JPH0388317A - Projection exposure apparatus - Google Patents

Projection exposure apparatus

Info

Publication number
JPH0388317A
JPH0388317A JP1226204A JP22620489A JPH0388317A JP H0388317 A JPH0388317 A JP H0388317A JP 1226204 A JP1226204 A JP 1226204A JP 22620489 A JP22620489 A JP 22620489A JP H0388317 A JPH0388317 A JP H0388317A
Authority
JP
Japan
Prior art keywords
projection
lens
reticle
optical axis
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1226204A
Other languages
Japanese (ja)
Other versions
JP2840314B2 (en
Inventor
Masakatsu Ota
太田 正克
Akiyoshi Suzuki
章義 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1226204A priority Critical patent/JP2840314B2/en
Publication of JPH0388317A publication Critical patent/JPH0388317A/en
Priority to US07/728,317 priority patent/US5105075A/en
Application granted granted Critical
Publication of JP2840314B2 publication Critical patent/JP2840314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to correct errors in projection magnification of a pattern image and distortion errors excellently by providing adjusting means for moving a body such as reticle which is arranged on the side of the body in a projection optical system and a lens close to the body in the projection optical sytem in the direction of the optical axis of the projection optical system. CONSTITUTION:Adjusting means are provided for performing the following operations. A lens 6 close to a first body 1 in a projection optical system 5 is moved in the direction of an optical axis AX in the projection optical system 5. The projection magnification of a pattern image is adjusted. The first body 1 is moved in the direction of the opitcal axis AX in the projection optical system 5. Then the distortion of the pattern image is adjusted. Namely, a reticle chuck 2 is displaced in the direction of the optical axis AX in the projection lens system 5 with a reticle driving device 3. Thus, a reticle 1 is moved in the direction of the optical axis AX. A wafer chuck 10 is displaced in the direction of the optical axis AX of the projection lens system 5 with a wafer driving device 11. Thus, a wafer 9 is moved in the direction of the optical axis AX. Meanwhile, the field lens 6 is moved into the direction of the optical axis AX with a lens driving device 8. Said driving and control systems are controlled with a microporcessor 23. Thus, the errors in projection magnification of the pattern image and the distortion errors can be excellently corrected.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は投影露光装置に関するものであり、特にIC,
LSI等の半導体装置を製造する際に使用される、レチ
クルの回路パターン像をウエノ\上に投影する投影露光
装置に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a projection exposure apparatus, and in particular to an IC,
The present invention relates to a projection exposure apparatus that projects a circuit pattern image of a reticle onto a wafer, which is used when manufacturing semiconductor devices such as LSIs.

〔従来技術〕[Prior art]

Is、 LSI等の半導体装置製造用の投影露光装置で
は、前工程でウェハ上に形成されたパターンと投影光学
系によりウェハ上に投影されるパターン像との重ね合せ
精度を向上させることが重要な課題である。この重ね合
せ精度に影響を与える要因として、本件出願人が特開昭
62−35620号で示しているようにパターン像の投
影倍率誤差と歪曲誤差があるが、従来、投影倍率誤差と
歪曲誤差の双方を良好に補正できる投影露光装置はなか
った。
In projection exposure equipment for manufacturing semiconductor devices such as Is and LSI, it is important to improve the accuracy of overlaying the pattern formed on the wafer in the previous process and the pattern image projected onto the wafer by the projection optical system. This is a challenge. Factors that affect this overlay accuracy include projection magnification errors and distortion errors of pattern images, as shown by the applicant in JP-A No. 62-35620. Conventionally, projection magnification errors and distortion errors have been There was no projection exposure apparatus that could satisfactorily correct both.

〔発明の概要〕[Summary of the invention]

本発明の目的は、パターン像の投影倍率誤差と歪曲誤差
の双方を良好に補正できる投影露光装置を提供すること
にある。
An object of the present invention is to provide a projection exposure apparatus that can satisfactorily correct both projection magnification errors and distortion errors of pattern images.

この目的を達成するために、本投影露光装置は、物体側
及び像側の双方がテレセントリックな投影光学系を有し
、物体側に配置した第1物体のパターン像を像側に配置
した第2物体上に投影露光する投影露光装置において、
前記投影光学系の前記第1物体に近いレンズを前記投影
光学系の光軸方向に移動せしめて前記パターン像の投影
倍率を調整し、前記第1物体を前記投影光学系の光軸方
向に移動せしめて前記パターン像の歪曲を調整する調整
手段を有している。。
To achieve this objective, the present projection exposure apparatus has telecentric projection optical systems on both the object side and the image side, and a pattern image of a first object placed on the object side is transferred to a second pattern image placed on the image side. In a projection exposure device that projects exposure onto an object,
Adjusting the projection magnification of the pattern image by moving a lens close to the first object of the projection optical system in the optical axis direction of the projection optical system, and moving the first object in the optical axis direction of the projection optical system. At least it has an adjustment means for adjusting the distortion of the pattern image. .

