JP2840314B2 - Projection exposure equipment - Google Patents

Projection exposure equipment

Info

Publication number
JP2840314B2
JP2840314B2 JP1226204A JP22620489A JP2840314B2 JP 2840314 B2 JP2840314 B2 JP 2840314B2 JP 1226204 A JP1226204 A JP 1226204A JP 22620489 A JP22620489 A JP 22620489A JP 2840314 B2 JP2840314 B2 JP 2840314B2
Authority
JP
Japan
Prior art keywords
projection
lens
reticle
wafer
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1226204A
Other languages
Japanese (ja)
Other versions
JPH0388317A (en
Inventor
正克 太田
章義 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1226204A priority Critical patent/JP2840314B2/en
Publication of JPH0388317A publication Critical patent/JPH0388317A/en
Priority to US07/728,317 priority patent/US5105075A/en
Application granted granted Critical
Publication of JP2840314B2 publication Critical patent/JP2840314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は投影露光装置に関するものであり、特にIC,L
SI等の半導体装置を製造する際に使用される、レチクル
の回路パターン像をウエハ上に投影する投影露光装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus, and more particularly, to an IC, L
The present invention relates to a projection exposure apparatus that projects a circuit pattern image of a reticle onto a wafer and is used when manufacturing a semiconductor device such as an SI.

〔従来技術〕(Prior art)

IS,LSI等の半導体装置製造用の投影露光装置では、前
工程でウエハ上に形成されたパターンと投影光学系によ
りウエハ上に投影されるパターン像との重ね合せ精度を
向上させることが重要な課題である。この重ね合せ精度
に影響を与える要因として、本件出願人が特開昭62−35
620号で示しているようにパターン像の投影倍率誤差と
歪曲誤差があるが、従来、投影倍率誤差と対称歪曲収差
の双方を良好に補正できる投影露光装置はなかった。
In a projection exposure apparatus for manufacturing semiconductor devices such as IS and LSI, it is important to improve the overlay accuracy of a pattern formed on a wafer in a previous process and a pattern image projected on the wafer by a projection optical system. It is an issue. As a factor influencing the overlay accuracy, the present applicant has disclosed in Japanese Patent Laid-Open No.
As shown in Japanese Patent No. 620, there is a projection magnification error and a distortion error of a pattern image. However, conventionally, there is no projection exposure apparatus capable of favorably correcting both the projection magnification error and the symmetric distortion.

〔発明の概要〕[Summary of the Invention]

本発明の目的は、パターン像の投影倍率誤差と歪曲誤
差の双方を良好に補正できる投影露光装置を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a projection exposure apparatus capable of favorably correcting both a projection magnification error and a distortion error of a pattern image.

本発明の投影露光装置は、物体側及び像側の双方がテ
レセントリックな投影光学系により第1物体のパターン
を第2物体上に投影する投影露光装置において、前記投
影光学系の前記第1物体に近いレンズを前記投影光学系
の光軸方向に移動させることによって対称歪曲収差と投
影倍率とを変えると共に前記第1物体を前記投影光学系
の光軸方向に移動させることによって前記投影倍率を変
えずに前記対称歪曲収差を変えることにより、前記対称
歪曲収差と前記投影倍率を調整する調整手段を有するこ
とを特徴とする。
The projection exposure apparatus of the present invention is a projection exposure apparatus that projects a pattern of a first object onto a second object by a projection optical system in which both the object side and the image side are telecentric. The symmetrical distortion and the projection magnification are changed by moving a close lens in the direction of the optical axis of the projection optical system, and the projection magnification is not changed by moving the first object in the direction of the optical axis of the projection optical system. And adjusting means for adjusting the symmetric distortion and the projection magnification by changing the symmetric distortion.

上記投影露光装置の構成より明らかなとおり、本発明
では、物体側及び像側の双方がテレセントリックな投影
光学系により第1物体のパターンを第2物体上に投影す
る投影露光装置において対称歪曲収差を調整する新しい
技術として、前記第1物体を前記投影光学系の光軸方向
に移動させることによって投影倍率を変えずに対称歪曲
収差を変える手段を提供している。
As is apparent from the configuration of the projection exposure apparatus, in the present invention, symmetric distortion is reduced in a projection exposure apparatus that projects a pattern of a first object onto a second object by a projection optical system in which both the object side and the image side are telecentric. As a new technique for adjusting, there is provided means for changing the symmetric distortion without changing the projection magnification by moving the first object in the optical axis direction of the projection optical system.

本投影露光装置の幾つかの特徴と具体的構成は以下に
示す実施例に詳しく記載されている。
Some features and specific configurations of the projection exposure apparatus are described in detail in the following embodiments.

