JP5360399B2 - Diffraction grating phase mask - Google Patents

Diffraction grating phase mask Download PDF

Info

Publication number
JP5360399B2
JP5360399B2 JP2009183484A JP2009183484A JP5360399B2 JP 5360399 B2 JP5360399 B2 JP 5360399B2 JP 2009183484 A JP2009183484 A JP 2009183484A JP 2009183484 A JP2009183484 A JP 2009183484A JP 5360399 B2 JP5360399 B2 JP 5360399B2
Authority
JP
Japan
Prior art keywords
diffraction grating
phase mask
light
range
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009183484A
Other languages
Japanese (ja)
Other versions
JP2011039094A (en
Inventor
英明 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2009183484A priority Critical patent/JP5360399B2/en
Publication of JP2011039094A publication Critical patent/JP2011039094A/en
Application granted granted Critical
Publication of JP5360399B2 publication Critical patent/JP5360399B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

本発明は、回折格子作製用位相マスクに関し、特に、フォトレジスト等の感光性材料の表面又は内部に微細な回折格子を作製するための位相マスクや、光通信等に用いられる光ファイバー内に紫外線レーザ光を用いて回折格子を作製するための位相マスクに関するものである。   The present invention relates to a phase mask for producing a diffraction grating, and in particular, a phase mask for producing a fine diffraction grating on the surface or inside of a photosensitive material such as a photoresist, or an ultraviolet laser in an optical fiber used for optical communication or the like. The present invention relates to a phase mask for producing a diffraction grating using light.

以下は、光ファイバーの回折格子の作製を例にして述べる。   In the following, the production of an optical fiber diffraction grating will be described as an example.

光ファイバーは地球規模の通信に大革新をもたらし、高品質、大容量の大洋横断電話通信を可能にしたが、従来より、この光ファイバーに沿ってコア内に周期的に屈折率分布を作り出し、光ファイバー内にブラック回折格子を作り、その回折格子の周期と長さ、屈折率変調の大きさによって回折格子の反射率の高低と波長特性の幅を決めることにより、その回折格子を光通信用の波長多重分割器、レーザやセンサーに使用される狭帯域の高反射ミラー、光ファイバーアンプにおける余分なレーザ波長を取り除く波長選択フィルター等として利用できることが知られている。   Optical fiber has revolutionized global communications, enabling high-quality, high-capacity transoceanic telephone communications, but conventionally, a refractive index profile has been created periodically in the core along this optical fiber, A black diffraction grating, and the wavelength of the diffraction grating for optical communication is determined by determining the reflectivity level and width of the wavelength characteristics according to the period and length of the diffraction grating and the size of the refractive index modulation. It is known that it can be used as a splitter, a narrow-band high-reflection mirror used for a laser or a sensor, a wavelength selection filter for removing an extra laser wavelength in an optical fiber amplifier, and the like.

しかし、石英光ファイバーの減衰が最小となり、長距離通信システムに適している波長は1.55μmであることにより、この波長で光ファイバー回折格子を使用するためには、格子間隔を約500nmとする必要があり、このような細かい構造をコアの中に作ること自体が当初は難しいとされており、光ファイバーのコア内にブラック回折格子を作るのに、側面研磨、フォトレジストプロセス、ホログラフィー露光、反応性イオンビームエッチング等からなる何段階もの複雑な工程がとられていた。このため、作製時間が長く、歩留まりも低かった。   However, since the attenuation of quartz optical fiber is minimized and the wavelength suitable for the long-distance communication system is 1.55 μm, in order to use the optical fiber diffraction grating at this wavelength, the grating interval needs to be about 500 nm. It is said that it is difficult to make such a fine structure in the core at first, and side polishing, photoresist process, holographic exposure, reactive ions are used to create a black diffraction grating in the core of the optical fiber. Many stages of complicated processes, such as beam etching, were taken. For this reason, the production time was long and the yield was low.

しかし、最近、紫外線を光ファイバーに照射し、直接コア内に屈折率の変化をもたらし回折格子を作る方法が知られるようになり、この紫外線を照射する方法は複雑なプロセスを必要としないため、周辺技術の進歩と共に次第に実施されるようになってきた。   However, recently, a method of irradiating an optical fiber with an optical fiber and directly changing the refractive index in the core to make a diffraction grating has been known, and this method of irradiating the ultraviolet light does not require a complicated process. It has come to be implemented gradually as technology advances.

この紫外光を用いる方法の場合、上記のように格子間隔が約500nmと細かいため、2本の光束を干渉させる干渉方法、(エキシマレーザからのシングルパルスを集光して回折格子面を1枚ずつ作る)1点毎の書き込みによる方法、グレーティングを持つ位相マスクを使って照射する方法等がとられている。   In the case of this method using ultraviolet light, since the grating interval is as small as about 500 nm as described above, an interference method in which two light beams interfere with each other (a single diffraction grating surface is formed by condensing a single pulse from an excimer laser). There are a method of writing each point), a method of irradiating using a phase mask having a grating, and the like.

上記の2光束を干渉させる干渉方法には、横方向のビームの品質、すなわち空間コヒーレンスに問題があり、1点毎の書き込みによる方法には、サブミクロンの大きさの緻密なステップ制御が必要で、かつ光を小さく取り込み多くの面を書き込むことが要求され、作業性にも問題があった。   The interference method that causes the two light beams to interfere with each other has a problem in the quality of the beam in the lateral direction, that is, spatial coherence, and the method of writing by each point requires precise step control of submicron size. In addition, it is required to write a lot of surfaces by taking in a small amount of light, and there is a problem in workability.

このため、上記問題に対応できる方法として、位相マスクを用いる照射方法が注目されるようになってきたが、この方法は図1(a)に示すように、石英基板の1面に凹溝を所定の繰り返し周期で所定の深さに設けた位相マスク21を用いて、KrFエキシマレーザ光(波長:248nm)23をそのマスク21に照射し、光ファイバー22のコア22Aに直接屈折率の変化をもたらし、グレーティング(格子)を作製するものである。なお、図1(a)には、コア22Aにおける干渉縞パターン24を分かりやすく拡大して示してある。図1(b)、図1(c)はそれぞれ位相マスク21の断面図、それに対応する上面図の一部を示したものである。位相マスク21は、その1面に繰り返し周期Λで深さdの
凹溝26を設け、凹溝26間に略同じ幅の凸条27を設けてなるバイナリー位相型回折格子状の構造を有するものである。
For this reason, an irradiation method using a phase mask has been attracting attention as a method that can cope with the above problem. However, as shown in FIG. 1A, this method has a concave groove on one surface of a quartz substrate. Using a phase mask 21 provided at a predetermined depth with a predetermined repetition period, KrF excimer laser light (wavelength: 248 nm) 23 is irradiated onto the mask 21 to directly change the refractive index of the core 22A of the optical fiber 22. A grating (grating) is produced. In FIG. 1A, the interference fringe pattern 24 in the core 22A is shown in an easily enlarged manner. FIG. 1B and FIG. 1C show a sectional view of the phase mask 21 and a part of a top view corresponding thereto. The phase mask 21 has a binary phase type diffraction grating-like structure in which a concave groove 26 having a repetition period Λ and a depth d is provided on one surface, and a ridge 27 having substantially the same width is provided between the concave grooves 26. It is.

位相マスク21の凹溝26の深さ(凸条27と凹溝26との高さの差)dは、露光光であるエキシマレーザ光(ビーム)23の位相をπラジアンだけ変調するように選択されており、0次光(ビーム)25Aは位相マスク21により5%以下に抑えられ、マスク21から出る主な光(ビーム)は、回折光の35%以上を含むプラス1次の回折光25Bとマイナス1次の回折光25Cに分割される。このため、このプラス1次の回折光25Bとマイナス1次の回折光25Cによる所定ピッチの干渉縞の照射を行い、このピッチでの屈折率変化を光ファイバー22内にもたらすものである。   The depth d of the groove 26 of the phase mask 21 (the difference in height between the ridge 27 and the groove 26) d is selected so as to modulate the phase of the excimer laser beam (beam) 23 as the exposure light by π radians. The 0th-order light (beam) 25A is suppressed to 5% or less by the phase mask 21, and the main light (beam) emitted from the mask 21 includes the plus-first-order diffracted light 25B including 35% or more of the diffracted light. And the first-order diffracted light 25C. Therefore, irradiation of interference fringes with a predetermined pitch is performed by the plus first-order diffracted light 25B and minus first-order diffracted light 25C, and a refractive index change at this pitch is brought into the optical fiber 22.

