JP2008145843A - Incident angle-dependent diffraction grating - Google Patents
Incident angle-dependent diffraction grating Download PDFInfo
- Publication number
- JP2008145843A JP2008145843A JP2006334448A JP2006334448A JP2008145843A JP 2008145843 A JP2008145843 A JP 2008145843A JP 2006334448 A JP2006334448 A JP 2006334448A JP 2006334448 A JP2006334448 A JP 2006334448A JP 2008145843 A JP2008145843 A JP 2008145843A
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- incident angle
- diffraction grating
- diffraction efficiency
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
Description
本発明は、入射角依存性回折格子に関し、特に、入射角によって回折効率が単調に変化する傾きセンサ等に使用可能な回折格子に関するものである。 The present invention relates to an incident angle dependent diffraction grating, and more particularly to a diffraction grating that can be used for an inclination sensor whose diffraction efficiency changes monotonously depending on the incident angle.
従来、ブラッグ回折するレリーフ型回折格子の±1次回折光の回折効率が入射角に応じて変化するのを利用してレリーフ型回折格子を傾きセンサ(チルトセンサ)に用いることが、特許文献1、特許文献2等において提案されている。
特許文献1、特許文献2において、チルトセンサに適したレリーフ型回折格子のQ値、回折格子の溝深さの範囲、回折格子の材料と格子溝に充填される材料との屈折率差についての記載がある。
In
また、一方向の傾きを1個の回折格子で検出するために1次元回折格子を用いることも開示されている。 It is also disclosed that a one-dimensional diffraction grating is used to detect a tilt in one direction with a single diffraction grating.
しかしながら、これら従来技術において、一方向の傾きを検出するのに用いる1次元回折格子において、高屈折率部と低屈折率部の割合、正確には、1個の繰り返しピッチ中の高屈折率部の幅の割合であるところのデューティ比に関して何ら検討がなされていない。 However, in these conventional techniques, in the one-dimensional diffraction grating used to detect the inclination in one direction, the ratio of the high refractive index portion and the low refractive index portion, more precisely, the high refractive index portion in one repetitive pitch. No consideration has been given to the duty ratio, which is the ratio of the width of the.
本発明は従来技術のこのような状況に鑑みてなされたものであり、その目的は、1次元レリーフ型回折格子のデューティ比等を最適化してより高性能な入射角依存回折格子を提供することである。 The present invention has been made in view of such a situation in the prior art, and an object thereof is to provide a higher performance incident angle dependent diffraction grating by optimizing the duty ratio of a one-dimensional relief type diffraction grating. It is.
上記目的を達成する本発明の入射角依存回折格子は、一方向に周期的に高屈折率部と低屈折率部が分布し、各高屈折率部が回折格子の面に垂直に配置されてなるレリーフ型1次元回折格子からなり、回折光がその周期方向に出射し、入射光の回折格子の面に対する入射角によりその周期方向の±1次回折効率が単調に変化する入射角依存性回折格子において、
ブラッグの条件を満たすブラッグ角を正として、ブラッグ角とブラッグ角から最初に出現する極小の回折効率を与える入射角との間に入射角0°を含み、かつ、
{(ブラッグ角での回折効率−最初に出現する極小の回折効率)×0.2
+最初に出現する極小の回折効率}≦入射角0°での回折効率 ・・・(A)
の条件(A)を満足し、かつ、
ブラッグ角での回折効率が入射角0°での回折効率の2倍以上である、
ことを満足するように、規格化ピッチΛ、屈折率変調Δn、デューティ比f、規格化溝深さdが設定されていることを特徴とするものである。ただし、入射光の波長をλ、周期方向の高屈折率部と低屈折率部の繰り返しピッチをp、高屈折率部の高さをh、高屈折率部の屈折率をn2 、低屈折率部の屈折率をn1 とし、p/λを規格化ピッチΛ、h/λを規格化溝深さd、(n2 −n1 )/2を屈折率変調Δnとする。また、また、1個の繰り返しピッチp中の高屈折率部の幅wの割合をデューティ比fとする。
The incident angle-dependent diffraction grating of the present invention that achieves the above object has a high refractive index portion and a low refractive index portion that are periodically distributed in one direction, and each high refractive index portion is arranged perpendicular to the plane of the diffraction grating. Diffracted light is emitted in the periodic direction, and the ± 1st-order diffraction efficiency in the periodic direction changes monotonously depending on the incident angle of the incident light with respect to the surface of the diffraction grating. In the lattice,
An angle of incidence of 0 ° is included between the Bragg angle and the incident angle that gives the minimum diffraction efficiency that first appears from the Bragg angle, with the Bragg angle satisfying the Bragg condition being positive; and
{(Diffraction efficiency at Bragg angle-Minimal diffraction efficiency first appearing) x 0.2
+ Minimum diffraction efficiency that appears first} ≦ Diffraction efficiency at an incident angle of 0 ° (A)
The condition (A) is satisfied, and
The diffraction efficiency at the Bragg angle is more than twice the diffraction efficiency at an incident angle of 0 °.
In order to satisfy the above, a standardized pitch Λ, a refractive index modulation Δn, a duty ratio f, and a standardized groove depth d are set. However, the wavelength of the incident light is λ, the repetition pitch of the high refractive index portion and the low refractive index portion in the periodic direction is p, the height of the high refractive index portion is h, the refractive index of the high refractive index portion is n 2 , and the low refractive index The refractive index of the index part is n 1 , p / λ is the normalized pitch Λ, h / λ is the normalized groove depth d, and (n 2 −n 1 ) / 2 is the refractive index modulation Δn. Further, the ratio of the width w of the high refractive index portion in one repetitive pitch p is defined as a duty ratio f.
本発明の入射角依存回折格子においては、このような3つの条件を満足するので、一方向の1次元的な傾き角を精度良く高感度に検出することができる。 Since the incident angle dependent diffraction grating of the present invention satisfies these three conditions, a one-dimensional tilt angle in one direction can be detected with high accuracy and high sensitivity.
以下に、本発明の入射角依存性回折格子について、図面を参照にして説明する。 The incident angle dependent diffraction grating of the present invention will be described below with reference to the drawings.