〔実施例〕〔Example〕

第1図は、本発明の投影露光装置の一実施例を示す概
略図である。
FIG. 1 is a schematic view showing an embodiment of the projection exposure apparatus of the present invention.

第1図において、1は回路パターンが描かれたレチク
ル、2はレチクル1を吸着保持するレチクルチヤツク、
3はレツクルチヤツク2に取付けたレチクル駆動装置、
4はレチクル駆動装置4を支持するレチクルステージ、
5は物体側及び像側の双方がテレセントリツクな縮小投
影レンズ系、6は投影レンズ系5の、レチクル1に近接
配置したレンズ(以下、「フイールドレンズ6」と称
す)、7は投影レンズ系5の他の幾つかのレンズより成
るレンズ系、8はフイールドレンズ7を投影レンズ系5
の光軸AX方向に移動させるレンズ駆動装置、9はレジス
ト等の感材が塗布されたウエハ、10はウエハ9を吸着保
持するウエハチヤツク、11はウエハチヤツク9に取付け
たウエハ駆動装置、12はウエハ駆動装置11を指示し、投
影レンズ系5の光軸AXに直交する面内で移動可能なウエ
ハステージを示す。
In FIG. 1, 1 is a reticle on which a circuit pattern is drawn, 2 is a reticle chuck that sucks and holds the reticle 1,
3 is a reticle driving device attached to the reticle chuck 2,
4 is a reticle stage that supports the reticle driving device 4;
Reference numeral 5 denotes a reduction projection lens system in which both the object side and the image side are telecentric, 6 denotes a lens of the projection lens system 5 which is disposed close to the reticle 1 (hereinafter, referred to as a "field lens 6"), and 7 denotes a projection lens system. 5 is a lens system composed of several other lenses, 8 is a field lens
A lens driving device for moving in the direction of the optical axis AX, a wafer 9 coated with a photosensitive material such as a resist, a wafer chuck 10 for sucking and holding the wafer 9, a wafer driving device 11 mounted on the wafer chuck 9, and a wafer driving device 12 A wafer stage which indicates the apparatus 11 and is movable in a plane orthogonal to the optical axis AX of the projection lens system 5 is shown.

レチクル駆動装置3とウエハ駆動装置11は各々圧電素
子等から成り、レチクル駆動装置3によりレチクルチヤ
ツク2を投影レンズ系5の光軸AX方向に変位せしめてレ
チクル1を光軸AX方向に移動させ、ウエハ駆動装置11に
よりウエハチヤツク10を投影レンズ系5の光軸AX方向に
変位せしめてウエハ9を光軸AX方向に移動させる。一
方、レンズ駆動装置8は空気圧を利用してフイールドレ
ンズ6を投影レンズ系5の光軸AX方向に移動させるもの
である。レンズ駆動装置8の具体的な構造は本件出願人
による特開昭62−32613号公報に開示されているので、
ここでは説明を省略する。
The reticle driving device 3 and the wafer driving device 11 each include a piezoelectric element or the like, and the reticle driving device 3 displaces the reticle chuck 2 in the optical axis AX direction of the projection lens system 5 to move the reticle 1 in the optical axis AX direction. The wafer chuck 10 is displaced in the optical axis AX direction of the projection lens system 5 by the driving device 11 to move the wafer 9 in the optical axis AX direction. On the other hand, the lens driving device 8 moves the field lens 6 in the optical axis AX direction of the projection lens system 5 using air pressure. Since the specific structure of the lens driving device 8 is disclosed in Japanese Patent Application Laid-Open No. 62-32613 by the present applicant,
Here, the description is omitted.

