JPS6028613A - Projection optical device - Google Patents

Projection optical device

Info

Publication number
JPS6028613A
JPS6028613A JP58137377A JP13737783A JPS6028613A JP S6028613 A JPS6028613 A JP S6028613A JP 58137377 A JP58137377 A JP 58137377A JP 13737783 A JP13737783 A JP 13737783A JP S6028613 A JPS6028613 A JP S6028613A
Authority
JP
Japan
Prior art keywords
pressure
magnification
air
projection
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58137377A
Other languages
Japanese (ja)
Other versions
JPH0697301B2 (en
Inventor
Akira Anzai
安西 暁
Koichi Ono
大野 康一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Kogaku KK filed Critical Nikon Corp
Priority to JP58137377A priority Critical patent/JPH0697301B2/en
Publication of JPS6028613A publication Critical patent/JPS6028613A/en
Priority to US07/120,232 priority patent/US4871237A/en
Publication of JPH0697301B2 publication Critical patent/JPH0697301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To adjust finely magnifications easily with a high precision without generating an asymmetrical magnification distribution by varying the pressure of an air chamber shut out from outside air to adjust the projection magnification of a projection object lens. CONSTITUTION:A projection object lens 1 reduces and projects the pattern of a reticle R, which is illuminated by an illuminating device 2, onto a wafer W on a table 3. Two independent air chambers 10 and 20 in the lens 1 are connected to pressure controllers 12 and 22 on the outside of the object lens by tubes 11 and 21. Constant-pressure air is supplied to controllers 12 and 22 from a pressurized air supplier 4 through filters 13 and 23, and magnification variations DELTAX1 and DELTAX2 per unit pressure in individual chambers 10 and 20, image-forming surface variations DELTAZ1 and DELTAZ2, and a magnification variation DELTAX and an image-forming surface variation DELTAZ per unit pressure of an air pressure are stored preliminarily by pressure sensors 14 and 24 and an operator 5. The operator 5 detects an air pressure variation DELTAP by the signal of a measuring instrument 6 and calculates pressure variations DELTAP1 and DELTAP2 and outputs signals to controllers 12 and 22 to give pressure variations DELTAP1 and DELTAP2 to individual chambers 10 and 22.

Description

【発明の詳細な説明】 補正し得る投影光学装置及びその方法に関する。[Detailed description of the invention] The present invention relates to a projection optical device that can be corrected and a method thereof.

(発明の背景) 縮小投影型露光装置(以下ステッパと呼ぶ)は近年超I
、SIの生産現場に多く導入され、太@な成果をもたら
しているが、その重要な性能の一つに重ね合せマツチン
グ精度があげられる。このマッチング精度に影響を与え
る要素の中で重要なものに投影光学系の倍率誤差がある
。超LSIに用いられるパターンの大きさは年々微細化
の傾向を強め、それに伴ってマツチング精度の向上に対
するニーズも強くなってきている。従って投影倍率を所
定の値に保つ必要性はきわめて高くなってきている。現
在投影光学系の倍率は装置の設置時に調整することによ
り倍率誤差が一応無視できる程度になっている。しかし
ながら、装置の稼動時における僅かな温度変化やクリー
ンルーム内の僅かな気圧変動等、県境条件が変化した時
の倍率誤差を補正するため、及び初期設定時よシ更に高
いマツチング精度を得るために倍率の微調整をしたいと
いう要求が高1っている。
(Background of the Invention) In recent years, reduction projection exposure devices (hereinafter referred to as steppers) have become extremely
, has been widely introduced in SI production sites and has brought great results, and one of its important performances is overlay matching accuracy. An important factor among the factors that affect this matching accuracy is the magnification error of the projection optical system. The size of patterns used in VLSIs is becoming increasingly smaller year by year, and the need for improved matching accuracy is also becoming stronger. Therefore, the need to maintain the projection magnification at a predetermined value has become extremely high. Currently, the magnification of the projection optical system is adjusted at the time of installation of the apparatus, so that the magnification error can be ignored. However, in order to correct magnification errors caused by changes in prefectural border conditions such as slight temperature changes during equipment operation or slight pressure fluctuations in the clean room, and to obtain even higher matching accuracy than the initial setting, the magnification There is a high demand for fine-tuning the system.

従来ステッパ以外の投影光学系では投影倍率を変化させ
るために物体(レチクル)と投影レンズの間隔を機械的
に変化させたり、投影レンズ中のレンズエレメントを光
軸方向に動かしたりする方法がとられていた。しかしス
テツパのように極めて高精度な倍率設定が必要な装置に
上記のように光学部材を光軸方向に変化させるという方
法を採用すると機械的な可動部の偏心(シフト、ティル
ト)のため光軸を正しく保ったまま変位を与えることが
難しい。そのため物体を含めた光学系が共軸ですくすっ
てしまい、光軸に対して非対称な倍率分布が像面上に生
じてしまう欠点が生ずる。又ウェハ上で0.05μm以
下の誤差しか発生しない様に精度良く倍率設定するため
には光学部材の変化量を偏心(シフト、ティルト)を含
めて数μmないし1μm以下に制御する必要がありこれ
らの実現には多大の困難がともなう。
Conventionally, in projection optical systems other than steppers, methods have been used to change the projection magnification by mechanically changing the distance between the object (reticle) and the projection lens, or by moving the lens element in the projection lens in the optical axis direction. was. However, if the method of changing the optical member in the optical axis direction as described above is adopted for a device that requires extremely high-precision magnification setting such as a stepper, the optical axis It is difficult to apply displacement while maintaining the correct position. As a result, the optical system including the object is coaxially blurred, resulting in a disadvantage that a magnification distribution asymmetrical with respect to the optical axis occurs on the image plane. In addition, in order to accurately set the magnification so that an error of 0.05 μm or less occurs on the wafer, it is necessary to control the amount of change in the optical member to within a few μm or 1 μm, including eccentricity (shift, tilt). There are many difficulties involved in realizing this.

(発明の目的) 本発明は、これらの欠点を除き、非対称な倍率分布を発
生することたく高精度且つ簡便に倍率を微調整すること
のでさる投影光学装置及びその方法を提供することを目
的とする。
(Object of the Invention) An object of the present invention is to eliminate these drawbacks and provide a projection optical device and a method thereof that allow fine adjustment of magnification with high precision and ease without causing an asymmetric magnification distribution. do.

(発明の概要) 本発明は投影光学系の光線が通過する部分に外気から遮
断された空間を少くとも一つ形成しその空間の気圧を変
化させることによって投影倍率を変化させることを技術
的要点としている。すなわち、投影光学系の光線が通過
する部分に外気から遮断された空間を形成し、その空間
の気圧を変化させることによって投影倍率を精度よく変
化させうろことを見い出し、この技術に基づいて積極的
な倍率誤差補正を可能としたものである。但し、空間の
気圧変化と倍率変化の関係は、投影倍率及びレンズタイ
プによっても異7”、C9、さらにあるレンズ系におい
てもどの空間において圧力を変化させるかによっても異
る。筐だ空間の気圧を変化させると倍率が変化するだけ
でなく一般には結像面位置も変化するが、その影響の度
合いも空間によって異る。
(Summary of the Invention) Technical points of the present invention include forming at least one space shielded from the outside air in the portion of the projection optical system through which the light beam passes, and changing the projection magnification by changing the air pressure in the space. It is said that In other words, we created a space in the part of the projection optical system that is shielded from the outside air through which the light rays pass, and by changing the air pressure in that space, we discovered that the projection magnification could be changed accurately. This enables accurate magnification error correction. However, the relationship between the change in atmospheric pressure in the space and the change in magnification varies depending on the projection magnification and lens type, and also varies depending on the space in which the pressure is changed for a given lens system. Changing not only changes the magnification but also generally changes the position of the imaging plane, but the degree of this effect also differs depending on the space.

そこで、いまある投影対物レンズのレンズ間隔のうち1
ケ所を外気から遮断された空気室として構成し、この空
気室内の圧力が初期倍率設定時より単位圧力たけ変化し
た場合に、倍率変化量すなわち、結像面上での所定の軸
外像点の変位量が△X、であるとする。また、この空気
室以外の空気間隔の圧力が大気圧とほぼ等しく変化する
もめとし、この1ケ所の空気室を除く間隔の全体におい
て、大気圧の単位圧力の変化に対して倍率変化量かΔX
であるとする。この時大気圧に△Pの変化があるとする
と、密閉された空気室の圧力を△P1だけ変化させ、 (1)△p、 ・△X、 + ΔP−△X = 。
Therefore, one of the lens intervals of the existing projection objective lens
When the pressure in this air chamber changes by a unit pressure from the initial magnification setting, the amount of change in magnification, that is, the change in magnification at a predetermined off-axis image point on the imaging plane. Assume that the amount of displacement is ΔX. Also, assume that the pressure in the air intervals other than this air chamber changes approximately equal to the atmospheric pressure, and for the entire interval excluding this one air chamber, the amount of magnification change ΔX with respect to the change in unit pressure of atmospheric pressure
Suppose that At this time, if the atmospheric pressure changes by △P, the pressure in the sealed air chamber changes by △P1, and (1) △p, ・△X, + △P - △X =.

の関係を満足させることによって、倍率変化を補正する
ことができる。
By satisfying the relationship, the change in magnification can be corrected.

但し、1つの空気室のみでの圧力変化では、倍率補正が
可能であっても、結像面の変動を同時に補正することは
難しい。このため、外気から遮断された第2の空気室を
新たに設けることが望ましい。この場合、単位圧力の変
化に対する上記第1空気室による結像面変化量を△z1
 とし、第2空気室による倍率変化量を△X7、結像面
変化量を△2、とするr、cらば、 02つの条件を同時に満たすように、第1空気室の圧力
をΔPI だけ、第2璧気室の圧力をムP。
However, if the pressure changes in only one air chamber, even if magnification correction is possible, it is difficult to simultaneously correct changes in the imaging plane. For this reason, it is desirable to newly provide a second air chamber that is isolated from the outside air. In this case, the amount of change in the imaging plane due to the first air chamber with respect to a change in unit pressure is expressed as △z1
Assuming that the amount of change in magnification due to the second air chamber is △X7, and the amount of change in the imaging plane is △2, then if r and c, then the pressure in the first air chamber is increased by ∆PI so that the two conditions are satisfied at the same time. Adjust the pressure in the second air chamber.

だけそれぞれ変化させることによって、残る空気室全体
で生ずる倍率と結像面との両者の変動を補正することが
容易に可能となる。
By changing the respective values, it becomes possible to easily correct the fluctuations in both the magnification and the imaging plane that occur in the entire remaining air chamber.

尚、結像面の変動に対しては、例えば常に自動焦点検出
装置を作動させてウェハを支持するステージを精密に上
下させる構成とすれば結像面の変動を考慮せずに上述の
とおり1ケ所のみの空気室を設けてこの空気室の圧力制
御を行なうことによって倍率補正を行なえばよい。
In order to deal with fluctuations in the imaging plane, for example, if a configuration is adopted in which the automatic focus detection device is always activated to precisely move the stage that supports the wafer up and down, then the above-mentioned 1. The magnification correction may be performed by providing air chambers at only one location and controlling the pressure of these air chambers.

(実施例) 以下、本発明の実施例に基づいて本発明を説明する。第
1図はステッパーに用いられる投影対物レンズの一例を
示すレンズ配置図であり、この対物レンズによりレチク
ル(R)上の所定のパターンがウェハ(5)上に縮小投
影される。図中にはウェハとレチクルとの軸上物点の共
役関係を表わす光線を示した。この対物レンズはレチク
ル(6)側から順にLl l L21・・・Ll4の合
計14個のレンズがらなり、各レンズの間隔及びレチク
ル(母、ウェハ(5)との間に、レチクル側から順にa
、b、c、・・・・・・、0の合計15個の空気間隔が
形成されている。この対物レンズの諸元を表1に示す。
(Examples) Hereinafter, the present invention will be described based on Examples of the present invention. FIG. 1 is a lens arrangement diagram showing an example of a projection objective lens used in a stepper, and a predetermined pattern on a reticle (R) is reduced and projected onto a wafer (5) by this objective lens. In the figure, light rays representing the conjugate relationship between on-axis object points between the wafer and the reticle are shown. This objective lens consists of a total of 14 lenses, Ll, L21...Ll4, in order from the reticle (6) side, and the distance between each lens and the reticle (mother, wafer (5)), in order from the reticle side.
, b, c, ..., 0, a total of 15 air intervals are formed. Table 1 shows the specifications of this objective lens.

但し、rは各レンズ面の曲率半径、Dは各レンズの中心
厚及び空気間隔、Nは各レンズのi線(λ=36s、o
nyn)に対する屈折率を表わし、表中左端の数字はレ
チクル側から順序を表わすものとする。また、Do は
レチクル(世と最前し/ズ面との間隔、D31は最終レ
ンズ面とウェハ(ホ)との間隔を表わす。
However, r is the radius of curvature of each lens surface, D is the center thickness and air gap of each lens, and N is the i-line of each lens (λ = 36s, o
In the table, the leftmost number represents the order from the reticle side. Further, Do represents the distance between the reticle (plane) and the front/first lens surface, and D31 represents the distance between the final lens surface and the wafer (E).

いま、この対物レンズにおいて、空気間隔a。Now, in this objective lens, the air distance is a.

b、・・・0の気圧をそれぞれ+137.5mmHgだ
け変化させたとすると、各空気間隔の相対屈折率は1、
 OOOO5に変化し、この時の倍率変化、及び結像面
すなわちレチクル(R)との共役面の変化は表2に示す
ようになる。但し、倍率変化ΔXは、結像面上において
気圧変動がない時に光軸より5.66咽離れた位置に結
像する像点が、各空気間隔の気圧変化後の移動量をμm
単位で表わし、気圧変動が無い場合の結像面すなわち所
定のウェハ面上により大きく投影される場合(拡大)を
正符号として示した。また、結像面の変化△2は軸上の
結像表1 表2 点の変化として示し、対物レンズから遠ざかる場合を正
符号として示した。両者の値は共にμm単位である。
b,...If the atmospheric pressure at 0 is changed by +137.5 mmHg, the relative refractive index of each air gap is 1,
Table 2 shows the change in magnification and the change in the imaging plane, that is, the conjugate plane with the reticle (R). However, the magnification change ΔX is the amount of movement of the image point, which is formed at a position 5.66 degrees away from the optical axis when there is no change in air pressure on the imaging plane, after changes in air pressure in each air interval, in μm.
It is expressed in units, and a positive sign indicates a case where the image is projected larger (enlargement) on the image forming plane when there is no atmospheric pressure fluctuation, that is, on a predetermined wafer surface. Further, the change Δ2 in the imaging plane is shown as a change in the imaging point on the axis, and the case where it moves away from the objective lens is shown as a positive sign. Both values are in μm.

上記の表2より、第8空間りによる結像面の変化が最も
少なく、第8空間りは倍率補正用の空気間隔とするのに
最適であり、また、第14空間nによる倍率変化が最も
少なく、結像面の補正に最適であることが分る。そこで
、第8空間りと第14空間nとを外気から遮断された空
気室とし、これらの空気室内の圧力を制御することによ
り倍率補正と結像面の補正とを行なうこととする。そし
て、第8空間りと第14空間n以外の空間は大気と遮断
せず大気圧と共に変化するものとする。前述した(2)
式を書き直せば、上記の対物レンズにおいて大気圧変動
による倍率と結像面との補正を行なうだめの条件は、 となる。ここにΔP11は第8空間りの圧力変化、Δx
hは第8侶間りの単位圧力変化に対する倍率変化量、△
zhは第8空間りの単位圧力変化に対する結像面変化で
あシ、△Pnは第14空間nの圧力変化、△Xnは第1
4空間nの単位圧力変化に対する倍率変化、ΔZnは第
14空間nの単位圧力変化に対する結像面変化である。
From Table 2 above, the change in the imaging plane due to the 8th space is the least, the 8th space is optimal for using as an air gap for magnification correction, and the change in magnification due to the 14th space n is the most It can be seen that it is ideal for correcting the imaging plane. Therefore, the eighth space (n) and the fourteenth space (n) are made into air chambers that are isolated from the outside air, and the magnification correction and the imaging plane correction are performed by controlling the pressure inside these air chambers. It is assumed that the spaces other than the 8th space and the 14th space n are not isolated from the atmosphere and change with the atmospheric pressure. As mentioned above (2)
Rewriting the equation, the conditions for correcting the magnification and imaging plane due to atmospheric pressure fluctuations in the above objective lens are as follows. Here, ΔP11 is the pressure change in the eighth space, Δx
h is the magnification change amount for the unit pressure change in the 8th chamber, △
zh is the image forming plane change for a unit pressure change in the 8th space, △Pn is the pressure change in the 14th space n, and △Xn is the 1st
The change in magnification with respect to a unit pressure change in the 4th space n, ΔZn, is the change in the imaging plane with respect to a unit pressure change in the 14th space n.

又、△Pは大気圧変化、△Xは空間h−n以外の全ての
空間の単位圧力変化に対する倍率変化、△2は空間h・
n以外の全ての空間の単位圧力変化に対する結像面変化
である。圧力変化の単位はmmHg倍率変化及び結像面
変化の単位μm /mm Hgである。
Also, △P is the atmospheric pressure change, △X is the magnification change with respect to the unit pressure change in all spaces other than space h-n, and △2 is the space h・
This is the image plane change for a unit pressure change in all spaces other than n. The unit of pressure change is mmHg, and the unit of magnification change and image plane change is μm/mm Hg.

表2は各空間の圧力変化が+137.5 間Hgの時の
倍率変化、結像面変化が記載されているので(3)式の
△xh、△Xn、△X、△zh 、△Zn 、△zをこ
れによりめると(3)式は次の形に書キ改められる。
Table 2 lists the magnification changes and imaging plane changes when the pressure change in each space is +137.5 Hg, so △xh, △Xn, △X, △zh, △Zn in equation (3), When Δz is determined from this, equation (3) can be rewritten in the following form.

この(4)式を満足する△Ph、△Pnをめると、△P
h=−8,2△P、 △Pn=−23,5△Pが得られ
る。より具体的に1例をあげれば大気圧・の変動が−I
O+III+lHg だりた時には第8空間を82mH
g加圧し、第14空間を235++onHg加圧すれば
大気圧の変動による倍率変化、結像面変化を共に補正す
ることができる。
If we consider △Ph and △Pn that satisfy this equation (4), we get △P
h=-8,2ΔP and ΔPn=-23,5ΔP are obtained. To give a more specific example, fluctuations in atmospheric pressure -I
When O+III+lHg drops, the 8th space is 82mH
g and pressurizes the 14th space by 235++ onHg, it is possible to correct both the change in magnification and the change in the imaging plane due to fluctuations in atmospheric pressure.

第2図は上記のごとき空気室の圧力制御を行なうことに
よって、倍率補正と結像面補正が可能な投影光学装置の
概略構成図である。投影対物レンズ(すは照明装置(2
)により均一照明されたレチクル(R)上のパターンを
、ステージ(3)上に載置されたウェハ■上に縮小投影
する。投影対物レンズ(1)中には、@1図に示した第
8空気間隔り及び第14空気間隔nに対応する2つの独
立した空気室00)clllJが形成されており、各空
気室(10,20)はパイプ(II 、 21 )によ
りそれぞれ、対物レンズ外に設けられた圧力制御器Oa
及びQaに連結されている。そして各圧力制御器(12
、22)には、フィルタQ3及びぐ罎を則して加圧空気
供給器(4)より定常的に一足圧力の空気が供給される
。一方、各空気室の側面にはその内部圧力を検出する圧
力センサーQ4 、 (24が設けられており、この出
力信号は演算器(5)に送られる。演算器(5)には、
計測器(6)から大気圧の測定値信号も入力される。演
算器(5)には、nil述したごとく、各空気室(to
 、 2+) )における単位圧力当りの倍率変化量△
X7.ΔXt及び結像面変化量△右、Δz2並びに大気
圧の単位圧力当りの倍率変化量△Xと結像面変化量ΔX
があらかじめ記憶されている。そして、演算器(5)は
計測器(6)からの信号により大気圧の変化量△Pを検
出し、前述した(2)式の両条件を満足するために各空
気室に必壷す圧力変化△”l I △P、を算出し、各
圧力制御器(12゜22)にこれらの圧力変化を行なう
ための信号を発する。各圧力制御器(12、22)では
、演停器(5)からの信号に基づいて、ニードルパルプ
等により流′駄制御を行ない各空気室に△PI l △
P、の圧力変化を与える。尚、大気圧の計測器をステッ
パーに装備されている図示なき光波干渉計用の気圧計と
兼用することが可能である。
FIG. 2 is a schematic diagram of a projection optical device that can perform magnification correction and imaging plane correction by controlling the pressure of the air chamber as described above. Projection objective lens (Illumination device (2)
) The pattern on the reticle (R) uniformly illuminated by the wafer (R) is reduced and projected onto the wafer (2) placed on the stage (3). Two independent air chambers 00)clllJ are formed in the projection objective (1), corresponding to the 8th air spacing and the 14th air spacing n shown in Figure @1, and each air chamber (10 , 20) are pressure controllers Oa provided outside the objective lens by pipes (II, 21), respectively.
and Qa. and each pressure controller (12
, 22) are constantly supplied with air at one foot pressure from the pressurized air supply device (4) in line with the filter Q3 and the filter Q3. On the other hand, a pressure sensor Q4 (24) is provided on the side surface of each air chamber to detect its internal pressure, and this output signal is sent to a computing unit (5).
A measured value signal of atmospheric pressure is also input from the measuring device (6). As mentioned above, the computing unit (5) includes each air chamber (to
, 2+) ) magnification change per unit pressure △
X7. ΔXt and the amount of change in the imaging plane △right, Δz2 and the amount of change in magnification per unit pressure of atmospheric pressure △X and the amount of change in the imaging plane ΔX
is stored in advance. Then, the calculator (5) detects the amount of change in atmospheric pressure △P based on the signal from the measuring device (6), and sets the pressure required in each air chamber to satisfy both conditions of equation (2) mentioned above. It calculates the changes △"l I △P, and issues signals to each pressure controller (12, 22) to make these pressure changes. In each pressure controller (12, 22), a disable device (5 ) Based on the signal from △PI l △
Give a pressure change of P. Note that the atmospheric pressure measuring device can also be used as a barometer for a light wave interferometer (not shown) equipped in the stepper.

このようにして大気圧変動に対して常に一定した投影倍
率が維持され、ステッパとしての高精度マチングが安定
して達成される。尚、上記実施例では、各空気室に設け
られた圧力センサーからの信号を演算器を介して圧力制
御器ヘフィードバノクし、常時圧力制御器を作動させる
構成としたが、圧力センサー及び削測器による測定値を
人間が読み取り、各空気室に必要な圧力変化を計算して
、必要に応じてマニュアルで各圧力制御器を作動するよ
うに構成することもできる。
In this way, a constant projection magnification is always maintained despite atmospheric pressure fluctuations, and high-precision matching as a stepper is stably achieved. In the above embodiment, the signal from the pressure sensor installed in each air chamber is fed to the pressure controller via the computing unit, and the pressure controller is constantly activated. It can also be configured to allow a human to read the measurements, calculate the required pressure changes for each air chamber, and manually activate each pressure controller as needed.

寸た、投影対物レンズ(1)の鏡筒の近傍又は鏡筒内部
に温度センサー(7)を設け、との出力信号を演算器(
5)に送り、演算器にて大気の圧力変化のみならず、投
影対物レンズの周囲の温度や投影対物レンズ自体の温度
変化による変動をも補正するようにf’f4成すること
が可能である。
In addition, a temperature sensor (7) is provided near the lens barrel of the projection objective lens (1) or inside the lens barrel, and the output signal is sent to a calculator (
5), and the arithmetic unit can generate f'f4 so as to correct not only atmospheric pressure changes but also fluctuations due to temperature changes around the projection objective lens and temperature changes of the projection objective lens itself. .

上述のごとく、投影光学系の光路中に独立に気圧を制御
できる空間が少くともちケ以上存在すれば、投影倍率と
結歇面位1dの両方の変化を制御でさる。この時、投影
レンズ中のレンズエレメントを光軸方向に動かしたり、
レチクルと投影レンズの間隔を変化させたジする手法を
援用すれば気圧を制御する空間は必ずしも2ケ以上必要
としない。
As described above, if there is at least a space in the optical path of the projection optical system in which the atmospheric pressure can be independently controlled, changes in both the projection magnification and the convergence plane position 1d can be controlled. At this time, the lens element in the projection lens is moved in the optical axis direction,
If a method of changing the distance between the reticle and the projection lens is used, two or more spaces for controlling the air pressure are not necessarily required.

又結像面位置の変化を検出し追従する機能がステッパに
備わっている場合は空間の気圧制御は倍率変化だけに着
目して1ケの空間のみに対して行えが良い。結像面位置
の検出能力のないステッパで気圧制御する空間を1ケに
限定したい場合は第1図に示した第8空間りのように結
像面変化の少い空間を選ぶのが良いと思われる。気圧を
制御しない空間については、鏡筒に穴を空けて外気の気
圧の変動と同じ変動が起こるように配慮した方が良い場
合もあり、葦た場合にようては完全に密閉された空気室
を設けることが可能である。
Furthermore, if the stepper is equipped with a function of detecting and following changes in the position of the imaging plane, the air pressure control of the space can be performed for only one space by focusing only on the change in magnification. If you want to limit the air pressure control to one space using a stepper that does not have the ability to detect the image plane position, it is better to choose a space where the image plane changes less, such as the 8th space shown in Figure 1. Seem. For spaces where the atmospheric pressure is not controlled, it may be better to make a hole in the lens barrel so that the same fluctuations as the atmospheric pressure in the outside air occur. It is possible to provide

上記第2図に示した実施例のごとく、投影対物レンズ内
の特定のレンズ間隔を外気から遮断された空気室に形成
し、この空気室の圧力を制御することによって倍率の微
調整がなされるが、このような倍率微調整手段の作動方
法は種々存在する。
As in the embodiment shown in FIG. 2 above, fine adjustment of magnification is achieved by forming an air chamber at a specific distance between lenses within the projection objective lens, which is isolated from the outside air, and controlling the pressure of this air chamber. However, there are various methods of operating such a magnification fine adjustment means.

まず、第2図に示した実施例のごとく、ステッパの倍率
変化に影響を与える要素とその影響の程度をあらかじめ
調べておき、投影倍率を直接測定することなく、各要素
の変動量(例えば環境m良度化や大気圧の変動量)を計
測し発生している倍率変化量を子側して倍率微調整手段
を働かせるという方法である。この場合、第2図のごと
く実時間で谷影響安累を測定し、直ちに倍率を自動的に
調整するサーボシステムを構成することが望筐しいが、
測定(+Kに基づいてマニュアルで倍率調整することも
1丁能である。
First, as in the example shown in Fig. 2, the factors that affect the magnification change of the stepper and the extent of their influence are investigated in advance, and the amount of variation in each element (for example, the environment This is a method in which the magnification fine adjustment means is operated by measuring the amount of change in magnification that has occurred by measuring the amount of change in the magnification (m improvement in quality or the amount of change in atmospheric pressure). In this case, it is desirable to configure a servo system that measures the valley effect accumulation in real time and immediately adjusts the magnification automatically, as shown in Figure 2.
It is also possible to manually adjust the magnification based on the measurement (+K).

また、一般にスゲツバの投影レンズはIf、 光エネル
ギーの一部を吸収して温度が上昇する。このため投影レ
ンズに長時間、露光の光が照射されつづけたり、露光動
作が長時間連続して行われると倍率が僅に変化するiJ
能性がある。そのため投影レンズに蓄積されたエネルギ
ーを直接針側して倍率微調整手段にフィードバンクする
ことが望ましい。
In addition, the projection lens of Sugetsuba generally absorbs part of the light energy If, and its temperature rises. For this reason, if the projection lens is continuously irradiated with exposure light for a long time, or if the exposure operation is performed continuously for a long time, the magnification may change slightly.
There is a potential. Therefore, it is desirable to feed the energy accumulated in the projection lens directly to the needle side and feed it to the magnification fine adjustment means.

尚、対・吻レンズ内の蓄積エネルギーを直接i++++
定するのではなく、実験と計算によって陽光時間及び連
続稼動時間と倍率変化の関係をあらかじめ調べておき、
露光時間及び連続稼動時間の情報を倍率微調整手段にフ
ィードバックしても良い。
In addition, the energy stored in the pair and proboscis lens is directly i++++
Rather than setting a fixed value, the relationship between sunlight time, continuous operation time, and magnification change should be investigated in advance through experiments and calculations.
Information on the exposure time and continuous operation time may be fed back to the magnification fine adjustment means.

ざらに、ステッパに投影倍率測定機能をもたせ、測定結
果を倍率微調整手段にフィードバンクすることも可能で
ある。実時間で倍率を測定できれば直ちに倍率を調整す
るサーボシステムとすることも可能である。測定に時間
を要する場合には測定値を一度表示し、その値を基にマ
ニュアルで倍率微調整を行わせても良い。測定値を基に
して倍率調整を行ない更に倍率を再チェックするような
シーケンスを組むことも又容易である。尚、ステッパで
実際にウェハを露光し、そのウェハを計測することによ
って投影倍率を知ることができるので、この情報を倍率
調整手段にフィードバックすることも可能である。
Furthermore, it is also possible to provide the stepper with a projection magnification measurement function and feed the measurement results to the magnification fine adjustment means. If the magnification can be measured in real time, it is also possible to use a servo system that immediately adjusts the magnification. If the measurement takes time, the measured value may be displayed once and the magnification may be finely adjusted manually based on that value. It is also easy to create a sequence that adjusts the magnification based on the measured value and then rechecks the magnification. Note that since the projection magnification can be known by actually exposing a wafer with a stepper and measuring the wafer, it is also possible to feed this information back to the magnification adjustment means.

ところで、これまで気圧として空気に含1れるN21 
o2+ co、 l N20 ・・・等の各気体の分圧
を青感せずに全圧のみを取り扱ってきた。しかし、本発
明で重要なのは空気の屈折率を制御することなので通常
、空気でなく N2 のみを使ったり全圧一定のもとて
各気体の分圧を制御して空気の屈折率を変化させること
も本発明に当然含まれる。
By the way, until now N21 contained in air as atmospheric pressure
We have treated only the total pressure of each gas, such as o2+ co, lN20, etc., without considering the partial pressure. However, since the important thing in the present invention is to control the refractive index of air, it is usually possible to use only N2 instead of air, or to change the refractive index of air by controlling the partial pressure of each gas while keeping the total pressure constant. are also naturally included in the present invention.

本発明は倍率の微調整を可能とする方法を提供し1この
であって、倍率を一定に保ったことに有用なばかりでな
く、意識的に倍率を変動させることにも有用なのは明ら
かである。
The present invention provides a method that allows fine adjustment of the magnification.1 It is clear that this invention is useful not only for keeping the magnification constant, but also for intentionally varying the magnification. .

(発明の効果) 以上のように本発明によればステッパの投影倍率の調整
が高精度かつ簡便に可能になるためマシーンの環境条件
の変化にも対応しやすく、高いマツチングtIv度が維
持でき、超LSIの生産性向上に犬きく寄与するステッ
パが提供できる。
(Effects of the Invention) As described above, according to the present invention, the projection magnification of the stepper can be adjusted easily and with high precision, so it is easy to respond to changes in the environmental conditions of the machine, and a high matching tIv degree can be maintained. It is possible to provide a stepper that greatly contributes to improving the productivity of VLSI.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における一実施例のステッパ用投信〉対
物レンズのレンズイ1り成図、j4>J2図は本発明に
よる投影光学装置の実施例の概lll6溝成図である。 (主要部分の符号の説明〉 1・・・投影対物レンズ、10 、20・・・空気室、
12 、22・・・圧力制御器、 R・・・レチクル、
W・・・ウェハ 出願人 日本光学工業株式会社 代理人 渡辺隆男 第1図 !Z図
FIG. 1 is a lens diagram of an objective lens of an investment trust for a stepper according to an embodiment of the present invention, and FIG. (Explanation of symbols of main parts) 1... Projection objective lens, 10, 20... Air chamber,
12, 22...pressure controller, R...reticle,
W...Wafer applicant Takao Watanabe, agent of Nippon Kogaku Co., Ltd. Figure 1! Z diagram

Claims (1)

【特許請求の範囲】 1、 レチクル上のパターンをウェハ上に投影露光する
ための投影対物レンズを有する投影光学装置において、
該投影対物レンズ中のレンズ間隔の少なくとも1ケ所に
外気から遮断された空気室を設けると共に、該空気室の
圧力を制御するための圧力制御器を設け、該圧力制御器
により前記投影対物レンズ中の空気室の圧力を変えるこ
とによって該投影対物レンズの投影倍率を調整可能に構
成したことを特徴とする投影光学装置。 2、投影対物レンズによりレチクル上のパターンを所定
の倍率でウェハ上に投影するための投影方法において、
該所定の倍率を変化させる要素の変化を測定し、該要素
の変化量に対応して、前記投影対物レンズ中の少なくと
も1ケ所の空気間隔内の圧力を制御し、前記要素による
倍率変動を前記所定の倍率に補正することを特徴とする
投影方法。 3、 投影対物レンズによりレチクル上のノくターンを
所定の倍率でウエノ・上に投影するための投影方法にお
いて、該ウエノ・上に投影された前記レチクル上のパタ
ーン像の倍率を測定し、該ウェハ上に投影されたパター
ン像の倍率と前記所定の倍率との差を計算し、該倍率の
差に対応して、前記投影対物レンズ中の少なくとも1ケ
所の空気間隔内の圧力を制御し、前核倍率差を補正する
ことを特徴とする投影方法。
[Claims] 1. A projection optical device having a projection objective lens for projecting and exposing a pattern on a reticle onto a wafer,
An air chamber isolated from outside air is provided in at least one space between the lenses in the projection objective, and a pressure controller is provided to control the pressure in the air chamber, and the pressure controller controls the pressure in the projection objective. 1. A projection optical device characterized in that the projection magnification of the projection objective lens can be adjusted by changing the pressure of the air chamber. 2. In a projection method for projecting a pattern on a reticle onto a wafer at a predetermined magnification using a projection objective lens,
A change in the element that changes the predetermined magnification is measured, a pressure in at least one air gap in the projection objective is controlled corresponding to the amount of change in the element, and a change in magnification due to the element is controlled in accordance with the amount of change in the element. A projection method characterized by correcting to a predetermined magnification. 3. In a projection method for projecting a notch on a reticle onto a Ueno at a predetermined magnification using a projection objective lens, the magnification of the pattern image on the reticle projected onto the Ueno is measured; calculating the difference between the magnification of the pattern image projected onto the wafer and the predetermined magnification, and controlling the pressure in at least one air gap in the projection objective in response to the difference in magnification; A projection method characterized by correcting pronuclear magnification differences.
JP58137377A 1983-07-27 1983-07-27 Projection exposure device Expired - Lifetime JPH0697301B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58137377A JPH0697301B2 (en) 1983-07-27 1983-07-27 Projection exposure device
US07/120,232 US4871237A (en) 1983-07-27 1987-11-12 Method and apparatus for adjusting imaging performance of projection optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58137377A JPH0697301B2 (en) 1983-07-27 1983-07-27 Projection exposure device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5271497A Division JPH07122693B2 (en) 1993-10-01 1993-10-29 Exposure equipment for VLSI manufacturing

Publications (2)

Publication Number Publication Date
JPS6028613A true JPS6028613A (en) 1985-02-13
JPH0697301B2 JPH0697301B2 (en) 1994-11-30

Family

ID=15197259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58137377A Expired - Lifetime JPH0697301B2 (en) 1983-07-27 1983-07-27 Projection exposure device

Country Status (1)

Country Link
JP (1) JPH0697301B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262421A (en) * 1984-06-11 1985-12-25 Hitachi Ltd Method and device for projection and exposure
US4676631A (en) * 1985-05-31 1987-06-30 Canon Kabushiki Kaisha Device for adjusting projection magnification
JPS63164212A (en) * 1986-12-26 1988-07-07 Hitachi Ltd Reduction stepper
FR2634287A1 (en) * 1988-07-13 1990-01-19 Haiun Joseph Optical systems and transparent lenses having adjustable characteristics
JPH0311720A (en) * 1989-06-09 1991-01-21 Hitachi Ltd Pattern exposing device
JPH0396828U (en) * 1990-01-25 1991-10-03
JPH06201992A (en) * 1993-10-01 1994-07-22 Nikon Corp Exposure device for manufacturing super-lsi
JPH06224107A (en) * 1993-01-27 1994-08-12 Nec Corp Method and device for projection aligner
JPH06342755A (en) * 1993-11-26 1994-12-13 Hitachi Ltd Projection exposure and aligner therefor
US5798838A (en) * 1996-02-28 1998-08-25 Nikon Corporation Projection exposure apparatus having function of detecting intensity distribution of spatial image, and method of detecting the same
US5900926A (en) * 1995-10-06 1999-05-04 Nikon Corporation Projection exposure apparatus
US5947631A (en) * 1994-09-20 1999-09-07 Daiwa Kogyo Kabushiki Component retaining legs
US6525817B1 (en) 1995-02-21 2003-02-25 Nikon Corporation Inspection method and apparatus for projection optical systems
JP2007120680A (en) * 2005-10-28 2007-05-17 Sun Wave Ind Co Ltd Joint tool
CN111596529A (en) * 2020-05-29 2020-08-28 成都天马微电子有限公司 Exposure apparatus and method of using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130710A (en) * 1980-02-25 1981-10-13 Xerox Corp Gas lens unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130710A (en) * 1980-02-25 1981-10-13 Xerox Corp Gas lens unit

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262421A (en) * 1984-06-11 1985-12-25 Hitachi Ltd Method and device for projection and exposure
US4676631A (en) * 1985-05-31 1987-06-30 Canon Kabushiki Kaisha Device for adjusting projection magnification
JPS63164212A (en) * 1986-12-26 1988-07-07 Hitachi Ltd Reduction stepper
FR2634287A1 (en) * 1988-07-13 1990-01-19 Haiun Joseph Optical systems and transparent lenses having adjustable characteristics
JPH0311720A (en) * 1989-06-09 1991-01-21 Hitachi Ltd Pattern exposing device
JPH0396828U (en) * 1990-01-25 1991-10-03
JPH06224107A (en) * 1993-01-27 1994-08-12 Nec Corp Method and device for projection aligner
JPH06201992A (en) * 1993-10-01 1994-07-22 Nikon Corp Exposure device for manufacturing super-lsi
JPH06342755A (en) * 1993-11-26 1994-12-13 Hitachi Ltd Projection exposure and aligner therefor
US5947631A (en) * 1994-09-20 1999-09-07 Daiwa Kogyo Kabushiki Component retaining legs
US6525817B1 (en) 1995-02-21 2003-02-25 Nikon Corporation Inspection method and apparatus for projection optical systems
US6850327B2 (en) 1995-02-21 2005-02-01 Nikon Corporation Inspection method and apparatus for projection optical systems
US6203240B1 (en) 1995-09-19 2001-03-20 Daiwa Kogyo Kabushiki Component retaining legs
US5900926A (en) * 1995-10-06 1999-05-04 Nikon Corporation Projection exposure apparatus
US5798838A (en) * 1996-02-28 1998-08-25 Nikon Corporation Projection exposure apparatus having function of detecting intensity distribution of spatial image, and method of detecting the same
JP2007120680A (en) * 2005-10-28 2007-05-17 Sun Wave Ind Co Ltd Joint tool
CN111596529A (en) * 2020-05-29 2020-08-28 成都天马微电子有限公司 Exposure apparatus and method of using the same
CN111596529B (en) * 2020-05-29 2023-12-29 成都天马微电子有限公司 Exposure apparatus and method of using the same

Also Published As

Publication number Publication date
JPH0697301B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
JPS6028613A (en) Projection optical device
US5754299A (en) Inspection apparatus and method for optical system, exposure apparatus provided with the inspection apparatus, and alignment apparatus and optical system thereof applicable to the exposure apparatus
TWI388944B (en) Lithographic apparatus and device manufacturing method
KR20010006467A (en) Aligner, exposure method using the aligner, and method of manufacture of circuit device
KR100971561B1 (en) Exposure apparatus and method of manufacturing device
JPH10340846A (en) Aligner, its manufacture, exposing method and device manufacturing method
JPS60262421A (en) Method and device for projection and exposure
US5973766A (en) Exposure method and exposure device
JP5386463B2 (en) Lithographic apparatus
WO2000017916A1 (en) Method of adjusting optical projection system
JPH0684757A (en) Projection aligner
JPH06310399A (en) Projection aligner
US6172740B1 (en) Projection exposure apparatus and device manufacturing method
JPH01123238A (en) Method and apparatus for correcting effect of environmental parameter for imaging characteristic of optical system
KR20090086347A (en) Lithographic apparatus and calibration method
US5917581A (en) Projection exposure method and apparatus therefor
JPH0430411A (en) Projection exposure device
JP2840314B2 (en) Projection exposure equipment
TWI417677B (en) Exposure method, exposure apparatus, and device manufacturing method
JP2897346B2 (en) Projection exposure equipment
EP3134772B1 (en) Photolithography apparatus comprising projection system for control of image size
JP2641692B2 (en) LSI element manufacturing method and apparatus
JPH08241861A (en) Lsi device manufacturing method and equipment
JPH0672983B2 (en) Projection optics
JPH07122693B2 (en) Exposure equipment for VLSI manufacturing