本投影露光装置は、第1物体と、投影光学系の第1物体
に近いレンズとを投影光学系の光軸方向に移動せしめる
調整手段を有しているので、パターン像の投影倍率誤差
と歪曲誤差を良好に補正することが可能になる。
This projection exposure apparatus has adjustment means for moving the first object and a lens close to the first object of the projection optical system in the optical axis direction of the projection optical system, so that projection magnification errors and distortions of the pattern image can be caused. It becomes possible to correct errors favorably.

通常の投影露光装置で問題となる歪曲誤差は、主として
投影光学系の対称歪曲収差によるものであるから、この
対称歪曲収差が補正されるように第1物体を投影光学系
の光軸方向へ所定量移動せしめることにより、パターン
像の歪曲誤差が補正できる。
The distortion error that is a problem in ordinary projection exposure equipment is mainly caused by the symmetrical distortion aberration of the projection optical system. Therefore, the first object is moved in the optical axis direction of the projection optical system so that this symmetrical distortion aberration is corrected. By moving the pattern image by a fixed amount, distortion errors in the pattern image can be corrected.

本投影露光装置の幾つかの特徴と具体的構成は以下に示
す実施例に詳しく記載されている。
Some features and specific configurations of the present projection exposure apparatus are described in detail in the embodiments shown below.

〔実施例〕 第1図は、本発明の投影露光装置の一実施例を示す概略
図である。
[Embodiment] FIG. 1 is a schematic diagram showing an embodiment of a projection exposure apparatus of the present invention.

第1図において、lは回路パターンが描かれたレチクル
、2はレチクルlを吸着保持するレチクルチャック、3
はレチクルチャック2に取付けたレチクル駆動装置、4
はレチクル駆動装置4を支持するレチクルステージ、5
は物体側及び像側の双方がテレセントリックな縮小投影
レンズ系、6は投影レンズ系5の、レチクル1に近接配
置したレンズ(以下、「フィールドレンズ6」と称す)
、7は投影レンズ系5の他の幾つかのレンズより成るレ
ンズ系、8はフィールドレンズ7を投影レンズ系5の光
軸AX方向に移動させるレンズ駆動装置、9はレジスト
等の感材が塗布されたウェハ、lOはウェハ9を吸着保
持するウェハチャック、11はウェハチャック9に取付
けたウェハ駆動装置、12はウェハ駆動装置11を指示
し、投影レンズ系5の光軸AXに直交する面内で移動可
能なウェハステージを示す。
In FIG. 1, l is a reticle on which a circuit pattern is drawn, 2 is a reticle chuck that holds the reticle l by suction, and 3
4 is a reticle drive device attached to the reticle chuck 2;
5 is a reticle stage that supports a reticle drive device 4;
6 is a reduction projection lens system that is telecentric on both the object side and the image side, and 6 is a lens of the projection lens system 5 disposed close to the reticle 1 (hereinafter referred to as "field lens 6").
, 7 is a lens system consisting of several lenses other than the projection lens system 5, 8 is a lens driving device for moving the field lens 7 in the direction of the optical axis AX of the projection lens system 5, and 9 is coated with a sensitive material such as resist. 11 is a wafer drive device attached to the wafer chuck 9, 12 is a wafer drive device 11, and 10 is a wafer chuck that holds the wafer 9 by suction. shows a movable wafer stage.

レチクル駆動装置3とウェハ駆動装置11は各々圧電素
子等から成り、レチクル駆動装置3によりレチクルチャ
ック2を投影レンズ系5の光軸AX方向に変位せしめて
レチクルlを光軸AX方向に移動させ、ウェハ駆動装置
11によりウェハチャックlOを投影レンズ系5の光軸
AX方向に変位せしめてウェハ9を光軸AX方向に移動
させる。一方、レンズ駆動装置8は空気圧を利用してフ
ィールドレンズ6を投影レンズ系5の光軸AX方向に移
動させるものである。レンズ駆動装置8の具体的な構造
は本件出願人による特開昭62−32613号公報に開
示されているので、ここでは説明を省略する。
The reticle drive device 3 and the wafer drive device 11 each consist of a piezoelectric element, etc., and the reticle drive device 3 displaces the reticle chuck 2 in the direction of the optical axis AX of the projection lens system 5 to move the reticle l in the direction of the optical axis AX. The wafer drive device 11 displaces the wafer chuck IO in the direction of the optical axis AX of the projection lens system 5, thereby moving the wafer 9 in the direction of the optical axis AX. On the other hand, the lens driving device 8 uses air pressure to move the field lens 6 in the direction of the optical axis AX of the projection lens system 5. The specific structure of the lens driving device 8 is disclosed in Japanese Patent Application Laid-Open No. 62-32613 filed by the applicant of the present invention, so a description thereof will be omitted here.

レチクル駆動装置3によるレチクルチャック2の駆動は
、レチクル駆動制御系13からの信号に基づいて行なわ
れ、この時、レチクルlの光軸AX方向の位置がレチク
ル位置検出器15により検出される。
The reticle chuck 2 is driven by the reticle drive device 3 based on a signal from the reticle drive control system 13, and at this time, the position of the reticle I in the optical axis AX direction is detected by the reticle position detector 15.

また、同様に、レンズ駆動装置8によるフィールドレン
ズ8の駆動は、レンズ駆動制御系16から信号に基づい
て行なわれ、この時、フィールドレンズ8の光軸AX方
向の位置がレンズ位置検出器17により検出される。レ
チクル位置検出器15とレンズ位置検出器17は、光学
式エンコーダーなどの各種位置検出器で構成できる。ま
た、ウェハ駆動装置11によるウェハチャックlOの駆
動はウェハ駆動制御系14からの信号に基づいて行なわ
れ、この時、ウェハ9(の表面)の光軸AX方向の位置
はフォーカス検出器18により検出される。フォーカス
検出jl18は、この種の投影露光装置で従来から使用
されてきたエアーセンサーや光学式センサーで構成され
ている。レチクル位置検出器15、レンズ位置検出器1
7、及びフォーカス検出器18からの各信号はマイクロ
プロセッサ−23へ入力される。一方、投影レンズ系5
の周囲の気圧、気温、湿度の変化を検出するために気圧
センサー19、温度センサー20、湿度センサー21が
設けられ、投影レンズ系5の光吸収による温度変化を検
出するためにレンズ温度センサー22が設けられており
、これら各種センサー19、 20. 21. 22か
らの信号もマイクロプロセッサ−23へ入力される。ま
た、レチクル駆動制御系13、レンズ駆動制御系16、
及びウェハ駆動制御系14はマイクロプロセッサ−23
により制御される。
Similarly, the field lens 8 is driven by the lens drive device 8 based on a signal from the lens drive control system 16, and at this time, the position of the field lens 8 in the optical axis AX direction is detected by the lens position detector 17. Detected. The reticle position detector 15 and the lens position detector 17 can be composed of various position detectors such as an optical encoder. Further, the wafer chuck lO is driven by the wafer drive device 11 based on a signal from the wafer drive control system 14, and at this time, the position of (the surface of) the wafer 9 in the optical axis AX direction is detected by the focus detector 18. be done. The focus detection jl18 is composed of an air sensor or an optical sensor that has been conventionally used in this type of projection exposure apparatus. Reticle position detector 15, lens position detector 1
7 and the focus detector 18 are input to the microprocessor 23. On the other hand, the projection lens system 5
An atmospheric pressure sensor 19, a temperature sensor 20, and a humidity sensor 21 are provided to detect changes in atmospheric pressure, temperature, and humidity around the projection lens system 5, and a lens temperature sensor 22 is provided to detect changes in temperature due to light absorption of the projection lens system 5. These various sensors 19, 20. 21. Signals from 22 are also input to microprocessor-23. Also, a reticle drive control system 13, a lens drive control system 16,
and the wafer drive control system 14 is a microprocessor-23.
controlled by

24はレチクルlの回路パターンを均一な照度で照明す
る照明系を示し、照明系24は波長λ=248.4nm
のレーザー光を放射するKvFエキシマレーザ−を、露
光用の光源として具備している。照明系24からのレー
ザー光はレチクルlと投影レンズ系5を介してウェハ9
上に向けられ、ウェハ9上にレチクルlの回路パターン
像が投影されることになる。本実施例では、遠紫外域の
波長を有するレーザー光で投影露光を行なうために1.
投影レンズ系5を構成する各レンズを、波長λ=248
.4nmの光に対して高い透過率を備えた合成石英(S
iO□)で製造している。
Reference numeral 24 indicates an illumination system that illuminates the circuit pattern of the reticle l with uniform illuminance, and the illumination system 24 has a wavelength λ=248.4 nm.
A KvF excimer laser that emits laser light is provided as a light source for exposure. The laser beam from the illumination system 24 is directed to the wafer 9 via the reticle l and the projection lens system 5.
The circuit pattern image of the reticle I is projected onto the wafer 9. In this embodiment, 1.
Each lens constituting the projection lens system 5 has a wavelength λ=248
.. Synthetic quartz (S) with high transmittance for 4 nm light
Manufactured by iO□).

投影レンズ系5の具体的構成を第2図に示す。第2図は
投影レンズ系5の断面図であり、レチクルlとウェハ9
の間に、符号G、〜G1□で示される12枚のレンズが
光軸AXに沿って配列されて、投影レンズ系5が構成さ
れている。第2図において符号G1で示されるレンズが
第1図のフィールドレンズ6を一枚のレンズで構成して
いる。また、符号G2〜G 12で示されるレンズ群が
第1図のレンズ系7に対応している。
A specific configuration of the projection lens system 5 is shown in FIG. FIG. 2 is a cross-sectional view of the projection lens system 5, showing the reticle l and the wafer 9.
In between, 12 lenses denoted by symbols G and -G1□ are arranged along the optical axis AX to constitute the projection lens system 5. A lens designated by reference numeral G1 in FIG. 2 constitutes the field lens 6 of FIG. 1 as a single lens. Further, lens groups indicated by symbols G2 to G12 correspond to the lens system 7 in FIG.