レチクル駆動装3によるレチクルチヤツク2の駆動
は、レチクル駆動制御系13からの信号に基づいて行なわ
れ、この時、レチクル1の光軸AX方向の位置がレチクル
位置検出器15により検出される。また、同様に、レンズ
駆動装置8によるフイールドレンズ8の駆動は、レンズ
駆動制御系16から信号に基づいて行なわれ、この時、フ
イールドレンズ8の光軸AX方向の位置がレンズ位置検出
器17により検出される。レチクル位置検出器15とレンズ
位置検出器17は、光学式エンコーダーなどの各種位置検
出器で構成できる。また、ウエハ駆動装置11によるウエ
ハチヤク10の駆動はウエハ駆動制御系14からの信号に基
づいて行なわれ、この時、ウエハ9(の表面)の光軸AX
方向の位置はフオーカス検出器18により検出される。フ
オーカス検出器18は、この種の投影露光装置で従来から
使用されてきたエアーセンサーや光学式センサーで構成
されている。レチクル位置検出器15、レンズ位置検出器
17、及びフオーカス検出器18からの各信号はマイクロプ
ロセツサー23へ入力される。一方、投影レンズ系5の周
囲の気圧、気温、湿度の変化を検出するために気圧セン
サー19、温度センサー20、湿度センサー21が設けられ、
投影レンズ系5の光吸収による温度変化を検出するため
にレンズ温度センサー22が設けられており、これら各種
センサー19,20,21,22からの信号もマイクロプロセツサ
ー23へ入力される。また、レチクル駆動制御系13、レン
ズ駆動制御系16、及びウエハ駆動制御系14はマイクロプ
ロセツサー23により制御される。
The driving of the reticle chuck 2 by the reticle driving device 3 is performed based on a signal from the reticle driving control system 13, and at this time, the position of the reticle 1 in the optical axis AX direction is detected by the reticle position detector 15. Similarly, the driving of the field lens 8 by the lens driving device 8 is performed based on a signal from the lens drive control system 16, and at this time, the position of the field lens 8 in the optical axis AX direction is determined by the lens position detector 17. Is detected. The reticle position detector 15 and the lens position detector 17 can be constituted by various position detectors such as an optical encoder. The wafer chuck 10 is driven by the wafer driving device 11 based on a signal from the wafer drive control system 14. At this time, the optical axis AX of (the surface of) the wafer 9
The position in the direction is detected by the focus detector 18. The focus detector 18 is composed of an air sensor or an optical sensor conventionally used in this type of projection exposure apparatus. Reticle position detector 15, lens position detector
The signals from the focus detector 17 and the focus detector 18 are input to the microprocessor 23. On the other hand, a pressure sensor 19, a temperature sensor 20, and a humidity sensor 21 are provided to detect changes in the atmospheric pressure, temperature, and humidity around the projection lens system 5,
A lens temperature sensor 22 is provided to detect a temperature change due to light absorption of the projection lens system 5, and signals from these various sensors 19, 20, 21, and 22 are also input to the microprocessor 23. Further, the reticle drive control system 13, the lens drive control system 16, and the wafer drive control system 14 are controlled by the microprocessor 23.

24はレチクル1の回路パターンを均一な照度で照明す
る照明系を示し、照明系24は波長λ=248.4nmのレーザ
ー光を放射するKvFエキシマレーザーを、露光用の光源
として具備している。照明系24からのレーザー光はレチ
クル1と投影レンズ系5を介してウエハ9上に向けら
れ、ウエハ9上にレチクル1の回路パターン像が投影さ
れることになる。本実施例では、遠紫外域の波長を有す
るレーザー光で投影露光を行なうために、投影レンズ系
5を構成する各レンズを、波長λ=248.4nmの光に対し
て高い透過率を備えた合成石英(SiO2)で製造してい
る。
Reference numeral 24 denotes an illumination system for illuminating the circuit pattern of the reticle 1 with uniform illuminance. The illumination system 24 includes a KvF excimer laser that emits a laser beam having a wavelength λ = 248.4 nm as a light source for exposure. The laser light from the illumination system 24 is directed onto the wafer 9 via the reticle 1 and the projection lens system 5, and the circuit pattern image of the reticle 1 is projected on the wafer 9. In the present embodiment, in order to perform projection exposure with laser light having a wavelength in the far ultraviolet region, each lens constituting the projection lens system 5 is synthesized with a high transmittance for light having a wavelength λ = 248.4 nm. Manufactured from quartz (SiO 2 ).

投影レンズ系5の具体的構成を第2図に示す。第2図
は投影レンズ系5の断面図であり、レチクル1とウエハ
9の間に、符号G1〜G12で示される12枚のレンズが光軸A
Xに沿って配列されて、投影レンズ系5が構成されてい
る。第2図において符号G1で示されるレンズが第1図の
フイールドレンズ6を一枚のレンズで構成している。ま
た、符号G2〜G12で示されるレンズ群が第1図のレンズ
系7に対応している。
FIG. 2 shows a specific configuration of the projection lens system 5. Figure 2 is a sectional view of the projection lens system 5, between the reticle 1 and the wafer 9, reference numeral G 1 ~G 12 lens optical axis A represented by 12
The projection lens system 5 is arranged along X. Lens shown by reference numeral G 1 is that the field lens 6 of FIG. 1 is constituted by a single lens in FIG. 2. The lens group represented by the symbol G 2 ~G 12 corresponds to the lens system 7 of Figure 1.

