameter sufficiently smaller than this aperture stop. .

【0096】以上説明した露光方法及び露光装置を用い
てIC,LSI等の半導体チップ、液晶パネル等の表示
素子、磁気ヘッド等の検出素子、CCD等の撮像素子と
いった各種デバイスの製造が可能である。
Various devices such as semiconductor chips such as ICs and LSIs, display elements such as liquid crystal panels, detection elements such as magnetic heads, and image pickup elements such as CCDs can be manufactured using the above-described exposure method and exposure apparatus. .

【0097】本発明は以上説明した実施形態に限定され
るものではなく,本発明の趣旨を逸脱しない範囲におい
て種々に変更することが可能である。特に2光束干渉露
光および通常露光の各ステップでの露光回数や露光量の
段数は適宜選択することが可能であり、更に露光の重ね
合わせもずらして行う等適宜調整することが可能であ
る。このような調整を行うことで形成可能な回路パタ−
ンにバリエ−ションが増える。
The present invention is not limited to the above-described embodiments, but can be variously modified without departing from the gist of the present invention. In particular, the number of exposures and the number of exposure steps in each step of the two-beam interference exposure and the normal exposure can be appropriately selected, and the exposure can be adjusted as appropriate, for example, by shifting the overlap. A circuit pattern that can be formed by performing such adjustments
Variations increase.

【0098】[0098]

【発明の効果】以上、本発明によれば、2光束干渉露光
と通常の露光を融合して例えば0.15μm以下の微細な線
幅を有する複雑なパターンを得ることが可能となる。
As described above, according to the present invention, it is possible to obtain a complicated pattern having a fine line width of, for example, 0.15 μm or less by fusing two-beam interference exposure with ordinary exposure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の露光方法のフロ−チャートである。FIG. 1 is a flowchart of the exposure method of the present invention.

【図2】2光束干渉露光による露光パタ−ンを示す説明
図である。
FIG. 2 is an explanatory diagram showing an exposure pattern by two-beam interference exposure.

【図3】レジストの露光感度特性を示す説明図である。FIG. 3 is an explanatory diagram showing exposure sensitivity characteristics of a resist.

【図4】現像によるパタ−ン形成を示す説明図である。FIG. 4 is an explanatory diagram showing pattern formation by development.

【図5】通常の2光束干渉露光による露光パタ−ンを示
す説明図である。
FIG. 5 is an explanatory diagram showing an exposure pattern by ordinary two-beam interference exposure.

【図6】本発明における2光束干渉露光による露光パタ
−ンを示す説明図である。
FIG. 6 is an explanatory diagram showing an exposure pattern by two-beam interference exposure in the present invention.

【図7】第1の実施形態において形成できる露光パタ−
ン(リソグラフィーパターン)の一例を示す説明図であ
る。
FIG. 7 is an exposure pattern that can be formed in the first embodiment.
FIG. 4 is an explanatory diagram showing an example of a pattern (lithography pattern).

【図8】第1の実施形態において形成できる露光パタ−
ン(リソグラフィーパターン)の他の一例を示す説明図
である。
FIG. 8 is an exposure pattern that can be formed in the first embodiment.
FIG. 4 is an explanatory diagram showing another example of the pattern (lithography pattern).

【図9】第1の実施形態において形成できる露光パタ−
ン(リソグラフィーパターン)の他の一例を示す説明図
である。
FIG. 9 is an exposure pattern that can be formed in the first embodiment.
FIG. 4 is an explanatory diagram showing another example of the pattern (lithography pattern).

【図10】ゲートパタ−ンを示す説明図である。FIG. 10 is an explanatory diagram showing a gate pattern.

【図11】第2の実施形態を示す説明図である。FIG. 11 is an explanatory diagram showing a second embodiment.

【図12】第3の実施形態の2光束干渉露光パタ−ンを
示す説明図である。
FIG. 12 is an explanatory diagram showing a two-beam interference exposure pattern according to a third embodiment.