第2図に示す投影レンズ系のレンズデータを表1に示す
。表1中、R+(i=1〜24)はレチクルl側から順
に数えて第i番目の面の曲率判明(m m )を、D+
はレチクルl側から順に数えて第i番目と第i+1番目
の面間の軸上肉厚又は軸上空気間隔(m m )を、N
 I(i = 1 = 12 )はレンズQI(i=1
〜12)の屈折率を示す。また、Slはレチクルlの回
路パターン面とレンズG1のレチクル1側の面間の軸上
空気間隔を、S2はレンズG 12のウエノ\9側の面
とウェハ9表面間の軸上空気間隔を示す。
Table 1 shows the lens data of the projection lens system shown in FIG. In Table 1, R+ (i=1 to 24) is the known curvature (m m ) of the i-th surface counting sequentially from the reticle l side, and D+
is the axial wall thickness or axial air gap (mm) between the i-th and i+1-th surfaces counting sequentially from the reticle L side, N
I (i = 1 = 12) is the lens QI (i = 1
~12). In addition, SL is the axial air gap between the circuit pattern surface of the reticle 1 and the reticle 1 side surface of the lens G1, and S2 is the axial air gap between the wafer 9 side surface of the lens G12 and the wafer 9 surface. show.

表 S、=100.0O000 表2は、表1に示した投影レンズ系において、レチクル
lとレンズ61間の軸上空気間隔S2、レンズG 11
1とウェハ9間の軸上空気間隔S2及び互いに隣接する
レンズG1とG+++ (i=1xll)間の軸上空気
間隔021 (i=1xll)を各々個別に1mm変化
させた時の、投影レンズ系の像面の像高10 m mの
位置における像点の、対称歪曲収差の変化に伴なうシフ
ト量ΔSD(以下、「対称歪曲変化量ΔSDJと称す。
Table S, = 100.0O000 Table 2 shows the axial air distance S2 between the reticle l and the lens 61, and the lens G 11 in the projection lens system shown in Table 1.
Projection lens system when the axial air spacing S2 between G1 and wafer 9 and the axial air spacing 021 (i=1xll) between adjacent lenses G1 and G+++ (i=1xll) are each individually changed by 1 mm. A shift amount ΔSD of the image point at a position of an image height of 10 mm on the image plane due to a change in symmetrical distortion (hereinafter referred to as "symmetrical distortion change amount ΔSDJ").

)と投影倍率の変化−に伴なうシフト量Δβ(以下、「
投影倍率変化量Δβ」と称す。)及び両者の比1ΔSD
/Δβ1を示す。尚、投影レンズ系の光軸から離れる方
向に像点がシフトしたものを正とし、投影レンズ系の光
軸に近づく方向に像点がシフトしたものを負の符号を付
している。
) and the shift amount Δβ (hereinafter referred to as “
"projection magnification change amount Δβ". ) and the ratio of both 1ΔSD
/Δβ1 is shown. Note that a shift of the image point in a direction away from the optical axis of the projection lens system is given a positive sign, and a shift of the image point in a direction toward the optical axis of the projection lens system is given a negative sign.

表 2 本実施例では、表2に基づいて対称歪曲収差以外の収差
変動が小さい間隔S1と間隔D2の双方を調整して投影
倍率と対称歪曲を調整することにした。
Table 2 In this embodiment, based on Table 2, it was decided to adjust the projection magnification and the symmetrical distortion by adjusting both the interval S1 and the interval D2, which have small variations in aberrations other than the symmetrical distortion.

今、間隔S、の変化量をΔS 1 、間隔D2の変化量
をΔD2とすると、表2より対称歪曲と投影倍率の変化
量ΔSD、Δβは各々次式で表わすことができる。
Now, assuming that the amount of change in the distance S is ΔS 1 and the amount of change in the distance D2 is ΔD2, the amounts of change ΔSD and Δβ in symmetrical distortion and projection magnification can be expressed by the following equations, respectively, from Table 2.

従って、ΔD 2 + ΔSlが次式で与えられる。Therefore, ΔD2+ΔSl is given by the following equation.

但し、k l= (15,4)−’ 間隔S0、即ち投影レンズ系5とレチクルlの距離の変
化による投影レンズ系5の収差の変化は、投影倍率、ピ
ント位置等の近軸量の変化に比べて少なく、収差量の変
化量と近軸量の変化量の比、即収差量の変化量 近軸量の変化量 が小さい。これは投影レンズ系5内での光線の傾きが物
体面と投影レンズ系の間の光線の傾きに比べて大きく、
レンズ間の空気間隔が変化した場合にはレンズの屈折面
での光線の入射高差が大きくなるので収差変化が大きく
なる為である。従って、本実施例では投影倍率の調整を
レンズG1 (フィールドレンズ6)を動かすことによ
り、主に間隔S1、D2の調整で行ない、歪曲の調整を
レチクルlを動かすことにより、主に間隔S1で行なう
ようにし、これにより、投影露光装置における投影倍率
誤差と対称歪曲誤差の双方を補正する。
However, k l = (15,4)-' Changes in the aberration of the projection lens system 5 due to changes in the distance S0, that is, the distance between the projection lens system 5 and the reticle l, are caused by changes in paraxial amounts such as projection magnification and focus position. The ratio of the amount of change in the amount of aberration to the amount of change in the paraxial amount, the amount of change in the amount of immediate aberration, and the amount of change in the paraxial amount are small. This is because the inclination of the ray within the projection lens system 5 is larger than the inclination of the ray between the object plane and the projection lens system.
This is because when the air distance between the lenses changes, the difference in height of incidence of light rays on the refractive surfaces of the lenses increases, resulting in a large change in aberrations. Therefore, in this embodiment, the projection magnification is adjusted by moving the lens G1 (field lens 6), mainly by adjusting the intervals S1 and D2, and the distortion is adjusted by moving the reticle l, mainly by adjusting the intervals S1. This corrects both the projection magnification error and the symmetry distortion error in the projection exposure apparatus.

第1図に戻り、本投影露光装置における、パターン像の
投影倍率誤差と歪曲誤差の補正方法に関して詳述する。
Returning to FIG. 1, a method for correcting projection magnification errors and distortion errors of pattern images in this projection exposure apparatus will be described in detail.

マイクロプロセッサ−23は、そのメモリ内に投影レン
ズ系5の投影倍率変化量Δβと歪曲変化量ΔSDを求め
るための計算式がプログラムされており、各々の計算式
は、気圧、気温、湿度、及び投影レンズ系5の温度の予
め決めた基準値からの変動量が変数となっている。また
、このメモリには上述の計算式(2)もプログラムされ
ており、ΔβとΔSDの値を計算式(2)に代入するこ
とにより、フィールドレンズ6の移動量とレチクル1の
移動量を求める。尚、ΔβとΔSDの値を気圧、気温、
湿度及び投影レンズ系5の温度変化に基づいて求める計
算式は実験により、導出することができる。
The microprocessor 23 has calculation formulas programmed in its memory for determining the projection magnification change amount Δβ and the distortion change amount ΔSD of the projection lens system 5, and each calculation formula is based on atmospheric pressure, temperature, humidity, and The amount of variation in the temperature of the projection lens system 5 from a predetermined reference value is a variable. The above-mentioned calculation formula (2) is also programmed in this memory, and by substituting the values of Δβ and ΔSD into calculation formula (2), the amount of movement of the field lens 6 and the amount of movement of the reticle 1 are calculated. . In addition, the values of Δβ and ΔSD can be expressed as atmospheric pressure, temperature,
A calculation formula based on humidity and temperature changes of the projection lens system 5 can be derived through experiments.

方、投影レンズ系5によるパターン像のフォーカス位置
は、投影レンズ系5の周囲の気圧、気温、湿度及び投影
レンズ系5の温度に依存して変化し、これに加えてレチ
クルl及びフィールドレンズ6の位置にも依存して変化
する。従って、本実施例では、これらの変動要因に基づ
いて投影レンズ系5のフォーカス位置変動量を求めるた
めの計算式を、マイクロプロセッサ−23のメモリ内に
プログラムし、この計算式に基づいてフォーカス位置を
正確に把握するようにしている。
On the other hand, the focus position of the pattern image by the projection lens system 5 changes depending on the atmospheric pressure, temperature, and humidity around the projection lens system 5 and the temperature of the projection lens system 5. It also changes depending on the position of. Therefore, in this embodiment, a calculation formula for determining the amount of change in the focus position of the projection lens system 5 based on these fluctuation factors is programmed into the memory of the microprocessor 23, and the focus position is determined based on this calculation formula. I try to understand it accurately.

マイクロプロセッサ−23は、気圧センサー19、温度
センサー20、湿度センサー21.レンズ温度センサー
22からの、気圧、気温、湿度、レンズ温度に対応する
各信号を受けて、上述の所定の条件式に基づいて、レチ
クルlの移動量とフィールドレンズ6の移動量を求める
。一方、レチクル位置検出器15及びレンズ位置検出器
17からの、レチクルl及びフィールドレンズ6の(光
軸AX方向に関する)位置に対応した信号が、マイクロ
プロセッサ−23へ入力される。マイクロプロセッサ−
23は、レチクルlの位置信号とレチクルlの移動量に
対応する信号をレチクル駆動制御系13へ入力し、フィ
ールドレンズ6の位置信号とフィールドレンズ6の移動
量に対応する信号をレンズ駆動制御系16へ入力する。
The microprocessor 23 includes an air pressure sensor 19, a temperature sensor 20, a humidity sensor 21. Receiving signals corresponding to atmospheric pressure, air temperature, humidity, and lens temperature from the lens temperature sensor 22, the amount of movement of the reticle I and the amount of movement of the field lens 6 are determined based on the above-mentioned predetermined conditional expressions. On the other hand, signals corresponding to the positions of the reticle I and the field lens 6 (with respect to the optical axis AX direction) from the reticle position detector 15 and the lens position detector 17 are input to the microprocessor 23. microprocessor
23 inputs the position signal of the reticle l and the signal corresponding to the movement amount of the reticle l to the reticle drive control system 13, and inputs the position signal of the field lens 6 and the signal corresponding to the movement amount of the field lens 6 to the lens drive control system. 16.