第2図に示す投影レンズ系のレンズデータを表1に示
す。表1中、Ri(i=1〜24)はレチクル1側から順に
数えて第i番目の面の曲率判明(mm)を、Diはレチクル
1側から順に数えて第i番目と第i+1番目の面間の軸
上肉厚又は軸上空気間隔(mm)を、Ni(i=1〜12)は
レンズGi(i=1〜12)の屈折率を示す。また、S1はレ
チクル1の回路パターン面とレンズG1のレチクル1側の
面間の軸上空気間隔を、S2はレンズG12のウエハ9側の
面とウエハ9表面間の軸上空気間隔を示す。
Table 1 shows lens data of the projection lens system shown in FIG. In Table 1, Ri (i = 1 to 24) indicates the curvature (mm) of the i-th surface counted in order from the reticle 1 side, and Di indicates the i-th and i + 1-th counted in order from the reticle 1 side. axial thickness or axial distance between the surfaces a (mm), Ni (i = 1~12) is the refractive index of the lens G i (i = 1~12). S 1 is the axial air gap between the circuit pattern surface of the reticle 1 and the surface of the lens G 1 on the reticle 1 side, and S 2 is the axial air space between the surface of the lens G 12 on the wafer 9 side and the wafer 9 surface. Indicates the interval.

表2は、表1に示した投影レンズ系において、レチク
ル1とレンズG1間の軸上空気間隔S2、レンズG12とウエ
ハ9間の軸上空気間隔S2及び互いに隣接するレンズGi
Gi+1(i=1〜11)間の軸上空気間隔D2i(i=1〜1
1)を各々個別に1mm変化させた時の、投影レンズ系の像
面の像高10mmの位置における像点の、対称歪曲収差の変
化に伴なうシフト量ΔSD(以下、「対称歪曲変化量ΔS
D」と称す。)と投影倍率の変化を伴なうシフト量Δβ
(以下、「投影倍率変化量Δβ」と称す。)及び両者の
比|ΔSD/Δβ|を示す。尚、投影レンズ系の光軸から
離れる方向に像点がシフトしたものを正とし、投影レン
ズ系の光軸に近づく方向に像点がシフトしたものを負の
符号を付している。
Table 2, the lens G i in the projection lens system shown in Table 1, the adjacent reticle 1 and the axial air space S 2 between the lens G 1, the lens G 12 and axial air distance between the wafer 9 S 2 and to each other When
On-axis air gap D 2i between G i + 1 (i = 1 to 11) (i = 1 to 1)
The shift amount ΔSD of the image point at the image height of 10 mm on the image plane of the projection lens system due to the change of the symmetrical distortion when 1) is individually changed by 1 mm. ΔS
D ”. ) And the shift amount Δβ accompanying a change in the projection magnification
(Hereinafter referred to as “projection magnification change amount Δβ”) and the ratio | ΔSD / Δβ | of both. Note that the image point shifted in a direction away from the optical axis of the projection lens system is positive, and the image point shifted in a direction approaching the optical axis of the projection lens system is denoted by a negative sign.

本実施例では、表2に基づいて対称歪曲収差以外の収
差変動が小さい間隔S1と間隔D2の双方を調整して投影倍
率と対称歪曲収差を調整することにした。
In this example, we decided to aberration variation other than symmetric distortion aberration by adjusting both the small spacing S 1 and distance D 2 for adjusting the projection magnification symmetrical distortion based on Table 2.

今、間隔S1の変化量をΔS1、間隔D2の変化量をΔD2
すると、表2より対称歪曲収差と投影倍率の変化量ΔS
D、Δβは各々次式で表わすことができる。
Now, assuming that the amount of change in the interval S 1 is ΔS 1 and the amount of change in the interval D 2 is ΔD 2 , from Table 2, the amount of change in the symmetric distortion and the projection magnification ΔS
D and Δβ can be represented by the following equations.

従って、ΔD2,ΔS1が次式で与えられる。 Therefore, ΔD 2 and ΔS 1 are given by the following equations.