特開2009−103786号公報JP 2009-103786 A

“SPIE”Vol.883(1988),pp.8〜11“SPIE” Vol. 883 (1988), p. 8-11 辻内順平著「ホログラフィー」(1997年11月5日発行、(株)裳華房)、p.55“Holography” written by Junpei Takiuchi (published on November 5, 1997, Ryokabo Inc.), p. 55

このような位相マスク21の断面形状寸法は、凹溝26の深さdが上記のように波長λの露光光23の位相をπラジアンだけずらせ、かつ、凸条27の幅wと繰り返し周期Λの比w/Λで定義される凸条27のデューティ比fが0.5のときに、0次光成分25Aの回折効率が最小になるとされている(スカラー回折理論)。   The cross-sectional shape of the phase mask 21 is such that the depth d of the groove 26 shifts the phase of the exposure light 23 having the wavelength λ by π radians as described above, and the width w of the ridge 27 and the repetition period Λ. It is said that the diffraction efficiency of the 0th-order light component 25A is minimized when the duty ratio f of the ridge 27 defined by the ratio w / Λ is 0.5 (scalar diffraction theory).

ところが、繰り返し周期の微細化によりその周期が波長オーダーになると、0次光成分25Aが数%以上透過してしまい、そのため、0次光成分25Aが転写の際のノイズとなり、転写した光導波路回折格子の反射スペクトル中にノイズが発生してしまう問題があった。   However, if the period becomes the wavelength order due to the miniaturization of the repetition period, the 0th-order light component 25A is transmitted by several percent or more. Therefore, the 0th-order light component 25A becomes noise during transfer, and the transferred optical waveguide diffraction There was a problem that noise was generated in the reflection spectrum of the grating.

さらに、特にピッチが露光波長に近付いたり、位相マスク材料に高い屈折率を使用したりすると、透過0次光25Aを0%にできなかったり、透過±1次光25B、25Cが低減する問題がある。すなわち、ピッチが露光波長に近付くと、段々透過0次光25Aを0%にできなくなったり、透過±1次光25B、25Cが低減するため、特許文献1では位相マスク材料に高い屈折率を使用して改善しているが、反面、反射光の効率が増えて透過±1次光25B、25Cが低減したり、さらに小さいピッチでは再び透過0次光が0%にできなくなる問題がある。   Furthermore, especially when the pitch approaches the exposure wavelength or when a high refractive index is used for the phase mask material, there is a problem that the transmitted zero-order light 25A cannot be reduced to 0%, or the transmitted ± first-order lights 25B and 25C are reduced. is there. That is, when the pitch approaches the exposure wavelength, the transmission zero-order light 25A cannot be gradually reduced to 0%, or the transmission ± first-order light 25B, 25C is reduced. In Patent Document 1, a high refractive index is used for the phase mask material. However, on the other hand, there is a problem that the efficiency of the reflected light is increased and the transmitted ± first-order light 25B and 25C is reduced, or the transmitted zero-order light cannot be reduced to 0% again at a smaller pitch.

本発明は従来技術のこのような問題点に鑑みてなされたものであり、その目的は、回折されないで透過する0次光成分を極力少なくし、透過±1次光の回折効率を極力多くして、転写した光ファイバー等の光導波路の回折格子の反射スペクトル中にノイズが発生しないようにした回折格子作製用位相マスクを提供することである。   The present invention has been made in view of such problems of the prior art, and its purpose is to minimize the zero-order light component that is transmitted without being diffracted and to increase the diffraction efficiency of the transmitted ± first-order light as much as possible. Another object of the present invention is to provide a diffraction grating manufacturing phase mask in which noise is not generated in the reflection spectrum of a diffraction grating of an optical waveguide such as a transferred optical fiber.

上記目的を達成する本発明の回折格子作製用位相マスクは、透明基板の1面に格子状の断面略矩形の凹溝と凸条の繰り返しパターンが設けられ、その繰り返しパターンによる透過±1次光の干渉により感光性材料中に回折格子を形成する位相マスクにおいて、凹溝と凸条の繰り返しパターンの断面形状寸法が、d:凹溝の溝深さ、w:凸条の幅、Λ:繰り
返し周期、λ:露光波長、n2 :透明基板の屈折率、n1 :周囲(雰囲気又は液体)の屈折率、d0 =λ/{2(n2 −n1 )}、f=w/Λ、Λ’=Λ/λとするとき、n1 Λ' 、n2 /n1 、d/d0 、fが次の条件式(1)〜(3)、(5)、(6)を同時に満たすことを特徴とするものである。
The phase mask for producing a diffraction grating of the present invention that achieves the above object is provided with a repetitive pattern of concave grooves and ridges having a substantially rectangular cross section in the form of a grating on one surface of a transparent substrate, and transmission ± primary light by the repetitive pattern In the phase mask in which the diffraction grating is formed in the photosensitive material by the interference, the cross-sectional shape dimensions of the repetitive pattern of the concave groove and the convex stripe are d: groove depth of the concave groove, w: width of the convex stripe, Λ: repeating Period, λ: exposure wavelength, n 2 : refractive index of transparent substrate, n 1 : refractive index of surrounding (atmosphere or liquid), d 0 = λ / {2 (n 2 −n 1 )}, f = w / Λ , Λ ′ = Λ / λ, and n 1 Λ ′, n 2 / n 1 , d / d 0 , f are the following conditional expressions (1) to (3), (5), (6) It is characterized by satisfying.

1.0<n1 Λ' <2.2 の範囲の区間1:1.0 <n1 Λ' ≦1.5 では、
-23.150 (n1 Λ' )5 + 83.283 (n1 Λ' )4 −65.102(n1 Λ' )3
−78.080(n1 Λ' )2 +131.966 n1 Λ' −46.905
≦n2 /n1 ≦118.085 (n1 Λ' )5 −510.61(n1 Λ' )4
+638.55(n1 Λ' )3 +78.771(n1 Λ' )2 −642.31n1 Λ' +321.06
・・・(1)
1.0<n1 Λ' <2.2 の範囲の区間2:1.5 <n1 Λ' ≦1.9 では、
13.239(n1 Λ' )3 −64.220(n1 Λ' )2 +103.117 n1 Λ' −53.40
≦n2 /n1 ≦61.5374 (n1 Λ' )6 −385.3323(n1 Λ' )5
+328.953 (n1 Λ' )4 +2844.835(n1 Λ' )3 −8978.233(n1 Λ' )2
+10245.56n1 Λ' −4207.135 ・・・(2)
1.0<n1 Λ' <2.2 の範囲の区間3:1.9 <n1 Λ' <2.2 では、
10.443(n1 Λ' )2 −42.926n1 Λ' +45.36
≦n2 /n1 ≦-8.393(n1 Λ' )2 +32.374n1 Λ' −29.674 ・・・(3)
かつ、
1.0<n1 Λ' <2.2 の範囲で、
2.8090+0.7790/{(n1 Λ' +4.7488)(n2 /n1 −1.1687)}
≦d/d0
3.6885+0.1488/{(n1 Λ' +2.6126)(n2 /n1 −1.1233)}・・・(5)
かつ、
1.0<n1 Λ' <2.2 の範囲で、
0.7123−3.8871/{(n1 Λ' +1.7055)(n2 /n1 +0.7117)}
≦f≦0.7740−1.7142/{(n1 Λ' +1.7095)(n2 /n1 −0.3275)}
・・・(6)。
In the interval 1.0 <n 1 Λ ′ <2.2, where 1.0 <n 1 Λ ′ ≦ 1.5,
-23.150 (n 1 Λ ′) 5 + 83.283 (n 1 Λ ′) 4 −65.102 (n 1 Λ ′) 3
−78.080 (n 1 Λ ′) 2 +131.966 n 1 Λ ′ −46.905
≦ n 2 / n 1 ≦ 118.085 (n 1 Λ ′) 5 −510.61 (n 1 Λ ′) 4
+638.55 (n 1 Λ ′) 3 +78.771 (n 1 Λ ′) 2 −642.31 n 1 Λ ′ +321.06
... (1)
Section 2 in the range of 1.0 <n 1 Λ ′ <2.2: 1.5 <n 1 Λ ′ ≦ 1.9
13.239 (n 1 Λ ′) 3 −64.220 (n 1 Λ ′) 2 +103.117 n 1 Λ ′ −53.40
≦ n 2 / n 1 ≦ 61.5374 (n 1 Λ ′) 6 −385.3323 (n 1 Λ ′) 5
+328.953 (n 1 Λ ′) 4 +2844.835 (n 1 Λ ′) 3 −8978.233 (n 1 Λ ′) 2
+ 10245.56n 1 Λ ′ −4207.135 (2)
Section 3 in the range 1.0 <n 1 Λ ′ <2.2: For 1.9 <n 1 Λ ′ <2.2,
10.443 (n 1 Λ ') 2 -42.926n 1 Λ' +45.36
≦ n 2 / n 1 ≦ -8.393 (n 1 Λ ′) 2 +32.374 n 1 Λ ′ −29.674 (3)
And,
In the range of 1.0 <n 1 Λ ′ <2.2,
2.8090 + 0.7790 / {(n 1 Λ ′ + 4.7488) (n 2 / n 1 −1.1687)}
≦ d / d 0
3.6885 + 0.1488 / {(n 1 Λ ′ + 2.6126) (n 2 / n 1 −1.1233)} (5)
And,
In the range of 1.0 <n 1 Λ ′ <2.2,
0.7123−3.8871 / {(n 1 Λ ′ + 1.7055) (n 2 / n 1 +0.7117)}
≦ f ≦ 0.7740−1.7142 / {(n 1 Λ ′ + 1.7095) (n 2 / n 1 −0.3275)}
(6).