本発明による入射角依存性回折格子は、図1に模式的に示すように、x−y平面に平行な面形状をしていて、x方向に周期的に高屈折率部と低屈折率部が分布してなる1次元回折格子1である。このような1次元回折格子1に垂直なz方向から入射光10を入射させたときに、透過方向に+1次、−1次の2本の回折光11+1、11-1が生じる。ここで、+1次回折光11+1は+x方向の1次回折光、−1次回折光11-1は−x方向の1次回折光を意味する。そして、それぞれの回折光11+1、11-1に対応する位置に2つの光検出器12+1、12-1を配置し、それぞれの回折光11+1、11-1の強度を検出することにより、1次元回折格子1のy軸の周りでの傾き角を検出することができる。すなわち、y軸周りの傾き角は、光検出器12+1の検出値と光検出器12-1の検出値との差の値により検出することができる。
As schematically shown in FIG. 1, the incident angle dependent diffraction grating according to the present invention has a plane shape parallel to the xy plane, and periodically has a high refractive index portion and a low refractive index portion in the x direction. Is a one-dimensional diffraction grating 1 formed by distribution. When the
このような1次元回折格子1は、図2(a)に平面図、図2(b)に断面図を示すように、x方向にピッチpで高さhの断面矩形状の高屈折率部2が回折格子の面(x−y平面)に垂直に低屈折率部3中に周期的に配置されてなるものである。そして、1個の繰り返しピッチp中の高屈折率部2の幅wの割合として定義されるデューティ比fは任意に設定可能なものである。
Such a one-dimensional diffraction grating 1 includes a high-refractive index portion having a rectangular cross section with a pitch p in the x direction and a height h as shown in a plan view in FIG. 2A and a cross-sectional view in FIG. 2 is periodically arranged in the low
以下の説明のため、上記のデューティ比fに加え、入射光10の波長をλとして、ピッチpを使用波長λで規格化した値p/λ=Λを規格化ピッチ、高屈折率部2の高さhを使用波長λで規格化した値h/λ=dを規格化溝深さ、高屈折率部2の屈折率n2 と低屈折率部3の屈折率n1 の差の半分(n2 −n1 )/2=Δnを屈折率変調とする。
For the following description, in addition to the duty ratio f described above, the wavelength of the
このような1次元回折格子1を用いて傾き角を高感度で精度良く検出できるためには、上記のような傾き角の検出原理が、ブラッグの条件(ブラッグ角)から外れた角度での回折効率の角度依存性を利用しているので、以下に示すような条件を満足するように1次元回折格子1のデューティ比f、規格化ピッチΛ、規格化溝深さd、屈折率変調Δnを設定することが必要である。
In order to detect the tilt angle with high sensitivity and accuracy using such a one-dimensional diffraction grating 1, diffraction at an angle deviating from the Bragg condition (Bragg angle) is performed as described above. Since the angular dependence of efficiency is used, the duty ratio f, normalized pitch Λ, normalized groove depth d, and refractive index modulation Δn of the one-
(1)ブラッグ角を正として、ブラッグ角から最初に出現する極小の回折効率を与える入射角が負であり、あるいは、ブラッグ角とブラッグ角から最初に出現する極小の回折効率を与える入射角との間に入射角0°を含み、
(2)
{(ブラッグ角での回折効率−最初に出現する極小の回折効率)×0.2
+最初に出現する極小の回折効率}≦入射角0°での回折効率 ・・・(A)
(3)ブラッグ角での回折効率が入射角0°での回折効率の2倍以上である。
(1) When the Bragg angle is positive, the incident angle that gives the minimum diffraction efficiency that appears first from the Bragg angle is negative, or the incident angle that gives the minimum diffraction efficiency that appears first from the Bragg angle and Bragg angle Including an incident angle of 0 ° between
(2)
{(Diffraction efficiency at Bragg angle-Minimal diffraction efficiency first appearing) x 0.2
+ Minimum diffraction efficiency that appears first} ≦ Diffraction efficiency at an incident angle of 0 ° (A)
(3) The diffraction efficiency at the Bragg angle is at least twice the diffraction efficiency at an incident angle of 0 °.
ホログラフィックな体積型回折格子の回折効率理論曲線(非特許文献1)において、ブラッグ角からマイナス側に最初の極小までの角度範囲で直線近似が比較的良い(直線との誤差が程1%以下)のは、回折効率について、極小〜極大(ブラッグ角)の範囲中の20%〜80%の部分である。その直線近似の部分が切片(入射角0°での回折効率)をまたぐためには、上記(1)かつ(2)が必要条件である。なお、図2に示したようなレリーフ型回折格子では、体積型回折格子と屈折率の分布が異なるのでピーク等の値が異なるが、屈折率分布が体積型回折格子の正弦波分布の合成と考えられるため、回折効率曲線の形状は略同等と言える。 In the diffraction efficiency theoretical curve of a holographic volume diffraction grating (Non-Patent Document 1), linear approximation is relatively good in the angle range from the Bragg angle to the first minimum on the minus side (the error from the straight line is about 1% or less) ) Is a portion of 20% to 80% in the range of minimum to maximum (Bragg angle) in terms of diffraction efficiency. In order for the portion of the linear approximation to cross the intercept (diffraction efficiency at an incident angle of 0 °), the above (1) and (2) are necessary conditions. Note that the relief type diffraction grating as shown in FIG. 2 has a different refractive index distribution from the volume type diffraction grating, so the peak value is different, but the refractive index distribution is a combination of the sinusoidal distribution of the volume type diffraction grating. It can be said that the diffraction efficiency curves have almost the same shape.
そして、ある程度以上の感度を有するためには、上記(3)を満足することが必要である。 And in order to have a sensitivity of a certain level or more, it is necessary to satisfy the above (3).
図3は、図2に示すような1次元回折格子1の3つの例の透過1次回折効率を示すものであり、何れもブラッグ角は約5.7°に設定されている。例1、例2は何れも上記(1)〜(3)の条件を満足する場合であり、傾き角0°近傍の傾きを精度良く高感度で検出することができる。これに対して一点鎖線の場合は、(1)〜(2)の条件を満足しておらず、線形性がなく不適当な場合である。 FIG. 3 shows the transmission first-order diffraction efficiency of three examples of the one-dimensional diffraction grating 1 as shown in FIG. 2, and the Bragg angle is set to about 5.7 °. Examples 1 and 2 both satisfy the above conditions (1) to (3), and can detect an inclination near an inclination angle of 0 ° with high accuracy and high sensitivity. On the other hand, in the case of a one-dot chain line, the conditions (1) to (2) are not satisfied, and there is no linearity and this is inappropriate.
そこで、本発明においては、図2に示すような1次元回折格子1の規格化ピッチΛ、屈折率変調Δn、デューティ比f、規格化溝深さdをパラメータとして、透過1次回折効率が上記の(1)〜(3)の条件を満足する範囲を、RCWA手法(厳密な電磁波解析:非特許文献2〜4)を適用して計算した。なお、図2の1次元回折格子1は、入射光の偏光によらず略同じ回折効率特性である。また、平均屈折率((n2 +n1 )/2)によらず略同じ回折効率特性である。
Therefore, in the present invention, the transmission first-order diffraction efficiency is as described above using the normalized pitch Λ, refractive index modulation Δn, duty ratio f, and normalized groove depth d of the one-dimensional diffraction grating 1 as shown in FIG. 2 as parameters. The range satisfying the conditions (1) to (3) was calculated by applying the RCWA method (strict electromagnetic wave analysis: Non-Patent
その結果、規格化ピッチΛが2〜12の範囲内で、(1)〜(3)の条件を満足する範囲として少なくとも6系列あることが分かった。なお、規格化ピッチΛが14より大きい場合は、測定角度範囲が十分にとれなくなるので省いてある。 As a result, it was found that there are at least 6 series as a range satisfying the conditions (1) to (3) within the range of the normalized pitch Λ of 2 to 12. It should be noted that when the standardized pitch Λ is larger than 14, the measurement angle range cannot be taken sufficiently and is omitted.
第1系列については、図4に、規格化ピッチΛを変化させたときの屈折率変調Δnの範囲を示す。また、図5と図6に、規格化ピッチΛ及び屈折率変調Δnを変化させたときの上記の(1)〜(3)の条件を満足するデューティ比fのそれぞれ上限fmax と下限fmin の計算値(元データ)とそれらの範囲の限界を多項式で近似した曲線(数式近似)とを示してある。さらに、図7と図8に、規格化ピッチΛ及び屈折率変調Δnを変化させたときの上記の(1)〜(3)の条件を満足する規格化溝深さdのそれぞれ上限dmax と下限dmin の計算値(元データ)とそれらの範囲の限界を多項式で近似した曲線(数式近似)とを示してある。 For the first series, FIG. 4 shows the range of the refractive index modulation Δn when the normalized pitch Λ is changed. FIGS. 5 and 6 show an upper limit f max and a lower limit f min of the duty ratio f that satisfy the above conditions (1) to (3) when the normalized pitch Λ and the refractive index modulation Δn are changed. And calculated curves (original data) and curves (mathematical approximation) obtained by approximating the limits of those ranges with polynomials. Further, FIGS. 7 and 8 show the upper limit d max of the normalized groove depth d that satisfies the above conditions (1) to (3) when the normalized pitch Λ and the refractive index modulation Δn are changed. A calculated value (original data) of the lower limit d min and a curve (mathematical approximation) obtained by approximating the limits of those ranges with a polynomial are shown.
第2系列については、図9に、図4と同様の規格化ピッチΛを変化させたときの屈折率変調Δnの範囲を示す。また、図10と図11に、それぞれ図5と図6と同様の規格化ピッチΛ及び屈折率変調Δnを変化させたときの上記の(1)〜(3)の条件を満足するデューティ比fのそれぞれ上限fmax と下限fmin の計算値(元データ)とそれらの範囲の限界を多項式で近似した曲線(数式近似)とを示してある。さらに、図12と図13に、それぞれ図7と図8と同様の規格化ピッチΛ及び屈折率変調Δnを変化させたときの上記の(1)〜(3)の条件を満足する規格化溝深さdの上限dmax と下限dmin の計算値(元データ)とそれらの範囲の限界を多項式で近似した曲線(数式近似)とを示してある。 For the second series, FIG. 9 shows the range of the refractive index modulation Δn when the normalized pitch Λ similar to FIG. 4 is changed. 10 and 11, the duty ratio f satisfying the above conditions (1) to (3) when the normalized pitch Λ and the refractive index modulation Δn similar to those in FIGS. 5 and 6 are changed, respectively. The calculated values (original data) of the upper limit f max and the lower limit f min and the curve (mathematical approximation) obtained by approximating the limits of these ranges with a polynomial are shown. Further, in FIGS. 12 and 13, normalized grooves satisfying the above conditions (1) to (3) when the normalized pitch Λ and the refractive index modulation Δn similar to those in FIGS. 7 and 8 are changed, respectively. A calculated value (original data) of an upper limit d max and a lower limit d min of the depth d and a curve (mathematical approximation) obtained by approximating the limits of those ranges with a polynomial are shown.
以下、第3系列については、図14に図4と同様の図が、図15と図16にそれぞれ図5と図6と同様の図が、図17と図18にそれぞれ図7と図8と同様の図が示してある。 For the third series, FIG. 14 is similar to FIG. 4, FIGS. 15 and 16 are similar to FIGS. 5 and 6, respectively, and FIGS. 17 and 18 are FIGS. A similar diagram is shown.
第4系列については、図19に図4と同様の図が、図20と図21にそれぞれ図5と図6と同様の図が、図22と図23にそれぞれ図7と図8と同様の図が示してある。 For the fourth series, FIG. 19 shows the same diagram as FIG. 4, FIGS. 20 and 21 show the same diagram as FIG. 5 and FIG. 6, respectively, and FIG. 22 and FIG. The figure is shown.
第5系列については、図24に図4と同様の図が、図25と図26にそれぞれ図5と図6と同様の図が、図27と図28にそれぞれ図7と図8と同様の図が示してある。 For the fifth series, FIG. 24 shows the same diagram as FIG. 4, FIGS. 25 and 26 show the same diagrams as FIG. 5 and FIG. 6, respectively, and FIG. 27 and FIG. The figure is shown.
第6系列については、図29に図4と同様の図が、図30と図31にそれぞれ図5と図6と同様の図が、図32と図33にそれぞれ図7と図8と同様の図が示してある。 For the sixth series, FIG. 29 shows the same figure as FIG. 4, FIGS. 30 and 31 show the same figures as FIG. 5 and FIG. 6, respectively, and FIG. 32 and FIG. The figure is shown.
以上の結果から、上記の第1系列から第6系列におけるΛ、Δn、f、dの満たすべき範囲を以下に示す。 From the above results, the ranges to be satisfied by Λ, Δn, f, d in the first to sixth sequences are shown below.
<第1系列>
ΛとΔnの範囲が、
Λ>1、かつ、
-0.01Λ + 0.04 <Δn< -0.0003Λ3+0.0089Λ2-0.0864Λ+0.299
であって、
0.4515-0.1605Λ-3.601Δn+0.01841Λ2+0.5181ΛΔn+ 0.9487Δn2
-0.0007005Λ3 - 0.001691Λ2 Δn+2.928ΛΔn2+0.1092Δn3
≦f≦0.3516+0.06176Λ+0.2Δn- 0.008532Λ2+0.7653ΛΔn- 0.8939Δn2
+0.0003957 Λ3-0.2844Λ2 Δn-4.389ΛΔn2-0.3368Δn3
、かつ、
-10.09+11.81Λ+74.36Δn-1.321Λ2 -136.9ΛΔn-35.73Δn2
+0.0792 Λ3+7.72Λ2 Δn+517.8ΛΔn2 -34.84Δn3
≦d≦ -7.715-0.9232Λ-562.6Δn+ 3.89Λ2 +562.5ΛΔn-190.7Δn2
-0.1926 Λ3- 122.6Λ2 Δn-163.2ΛΔn2- 30.25Δn3
。
<First series>
The range of Λ and Δn is
Λ> 1 and
-0.01Λ + 0.04 <Δn <-0.0003Λ 3 + 0.0089Λ 2 -0.0864Λ + 0.299
Because
0.4515-0.1605Λ-3.601Δn + 0.01841Λ 2 + 0.5181ΛΔn + 0.9487Δn 2
-0.0007005Λ 3 - 0.001691Λ 2 Δn + 2.928ΛΔn 2 + 0.1092Δn 3
≦ f ≦ 0.3516 + 0.06176Λ + 0.2Δn− 0.008532Λ 2 + 0.7653ΛΔn− 0.8939Δn 2
+0.0003957 Λ 3 -0.2844Λ 2 Δn-4.389 ΛΔn 2 -0.3368Δn 3
,And,
-10.09 + 11.81Λ + 74.36Δn-1.321Λ 2 -136.9ΛΔn-35.73Δn 2
+0.0792 Λ 3 + 7.72Λ 2 Δn + 517.8ΛΔn 2 -34.84Δn 3
≦ d ≦ -7.715-0.9232Λ-562.6Δn + 3.89Λ 2 + 562.5ΛΔn-190.7Δn 2
-0.1926 Λ 3 - 122.6Λ 2 Δn- 163.2ΛΔn 2 - 30.25
.
<第2系列>
ΛとΔnの範囲が、
Λ>1、かつ、
-0.01Λ+ 0.04<Δn<0.0001Λ3-0.0033Λ2+0.0101Λ+0.1155
であって、
0.4134 +0.05121Λ+1.146Δn-0.00665Λ2 -1.112ΛΔn-1.124Δn2
+0.0002231Λ3-0.006226Λ2 Δn+4.092ΛΔn2-0.5992Δn3
≦f≦1.023-0.004624Λ-2.723Δn-0.00612Λ2-0.2689ΛΔn- 0.7496Δn2
+0.0003977Λ3 -0.06761Λ2 Δn+3.449ΛΔn2-0.1509Δn3
、かつ、
-25.94 +13.47Λ+773.4Δn- 0.4121Λ2 -315.4ΛΔn- 4890Δn2
-0.0003746Λ3 +7.305Λ2 Δn+1853 ΛΔn2-1340Δn3
≦d≦-19.23+13.27Λ+566.1Δn- 0.1128Λ2 -240.8ΛΔn- 4803Δn2
-0.001412Λ3 - 7.37Λ2 Δn+ 2067ΛΔn2-1502Δn3
。
<Second series>
The range of Λ and Δn is
Λ> 1 and
-0.01Λ + 0.04 <Δn <0.0001Λ 3 -0.0033Λ 2 + 0.0101Λ + 0.1155
Because
0.4134 + 0.05121Λ + 1.146Δn-0.00665Λ 2 -1.112ΛΔn-1.124Δn 2
+ 0.0002231Λ 3 -0.006226Λ 2 Δn + 4.092ΛΔn 2 -0.5992Δn 3
≦ f ≦ 1.023-0.004624Λ-2.723Δn-0.00612Λ 2 -0.2689ΛΔn- 0.7496Δn 2
+ 0.0003977Λ 3 -0.06761Λ 2 Δn + 3.449ΛΔn 2 -0.1509Δn 3
,And,
-25.94 + 13.47Λ + 773.4Δn- 0.4121Λ 2 -315.4ΛΔn- 4890Δn 2
-0.0003746Λ 3 + 7.305Λ 2 Δn + 1853 ΛΔn 2 -1340Δn 3
≦ d ≦ -19.23 + 13.27Λ + 566.1Δn− 0.1128Λ 2 -240.8ΛΔn− 4803Δn 2
-0.001412Λ 3 - 7.37Λ 2 Δn + 2067ΛΔn 2 -
.
<第3系列>
ΛとΔnの範囲が、
Δn>0.06、かつ、Δn<0.05Λ-0.07 、かつ、Δn< -0.03Λ+0.28
であって、
4.836-2.451Λ-0.03076Δn+ 0.5076Λ2 -4.371ΛΔn+4.231Δn2
-0.0338Λ3 + 0.1792Λ2 Δn+16.78ΛΔn2 +1.153Δn3
≦f≦2.438-0.6043Λ-9.628Δn+0.07705Λ2 +1.281ΛΔn+ 0.2567Δn2
-0.005385 Λ3 +0.03465Λ2 Δn+0.7961 ΛΔn2 +0.05974Δn3
、かつ、
75.32-25.21Λ-770.5Δn+3.284Λ2 +292.9ΛΔn+29.71Δn2- 0.02543Λ3
-35.75Λ2 Δn+85.55ΛΔn2 +4.982Δn3
≦d≦ 87.95-18.82Λ- 1498Δn- 0.4301Λ2 +601.4ΛΔn+36.55Δn2
+0.3967 Λ3 -68.54Λ2 Δn+63.85ΛΔn2 +3.567Δn3
<第4系列>
ΛとΔnの範囲が、
Λ>3、かつ、0.01Λ+ 0.02<Δn< -0.02Λ+0.22
であって、
16.92-7.218Λ- 17.6Δn+ 0.7945Λ2 +0.777ΛΔn+67.32Δn2
≦f≦11.6-7.742Λ-30.42Δn+1.978Λ2+ 3.243ΛΔn+5.462Δn2
-0.1714Λ3 -0.171Λ2 Δn+21.22ΛΔn2 +1.582Δn3
、かつ、
-344.9+1.952Λ- 1923Δn+53.92Λ2 +878.5ΛΔn- 0.9743Δn2
-7.931 Λ3 -98.75Λ2 Δn-135.6ΛΔn2 -11.17Δn3
≦d≦ 809.2-449.3Λ- 3286Δn+82.91Λ2 +1470 ΛΔn-41.64Δn2
-4.973Λ3 -153.2Λ2 Δn-376.5ΛΔn2 -28.56Δn3
。
<Third series>
The range of Λ and Δn is
Δn> 0.06, Δn <0.05Λ−0.07, and Δn <−0.03Λ + 0.28
Because
4.836-2.451Λ-0.03076Δn + 0.5076Λ 2 -4.371ΛΔn + 4.231Δn 2
-0.0338Λ 3 + 0.1792Λ 2 Δn + 16.78ΛΔn 2 + 1.153Δn 3
≦ f ≦ 2.438-0.6043Λ-9.628Δn + 0.07705Λ 2 + 1.281ΛΔn + 0.2567Δn 2
-0.005385 Λ 3 +0.03465 Λ 2 Δn + 0.7961 ΛΔn 2 + 0.05974Δn 3
,And,
75.32-25.21Λ-770.5Δn + 3.284Λ 2 + 292.9ΛΔn + 29.71Δn 2 - 0.02543
-35.75Λ 2 Δn + 85.55ΛΔn 2 + 4.982Δn 3
≦ d ≦ 87.95-18.82Λ-1498Δn-0.4301Λ 2 + 601.4ΛΔn + 36.55Δn 2
+0.3967 Λ 3 -68.54Λ 2 Δn + 63.85ΛΔn 2 + 3.567Δn 3
<4th series>
The range of Λ and Δn is
Λ> 3 and 0.01Λ + 0.02 <Δn <−0.02Λ + 0.22
Because
16.92-7.218Λ-17.6Δn + 0.7945Λ 2 + 0.777ΛΔn + 67.32Δn 2
≦ f ≦ 11.6-7.742Λ-30.42Δn + 1.978Λ 2 + 3.243ΛΔn + 5.462Δn 2
-0.1714Λ 3 -0.171Λ 2 Δn + 21.22ΛΔn 2 + 1.582Δn 3
,And,
-344.9 + 1.952Λ- 1923Δn + 53.92Λ 2 + 878.5ΛΔn- 0.9743Δn 2
-7.931 Λ 3 -98.75Λ 2 Δn-135.6ΛΔn 2 -11.17Δn 3
≦ d ≦ 809.2-449.3Λ-3286Δn + 82.91Λ 2 +1470 ΛΔn-41.64Δn 2
-4.973Λ 3 -153.2Λ 2 Δn-376.5ΛΔn 2 -28.56Δn 3
.
<第5系列>
ΛとΔnの範囲が、
4<Λ<9、かつ、-0.003Λ+ 0.072 <Δn<-0.003Λ+0.097
であって、
7.756-1.799Λ-48.55Δn+ 0.1032Λ2 +7.421ΛΔn-5.782Δn2
≦f≦2.665-0.5912Λ+0.05526Δn+0.04807Λ2-0.5177ΛΔn+ 0.001381Δn2
、かつ、
58.79-10.53Λ-194.6Δn+ 0.7923Λ2 +10.87ΛΔn+0.5599 Δn2
≦d≦-211.8+48.96Λ+ 2337Δn-1.809Λ2 -383.5ΛΔn+330.7Δn2
。
<5th series>
The range of Λ and Δn is
4 <Λ <9 and -0.003Λ + 0.072 <Δn <-0.003Λ + 0.097
Because
7.756-1.799Λ-48.55Δn + 0.1032Λ 2 + 7.421ΛΔn-5.782Δn 2
≦ f ≦ 2.665-0.5912Λ + 0.05526Δn + 0.04807Λ 2 -0.5177ΛΔn + 0.001381Δn 2
,And,
58.79-10.53Λ-194.6Δn + 0.7923Λ 2 + 10.87ΛΔn + 0.5599 Δn 2
≦ d ≦ -211.8 + 48.96Λ + 2337Δn-1.809Λ 2 −383.5ΛΔn + 330.7Δn 2
.
<第6系列>
ΛとΔnの範囲が、
3<Λ<8、かつ、-0.004Λ+0.037<Δn<-0.004Λ+0.057
であって、
-0.8123+0.812Λ- 0.5347Δn-0.08148Λ2 -2.631ΛΔn-0.02602Δn2
≦f≦-0.6139+0.8126Λ- 0.5629Δn-0.08154Λ2 -2.623ΛΔn-0.02701Δn2
、かつ、
-11.62+ 16.94Λ-413.2Δn- 0.9013Λ2 -61.19ΛΔn- 0.6286Δn2
≦d≦-23.84+33.66Λ- 1354Δn-2.742Λ2 -2.268ΛΔn- 0.1423Δn2
。
<6th series>
The range of Λ and Δn is
3 <Λ <8 and −0.004Λ + 0.037 <Δn <−0.004Λ + 0.057
Because
-0.8123 + 0.812Λ- 0.5347Δn-0.08148Λ 2 -2.631ΛΔn-0.02602Δn 2
≦ f ≦ -0.6139 + 0.8126Λ- 0.5629Δn-0.08154Λ 2 -2.623ΛΔn-0.02701Δn 2
,And,
-11.62+ 16.94Λ-413.2Δn- 0.9013Λ 2 -61.19ΛΔn- 0.6286Δn 2
≦ d ≦ -23.84 + 33.66Λ-1354Δn-2.742Λ 2 -2.268ΛΔn- 0.1423Δn 2
.
以上のように、傾き角を1次元的に高感度で精度良く検出可能な本発明の1次元回折格子1の規格化ピッチΛ、屈折率変調Δn、デューティ比f、規格化溝深さdの関係が求まった。
As described above, the normalized pitch Λ, the refractive index modulation Δn, the duty ratio f, and the normalized groove depth d of the one-
以下に具体的な実施例を示す。
(a)Λ=2、Δn=0.06、f=0.3、d=5、λ=0.633μm、p=1.27μm、h=3.2μm(第1系列)、
(b)Λ=6、Δn=0.02、f=0.2、d=24、λ=0.441μm、p=2.65μm、h=10.6μm(第2系列)、
(c)Λ=5、Δn=0.10、f=0.3、d=14、λ=0.543μm、p=2.72μm、h=7.6μm(第3系列)、
(d)Λ=5、Δn=0.08、f=0.1、d=19、λ=0.543μm、p=2.72μm、h=10.3μm(第4系列)、
(e)Λ=7、Δn=0.07、f=0.5、d=18、λ=0.441μm、p=3.09μm、h=7.9μm(第5系列)、
の各場合の入射角に対する透過1次回折効率変化を図34に示す。
Specific examples are shown below.
(A) Λ = 2, Δn = 0.06, f = 0.3, d = 5, λ = 0.633 μm, p = 1.27 μm, h = 3.2 μm (first series),
(B) Λ = 6, Δn = 0.02, f = 0.2, d = 24, λ = 0.441 μm, p = 2.65 μm, h = 10.6 μm (second series),
(C) Λ = 5, Δn = 0.10, f = 0.3, d = 14, λ = 0.543 μm, p = 2.72 μm, h = 7.6 μm (third series),
(D) Λ = 5, Δn = 0.08, f = 0.1, d = 19, λ = 0.543 μm, p = 2.72 μm, h = 10.3 μm (fourth series),
(E) Λ = 7, Δn = 0.07, f = 0.5, d = 18, λ = 0.441 μm, p = 0.09 μm, h = 7.9 μm (fifth series),
FIG. 34 shows the change in the transmission first-order diffraction efficiency with respect to the incident angle in each case.
また、別の実施例として、Λ=3.4に選び、1次元回折格子の低屈折率部の屈折率n1 =1.48、高屈折率部の屈折率n2 =1.52とし、Δn=(n2 −n1 )/2=0.02としたとき、第1系列の関係から、規格化溝深さd、デューティ比fの範囲として、
d=12.5〜25.0
f=0.058〜0.462
が解の範囲として求まる。d=15に固定してfを変化させた場合と、f=0.3に固定してdを変化させた場合の入射角に対する透過1次回折効率の変化をそれぞれ図35(a)、(b)に示す。図35(a)、(b)の実線の曲線が本発明の範囲に含まれる実施例で、点線の曲線は本発明の範囲から外れる比較例であり、実線の実施例は入射角0°を挟んで比較的直線性が良く、感度に関する傾きが高いと言える。その中から、感度が高い等の仕様に応じて条件を選べばよいことになる。
As another example, Λ = 3.4 is selected, and the refractive index n 1 = 1.48 of the low refractive index portion of the one-dimensional diffraction grating and the refractive index n 2 = 1.52 of the high refractive index portion, When Δn = (n 2 −n 1 ) /2=0.02, from the relationship of the first series, the range of the normalized groove depth d and the duty ratio f is
d = 12.5-25.0
f = 0.058-0.462
Is obtained as the range of the solution. FIGS. 35A and 35B show changes in the transmission first-order diffraction efficiency with respect to the incident angle when f is changed with d = 15 and when d is changed with f = 0.3. Shown in b). 35 (a) and 35 (b) are examples in which the solid line curve is included in the scope of the present invention, the dotted line curve is a comparative example that is out of the scope of the present invention, and the solid line example has an incident angle of 0 °. It can be said that the linearity is relatively good, and the slope related to sensitivity is high. From among them, the conditions may be selected according to specifications such as high sensitivity.
以上の実施例から明らかなように、本発明による実施例(a)〜(e)の1次元回折格子1及び別の実施例の実線で示す1次元回折格子1は、上記(1)〜(3)の条件を満足していて、一方向の0°近傍の傾き角を精度良く高感度に検出可能なことが分かる。
As is clear from the above embodiments, the one-
なお、本発明による入射角依存性回折格子の作製方法としては、最初何れかの屈折率(高屈折率又は低屈折率)の回折格子を、2P法等のエンボス法あるいは基板にエッチング等で形成する方法で作製し、その後、別の屈折率(低屈折率又は高屈折率)の例えば液体状の硬化性材料でその回折格子を覆うことで作製する方法が一例としてあげられる。 In addition, as a manufacturing method of the incident angle dependent diffraction grating according to the present invention, a diffraction grating having any refractive index (high refractive index or low refractive index) is first formed by an embossing method such as 2P method or etching on a substrate. An example is a method in which the diffraction grating is covered with, for example, a liquid curable material having another refractive index (low refractive index or high refractive index).
以上、本発明の入射角依存性回折格子を実施例等に基づいて説明してきたが、本発明はこれら実施例に限定されず種々の変形が可能である。 Although the incident angle dependent diffraction grating of the present invention has been described based on the embodiments and the like, the present invention is not limited to these embodiments and can be variously modified.
1…1次元回折格子
2…高屈折率部
3…低屈折率部
10…入射光
11+1…+1次回折光
11-1…−1次回折光
12+1、12-1…光検出器
1 ... 1-
Claims (7)
ブラッグの条件を満たすブラッグ角を正として、ブラッグ角とブラッグ角から最初に出現する極小の回折効率を与える入射角との間に入射角0°を含み、かつ、
{(ブラッグ角での回折効率−最初に出現する極小の回折効率)×0.2
+最初に出現する極小の回折効率}≦入射角0°での回折効率 ・・・(A)
の条件(A)を満足し、かつ、
ブラッグ角での回折効率が入射角0°での回折効率の2倍以上である、
ことを満足するように、規格化ピッチΛ、屈折率変調Δn、デューティ比f、規格化溝深さdが設定されていることを特徴とする入射角依存性回折格子。ただし、入射光の波長をλ、周期方向の高屈折率部と低屈折率部の繰り返しピッチをp、高屈折率部の高さをh、高屈折率部の屈折率をn2 、低屈折率部の屈折率をn1 とし、p/λを規格化ピッチΛ、h/λを規格化溝深さd、(n2 −n1 )/2を屈折率変調Δnとする。また、1個の繰り返しピッチp中の高屈折率部の幅wの割合をデューティ比fとする。 A high-refractive index part and a low-refractive index part are periodically distributed in one direction, and each high-refractive index part is composed of a relief type one-dimensional diffraction grating arranged perpendicularly to the surface of the diffraction grating. In the incident angle-dependent diffraction grating in which the ± 1st-order diffraction efficiency in the period direction monotonously changes depending on the incident angle of the incident light with respect to the surface of the diffraction grating,
An angle of incidence of 0 ° is included between the Bragg angle and the incident angle that gives the minimum diffraction efficiency that first appears from the Bragg angle, with the Bragg angle satisfying the Bragg condition being positive; and
{(Diffraction efficiency at Bragg angle-Minimal diffraction efficiency first appearing) x 0.2
+ Minimum diffraction efficiency that appears first} ≦ Diffraction efficiency at an incident angle of 0 ° (A)
The condition (A) is satisfied, and
The diffraction efficiency at the Bragg angle is more than twice the diffraction efficiency at an incident angle of 0 °.
An incident angle dependent diffraction grating characterized in that a normalized pitch Λ, a refractive index modulation Δn, a duty ratio f, and a normalized groove depth d are set so as to satisfy the above. However, the wavelength of the incident light is λ, the repetition pitch of the high refractive index portion and the low refractive index portion in the periodic direction is p, the height of the high refractive index portion is h, the refractive index of the high refractive index portion is n 2 , and the low refractive index The refractive index of the index part is n 1 , p / λ is the normalized pitch Λ, h / λ is the normalized groove depth d, and (n 2 −n 1 ) / 2 is the refractive index modulation Δn. Further, the ratio of the width w of the high refractive index portion in one repetition pitch p is defined as a duty ratio f.
Λ>1、かつ、
-0.01Λ + 0.04 <Δn< -0.0003Λ3+0.0089Λ2-0.0864Λ+0.299
であって、
0.4515-0.1605Λ-3.601Δn+0.01841Λ2+0.5181ΛΔn+ 0.9487Δn2
-0.0007005Λ3 - 0.001691Λ2 Δn+2.928ΛΔn2+0.1092Δn3
≦f≦0.3516+0.06176Λ+0.2Δn- 0.008532Λ2+0.7653ΛΔn- 0.8939Δn2
+0.0003957 Λ3-0.2844Λ2 Δn-4.389ΛΔn2-0.3368Δn3
、かつ、
-10.09+11.81Λ+74.36Δn-1.321Λ2 -136.9ΛΔn-35.73Δn2
+0.0792 Λ3+7.72Λ2 Δn+517.8ΛΔn2 -34.84Δn3
≦d≦ -7.715-0.9232Λ-562.6Δn+ 3.89Λ2 +562.5ΛΔn-190.7Δn2
-0.1926 Λ3- 122.6Λ2 Δn-163.2ΛΔn2- 30.25Δn3
の条件を満足することを特徴とする請求項1記載の入射角依存性回折格子。 The range of Λ and Δn is
Λ> 1 and
-0.01Λ + 0.04 <Δn <-0.0003Λ 3 + 0.0089Λ 2 -0.0864Λ + 0.299
Because
0.4515-0.1605Λ-3.601Δn + 0.01841Λ 2 + 0.5181ΛΔn + 0.9487Δn 2
-0.0007005Λ 3 - 0.001691Λ 2 Δn + 2.928ΛΔn 2 + 0.1092Δn 3
≦ f ≦ 0.3516 + 0.06176Λ + 0.2Δn− 0.008532Λ 2 + 0.7653ΛΔn− 0.8939Δn 2
+0.0003957 Λ 3 -0.2844Λ 2 Δn-4.389 ΛΔn 2 -0.3368Δn 3
,And,
-10.09 + 11.81Λ + 74.36Δn-1.321Λ 2 -136.9ΛΔn-35.73Δn 2
+0.0792 Λ 3 + 7.72Λ 2 Δn + 517.8ΛΔn 2 -34.84Δn 3
≦ d ≦ -7.715-0.9232Λ-562.6Δn + 3.89Λ 2 + 562.5ΛΔn-190.7Δn 2
-0.1926 Λ 3 - 122.6Λ 2 Δn- 163.2ΛΔn 2 - 30.25Δn 3
The incident angle dependent diffraction grating according to claim 1, wherein the following condition is satisfied.
Λ>1、かつ、
-0.01Λ+ 0.04<Δn<0.0001Λ3-0.0033Λ2+0.0101Λ+0.1155
であって、
0.4134 +0.05121Λ+1.146Δn-0.00665Λ2 -1.112ΛΔn-1.124Δn2
+0.0002231Λ3-0.006226Λ2 Δn+4.092ΛΔn2-0.5992Δn3
≦f≦1.023-0.004624Λ-2.723Δn-0.00612Λ2-0.2689ΛΔn- 0.7496Δn2
+0.0003977Λ3 -0.06761Λ2 Δn+3.449ΛΔn2-0.1509Δn3
、かつ、
-25.94 +13.47Λ+773.4Δn- 0.4121Λ2 -315.4ΛΔn- 4890Δn2
-0.0003746Λ3 +7.305Λ2 Δn+1853 ΛΔn2-1340Δn3
≦d≦-19.23+13.27Λ+566.1Δn- 0.1128Λ2 -240.8ΛΔn- 4803Δn2
-0.001412Λ3 - 7.37Λ2 Δn+ 2067ΛΔn2-1502Δn3
の条件を満足することを特徴とする請求項1記載の入射角依存性回折格子。 The range of Λ and Δn is
Λ> 1 and
-0.01Λ + 0.04 <Δn <0.0001Λ 3 -0.0033Λ 2 + 0.0101Λ + 0.1155
Because
0.4134 + 0.05121Λ + 1.146Δn-0.00665Λ 2 -1.112ΛΔn-1.124Δn 2
+ 0.0002231Λ 3 -0.006226Λ 2 Δn + 4.092ΛΔn 2 -0.5992Δn 3
≦ f ≦ 1.023-0.004624Λ-2.723Δn-0.00612Λ 2 -0.2689ΛΔn- 0.7496Δn 2
+ 0.0003977Λ 3 -0.06761Λ 2 Δn + 3.449ΛΔn 2 -0.1509Δn 3
,And,
-25.94 + 13.47Λ + 773.4Δn- 0.4121Λ 2 -315.4ΛΔn- 4890Δn 2
-0.0003746Λ 3 + 7.305Λ 2 Δn + 1853 ΛΔn 2 -1340Δn 3
≦ d ≦ -19.23 + 13.27Λ + 566.1Δn− 0.1128Λ 2 -240.8ΛΔn− 4803Δn 2
-0.001412Λ 3 - 7.37Λ 2 Δn + 2067ΛΔn 2 -1502Δn 3
The incident angle dependent diffraction grating according to claim 1, wherein the following condition is satisfied.
Δn>0.06、かつ、Δn<0.05Λ-0.07 、かつ、Δn< -0.03Λ+0.28
であって、
4.836-2.451Λ-0.03076Δn+ 0.5076Λ2 -4.371ΛΔn+4.231Δn2
-0.0338Λ3 + 0.1792Λ2 Δn+16.78ΛΔn2 +1.153Δn3
≦f≦2.438-0.6043Λ-9.628Δn+0.07705Λ2 +1.281ΛΔn+ 0.2567Δn2
-0.005385 Λ3 +0.03465Λ2 Δn+0.7961 ΛΔn2 +0.05974Δn3
、かつ、
75.32-25.21Λ-770.5Δn+3.284Λ2 +292.9ΛΔn+29.71Δn2- 0.02543Λ3
-35.75Λ2 Δn+85.55ΛΔn2 +4.982Δn3
≦d≦ 87.95-18.82Λ- 1498Δn- 0.4301Λ2 +601.4ΛΔn+36.55Δn2
+0.3967 Λ3 -68.54Λ2 Δn+63.85ΛΔn2 +3.567Δn3
の条件を満足することを特徴とする請求項1記載の入射角依存性回折格子。 The range of Λ and Δn is
Δn> 0.06, Δn <0.05Λ−0.07, and Δn <−0.03Λ + 0.28
Because
4.836-2.451Λ-0.03076Δn + 0.5076Λ 2 -4.371ΛΔn + 4.231Δn 2
-0.0338Λ 3 + 0.1792Λ 2 Δn + 16.78ΛΔn 2 + 1.153Δn 3
≦ f ≦ 2.438-0.6043Λ-9.628Δn + 0.07705Λ 2 + 1.281ΛΔn + 0.2567Δn 2
-0.005385 Λ 3 +0.03465 Λ 2 Δn + 0.7961 ΛΔn 2 + 0.05974Δn 3
,And,
75.32-25.21Λ-770.5Δn + 3.284Λ 2 + 292.9ΛΔn + 29.71Δn 2 - 0.02543Λ 3
-35.75Λ 2 Δn + 85.55ΛΔn 2 + 4.982Δn 3
≦ d ≦ 87.95-18.82Λ-1498Δn-0.4301Λ 2 + 601.4ΛΔn + 36.55Δn 2
+0.3967 Λ 3 -68.54Λ 2 Δn + 63.85ΛΔn 2 + 3.567Δn 3
The incident angle dependent diffraction grating according to claim 1, wherein the following condition is satisfied.
Λ>3、かつ、0.01Λ+ 0.02<Δn< -0.02Λ+0.22
であって、
16.92-7.218Λ- 17.6Δn+ 0.7945Λ2 +0.777ΛΔn+67.32Δn2
≦f≦11.6-7.742Λ-30.42Δn+1.978Λ2+ 3.243ΛΔn+5.462Δn2
-0.1714Λ3 -0.171Λ2 Δn+21.22ΛΔn2 +1.582Δn3
、かつ、
-344.9+1.952Λ- 1923Δn+53.92Λ2 +878.5ΛΔn- 0.9743Δn2
-7.931 Λ3 -98.75Λ2 Δn-135.6ΛΔn2 -11.17Δn3
≦d≦ 809.2-449.3Λ- 3286Δn+82.91Λ2 +1470 ΛΔn-41.64Δn2
-4.973Λ3 -153.2Λ2 Δn-376.5ΛΔn2 -28.56Δn3
の条件を満足することを特徴とする請求項1記載の入射角依存性回折格子。 The range of Λ and Δn is
Λ> 3 and 0.01Λ + 0.02 <Δn <−0.02Λ + 0.22
Because
16.92-7.218Λ-17.6Δn + 0.7945Λ 2 + 0.777ΛΔn + 67.32Δn 2
≦ f ≦ 11.6-7.742Λ-30.42Δn + 1.978Λ 2 + 3.243ΛΔn + 5.462Δn 2
-0.1714Λ 3 -0.171Λ 2 Δn + 21.22ΛΔn 2 + 1.582Δn 3
,And,
-344.9 + 1.952Λ- 1923Δn + 53.92Λ 2 + 878.5ΛΔn- 0.9743Δn 2
-7.931 Λ 3 -98.75Λ 2 Δn-135.6ΛΔn 2 -11.17Δn 3
≦ d ≦ 809.2-449.3Λ-3286Δn + 82.91Λ 2 +1470 ΛΔn-41.64Δn 2
-4.973Λ 3 -153.2Λ 2 Δn-376.5ΛΔn 2 -28.56Δn 3
The incident angle dependent diffraction grating according to claim 1, wherein the following condition is satisfied.
4<Λ<9、かつ、-0.003Λ+ 0.072 <Δn<-0.003Λ+0.097
であって、
7.756-1.799Λ-48.55Δn+ 0.1032Λ2 +7.421ΛΔn-5.782Δn2
≦f≦2.665-0.5912Λ+0.05526Δn+0.04807Λ2-0.5177ΛΔn+ 0.001381Δn2
、かつ、
58.79-10.53Λ-194.6Δn+ 0.7923Λ2 +10.87ΛΔn+0.5599 Δn2
≦d≦-211.8+48.96Λ+ 2337Δn-1.809Λ2 -383.5ΛΔn+330.7Δn2
の条件を満足することを特徴とする請求項1記載の入射角依存性回折格子。 The range of Λ and Δn is
4 <Λ <9 and -0.003Λ + 0.072 <Δn <-0.003Λ + 0.097
Because
7.756-1.799Λ-48.55Δn + 0.1032Λ 2 + 7.421ΛΔn-5.782Δn 2
≦ f ≦ 2.665-0.5912Λ + 0.05526Δn + 0.04807Λ 2 -0.5177ΛΔn + 0.001381Δn 2
,And,
58.79-10.53Λ-194.6Δn + 0.7923Λ 2 + 10.87ΛΔn + 0.5599 Δn 2
≦ d ≦ -211.8 + 48.96Λ + 2337Δn-1.809Λ 2 −383.5ΛΔn + 330.7Δn 2
The incident angle dependent diffraction grating according to claim 1, wherein the following condition is satisfied.
3<Λ<8、かつ、-0.004Λ+0.037<Δn<-0.004Λ+0.057
であって、
-0.8123+0.812Λ- 0.5347Δn-0.08148Λ2 -2.631ΛΔn-0.02602Δn2
≦f≦-0.6139+0.8126Λ- 0.5629Δn-0.08154Λ2 -2.623ΛΔn-0.02701Δn2
、かつ、
-11.62+ 16.94Λ-413.2Δn- 0.9013Λ2 -61.19ΛΔn- 0.6286Δn2
≦d≦-23.84+33.66Λ- 1354Δn-2.742Λ2 -2.268ΛΔn- 0.1423Δn2
の条件を満足することを特徴とする請求項1記載の入射角依存性回折格子。 The range of Λ and Δn is
3 <Λ <8 and −0.004Λ + 0.037 <Δn <−0.004Λ + 0.057
Because
-0.8123 + 0.812Λ- 0.5347Δn-0.08148Λ 2 -2.631ΛΔn-0.02602Δn 2
≦ f ≦ -0.6139 + 0.8126Λ- 0.5629Δn-0.08154Λ 2 -2.623ΛΔn-0.02701Δn 2
,And,
-11.62+ 16.94Λ-413.2Δn- 0.9013Λ 2 -61.19ΛΔn- 0.6286Δn 2
≦ d ≦ -23.84 + 33.66Λ-1354Δn-2.742Λ 2 -2.268ΛΔn- 0.1423Δn 2
The incident angle dependent diffraction grating according to claim 1, wherein the following condition is satisfied.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006334448A JP2008145843A (en) | 2006-12-12 | 2006-12-12 | Incident angle-dependent diffraction grating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006334448A JP2008145843A (en) | 2006-12-12 | 2006-12-12 | Incident angle-dependent diffraction grating |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008145843A true JP2008145843A (en) | 2008-06-26 |
Family
ID=39606078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006334448A Pending JP2008145843A (en) | 2006-12-12 | 2006-12-12 | Incident angle-dependent diffraction grating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008145843A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011039094A (en) * | 2009-08-06 | 2011-02-24 | Dainippon Printing Co Ltd | Phase mask for making diffraction grating |
JP2023029913A (en) * | 2017-06-30 | 2023-03-07 | 大日本印刷株式会社 | Diffraction optical element formation acrylic resin composition |
-
2006
- 2006-12-12 JP JP2006334448A patent/JP2008145843A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011039094A (en) * | 2009-08-06 | 2011-02-24 | Dainippon Printing Co Ltd | Phase mask for making diffraction grating |
JP2023029913A (en) * | 2017-06-30 | 2023-03-07 | 大日本印刷株式会社 | Diffraction optical element formation acrylic resin composition |
JP7542592B2 (en) | 2017-06-30 | 2024-08-30 | 大日本印刷株式会社 | Acrylic resin composition for forming diffractive optical elements |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5846631B2 (en) | Light guide plate and optical system including the same | |
JP4714152B2 (en) | Optical element | |
JP4977275B2 (en) | Diffraction grating lens and imaging device using the same | |
JP2007265581A (en) | Diffraction element | |
KR101759213B1 (en) | Optimized dielectric reflective diffraction grating | |
JP2004020957A (en) | Diffraction optical element, optical system equipped with the same, and optical device | |
JP2005172844A (en) | Wire grid polarizer | |
EP2037298A1 (en) | Optical member and optical device comprising the same | |
JP2013092754A (en) | Echelle diffraction grating and manufacturing method thereof, and excimer laser and manufacturing method thereof | |
JP2009103786A (en) | Method for manufacturing diffraction grating using phase mask for manufacturing diffraction grating | |
JP2003114316A (en) | Optical element | |
CN110380336B (en) | Semiconductor light emitting device | |
JP2008145843A (en) | Incident angle-dependent diffraction grating | |
JP2013125259A (en) | Diffractive optical element, optical system, and optical apparatus | |
JP2005084485A (en) | Diffraction optical element | |
JP2007279651A (en) | Incident-angle-dependent diffraction grating | |
JP2000137109A (en) | Reflection preventive device using diffraction grating | |
US20220413194A1 (en) | Diffractive optical element | |
JP5170401B2 (en) | Diffraction grating phase mask | |
JP3874301B2 (en) | Polarizing optical element | |
Drauschke | Analysis of nearly depth-independent transmission of lamellar gratings in zeroth diffraction order in TM polarization | |
JP2007052084A (en) | Polarizer | |
WO2018016633A1 (en) | Diffractive optical element and light irradiation device | |
JP2532070B2 (en) | Diffraction grating | |
JP2018013679A (en) | Diffraction optical element, light irradiation device and manufacturing method of diffraction optical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090917 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110608 |
|
A131 | Notification of reasons for refusal |
Effective date: 20110615 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110921 |
|
A521 | Written amendment |
Effective date: 20111109 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20120201 Free format text: JAPANESE INTERMEDIATE CODE: A02 |