間隔S1、即ち投影レンズ系5とレチクル1の距離の変
化による投影レンズ系5の収差の変化は、投影倍率、ピ
ント位置等の近軸量の変化に比べて少なく、収差量の変
化量と近軸量の変化量の比、即ち が小さい。これは投影レンズ系5内での光線の傾きが物
体面と投影レンズ系の間の光線の傾きに比べて大きく、
レンズ間の空気間隔が変化した場合にはレンズの屈折面
での光線の入射高差が大きくなるので収差変化が大きく
なる為である。従って、本実施例では投影倍率の調整を
レンズG1(フイールドレンズ6)で動かすことにより、
主に間隔S1、D2の調整で行ない、歪曲収差の調整をレチ
クル1を動かすことにより、主に間隔S1で行なうように
し、これにより、投影露光装置における投影倍率誤差と
対称歪曲誤差の双方を補正する。
The change in the aberration of the projection lens system 5 due to the change in the interval S 1 , that is, the change in the distance between the projection lens system 5 and the reticle 1 is smaller than the change in the paraxial amount such as the projection magnification and the focus position. The ratio of the variation of the paraxial amount, that is, Is small. This is because the inclination of the light ray in the projection lens system 5 is larger than the inclination of the light ray between the object plane and the projection lens system,
This is because when the air gap between the lenses changes, the difference in the incident height of the light beam on the refracting surface of the lens increases, so that the aberration change increases. Therefore, in this embodiment, the adjustment of the projection magnification is performed by moving the lens G 1 (field lens 6).
The adjustment of the distances S 1 and D 2 is mainly performed, and the adjustment of the distortion is performed mainly by the distance S 1 by moving the reticle 1, whereby the projection magnification error and the symmetric distortion error in the projection exposure apparatus are reduced. Correct both.

第1図に戻り、本投影露光装置における、パターン像
の投影倍率誤差と対称歪曲誤差の補正方法に関して詳述
する。
Returning to FIG. 1, a method of correcting a projection magnification error and a symmetric distortion error of a pattern image in the projection exposure apparatus will be described in detail.

マイクロプロセツサー23は、そのメモリ内に投影レン
ズ系5の投影倍率変化量Δβと歪曲変化量ΔSDを求める
ための計算式がプログラムされており、各々の計算式
は、気圧、気温、湿度、及び投影レンズ系5の温度の予
め決めた基準値からの変動量が変数となっている。ま
た、このメモリには上述の計算式(2)もプログラムさ
れており、ΔβとΔSDの値を計算式(2)に代入するこ
とにより、フイールドレンズ6の移動量とレチクル1の
移動量を求める。尚、ΔβとΔSDの値を気圧、気温、湿
度及び投影レンズ系5の温度変化に基づいて求める計算
式は実験により、導出することができる。一方、投影レ
ンズ系5によるパターン像のフオーカス位置は、投影レ
ンズ系5の周囲の気圧、気温、湿度及び投影レンズ系5
の温度に依存して変化し、これに加えてレチクル1及び
フイールドレンズ6の位置にも依存して変化する。従っ
て、本実施例では、これらの変動要因に基づいて投影レ
ンズ系5のフオーカス位置変動量を求めるための計算式
を、マイクロプロセツサー23のメモリ内にプログラム
し、この計算式に基づいてフオーカス位置を正確に把握
するようにしている。
The microprocessor 23 is programmed in its memory with formulas for calculating the projection magnification change amount Δβ and the distortion change amount ΔSD of the projection lens system 5, and the respective calculation formulas are atmospheric pressure, temperature, humidity, The variation of the temperature of the projection lens system 5 from a predetermined reference value is a variable. The above formula (2) is also programmed in this memory, and the amount of movement of the field lens 6 and the amount of movement of the reticle 1 are obtained by substituting the values of β and ΔSD into the formula (2). . The equations for calculating the values of Δβ and ΔSD based on the atmospheric pressure, the temperature, the humidity, and the temperature change of the projection lens system 5 can be derived by experiments. On the other hand, the focus position of the pattern image by the projection lens system 5 depends on the atmospheric pressure, the temperature, the humidity around the projection lens system 5 and the projection lens system 5.
, And also changes depending on the positions of the reticle 1 and the field lens 6. Accordingly, in the present embodiment, a calculation formula for calculating the focus position fluctuation amount of the projection lens system 5 based on these fluctuation factors is programmed in the memory of the microprocessor 23, and the focus is calculated based on the calculation formula. I try to grasp the position accurately.

マイクロプロセツサー23は、気圧センサー19、温度セ
ンサー20、湿度センサー21、レンズ温度センサー22から
の、気圧、気温、湿度、レンズ温度に対応する各信号を
受けて、上述の所定の条件式に基づいて、レチクル1の
移動量とフイールドレンズ6の移動量を求める。一方、
レチクル位置検出器15及びレンズ位置検出器17からの、
レチクル1及びフイールドレンズ6の(光軸AX方向に関
する)位置に対応した信号が、マイクロプロセツサー23
へ入力される。マイクロプロセツサー23は、レチクル1
の位置信号とレチクル1の移動量に対応する信号をレチ
クル駆動制御系13へ入力し、フイールドレンズ6の位置
信号とフイールドレンズ6の移動量に対応する信号をレ
ンズ駆動制御系16へ入力する。そして、レチクル駆動制
御系13がマイクロプロセツサー23からの各信号に応じて
所定の制御信号をレチクル駆動装置3へ与え、レチクル
駆動装置3によりレチクル1を光軸AX方向に所定量移動
させる。また、レンズ駆動制御系16がマイクロプロセツ
サー23からの各信号に応じて所定の制御信号をレンズ駆
動装置16へ与え、レンズ駆動装置16によりフイールドレ
ンズ6を光軸AX方向に所定量移動させる。このレチクル
1とフイールドレンズ6の位置の調整により、投影レン
ズ系5の周囲の気圧、気温、湿度、及び投影レンズ系5
の温度などの変動に基づくパターン像の投影倍率誤差と
対称歪曲誤差が補正される。
The microprocessor 23 receives the signals corresponding to the atmospheric pressure, the temperature, the humidity, and the lens temperature from the barometric pressure sensor 19, the temperature sensor 20, the humidity sensor 21, and the lens temperature sensor 22, and Based on this, the amount of movement of the reticle 1 and the amount of movement of the field lens 6 are determined. on the other hand,
From the reticle position detector 15 and the lens position detector 17,
A signal corresponding to the position of the reticle 1 and the field lens 6 (with respect to the optical axis AX direction) is transmitted to the microprocessor 23
Is input to Microprocessor 23 is reticle 1
Is input to the reticle drive control system 13, and the position signal of the field lens 6 and the signal corresponding to the amount of movement of the field lens 6 are input to the lens drive control system 16. Then, the reticle drive control system 13 provides a predetermined control signal to the reticle driving device 3 in accordance with each signal from the microprocessor 23, and moves the reticle 1 in the optical axis AX direction by a predetermined amount by the reticle driving device 3. Further, the lens drive control system 16 provides a predetermined control signal to the lens drive device 16 in accordance with each signal from the microprocessor 23, and moves the field lens 6 by a predetermined amount in the optical axis AX direction by the lens drive device 16. . By adjusting the positions of the reticle 1 and the field lens 6, the atmospheric pressure, the temperature, the humidity around the projection lens system 5, and the
The projection magnification error and the symmetric distortion error of the pattern image based on the fluctuation of the temperature and the like are corrected.

また、マイクロプロセツサー23は、レチクル位置検出
器15、レンズ位置検出器17、気圧センサー19、温度セン
サー20、湿度センサー21、及びレンズ温度センサー22か
らの信号に基いて、投影レンズ系5によるパターン層の
フオーカス位置を検出し、フオーカス検出器18からのウ
エハ9(の表面)の位置に応じた信号に基づいて、ウエ
ハ9がフオーカス位置に位置決めされるようにウエハ駆
動制御系14を制御する。ウエハ駆動制御系14は、所定の
制御信号をウエハ駆動装置11に与え、ウエハ駆動装置11
によりウエハ9を光軸AX方向に移動させて、パターン像
のフオーカス位置にウエハ9を位置付ける。
Further, the microprocessor 23 controls the projection lens system 5 based on signals from the reticle position detector 15, the lens position detector 17, the atmospheric pressure sensor 19, the temperature sensor 20, the humidity sensor 21, and the lens temperature sensor 22. The focus position of the pattern layer is detected, and the wafer drive control system 14 is controlled based on a signal from the focus detector 18 corresponding to the position of (the surface of) the wafer 9 so that the wafer 9 is positioned at the focus position. . The wafer drive control system 14 provides a predetermined control signal to the wafer drive 11
Moves the wafer 9 in the optical axis AX direction, thereby positioning the wafer 9 at the focus position of the pattern image.

以上述べた動作で、パターン像の投影倍率を予めた倍
率に補正し、パターン像の対称歪曲収差を所定の許容範
囲内に抑えることにより、前工程でウアハ9上に形成さ
れたパターンとパターン像とを正確に重ね合わせること
ができる。また、ウエハ9の位置とパターン像のフオー
カス位置も合致せしめられるので、ウエハ9上に鮮明な
パターン像を投影することが可能になる。
By the above-described operation, the projection magnification of the pattern image is corrected to a predetermined magnification, and the symmetric distortion of the pattern image is suppressed within a predetermined allowable range. And can be accurately overlapped. In addition, since the position of the wafer 9 and the focus position of the pattern image are also matched, a clear pattern image can be projected on the wafer 9.