この場合に、 1.0<n1 Λ' <2.2 の範囲で、
2 /n1 =-1.5543 (n1 Λ' )5 +8.1107(n1 Λ' )4
−13.048(n1 Λ' )3 +3.248 (n1 Λ' )2 +7.476 n1 Λ'
−2.141 ・・・(4)
を満たすことが望ましい。
In this case, 1.0 <n 1 Λ ′ <2.2
n 2 / n 1 = −1.5543 (n 1 Λ ′) 5 +8.1107 (n 1 Λ ′) 4
−13.048 (n 1 Λ ′) 3 +3.248 (n 1 Λ ′) 2 +7.476 n 1 Λ ′
-2.141 (4)
It is desirable to satisfy.

本発明の回折格子作製用位相マスクによると、凹溝と凸条の繰り返しパターンの断面形状が略矩形状で、凹溝と凸条の繰り返しパターンの断面形状寸法が、位相差が3πラジアン近傍で透過0次光回折効率が最小になり、透過0次光に対する透過±1次光のコントラストが最大になるように最適化されてなるので、この回折格子作製用位相マスクに紫外線露光光を照射してその±1次の回折光相互の干渉により光ファイバー等の感光性材料中に所定ピッチの干渉縞の露光を行い、その干渉縞のピッチの屈折率変化を感光性材料中に発生させて回折格子を作製することにより、回折光にノイズが発生しない高特性の回折格子を作製することができる。特に、位相マスクに高屈折材料を用いることで、雰囲気中の回折角若しくは雰囲気中に換算した回折角が大きく取れるので、レジストや光ファイバーグレーティングのような露光される側により細かい干渉縞を記録することができる。   According to the phase mask for producing a diffraction grating of the present invention, the cross-sectional shape of the repetitive pattern of the concave grooves and the ridges is substantially rectangular, and the cross-sectional shape dimension of the repetitive pattern of the concave grooves and the ridges is approximately 3π radians. Since the transmission zero-order light diffraction efficiency is minimized and the contrast of the transmission ± first-order light with respect to the transmission zero-order light is maximized, this phase grating mask is irradiated with ultraviolet exposure light. Then, the interference fringes having a predetermined pitch are exposed in a photosensitive material such as an optical fiber by the interference of the ± 1st order diffracted beams, and a refractive index change of the pitch of the interference fringes is generated in the photosensitive material to produce a diffraction grating. By manufacturing the above, it is possible to manufacture a high-quality diffraction grating that does not generate noise in the diffracted light. In particular, by using a highly refractive material for the phase mask, the diffraction angle in the atmosphere or the diffraction angle converted into the atmosphere can be increased, so that finer interference fringes can be recorded on the exposed side such as resist and optical fiber grating. Can do.

また、露光光の位相差がπラジアン近傍で透過0次光が0%にできない屈折率と繰り返
し周期の領域で、透過0次光を低減することができ、透過±1次光の回折効率、及び、透過0次光に対する透過±1次光のコントラストを改善することができる。これにより、露光時間を短くできて、省エネルギーや振動等の影響の抑制等が可能になる。
In addition, in the region where the phase difference of the exposure light is in the vicinity of π radians and the transmission zero-order light cannot be reduced to 0%, the transmission zero-order light can be reduced and the diffraction efficiency of the transmission ± first-order light can be reduced. In addition, the contrast of the transmitted ± first order light with respect to the transmitted zero order light can be improved. Thereby, the exposure time can be shortened, and it becomes possible to save energy, suppress the influence of vibration, and the like.

光ファイバー加工に用いられる本発明の位相マスクを説明するための図である。It is a figure for demonstrating the phase mask of this invention used for optical fiber processing. 本発明の回折格子作製用位相マスクを用いて回折格子を作製する場合の基本配置を示す断面図である。It is sectional drawing which shows the basic arrangement | positioning in the case of producing a diffraction grating using the phase mask for diffraction grating production of this invention. 本発明による最適化範囲を横軸にn1 Λ' 、縦軸にn2 /n1 としてグラフにプロットした図である。FIG. 6 is a graph in which the optimization range according to the present invention is plotted on a graph with n 1 Λ ′ on the horizontal axis and n 2 / n 1 on the vertical axis. 本発明による最適化範囲となるd/d0 をn2 /n1 とn1 Λ’を変数としてとった図である。FIG. 5 is a diagram in which d / d 0 as an optimization range according to the present invention is taken as n 2 / n 1 and n 1 Λ ′ as variables. 本発明による最適化範囲となるfをn2 /n1 とn1 Λ’を変数としてとった図である。The f to be optimized range of the present invention. FIG taking n 2 / n 1 and n 1 lambda 'as variables.

本発明は、回折格子作製用位相マスクの凹溝の深さが露光光の位相を3πラジアン近傍にずらすようにすることにより、その位相をπラジアン近傍にずらす場合より、透過±1次光の回折効率あるいは透過0次光に対するコントラストを高くすることができることを発見して完成されたものである。   In the present invention, the depth of the concave groove of the phase mask for producing a diffraction grating shifts the phase of the exposure light to around 3π radians, so that the phase of the transmitted ± primary light is shifted from the case where the phase is shifted to around π radians. It has been completed by discovering that the diffraction efficiency or the contrast with respect to the transmitted zero-order light can be increased.

図2は、本発明の回折格子作製用位相マスクを用いて回折格子を作製する場合の基本配置を示す断面図である。本発明の回折格子作製用位相マスク21は、干渉縞パターン24(図1)を露光する光ファイバー等の感光性材料22に対して、相互に平行で断面略矩形の凹溝26と凸条27の繰り返しパターン面28を向けて配置されるものであり、干渉縞パターン24が露光される光ファイバー等の感光性材料22と位相マスク21の繰り返しパターン面28の間に位相マスク21の透明基板の屈折率と異なる気体又は液体29で充填し、この状態で位相マスク21の繰り返しパターン面28とは反対側の面からKrFエキシマレーザ光等の露光光23を照射し、凹溝26と凸条27の繰り返しパターン面28を回折されないで透過する0次光25Aを5%(繰り返しパターン面28での0次光の回折効率T0 。位相マスク21の透明基板の繰り返しパターン面28とは反対の面での減衰、透明基板内での減衰は含まない。)以下に抑え、繰り返しパターン面28でプラス1次の回折光25Bとマイナス1次の回折光25Cに分割し、このプラス1次の回折光25Bとマイナス1次の回折光25Cによる所定ピッチの干渉縞の照射を感光性材料22に行い、その中に回折格子を露光して屈折率変化等により回折格子を作製するのに用いるものである。 FIG. 2 is a cross-sectional view showing a basic arrangement in the case of producing a diffraction grating using the diffraction grating production phase mask of the present invention. The phase mask 21 for producing a diffraction grating according to the present invention has a groove 26 and a ridge 27 which are parallel to each other and substantially rectangular in cross section with respect to a photosensitive material 22 such as an optical fiber for exposing an interference fringe pattern 24 (FIG. 1). The refractive index of the transparent substrate of the phase mask 21 is arranged between the photosensitive material 22 such as an optical fiber on which the interference fringe pattern 24 is exposed and the repeated pattern surface 28 of the phase mask 21. In this state, exposure light 23 such as KrF excimer laser light is irradiated from the surface opposite to the repeated pattern surface 28 of the phase mask 21, and the concave grooves 26 and the ridges 27 are repeated. diffraction efficiency T 0 of the zero-order light of the 0-order light 25A which passes without being diffracted pattern surface 28 with 5% (repeated pattern surface 28. repetition path of the transparent substrate of the phase mask 21 It does not include attenuation on the surface opposite to the curved surface 28 and attenuation in the transparent substrate. The photosensitive material 22 is irradiated with interference fringes having a predetermined pitch by the plus first-order diffracted light 25B and the minus first-order diffracted light 25C, and the diffraction grating is exposed therein to change the refractive index. It is used for producing.

このような相互に平行で断面略矩形の凹溝26と凸条27の繰り返しパターン面28を持つバイナリー位相型回折格子には、d:凹溝26の溝深さ、w:凸条27の幅、Λ:繰り返し周期、λ:露光波長、n2 :透明基板の屈折率、n1 :周囲(気体又は液体)の屈折率、f=w/Λ、Λ’=Λ/λ、d0 =λ/{2(n2 −n1 )}として、Q値が定まり、Q=2πλd/(nΛ2 )で定義される(非特許文献2)。図2のような位相マスクの場合、平均屈折率n=fn2 +(1−f)n1 となり、Λ’=Λ/λを代入すると、Q=(2πd/λ)/{fn2 +(1−f)n1 }Λ'2と書ける。ここで、Q≦1であると、その回折格子はスカラー回折理論で精度良い回折格子を得ることができるので、本発明ではスカラー回折理論で精度良く対応できないQ>1、すなわち、
2πd/λ>{fn2 +(1−f)n1 }Λ'2 ・・・(1)
を満たすバイナリー位相型回折格子(位相マスク)21を対象とする。
In such a binary phase type diffraction grating having a concave groove 26 parallel to each other and having a substantially rectangular cross section and a repetitive pattern surface 28 of the convex stripes 27, d: groove depth of the concave groove 26, w: width of the convex stripe 27 , Λ: repetition period, λ: exposure wavelength, n 2 : refractive index of transparent substrate, n 1 : refractive index of surrounding (gas or liquid), f = w / Λ, Λ ′ = Λ / λ, d 0 = λ Q value is determined as / {2 (n 2 −n 1 )} and is defined by Q = 2πλd / (nΛ 2 ) (Non-patent Document 2). In the case of the phase mask as shown in FIG. 2, the average refractive index n = fn 2 + (1−f) n 1 , and when Λ ′ = Λ / λ is substituted, Q = (2πd / λ) / {fn 2 + ( 1-f) n 1 } Λ ′ 2 Here, when Q ≦ 1, since the diffraction grating can obtain a diffraction grating with high accuracy by scalar diffraction theory, Q> 1 that cannot be accurately handled by scalar diffraction theory in the present invention, that is,
2πd / λ> {fn 2 + (1−f) n 1 } Λ ′ 2 (1)
The binary phase type diffraction grating (phase mask) 21 that satisfies the above is the object.

スカラー理論で適用困難なQ>1を対象として、d/d0 =3,5,7,・・・(3以上の奇数)の近傍とすると、透過±1次光25B、25Cの回折効率T1 を比較的多くすることができることが分かった。その物理的意味としては、回折格子の深溝化によって反射防止効果が生じ、反射光だった分をT1 に振分けられるためと考えられる。また、d/d0 =1付近で透過0次光25Aの効率T0 を0%にできない(n2 /n1 ,n1 Λ' )領域で、d/d0 を3近傍より大きくすることで、d/d0 が1近傍の場合より透過0次光25Aを低減し得る。このようなことから、コントラストT0 /T1 及びT1 を改善することができる。ただし、実際には、d/d0 =5,7,・・・(5以上の奇数)においては、このような解の存在が波打っていてあったりなかったりすることから、d/d0 =3付近で検討する。 When Q> 1, which is difficult to apply in scalar theory, is assumed to be in the vicinity of d / d 0 = 3, 5, 7,... (An odd number of 3 or more), the diffraction efficiency T of transmitted ± first-order light 25B, 25C It turns out that 1 can be made relatively large. The physical meaning is considered to be that an antireflection effect occurs due to the deep groove of the diffraction grating, and the reflected light can be distributed to T 1 . Further, in the region where the efficiency T 0 of the transmitted zero-order light 25A cannot be reduced to 0% in the vicinity of d / d 0 = 1, d / d 0 should be larger than the vicinity of 3 in the region (n 2 / n 1 , n 1 Λ ′). Thus, the transmitted zero-order light 25A can be reduced as compared with the case where d / d 0 is in the vicinity of 1. As a result, the contrasts T 0 / T 1 and T 1 can be improved. However, in practice, d / d 0 = 5,7, in (5 or more odd number) or because they or each other have wavy presence of such solution, d / d 0 = Consider around 3

上記したように、図2に示したようなバイナリー位相型回折格子(位相マスク)21の各回折次数の回折効率は、ベクトル回折理論(非特許文献1)により厳密に求めることができる。なお、回折効率は、位相マスク21の回折格子直前の内部から回折格子を通って回折格子直後の外部に回折する際の回折効率であって、それ以前の基板外部から基板内部へ入射する際の反射や、基板が異なる屈折率の材料の積層体からなる場合の界面での反射等は考慮していない。   As described above, the diffraction efficiency of each diffraction order of the binary phase type diffraction grating (phase mask) 21 as shown in FIG. 2 can be strictly determined by the vector diffraction theory (Non-Patent Document 1). The diffraction efficiency is the diffraction efficiency when diffracting from the inside of the phase mask 21 immediately before the diffraction grating to the outside immediately after the diffraction grating, and when entering the inside of the substrate from outside the previous substrate. Reflection and reflection at the interface when the substrate is made of a laminate of materials having different refractive indexes are not considered.

そこで、まず、ベクトル回折理論を用いて、d/d0 が3近傍と1近傍で、n1 Λ' とn2 /n1 の組に対して、d/d0 とfをパラメータとして、T0 を極小化し、その極小化したときのT0 (%)、T0 /T1 、T1 (%)を求めた。その結果をそれぞれ次の表1と表2に示す。d/d0 が3近傍の場合には、T0 を極小化したときのd/d0 とfの値も表示した。 Accordingly, first, by using the vector diffraction theory, in a 1 near vicinity d / d 0 3, with respect to n 1 lambda 'and n 2 / n 1 set, the d / d 0 and f as parameters, T 0 was minimized, and T 0 (%), T 0 / T 1 , and T 1 (%) when the value was minimized were obtained. The results are shown in the following Table 1 and Table 2, respectively. When d / d 0 is close to 3, the values of d / d 0 and f when T 0 is minimized are also displayed.

Figure 0005360399
Figure 0005360399

Figure 0005360399
ただし、T0 、T1 の値は、計算誤差のため、また作製誤差で0.1%程度の誤差が生じるため、0.01(%)の桁で四捨五入している。
Figure 0005360399
However, the values of T 0 and T 1 are rounded to the nearest 0.01 (%) because of calculation errors and production errors of about 0.1%.

表1と表2を比較すると、d/d0 が3近傍の場合が1近傍の場合に比べてT0 が小さく、T1 が大きい場合がある。 When Table 1 and Table 2 are compared, T 0 may be smaller and T 1 may be larger when d / d 0 is near 3 than when it is near 1 .

そこで、
[1] d/d0 =1付近の対応する(n1 Λ' ,n2 /n1 )に比べて、d/d0 =3付近のコントラストが同等以上(T0 /T1 が同等以下)、
[2] T0 ≦5%(表1、表2共にT0 が白黒反転した値以外)、
[3] T0 =0%である場合には、d/d0 =1付近の各n1 Λ' でT0 =0%であるときの最大のT1 (表2のT1 が白黒反転した値)に対して、d/d0 =3付近のT1 がこれと同等以上、
[4] 各n1 Λ' でn2 /n1 の小さい側から連続した1つの領域、
の条件を満たす範囲は、表1の二重枠で囲った範囲となる(T0 ≠0%である場合には、[1] かつ[2] で、T0 =0%である場合には、[1] かつ[2] かつ[3] で、何れも[4] を満たす範囲)。
there,
[1] d / d 0 = 1 near the corresponding (n 1 Λ ', n 2 / n 1) as compared to, d / d 0 = 3 contrast near equivalent or more (T 0 / T 1 is equal to or less ),
[2] T 0 ≦ 5% (except for the values where T 0 is black and white inverted in both Table 1 and Table 2),
[3] T when 0 = 0% is, d / d 0 = 1 near the largest T 1 (T 1 of Table 2 is black and white reversal when T 0 = 0% in each of n 1 lambda ' T 1 near d / d 0 = 3 is equal to or greater than this,
[4] One region continuous from the smaller side of n 2 / n 1 for each n 1 Λ ′,
The range that satisfies the above condition is the range enclosed by the double frame in Table 1 (if T 0 ≠ 0%, [1] and [2], and if T 0 = 0%) , [1] and [2] and [3], both satisfying [4]).

表1の二重枠で囲った範囲を横軸にn1 Λ' 、縦軸にn2 /n1 としてグラフにプロットすると図3のようになる。それぞれのn1 Λ' のときのn2 /n1 の最大値と最小値を示してあり、その最大値と最小値の間では、d/d0 が3付近の方が1付近に比べて、T0 ≠0%のときはT0 /T1 が小さくコントラストが大きく、T0 =0%のときはT1 が大きい。また、その最大値と最小値の間でT0 /T1 が最小(T0 =0%のときはT1 が最大)になる点も示してある。 When the range surrounded by the double frame in Table 1 is plotted on the graph with n 1 Λ ′ on the horizontal axis and n 2 / n 1 on the vertical axis, it is as shown in FIG. The maximum and minimum values of n 2 / n 1 for each n 1 Λ ′ are shown. Between the maximum and minimum values, d / d 0 near 3 is more than 1 near. When T 0 ≠ 0%, T 0 / T 1 is small and the contrast is large, and when T 0 = 0%, T 1 is large. It also shows that T 0 / T 1 is minimum (T 1 is maximum when T 0 = 0%) between the maximum and minimum values.

図3の最大値、最小値となる点をそれぞれ結ぶ曲線を多項式で近似すると次のようになる。ただし、横軸n1 Λ' を1.0 <n1 Λ' ≦1.5 (区間1)、1.5 <n1 Λ' ≦1.9 (区間2)、1.9 <n1 Λ' <2.2 (区間3)と区切って曲線近似している。 The curves connecting the points of the maximum value and the minimum value in FIG. 3 are approximated by polynomials as follows. However, the horizontal axis n 1 Λ ′ is divided into 1.0 <n 1 Λ ′ ≦ 1.5 (section 1), 1.5 <n 1 Λ ′ ≦ 1.9 (section 2), and 1.9 <n 1 Λ ′ <2.2 (section 3). Curve approximation.

区間1:1.0 <n1 Λ' ≦1.5 では、
最小値:n2 /n1 =-23.150 (n1 Λ' )5 + 83.283 (n1 Λ' )4
−65.102(n1 Λ' )3 −78.080(n1 Λ' )2 +131.966 n1 Λ' −46.905
最大値:n2 /n1 =118.085 (n1 Λ' )5 −510.61(n1 Λ' )4
+638.55(n1 Λ' )3 +78.771(n1 Λ' )2 −642.31n1 Λ' +321.06
すなわち、
区間1:1.0 <n1 Λ' ≦1.5 では、
-23.150 (n1 Λ' )5 + 83.283 (n1 Λ' )4 −65.102(n1 Λ' )3
−78.080(n1 Λ' )2 +131.966 n1 Λ' −46.905
≦n2 /n1 ≦118.085 (n1 Λ' )5 −510.61(n1 Λ' )4
+638.55(n1 Λ' )3 +78.771(n1 Λ' )2 −642.31n1 Λ' +321.06
・・・(1)
区間2:1.5 <n1 Λ' ≦1.9 では、
最小値:n2 /n1 =13.239(n1 Λ' )3 −64.220(n1 Λ' )2
+103.117 n1 Λ' −53.40
最大値:n2 /n1 =61.5374 (n1 Λ' )6 −385.3323(n1 Λ' )5
+328.9526(n1 Λ' )4 +2844.835(n1 Λ' )3
−8978.233(n1 Λ' )2 +10245.557 n1 Λ' −4207.134
すなわち、
区間2:1.5 <n1 Λ' ≦1.9 では、
13.239(n1 Λ' )3 −64.220(n1 Λ' )2 +103.117 n1 Λ' −53.40
≦n2 /n1 ≦61.5374 (n1 Λ' )6 −385.3323(n1 Λ' )5
+328.953 (n1 Λ' )4 +2844.835(n1 Λ' )3 −8978.233(n1 Λ' )2
+10245.56n1 Λ' −4207.135 ・・・(2)
区間3:1.9 <n1 Λ' <2.2 では、
最小値:n2 /n1 =10.443(n1 Λ' )2 −42.926n1 Λ' +45.359
最大値:n2 /n1 =-8.3928 (n1 Λ' )2 +32.374n1 Λ' −29.672
すなわち、
区間3:1.9 <n1 Λ' <2.2 では、
10.443(n1 Λ' )2 −42.926n1 Λ' +45.36
≦n2 /n1 ≦-8.393(n1 Λ' )2 +32.374n1 Λ' −29.674 ・・・(3)
となる。
In interval 1: 1.0 <n 1 Λ ′ ≦ 1.5,
Minimum value: n 2 / n 1 = -23.150 (n 1 Λ ′) 5 +83.283 (n 1 Λ ′) 4
−65.102 (n 1 Λ ′) 3 −78.080 (n 1 Λ ′) 2 +131.966 n 1 Λ ′ −46.905
Maximum value: n 2 / n 1 = 118.085 (n 1 Λ ′) 5 −510.61 (n 1 Λ ′) 4
+638.55 (n 1 Λ ′) 3 +78.771 (n 1 Λ ′) 2 −642.31 n 1 Λ ′ +321.06
That is,
In interval 1: 1.0 <n 1 Λ ′ ≦ 1.5,
-23.150 (n 1 Λ ′) 5 + 83.283 (n 1 Λ ′) 4 −65.102 (n 1 Λ ′) 3
−78.080 (n 1 Λ ′) 2 +131.966 n 1 Λ ′ −46.905
≦ n 2 / n 1 ≦ 118.085 (n 1 Λ ′) 5 −510.61 (n 1 Λ ′) 4
+638.55 (n 1 Λ ′) 3 +78.771 (n 1 Λ ′) 2 −642.31 n 1 Λ ′ +321.06
... (1)
Section 2: 1.5 <n 1 Λ ′ ≦ 1.9
Minimum value: n 2 / n 1 = 13.239 (n 1 Λ ′) 3 −64.220 (n 1 Λ ′) 2
+103.117 n 1 Λ '-53.40
Maximum value: n 2 / n 1 = 61.5374 (n 1 Λ ′) 6 −385.3323 (n 1 Λ ′) 5
+328.9526 (n 1 Λ ′) 4 +2844.835 (n 1 Λ ′) 3
−8978.233 (n 1 Λ ′) 2 +10245.557 n 1 Λ ′ −4207.134
That is,
Section 2: 1.5 <n 1 Λ ′ ≦ 1.9
13.239 (n 1 Λ ′) 3 −64.220 (n 1 Λ ′) 2 +103.117 n 1 Λ ′ −53.40
≦ n 2 / n 1 ≦ 61.5374 (n 1 Λ ′) 6 −385.3323 (n 1 Λ ′) 5
+328.953 (n 1 Λ ′) 4 +2844.835 (n 1 Λ ′) 3 −8978.233 (n 1 Λ ′) 2
+ 10245.56n 1 Λ ′ −4207.135 (2)
Section 3: 1.9 <n 1 Λ ′ <2.2
Minimum value: n 2 / n 1 = 10.443 (n 1 Λ ′) 2 −42.926 n 1 Λ ′ +45.359
Maximum value: n 2 / n 1 = -8.3928 (n 1 Λ ′) 2 +32.374 n 1 Λ ′ −29.672
That is,
Section 3: 1.9 <n 1 Λ ′ <2.2
10.443 (n 1 Λ ') 2 -42.926n 1 Λ' +45.36
≦ n 2 / n 1 ≦ -8.393 (n 1 Λ ′) 2 +32.374 n 1 Λ ′ −29.674 (3)
It becomes.

また、T0 /T1 が最小になる点を結ぶ曲線を多項式で近似すると次のようになる。この場合は(横軸n1 Λ' は 1.0<n1 Λ' <2.2 の範囲)、
2 /n1 =-1.5543 (n1 Λ' )5 +8.1107(n1 Λ' )4
−13.048(n1 Λ' )3 +3.248 (n1 Λ' )2 +7.476 n1 Λ'
−2.141 ・・・(4)
となる。
Further, when a curve connecting points where T 0 / T 1 is minimized is approximated by a polynomial, it is as follows. In this case (the horizontal axis n 1 Λ ′ is in the range of 1.0 <n 1 Λ ′ <2.2),
n 2 / n 1 = −1.5543 (n 1 Λ ′) 5 +8.1107 (n 1 Λ ′) 4
−13.048 (n 1 Λ ′) 3 +3.248 (n 1 Λ ′) 2 +7.476 n 1 Λ ′
-2.141 (4)
It becomes.

ところで、(n1 Λ' ,n2 /n1 )が表1の二重枠で囲った範囲(T0 ≠0%である場合には、[1] かつ[2] で、T0 =0%である場合には、[1] かつ[2] かつ[3] で、何れも[4] を満たす範囲)にある場合、すなわち、条件式(1)〜(3)を満たす場合に、d/d0 とfが如何なる範囲を満たせばよいかを示したのがそれぞれ図4、図5である。 By the way, when (n 1 Λ ′, n 2 / n 1 ) is in a range surrounded by the double frame in Table 1 (T 0 ≠ 0%, [1] and [2], T 0 = 0 %, [1] and [2] and [3], both of which satisfy [4]), that is, when the conditional expressions (1) to (3) are satisfied, d FIGS. 4 and 5 show what range / d 0 and f should satisfy, respectively.

図4の「元データ」として示したグラフは、表1の二重枠で囲った範囲にある場合に、
d/d0 をn2 /n1 とn1 Λ’を変数としてとった図であり、また、「最大側包絡面」、「最小側包絡面」として示したグラフは、「元データ」の曲面をそれぞれd/d0 の上側、下側から接して誤差が小さくなるように近似曲面を定めた図である。図4においては、縦軸にd/d0 を、横軸の一方にn2 /n1 を、他方にn1 Λ’をとって3次元的に図示してある。
When the graph shown as “original data” in FIG. 4 is in the range surrounded by the double frame in Table 1,
It is a diagram in which d / d 0 is taken as n 2 / n 1 and n 1 Λ ′ as variables, and the graphs shown as “maximum side envelope surface” and “minimum side envelope surface” are “original data” FIG. 6 is a diagram in which approximate curved surfaces are determined so that errors are reduced by contacting curved surfaces from above and below d / d 0 , respectively. In FIG. 4, the vertical axis is d / d 0 , the horizontal axis is n 2 / n 1 , and the other is n 1 Λ ′.

この図4の場合の最小側包絡面と最大側包絡面の間に挟まれるd/d0 の範囲は次の通りである。 The range of d / d 0 sandwiched between the minimum side envelope surface and the maximum side envelope surface in the case of FIG. 4 is as follows.

2.8090+0.7790/{(n1 Λ' +4.7488)(n2 /n1 −1.1687)}
≦d/d0
3.6885+0.1488/{(n1 Λ' +2.6126)(n2 /n1 −1.1233)}・・・(5)
となる。
2.8090 + 0.7790 / {(n 1 Λ ′ + 4.7488) (n 2 / n 1 −1.1687)}
≦ d / d 0
3.6885 + 0.1488 / {(n 1 Λ ′ + 2.6126) (n 2 / n 1 −1.1233)} (5)
It becomes.

また、図5の「元データ」として示したグラフは、表1の二重枠で囲った範囲にある場合に、fをn2 /n1 とn1 Λ’を変数としてとった図であり、また、「最大側包絡面」、「最小側包絡面」として示したグラフは、「元データ」の曲面をそれぞれfの下側、上側から接して誤差が小さくなるように近似曲面を定めた図である。図5においては、縦軸にfを、横軸の一方にn2 /n1 を、他方にn1 Λ’をとって3次元的に図示してある。 In addition, the graph shown as “original data” in FIG. 5 is a diagram in which f is n 2 / n 1 and n 1 Λ ′ as variables in the range surrounded by the double frame in Table 1. In the graphs shown as “maximum side envelope surface” and “minimum side envelope surface”, the approximate curved surface is determined so that the error is reduced by contacting the curved surface of “original data” from the lower side and the upper side of f, respectively. FIG. In FIG. 5, the vertical axis is f, the horizontal axis is n 2 / n 1 , and the other is n 1 Λ ′.

この図5の場合の最小側包絡面と最大側包絡面の間に挟まれるfの範囲は次の通りである。   The range of f sandwiched between the minimum envelope surface and the maximum envelope surface in the case of FIG. 5 is as follows.

0.7123−3.8871/{(n1 Λ' +1.7055)(n2 /n1 +0.7117)}
≦f≦0.7740−1.7142/{(n1 Λ' +1.7095)(n2 /n1 −0.3275)}
・・・(6)
以上から明らかなように、条件式(1)〜(3)、(5)、(6)を同時に満たす場合に、位相マスク21の凹溝26の深さdが露光光の位相をπラジアン近傍にずらすようにするより3π近傍にずらすようにする方が、T0 /T1 が小さく0次光25Aに対する透過±1次光25B、25Cのコントラストを大きくすることができる(T0 ≠0%のとき)か、透過±1次光25B、25Cの回折効率T1 を大きくすることができる(T0 =0%のとき)。
0.7123−3.8871 / {(n 1 Λ ′ + 1.7055) (n 2 / n 1 +0.7117)}
≦ f ≦ 0.7740−1.7142 / {(n 1 Λ ′ + 1.7095) (n 2 / n 1 −0.3275)}
... (6)
As is apparent from the above, when the conditional expressions (1) to (3), (5), and (6) are satisfied at the same time, the depth d of the concave groove 26 of the phase mask 21 changes the phase of the exposure light in the vicinity of π radians. How to be shifted to 3π vicinity than manner shifted in is, T 0 / T 1 transmission ± 1-order light 25B for small 0-order light 25A, it is possible to increase the contrast of 25C (T 0 ≠ 0% Or the diffraction efficiency T 1 of the transmission ± first-order light 25B, 25C can be increased (when T 0 = 0%).

次に、本発明に基づく回折格子作製用位相マスクのいくつかの実施例を示す。次の表3に示す実施例1−1、2−1、3−1、4−1、5−1、6−1は本発明に基づく実施例であり、実施例1−2、2−2、3−2、4−2、5−2、6−2は比較例である。それらの実施例、比較例の使用する偏光と、パラメータn1 、n2 、Λ、f、d/λ、d/d0 、T0 、T1 、TRT、Qを示す。ただし、TRTは反射回折成分の総和である。ここで、T0 、T1 、TRTの単位は%である。
〔表3〕
実施例 偏光 n1 2 Λ f d/λ d/d0 0 1 RT
1−1 S 1.00 1.834 1.1 0.354 1.756 2.928 2.2 34.6 28.7 7.04
1−2 S 1.00 1.834 1.1 0.291 0.618 1.031 3.1 29.4 38.2 2.58

2−1 S 1.00 2.00 1.1 0.345 1.487 2.975 0.0 37.5 25.1 5.74
2−2 S 1.00 2.00 1.1 0.281 0.543 1.085 0.3 29.9 39.8 2.20

3−1 S 1.00 2.00 1.4 0.389 1.640 3.279 0.0 38.7 22.5 3.78
3−2 S 1.00 2.00 1.4 0.390 0.551 1.102 0.0 37.4 25.2 1.27

4−1 P 1.00 1.80 1.2 0.409 2.311 3.698 3.9 45.7 4.7 7.60
4−2 P 1.00 1.80 1.2 0.403 0.777 1.243 4.3 43.8 8.0 2.56

5−1 S 1.50 2.80 0.7 0.331 1.125 2.925 0.3 38.1 23.5 7.47
5−2 S 1.50 2.80 0.7 0.315 0.386 1.002 3.2 25.0 46.8 2.59

6−1 P 1.50 2.70 0.8 0.409 1.541 3.698 3.9 45.7 4.7 7.60
6−2 P 1.50 2.70 0.8 0.403 0.518 1.243 4.3 43.8 8.0 2.56
Next, some examples of the phase mask for producing a diffraction grating according to the present invention will be shown. Examples 1-1, 2-1, 3-1, 4-1, 5-1, 6-1 shown in Table 3 below are examples based on the present invention, and Examples 1-2, 2-2 Reference numerals 3-2, 4-2, 5-2, and 6-2 are comparative examples. The polarizations used in these examples and comparative examples, and parameters n 1 , n 2 , Λ, f, d / λ, d / d 0 , T 0 , T 1 , T RT , Q are shown. Here, TRT is the sum of reflection diffraction components. Here, the units of T 0 , T 1 and T RT are%.
[Table 3]
Example Polarization n 1 n 2 Λ f d / λ d / d 0 T 0 T 1 T RT Q
1-1 S 1.00 1.834 1.1 0.354 1.756 2.928 2.2 34.6 28.7 7.04
1-2 S 1.00 1.834 1.1 0.291 0.618 1.031 3.1 29.4 38.2 2.58

2-1 S 1.00 2.00 1.1 0.345 1.487 2.975 0.0 37.5 25.1 5.74
2-2 S 1.00 2.00 1.1 0.281 0.543 1.085 0.3 29.9 39.8 2.20

3-1 S 1.00 2.00 1.4 0.389 1.640 3.279 0.0 38.7 22.5 3.78
3-2 S 1.00 2.00 1.4 0.390 0.551 1.102 0.0 37.4 25.2 1.27

4-1 P 1.00 1.80 1.2 0.409 2.311 3.698 3.9 45.7 4.7 7.60
4-2 P 1.00 1.80 1.2 0.403 0.777 1.243 4.3 43.8 8.0 2.56

5-1 S 1.50 2.80 0.7 0.331 1.125 2.925 0.3 38.1 23.5 7.47
5-2 S 1.50 2.80 0.7 0.315 0.386 1.002 3.2 25.0 46.8 2.59

6-1 P 1.50 2.70 0.8 0.409 1.541 3.698 3.9 45.7 4.7 7.60
6-2 P 1.50 2.70 0.8 0.403 0.518 1.243 4.3 43.8 8.0 2.56
.

実施例1−1、2−1、3−1、4−1、5−1、6−1は本発明に基づいてd/d0 が3近傍で最適化した場合であり、比較例1−2、2−2、3−2、4−2、5−2、6−2はd/d0 が1近傍で最適化した場合であり、何れの場合も、本発明の実施例が比較例に比べてT0 がより小さく、T1 がより大きくなっていることが分かる。 Examples 1-1, 2-1, 3-1, 4-1, 5-1, 6-1 are cases where d / d 0 is optimized in the vicinity of 3 based on the present invention. 2, 2-2, 3-2, 4-2, 5-2, 6-2 are cases where d / d 0 is optimized in the vicinity of 1, and in any case, the examples of the present invention are comparative examples. It can be seen that T 0 is smaller and T 1 is larger than.

なお、本発明による回折格子作製用位相マスク21を用いて干渉縞パターン24を光ファイバー等の感光性材料22に露光する場合、相互に干渉する透過±1次光25B、25Cの電場の向きを考慮すると、P偏光を用いるよりS偏光を用いる方が露光効率が良くなる。   When the interference fringe pattern 24 is exposed to the photosensitive material 22 such as an optical fiber by using the diffraction grating manufacturing phase mask 21 according to the present invention, the direction of the electric field of the transmission ± primary light 25B and 25C that interfere with each other is taken into consideration. Then, the exposure efficiency is improved by using S-polarized light rather than using P-polarized light.

以上、本発明の回折格子作製用位相マスクをその原理と実施例に基づいて説明してきたが、本発明はこれら実施例に限定されず種々の変形が可能である。   As described above, the phase mask for producing a diffraction grating of the present invention has been described based on the principle and examples. However, the present invention is not limited to these examples, and various modifications are possible.

本発明の回折格子作製用位相マスクによると、凹溝と凸条の繰り返しパターンの断面形状が略矩形状で、凹溝と凸条の繰り返しパターンの断面形状寸法が、位相差が3πラジアン近傍で透過0次光回折効率が最小になり、透過0次光に対する透過±1次光のコントラストが最大になるように最適化されてなるので、この回折格子作製用位相マスクに紫外線露光光を照射してその±1次の回折光相互の干渉により光ファイバー等の感光性材料中に所定ピッチの干渉縞の露光を行い、その干渉縞のピッチの屈折率変化を感光性材料中に発生させて回折格子を作製することにより、回折光にノイズが発生しない高特性の回折格子を作製することができる。特に、位相マスクに高屈折材料を用いることで、雰囲気中の回折角若しくは雰囲気中に換算した回折角が大きく取れるので、レジストや光ファイバーグレーティングのような露光される側により細かい干渉縞を記録することができる。   According to the phase mask for producing a diffraction grating of the present invention, the cross-sectional shape of the repetitive pattern of the concave grooves and the ridges is substantially rectangular, and the cross-sectional shape dimension of the repetitive pattern of the concave grooves and the ridges is approximately 3π radians. Since the transmission zero-order light diffraction efficiency is minimized and the contrast of the transmission ± first-order light with respect to the transmission zero-order light is maximized, this phase grating mask is irradiated with ultraviolet exposure light. Then, the interference fringes having a predetermined pitch are exposed in a photosensitive material such as an optical fiber by the interference of the ± 1st order diffracted beams, and a refractive index change of the pitch of the interference fringes is generated in the photosensitive material to produce a diffraction grating. By manufacturing the above, it is possible to manufacture a high-quality diffraction grating that does not generate noise in the diffracted light. In particular, by using a highly refractive material for the phase mask, the diffraction angle in the atmosphere or the diffraction angle converted into the atmosphere can be increased, so that finer interference fringes can be recorded on the exposed side such as resist and optical fiber grating. Can do.

また、露光光の位相差がπラジアン近傍で透過0次光が0%にできない屈折率と繰り返し周期の領域で、透過0次光を低減することができ、透過±1次光の回折効率、及び、透過0次光に対する透過±1次光のコントラストを改善することができる。これにより、露光時間を短くできて、省エネルギーや振動等の影響の抑制等が可能になる。   In addition, in the region where the phase difference of the exposure light is in the vicinity of π radians and the transmission zero-order light cannot be reduced to 0%, the transmission zero-order light can be reduced and the diffraction efficiency of the transmission ± first-order light can be reduced. And the contrast of the transmission ± primary light with respect to the transmission zero-order light can be improved. Thereby, the exposure time can be shortened, and it becomes possible to save energy, suppress the influence of vibration, and the like.

21…位相マスク(回折格子作製用位相マスク)
22…光ファイバー(感光性材料)
22A…光ファイバーコア
23…露光光
24…干渉縞パターン
25A…0次光
25B…プラス1次の回折光
25C…マイナス1次の回折光
26…凹溝
27…凸条
28…繰り返しパターン面
29…気体又は液体
21 ... Phase mask (phase mask for diffraction grating fabrication)
22. Optical fiber (photosensitive material)
22A ... optical fiber core 23 ... exposure light 24 ... interference fringe pattern 25A ... 0th order light 25B ... plus first order diffracted light 25C ... minus first order diffracted light 26 ... concave 27 ... convex 28 ... repeat pattern surface 29 ... gas Or liquid

Claims (2)

透明基板の1面に格子状の断面略矩形の凹溝と凸条の繰り返しパターンが設けられ、その繰り返しパターンによる透過±1次光の干渉により感光性材料中に回折格子を形成する位相マスクにおいて、凹溝と凸条の繰り返しパターンの断面形状寸法が、d:凹溝の溝深さ、w:凸条の幅、Λ:繰り返し周期、λ:露光波長、n2 :透明基板の屈折率、n1 :周囲(雰囲気又は液体)の屈折率、d0 =λ/{2(n2 −n1 )}、f=w/Λ、Λ’=Λ/λとするとき、n1 Λ' 、n2 /n1 、d/d0 、fが次の条件式(1)(5)、(6)を同時に満たすか、(2)、(5)、(6)を同時に満たすか、あるいは、(3)、(5)、(6)を同時に満たすことを特徴とする回折格子作製用位相マスク。
1.0<n1 Λ' <2.2 の範囲の区間1:1.0 <n1 Λ' ≦1.5
-23.150 (n1 Λ' )5 + 83.283 (n1 Λ' )4 −65.102(n1 Λ' )3
−78.080(n1 Λ' )2 +131.966 n1 Λ' −46.905
≦n2 /n1 ≦118.085 (n1 Λ' )5 −510.61(n1 Λ' )4
+638.55(n1 Λ' )3 +78.771(n1 Λ' )2 −642.31n1 Λ' +321.06
・・・(1)
1.0<n1 Λ' <2.2 の範囲の区間2:1.5 <n1 Λ' ≦1.9
13.239(n1 Λ' )3 −64.220(n1 Λ' )2 +103.117 n1 Λ' −53.40
≦n2 /n1 ≦61.5374 (n1 Λ' )6 −385.3323(n1 Λ' )5
+328.953 (n1 Λ' )4 +2844.835(n1 Λ' )3 −8978.233(n1 Λ' )2
+10245.56n1 Λ' −4207.135 ・・・(2)
1.0<n1 Λ' <2.2 の範囲の区間3:1.9 <n1 Λ' <2.2
10.443(n1 Λ' )2 −42.926n1 Λ' +45.36
≦n2 /n1 ≦-8.393(n1 Λ' )2 +32.374n1 Λ' −29.674 ・・・(3)
1.0<n1 Λ' <2.2 の範囲で、
2.8090+0.7790/{(n1 Λ' +4.7488)(n2 /n1 −1.1687)}
≦d/d0
3.6885+0.1488/{(n1 Λ' +2.6126)(n2 /n1 −1.1233)}・・・(5)
1.0<n1 Λ' <2.2 の範囲で、
0.7123−3.8871/{(n1 Λ' +1.7055)(n2 /n1 +0.7117)}
≦f≦0.7740−1.7142/{(n1 Λ' +1.7095)(n2 /n1 −0.3275)}
・・・(6)
Repeating pattern of grooves and the ridges of the lattice-like substantially rectangular cross-section is provided on one surface of the transparent substrate, a phase mask for forming a diffraction grating in the photosensitive material by interference of the transmitted ± 1-order light by the repetition pattern , The sectional shape dimensions of the repeating pattern of the concave groove and the convex stripe are d: groove depth of the concave groove, w: width of the convex stripe, Λ: repetition period, λ: exposure wavelength, n 2 : refractive index of the transparent substrate , N 1 : refractive index of surrounding (atmosphere or liquid), d 0 = λ / {2 (n 2 −n 1 )}, f = w / Λ, and Λ ′ = Λ / λ, n 1 Λ ′ , N 2 / n 1 , d / d 0 , f satisfy the following conditional expressions (1) , (5), (6) at the same time, or (2), (5), (6) at the same time, Or the phase mask for diffraction grating production characterized by satisfying (3), (5), and (6) simultaneously .
1.0 <n 1 Λ '<2.2 range interval of 1: 1.0 <n 1 Λ' in ≦ 1.5,
-23.150 (n 1 Λ ′) 5 + 83.283 (n 1 Λ ′) 4 −65.102 (n 1 Λ ′) 3
−78.080 (n 1 Λ ′) 2 +131.966 n 1 Λ ′ −46.905
≦ n 2 / n 1 ≦ 118.085 (n 1 Λ ′) 5 −510.61 (n 1 Λ ′) 4
+638.55 (n 1 Λ ′) 3 +78.771 (n 1 Λ ′) 2 −642.31 n 1 Λ ′ +321.06
... (1)
1.0 <n 1 Λ '<2.2 in the range of the section 2: 1.5 <n 1 Λ' in ≦ 1.9,
13.239 (n 1 Λ ′) 3 −64.220 (n 1 Λ ′) 2 +103.117 n 1 Λ ′ −53.40
≦ n 2 / n 1 ≦ 61.5374 (n 1 Λ ′) 6 −385.3323 (n 1 Λ ′) 5
+328.953 (n 1 Λ ′) 4 +2844.835 (n 1 Λ ′) 3 −8978.233 (n 1 Λ ′) 2
+ 10245.56n 1 Λ ′ −4207.135 (2)
1.0 <n 1 lambda '<2.2 range interval 3: 1.9 <n 1 Λ' by <2.2,
10.443 (n 1 Λ ') 2 -42.926n 1 Λ' +45.36
≦ n 2 / n 1 ≦ -8.393 (n 1 Λ ′) 2 +32.374 n 1 Λ ′ −29.674 (3)
In the range of 1.0 <n 1 Λ ′ <2.2,
2.8090 + 0.7790 / {(n 1 Λ ′ + 4.7488) (n 2 / n 1 −1.1687)}
≦ d / d 0
3.6885 + 0.1488 / {(n 1 Λ ′ + 2.6126) (n 2 / n 1 −1.1233)} (5)
In the range of 1.0 <n 1 Λ ′ <2.2,
0.7123−3.8871 / {(n 1 Λ ′ + 1.7055) (n 2 / n 1 +0.7117)}
≦ f ≦ 0.7740−1.7142 / {(n 1 Λ ′ + 1.7095) (n 2 / n 1 −0.3275)}
... (6)
請求項1において、
1.0<n1 Λ' <2.2 の範囲で、
2 /n1 =-1.5543 (n1 Λ' )5 +8.1107(n1 Λ' )4
−13.048(n1 Λ' )3 +3.248 (n1 Λ' )2 +7.476 n1 Λ'
−2.141 ・・・(4)
を満たすことを特徴とする回折格子作製用位相マスク。
In claim 1,
In the range of 1.0 <n 1 Λ ′ <2.2,
n 2 / n 1 = −1.5543 (n 1 Λ ′) 5 +8.1107 (n 1 Λ ′) 4
−13.048 (n 1 Λ ′) 3 +3.248 (n 1 Λ ′) 2 +7.476 n 1 Λ ′
-2.141 (4)
A phase mask for producing a diffraction grating characterized by satisfying
JP2009183484A 2009-08-06 2009-08-06 Diffraction grating phase mask Expired - Fee Related JP5360399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009183484A JP5360399B2 (en) 2009-08-06 2009-08-06 Diffraction grating phase mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009183484A JP5360399B2 (en) 2009-08-06 2009-08-06 Diffraction grating phase mask

Publications (2)

Publication Number Publication Date
JP2011039094A JP2011039094A (en) 2011-02-24
JP5360399B2 true JP5360399B2 (en) 2013-12-04

Family

ID=43766955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009183484A Expired - Fee Related JP5360399B2 (en) 2009-08-06 2009-08-06 Diffraction grating phase mask

Country Status (1)

Country Link
JP (1) JP5360399B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8675279B2 (en) * 2009-12-15 2014-03-18 Toyota Motor Engineering And Manufacturing North America, Inc. Grating structure for dividing light

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120211A (en) * 1982-01-12 1983-07-18 Ricoh Co Ltd Transmission type surface relief diffraction grating
JPS62164001A (en) * 1986-01-14 1987-07-20 Nec Corp Production of diffraction grating
JPH05145191A (en) * 1991-11-25 1993-06-11 Fujitsu Ltd Semiconductor device and manufacture thereof
EP0635736A1 (en) * 1993-07-19 1995-01-25 AT&T Corp. Method for forming, in optical media, refractive index perturbations having reduced birefringence
US5718738A (en) * 1996-11-04 1998-02-17 Lucent Technologies Inc. Method for making continuously chirped fiber bragg gratings
JPH10300929A (en) * 1997-04-28 1998-11-13 Tdk Corp Polarizing diffraction element, optical pickup, and method for detecting photomagnetic signal
JP3526215B2 (en) * 1997-07-03 2004-05-10 大日本印刷株式会社 Phase mask for optical fiber processing and method of manufacturing the same
JPH11271533A (en) * 1998-03-24 1999-10-08 Sharp Corp Hologram polarizing and separating element
JP2001133640A (en) * 1999-11-08 2001-05-18 Ushio Sogo Gijutsu Kenkyusho:Kk Method and device for manufacturing fiber grating
JP4560906B2 (en) * 2000-01-31 2010-10-13 旭硝子株式会社 Optical head device
JP2003006377A (en) * 2001-06-26 2003-01-10 Intervision Inc Advertisement effect evaluation system and advertisement effect evaluation method
JP4053263B2 (en) * 2001-08-17 2008-02-27 株式会社ルネサステクノロジ Manufacturing method of semiconductor device
JP2004004299A (en) * 2002-05-31 2004-01-08 Renesas Technology Corp Method for manufacturing electronic apparatus
JP4357803B2 (en) * 2002-07-09 2009-11-04 大日本印刷株式会社 Phase mask for forming diffraction grating, method for manufacturing the same, and method for forming diffraction grating
JP4254469B2 (en) * 2003-05-23 2009-04-15 日本ビクター株式会社 Optical pickup device and optical recording medium driving device
JP4824273B2 (en) * 2003-11-07 2011-11-30 大日本印刷株式会社 Diffraction grating phase mask
TWI385414B (en) * 2003-11-20 2013-02-11 尼康股份有限公司 Optical illuminating apparatus, illuminating method, exposure apparatus, exposure method and device fabricating method
JP2005258053A (en) * 2004-03-11 2005-09-22 Nippon Sheet Glass Co Ltd Transmission type diffraction grating
JP4951209B2 (en) * 2004-03-31 2012-06-13 パナソニック株式会社 Color separation device and imaging device
JP4223986B2 (en) * 2004-04-07 2009-02-12 三菱電機株式会社 Bragg diffraction grating phase mask and optical fiber manufactured using the same
JP2006003762A (en) * 2004-06-21 2006-01-05 Nikon Corp Optical element, method for manufacturing optical element and aligner
JP2006284960A (en) * 2005-03-31 2006-10-19 Nikon Corp Diffraction grating, manufacturing method for diffraction grating, exposure method using same diffraction grating, electronic device manufacturing method, electronic device, and exposure system
JP2008145843A (en) * 2006-12-12 2008-06-26 Dainippon Printing Co Ltd Incident angle-dependent diffraction grating
JP5170401B2 (en) * 2007-03-27 2013-03-27 大日本印刷株式会社 Diffraction grating phase mask
JP5224027B2 (en) * 2007-10-22 2013-07-03 大日本印刷株式会社 Diffraction grating fabrication method using phase mask for diffraction grating fabrication
JP5391670B2 (en) * 2007-12-27 2014-01-15 セイコーエプソン株式会社 Manufacturing method of fine structure

Also Published As

Publication number Publication date
JP2011039094A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
JP4512266B2 (en) Optical grating manufacturing apparatus and manufacturing method
JP5224027B2 (en) Diffraction grating fabrication method using phase mask for diffraction grating fabrication
KR101226346B1 (en) Optical element, optical apparatus, optical pickup, optical information processing apparatus, optical attenuator, polarization conversion element, projector optical system, and optical apparatus system
CA2461527A1 (en) Phase mask design and phase mask for writing optical fibre bragg gratings
JPH1172631A (en) Phase mask for processing optical fiber and its production
CN105403941A (en) Near-filed holographic-ion beam etching preparation method of variable-spacing raster
JP4824273B2 (en) Diffraction grating phase mask
JP2007116016A (en) Diffraction optical element, pattern forming apparatus and pattern forming method
JP5360399B2 (en) Diffraction grating phase mask
US6483965B1 (en) Method of writing a bragg diffraction grating
JP2007047701A (en) Optical element
JP5170401B2 (en) Diffraction grating phase mask
JPH06300909A (en) Formation of diffraction grating by using holographic interference exposing method and optical semiconductor device using the same
JP2001242313A (en) Method of manufacturing phase mask for processing of optical fiber and optical fiber with bragg diffraction grating manufactured by using that phase mask for processing of optical fiber
US20080112670A1 (en) Wavelength filter
JP2011155080A (en) Exposure device and exposure method
CN111240012B (en) Light beam near-field shaping method based on guided mode resonance sub-wavelength grating coding
JP4357803B2 (en) Phase mask for forming diffraction grating, method for manufacturing the same, and method for forming diffraction grating
JP3564215B2 (en) Interference exposure apparatus and interference exposure method using the same
JP2000089014A (en) Phase mask for processing optical fiber and manufacture thereof
JP3487492B2 (en) Method of manufacturing phase mask for producing diffraction grating
JPH11271535A (en) Master hologram
JP4376531B2 (en) Grating formation method
JP5078765B2 (en) Computer generated hologram, exposure apparatus and device manufacturing method
JP2004170476A (en) Method for forming fiber bragg grating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees