JPH07122693B2 - Exposure equipment for VLSI manufacturing - Google Patents

Exposure equipment for VLSI manufacturing

Info

Publication number
JPH07122693B2
JPH07122693B2 JP5271497A JP27149793A JPH07122693B2 JP H07122693 B2 JPH07122693 B2 JP H07122693B2 JP 5271497 A JP5271497 A JP 5271497A JP 27149793 A JP27149793 A JP 27149793A JP H07122693 B2 JPH07122693 B2 JP H07122693B2
Authority
JP
Japan
Prior art keywords
optical system
magnification
projection optical
projection
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5271497A
Other languages
Japanese (ja)
Other versions
JPH06201992A (en
Inventor
曉 安西
康一 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP5271497A priority Critical patent/JPH07122693B2/en
Publication of JPH06201992A publication Critical patent/JPH06201992A/en
Publication of JPH07122693B2 publication Critical patent/JPH07122693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、投影光学系の倍率を高
精度かつ簡便に補正し得る超LSI製造用露光装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure apparatus for manufacturing a VLSI which can correct the magnification of a projection optical system with high accuracy and easily.

【0002】[0002]

【従来の技術】縮小投影型露光装置(以下ステッパと呼
ぶ)は近年超LSI素子の生産現場に多く導入され、大
きな成果をもたらしているが、その重要な性能の一つに
重ね合せマッチング精度があげられる。このマッチング
精度に影響を与える要素の中で重要なものに投影光学系
の倍率誤差がある。超LSIに用いられるパターン線幅
は年々微細化の傾向を強め、それに伴ってマッチング精
度の向上に対するニーズも強くなってきている。従っ
て、投影倍率を所定の値に保つ必要性は極めて高くなっ
てきている。現在、投影光学系の倍率は装置の設置時に
調整することにより倍率誤差が一応無視できる程度にな
っている。しかしながら、装置の稼動時における僅かな
温度変化やクリーンルーム内の僅かな気圧変動等、環境
条件が変化した時の倍率誤差、あるいは露光動作中に投
影光学系が露光エネルギーの一部を吸収することにより
生ずる倍率誤差を補正するため、または初期設定時より
更に高いマッチング精度を得るために倍率の微調整をし
たいという要求が高まっている。
2. Description of the Related Art A reduction projection type exposure apparatus (hereinafter referred to as a stepper) has been introduced to many production sites of VLSI devices in recent years and has brought great results. One of its important performances is overlay matching accuracy. can give. An important factor that affects the matching accuracy is a magnification error of the projection optical system. The pattern line width used in VLSI is becoming finer year by year, and along with this, there is a strong need for improvement in matching accuracy. Therefore, the need to maintain the projection magnification at a predetermined value has become extremely high. At present, the magnification of the projection optical system is adjusted to such a degree that the magnification error can be ignored once it is adjusted when the apparatus is installed. However, due to a magnification error when environmental conditions change, such as a slight temperature change during operation of the device or a slight atmospheric pressure change in the clean room, or the projection optical system absorbs a part of the exposure energy during the exposure operation. There is an increasing demand for fine adjustment of the magnification in order to correct the magnification error that occurs or to obtain higher matching accuracy than in the initial setting.

【0003】従来、ステッパ以外の投影光学系では投影
倍率を変化させるために物体(レチクル)と投影レンズ
の間隔を機械的に変化させたり、投影レンズ中のレンズ
エレメントを光軸方向に動かしたりする方法がとられて
いた。
Conventionally, in a projection optical system other than a stepper, the distance between an object (reticle) and a projection lens is mechanically changed to change the projection magnification, or the lens element in the projection lens is moved in the optical axis direction. The method was taken.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ステッ
パのように極めて高精度な倍率設定が必要な装置に上記
のように光学部材を光軸方向に変化させるという方法を
採用すると、機械的な可動部の偏心(シフト、ティル
ト)のために光軸を正しく保ったまま変位を与えること
が難しい。そのため、物体を含めた光学系が共軸でなく
なってしまい、光軸に対して非対称な倍率分布が像面上
に生じてしまう欠点が生ずる。また、ウェハ上で0.0
5μm以下の誤差しか発生しないように精度良く倍率設
定するためには、光学部材の変化量を偏心(シフト、テ
ィルト)を含めて数μmないし1μm以下に制御する必
要があり、これらの実現には多大の困難が伴う。
However, if the method of changing the optical member in the optical axis direction as described above is adopted in a device such as a stepper which requires extremely high-precision magnification setting, a mechanical movable part is used. Due to the eccentricity (shift, tilt), it is difficult to give a displacement while keeping the optical axis correct. Therefore, the optical system including the object is not coaxial, and there is a drawback that a magnification distribution asymmetric with respect to the optical axis occurs on the image plane. Also, 0.0 on the wafer
In order to accurately set the magnification so that only an error of 5 μm or less occurs, it is necessary to control the change amount of the optical member to several μm to 1 μm or less including eccentricity (shift, tilt). A great deal of difficulty is involved.

【0005】そこで本発明は、特に露光エネルギーの一
部吸収で生ずる倍率誤差を、非対称な倍率分布を発生す
ることなく高精度、かつ簡便に補正することのできる超
LSI製造用露光装置を提供することを目的とする。
Therefore, the present invention provides an exposure apparatus for manufacturing a VLSI, which can correct a magnification error caused by partial absorption of exposure energy with high precision and easily without generating an asymmetric magnification distribution. The purpose is to

【0006】[0006]

【課題を解決するための手段】かかる問題点を解決する
ため本発明は、投影すべきパターンを有するレチクル
(R)を均一照明する照明手段(2)と、複数の光学素
子(L1 〜L14)と複数の空気間隔(a〜o)とで構成
され、レチクルのパターンを結像投影する投影光学系
(1)と、投影されたパターンによって露光される感光
基板(W)を載置するステージ(3)と、投影光学系内
の選ばれた空気間隔を外気から遮断した気密室とし、該
気密室内の気体の屈折率を強制的に変化させて投影光学
系の結像特性を微小変化させる調整器(12)とを備
え、感光基板上に超LSI素子を露光するための超LS
I製造用露光装置に適用される。
In order to solve the above problems, the present invention provides an illumination means (2) for uniformly illuminating a reticle (R) having a pattern to be projected, and a plurality of optical elements (L 1 to L). 14 ) and a plurality of air gaps (a to o), and a projection optical system (1) for imaging and projecting the pattern of the reticle, and a photosensitive substrate (W) exposed by the projected pattern are placed. The stage (3) and a selected air space in the projection optical system are made into an airtight chamber that is shielded from the outside air, and the refractive index of the gas in the airtight chamber is forcibly changed to slightly change the imaging characteristics of the projection optical system. And an adjusting device (12) for controlling the ultra LS for exposing the VLSI device on the photosensitive substrate.
I It is applied to an exposure apparatus for manufacturing.

【0007】そして本発明では、投影光学系(1)内の
複数の空気間隔(a〜o)のうち、調整器(12)によ
って屈折率を変化させたときに生ずる投影光学系の倍率
変化率が相対的に大きく、かつ結像面位置の変化率が相
対的に小さくなっている空気間隔(h)を気密室(1
0)として設定した投影光学系を設け、さらにレチクル
パターンを投影露光する間に投影光学系に蓄積される露
光エネルギーに関する情報を検知する手段と、該露光エ
ネルギーによって生ずる投影光学系の倍率変動を補正す
るのに必要な気密室(10)内の気体の屈折率に対応し
た値を、検知された情報に基づいて算出する演算手段
(5)と、気密室(10)内の気体の屈折率が算出され
た値と等価になるように調整器(12)をフィードバッ
ク制御する制御系(圧力センサー14を含むフィードバ
ック系)とを設けるようにした。
In the present invention, the rate of change in magnification of the projection optical system, which occurs when the refractive index is changed by the adjuster (12) among a plurality of air intervals (a to o) in the projection optical system (1). Is relatively large and the rate of change of the image plane position is relatively small, the air gap (h) is set to the airtight chamber (1
A projection optical system set as 0), and means for detecting information regarding exposure energy accumulated in the projection optical system during projection exposure of the reticle pattern, and correction of magnification variation of the projection optical system caused by the exposure energy. The calculation means (5) for calculating a value corresponding to the refractive index of the gas in the airtight chamber (10) necessary for the operation based on the detected information, and the refractive index of the gas in the airtight chamber (10) are A control system (feedback system including the pressure sensor 14) that feedback-controls the regulator (12) is provided so as to be equivalent to the calculated value.

【0008】[0008]

【作用】本発明は、投影光学系の光線が通過する部分に
外気から遮断された空間を少くとも一つ形成し、その空
間の気圧を変化させることによって投影倍率を変化させ
ることを技術的要点としている。すなわち、投影光学系
の光線が通過する部分に外気から遮断された空間を形成
し、その空間の気圧を変化させることによって投影倍率
を精度よく変化させ得ることを見い出し、この技術に基
づいて積極的な倍率誤差補正を可能としたものである。
但し、空間の気圧変化と倍率変化の関係は、投影倍率及
びレンズタイプによっても異なり、さらにあるレンズ系
においてもどの空間において圧力を変化させるかによっ
ても異なる。また、空間の気圧を変化させると、倍率が
変化するだけでなく一般には結像面位置も変化するが、
その影響の度合いも空間によって異なる。
According to the present invention, at least one space shielded from the outside air is formed in a portion of the projection optical system through which light rays pass, and the projection magnification is changed by changing the atmospheric pressure of the space. I am trying. That is, it is found that a space that is shielded from the outside air is formed in a portion where the light rays of the projection optical system pass, and that the projection magnification can be accurately changed by changing the atmospheric pressure of the space, and based on this technology, It is possible to correct various magnification errors.
However, the relationship between the change in atmospheric pressure and the change in magnification in the space also differs depending on the projection magnification and the lens type, and also in a certain lens system depending on in which space the pressure is changed. Also, when the atmospheric pressure of the space is changed, not only the magnification changes but also the image plane position generally changes,
The degree of the influence also differs depending on the space.

【0009】そこで、いまある投影対物レンズのレンズ
間隔のうち1ケ所を外気から遮断された空気室として構
成し、この空気室内の圧力が初期倍率設定時より単位圧
力だけ変化した場合に、倍率変化量、すなわち結像面上
での所定の軸外像点の変位量がΔX1 であるとする。ま
た、この空気室以外の空気間隔の圧力が大気圧とほぼ等
しく変化するものとし、この1ケ所の空気室を除く間隔
の全体において、大気圧の単位圧力の変化に対して倍率
変化量がΔXであるとする。このとき、大気圧にΔPの
変化があるとすると、密閉された空気室の圧力をΔP1
だけ変化させ、 ΔP1 ・ΔX1 +ΔP・ΔX=0 ・・・・・・(1) の関係を満足させることによって、倍率変化を補正する
ことができる。
Therefore, one of the lens intervals of the existing projection objective lens is constructed as an air chamber which is shielded from the outside air, and when the pressure in the air chamber changes by a unit pressure from the time when the initial magnification is set, the magnification is changed. It is assumed that the amount, that is, the amount of displacement of the predetermined off-axis image point on the image plane is ΔX 1 . Further, it is assumed that the pressure in the air interval other than this air chamber changes approximately equal to the atmospheric pressure, and the magnification change amount is ΔX with respect to the change in the unit pressure of the atmospheric pressure in the entire interval excluding this one air chamber. Suppose At this time, if there is a change in the atmospheric pressure by ΔP, the pressure in the sealed air chamber is ΔP 1
However, the magnification change can be corrected by satisfying the relationship of ΔP 1 · ΔX 1 + ΔP · ΔX = 0 (1).

【0010】但し、1つの空気室のみでの圧力変化で
は、倍率補正が可能であっても、結像面の変動を同時に
補正することは難しい。このため、外気から遮断された
第2の空気室を新たに設けることが望ましい。この場
合、単位圧力の変化に対する上記第1空気室による結像
面変化量をΔZ1 とし、第2空気室による倍率変化量を
ΔX2 、結像面変化量をΔZ2 とするならば、 ΔP1 ・ΔX1 +ΔP2 ・ΔX2 +ΔP・ΔX=0 ・・・・・・(2) ΔP1 ・ΔZ1 +ΔP2 ・ΔZ2 +ΔP・ΔZ=0 の2つの条件を同時に満たすように、第1空気室の圧力
を△P1 だけ、第2空気室の圧力をΔP2 だけそれぞれ
変化させることによって、残る空気室全体で生ずる倍率
と結像面位置との両者の変動を補正することが容易に可
能となる。
However, even if the magnification can be corrected by the pressure change in only one air chamber, it is difficult to simultaneously correct the fluctuation of the image plane. Therefore, it is desirable to newly provide a second air chamber that is shielded from the outside air. In this case, if the image plane change amount by the first air chamber with respect to the change of the unit pressure is ΔZ 1 , the magnification change amount by the second air chamber is ΔX 2 , and the image plane change amount is ΔZ 2 , then ΔP 1 · ΔX 1 + ΔP 2 · ΔX 2 + ΔP · ΔX = 0 ··· (2) ΔP 1 · ΔZ 1 + ΔP 2 · ΔZ 2 + ΔP · ΔZ = 0 to meet the two conditions at the same time By changing the pressure in the air chamber by ΔP 1 and the pressure in the second air chamber by ΔP 2, it is easy to correct the fluctuations of both the magnification and the image plane position that occur in the remaining air chamber. It will be possible.

【0011】尚、結像面位置の変動に対しては、例えば
常に自動焦点検出装置を作動させてウェハを支持するス
テージを精密に上下させる構成とすれば、結像面位置の
変動を考慮せずに上述の通り1ケ所のみの空気室を設け
てこの空気室の圧力制御を行うことによって倍率補正の
みを行えばよい。
With respect to the variation of the image plane position, for example, if the automatic focus detection device is always operated to move the stage for supporting the wafer precisely up and down, the variation of the image plane position should be taken into consideration. Instead, as described above, only one air chamber is provided and the pressure control of this air chamber is performed, so that only the magnification correction is performed.

【0012】[0012]

【実施例】以下、本発明の実施例に基づいて本発明を説
明する。図1はステッパーに用いられる投影対物レンズ
の一例を示すレンズ配置図であり、この投影対物レンズ
によりレチクル(R)上の所定のパターンがウェハ
(W)上に縮小投影される。図中にはウェハとレチクル
との軸上物点の共役関係を表わす光線を示した。この投
影対物レンズはレチクル(R)側から順にL1 、L2
…L14の合計14個のレンズ素子からなり、各レンズ素
子の間隔及びレチクル(R)、ウェハ(W)との間に、
レチクル側から順にa、b、c、・・・・、oの合計15個
の空気間隔が形成されている。この投影レンズの諸元を
表1に示す。但し、rは各レンズ面の曲率半径、Dは各
レンズの中心厚及び空気間隔、Nは各レンズのi線(λ
=365.0nm)に対する屈折率を表し、表中左端の
数字はレチクル側から順序を表すものとする。また、D
0 はレチクル(R)と最前レンズ面との間隔、D31は最
終レンズ面とウェハ(W)との間隔を表す。
EXAMPLES The present invention will be described below based on examples of the present invention. FIG. 1 is a lens arrangement diagram showing an example of a projection objective lens used in a stepper, and a predetermined pattern on a reticle (R) is reduced and projected onto a wafer (W) by this projection objective lens. In the figure, light rays are shown which represent the conjugate relationship of the on-axis object point between the wafer and the reticle. This projection objective lens has L 1 , L 2 , and
It is composed of a total of 14 lens elements L 14 , and the distance between each lens element and the reticle (R) and the wafer (W),
A total of 15 air intervals a, b, c, ..., O are formed from the reticle side. Table 1 shows the specifications of this projection lens. Where r is the radius of curvature of each lens surface, D is the center thickness and air gap of each lens, and N is the i-line (λ
= 365.0 nm), the leftmost number in the table indicates the order from the reticle side. Also, D
0 represents the distance between the reticle (R) and the frontmost lens surface, and D 31 represents the distance between the final lens surface and the wafer (W).

【0013】いま、この投影レンズにおいて、空気間隔
a、b、…oの気圧をれぞれ+137.5mmHgだけ変
化させたとすると、各空気間隔の相対屈折率は1.00
005に変化し、この時の倍率変化、及び結像面すなわ
ちレチクル(R)との共役面の位置変化は表2に示すよ
うになる。但し、倍率変化ΔXは、結像面上において気
圧変動がない時に光軸より5.66mm離れた位置に結
像する像点が、各空気間隔の気圧変化後の移動量をμm
単位で表し、気圧変動が無い場合の結像面すなわち所定
のウェハ面上により大きく投影される場合(拡大)を正
符号として示した。また、結像面の変化ΔZは軸上の結
像点の変化として示し、投影レンズから遠ざかる場合を
正符号として示した。両者の値は共にμm単位である。
Now, in this projection lens, if the atmospheric pressures of the air intervals a, b, ... O are changed by +137.5 mmHg, the relative refractive index of each air interval is 1.00.
The change in magnification and the change in position of the imaging plane, that is, the conjugate plane with the reticle (R), are as shown in Table 2. However, the change in magnification ΔX is the moving amount of the image point, which is imaged at a position 5.66 mm away from the optical axis when there is no change in atmospheric pressure on the image forming plane, in μm after the change in atmospheric pressure at each air interval.
It is expressed in units, and the case where there is no fluctuation in the atmospheric pressure, that is, the case where the projection is larger on the image plane, that is, the predetermined wafer surface (enlargement) is shown as a positive sign. Further, the change ΔZ of the image plane is shown as the change of the image formation point on the axis, and the case of moving away from the projection lens is shown as a positive sign. Both values are in μm.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】上記の表2より、第8空間hによる結像面
位置の変化率が最も少なく、第8空間hは倍率補正用の
空気間隔とするのに最適であり、また、第14空間nに
よる倍率変化が最も少なく、結像面位置の補正に最適で
あることが分かる。そこで、第8空間hと第14空間n
とを外気から遮断された空気室とし、これらの空気室内
の圧力を制御することにより倍率補正と結像面の補正と
を行うこととする。そして、第8空間hと第14空間n
以外の空間は大気と遮断せず大気圧と共に変化するもの
とする。前述した(2)式を書き直せば、上記の投影レ
ンズにおいて大気圧変動による倍率と結像面との補正を
行うための条件は、 ΔPh・ΔXh+ΔPn・ΔXn+ΔP・ΔX=0 ・・・・・・(3) ΔPh・ΔZh+ΔPn・ΔZn+ΔP・ΔZ=0 となる。ここにΔPhは第8空間hの圧力変化、ΔXh
は第8空間hの単位圧力変化に対する倍率変化量、ΔZ
hは第8空間hの単位圧力変化に対する結像面変化であ
り、ΔPnは第14空間nの圧力変化、ΔXnは第14
空間nの単位圧力変化に対する倍率変化、ΔZnは第1
4空間nの単位圧力変化に対する結像面変化である。
又、ΔPは大気圧変化、ΔXは空間h・n以外の全ての
空間の単位圧力変化に対する倍率変化、ΔZは空間h・
n以外の全ての空間の単位圧力変化に対する結像面変化
である。圧力変化の単位はmmHg、倍率変化及び結像面
変化及び結像面変化の単位はμm/mmHgである。
From Table 2 above, the rate of change in the image plane position due to the eighth space h is the smallest, and the eighth space h is optimal for setting the air space for magnification correction, and the fourteenth space n It can be seen that the change in magnification due to is the smallest and is most suitable for the correction of the image plane position. Therefore, the eighth space h and the fourteenth space n
Are defined as air chambers that are shielded from the outside air, and magnification control and image plane correction are performed by controlling the pressure in these air chambers. Then, the eighth space h and the fourteenth space n
Spaces other than the above shall not change from the atmosphere and change with atmospheric pressure. Rewriting equation (2) above, the conditions for correcting the magnification and the image plane due to atmospheric pressure changes in the projection lens are: ΔPh · ΔXh + ΔPn · ΔXn + ΔP · ΔX = 0 .. 3) ΔPh · ΔZh + ΔPn · ΔZn + ΔP · ΔZ = 0. Where ΔPh is the pressure change in the eighth space h, ΔXh
Is the amount of change in magnification with respect to the unit pressure change in the eighth space h, ΔZ
h is the change in the image plane with respect to the unit pressure change in the eighth space h, ΔPn is the pressure change in the fourteenth space n, and ΔXn is the fourteenth space.
Magnification change per unit pressure change of space n, ΔZn is the first
4 is a change in image plane with respect to a unit pressure change in the four spaces n.
Further, ΔP is a change in atmospheric pressure, ΔX is a change in magnification with respect to a unit pressure change in all spaces other than the space h · n, and ΔZ is a space h ·
It is a change in the image plane with respect to a unit pressure change in all spaces other than n. The unit of pressure change is mmHg, and the unit of magnification change, image plane change, and image plane change is μm / mmHg.

【0017】表2は各空間の圧力変化が+137.5mm
Hgの時の倍率変化、結像面変化が記載されているの
で、(3)式のΔXh、ΔXn、ΔX、ΔZh、ΔZ
n、ΔZをこれにより求めると、(3)式は次の形に書
き改められる。 9.53×10-4×ΔPh−5.82×10-5×ΔPn+6.41×10-3×ΔP=0 ・・・・・・(4) −2.19×10-4×ΔPh+4.51×10-3×ΔPn+1.04×10-1×ΔP=0 この(4)式を満足するΔPh、ΔPnを求めると、 ΔPh=−8.2 ΔP、ΔPn=−23.5ΔP が得られる。より具体的に一例をあげれば、大気圧の変
動が−10mmHgだった時には第8空間を82mmHg加
圧し、第14空間を235mmHg加圧すれば、大気圧の
変動による倍率変化、結像面変化を共に補正することが
できる。
Table 2 shows that the pressure change in each space is +137.5 mm.
Since the magnification change and the image plane change at Hg are described, ΔXh, ΔXn, ΔX, ΔZh, ΔZ in the equation (3) are described.
When n and ΔZ are obtained by this, the formula (3) can be rewritten into the following form. 9.53 × 10 -4 × ΔPh−5.82 × 10 −5 × ΔPn + 6.41 × 10 −3 × ΔP = 0 (4) −2.19 × 10 −4 × ΔPh + 4.51 × 10 −3 × ΔPn + 1 .04 × 10 −1 × ΔP = 0 When ΔPh and ΔPn satisfying the expression (4) are obtained, ΔPh = −8.2 ΔP and ΔPn = −23.5ΔP are obtained. As a more specific example, when the atmospheric pressure fluctuates by -10 mmHg, the eighth space is pressurized by 82 mmHg and the 14th space is pressurized by 235 mmHg. Both can be corrected.

【0018】図2は上記のごとき空気室の圧力制御を行
うことによって、倍率補正と結像面補正が可能な投影光
学装置の概略構成図である。投影対物レンズ(1)は照
明装置(2)により均一照明されたレチクル(R)上の
パターンを、ステージ(3)上に載置された感光基板と
してのウェハ(W)上に縮小投影する。投影対物レンズ
(1)中には、図1に示した第8空気間隔h及び第14
空気間隔nに対応する2つの独立した空気室(10)
(20)が形成されており、各空気室(10、20)は
パイプ(11、21)によりそれぞれ、対物レンズ外に
設けられた圧力制御器(12)及び(22)に連結され
ている。そして各圧力制御器(12、22)には、フィ
ルタ(13)及び(23)を通して加圧空気供給器
(4)より定常的に一定圧力の空気が供給される。一
方、各空気室の側面にはその内部圧力を検出する圧力セ
ンサー(14)、(24)が設けられており、この出力
信号は演算器(5)に送られる。演算器(5)には、計
測器(6)から大気圧の測定値信号も入力される。演算
器(5)には、前述したごとく、各空気室(10、2
0)における単位圧力当りの倍率変化量ΔX1 、ΔX2
及び結像面変化量ΔZ1 、ΔZ 2 並びに大気圧の単位圧
力当りの倍率変化量ΔXと結像面変化量ΔXがあらかじ
め記憶されている。そして、演算器(5)は計測器
(6)からの信号により大気圧の変化量ΔPを検出し、
前述した(2)式の両条件を満足するために各空気室に
必要な圧力変化ΔP1 、ΔP2 を算出し、各圧力制御器
(12、22)にこれらの圧力変化を行なうための信号
を発する。各圧力制御器(12、22)では、演算器
(5)からの信号に基づいてニードルバルブ等により流
量制御を行ない各空気室にΔP1 、ΔP2 の圧力変化を
与える。尚、大気圧の計測器をステッパーに装備されて
いる図示なき光波干渉計用の気圧計と兼用することが可
能である。
FIG. 2 shows the pressure control of the air chamber as described above.
The projection light enables magnification correction and image plane correction by
It is a schematic block diagram of a learning device. The projection objective (1) is illuminated
On the reticle (R) uniformly illuminated by the light device (2)
The pattern and the photosensitive substrate placed on the stage (3)
Then, reduction projection is performed on the wafer (W). Projection objective
In (1), the eighth air gap h and the 14th air gap shown in FIG.
Two independent air chambers (10) corresponding to air spacing n
(20) is formed, and each air chamber (10, 20) is
Pipes (11, 21) to the outside of the objective lens
Connected to the pressure controllers (12) and (22) provided
ing. And each pressure controller (12, 22) has a filter
Pressurized air supply through filters (13) and (23)
(4) Air with a constant pressure is constantly supplied. one
On the side of each air chamber, the pressure
Sensors (14) and (24) are provided and output
The signal is sent to the calculator (5). The calculator (5) has a total
A measurement value signal of atmospheric pressure is also input from the measuring instrument (6). Calculation
As described above, the air chamber (10, 2,
Magnification change ΔX per unit pressure in 0)1, ΔX2
And image plane change amount ΔZ1, ΔZ 2And unit pressure of atmospheric pressure
The amount of change in magnification ΔX per force and the amount of change in image plane ΔX are
It is remembered. And the computing unit (5) is a measuring instrument
The atmospheric pressure change amount ΔP is detected by the signal from (6),
In order to satisfy both conditions of equation (2), each air chamber
Required pressure change ΔP1, ΔP2Calculate each pressure controller
Signals for making these pressure changes at (12, 22)
Emit. In each pressure controller (12, 22), a calculator
Based on the signal from (5), flow through a needle valve, etc.
Amount control is performed and ΔP is applied to each air chamber.1, ΔP2Pressure change
give. In addition, the atmospheric pressure measuring instrument is equipped with the stepper.
Can also be used as a barometer for light wave interferometer (not shown)
Noh.

【0019】このようにして大気圧変動に対して常に一
定した投影倍率が維持され、ステッパとしての高精度マ
ッチングが安定して達成される。尚、上記実施例では、
各空気室に設けられた圧力センサーからの信号を演算器
を介して圧力制御器へフィードバックし、常時圧力制御
器を作動させる構成としたが、圧力センサー及び計測器
による測定値を人間が読み取り、各空気室に必要な圧力
変化を計算して、必要に応じてマニュアルで各圧力制御
器を作動するように構成することもできる。
In this way, a constant projection magnification is always maintained with respect to atmospheric pressure fluctuations, and highly accurate matching as a stepper is stably achieved. In the above embodiment,
The signal from the pressure sensor provided in each air chamber is fed back to the pressure controller via the arithmetic unit, and the pressure controller is always operated.However, a human reads the measured value by the pressure sensor and the measuring instrument, The pressure change required for each air chamber may be calculated, and each pressure controller may be manually operated as needed.

【0020】また、投影対物レンズ(1)の鏡筒の近傍
又は鏡筒内部に温度センサー(7)を設け、この出力信
号を演算器(5)に送り、演算器にて大気の圧力変化の
みならず、投影対物レンズの周囲の温度や投影対物レン
ズ自体の温度変化による変動をも補正するように構成す
ることが可能である。上述のごとく、投影光学系の光路
中に独立に気圧を制御できる空間が少くとも2ケ以上存
在すれば、投影倍率と結像面位置の両方の変化を制御で
きる。この時、投影レンズ中のレンズエレメントを光軸
方向に動かしたり、レチクルと投影レンズの間隔を変化
させたりする手法を援用すれば気圧を制御する空間は必
ずしも2ケ以上必要としない。又結像面位置の変化を検
出し追従する機能がステッパに備わっている場合は空間
の気圧制御は倍率変化だけに着目して1ケの空間のみに
対して行えば良い。結像面位置の検出能力のないステッ
パで気圧制御する空間を1ケに限定したい場合は図1に
示した第8空間hのように結像面変化の少い空間を選ぶ
のが良いと思われる。気圧を制御しない空間について
は、鏡筒に穴を空けて外気の気圧の変動と同じ変動が起
こるように配慮した方が良い場合もあり、また場合によ
っては完全に密閉された空気室を設けることが可能であ
る。
Further, a temperature sensor (7) is provided near or inside the lens barrel of the projection objective lens (1), and this output signal is sent to the arithmetic unit (5) so that the arithmetic unit only changes the atmospheric pressure. Of course, it is possible to correct the variation around the projection objective lens or the temperature change of the projection objective lens itself. As described above, if there are at least two spaces in the optical path of the projection optical system in which the atmospheric pressure can be independently controlled, changes in both the projection magnification and the image plane position can be controlled. At this time, if the method of moving the lens element in the projection lens in the optical axis direction or changing the distance between the reticle and the projection lens is used, it is not always necessary to provide two or more spaces for controlling the atmospheric pressure. When the stepper has a function of detecting and following a change in the position of the image plane, the atmospheric pressure control of the space may be performed only for one space by paying attention to only the change in magnification. When it is desired to limit the space for controlling the atmospheric pressure to a single stepper that does not have the ability to detect the position of the image plane, it is advisable to select a space with a small change in the image plane, such as the eighth space h shown in FIG. Be done. For a space where the atmospheric pressure is not controlled, it may be better to make a hole in the lens barrel so that the same fluctuation as the atmospheric pressure fluctuation of the outside air occurs, and in some cases a completely sealed air chamber should be provided. Is possible.

【0021】上記図2に示した実施例のごとく、投影対
物レンズ内の特定のレンズ間隔を外気から遮断された空
気室に形成し、この空気室の圧力を制御することによっ
て倍率の微調整がなされるが、このような倍率微調整手
段の作動方法は種々存在する。まず、図2に示した実施
例のごとく、ステッパの倍率変化に影響を与える要素と
その影響の程度をあらかじめ調べておき、投影倍率を直
接測定することなく、各要素の変動量(例えば環境温度
変化や大気圧の変動量)を計測し発生している倍率変化
量を予測して倍率微調整手段を働かせるという方法であ
る。この場合、図2のごとく実時間で各影響要素を測定
し、直ちに倍率を自動的に調整するサーボシステムを構
成することが望ましいが、測定値に基づいてマニュアル
で倍率調整することも可能である。
As in the embodiment shown in FIG. 2, a specific lens interval in the projection objective lens is formed in an air chamber which is shielded from the outside air, and the pressure in this air chamber is controlled to finely adjust the magnification. However, there are various methods of operating such a magnification fine adjustment means. First, as in the embodiment shown in FIG. 2, the factors affecting the stepper magnification change and the extent of the influence are investigated in advance, and the variation amount of each element (for example, the ambient temperature is measured without directly measuring the projection magnification). This is a method in which the change amount and the fluctuation amount of the atmospheric pressure) are measured to predict the amount of change in the magnification, and the magnification fine adjustment means is activated. In this case, it is desirable to configure a servo system that measures each influencing element in real time and automatically adjusts the magnification immediately as shown in FIG. 2, but it is also possible to manually adjust the magnification based on the measured value. .

【0022】また、一般にステッパの投影レンズは露光
エネルギーの一部を吸収して温度が上昇する。このため
投影レンズに長時間、露光の光が照射されつづけたり、
露光動作が長時間連続して行われると倍率が僅に変化す
る可能性がある。そのため投影レンズに蓄積されたエネ
ルギーを直接計測して倍率微調整手段(圧力制御器12
と空気室10)にフィードバックすることが望ましい。
尚、投影レンズ内の蓄積エネルギーを直接測定するので
はなく、実験と計算によって露光時間及び連続稼動時間
と倍率変化の関係をあらかじめ調べておき、露光時間及
び連続稼動時間の情報を倍率微調整手段にフィードバッ
クして倍率誤差を補正するサーボ系とするのが良い。
Further, in general, the projection lens of the stepper absorbs a part of the exposure energy and its temperature rises. For this reason, the projection lens continues to be exposed to exposure light for a long time,
If the exposure operation is continuously performed for a long time, the magnification may slightly change. Therefore, the energy stored in the projection lens is directly measured to finely adjust the magnification (pressure controller 12).
It is desirable to provide feedback to the air chamber 10).
It should be noted that, instead of directly measuring the accumulated energy in the projection lens, the relationship between the exposure time and the continuous operating time and the change in magnification is previously checked by experiments and calculations, and the information of the exposure time and the continuous operating time is used to finely adjust the magnification. It is preferable to use a servo system that feeds back to and corrects the magnification error.

【0023】さらに、ステッパに投影倍率測定機能をも
たせ、測定結果を倍率微調整手段にフィードバックする
ことも可能である。実時間で倍率を測定できれば直ちに
倍率を調整するサーボシステムとすることも可能であ
る。測定に時間を要する場合には測定値を一度表示し、
その値を基にマニュアルで倍率微調整を行わせても良
い。測定値を基にして倍率調整を行ない更に倍率を再チ
ェックするようなシーケンスを組むことも又容易であ
る。尚、ステッパで実際にウェハを露光し、そのウェハ
を計測することによって投影倍率を知ることができるの
で、この情報を倍率調整手段にフィードバックすること
も可能である。
Further, the stepper may be provided with a projection magnification measuring function, and the measurement result may be fed back to the magnification fine adjusting means. If the magnification can be measured in real time, it is possible to use a servo system that immediately adjusts the magnification. If the measurement takes time, display the measured value once,
The magnification may be finely adjusted manually based on the value. It is also easy to set up a sequence in which the magnification is adjusted based on the measured value and the magnification is checked again. Since the projection magnification can be known by actually exposing the wafer with a stepper and measuring the wafer, this information can also be fed back to the magnification adjusting means.

【0024】ところで、これまで気圧として空気に含ま
れるN2 、O2 、CO2 、H2 O…等の各気体の分圧を
考慮せずに全圧のみを取り扱ってきた。しかし、本発明
で重要なのは空気の屈折率を制御することなので通常、
空気でなくN2 のみを使ったり全圧一定のもとで各気体
の分圧を制御して空気の屈折率を変化させることも本発
明に当然含まれる。
By the way, up to now, only the total pressure has been handled without considering the partial pressure of each gas such as N 2 , O 2 , CO 2 , H 2 O, etc. contained in air as atmospheric pressure. However, since it is important to control the refractive index of air in the present invention,
It is naturally included in the present invention that only N 2 is used instead of air or the partial pressure of each gas is controlled under a constant total pressure to change the refractive index of air.

【0025】本発明は倍率の微調整を可能とする方法を
提供したのであって、倍率を一定に保ったことに有用な
ばかりでなく、意識的に倍率を変動させることにも有用
なのは明らかである。
Since the present invention provides a method that enables fine adjustment of the magnification, it is obvious that it is useful not only for keeping the magnification constant but also for intentionally changing the magnification. is there.

【0026】[0026]

【発明の効果】以上のように本発明によれば、投影倍率
の調整が高精度かつ簡便に可能になるため、露光動作の
間に投影光学系が露光エネルギーを吸収することで生ず
る倍率誤差を逐次補正していくことができるため、高い
マッチング精度が維持でき、超LSIの生産性向上に大
きく寄与する超LSI製造用露光装置が提供できる。
As described above, according to the present invention, since the projection magnification can be adjusted with high accuracy and easily, the magnification error caused by the absorption of the exposure energy by the projection optical system during the exposure operation can be prevented. Since the correction can be sequentially performed, a high matching accuracy can be maintained, and it is possible to provide an exposure apparatus for manufacturing a VLSI, which greatly contributes to improvement in the productivity of the VLSI.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における実施例で使われる投影対物レン
ズのレンズ構成図。
FIG. 1 is a lens configuration diagram of a projection objective lens used in an embodiment of the present invention.

【図2】本発明による超LSI製造用露光装置の実施例
の概略構成図。
FIG. 2 is a schematic configuration diagram of an embodiment of an exposure apparatus for manufacturing VLSI according to the present invention.

【符号の説明】[Explanation of symbols]

1 投影対物レンズ 10、20 空気室 12、22 圧力制御器 R レチクル W ウェハ 1 Projection Objective Lens 10, 20 Air Chamber 12, 22 Pressure Controller R Reticle W Wafer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 投影すべきパターンを有するレチクルを
均一照明する照明手段と、複数の光学素子と複数の空気
間隔とで構成され、前記レチクルのパターンを結像投影
する投影光学系と、投影されたパターンによって露光さ
れる感光基板を載置するステージと、前記投影光学系内
の選ばれた空気間隔を外気から遮断した気密室とし、該
気密室内の気体の屈折率を強制的に変化させて前記投影
光学系の結像特性を微小変化させる調整器とを備え、前
記感光基板上に超LSI素子を露光するための超LSI
製造用露光装置において、 前記レチクルパターンを投影露光する間に前記投影光学
系に蓄積される露光エネルギーに対応した情報を直接
知するか、あるいは予め実験と計算によって求めておい
た露光エネルギーの蓄積と前記投影光学系の倍率変動と
の関係に基づいて、前記投影露光の間に生じ得る前記投
影光学系の倍率誤差に対応した情報を検知する手段と; 該露光エネルギーによって生ずる前記投影光学系の倍率
誤差を補正するのに必要な前記気密室内の気体の屈折率
に対応した値を、前記検知された情報に基づいて算出す
る演算手段と; 前記気密室内の気体の屈折率が前記算出された値と等価
になるように前記調整器をフィードバック制御する制御
系とを備えたことを特徴とする超LSI製造用露光装
置。
1. A projection optical system, which comprises an illuminating means for uniformly illuminating a reticle having a pattern to be projected, a plurality of optical elements and a plurality of air gaps, and a projection optical system for image-projecting the pattern of the reticle. And a stage on which the photosensitive substrate exposed by the pattern is placed and an airtight chamber in which the selected air gap in the projection optical system is shielded from the outside air, and the refractive index of the gas in the airtight chamber is forcibly changed. An ultra-LSI for exposing an ultra-LSI element on the photosensitive substrate, which comprises an adjuster for minutely changing the image formation characteristic of the projection optical system.
In the manufacturing exposure apparatus, the information corresponding to the exposure energy accumulated in the projection optical system during the projection exposure of the reticle pattern is directly detected or previously obtained by experiment and calculation.
Accumulated exposure energy and variation in magnification of the projection optical system
Of the projections that may occur during the projection exposure,
Means for detecting information corresponding to a magnification error of the shadow optical system ; magnification of the projection optical system generated by the exposure energy
Calculating means for calculating a value corresponding to the refractive index of the gas in the airtight chamber necessary to correct an error based on the detected information; and a refractive index of the gas in the airtight chamber for the calculated value And a control system for feedback-controlling the adjuster so as to be equivalent to the exposure apparatus for VLSI manufacturing.
【請求項2】 投影すべきパターンを有するレチクルを
均一照明する照明手段と、複数の光学素子と複数の空気
間隔とで構成され、前記レチクルのパターンを結像投影
する投影光学系と、投影されたパターンによって露光さ
れる感光基板を載置するステージと、前記投影光学系内
の選ばれた空気間隔を外気から遮断した気密室とし、該
気密室内の気体の圧力を強制的に変化させて前記投影光
学系の結像特性を微小変化させる調整器とを備え、前記
感光基板上に超LSI素子を露光するための超LSI製
造用露光装置において、 前記レチクルパターンを投影露光する間に前記投影光学
系に蓄積される露光エネルギーに起因して変化する投影
倍率の誤差に応じた情報を、予め実験と計算によって求
めておいた露光エネルギーの蓄積と前記投影光学系の倍
率変動との関係 に基づいて検知する手段と; 該露光エネルギーに起因した前記投影光学系の倍率誤差
を補正するのに必要な前記気密室内の気体の圧力に対応
した値を、前記検知された情報に基づいて算出する演算
手段と; 前記気密室内の気体の圧力が前記算出された値と等価に
なるように前記調整器をフィードバック制御する制御系
とを備えたことを特徴とする超LSI製造用露光装置。
2. A projection optical system, which comprises an illuminating means for uniformly illuminating a reticle having a pattern to be projected, a plurality of optical elements and a plurality of air gaps, and a projection optical system for image-projecting the reticle pattern. And a stage on which the photosensitive substrate exposed by the pattern is placed, and an airtight chamber in which the selected air space in the projection optical system is shielded from the outside air, and the pressure of the gas in the airtight chamber is forcibly changed to A VLSI manufacturing exposure apparatus for exposing a VLSI element onto the photosensitive substrate, comprising: an adjuster for minutely changing an image forming characteristic of a projection optical system, wherein the projection optical system is used during projection exposure of the reticle pattern. the information corresponding to the error of the projection magnification changes due to exposure energy stored in the system, determined in advance by experiments and calculations
Accumulated exposure energy and double the projection optical system
Means for detecting based on the relationship with the rate fluctuation ; a value corresponding to the pressure of the gas in the hermetic chamber necessary to correct the magnification error of the projection optical system due to the exposure energy, And a control system that performs feedback control of the regulator so that the pressure of the gas in the airtight chamber becomes equivalent to the calculated value. Exposure equipment for VLSI manufacturing.
JP5271497A 1993-10-01 1993-10-29 Exposure equipment for VLSI manufacturing Expired - Fee Related JPH07122693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5271497A JPH07122693B2 (en) 1993-10-01 1993-10-29 Exposure equipment for VLSI manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5271497A JPH07122693B2 (en) 1993-10-01 1993-10-29 Exposure equipment for VLSI manufacturing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58137377A Division JPH0697301B2 (en) 1983-07-27 1983-07-27 Projection exposure device

Publications (2)

Publication Number Publication Date
JPH06201992A JPH06201992A (en) 1994-07-22
JPH07122693B2 true JPH07122693B2 (en) 1995-12-25

Family

ID=17500884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5271497A Expired - Fee Related JPH07122693B2 (en) 1993-10-01 1993-10-29 Exposure equipment for VLSI manufacturing

Country Status (1)

Country Link
JP (1) JPH07122693B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697301B2 (en) * 1983-07-27 1994-11-30 株式会社ニコン Projection exposure device

Also Published As

Publication number Publication date
JPH06201992A (en) 1994-07-22

Similar Documents

Publication Publication Date Title
US4871237A (en) Method and apparatus for adjusting imaging performance of projection optical apparatus
US4825247A (en) Projection exposure apparatus
US5137349A (en) Projection-type optical apparatus
KR100847633B1 (en) Method and program for calculating exposure dose and focus position in exposure apparatus, and device manufacturing method
JPS60262421A (en) Method and device for projection and exposure
JPS6232613A (en) Projection exposure device
US4730900A (en) Projection optical apparatus
JPH0697301B2 (en) Projection exposure device
JP3309871B2 (en) Projection exposure method and apparatus, and element manufacturing method
WO2000017916A1 (en) Method of adjusting optical projection system
KR100486871B1 (en) Projection exposure equipment
JPH01123238A (en) Method and apparatus for correcting effect of environmental parameter for imaging characteristic of optical system
JP2897345B2 (en) Projection exposure equipment
JP3414476B2 (en) Projection exposure equipment
US5917581A (en) Projection exposure method and apparatus therefor
JPH07122693B2 (en) Exposure equipment for VLSI manufacturing
JP2897346B2 (en) Projection exposure equipment
US8717542B2 (en) Fluid gauge with multiple reference gaps
JP3375076B2 (en) Projection exposure method and apparatus, and element manufacturing method
JP4921512B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JPH08241861A (en) Lsi device manufacturing method and equipment
JP2641692B2 (en) LSI element manufacturing method and apparatus
JPH0388317A (en) Projection exposure apparatus
JPH0672983B2 (en) Projection optics
JPH07192990A (en) Aligner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080711

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090711

LAPS Cancellation because of no payment of annual fees