本実施例では、パターン像の投影倍率を調整するため
の可動のフイールドレンズ6を一枚のレンズ(G1)で構
成しているが、フイールドレンズ6を複数個のレンズで
構成しても良い。また、本実施例では、パターン像の投
影倍率及び対称歪曲収差の、気圧、気温、湿度及びレン
ズ温度の変動に伴なう変化を検出するために、気圧セン
サー19、温度センサー20、湿度センサー21、レンズ温度
センサー22からの出力信号を利用していたが、投影レン
ズ系5により投影されたパターン像を撮像装置で撮像
し、パターン像の大きさ及び形状に基づいてパターン像
の投影倍率及び対称歪曲収差の変化を検出するようにし
ても良い。この時、撮像装置をウエハステージ12に付設
しておけば、所望の時期にパターン像の投影倍率や対称
歪曲収差の変化を検出することができ、露光装置の構成
も複雑にならない。
In this embodiment, the movable field lens 6 for adjusting the projection magnification of the pattern image is constituted by a single lens (G 1 ), but the field lens 6 may be constituted by a plurality of lenses. . Further, in the present embodiment, in order to detect changes in the projection magnification and symmetric distortion of the pattern image due to changes in atmospheric pressure, air temperature, humidity and lens temperature, a pressure sensor 19, a temperature sensor 20, and a humidity sensor 21 are used. Although the output signal from the lens temperature sensor 22 is used, the pattern image projected by the projection lens system 5 is imaged by the imaging device, and the projection magnification and the symmetry of the pattern image are determined based on the size and shape of the pattern image. A change in distortion may be detected. At this time, if the imaging device is attached to the wafer stage 12, it is possible to detect a change in the projection magnification or the symmetric distortion of the pattern image at a desired time, and the configuration of the exposure device is not complicated.

〔発明の効果〕〔The invention's effect〕

以上、本発明によれば、物体側及び像側の双方がテレ
セントリックな投影光学系により第1物体のパターンを
第2物体上に投影する投影露光装置において対称歪曲収
差と前記投影倍率の双方を正確に調整することが可能で
ある。
As described above, according to the present invention, in a projection exposure apparatus that projects a pattern of a first object onto a second object by a projection optical system in which both the object side and the image side are telecentric, both the symmetric distortion and the projection magnification can be accurately determined. It is possible to adjust.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の投影露光装置の一実施例を示す概略
図。 第2図は第1図の装置の投影レンズ系の具体的構成を示
す断面図。 1……レチクル 2……レチクルチヤツク 3……レチクル駆動装置 4……レチクルステージ 5……投影レンズ系 6……フイルドレンズ 7……レンズ系 8……レンズ駆動装置 9……ウエハー 10……ウエハチヤツク 11……ウエハ駆動装置 12……ウエハステージ 13……レチクル駆動制御系 14……ウエハ駆動制御系 15……レチクル位置検出器 16……レンズ駆動制御系 17……レンズ位置検出器 18……フオーカス位置検出器 19……気圧センサー 20……温度センサー 21……湿度センサー 22……レンズ温度センサー 23……マイクロプロセツサー
FIG. 1 is a schematic view showing an embodiment of the projection exposure apparatus of the present invention. FIG. 2 is a sectional view showing a specific configuration of a projection lens system of the apparatus shown in FIG. DESCRIPTION OF SYMBOLS 1 ... Reticle 2 ... Reticle chuck 3 ... Reticle drive 4 ... Reticle stage 5 ... Projection lens system 6 ... Field lens 7 ... Lens system 8 ... Lens drive 9 ... Wafer 10 ... Wafer chuck 11 …… Wafer drive device 12 …… Wafer stage 13 …… Reticle drive control system 14 …… Wafer drive control system 15 …… Reticle position detector 16 …… Lens drive control system 17 …… Lens position detector 18 …… Focus position Detector 19 Pressure sensor 20 Temperature sensor 21 Humidity sensor 22 Temperature sensor 23 Microprocessor

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G02B 9/00 - 17/08 G02B 21/02 - 21/04 G02B 25/00 - 25/04 H01L 21/30 301,311,321,331Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) G02B 9/00-17/08 G02B 21/02-21/04 G02B 25/00-25/04 H01L 21/30 301,311,321,331

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】物体側及び像側の双方がテレセントリック
な投影光学系により第1物体のパターンを第2物体上に
投影する投影露光装置において、前記投影光学系の前記
第1物体に近いレンズを前記投影光学系の光軸方向に移
動させることによって対称歪曲収差と投影倍率とを変え
ると共に前記第1物体を前記投影光学系の光軸方向に移
動させることによって前記投影倍率を変えずに前記対称
歪曲収差を変えることにより、前記対称歪曲収差と前記
投影倍率を調整する調整手段を有することを特徴とする
投影露光装置。
1. A projection exposure apparatus for projecting a pattern of a first object onto a second object by a projection optical system in which both the object side and the image side are telecentric, wherein a lens of the projection optical system close to the first object is provided. The symmetrical distortion and the projection magnification are changed by moving the projection optical system in the direction of the optical axis, and the first object is moved in the direction of the optical axis of the projection optical system to change the symmetry without changing the projection magnification. A projection exposure apparatus comprising adjusting means for adjusting the symmetric distortion and the projection magnification by changing distortion.
【請求項2】物体側及び像側の双方がテレセントリック
な投影光学系により第1物体のパターンを第2物体上に
投影する投影露光装置において、前記第1物体を前記投
影光学系の光軸方向に移動させることによって投影倍率
を変えずに対称歪曲収差を変える手段を有することを特
徴とする投影露光装置。
2. A projection exposure apparatus for projecting a pattern of a first object onto a second object by a projection optical system in which both the object side and the image side are telecentric, wherein the first object is projected in an optical axis direction of the projection optical system. A projection exposure apparatus having means for changing symmetric distortion without changing projection magnification by moving the projection exposure apparatus.
JP1226204A 1988-09-19 1989-08-30 Projection exposure equipment Expired - Fee Related JP2840314B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1226204A JP2840314B2 (en) 1989-08-30 1989-08-30 Projection exposure equipment
US07/728,317 US5105075A (en) 1988-09-19 1991-07-08 Projection exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1226204A JP2840314B2 (en) 1989-08-30 1989-08-30 Projection exposure equipment

Publications (2)

Publication Number Publication Date
JPH0388317A JPH0388317A (en) 1991-04-12
JP2840314B2 true JP2840314B2 (en) 1998-12-24

Family

ID=16841525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1226204A Expired - Fee Related JP2840314B2 (en) 1988-09-19 1989-08-30 Projection exposure equipment

Country Status (1)

Country Link
JP (1) JP2840314B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04324614A (en) * 1991-04-24 1992-11-13 Fujitsu Ltd Method and device for exposure
JPH04359420A (en) * 1991-06-05 1992-12-11 Ryoden Semiconductor Syst Eng Kk Reduction aligner
US6198576B1 (en) 1998-07-16 2001-03-06 Nikon Corporation Projection optical system and exposure apparatus
JP2009536370A (en) * 2006-05-05 2009-10-08 コーニング インコーポレイテッド Distortion adjustment of quasi-telecentric imaging lens
US9746787B2 (en) 2011-02-22 2017-08-29 Nikon Corporation Holding apparatus, exposure apparatus and manufacturing method of device
JP6026724B2 (en) * 2011-04-19 2016-11-16 伯東株式会社 Projection optical system of exposure equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296514A (en) * 1986-06-17 1987-12-23 Nec Kyushu Ltd Reduction projection exposure apparatus
JPH01181520A (en) * 1988-01-11 1989-07-19 Canon Inc Aligner

Also Published As

Publication number Publication date
JPH0388317A (en) 1991-04-12

Similar Documents

Publication Publication Date Title
US5105075A (en) Projection exposure apparatus
USRE37361E1 (en) Scanning type exposure apparatus and exposure method
KR100422330B1 (en) Projection optical device adjustment method
JP4505989B2 (en) Aberration measurement apparatus, measurement method, projection exposure apparatus including the apparatus, device manufacturing method using the method, and exposure method
US4811055A (en) Projection exposure apparatus
US6333776B1 (en) Projection exposure apparatus
US7034922B2 (en) Exposure apparatus and exposure method
US6151122A (en) Inspection method and apparatus for projection optical systems
KR19990083312A (en) Lithography apparatus
JP3445045B2 (en) Projection exposure apparatus and device manufacturing method using the same
US6127095A (en) Illuminating optical device and semiconductor device manufacturing method
US20020080338A1 (en) Projection exposure apparatus
JPH0822948A (en) Scanning aligner
JP2897345B2 (en) Projection exposure equipment
JP2840314B2 (en) Projection exposure equipment
CN1462471A (en) Method of measuring image characteristics and exposure method
JP2003297726A (en) Aligner
JP2002170754A (en) Exposure system, method of detecting optical characteristic, and exposure method
KR20010015698A (en) Projection exposure method and apparatus
JP2001250760A (en) Aberration measuring method, mask detecting method to use said method and exposure method
US5917581A (en) Projection exposure method and apparatus therefor
JP3506155B2 (en) Projection exposure equipment
JP5118407B2 (en) Optical system, exposure apparatus, and device manufacturing method
JP2897346B2 (en) Projection exposure equipment
JP4147574B2 (en) Wavefront aberration measurement method, projection optical system adjustment method and exposure method, and exposure apparatus manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071016

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees