JP2004207593A - Mask for extreme ultra-violet exposure, blank, and method for pattern transfer - Google Patents

Mask for extreme ultra-violet exposure, blank, and method for pattern transfer Download PDF

Info

Publication number
JP2004207593A
JP2004207593A JP2002376713A JP2002376713A JP2004207593A JP 2004207593 A JP2004207593 A JP 2004207593A JP 2002376713 A JP2002376713 A JP 2002376713A JP 2002376713 A JP2002376713 A JP 2002376713A JP 2004207593 A JP2004207593 A JP 2004207593A
Authority
JP
Japan
Prior art keywords
mask
film
exposure
reflectance
multilayer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002376713A
Other languages
Japanese (ja)
Inventor
Tadashi Matsuo
正 松尾
Takashi Haraguchi
崇 原口
Tsukasa Yamazaki
司 山嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2002376713A priority Critical patent/JP2004207593A/en
Publication of JP2004207593A publication Critical patent/JP2004207593A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mask for EUV exposure by which a principle of a halftone mask used for conventional excimer laser exposure etc. can be applied also to EUV exposure using a reflection optical system for improving transfer resolution by EUV exposure, and also to provide a blank for producing the mask and a method for pattern formation using the mask. <P>SOLUTION: The mask for EUV exposure is obtained by forming a multilayer film 2 which becomes the high reflecting area of exposing light on a substrate 3, and forming thin film patterns 1 which become low reflecting areas on the multilayer film. Each thin film of the low reflecting area consists of a double layer film. As for the double layer film in an exposure wavelength, a reflectance to the multilayer film is 5 to 20 %, and a phase difference between reflected light from the double layer film and that from the multilayer film is 175 to 185°. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造プロセス中の、極限紫外線露光を用いたフォトリソグラフィ工程で使用される、極限紫外線露光用マスク、及びそのマスクを作製するためのブランク、並びにそのマスクを用いたパターン転写方法に関するものである。
【従来の技術】
【0002】
半導体集積回路の微細化技術は常に進歩しており、微細化のためのフォトリソグラフィ技術に使用される光の波長は次第に短くなってきている。また、光の短波長化とは別にIBMのLevensonらによって位相シフトマスクを利用した解像度向上技術が提唱され、公知となっている(特許文献1や、原理では特許文献2に記載されている)。位相シフトマスクでは、マスクパターンの透過部を、隣接する透過部とは異なる物質若しくは形状とすることにより、それらを透過した光に180度の位相差を与えている。従って両透過部の間の領域では、180度位相の異なる透過回折光同士が打ち消し合い、光強度が極めて小さくなって、マスクコントラストが向上し、結果的に転写時の焦点深度が拡大するとともに転写精度が向上する。尚、位相差は原理上180度が最良であるが、実質175〜185度程度であれば解像度向上効果は得られる。
【0003】
【特許文献1】
特開昭58-173744号公報
【特許文献2】
特公昭62-50811号公報
【0004】
位相シフトマスクの一種であるハーフトーン型は、マスクパターンを構成する材料として光吸収性の薄膜を用い、透過率を数%程度(通常5〜20%程度)まで減衰させつつ、通常の基板透過光と180度の位相差を与えることで、パターンエッジ部の解像度を向上させる位相シフトマスクである。光源としては、現状、これまで使用されて来たKrFエキシマレーザ(波長248nm)からArFエキシマレーザ(波長193nm)に切り替わりつつあり、さらにその次にはF2エキシマレーザ(波長157nm)の使用が提案され、開発が行われている。
【0005】
しかしながら、F2エキシマレーザをもってしても、将来的な50nm以下の線幅を有するデバイスを作製するためのリソグラフィ技術として適用するには、露光機やレジストの課題もあり、容易ではない。このため、エキシマレーザ光より波長が一桁以上短い(10〜15nm)極限紫外線(Extreme UV、以下EUVと略記)を用いた、EUVリソグラフィの研究開発が進められている。
【0006】
EUV露光では、上述のように波長が短いため、物質の屈折率がほとんど真空の値に近く、材料間の光吸収の差も小さい。このため、EUV領域では従来の透過型の屈折光学系が組めず、反射光学系となり、従ってマスクも反射型マスクとなる。これまで開発されてきた一般的なEUVマスクは、Siウェハーやガラス基板上に、例えばMoとSiからなる2層膜を40層ほど積層した多層膜部分を高反射領域とし、その上に低反射領域(吸収領域)として金属膜のパターンを形成した構造であった。しかし、もともとEUV露光は、光学系のNA(開口数)が小さいうえに、反射型マスク特有の課題として、表面凹凸の影響を受けやすい、などの理由により、目標とする微細な線幅を解像することは容易ではなかった。
【0007】
【発明が解決しようとする課題】
本発明では、EUV露光による転写解像性を向上するために、従来のエキシマレーザ露光等で用いられているハーフトーンマスクの原理を、反射光学系を用いたEUV露光においても適用可能とするEUV露光用マスク、およびそれを作製するためのブランク並びにそのマスクを用いたパターン形成方法を提供する。
【0008】
【課題を解決するための手段】
本発明はかかる課題に鑑みなされたもので、請求項1の発明は、基板上に、露光光の高反射領域となる多層膜が形成され、前記多層膜上に低反射領域となる薄膜のパターンが形成された極限紫外線露光用マスクにおいて、前記低反射領域である薄膜が2層膜からなり、該2層膜は、露光波長において、前記多層膜に対する反射率が5乃至20%であり、2層膜からの反射光と多層膜からの反射光との位相差が175乃至185度であることを特徴とする極限紫外線露光用マスクとしたものである。
【0009】
本発明の請求項2の発明は、前記2層膜は、露光波長に対する消衰係数が0.01以上の薄膜と、0.01以下の薄膜からなることを特徴とする請求項1記載の極限紫外線露光用マスクとしたものである。
【0010】
本発明の請求項3の発明は、前記2層膜の材料は、RuとTa、MoとCr、RuとCr、MoとTaのいずかの組み合せであることを特徴とする請求項1または請求項2記載の極限紫外線露光用マスクとしたものである。
【0011】
本発明の請求項4の発明は、請求項1〜3いずれか1項に記載の極限紫外線露光用マスクを、前記2層膜のパターニングにより作製するための、基板上に、露光光の高反射領域となる前記多層膜が形成され、前記多層膜上の全面に低反射領域となる前記2層膜が形成された極限紫外線露光用マスクブランクとしたものである。
【0012】
本発明の請求項5の発明は、請求項1〜3いずれか1項に記載の極限紫外線露光用マスクを露光装置に設置し、前記マスクを用いたリソグラフィ法による露光転写を行ない、パターン形成を行なうことを特徴とするパターン転写方法としたものである。
【0013】
【発明の実施の形態】
本発明の実施の形態を図を用いて説明する。図1(a)は本発明のEUV露光用マスクの実施形態の例を断面で示した説明図である。基板3上に、露光光の高反射領域となる多層膜2が形成され、前記多層膜2上に低反射領域となる薄膜のパターン1が形成されている。この薄膜は2層膜からなり、露光波長において、多層膜に対する2層膜の反射率が5乃至20%、2層膜からの反射光と多層膜からの反射光との位相差が175乃至185度となっている。
2層膜の反射率は、多層膜に対する反射率であり、多層膜からの反射光をRmとし、2層膜からの反射光をR2とすれば、R2/Rm×100(%)となる。以下、反射率は全て多層膜に対する反射率を意味する。
図1(b)は本発明の極限紫外線露光用マスクブランクの実施形態の例を断面で示した説明図である。基板3上に、露光光の高反射領域となる多層膜2が形成され、多層膜2上の全面に低反射領域となる2層膜1‘が形成されている。図1(b)のブランクをパターニングすることにより図1(a)のマスクが得られる。
【0014】
本願発明のマスクの上方より極限紫外線を露光し、その反射光をウェハー上に照射するのであるが、このときの転写解像性の向上について以下に説明する。
従来のエキシマレーザ用のハーフトーンマスクでは、露光波長である紫外線に対して、ハーフトーン膜の透過率が一般的には5から20%、同じく反射率は25%以下という分光学的条件を満足することが望ましい。この理由として、まず露光波長でのハーフトーン膜の透過率が低すぎる(5%以下)と、隣接した透過パターン部を透過した光の回折光が重なり合ったとき、打ち消しあい効果が小さくなる。逆に透過率が高すぎる(20%以上)場合は、露光条件によってはレジストの解像限界を越えてしまい、ハーフトーン膜を光が透過した領域に余分なパターンが出来てしまうからである。また、反射率が高い(25%以上)と、投影露光を行う際にマスクとウェハーとの間の多重反射によって転写精度が劣化することがある。
【0015】
EUVマスクのような反射型マスクにおいても、位相シフト効果による解像度向上の原理は同じであるので、上記の「透過率」が「反射率」に置き換わるだけで、その適正値はほとんど同じである。すなわち高反射領域に対する低反射領域の反射率は5〜20%であることが望ましい。
【0016】
ハーフトーンマスクの条件は、上記の透過率(反射率)とともに、実質175〜185の位相差をもつことである。従来のエキシマレーザ用ハーフトーンマスクは透過型であるので、5〜20%の透過率と175〜185度の位相差を同時に持たせることは比較的容易である。しかし、EUVマスクにおいては、前述したように(段落番号0006)、EUV波長(10〜15nm)での屈折率、光吸収の特異性に起因して、目標である反射率と位相差を同時に持つハーフトーンマスクを作製することは容易ではない。
【0017】
本発明では理論的計算と考察により、目標とする反射率(5〜20%)と位相差(175〜185度)を両立させたEUV露光用ハーフトーンマスクを作製するための材料的な条件を見出した。以下、実施例に従って説明する。
【0018】
<実施例1>
図2は、本発明の第1の実施例の、反射率と位相差を示した説明図である。この例では、薄膜の上層がRu、下層がTaである。図の横軸がRu膜厚、縦軸がTa膜厚をÅ単位で表している。aの線は、反射率が8%となる条件を満足する。bの線は、薄膜からの反射光(薄膜内の多重反射を総計した)と、多層膜からの反射光との位相差が180度となる条件を満足する。従って、両線の交点の膜厚で2層膜を作製すれば反射率8%、位相差180度のEUVハーフトーンマスクが得られる。尚、波長13nm(典型的なEUV露光の波長)における屈折率n,消衰係数kは表1の通りであった(消衰係数kは材料の光吸収の指標となる特性値である)。
【0019】
【表1】