そして、レチクル駆動制御系13がマイクロプロセッサ
−23からの各信号に応じて所定の制御信号をレチクル
駆動装置3へ与え、レチクル駆動装置3によりレチクル
lを光軸AX方向に所定量移動させる。また、レンズ駆
動制御系16がマイクロプロセッサ−23からの各信号
に応じて所定の制御信号をレンズ駆動装置16へ与え、
レンズ駆動装置16によりフィールドレンズ6を光軸A
X方向に所定量移動させる。このレチクル1とフィール
ド・レンズ6の位置の調整により、投影レンズ系5の周
囲の気圧、気温、湿度、及び投影レンズ系5の温度など
の変動に基づくパターン像の投影倍率誤差と歪曲誤差が
補正される。
Then, the reticle drive control system 13 applies predetermined control signals to the reticle drive device 3 in response to each signal from the microprocessor 23, and the reticle drive device 3 moves the reticle I by a predetermined amount in the direction of the optical axis AX. Further, the lens drive control system 16 provides a predetermined control signal to the lens drive device 16 in response to each signal from the microprocessor 23,
The field lens 6 is moved along the optical axis A by the lens driving device 16.
Move a predetermined amount in the X direction. By adjusting the positions of the reticle 1 and the field lens 6, projection magnification errors and distortion errors of the pattern image due to fluctuations in the atmospheric pressure, temperature, humidity around the projection lens system 5, and the temperature of the projection lens system 5 are corrected. be done.

また、マイクロプロセッサ−23は、レチクル位置検出
器15、レンズ位置検出器17、気圧センサー19、温
度センサー20、湿度センサー21.及びレンズ温度セ
ンサー22からの信号に基いて、投影レンズ系5による
パターン層のフォーカス位置を検出し、フォーカス検出
器18からのウェハ9(の表面)の位置に応じた信号に
基づいて、ウェハ9がフォーカス位置に位置決めされる
ようにウェハ駆動制御系14を制御する。ウェハ駆動制
御系14は、所定の制御信号をウェハ駆動装置11に与
え、ウェハ駆動装置11によりウェハ9を光軸AX方向
に移動させて、パターン像のフォーカス位置にウェハ9
を位置付ける。
The microprocessor 23 also includes a reticle position detector 15, a lens position detector 17, an atmospheric pressure sensor 19, a temperature sensor 20, a humidity sensor 21, . Based on the signals from the lens temperature sensor 22 and the lens temperature sensor 22, the focus position of the pattern layer by the projection lens system 5 is detected, and based on the signal from the focus detector 18 corresponding to the position of (the surface of) the wafer 9, The wafer drive control system 14 is controlled so that the wafer is positioned at the focus position. The wafer drive control system 14 gives a predetermined control signal to the wafer drive device 11, causes the wafer drive device 11 to move the wafer 9 in the direction of the optical axis AX, and brings the wafer 9 to the focus position of the pattern image.
position.

以上述べた動作で、パターン像の投影倍率を予め決めた
倍率に補正し、パターン像の歪曲を所定の許容範囲内に
抑えることにより、前工程でウアハ9上に形成されたパ
ターンとパターン像とを正確に重ね合わせることができ
る。また、ウェハ9の位置とパターン像のフォーカス位
置も合致せしめられるので、ウェハ9上に鮮明なパター
ン像を投影することが可能になる。
Through the operations described above, the projection magnification of the pattern image is corrected to a predetermined magnification, and the distortion of the pattern image is suppressed within a predetermined tolerance range, so that the pattern formed on the wafer 9 in the previous process and the pattern image are can be accurately superimposed. Further, since the position of the wafer 9 and the focus position of the pattern image are also matched, it becomes possible to project a clear pattern image onto the wafer 9.

本実施例では、パターン像の投影倍率を調整するための
可動のフィールドレンズ6を一枚のレンズ(G、)で構
成しているが、フィールドレンズ6を複数個のレンズで
構成しても良い。また、本実施例では、パターン像の投
影倍率及び歪曲の、気圧、気温、湿度及びレンズ温度の
変動に伴なう変化を検出するために、気圧センサー19
、温度センサー20、湿度センサー21.レンズ温度セ
ンサー22からの出力信号を利用していたが、投影レン
ズ系5により投影されたパターン像を撮像装置で撮像し
、パターン像の大きさ及び形状に基づいてパターン像の
投影倍率及び歪曲の変化を検出するようにしても良い。
In this embodiment, the movable field lens 6 for adjusting the projection magnification of the pattern image is composed of one lens (G,), but the field lens 6 may be composed of a plurality of lenses. . In addition, in this embodiment, in order to detect changes in the projection magnification and distortion of the pattern image due to fluctuations in atmospheric pressure, air temperature, humidity, and lens temperature, an atmospheric pressure sensor 19 is used.
, temperature sensor 20, humidity sensor 21. Although the output signal from the lens temperature sensor 22 was used, the pattern image projected by the projection lens system 5 is captured by an imaging device, and the projection magnification and distortion of the pattern image are determined based on the size and shape of the pattern image. Changes may also be detected.

この時、撮像装置をウェハステージ12に付設しておけ
ば、所望の時期にパターン像の投影倍率や歪曲の変化を
検出することができ、露光装置の構成も複雑にならない
At this time, if an imaging device is attached to the wafer stage 12, changes in the projection magnification and distortion of the pattern image can be detected at a desired time, and the configuration of the exposure device does not become complicated.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、物体側及び像側の双方がテレセ
ントリックな投影光学系を有する投影露光装置において
、投影光学系の物体側に配置したレチクル等の物体と、
投影光学系の物体に近いレンズとを投影光学系の光軸方
向に移動せしめる調整手段を有しているので、物体に描
かれたパターンの投影光学系によるパターン像の投影倍
率と歪曲を正確に調整することができる。従って、投影
光学系の周囲の気圧変動等によりパターン像の投影倍率
や歪曲が変化して誤差が生じても、調整手段により、パ
ターン像の投影倍率誤差や歪曲誤差を良好に補正するこ
とが可能になる。
As described above, according to the present invention, in a projection exposure apparatus having a projection optical system in which both the object side and the image side are telecentric, an object such as a reticle placed on the object side of the projection optical system;
Since the projection optical system has adjustment means for moving the lens close to the object in the optical axis direction of the projection optical system, the projection magnification and distortion of the pattern image drawn on the object by the projection optical system can be accurately adjusted. Can be adjusted. Therefore, even if an error occurs due to a change in the projection magnification or distortion of the pattern image due to atmospheric pressure fluctuations around the projection optical system, etc., the adjustment means can satisfactorily correct the projection magnification error or distortion error of the pattern image. become.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の投影露光装置の一実施例を示す概略図
。 第2図は第1図の装置の投影レンズ系の具体的構成を示
す断面図。 l・・・レチクル 2・・・レチクルチャック 3・・・レチクル駆動装置 4・・・レチクルステージ 5・・・投影レンズ系 6・・・フィルドレンズ 7・・・レンズ系 8・・・レンズ駆動装置 9・・・ウェハー 10・・・ウェハチャック 11・・・ウェハ駆動装置 12・・・ウェハステージ 13・・・レチクル駆動制御系 14・・・ウェハ駆動制御系 15・・・レチクル位置検出器 16・・・レンズ駆動制御系 17・・・レンズ位置検出器 18・・・フォーカス位置検出器 19・・・気圧センサー 20・・・温度センサー 21・・・湿度センサー 22・・・レンズ温度センサー 23・・・マイクロプロセッサー
FIG. 1 is a schematic diagram showing an embodiment of a projection exposure apparatus of the present invention. FIG. 2 is a sectional view showing a specific configuration of the projection lens system of the apparatus shown in FIG. l... Reticle 2... Reticle chuck 3... Reticle drive device 4... Reticle stage 5... Projection lens system 6... Filled lens 7... Lens system 8... Lens drive device 9... Wafer 10... Wafer chuck 11... Wafer drive device 12... Wafer stage 13... Reticle drive control system 14... Wafer drive control system 15... Reticle position detector 16... ... Lens drive control system 17 ... Lens position detector 18 ... Focus position detector 19 ... Barometric pressure sensor 20 ... Temperature sensor 21 ... Humidity sensor 22 ... Lens temperature sensor 23 ...・Microprocessor

Claims (1)

【特許請求の範囲】[Claims] 物体側及び像側の双方がテレセントリックな投影光学系
を有し、物体側に配置した第1物体のパターン像を像側
に配置した第2物体上に投影露光する投影露光装置にお
いて、前記投影光学系の前記第1物体に近いレンズを前
記投影光学系の光軸方向に移動せしめて、前記パターン
像の投影倍率を調整し、前記第1物体を前記投影光学系
の光軸方向に移動せしめて前記パターン像の歪曲を調整
する調整手段を有する投影露光装置。
In a projection exposure apparatus that has telecentric projection optical systems on both the object side and the image side and projects and exposes a pattern image of a first object placed on the object side onto a second object placed on the image side, the projection optical system moving a lens close to the first object of the system in the optical axis direction of the projection optical system to adjust the projection magnification of the pattern image, and moving the first object in the optical axis direction of the projection optical system; A projection exposure apparatus comprising an adjusting means for adjusting distortion of the pattern image.
JP1226204A 1988-09-19 1989-08-30 Projection exposure equipment Expired - Fee Related JP2840314B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1226204A JP2840314B2 (en) 1989-08-30 1989-08-30 Projection exposure equipment
US07/728,317 US5105075A (en) 1988-09-19 1991-07-08 Projection exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1226204A JP2840314B2 (en) 1989-08-30 1989-08-30 Projection exposure equipment

Publications (2)

Publication Number Publication Date
JPH0388317A true JPH0388317A (en) 1991-04-12
JP2840314B2 JP2840314B2 (en) 1998-12-24

Family

ID=16841525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1226204A Expired - Fee Related JP2840314B2 (en) 1988-09-19 1989-08-30 Projection exposure equipment

Country Status (1)

Country Link
JP (1) JP2840314B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04324614A (en) * 1991-04-24 1992-11-13 Fujitsu Ltd Method and device for exposure
JPH04359420A (en) * 1991-06-05 1992-12-11 Ryoden Semiconductor Syst Eng Kk Reduction aligner
US6198576B1 (en) 1998-07-16 2001-03-06 Nikon Corporation Projection optical system and exposure apparatus
JP2009536370A (en) * 2006-05-05 2009-10-08 コーニング インコーポレイテッド Distortion adjustment of quasi-telecentric imaging lens
JP2012226073A (en) * 2011-04-19 2012-11-15 Topcon Corp Projection optical system for exposure device
US9746787B2 (en) 2011-02-22 2017-08-29 Nikon Corporation Holding apparatus, exposure apparatus and manufacturing method of device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296514A (en) * 1986-06-17 1987-12-23 Nec Kyushu Ltd Reduction projection exposure apparatus
JPH01181520A (en) * 1988-01-11 1989-07-19 Canon Inc Aligner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296514A (en) * 1986-06-17 1987-12-23 Nec Kyushu Ltd Reduction projection exposure apparatus
JPH01181520A (en) * 1988-01-11 1989-07-19 Canon Inc Aligner

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04324614A (en) * 1991-04-24 1992-11-13 Fujitsu Ltd Method and device for exposure
JPH04359420A (en) * 1991-06-05 1992-12-11 Ryoden Semiconductor Syst Eng Kk Reduction aligner
US6198576B1 (en) 1998-07-16 2001-03-06 Nikon Corporation Projection optical system and exposure apparatus
JP2009536370A (en) * 2006-05-05 2009-10-08 コーニング インコーポレイテッド Distortion adjustment of quasi-telecentric imaging lens
JP2014030044A (en) * 2006-05-05 2014-02-13 Corning Inc Distortion tuning of quasi-telecentric imaging lens
KR101374956B1 (en) * 2006-05-05 2014-03-14 코닝 인코포레이티드 Distortion tuning of a quasi-telecentric imaging lens
US9746787B2 (en) 2011-02-22 2017-08-29 Nikon Corporation Holding apparatus, exposure apparatus and manufacturing method of device
US10416573B2 (en) 2011-02-22 2019-09-17 Nikon Corporation Holding apparatus, exposure apparatus and manufacturing method of device
JP2012226073A (en) * 2011-04-19 2012-11-15 Topcon Corp Projection optical system for exposure device

Also Published As

Publication number Publication date
JP2840314B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
US5105075A (en) Projection exposure apparatus
JP4505989B2 (en) Aberration measurement apparatus, measurement method, projection exposure apparatus including the apparatus, device manufacturing method using the method, and exposure method
KR100422330B1 (en) Projection optical device adjustment method
EP0531102B1 (en) Pattern projection apparatus and exposure method for manufacturing a semiconductor device
JP3402850B2 (en) Projection exposure apparatus and device manufacturing method using the same
US6151122A (en) Inspection method and apparatus for projection optical systems
US4998821A (en) Projection apparatus
JP3445045B2 (en) Projection exposure apparatus and device manufacturing method using the same
KR100471461B1 (en) Exposure method and exposure apparatus
US9726981B2 (en) Exposure apparatus, exposure method, and device manufacturing method
KR100486871B1 (en) Projection exposure equipment
JPS618922A (en) Projecting optical apparatus
JP2897345B2 (en) Projection exposure equipment
US20090231568A1 (en) Method of measuring wavefront error, method of correcting wavefront error, and method of fabricating semiconductor device
US6169602B1 (en) Inspection method and apparatus for projection optical systems
JPWO2002025711A1 (en) Measurement method of exposure characteristics and exposure method
JPH0388317A (en) Projection exposure apparatus
KR100416870B1 (en) Exposure apparatus and exposure method
KR20010015698A (en) Projection exposure method and apparatus
JP3506155B2 (en) Projection exposure equipment
JP3064366B2 (en) Projection exposure apparatus and circuit pattern manufacturing method using the apparatus
JP4261689B2 (en) EXPOSURE APPARATUS, METHOD USED FOR THE EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD USING THE EXPOSURE APPARATUS
JP2897346B2 (en) Projection exposure equipment
JPH04130711A (en) Projection optical apparatus
JP2007095767A (en) Exposure apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071016

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081016

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees