JP2897345B2 - Projection exposure equipment - Google Patents

Projection exposure equipment

Info

Publication number
JP2897345B2
JP2897345B2 JP2136829A JP13682990A JP2897345B2 JP 2897345 B2 JP2897345 B2 JP 2897345B2 JP 2136829 A JP2136829 A JP 2136829A JP 13682990 A JP13682990 A JP 13682990A JP 2897345 B2 JP2897345 B2 JP 2897345B2
Authority
JP
Japan
Prior art keywords
projection
optical system
change
distortion
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2136829A
Other languages
Japanese (ja)
Other versions
JPH0430411A (en
Inventor
浩彦 篠永
敏一 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15184478&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2897345(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2136829A priority Critical patent/JP2897345B2/en
Publication of JPH0430411A publication Critical patent/JPH0430411A/en
Application granted granted Critical
Publication of JP2897345B2 publication Critical patent/JP2897345B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は投影露光装置に関し、特にIC,LSI等の半導体
素子を製造する際にレチクル面上の電子回路パターンを
ウエハ面上に投影光学系により投影するときの歪曲誤差
や投影倍率誤差等の光学性能を良好に補正し、高精度な
投影パターン像が得られる投影露光装置に関するもので
ある。
Description: BACKGROUND OF THE INVENTION The present invention relates to a projection exposure apparatus, and more particularly to a projection optical system in which an electronic circuit pattern on a reticle surface is projected onto a wafer surface when a semiconductor device such as an IC or LSI is manufactured. The present invention relates to a projection exposure apparatus capable of satisfactorily correcting optical performance such as a distortion error and a projection magnification error when performing projection to obtain a highly accurate projection pattern image.

(従来の技術) 従来よりIC,LSI等の半導体素子製造用の焼付装置(ア
ライナー)においては非常に高い組立精度と光学性能が
要求されている。
(Prior Art) Conventionally, a printing apparatus (aligner) for manufacturing semiconductor elements such as ICs and LSIs has been required to have extremely high assembly accuracy and optical performance.

このうち電子回路パターンが形成されているレチクル
とウエハとを重ね合わせる際のマッチング精度は特に重
要になっている。このマッチング精度に最も影響を与え
る一要素に投影光学系の投影倍率誤差と歪曲誤差があ
る。投影倍率誤差や歪曲誤差は所望の格子点と投影パタ
ーンの格子点との差として現われる。本出願人は特開昭
62−35620号公報において光学手段を用いて像歪誤差を
減少させて投影倍率を補正した手段を有するアライナー
を提案している。
Of these, the matching accuracy when the reticle on which the electronic circuit pattern is formed and the wafer are superposed is particularly important. One factor that most affects the matching accuracy is a projection magnification error and a distortion error of the projection optical system. The projection magnification error and the distortion error appear as a difference between a desired grid point and a grid point of the projection pattern. The present applicant
Japanese Patent Application Laid-Open No. 62-35620 proposes an aligner having means for reducing the image distortion error using optical means and correcting the projection magnification.

ところで最近のアライナーに用いられるパターン寸法
は年々微細化されており、それに伴いマッチング精度も
より高精度なものが要求されてきている。この為投影光
学系の投影倍率誤差と歪曲誤差を更に僅少にすることが
要望されている。
By the way, the pattern dimensions used for recent aligners have been miniaturized year by year, and accordingly, higher matching accuracy has been required. Therefore, there is a demand for further reducing the projection magnification error and the distortion error of the projection optical system.

現在の投影光学系の投影倍率誤差と歪曲誤差は投影光
学系の製造工程上の調整及び装置の設置時の調整により
補正されている。
The projection magnification error and distortion error of the current projection optical system are corrected by adjustment in the manufacturing process of the projection optical system and adjustment at the time of installation of the apparatus.

(発明が解決しようとする問題点) しかしながら投影光学系の投影倍率誤差や歪曲誤差等
は組立誤差や周囲の環境、特に気圧や温度によって変化
する。又投影光学系はウエハの露光時に露光エネルギー
を吸収し、光学要素(例えば屈折率、形状)が変化し、
これによっても投影倍率誤差や歪曲誤差等が変化してく
る。
(Problems to be Solved by the Invention) However, a projection magnification error, a distortion error, and the like of the projection optical system change depending on an assembly error and a surrounding environment, particularly, atmospheric pressure and temperature. Also, the projection optical system absorbs exposure energy when exposing the wafer, and the optical elements (for example, refractive index and shape) change,
This also changes the projection magnification error, distortion error, and the like.

これらの光学性能の双方を良好に補正するのは難し
く、従来の投影露光装置では例えば気圧や温度変化、光
吸収等による歪曲誤差が残留していたり、投影倍率誤差
を補正する際に歪曲誤差が発生したりして投影倍率誤差
と歪曲誤差の双方を完全に補正することが大変難しかっ
た。
It is difficult to satisfactorily correct both of these optical performances, and in a conventional projection exposure apparatus, a distortion error due to, for example, atmospheric pressure, temperature change, light absorption, etc. remains, or a distortion error occurs when correcting a projection magnification error. It is very difficult to completely correct both the projection magnification error and the distortion error due to the occurrence.

本発明はレクチル面上のパターンを投影光学系により
ウエハ面上に投影する際、投影倍率誤差と歪曲誤差の双
方を良好に補正し、高い光学性能が容易に得られる投影
露光装置の提供を目的とする。
It is an object of the present invention to provide a projection exposure apparatus capable of satisfactorily correcting both a projection magnification error and a distortion error when projecting a pattern on a reticle surface onto a wafer surface by a projection optical system and easily obtaining high optical performance. And

(問題点を解決するための手段) 本発明の投影露光装置は、 (1−1)露光光で第1物体のパターンを第2物体上に
投影する投影光学系を有する投影露光装置において、該
投影光学系の光学特性を調整するための調整手段を有
し、該調整手段は、該露光光の波長を変えることにより
該投影光学系の歪曲収差と投影倍率を変化させる波長変
更手段と該投影光学系のレンズを該投影光学系の光軸方
向に移動させることにより該投影光学系の歪曲収差と投
影倍率を変化させる移動手段とを有し、該波長変更手段
と該移動手段とを用いて該投影光学系の歪曲収差と投影
倍率を調整することを特徴としている。
(Means for Solving the Problems) A projection exposure apparatus according to the present invention includes: (1-1) a projection exposure apparatus having a projection optical system for projecting a pattern of a first object onto a second object with exposure light. Adjusting means for adjusting the optical characteristics of the projection optical system, the adjusting means changing the wavelength of the exposure light to change the distortion and the projection magnification of the projection optical system; Moving means for changing the distortion and projection magnification of the projection optical system by moving a lens of the optical system in the optical axis direction of the projection optical system, and using the wavelength changing means and the moving means. It is characterized in that the distortion and the projection magnification of the projection optical system are adjusted.

特に、 (1−1−1)前記投影光学系の周囲の気圧を検出する
気圧センサーを有し、前記調整手段が、該気圧センサー
からの信号に応じて気圧変化による該投影光学系の歪曲
収差の変化と投影倍率の変化とを補正すること。
In particular, there is provided: (1-1-1) a pressure sensor for detecting a pressure around the projection optical system, wherein the adjusting means adjusts a distortion of the projection optical system due to a pressure change according to a signal from the pressure sensor. And the change in the projection magnification.

(1−1−2)前記投影光学系の温度を検出する温度セ
ンサーを有し、前記調整手段が、該温度センサーからの
信号に応じて温度変化による該投影光学系の歪曲収差の
変化と投影倍率の変化とを補正すること。
(1-1-2) a temperature sensor for detecting a temperature of the projection optical system, wherein the adjusting means projects a change in distortion of the projection optical system due to a temperature change in accordance with a signal from the temperature sensor; To correct for changes in magnification.

(1−1−3)前記露光光がレーザー光であること等を
特徴としている。
(1-1-3) The exposure light is a laser beam.

又、本発明の半導体素子の製造方法は、 (2−1)構成(1−1)の投影露光装置により回路パ
ターンを基板上に転写する段階を含むことを特徴として
いる。
Further, the method of manufacturing a semiconductor device according to the present invention is characterized in that it includes the step of (2-1) transferring a circuit pattern onto a substrate by the projection exposure apparatus having the configuration (1-1).

(実施例) 第1図は本発明の投影露光装置の一実施例を示す概略
図である。
Embodiment FIG. 1 is a schematic view showing an embodiment of the projection exposure apparatus of the present invention.

第1図において1は回路パターンが描かれた第1物体
としてのレチクル、2はレチクル1を吸着保持するレチ
クルチャック、3はレチクルチャック2に取り付けたレ
チクル駆動装置、4はレチクル駆動装置3を支持するレ
チクルステージ、5は縮少型の投影レンズ系、6A,6Bは
各々投影レンズ系5を構成する部分レンズ系のフィール
ドレンズである(以下「フィールドレンズ6A、フィール
ドレンズ6B」と称す。)。7はレンズ系であり、投影レ
ンズ系5の一部を構成している。8A,8Bは各々レンズ駆
動装置であり、フィールドレンズ6A,6Bを投影レンズ系
5の光軸AX方向に移動させている。9はレジスト等の感
材が塗布された第2物体としてのウエハ、10はウエハ9
を吸着保持するウエアチャック、11はウエハチャック10
に取付けたウエハ駆動装置である。
In FIG. 1, 1 is a reticle as a first object on which a circuit pattern is drawn, 2 is a reticle chuck that sucks and holds the reticle 1, 3 is a reticle driving device attached to the reticle chuck 2, and 4 is a reticle driving device 3 The reticle stage 5 is a projection lens system of a reduced type, and 6A and 6B are field lenses of partial lens systems constituting the projection lens system 5 (hereinafter referred to as "field lenses 6A and 6B"). Reference numeral 7 denotes a lens system, which constitutes a part of the projection lens system 5. Reference numerals 8A and 8B denote lens driving devices, which move the field lenses 6A and 6B in the direction of the optical axis AX of the projection lens system 5. 9 is a wafer as a second object coated with a photosensitive material such as a resist, and 10 is a wafer 9
Chuck 11 for holding the wafer by suction, 11 is the wafer chuck 10
This is a wafer driving device attached to the device.

レチクル駆動装置3とウエハ駆動装置11は例えば圧電
素子等からなり、レチクル駆動装置3によりレチクルチ
ャック2を投影レンズ系5の光軸AX方向に変位せしめて
レチクル1を光軸AX方向に移動させ、ウエハ駆動装置11
によりウエハチャック10を投影レンズ系5の光軸AX方向
に変位せしめてウエハ9を光軸AX方向に移動させる。12
はウエハ駆動装置11を支持し、投影レンズ系5の光軸AX
に直交する面内で移動可能なウエハステージを示す。
The reticle driving device 3 and the wafer driving device 11 are composed of, for example, piezoelectric elements or the like. The reticle driving device 3 displaces the reticle chuck 2 in the optical axis AX direction of the projection lens system 5 to move the reticle 1 in the optical axis AX direction. Wafer driving device 11
As a result, the wafer chuck 10 is displaced in the optical axis AX direction of the projection lens system 5 to move the wafer 9 in the optical axis AX direction. 12
Supports the wafer driving device 11 and the optical axis AX of the projection lens system 5.
2 shows a wafer stage movable in a plane orthogonal to FIG.

一方、レンズ駆動装置8A,8Bは空気圧や圧電素子等を
利用してフィールドレンズ6A,6Bを投影レンズ系5の光
軸AX方向に移動させるものである。レンズ駆動装置8A,8
Bの具体的な構造は本件出願人による特開昭62−32613号
公報に開示されているので、ここでは説明を省略する。
On the other hand, the lens driving devices 8A and 8B move the field lenses 6A and 6B in the optical axis AX direction of the projection lens system 5 using air pressure, a piezoelectric element, or the like. Lens drive 8A, 8
The specific structure of B is disclosed in Japanese Patent Application Laid-Open No. 62-32613 filed by the present applicant, and the description thereof is omitted here.

レチクル駆動装置3によるレチクルチャック2の駆動
はレチクル駆動制御系13からの信号に基づいて行なわ
れ、この時レチクル1の光軸AX方向の位置がレチクル位
置検出器15により検出される。又、同様にレンズ駆動装
置8A,8Bによるフィールドレンズ6A,6Bの駆動はレンズ駆
動制御系16A,16Bから信号に基づいて行なわれ、この時
フィールドレンズ6A,6Bの光軸AX方向に位置がレンズ位
置検出器17A,17Bにより検出される。レチクル位置検出
器15とレンズ位置検出器17A,17Bは光学式エンコーダ等
の各種の位置検出器で構成することができる。
The driving of the reticle chuck 2 by the reticle driving device 3 is performed based on a signal from the reticle driving control system 13, and at this time, the position of the reticle 1 in the optical axis AX direction is detected by the reticle position detector 15. Similarly, the driving of the field lenses 6A and 6B by the lens driving devices 8A and 8B is performed based on signals from the lens driving control systems 16A and 16B. At this time, the positions of the field lenses 6A and 6B in the optical axis AX direction It is detected by the position detectors 17A and 17B. The reticle position detector 15 and the lens position detectors 17A and 17B can be composed of various position detectors such as an optical encoder.

又、ウエハ駆動装置11によるウエハチャック10の駆動
はウエハ駆動制御系14からの信号に基づいて行なわれ、
この時ウエハ9(の表面)の光軸AX方向の位置はフォー
カス検出器18により検出される。フォーカス検出器18
は、この種の投影露光装置で従来から使用されてきた例
えばエアーセンサーや光学式センサーで構成されてい
る。エチクル位置検出器15、レンズ位置検出器17A,17B
及びフォーカス位置検出器18からの各信号はマイクロプ
ロセッサー23へ入力される。一方、投影レンズ系5の周
囲の気圧、気温、温度の変化を検出するために気圧セン
サー19、温度センサー20、湿度センサー21が設けられ、
投影レンズ系5の光吸収による温度変化を検出するため
にレンズ温度センサー22が設けられており、これら各種
センサー19,20,21,22からの信号もマイクロプロセッサ
ー23へ入力される。
Further, the driving of the wafer chuck 10 by the wafer driving device 11 is performed based on a signal from the wafer drive control system 14,
At this time, the position of (the surface of) the wafer 9 in the optical axis AX direction is detected by the focus detector 18. Focus detector 18
Is composed of, for example, an air sensor or an optical sensor conventionally used in this type of projection exposure apparatus. Eticle position detector 15, lens position detectors 17A and 17B
Each signal from the focus position detector 18 is input to the microprocessor 23. On the other hand, an atmospheric pressure sensor 19, a temperature sensor 20, and a humidity sensor 21 are provided to detect changes in atmospheric pressure, air temperature, and temperature around the projection lens system 5,
A lens temperature sensor 22 is provided to detect a temperature change due to light absorption of the projection lens system 5, and signals from these various sensors 19, 20, 21, and 22 are also input to the microprocessor 23.

又、レチクル駆動制御系13、レンズ駆動制御系16A,16
B及びウエハ駆動制御系14はマイクロプロセッサー23に
より制御される。
Also, the reticle drive control system 13, the lens drive control systems 16A, 16
B and the wafer drive control system 14 are controlled by the microprocessor 23.

以上のうち各要素13,14,15,16A,16B,17A,17Bは駆動手
段の一部を構成している。
Of these, the elements 13, 14, 15, 16A, 16B, 17A, 17B constitute a part of the driving means.

24はレチクル1の回路パターンを均一な照度で照明す
る照明系を示し、照明系24は波長λ=248.4nmのレーザ
ー光を放射するKrFエキシマレーザーを、露光用の光源
として具備している。照明系24からのレーザー光はレチ
クル1と投影レンズ系5を介してウエハ9上に向けら
れ、ウエハ9上にレチクル1の回路パターン像が投影さ
れることになる。
Reference numeral 24 denotes an illumination system for illuminating the circuit pattern of the reticle 1 with uniform illuminance. The illumination system 24 includes a KrF excimer laser that emits a laser beam having a wavelength λ = 248.4 nm as a light source for exposure. The laser light from the illumination system 24 is directed onto the wafer 9 via the reticle 1 and the projection lens system 5, and the circuit pattern image of the reticle 1 is projected on the wafer 9.

本実施例では遠紫外域の波長を有するレーザー光で投
影露光を行なうために投影レンズ系5を構成する各レン
ズを波長λ=248.4nmの光に対して高い透過率を備えた
合成石英(SiO2)で製造している。
In the present embodiment, in order to perform projection exposure with laser light having a wavelength in the far ultraviolet region, each lens constituting the projection lens system 5 is made of synthetic quartz (SiO 2) having a high transmittance for light having a wavelength λ = 248.4 nm. 2 ) Manufactured in.

次に本実施例における照明系24の各要素について説明
すると27はレーザー光源であり、後述する波長選択素子
駆動制御系32により発振波長が制御された光束を放射し
ている。25はコンデンサーレンズであり、レーザー光源
27からの光束をミラー26で反射させてレチクル1面上を
均一照明している。
Next, each element of the illumination system 24 in the present embodiment will be described. Reference numeral 27 denotes a laser light source, which emits a light beam whose oscillation wavelength is controlled by a wavelength selection element drive control system 32 described later. 25 is a condenser lens, a laser light source
The light beam from 27 is reflected by a mirror 26 to uniformly illuminate the reticle 1 surface.

レーザー光源27はレーザー共振器28と波長選択素子29
を有している。30は波長選択素子駆動装置、31は波長選
択素子角度検出器、32は波長選択素子駆動制御系であ
る。
The laser light source 27 includes a laser resonator 28 and a wavelength selection element 29.
have. Reference numeral 30 denotes a wavelength selection element driving device, 31 denotes a wavelength selection element angle detector, and 32 denotes a wavelength selection element drive control system.

第2図は第1図のレーザー光源27の要部概略図であ
る。波長選択素子29はプリズム、グレーティング、エタ
ロンなどを使用することにより波長帯域の狭帯域化を可
能としている。同時にプリズム後の反射鏡、グレーティ
ング、エタロンの角度を変えることによってレーザー共
振器の本来の波長帯域範囲内で波長を変えることが可能
である。
FIG. 2 is a schematic view of a main part of the laser light source 27 of FIG. The wavelength selection element 29 can narrow the wavelength band by using a prism, a grating, an etalon, or the like. At the same time, it is possible to change the wavelength within the original wavelength band of the laser resonator by changing the angles of the reflecting mirror, grating and etalon after the prism.

波長選択素子駆動装置30はステップモータあるいは圧
電素子等から成り、波長選択素子駆動制御系32からの信
号に基づいて駆動する。この時波長選択素子29の角度が
波長選択素子角度検出器31により検出される。波長選択
素子角度検出器31は例えば光学式エンコーダなどの各種
角度検出器で構成できる。波長選択素子角度検出器31か
らの信号はマイクロプロセッサー23へ入力される。又波
長選択素子駆動制御系32はマイクロプロセッサー23によ
り制御される。
The wavelength selection element driving device 30 is composed of a step motor, a piezoelectric element, or the like, and is driven based on a signal from the wavelength selection element drive control system 32. At this time, the angle of the wavelength selection element 29 is detected by the wavelength selection element angle detector 31. The wavelength selection element angle detector 31 can be composed of various angle detectors such as an optical encoder. The signal from the wavelength selection element angle detector 31 is input to the microprocessor 23. The wavelength selection element drive control system 32 is controlled by the microprocessor 23.

本実施例では以上のようにな構成により投影レンズ系
5とは独立に、後述するようにしてレーザー光源27から
の発振波長を変化させるようにして装置全体の簡素化を
図っている。
In the present embodiment, the oscillation wavelength from the laser light source 27 is changed independently of the projection lens system 5 as described later to simplify the entire apparatus with the above configuration.

第3図は第1図の投影レンズ系5の具体的なレンズ構
成のレンズ断面図である。同図においてはレチクル1と
ウエハ9の間に、符号G1〜G12で示される12枚とレンズ
が光軸AXに沿って配列されて投影レンズ系5が構成され
ている。
FIG. 3 is a lens sectional view of a specific lens configuration of the projection lens system 5 of FIG. During the reticle 1 and the wafer 9 in the figure, the projection lens system 5 12 Like the lens shown by reference numeral G 1 ~G 12 is arranged along the optical axis AX is formed.

第3図に示す投影レンズ系のレンズデータを表−1に
示す。表−1中、Ri(i=1〜24)はレチクル1側から
順に数えて第i番目の面の曲率半径(mm)をDiはレチク
ル1側から順に数えて第i番目と第i+1番目の面間の
軸上肉厚又は軸上空気間隔(mm)を、Ni(i=1〜12)
はレンズGi(i=1〜12)の屈折率を示す。又、S1はレ
チクル1の回路パターン面とレンズG1のレチクル1側の
レンズ面との間の軸上空気間隔を、S2はレンズG12のウ
エハ9側のレンズ面とウエハ9表面との間の軸上空気間
隔を示す。
Table 1 shows the lens data of the projection lens system shown in FIG. In Table 1, R i (i = 1 to 24) is the radius of curvature (mm) of the ith surface counted in order from the reticle 1 side, and Di is the ith and i + 1 numbers counted in order from the reticle 1 side. The on-axis wall thickness or on-axis air spacing (mm) between the second surface is N i (i = 1 to 12)
Is the refractive index of the lens G i (i = 1~12). S 1 is the axial air gap between the circuit pattern surface of the reticle 1 and the lens surface of the lens G 1 on the reticle 1 side, and S 2 is the distance between the lens surface of the lens G 12 on the wafer 9 side and the surface of the wafer 9. The on-axis air spacing between is shown.

表−2は表−1に示した投影レンズ系においてレチク
ル1とレンズG1間の軸上間隔S1、レンズG12とウエハ9
間の軸上空気間隔S2及び互いに隣接するレンズGiとGi+1
(i=1〜11)間の軸上空気間隔D2i(i=1〜11)を
各々個別に1mm変化させた時、更に露光用光源の波長λ
を1nm変化させたときの投影レンズ系の像面の像高10mm
の位置における像点の対称歪曲収差の変化に伴なうシフ
ト量ΔSD(以下、「対称歪曲変化量ΔSD」と称す。)と
投影倍率の変化に伴なうシフト量Δβ(以下、「投影倍
率変化量Δβ」と称す。)及び両者の比|ΔSD/Δβ|
を示す。尚、投影レンズ系の光軸から離れる方向に像点
がシフトしたものを正とし、投影レンズ系の光軸に近づ
く方向に像点がシフトしたものを負の符号を付してい
る。
Table -2 axial distance S 1 between the reticle 1 and the lens G 1 in the projection lens system shown in Table 1, the lens G 12 and wafer 9
Lens G i and G i + 1 to the axial adjacent air gap S 2 and to one another between
When the on-axis air spacing D 2i (i = 1 to 11) between (i = 1 to 11) is individually changed by 1 mm, the wavelength λ of the light source for exposure is further increased.
10mm image height of the image plane of the projection lens system when
The shift amount ΔSD (hereinafter, referred to as “symmetric distortion change amount ΔSD”) due to the change in the symmetric distortion of the image point at the position of “” and the shift amount Δβ (hereinafter, “projection magnification”) due to the change in the projection magnification The amount of change Δβ ”) and the ratio | ΔSD / Δβ |
Is shown. Note that the image point shifted in a direction away from the optical axis of the projection lens system is positive, and the image point shifted in a direction approaching the optical axis of the projection lens system is denoted by a negative sign.

本実施例は表−2に基づいて間隔D2i(i=1〜11)
と波長λの2種類の変数のうち波長λと他の1つ又は2
つ以上の変数としての間隔の少なくとも1つの値を調整
して投影倍率と歪曲収差(以下「対称歪曲」ともい
う。)の双方を調整するようにしたことを特長としてい
る。
In the present embodiment, the interval D2i (i = 1 to 11) is based on Table-2.
Wavelength λ and other one or two of the two variables
A feature is that at least one value of the interval as one or more variables is adjusted to adjust both the projection magnification and distortion (hereinafter, also referred to as “symmetric distortion”).

今、2つの変数をX,Yとし、それぞれの変化量をΔX,
ΔYとする。更にそれぞれの変数の表−2に対応した対
称歪曲の変化量をΔSDX,ΔSDY、投影倍率の変化量をΔ
βX,ΔβYとすると全系での対称歪曲の変化量ΔSDTOT
と役影倍率の変化量ΔβTOTは各々次式で表わすことが
できる。
Now, let two variables be X and Y, and let each change amount be ΔX,
Let ΔY. Further, the change amounts of the symmetric distortion corresponding to Table 2 of the respective variables are represented by ΔSD X and ΔSD Y , and the change amounts of the projection magnification are represented by Δ
Let β X and Δβ Y be the amount of change in symmetric distortion ΔSD TOT in the whole system
And the variation amount Δβ TOT of the role shadow magnification can be expressed by the following equations.

従ってΔX,ΔYが次の式で与えられる。 Therefore, ΔX and ΔY are given by the following equations.

(2)式からある歪曲誤差ΔSDTOT及び投影倍率誤差Δ
βTOTが発生した場合、間隔D2i(i=1〜11)と波長λ
のうち2つの変数X,Yを選択すると(2)式からそれぞ
れの変化させるべき量ΔX,ΔYが求まり、歪曲誤差及び
投影倍率誤差を同時に補正することが可能となる。
From the equation (2), a distortion error ΔSD TOT and a projection magnification error Δ
When β TOT occurs, the interval D 2i (i = 1 to 11) and the wavelength λ
When two variables X and Y are selected, the amounts ΔX and ΔY to be changed are obtained from equation (2), and the distortion error and the projection magnification error can be corrected simultaneously.

次に第1図に示す投影露光装置において具体的にレチ
クル1面上のパターンをウエハ9面上に投影する際の投
影倍率誤差と歪曲誤差の補正方法について説明する。
Next, a method of correcting a projection magnification error and a distortion error when the pattern on the reticle 1 is projected onto the wafer 9 in the projection exposure apparatus shown in FIG.

マイクロプロセッサー23はそのメモリ内に投影レンズ
系5の投影倍率変化量ΔβTOTと歪曲変化量ΔSDTOTを求
めるための計算式がプログラムされており、各々計算式
は気圧、気温、湿度、及び投影レンズ系5の温度の予め
決めた基準値からの変動量が変数となっている。又この
メモリには上述の計算式(2)もプログラムされてお
り、ΔβTOTとΔSDTOTの値を計算式(2)に代入するこ
とにより、変数X及び変数Yの変化させるべき量ΔX,Δ
Yを求める。
The microprocessor 23 is programmed in its memory with calculation formulas for obtaining the projection magnification change amount Δβ TOT and the distortion change amount ΔSD TOT of the projection lens system 5. The calculation formulas are atmospheric pressure, temperature, humidity, and projection lens, respectively. The amount of change in the temperature of the system 5 from a predetermined reference value is a variable. The memory is also programmed with the above formula (2). By substituting the values of Δβ TOT and ΔSD TOT into the formula (2), the amounts ΔX, Δ
Find Y.

尚、ΔβTOTとΔSDTOTの値を気圧、気温、湿度及び投
影レンズ系5の温度変化に基づいて求める計算式はシュ
ミレーションによる計算や実験により導出することがで
きる。
The formulas for determining the values of Δβ TOT and ΔSD TOT based on the atmospheric pressure, air temperature, humidity, and temperature change of the projection lens system 5 can be derived by calculation by simulation or experiment.

一方、投影レンズ系5によるパターン像のフォーカス
位置は投影レンズ系5の周囲の気圧、気温、湿度及び投
影レンズ系5の温度に依存して変化し、これに加えて変
数X及び変数Yの設定状態にも依存して変化する。従っ
て本実施例ではこれらの変動要因に基づいて投影レンズ
系5のフォーカス位置変動量を求めるための計算式をマ
イクロプロセッサー23のメモリ内にプログラムし、この
計算式に基づいてフォーカス位置を正確に把握するよう
にしている。
On the other hand, the focus position of the pattern image by the projection lens system 5 changes depending on the atmospheric pressure, the temperature, the humidity around the projection lens system 5 and the temperature of the projection lens system 5, and in addition, the setting of the variables X and Y It changes depending on the state. Therefore, in this embodiment, a calculation formula for calculating the focus position fluctuation amount of the projection lens system 5 based on these fluctuation factors is programmed in the memory of the microprocessor 23, and the focus position is accurately grasped based on this calculation formula. I am trying to do it.

マイクロプロセッサー23は気圧センサー19、温度セン
サー20、湿度センサー21、レンズ温度センサー22からの
気圧、気温、湿度、レンズ温度に対応する各信号を受け
て上述の所定の条件式に基づいて変数X及び変数Yの変
化させるべき量ΔX,ΔYを求める。
The microprocessor 23 receives the signals corresponding to the atmospheric pressure, the temperature, the humidity, and the lens temperature from the barometric pressure sensor 19, the temperature sensor 20, the humidity sensor 21, and the lens temperature sensor 22, and receives the variables X and The amounts ΔX and ΔY of the variable Y to be changed are obtained.

一方、変数X及び変数Yの位置検出器(波長選択素子
角度検出器31、レンズ位置検出器17A,17B)からの変数
X及び変数Yの位置に対応した信号がマイクロプロセッ
サー23へ入力される。マイクロプロセッサー23は変数X
及び変数Yの変化させるべき量ΔX,ΔYに対応する信号
を変数X及び変数Yの駆動制御系(波長選択素子駆動制
御系32、レンズ駆動制御系16A,16B)へ入力する。そし
て変数X及び変数Yの各駆動制御系が各駆動装置に所定
の制御信号を与え、変数X及び変数Yの変化させるべき
量ΔX,ΔYの駆動が行なわれる。この変数ΔX,ΔYの駆
動により投影レンズ系5の周囲の気圧、気温、湿度、及
び投影レンズ系5の温度などの変動に基づくパターン像
の投影倍率誤差と歪曲誤差が補正される。
On the other hand, signals corresponding to the positions of the variables X and Y from the position detectors for the variables X and Y (the wavelength selection element angle detector 31 and the lens position detectors 17A and 17B) are input to the microprocessor 23. Microprocessor 23 is a variable X
Then, signals corresponding to the amounts .DELTA.X and .DELTA.Y of the variable Y to be changed are input to the drive control systems (the wavelength selection element drive control system 32 and the lens drive control systems 16A and 16B) of the variables X and Y. Then, each drive control system of the variables X and Y gives a predetermined control signal to each drive device, and the variables X and Y are driven by the amounts ΔX and ΔY to be changed. By driving the variables ΔX and ΔY, the projection magnification error and the distortion error of the pattern image based on the fluctuations of the atmospheric pressure, the temperature, the humidity around the projection lens system 5 and the temperature of the projection lens system 5 are corrected.

又、マイクロプロセッサー23は変数Xおよび変数Yの
位置検出器、気圧センサー19、温度センサー20、湿度セ
ンサー21、及びレンズ温度センサー22からの信号に基づ
いて投影レンズ系5によるパターン層のフォーカス位置
を検出しフォーカス位置検出器18からのウエハ9(の表
面)の位置に応じた信号に基づいて、ウエハ9がフォー
カス位置に位置決めされるようにウエハ駆動制御系14を
制御する。ウエハ駆動制御系14は所定の制御信号をウエ
ハ駆動装置11に与え、ウエハ駆動装置11によりウエハ9
を光軸AX方向に移動させて、パターン像のフォーカス位
置にウエハ9を位置付ける。
Further, the microprocessor 23 determines the focus position of the pattern layer by the projection lens system 5 based on the signals from the position detectors of the variables X and Y, the pressure sensor 19, the temperature sensor 20, the humidity sensor 21, and the lens temperature sensor 22. Based on a signal corresponding to the position of (the surface of) the wafer 9 from the detected and focused position detector 18, the wafer drive control system 14 is controlled so that the wafer 9 is positioned at the focused position. The wafer drive control system 14 gives a predetermined control signal to the wafer drive unit 11 and the wafer drive unit 11
Is moved in the direction of the optical axis AX to position the wafer 9 at the focus position of the pattern image.

以上述べた動作で、パターン像の投影倍率を予め決め
た倍率に補正し、パターン像の歪曲を所定の許容範囲内
に抑えることにより、前工程でウエハ9上に形成された
パターンとパターン像とを正確に重ね合わせることがで
きる。又ウエハ9の位置とパターン像のフォーカス位置
も合致せしめられるのでウエハ9上に鮮明なパターン像
を投影することが可能になる。
With the operation described above, the projection magnification of the pattern image is corrected to a predetermined magnification, and the distortion of the pattern image is suppressed within a predetermined allowable range. Can be accurately superimposed. Further, since the position of the wafer 9 and the focus position of the pattern image can be matched, a clear pattern image can be projected on the wafer 9.

本実施例ではパターン像の投影倍率及び歪曲の気圧、
気温、湿度及びレンズ温度の変動に伴なう変化を検出す
るために気圧センサー19、温度センサー20、湿度センサ
ー21、レンズ温度センサー22からの出力信号を利用して
いたが、投影レンズ系5により投影された又は現像不要
の媒体に記録されたパターン像を撮像装置で撮像し、パ
ターン像の大きさ及び形状に基づいてパターン像の投影
倍率及び歪曲誤差の変化を検出するようにしても良い。
この時現像装置をウエハステージ12に付設しておけば、
所望の時期にパターン像の投影倍率や歪曲の変化を検出
することができ、投影露光装置の構成も複雑にならな
い。
In the present embodiment, the projection magnification of the pattern image and the atmospheric pressure of the distortion,
The output signals from the barometric pressure sensor 19, the temperature sensor 20, the humidity sensor 21, and the lens temperature sensor 22 were used to detect changes due to changes in temperature, humidity, and lens temperature. The projected or recorded pattern image on the medium that does not need to be developed may be imaged by an imaging device, and changes in the projection magnification and distortion error of the pattern image may be detected based on the size and shape of the pattern image.
At this time, if the developing device is attached to the wafer stage 12,
Changes in projection magnification and distortion of the pattern image can be detected at a desired time, and the configuration of the projection exposure apparatus does not become complicated.

又、本実施例においてはレチクル1又は投影レンズ系
5のうち少なくとも1つのレンズ系を光軸上移動させれ
ば良く、必ずしもレチクル1やフィールドレンズ6A,6
B、レンズ系7等の全てを光軸上移動させる必要はな
い。
In this embodiment, at least one of the reticle 1 and the projection lens system 5 may be moved on the optical axis, and the reticle 1 and the field lenses 6A, 6A are not necessarily required.
It is not necessary to move all components such as B and the lens system 7 on the optical axis.

尚、本実施例では投影倍率誤差及び歪曲誤差を補正す
る為に変数を2つ用いた場合を示したが3つ以上の変数
を用いて行っても良い。3つ以上の変数を用いる方法は
変数の駆動量に限界がある場合に等に有効である。この
時コマ収差、像面弯曲等、他収差の変動量が小さいパラ
メータを選択したり、特定の収差を相殺するような組合
せを選択すると全系の収差が良好に保たれる。
In this embodiment, the case where two variables are used to correct the projection magnification error and the distortion error is shown, but the correction may be performed using three or more variables. The method using three or more variables is effective when there is a limit to the variable drive amount. At this time, if a parameter with small variation of other aberrations, such as coma and curvature of field, is selected, or a combination that cancels a specific aberration is selected, the aberration of the entire system can be kept good.

第1図に示すフィールドレンズ6A,6Bは1枚に限らず
複数個のレンズより構成しても良い。
The field lenses 6A and 6B shown in FIG. 1 are not limited to one, but may be composed of a plurality of lenses.

(発明の効果) 本発明によれば投影光学系の少なくとも一部のレンズ
系を光軸上移動させるか又は/及び第1物体と投影光学
系とを相対的に光軸上移動させると共に照明系からの光
束の発振波長を変化させることにより、第1物体に描か
れたパターンの投影光学系によるパターン像の投影倍率
と歪曲を正確に調整することができる。従って投影光学
系の周囲の気圧変動や温度変動等によりパターン像の投
影倍率や歪曲が変化して誤差が生じても、パターン像の
投影倍率誤差や歪曲誤差の双方を良好に補正することが
できる投影露光装置を達成することができる。
According to the present invention, at least a part of the lens system of the projection optical system is moved on the optical axis or / and the first object and the projection optical system are relatively moved on the optical axis and the illumination system is moved. By changing the oscillation wavelength of the light beam from the first object, the projection magnification and distortion of the pattern image projected by the projection optical system on the pattern drawn on the first object can be accurately adjusted. Therefore, even if the projection magnification or distortion of the pattern image changes due to a change in atmospheric pressure or temperature around the projection optical system and an error occurs, both the projection magnification error and the distortion error of the pattern image can be satisfactorily corrected. A projection exposure apparatus can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の投影露光装置の一実施例を示す概略
図、第2図は第1図のレーザー光源の説明図、第3図は
第1図の投影レンズ系の具体的なレンズ構成を示すレン
ズ断面図である。 図中、1はレチクル、2はレチクルチャック、3はレチ
クル駆動装置、4はレチクルステージ、5は投影レンズ
系、6A,6Bはフィールドレンズ、7はレンズ系、8A,8Bは
レンズ駆動装置、9はウエハ、10はウエハチャック、11
はウエハ駆動装置、12はウエハステージ、13はレチクル
駆動制御系、14はウエハ駆動制御系、15はレチクル位置
検出器、16はレンズ駆動制御系、17A,17Bはレンズ位置
検出器A,B、18はフォーカス位置検出器、19は気圧せン
サー、20は温度せンサー、21は湿度せンサー、22はレン
ズ温度せンサー、23はマイクロプロセッサ、24は照明
系、25はコンデンサーレンズ、26はミラー、27はレーザ
ー光源、28はレーザー共振器、29は波長選択素子、30は
波長選択素子駆動装置、31は波長選択素子角度検出器、
32は波長選択素子駆動制御系である。
FIG. 1 is a schematic diagram showing an embodiment of the projection exposure apparatus of the present invention, FIG. 2 is an explanatory view of the laser light source of FIG. 1, and FIG. 3 is a specific lens configuration of the projection lens system of FIG. FIG. In the figure, 1 is a reticle, 2 is a reticle chuck, 3 is a reticle driving device, 4 is a reticle stage, 5 is a projection lens system, 6A and 6B are field lenses, 7 is a lens system, 8A and 8B are lens driving devices, 9 Is a wafer, 10 is a wafer chuck, 11
Is a wafer drive device, 12 is a wafer stage, 13 is a reticle drive control system, 14 is a wafer drive control system, 15 is a reticle position detector, 16 is a lens drive control system, 17A and 17B are lens position detectors A and B, 18 is a focus position detector, 19 is a pressure sensor, 20 is a temperature sensor, 21 is a humidity sensor, 22 is a lens temperature sensor, 23 is a microprocessor, 24 is an illumination system, 25 is a condenser lens, and 26 is a mirror. , 27 is a laser light source, 28 is a laser resonator, 29 is a wavelength selection element, 30 is a wavelength selection element driving device, 31 is a wavelength selection element angle detector,
32 is a wavelength selection element drive control system.

フロントページの続き (56)参考文献 特開 平4−30412(JP,A) 特開 平3−88317(JP,A) 特開 平2−228658(JP,A) 特開 平2−81019(JP,A) 特開 平2−66510(JP,A) 特開 平1−181520(JP,A) 特開 昭64−82527(JP,A) 特開 昭64−10624(JP,A) 特開 昭63−213341(JP,A) 特開 昭62−296514(JP,A) 特開 昭62−258414(JP,A) 特開 昭62−241329(JP,A) 特開 昭62−32613(JP,A) 特開 昭61−256636(JP,A) 特開 昭61−111529(JP,A) 特開 昭61−67036(JP,A) 特開 昭60−262421(JP,A) 特開 昭60−214334(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 21/027 Continuation of front page (56) References JP-A-4-30412 (JP, A) JP-A-3-88317 (JP, A) JP-A-2-228658 (JP, A) JP-A-2-81019 (JP) JP-A-2-66510 (JP, A) JP-A-1-181520 (JP, A) JP-A-64-82527 (JP, A) JP-A-64-10624 (JP, A) 63-213341 (JP, A) JP-A-62-296514 (JP, A) JP-A-62-258414 (JP, A) JP-A-62-241329 (JP, A) JP-A-62-32613 (JP, A) A) JP-A-61-256636 (JP, A) JP-A-61-111529 (JP, A) JP-A-61-67036 (JP, A) JP-A-60-262421 (JP, A) JP-A 60-262421 -214334 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) H01L 21/027

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】露光光で第1物体のパターンを第2物体上
に投影する投影光学系を有する投影露光装置において、
該投影光学系の光学特性を調整するための調整手段を有
し、該調整手段は、該露光光の波長を変えることにより
該投影光学系の歪曲収差と投影倍率を変化させる波長変
更手段と該投影光学系のレンズを該投影光学系の光軸方
向に移動させることにより該投影光学系の歪曲収差と投
影倍率を変化させる移動手段とを有し、該波長変更手段
と該移動手段とを用いて該投影光学系の歪曲収差と投影
倍率を調整することを特徴とする投影露光装置。
1. A projection exposure apparatus having a projection optical system for projecting a pattern of a first object onto a second object with exposure light,
Adjusting means for adjusting the optical characteristics of the projection optical system, the adjusting means changing a wavelength of the exposure light to change a distortion and a projection magnification of the projection optical system; Moving means for moving the lens of the projection optical system in the direction of the optical axis of the projection optical system to change the distortion and the projection magnification of the projection optical system, and using the wavelength changing means and the movement means; A projection exposure apparatus for adjusting a distortion and a projection magnification of the projection optical system.
【請求項2】前記投影光学系の周囲の気圧を検出する気
圧センサーを有し、前記調整手段が、該気圧センサーか
らの信号に応じて気圧変化による該投影光学系の歪曲収
差の変化と投影倍率の変化とを補正することを特徴とす
る請求項1項記載の投影露光装置。
2. An apparatus according to claim 1, further comprising a pressure sensor for detecting an atmospheric pressure around said projection optical system, wherein said adjusting means controls a change in distortion of said projection optical system due to a change in atmospheric pressure in response to a signal from said pressure sensor. 2. The projection exposure apparatus according to claim 1, wherein a change in magnification is corrected.
【請求項3】前記投影光学系の温度を検出する温度セン
サーを有し、前記調整手段が、該温度センサーからの信
号に応じて温度変化による該投影光学系の歪曲収差の変
化と投影倍率の変化とを補正することを特徴とする請求
項1記載の投影露光装置。
A temperature sensor for detecting a temperature of the projection optical system, wherein the adjusting means adjusts a change in distortion of the projection optical system and a change in projection magnification due to a temperature change in accordance with a signal from the temperature sensor. 2. The projection exposure apparatus according to claim 1, wherein the change is corrected.
【請求項4】前記露光光がレーザー光であることを特徴
とする請求項1乃至3記載の投影露光装置。
4. The projection exposure apparatus according to claim 1, wherein said exposure light is a laser light.
【請求項5】請求項1乃至4のいずれか1項記載の投影
露光装置により回路パターンを基板上に転写する段階を
含むことを特徴とする半導体素子の製造方法。
5. A method for manufacturing a semiconductor device, comprising a step of transferring a circuit pattern onto a substrate by the projection exposure apparatus according to claim 1.
JP2136829A 1990-05-25 1990-05-25 Projection exposure equipment Expired - Lifetime JP2897345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2136829A JP2897345B2 (en) 1990-05-25 1990-05-25 Projection exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2136829A JP2897345B2 (en) 1990-05-25 1990-05-25 Projection exposure equipment

Publications (2)

Publication Number Publication Date
JPH0430411A JPH0430411A (en) 1992-02-03
JP2897345B2 true JP2897345B2 (en) 1999-05-31

Family

ID=15184478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2136829A Expired - Lifetime JP2897345B2 (en) 1990-05-25 1990-05-25 Projection exposure equipment

Country Status (1)

Country Link
JP (1) JP2897345B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6879381B2 (en) 2001-08-28 2005-04-12 Canon Kabushiki Kaisha Exposure apparatus, control method for the same, and device fabricating method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273670A (en) * 1993-03-18 1994-09-30 Minolta Camera Co Ltd Zoom lens using plastic lens
JP3445045B2 (en) * 1994-12-29 2003-09-08 キヤノン株式会社 Projection exposure apparatus and device manufacturing method using the same
US5739964A (en) * 1995-03-22 1998-04-14 Etec Systems, Inc. Magnification correction for small field scanning
JP3402850B2 (en) * 1995-05-09 2003-05-06 キヤノン株式会社 Projection exposure apparatus and device manufacturing method using the same
JP3278407B2 (en) 1998-02-12 2002-04-30 キヤノン株式会社 Projection exposure apparatus and device manufacturing method
US6256086B1 (en) 1998-10-06 2001-07-03 Canon Kabushiki Kaisha Projection exposure apparatus, and device manufacturing method
JP2001274054A (en) 2000-03-24 2001-10-05 Canon Inc Exposure system, manufacturing method of semiconductor device, and semiconductor device manufacturing plant
DE10143385C2 (en) * 2001-09-05 2003-07-17 Zeiss Carl Projection exposure system
DE102007022895B9 (en) * 2007-05-14 2013-11-21 Erich Thallner Device for transferring structures provided in a mask onto a substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6879381B2 (en) 2001-08-28 2005-04-12 Canon Kabushiki Kaisha Exposure apparatus, control method for the same, and device fabricating method

Also Published As

Publication number Publication date
JPH0430411A (en) 1992-02-03

Similar Documents

Publication Publication Date Title
JP3402850B2 (en) Projection exposure apparatus and device manufacturing method using the same
KR100847633B1 (en) Method and program for calculating exposure dose and focus position in exposure apparatus, and device manufacturing method
US4811055A (en) Projection exposure apparatus
JP3303758B2 (en) Projection exposure apparatus and device manufacturing method
JP3186011B2 (en) Projection exposure apparatus and device manufacturing method
EP1083462A1 (en) Exposure method and system, photomask, method of manufacturing photomask, micro-device and method of manufacturing micro-device
JP3445045B2 (en) Projection exposure apparatus and device manufacturing method using the same
JPH0794393A (en) Projection aligner
KR20010085449A (en) Method of measuring aberration in an optical imaging system
KR20020077815A (en) Duv scanner linewidth control by mask error factor compensation
JP6463935B2 (en) Exposure apparatus, exposure method, and device manufacturing method
KR20040086313A (en) Exposure device and exposure method
JP2009164296A (en) Exposure apparatus and method of manufacturing device
JP2897345B2 (en) Projection exposure equipment
JPWO2002025711A1 (en) Measurement method of exposure characteristics and exposure method
JP2003297726A (en) Aligner
JP2001338860A (en) Exposure method and device manufacturing method
JP2001250760A (en) Aberration measuring method, mask detecting method to use said method and exposure method
JP2897346B2 (en) Projection exposure equipment
JP3414476B2 (en) Projection exposure equipment
JP5668999B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP2000228344A (en) Scanning projection aligner and device-manufacturing method
JP2840314B2 (en) Projection exposure equipment
KR101096478B1 (en) Exposure device
JPH10177950A (en) Stage equipment and projection optics equipment