【図13】第3の実施形態で2次元プロックでの形成パ
タ−ンを示す説明図である。
FIG. 13 is an explanatory diagram showing a pattern formed by a two-dimensional block in the third embodiment.

【図14】第3の実施形態で形成可能な露光パタ−ンの
1例を示す説明図である。
FIG. 14 is an explanatory diagram showing an example of an exposure pattern that can be formed in the third embodiment.

【図15】2光束干渉用露光装置の一例を示す概略図で
ある。
FIG. 15 is a schematic view showing an example of a two-beam interference exposure apparatus.

【図16】2光束干渉露光を行なう投影露光装置の一例
を示す概略図である。
FIG. 16 is a schematic diagram illustrating an example of a projection exposure apparatus that performs two-beam interference exposure.

【図17】図16の装置に使用するマスクおよび照明方
法の1例を示す説明図である。
FIG. 17 is an explanatory diagram showing an example of a mask and an illumination method used in the apparatus of FIG.

【図18】図16の装置に使用するマスクおよび照明方
法の他の1例を示す説明図である。
FIG. 18 is an explanatory view showing another example of a mask and an illumination method used in the apparatus of FIG. 16;

【図19】従来の投影露光装置を示す概略図である。FIG. 19 is a schematic view showing a conventional projection exposure apparatus.

【図20】本発明の2光束干渉露光装置の一例を示す概
略図である。
FIG. 20 is a schematic view showing an example of a two-beam interference exposure apparatus of the present invention.

【図21】本発明の高解像度露光装置の一例を示す概略
図である。
FIG. 21 is a schematic view showing an example of a high-resolution exposure apparatus of the present invention.

【図22】本発明の高解像度露光装置の他の例を示す概
略図である。
FIG. 22 is a schematic view showing another example of the high-resolution exposure apparatus of the present invention.

【符号の説明】[Explanation of symbols]

221 エキシマレ−ザ 222 照明光学系 223 マスク(レチクル) 224 マスク(レチクル)ステージ 225 2光束干渉用マスクと通常投影露光用のマスク 226 マスク(レチクル)チェンジャ 227 投影光学系 228 ウエハ 229 XYZステージ 221 Excimer laser 222 Illumination optical system 223 Mask (reticle) 224 Mask (reticle) stage 225 2 Light flux interference mask and mask for normal projection exposure 226 Mask (reticle) changer 227 Projection optical system 228 Wafer 229 XYZ stage

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 被露光基板に対して2光束干渉露光と通
常の露光を行なう時に、前記二つの露光の少なくとも一
方の露光において前記基板に多値的な露光量分布を与え
ることを特徴とする露光方法。
1. When performing two-beam interference exposure and normal exposure on a substrate to be exposed, a multilevel exposure amount distribution is given to the substrate in at least one of the two exposures. Exposure method.
【請求項2】 被露光基板に対して2光束干渉露光と通
常の露光を行なう時に、前記二つの露光の少なくとも一
方の露光において前記基板に多値的な露光量分布を与え
ることを特徴とする露光装置。
2. The method according to claim 1, wherein when performing two-beam interference exposure and normal exposure on the substrate to be exposed, a multilevel exposure amount distribution is given to the substrate in at least one of the two exposures. Exposure equipment.
【請求項3】 前記2光束干渉露光と前記通常の露光の
夫々は一回又は複数回の露光段階より成ることを特徴と
する請求項1の露光方法又は請求項2の露光装置。
3. The exposure method according to claim 1, wherein each of the two-beam interference exposure and the normal exposure includes one or more exposure steps.
【請求項4】 マスクのパターンをウエハに投影する投
影光学系と、部分的コヒーレント照明とコヒーレント照
明の双方の照明が可能なマスク照明光学系とを有し、部
分的コヒーレント照明によって通常の露光を行ない、コ
ヒーレント照明によって2光束干渉露光を行なうことを
特徴とする露光装置。
4. A projection optical system for projecting a pattern of a mask onto a wafer, and a mask illumination optical system capable of performing both partial coherent illumination and coherent illumination, and performing normal exposure by partial coherent illumination. An exposure apparatus for performing two-beam interference exposure using coherent illumination.
【請求項5】2光束干渉露光装置と、通常の露光装置
と、両装置で共用される被露光基板を保持する移動ステ
ージとを有することを特徴とする露光装置。
5. An exposure apparatus comprising: a two-beam interference exposure apparatus; a normal exposure apparatus; and a moving stage for holding a substrate to be exposed, which is shared by both apparatuses.
【請求項6】 前記2光束干渉露光と通常露光の夫々の
露光波長が250nm以下であることを特徴とする請求項1
の露光方法又は請求項2、3、4、5のいずれかの露光
装置。
6. An exposure wavelength of each of the two-beam interference exposure and the normal exposure is equal to or less than 250 nm.
The exposure method according to any one of claims 1 to 4, or the exposure apparatus according to any one of claims 2, 3, 4, and 5.
【請求項7】 請求項1の露光方法、請求項2乃至請求
項5の露光装置、請求項6の露光方法又は露光装置のい
ずれかを用いてデバイスを製造することを特徴とするデ
バイス製造方法。
7. A device manufacturing method, wherein a device is manufactured using one of the exposure method according to claim 1, the exposure apparatus according to claim 2 to claim 5, the exposure method according to claim 6, and the exposure apparatus. .
JP2000158941A 2000-01-01 2000-05-29 Exposure method and aligner Pending JP2001007020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000158941A JP2001007020A (en) 2000-01-01 2000-05-29 Exposure method and aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000158941A JP2001007020A (en) 2000-01-01 2000-05-29 Exposure method and aligner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP09304232A Division JP3101594B2 (en) 1997-11-06 1997-11-06 Exposure method and exposure apparatus

Publications (2)

Publication Number Publication Date
JP2001007020A true JP2001007020A (en) 2001-01-12
JP2001007020A5 JP2001007020A5 (en) 2005-07-07

Family

ID=18663340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000158941A Pending JP2001007020A (en) 2000-01-01 2000-05-29 Exposure method and aligner

Country Status (1)

Country Link
JP (1) JP2001007020A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7161684B2 (en) 2000-02-15 2007-01-09 Asml Holding, N.V. Apparatus for optical system coherence testing
US7242464B2 (en) 1999-06-24 2007-07-10 Asml Holdings N.V. Method for characterizing optical systems using holographic reticles
US7440078B2 (en) 2005-12-20 2008-10-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using interferometric and maskless exposure units
US7443514B2 (en) 2006-10-02 2008-10-28 Asml Holding N.V. Diffractive null corrector employing a spatial light modulator
US7561252B2 (en) 2005-12-29 2009-07-14 Asml Holding N.V. Interferometric lithography system and method used to generate equal path lengths of interfering beams
US7751030B2 (en) 2005-02-01 2010-07-06 Asml Holding N.V. Interferometric lithographic projection apparatus
KR101002156B1 (en) 2008-03-31 2010-12-17 다이니폰 스크린 세이조우 가부시키가이샤 Pattern drawing apparatus and pattern drawing method
US8264667B2 (en) 2006-05-04 2012-09-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using interferometric and other exposure
US8934084B2 (en) 2006-05-31 2015-01-13 Asml Holding N.V. System and method for printing interference patterns having a pitch in a lithography system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279628A (en) * 1986-05-28 1987-12-04 Hitachi Ltd Formation of resist film
JPH01134919A (en) * 1987-11-19 1989-05-26 Nec Corp Optical stepper
JPH04287908A (en) * 1990-10-03 1992-10-13 Fujitsu Ltd Aligner and exposure method
JPH04355910A (en) * 1991-02-27 1992-12-09 Nikon Corp Mask and exposure method and aligner
JPH06275492A (en) * 1993-03-19 1994-09-30 Fujitsu Ltd Manufacture of semiconductor device
JPH06291017A (en) * 1992-04-17 1994-10-18 Canon Inc Semiconductor manufacturing device
JPH07192988A (en) * 1993-12-27 1995-07-28 Nikon Corp Illumination optical apparatus
JPH07226362A (en) * 1994-02-10 1995-08-22 Ricoh Co Ltd Method of forming photoresist pattern
JPH1167640A (en) * 1997-08-20 1999-03-09 Nec Corp Method of exposure and mask for exposure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279628A (en) * 1986-05-28 1987-12-04 Hitachi Ltd Formation of resist film
JPH01134919A (en) * 1987-11-19 1989-05-26 Nec Corp Optical stepper
JPH04287908A (en) * 1990-10-03 1992-10-13 Fujitsu Ltd Aligner and exposure method
JPH04355910A (en) * 1991-02-27 1992-12-09 Nikon Corp Mask and exposure method and aligner
JPH06291017A (en) * 1992-04-17 1994-10-18 Canon Inc Semiconductor manufacturing device
JPH06275492A (en) * 1993-03-19 1994-09-30 Fujitsu Ltd Manufacture of semiconductor device
JPH07192988A (en) * 1993-12-27 1995-07-28 Nikon Corp Illumination optical apparatus
JPH07226362A (en) * 1994-02-10 1995-08-22 Ricoh Co Ltd Method of forming photoresist pattern
JPH1167640A (en) * 1997-08-20 1999-03-09 Nec Corp Method of exposure and mask for exposure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7242464B2 (en) 1999-06-24 2007-07-10 Asml Holdings N.V. Method for characterizing optical systems using holographic reticles
US7804601B2 (en) 1999-06-24 2010-09-28 Asml Holding N.V. Methods for making holographic reticles for characterizing optical systems
US7161684B2 (en) 2000-02-15 2007-01-09 Asml Holding, N.V. Apparatus for optical system coherence testing
US7751030B2 (en) 2005-02-01 2010-07-06 Asml Holding N.V. Interferometric lithographic projection apparatus
US7440078B2 (en) 2005-12-20 2008-10-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using interferometric and maskless exposure units
US7561252B2 (en) 2005-12-29 2009-07-14 Asml Holding N.V. Interferometric lithography system and method used to generate equal path lengths of interfering beams
US8264667B2 (en) 2006-05-04 2012-09-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using interferometric and other exposure
US8934084B2 (en) 2006-05-31 2015-01-13 Asml Holding N.V. System and method for printing interference patterns having a pitch in a lithography system
US7443514B2 (en) 2006-10-02 2008-10-28 Asml Holding N.V. Diffractive null corrector employing a spatial light modulator
KR101002156B1 (en) 2008-03-31 2010-12-17 다이니폰 스크린 세이조우 가부시키가이샤 Pattern drawing apparatus and pattern drawing method

Similar Documents

Publication Publication Date Title
JP3101594B2 (en) Exposure method and exposure apparatus
JP3368265B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP2001297976A (en) Method of exposure and aligner
JP3123548B2 (en) Exposure method and exposure apparatus
JP3647272B2 (en) Exposure method and exposure apparatus
JP2000021720A (en) Exposure method and manufacture of aligner
JP2001007020A (en) Exposure method and aligner
JP2001015423A (en) Exposing method, aligner and manufacture of device
JP3296296B2 (en) Exposure method and exposure apparatus
JP3647270B2 (en) Exposure method and exposure apparatus
JP4194200B2 (en) Exposure method and exposure apparatus
JP3323815B2 (en) Exposure method and exposure apparatus
JP3262074B2 (en) Exposure method and exposure apparatus
JP2000349010A (en) Method and apparatus for exposure as well as manufacture of device
JP3984710B2 (en) Exposure method and exposure apparatus
JP3554246B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP3535770B2 (en) Exposure method and exposure apparatus
JP3647271B2 (en) Exposure method and exposure apparatus
JP3337983B2 (en) Exposure method and exposure apparatus
JP3123543B2 (en) Exposure method and exposure apparatus
JP2000021719A (en) Exposure method and aligner
JP3262073B2 (en) Exposure method and exposure apparatus
JP2000021756A (en) Pattern forming method and exposure apparatus
JP2000021708A (en) Exposure method and manufacture of devices
JP2000021757A (en) Method of exposure and aligner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603