Figure 2004207593
【0020】
図3は、本実施例の反射率と位相差をRuの膜厚に対して示した図である。この場合、図2の交点からTa膜厚を280Åとしている。図から位相差が175〜185度となるRuの膜厚は、410〜450Å、そのときの反射率は、6.9〜8.8%となる。このような2層膜の低反射領域(位相シフター)を設けることによって反射率、位相差の適正なEUV露光用ハーフトーンマスクが作製できる。
【0021】
<実施例2>
次に第2の実施例について説明する。この例では、薄膜の上層がMo、下層がCrである。波長13nm(典型的なEUV露光の波長)における屈折率n,消衰係数kは表2の通りである。
【0022】
【表2】
Figure 2004207593
【0023】
図4は、本実施例の反射率と位相差をMoの膜厚に対して示した図である。この場合、Crの膜厚を340Åとしてある。図から位相差が175〜185度となるMoの膜厚は、410〜470Å、そのときの反射率は、6.9〜8.5%となる。このような2層膜の位相シフターを設けることによって、反射率、位相差の適正なEUV露光用ハーフトーンマスクが作製できる。
【0024】
<比較例1>
以上のような2層膜の実施の形態の例に対して、これを単層とした場合について反射率と位相差を検討する。
1)消衰係数k>0.01の膜の膜厚vs.反射率、位相差
【0025】
▲1▼Taの場合
図5は、図1の薄膜としてTa単体を利用した膜のマスクについて、反射率(図a)と位相差(図b)を膜厚に対して示した図である。図bから位相差が180度となる膜厚を求め、図aより反射率を求めると、2%に達せず、良好な位相シフター用薄膜として利用できない。
【0026】
▲2▼Crの場合
図6は、Cr単体の場合で、反射率(図a)と位相差(図b)を膜厚に対して示した図である。図bから位相差が180度となる膜厚をもとめ、図aより反射率を求めると、4%に達せず、同様に良好な位相シフターとして利用できない。このようにk>0.01の単層膜では位相差180度のとき、ハーフトーンマスクの位相シフターとして利用するには、適正な反射率領域(5〜20%)よりも低すぎる。
【0027】
<比較例2>
1)消衰係数k<0.01の膜の膜厚vs.反射率、位相差
【0028】
▲1▼Ruの場合
図7は、図1の薄膜としてRu単体を利用した膜のマスクについて、反射率(図a)と位相差(図b)を膜厚に対して示した図である。図bから位相差が180度となる膜厚を求め、図aより反射率を求めると、40%を超える値となり、良好な位相シフターとして利用できない。
【0029】
▲2▼Moの場合
図8は、Mo単体の場合で、反射率(図a)と位相差(図b)を膜厚に対して示した図である。図bから位相差が180度となる膜厚を求め、図aより反射率を求めると、55%を超える値となり、同様に良好な位相シフターとして利用できない。
このようにk<0.01の単層膜では位相差180度のとき、ハーフトーンマスクとして適正な反射率領域(5〜20%)よりも高すぎる。
ゆえにk>0.01の膜とk<0.01の膜を組み合わせるのがよい。前述の実施例1、2は、これを満足するものである。
【0030】
なお、その他にこれを満足する2層膜として、RuとCr、MoとTaのいずかの組み合せの膜が好ましく利用できる。
さらに、Ru、Cr、Mo、Taの酸化物または窒化物を好ましく利用できる。これらの酸化物や窒化物は上記条件k<0.01を、さらに満たしやすいものである。すなわち、請求項3に記載の2層膜の内1層が、酸化物または窒化物であるものもEUVマスクに利用できる。
【0031】
本発明のEUVマスクは、従来どおりのマスク作製プロセスに準拠して作製できる。すなわち、Siウェハーやガラス基板上に、例えばMoとSiからなる多層膜を、通常のマグネトロンスパッタリング法やイオンビームスパッタリング法などにより、40層ほど積層して高反射領域とする。その上に低反射(吸収)領域として、通常のマグネトロンスパッタリング法などにより2層膜(位相シフター)を作製し、本発明のEUVハーフトーンマスク用ブランクが完成する。以下、通常のマスク作製プロセスに従って、2層膜のパターニングを行い、本発明のEUVハーフトーンマスクを作製する。すなわち、前記ブランク上に電子線レジストを塗布し、ベーキングを行った後、通常の電子線描画を行い、現像してレジストパターンを形成する。その後、このレジストパターンをマスクにして、低反射用2層膜のドライエッチングを行った後、レジストを剥離して、本発明のハーフトーンマスクが完成する。尚、2層膜のうちの下層膜はドライエッチングや、パターン欠陥修正の際に、多層膜へのダメージを緩和する膜(バッファー膜)としての機能を持たせることもできる。
【0032】
このように作製したEUV露光用ハーフトーンマスクは目標の透過率(5〜20%)と位相差(175〜185度)を満たし、EUV露光における転写精度の向上に有効である。
【0033】
本発明によるフォトマスクを用いたパターン転写方法は、例えば、先ず被加工層を表面に形成した基板上にフォトレジスト層を設けたのち、本発明によるフォトマスクを介して反射した極限紫外線を選択的に照射する。
【0034】
次いで、現像工程において不必要な部分のフォトレジスト層を除去し、基板上にエッチングレジスト層のパターンを形成させたのち、このエッチングレジスト層のパターンをマスクとして被加工層をエッチング処理し、次いで、エッチングレジスト層のパターンを除去することにより、フォトマスクパターンに忠実なパターンを基板上に転写する方法である。
【0035】
【発明の効果】
本発明のEUV露光用マスクでは、以上のような構成、作用をもつから、従来のエキシマレーザ露光等で用いられているハーフトーンマスクの原理を、EUV露光および反射光学系においても適用可能とし、EUV露光とハーフトーン効果により転写解像性を向上したEUV露光用マスク及びブランク、並びにそれを用いた転写方法とすることができる。
【図面の簡単な説明】
【図1】(a)本発明の極限紫外線露光用マスクの実施形態の例を断面で示した説明図である。
(b)本発明の極限紫外線露光用マスクブランクの実施形態の例を断面で示した説明図である。
【図2】本願発明の第1の実施の形態例の反射率と位相差を示した説明図である。
【図3】本願発明の第1形態例の反射率と位相差をRuの膜厚に対して示した図である。
【図4】本願発明の第2の実施形態例の反射率と位相差をMoの膜厚に対して示した図である。
【図5】Ta単体膜のマスクについて、反射率と位相差を膜厚に対して示した図である。
【図6】Cr単体膜のマスクについて、反射率と位相差を膜厚に対して示した図である。
【図7】Ru単体膜のマスクについて、反射率と位相差を膜厚に対して示した図である。
【図8】Mo単体膜のマスクについて、反射率と位相差を膜厚に対して示した図である。
【符号の説明】
1…低反射薄膜パターン
1‘…低反射薄膜
2…高反射多層膜
3…基板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mask for extreme ultraviolet exposure used in a photolithography process using extreme ultraviolet exposure during a semiconductor manufacturing process, a blank for producing the mask, and a pattern transfer method using the mask. Things.
[Prior art]
[0002]
The miniaturization technology of semiconductor integrated circuits is constantly progressing, and the wavelength of light used for photolithography technology for miniaturization is gradually becoming shorter. Further, apart from shortening the wavelength of light, a resolution improvement technique using a phase shift mask has been proposed and known by IBM's Levenson et al. (Described in Patent Document 1 and in Patent Document 2 in principle). . In the phase shift mask, the transmission portion of the mask pattern is made of a different material or shape from that of the adjacent transmission portion, thereby giving a 180-degree phase difference to the light transmitted therethrough. Therefore, in the region between the two transmitting portions, the transmitted diffracted lights having phases different from each other by 180 degrees cancel each other, the light intensity becomes extremely small, the mask contrast is improved, and as a result, the focal depth at the time of transfer is enlarged and the transfer is performed. The accuracy is improved. Note that the phase difference is optimally 180 degrees in principle, but a resolution improvement effect can be obtained if the phase difference is substantially 175 to 185 degrees.
[0003]
[Patent Document 1]
JP-A-58-173744 [Patent Document 2]
Japanese Patent Publication No. Sho 62-50811
A halftone type, which is a kind of a phase shift mask, uses a light absorbing thin film as a material for forming a mask pattern, and attenuates the transmittance to about several percent (usually about 5 to 20%) while transmitting light through a normal substrate. This is a phase shift mask that improves the resolution of the pattern edge by giving a phase difference of 180 degrees with light. As a light source, the KrF excimer laser (wavelength 248 nm), which has been used so far, is being switched to an ArF excimer laser (wavelength 193 nm), and then the use of an F2 excimer laser (wavelength 157 nm) has been proposed. , Development is being done.
[0005]
However, even with an F2 excimer laser, it is not easy to apply it as a lithography technique for fabricating a device having a line width of 50 nm or less in the future due to problems with an exposure machine and a resist. For this reason, research and development of EUV lithography using extreme ultraviolet (Extreme UV, hereinafter abbreviated as EUV) whose wavelength is shorter than the excimer laser beam by one digit or more (10 to 15 nm) has been promoted.
[0006]
In EUV exposure, since the wavelength is short as described above, the refractive index of a substance is almost close to a vacuum value, and the difference in light absorption between materials is small. For this reason, in the EUV region, a conventional transmissive refraction optical system cannot be assembled, and a reflection optical system is used. Therefore, the mask is also a reflection mask. A typical EUV mask that has been developed is a high-reflection region consisting of, for example, a multilayer film in which about 40 layers of two layers of Mo and Si are stacked on a Si wafer or a glass substrate, and a low-reflection region is formed thereon. The structure was such that a metal film pattern was formed as a region (absorption region). However, originally, EUV exposure solves the target fine line width because the NA (numerical aperture) of the optical system is small and the reflective mask is easily affected by surface irregularities. It was not easy to image.
[0007]
[Problems to be solved by the invention]
In the present invention, in order to improve the transfer resolution by EUV exposure, EUV which makes the principle of a halftone mask used in conventional excimer laser exposure or the like applicable to EUV exposure using a reflection optical system is also applicable. Provided are an exposure mask, a blank for producing the same, and a pattern forming method using the mask.
[0008]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and the invention of claim 1 is directed to a method of forming a thin film pattern which is formed on a substrate as a high reflection area of exposure light and which is a low reflection area on the multilayer film. In the extreme ultraviolet exposure mask on which is formed, the low-reflection region thin film is composed of a two-layer film, which has a reflectance of 5 to 20% with respect to the multilayer film at the exposure wavelength. The ultimate ultraviolet exposure mask is characterized in that the phase difference between the reflected light from the layer film and the reflected light from the multilayer film is 175 to 185 degrees.
[0009]
2. The limit according to claim 1, wherein the two-layer film comprises a thin film having an extinction coefficient of 0.01 or more and a thin film of 0.01 or less with respect to an exposure wavelength. This is an ultraviolet exposure mask.
[0010]
The invention according to claim 3 of the present invention is characterized in that the material of the two-layer film is a combination of Ru and Ta, Mo and Cr, Ru and Cr, and Mo and Ta. An extreme ultraviolet exposure mask according to claim 2 is provided.
[0011]
According to a fourth aspect of the present invention, there is provided a mask for extreme ultraviolet exposure according to any one of the first to third aspects of the present invention, which is formed by patterning the two-layer film. A mask blank for extreme ultraviolet exposure in which the multilayer film serving as a region is formed, and the two-layer film serving as a low reflection region is formed on the entire surface of the multilayer film.
[0012]
According to a fifth aspect of the present invention, an extreme ultraviolet exposure mask according to any one of the first to third aspects is installed in an exposure apparatus, and exposure transfer is performed by lithography using the mask to form a pattern. This is a pattern transfer method characterized by performing the method.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 1A is an explanatory view showing a cross section of an embodiment of the EUV exposure mask of the present invention. On a substrate 3, a multilayer film 2 serving as a high reflection area of exposure light is formed, and on the multilayer film 2, a thin film pattern 1 serving as a low reflection area is formed. This thin film is composed of a two-layer film, and at the exposure wavelength, the reflectance of the two-layer film with respect to the multilayer film is 5 to 20%, and the phase difference between the reflected light from the two-layer film and the reflected light from the multilayer film is 175 to 185. Degree.
The reflectivity of the two-layer film is the reflectivity for the multilayer film. If the reflected light from the multilayer film is Rm and the reflected light from the two-layer film is R2, it is R2 / Rm × 100 (%). Hereinafter, all the reflectances refer to the reflectance for the multilayer film.
FIG. 1B is an explanatory view showing a cross section of an embodiment of a mask blank for extreme ultraviolet exposure according to the present invention. On the substrate 3, a multilayer film 2 serving as a high reflection area of exposure light is formed, and on the entire surface of the multilayer film 2, a two-layer film 1 'serving as a low reflection area is formed. By patterning the blank of FIG. 1B, the mask of FIG. 1A is obtained.
[0014]
The extreme ultraviolet light is exposed from above the mask of the present invention, and the reflected light is irradiated onto the wafer. The improvement in transfer resolution at this time will be described below.
Conventional halftone masks for excimer lasers satisfy the spectroscopic condition that the transmittance of the halftone film is generally 5 to 20% and the reflectance is 25% or less with respect to the ultraviolet ray which is the exposure wavelength. It is desirable to do. The reason for this is that, if the transmittance of the halftone film at the exposure wavelength is too low (5% or less), when the diffracted lights of the light transmitted through the adjacent transmission pattern portions overlap, the canceling effect is reduced. Conversely, if the transmittance is too high (20% or more), the resolution limit of the resist will be exceeded depending on the exposure conditions, and an extra pattern will be formed in the area where light has passed through the halftone film. If the reflectance is high (25% or more), transfer accuracy may be degraded due to multiple reflection between the mask and the wafer when performing projection exposure.
[0015]
Even in a reflection type mask such as an EUV mask, the principle of resolution improvement by the phase shift effect is the same, so that only the above-mentioned “transmittance” is replaced by “reflectance”, and the appropriate values are almost the same. That is, it is desirable that the reflectivity of the low reflection region with respect to the high reflection region is 5 to 20%.
[0016]
The condition of the halftone mask is to have a phase difference of substantially 175 to 185 together with the transmittance (reflectance) described above. Since a conventional halftone mask for an excimer laser is a transmission type, it is relatively easy to have a transmittance of 5 to 20% and a phase difference of 175 to 185 degrees at the same time. However, as described above (paragraph number 0006), the EUV mask simultaneously has the target reflectance and phase difference due to the specificity of the refractive index and light absorption at the EUV wavelength (10 to 15 nm). It is not easy to produce a halftone mask.
[0017]
In the present invention, material conditions for producing a halftone mask for EUV exposure that achieves both a target reflectance (5 to 20%) and a phase difference (175 to 185 degrees) based on theoretical calculations and considerations. I found it. Hereinafter, description will be made according to examples.
[0018]
<Example 1>
FIG. 2 is an explanatory diagram showing the reflectance and the phase difference of the first embodiment of the present invention. In this example, the upper layer of the thin film is Ru and the lower layer is Ta. In the figure, the horizontal axis represents the Ru film thickness, and the vertical axis represents the Ta film thickness in Å units. The line a satisfies the condition that the reflectance is 8%. The line b satisfies the condition that the phase difference between the reflected light from the thin film (total of multiple reflections in the thin film) and the reflected light from the multilayer film is 180 degrees. Therefore, if a two-layer film is formed with a film thickness at the intersection of both lines, an EUV halftone mask having a reflectance of 8% and a phase difference of 180 degrees can be obtained. The refractive index n and the extinction coefficient k at a wavelength of 13 nm (typical EUV exposure wavelength) were as shown in Table 1 (the extinction coefficient k is a characteristic value serving as an index of light absorption of a material).
[0019]
[Table 1]
Figure 2004207593
[0020]
FIG. 3 is a diagram showing the reflectance and the phase difference of the present embodiment with respect to the Ru film thickness. In this case, the Ta film thickness is set to 280 ° from the intersection in FIG. As shown in the figure, the film thickness of Ru at which the phase difference is 175 to 185 degrees is 410 to 450 °, and the reflectance at that time is 6.9 to 8.8%. By providing such a low-reflection region (phase shifter) of a two-layer film, a halftone mask for EUV exposure with appropriate reflectance and phase difference can be manufactured.
[0021]
<Example 2>
Next, a second embodiment will be described. In this example, the upper layer of the thin film is Mo and the lower layer is Cr. Table 2 shows the refractive index n and the extinction coefficient k at a wavelength of 13 nm (typical EUV exposure wavelength).
[0022]
[Table 2]
Figure 2004207593
[0023]
FIG. 4 is a diagram showing the reflectance and the phase difference of the present embodiment with respect to the Mo film thickness. In this case, the thickness of Cr is set to 340 °. As shown in the drawing, the film thickness of Mo at which the phase difference is 175 to 185 degrees is 410 to 470 °, and the reflectance at that time is 6.9 to 8.5%. By providing such a two-layer film phase shifter, a halftone mask for EUV exposure with appropriate reflectance and phase difference can be manufactured.
[0024]
<Comparative Example 1>
With respect to the example of the embodiment of the two-layer film as described above, the reflectance and the phase difference in the case where this is a single layer will be examined.
1) Thickness vs. film thickness of extinction coefficient k> 0.01. Reflectance, phase difference
(1) In the case of Ta FIG. 5 is a diagram showing the reflectance (FIG. A) and the phase difference (FIG. B) with respect to the film thickness of the film mask using Ta alone as the thin film in FIG. When the film thickness at which the phase difference becomes 180 degrees is obtained from FIG. B and the reflectance is obtained from FIG. A, it does not reach 2% and cannot be used as a good thin film for a phase shifter.
[0026]
(2) In the case of Cr FIG. 6 is a diagram showing the reflectance (FIG. A) and the phase difference (FIG. B) with respect to the film thickness in the case of Cr alone. When the film thickness at which the phase difference becomes 180 degrees is obtained from FIG. B, and the reflectance is obtained from FIG. A, it does not reach 4%, and it cannot be used similarly as a good phase shifter. As described above, when the phase difference of the single-layer film with k> 0.01 is 180 degrees, it is too low to be used as a phase shifter of a halftone mask, which is lower than an appropriate reflectance region (5 to 20%).
[0027]
<Comparative Example 2>
1) Thickness vs. film thickness of extinction coefficient k <0.01. Reflectance, phase difference
{Circle around (1)} In the case of Ru FIG. 7 is a diagram showing the reflectance (FIG. A) and the phase difference (FIG. B) with respect to the film thickness of a film mask using Ru alone as the thin film in FIG. When the film thickness at which the phase difference is 180 degrees is obtained from FIG. B and the reflectance is obtained from FIG. A, the value exceeds 40%, and cannot be used as a good phase shifter.
[0029]
(2) In the case of Mo FIG. 8 is a diagram showing the reflectance (FIG. A) and the phase difference (FIG. B) with respect to the film thickness in the case of Mo alone. When the film thickness at which the phase difference is 180 degrees is obtained from FIG. B and the reflectance is obtained from FIG. A, the value exceeds 55%, and similarly, it cannot be used as a good phase shifter.
As described above, in the case of a single-layer film with k <0.01, when the phase difference is 180 degrees, it is too higher than the appropriate reflectance region (5 to 20%) as a halftone mask.
Therefore, it is preferable to combine a film with k> 0.01 and a film with k <0.01. The first and second embodiments satisfy this.
[0030]
In addition, as a two-layer film that satisfies this, a film of any combination of Ru and Cr or Mo and Ta can be preferably used.
Further, oxides or nitrides of Ru, Cr, Mo, and Ta can be preferably used. These oxides and nitrides more easily satisfy the above condition k <0.01. That is, one of the two-layer films described in claim 3 in which one layer is an oxide or a nitride can also be used for the EUV mask.
[0031]
The EUV mask of the present invention can be manufactured according to a conventional mask manufacturing process. That is, about 40 layers of a multilayer film made of, for example, Mo and Si are stacked on a Si wafer or a glass substrate by a usual magnetron sputtering method, an ion beam sputtering method, or the like to form a high reflection region. A two-layer film (phase shifter) is formed thereon by a normal magnetron sputtering method or the like as a low reflection (absorption) region, thereby completing the EUV halftone mask blank of the present invention. Hereinafter, the two-layer film is patterned according to a normal mask manufacturing process to manufacture the EUV halftone mask of the present invention. That is, after applying an electron beam resist on the blank and performing baking, normal electron beam drawing is performed and developed to form a resist pattern. Thereafter, using this resist pattern as a mask, the low-reflection two-layer film is dry-etched, and then the resist is peeled off to complete the halftone mask of the present invention. Note that the lower layer film of the two-layer film may have a function as a film (buffer film) for alleviating damage to the multilayer film during dry etching or pattern defect correction.
[0032]
The halftone mask for EUV exposure manufactured in this way satisfies the target transmittance (5 to 20%) and the phase difference (175 to 185 degrees), and is effective for improving the transfer accuracy in EUV exposure.
[0033]
The pattern transfer method using the photomask according to the present invention includes, for example, first providing a photoresist layer on a substrate on which a layer to be processed is formed on the surface, and then selectively exposing the ultimate ultraviolet light reflected through the photomask according to the present invention. Irradiation.
[0034]
Next, in the developing step, unnecessary portions of the photoresist layer are removed, and after forming a pattern of the etching resist layer on the substrate, the layer to be processed is etched using the pattern of the etching resist layer as a mask, This is a method of transferring a pattern faithful to a photomask pattern onto a substrate by removing the pattern of the etching resist layer.
[0035]
【The invention's effect】
Since the EUV exposure mask of the present invention has the above configuration and operation, the principle of the halftone mask used in conventional excimer laser exposure and the like can be applied to EUV exposure and a reflection optical system, An EUV exposure mask and blank having improved transfer resolution by EUV exposure and a halftone effect, and a transfer method using the same can be provided.
[Brief description of the drawings]
FIG. 1 (a) is an explanatory view showing a cross section of an embodiment of an extreme ultraviolet exposure mask according to the present invention.
(B) It is explanatory drawing which showed the example of embodiment of the mask blank for extreme ultraviolet exposure of this invention in cross section.
FIG. 2 is an explanatory diagram showing a reflectance and a phase difference according to the first embodiment of the present invention.
FIG. 3 is a diagram showing a reflectance and a phase difference with respect to a Ru film thickness according to the first embodiment of the present invention;
FIG. 4 is a diagram showing a reflectance and a phase difference with respect to a Mo film thickness according to a second embodiment of the present invention.
FIG. 5 is a diagram showing a reflectance and a phase difference with respect to a film thickness of a mask of a single Ta film.
FIG. 6 is a diagram showing a reflectance and a phase difference with respect to a film thickness of a mask made of a single Cr film.
FIG. 7 is a diagram showing a reflectance and a phase difference with respect to a film thickness of a mask of a Ru single film.
FIG. 8 is a diagram showing a reflectance and a phase difference with respect to a film thickness of a mask of a Mo single film.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Low reflection thin film pattern 1 '... Low reflection thin film 2 ... High reflection multilayer film 3 ... Substrate

Claims (5)

基板上に、露光光の高反射領域となる多層膜が形成され、前記多層膜上に低反射領域となる薄膜のパターンが形成された極限紫外線露光用マスクにおいて、前記低反射領域である薄膜が2層膜からなり、該2層膜は、露光波長において、前記多層膜に対する反射率が5乃至20%であり、2層膜からの反射光と多層膜からの反射光との位相差が175乃至185度であることを特徴とする極限紫外線露光用マスク。On a substrate, a multilayer film serving as a high reflection area of exposure light is formed, and in the ultimate ultraviolet exposure mask in which a pattern of a thin film serving as a low reflection area is formed on the multilayer film, the thin film serving as the low reflection area is The two-layer film has a reflectance of 5 to 20% with respect to the multilayer film at an exposure wavelength, and the phase difference between the reflected light from the two-layer film and the reflected light from the multilayer film is 175. An extreme ultraviolet exposure mask, which is at an angle of about 185 degrees. 前記2層膜は、露光波長に対する消衰係数が0.01以上の薄膜と、0.01以下の薄膜からなることを特徴とする請求項1記載の極限紫外線露光用マスク。The extreme ultraviolet exposure mask according to claim 1, wherein the two-layer film comprises a thin film having an extinction coefficient of 0.01 or more and a thin film of 0.01 or less with respect to an exposure wavelength. 前記2層膜の材料は、RuとTa、MoとCr、RuとCr、MoとTaのいずかの組み合せであることを特徴とする請求項1または請求項2記載の極限紫外線露光用マスク。The extreme ultraviolet exposure mask according to claim 1 or 2, wherein the material of the two-layer film is a combination of Ru and Ta, Mo and Cr, Ru and Cr, and Mo and Ta. . 請求項1〜3いずれか1項に記載の極限紫外線露光用マスクを、前記2層膜のパターニングにより作製するための、基板上に、露光光の高反射領域となる前記多層膜が形成され、前記多層膜上の全面に低反射領域となる前記2層膜が形成された極限紫外線露光用マスクブランク。The multilayer film to be a high reflection area of exposure light is formed on a substrate, for forming the mask for extreme ultraviolet exposure according to any one of claims 1 to 3, by patterning the two-layer film, A mask blank for extreme ultraviolet exposure, wherein the two-layer film serving as a low reflection region is formed on the entire surface of the multilayer film. 請求項1〜3いずれか1項に記載の極限紫外線露光用マスクを露光装置に設置し、前記マスクを用いたリソグラフィ法による露光転写を行ない、パターン形成を行なうことを特徴とするパターン転写方法。A pattern transfer method, comprising: installing the mask for extreme ultraviolet exposure according to any one of claims 1 to 3 in an exposure apparatus, performing exposure transfer by a lithography method using the mask, and forming a pattern.
JP2002376713A 2002-12-26 2002-12-26 Mask for extreme ultra-violet exposure, blank, and method for pattern transfer Pending JP2004207593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002376713A JP2004207593A (en) 2002-12-26 2002-12-26 Mask for extreme ultra-violet exposure, blank, and method for pattern transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002376713A JP2004207593A (en) 2002-12-26 2002-12-26 Mask for extreme ultra-violet exposure, blank, and method for pattern transfer

Publications (1)

Publication Number Publication Date
JP2004207593A true JP2004207593A (en) 2004-07-22

Family

ID=32814106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002376713A Pending JP2004207593A (en) 2002-12-26 2002-12-26 Mask for extreme ultra-violet exposure, blank, and method for pattern transfer

Country Status (1)

Country Link
JP (1) JP2004207593A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228766A (en) * 2005-02-15 2006-08-31 Toppan Printing Co Ltd Mask for extreme ultraviolet ray exposure, mask blank, and exposure method
JP2009098611A (en) * 2007-09-26 2009-05-07 Toppan Printing Co Ltd Halftone euv mask, halftone euv mask blank, manufacturing method of halftone euv mask and pattern transfer method
JP2009206287A (en) * 2008-02-27 2009-09-10 Toppan Printing Co Ltd Mask blank for extreme ultraviolet ray exposure, mask for extreme ultraviolet ray exposure, method of manufacturing mask for extreme ultraviolet ray exposure, and pattern transfer method using mask for extreme ultraviolet ray exposure
JP2009212220A (en) * 2008-03-03 2009-09-17 Toshiba Corp Reflection-type mask and method of making the same
WO2009122972A1 (en) * 2008-03-31 2009-10-08 Hoya株式会社 Reflection type mask blank, reflection type mask, and method for manufacturing the same
WO2009136564A1 (en) * 2008-05-09 2009-11-12 Hoya株式会社 Reflective mask, reflective mask blank and method for manufacturing reflective mask
WO2010007955A1 (en) * 2008-07-14 2010-01-21 旭硝子株式会社 Reflective mask blank for euv lithography and reflective mask for euv lithography
KR20110103386A (en) 2008-12-26 2011-09-20 호야 가부시키가이샤 Reflective mask blank and reflective mask manufacturing method
US8173332B2 (en) 2009-07-23 2012-05-08 Kabushiki Kaisha Toshiba Reflection-type exposure mask and method of manufacturing a semiconductor device
JP2012104751A (en) * 2010-11-12 2012-05-31 Dainippon Printing Co Ltd Reflective mask manufacturing method
JP2016072438A (en) * 2014-09-30 2016-05-09 Hoya株式会社 Reflective mask blank, reflective mask and method of manufacturing the same, and method of manufacturing semiconductor device
KR20170096027A (en) 2014-12-24 2017-08-23 호야 가부시키가이샤 Reflective mask blank, reflective mask and method for manufacturing semiconductor device
KR20180129838A (en) 2016-03-28 2018-12-05 호야 가부시키가이샤 Reflective mask blank, reflective mask and method of manufacturing semiconductor device
KR20190026926A (en) 2017-01-17 2019-03-13 호야 가부시키가이샤 Reflective mask blank, reflective mask, manufacturing method thereof, and manufacturing method of semiconductor device
WO2019103024A1 (en) * 2017-11-27 2019-05-31 Hoya株式会社 Reflective mask blank, reflective mask and method for producing same, and method for producing semiconductor device
KR20190117745A (en) 2017-03-02 2019-10-16 호야 가부시키가이샤 Reflective mask blanks, reflective masks and methods for manufacturing the same, and methods for manufacturing semiconductor devices
JP2020181206A (en) * 2016-03-28 2020-11-05 Hoya株式会社 Reflection type mask blank, reflection type mask and manufacturing method of semiconductor device
WO2020241780A1 (en) * 2019-05-31 2020-12-03 凸版印刷株式会社 Reflective photomask blanks and reflective photomask
KR20210013008A (en) 2018-05-25 2021-02-03 호야 가부시키가이샤 Reflective mask blank, reflective mask, and method of manufacturing reflective mask and semiconductor device
KR20210014619A (en) 2018-05-25 2021-02-09 호야 가부시키가이샤 Reflective mask blank, reflective mask and its manufacturing method, and semiconductor device manufacturing method
KR20210043563A (en) 2018-08-29 2021-04-21 호야 가부시키가이샤 Reflective mask blank, reflective mask and manufacturing method thereof, and manufacturing method of semiconductor device
KR20210102199A (en) 2018-12-27 2021-08-19 호야 가부시키가이샤 A reflective mask blank, a reflective mask, and a method for manufacturing a semiconductor device

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228766A (en) * 2005-02-15 2006-08-31 Toppan Printing Co Ltd Mask for extreme ultraviolet ray exposure, mask blank, and exposure method
JP2009098611A (en) * 2007-09-26 2009-05-07 Toppan Printing Co Ltd Halftone euv mask, halftone euv mask blank, manufacturing method of halftone euv mask and pattern transfer method
JP2009206287A (en) * 2008-02-27 2009-09-10 Toppan Printing Co Ltd Mask blank for extreme ultraviolet ray exposure, mask for extreme ultraviolet ray exposure, method of manufacturing mask for extreme ultraviolet ray exposure, and pattern transfer method using mask for extreme ultraviolet ray exposure
US7932002B2 (en) 2008-03-03 2011-04-26 Kabushiki Kaisha Toshiba Reflection-type mask and method of making the reflection-type mask
JP2009212220A (en) * 2008-03-03 2009-09-17 Toshiba Corp Reflection-type mask and method of making the same
JP4602430B2 (en) * 2008-03-03 2010-12-22 株式会社東芝 Reflective mask and manufacturing method thereof
WO2009122972A1 (en) * 2008-03-31 2009-10-08 Hoya株式会社 Reflection type mask blank, reflection type mask, and method for manufacturing the same
US8367279B2 (en) 2008-03-31 2013-02-05 Hoya Corporation Reflective mask blank, reflective mask, and method of manufacturing the same
KR20110008064A (en) 2008-03-31 2011-01-25 호야 가부시키가이샤 Reflection type mask blank, reflection type mask, and method for manufacturing the same
JP2015128183A (en) * 2008-05-09 2015-07-09 Hoya株式会社 Reflective mask, reflective mask blank, and method for manufacturing the same
US8372564B2 (en) 2008-05-09 2013-02-12 Hoya Corporation Reflective mask, reflective mask blank and method of manufacturing reflective mask
KR20110013458A (en) 2008-05-09 2011-02-09 호야 가부시키가이샤 Reflective mask, reflective mask blank and method for manufacturing reflective mask
WO2009136564A1 (en) * 2008-05-09 2009-11-12 Hoya株式会社 Reflective mask, reflective mask blank and method for manufacturing reflective mask
JPWO2009136564A1 (en) * 2008-05-09 2011-09-08 Hoya株式会社 Reflective mask, reflective mask blank and manufacturing method thereof
KR20160134864A (en) 2008-05-09 2016-11-23 호야 가부시키가이샤 Reflective mask, reflective mask blank and method for manufacturing reflective mask
DE112009000965T5 (en) 2008-05-09 2011-03-10 Hoya Corp. Reflective mask, reflective mask blank, and method of making a reflective mask
JP5711533B2 (en) * 2008-05-09 2015-05-07 Hoya株式会社 Reflective mask, reflective mask blank and manufacturing method thereof
JPWO2010007955A1 (en) * 2008-07-14 2012-01-05 旭硝子株式会社 Reflective mask blank for EUV lithography and reflective mask for EUV lithography
JP5541159B2 (en) * 2008-07-14 2014-07-09 旭硝子株式会社 Reflective mask blank for EUV lithography and reflective mask for EUV lithography
WO2010007955A1 (en) * 2008-07-14 2010-01-21 旭硝子株式会社 Reflective mask blank for euv lithography and reflective mask for euv lithography
CN102089860A (en) * 2008-07-14 2011-06-08 旭硝子株式会社 Reflective mask blank for EUV lithography and reflective mask for EUV lithography
US8168352B2 (en) 2008-07-14 2012-05-01 Asahi Glass Company, Limited Reflective mask blank for EUV lithography and mask for EUV lithography
KR20110103386A (en) 2008-12-26 2011-09-20 호야 가부시키가이샤 Reflective mask blank and reflective mask manufacturing method
US8546047B2 (en) 2008-12-26 2013-10-01 Hoya Corporation Reflective mask blank and method of manufacturing a reflective mask
US9229315B2 (en) 2008-12-26 2016-01-05 Hoya Corporation Reflective mask blank and method of manufacturing a reflective mask
KR20170019484A (en) 2008-12-26 2017-02-21 호야 가부시키가이샤 Reflective mask blank and reflective mask manufacturing method
US8173332B2 (en) 2009-07-23 2012-05-08 Kabushiki Kaisha Toshiba Reflection-type exposure mask and method of manufacturing a semiconductor device
JP2012104751A (en) * 2010-11-12 2012-05-31 Dainippon Printing Co Ltd Reflective mask manufacturing method
JP2016072438A (en) * 2014-09-30 2016-05-09 Hoya株式会社 Reflective mask blank, reflective mask and method of manufacturing the same, and method of manufacturing semiconductor device
US10394113B2 (en) 2014-12-24 2019-08-27 Hoya Corporation Reflective mask blank, reflective mask and method of manufacturing semiconductor device
KR20170096027A (en) 2014-12-24 2017-08-23 호야 가부시키가이샤 Reflective mask blank, reflective mask and method for manufacturing semiconductor device
KR20230096126A (en) 2014-12-24 2023-06-29 호야 가부시키가이샤 Reflective mask blank, reflective mask and method for manufacturing semiconductor device
US10642149B2 (en) 2014-12-24 2020-05-05 Hoya Corporation Reflective mask blank, reflective mask and method of manufacturing semiconductor device
KR20180129838A (en) 2016-03-28 2018-12-05 호야 가부시키가이샤 Reflective mask blank, reflective mask and method of manufacturing semiconductor device
US10871707B2 (en) 2016-03-28 2020-12-22 Hoya Corporation Reflective mask blank, reflective mask and method of manufacturing semiconductor device
JP2020181206A (en) * 2016-03-28 2020-11-05 Hoya株式会社 Reflection type mask blank, reflection type mask and manufacturing method of semiconductor device
KR20220012412A (en) 2016-03-28 2022-02-03 호야 가부시키가이샤 Reflective mask blank, reflective mask and method for manufacturing semiconductor device
KR20190100251A (en) 2017-01-17 2019-08-28 호야 가부시키가이샤 Reflective mask blank, reflective mask, method for producing same, and method for producing semiconductor device
US11249385B2 (en) 2017-01-17 2022-02-15 Hoya Corporation Reflective mask blank, reflective mask, method of manufacturing same, and method of manufacturing semiconductor device
KR20190026926A (en) 2017-01-17 2019-03-13 호야 가부시키가이샤 Reflective mask blank, reflective mask, manufacturing method thereof, and manufacturing method of semiconductor device
KR20190117745A (en) 2017-03-02 2019-10-16 호야 가부시키가이샤 Reflective mask blanks, reflective masks and methods for manufacturing the same, and methods for manufacturing semiconductor devices
US11237472B2 (en) 2017-03-02 2022-02-01 Hoya Corporation Reflective mask blank, reflective mask and manufacturing method thereof, and semiconductor device manufacturing method
KR20200088283A (en) 2017-11-27 2020-07-22 호야 가부시키가이샤 Reflective mask blank, reflective mask and method for manufacturing same, and method for manufacturing semiconductor device
JP2019095691A (en) * 2017-11-27 2019-06-20 Hoya株式会社 Reflection type mask blank, reflection type mask and producing method therefor, and production method for semiconductor device
WO2019103024A1 (en) * 2017-11-27 2019-05-31 Hoya株式会社 Reflective mask blank, reflective mask and method for producing same, and method for producing semiconductor device
KR20210013008A (en) 2018-05-25 2021-02-03 호야 가부시키가이샤 Reflective mask blank, reflective mask, and method of manufacturing reflective mask and semiconductor device
KR20210014619A (en) 2018-05-25 2021-02-09 호야 가부시키가이샤 Reflective mask blank, reflective mask and its manufacturing method, and semiconductor device manufacturing method
US11815807B2 (en) 2018-05-25 2023-11-14 Hoya Corporation Reflective mask blank, reflective mask, method of manufacturing reflective mask, and method of manufacturing semiconductor device
US11815806B2 (en) 2018-05-25 2023-11-14 Hoya Corporation Reflective mask blank, reflective mask and manufacturing method thereof, and semiconductor device manufacturing method
US11531264B2 (en) 2018-05-25 2022-12-20 Hoya Corporation Reflective mask blank, reflective mask and manufacturing method thereof, and semiconductor device manufacturing method
US11550215B2 (en) 2018-05-25 2023-01-10 Hoya Corporation Reflective mask blank, reflective mask, method of manufacturing reflective mask, and method of manufacturing semiconductor device
KR20210043563A (en) 2018-08-29 2021-04-21 호야 가부시키가이샤 Reflective mask blank, reflective mask and manufacturing method thereof, and manufacturing method of semiconductor device
US11892768B2 (en) 2018-08-29 2024-02-06 Hoya Corporation Reflective mask blank, reflective mask and method of manufacturing the same, and method of manufacturing semiconductor device
KR20210102199A (en) 2018-12-27 2021-08-19 호야 가부시키가이샤 A reflective mask blank, a reflective mask, and a method for manufacturing a semiconductor device
US11914281B2 (en) 2018-12-27 2024-02-27 Hoya Corporation Reflective mask blank, reflective mask, and method for manufacturing semiconductor device
JP7346088B2 (en) 2019-05-31 2023-09-19 株式会社トッパンフォトマスク Reflective photomask blanks and reflective photomasks
CN113906343A (en) * 2019-05-31 2022-01-07 凸版印刷株式会社 Reflective photomask blank and reflective photomask
JP2020197606A (en) * 2019-05-31 2020-12-10 凸版印刷株式会社 Reflective photomask blank and reflective photomask
WO2020241780A1 (en) * 2019-05-31 2020-12-03 凸版印刷株式会社 Reflective photomask blanks and reflective photomask
CN113906343B (en) * 2019-05-31 2024-02-20 凸版光掩模有限公司 Reflective photomask blank and reflective photomask

Similar Documents

Publication Publication Date Title
JP6050408B2 (en) Reflective mask, reflective mask blank and manufacturing method thereof
KR101724046B1 (en) Method of manufacturing photomask blank and method of manufacturing photomask
JP2004207593A (en) Mask for extreme ultra-violet exposure, blank, and method for pattern transfer
US8367279B2 (en) Reflective mask blank, reflective mask, and method of manufacturing the same
JP5233321B2 (en) Extreme ultraviolet exposure mask blank, extreme ultraviolet exposure mask, extreme ultraviolet exposure mask manufacturing method, and pattern transfer method using extreme ultraviolet exposure mask
JPH11249283A (en) Half-tone type phase shift mask and half-tone type phase shift mask blank
JP5476679B2 (en) Halftone EUV mask and method of manufacturing halftone EUV mask
JP5196098B2 (en) Photomask having gradation and method for manufacturing the same
JP2001166453A (en) Non-absorptive reticle and method for manufacturing the same
JPH10186632A (en) Blank for halftone type phase shift mask and halftone type phase shift mask
JP4752555B2 (en) Extreme ultraviolet exposure mask, mask blank, and pattern transfer method
JP4529359B2 (en) Ultraviolet exposure mask, blank and pattern transfer method
JP2004054092A (en) Mask and its manufacturing method
JP4622504B2 (en) Mask blank for extreme ultraviolet exposure, mask and pattern transfer method
JP7059679B2 (en) Reflective photomask blank and reflective photomask
JP4483355B2 (en) Ultraviolet exposure mask blank, mask and transfer method
JP4501347B2 (en) Ultraviolet exposure mask, blank and pattern transfer method
JPH1184624A (en) Blank for halftone type phase shift mask, halftone type phase shift mask and their production
JP3178516B2 (en) Phase shift mask
JP4605284B2 (en) Extreme ultraviolet exposure mask, extreme ultraviolet exposure mask blank, and pattern transfer method
JP4300930B2 (en) Ultraviolet exposure mask, blank and pattern transfer method
JPH1026820A (en) Halftone phase shift mask blank, and halftone phase shift mask
JP3760927B2 (en) Pattern transfer method
WO2022264832A1 (en) Reflective photomask and method for manufacturing reflective photomask
JP4273776B2 (en) Extreme UV exposure mask

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080422