JP2003114316A - Optical element - Google Patents
Optical elementInfo
- Publication number
- JP2003114316A JP2003114316A JP2001309906A JP2001309906A JP2003114316A JP 2003114316 A JP2003114316 A JP 2003114316A JP 2001309906 A JP2001309906 A JP 2001309906A JP 2001309906 A JP2001309906 A JP 2001309906A JP 2003114316 A JP2003114316 A JP 2003114316A
- Authority
- JP
- Japan
- Prior art keywords
- light
- optical element
- antireflection structure
- pitch
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Surface Treatment Of Optical Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、反射防止構造を有
する光学素子に関する。TECHNICAL FIELD The present invention relates to an optical element having an antireflection structure.
【0002】[0002]
【従来の技術】光学素子では入射面における光の反射を
制御することが重要である。例えば、光を検出する光学
素子では、その感度を向上させるためには入射面におけ
る反射を防止する必要があり、また、光を透過させる光
学素子では入射面における反射を防止して伝送損失を低
減する必要がある。従来、この反射防止構造としては主
として誘電体多層膜が用いられていたが、近年、入射面
に微細な凹凸を形成することにより、等価的に入射側の
媒質と出射側の媒質の間に中間の屈折率を有する層を形
成して反射を防止する構造が採用されるようになって来
ている。2. Description of the Related Art In an optical element, it is important to control the reflection of light on the incident surface. For example, in an optical element that detects light, it is necessary to prevent reflection at the incident surface in order to improve its sensitivity, and in an optical element that transmits light, reflection at the incident surface is prevented to reduce transmission loss. There is a need to. Conventionally, a dielectric multilayer film has been mainly used as the antireflection structure, but in recent years, by forming fine irregularities on the incident surface, an equivalent medium is formed between the medium on the incident side and the medium on the emitting side. A structure for preventing reflection by forming a layer having the above refractive index has been adopted.
【0003】この反射防止構造は、入射する電磁波の波
長に比べて微細な表面凹凸を、例えば円錐体、角錐体を
周期的に配列した表面凹凸構造を形成することにより、
反射を低減するものであり、より詳細には以下のように
反射を防止するものである。すなわち、このような表面
凹凸形状は回折格子として振舞うことになるが、次の
(1)式を満足するように凹凸形状のピッチdを設定す
ることにより、反射側及び透過側において1次回折波及
び2以上の高次回折波が出現しないようにでき、反射を
実質的に0にできるというものである。
d<λ/(n1sinθ+n2)…(1)
ここで、λは光の波長であり、θは入射角である。In this antireflection structure, fine surface irregularities are formed in comparison with the wavelength of an incident electromagnetic wave, for example, a surface irregularity structure in which cones and pyramids are periodically arranged is formed.
It reduces reflection, and more specifically, prevents reflection as described below. That is, such a surface uneven shape behaves as a diffraction grating, but by setting the pitch d of the uneven shape so as to satisfy the following expression (1), the first-order diffracted wave on the reflection side and the transmission side is formed. And higher-order diffracted waves of 2 or more can be prevented from appearing, and the reflection can be substantially zero. d <λ / (n 1 sin θ + n 2 ) ... (1) where λ is the wavelength of light and θ is the angle of incidence.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、この従
来の凹凸形状による反射防止構造は、周期dが(1)式
を満足しないような値になるとただちに反射側及び透過
側の双方において1次回折波及び2以上の高次回折波が
出現するという問題があった。そのために、例えば、0
次回折光のみを受光することにより測定を行うように構
成された光学素子では、1次回折波及び2以上の高次回
折波の出現により測定精度が悪化するという問題があっ
た。このような問題を回避するためには、反射防止が必
要とされる波長に対して余裕を持って非常に微細な凹凸
形状を寸法精度良く形成する必要があり、製造コストを
低減することが困難であった。However, in this conventional antireflection structure having an uneven shape, when the period d becomes a value that does not satisfy the expression (1), the first-order diffracted wave is immediately generated on both the reflection side and the transmission side. In addition, there is a problem that two or more higher-order diffracted waves appear. Therefore, for example, 0
In the optical element configured to perform measurement by receiving only the second-order diffracted light, there is a problem that the measurement accuracy deteriorates due to the appearance of the first-order diffracted wave and two or more higher-order diffracted waves. In order to avoid such a problem, it is necessary to form a very fine uneven shape with sufficient dimensional accuracy with a margin for the wavelength that requires antireflection, and it is difficult to reduce the manufacturing cost. Met.
【0005】そこで、本発明は、1次以上の回折波の急
激な出現を防止することができ、かつ容易にしかも安価
に製造することができる凹凸形状による反射防止構造を
提案し、その反射防止構造を有する光学素子を提供する
ことを目的とする。Therefore, the present invention proposes an antireflection structure having a concavo-convex shape, which can prevent abrupt appearance of diffracted waves of the first and higher orders and can be manufactured easily and at low cost. It is an object to provide an optical element having a structure.
【0006】[0006]
【課題を解決するための手段】以上の目的を達成するた
めに、本発明に係る請求項1記載の光学素子は、臨界波
長以上の光の反射を防止する反射防止構造を有する光学
素子であって、該反射防止構造は入射面に形成された凹
凸形状により構成され、上記凹凸形状のピッチは、ラン
ダムにかつ上記臨界波長以上の光の入射側及び出射側に
おける0次以外の回折光が実質的にゼロになるように設
定されていることを特徴とする。以上のように構成され
た光学素子は、その反射防止構造として入射面に形成さ
れた凹凸形状がランダムに設定されたピッチを有してい
るので、臨界波長以下の光の高次回折光を抑制すること
ができる。これにより、0次回折光を利用する光学素子
において、高次回折波による特性劣化を防止できる。ま
た、凹凸形状の加工精度の許容範囲を広くできるので、
製造コストを低減することが可能になる。To achieve the above object, an optical element according to claim 1 of the present invention is an optical element having an antireflection structure for preventing reflection of light having a critical wavelength or more. The antireflection structure is formed by the uneven shape formed on the incident surface, and the pitch of the uneven shape is randomly and substantially non-zero-order diffracted light on the incident side and the emitting side of the light having the critical wavelength or more. It is characterized in that it is set to zero. The optical element configured as described above suppresses higher-order diffracted light of light of a critical wavelength or less because the uneven shape formed on the incident surface as the antireflection structure has a randomly set pitch. be able to. As a result, it is possible to prevent characteristic deterioration due to higher-order diffracted waves in an optical element that uses 0th-order diffracted light. In addition, since the allowable range of processing accuracy for uneven shapes can be widened,
It becomes possible to reduce the manufacturing cost.
【0007】さらに、本発明に係る請求項3記載の光学
素子は、上記請求項1又は2記載の光学素子において、
上記凹凸形状の凸部の頂が、同一平面上に位置するとし
たものである。このように、上記凹凸形状の凸部の頂
が、同一平面上に位置する反射防止構造は、容易に製造
することができるので、より製造コストを低減でき、光
学素子を安価にできる。An optical element according to claim 3 of the present invention is the optical element according to claim 1 or 2, wherein
It is assumed that the peaks of the convex and concave shapes are located on the same plane. As described above, since the antireflection structure in which the tops of the convex and concave portions are located on the same plane can be easily manufactured, the manufacturing cost can be further reduced and the optical element can be made inexpensive.
【0008】またさらに、本発明に係る請求項4記載の
光学素子は、請求項1〜3のうちのいずれか1つに記載
の光学素子において、上記凹凸形状の凹部の谷が、同一
平面上に位置するとしたものである。尚、ここでいう谷
とは、凹部の最も低い所である。Furthermore, an optical element according to a fourth aspect of the present invention is the optical element according to any one of the first to third aspects, in which the valleys of the concave and convex portions are on the same plane. It is located at. The valley here is the lowest part of the recess.
【0009】また、本発明に係る請求項5記載の光学素
子は、請求項1〜4のうちのいずれか1つに記載の光学
素子において、上記凹凸形状の凸部の高さが、ランダム
に設定されたとしたものである。ここで、凹凸形状の凸
部の高さとは、隣接する凹部の谷(谷の底部)を基準と
した高さとして定義されるものである。このように、上
記凹凸形状の凸部の高さをランダムに設定すると、より
効果的に臨界波長以下の光の高次回折光を抑制すること
ができる。According to a fifth aspect of the present invention, in the optical element according to any one of the first to fourth aspects, the height of the convex portions of the concave and convex shapes is random. It has been set. Here, the height of the convex-concave portion is defined as the height based on the valleys (bottoms of the valleys) of the adjacent concave portions. As described above, by randomly setting the height of the convex-concave portions, it is possible to more effectively suppress the high-order diffracted light of light having a critical wavelength or less.
【0010】さらに、本発明に係る請求項6記載の光学
素子は、請求項1〜4のうちのいずれか1つに記載の光
学素子において、上記凹凸形状の凸部の高さが同一に設
定されたとしたものである。このように、凸部の高さが
同一に設定された反射防止構造は容易に製造することが
でき、より製造コストを低減できる。Furthermore, an optical element according to a sixth aspect of the present invention is the optical element according to any one of the first to fourth aspects, in which the heights of the convex and concave portions are set to be the same. It was supposed to have been done. In this way, the antireflection structure in which the heights of the convex portions are set to the same can be easily manufactured, and the manufacturing cost can be further reduced.
【0011】[0011]
【発明の実施の形態】以下、図面を参照しながら、本発
明に係る実施の形態の光学素子について説明する。本実
施の形態の光学素子は、例えば、基板10上に受光素子
11がマトリクス状に配列された画像解析装置(図4参
照)であり、その反射防止構造1は、受光素子11を覆
うように基板10上に形成された透光性膜12の表面
に、図1の断面図に示すような凹凸構造を形成すること
により構成されている。図1の反射防止構造1は、入射
面(透光性膜12の表面)に形成されたランダムに設定
されたピッチd1,d2,…,dnを有する凹凸形状に
より構成され、そのピッチは所望の臨界波長以上の光の
入射側及び出射側における一以上の次数の回折光が実質
的にゼロになるように設定されている。ここで、本明細
書において、臨界波長とは、その波長以下において0次
回折光以外の光のエネルギーが増加する臨界的な波長を
いう。このように構成された反射防止構造1は、詳細後
述するように、臨界波長以上の光の反射を防止すること
ができ、かつ臨界波長以下の光Linが入射された場合
における一以上の次数の高次回折光Lnの急激な発生を
防止することができる。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, optical elements according to embodiments of the present invention will be described with reference to the drawings. The optical element of the present embodiment is, for example, an image analysis device (see FIG. 4) in which the light receiving elements 11 are arranged in a matrix on the substrate 10, and the antireflection structure 1 covers the light receiving elements 11. It is configured by forming a concavo-convex structure as shown in the cross-sectional view of FIG. 1 on the surface of the transparent film 12 formed on the substrate 10. The antireflection structure 1 of FIG. 1 is formed by an uneven shape having randomly set pitches d1, d2, ..., dn formed on the incident surface (the surface of the transparent film 12), and the pitch is desired. It is set so that the diffracted light of one or more orders on the incident side and the emitting side of the light having the critical wavelength or more becomes substantially zero. Here, in the present specification, the critical wavelength means a critical wavelength at which the energy of light other than the 0th-order diffracted light increases below the wavelength. As will be described later in detail, the antireflection structure 1 configured in this manner can prevent reflection of light having a critical wavelength or more and has a degree of one or more orders when light Lin having a wavelength of the critical wavelength or less is incident. It is possible to prevent the high-order diffracted light Ln from being suddenly generated.
【0012】尚、実施の形態の反射防止構造1におい
て、凹凸形状のピッチは、後で具体例を用いて説明する
ように、所望の臨界波長をλc、入射側媒体の屈折率を
n1、出射側媒体の屈折率をn2及び入射角θに基づい
て、要求される反射防止特性を満足させる(反射を実質
的にゼロとする)ようにシミュレーションをすることに
より容易に設定することができる。以下、具体的な例を
示しながら、本実施の形態における凹凸構造のランダム
ピッチの設定方法と、ランダムに設定された反射防止構
造による効果について説明する。In the antireflection structure 1 of the embodiment, the pitch of the uneven shape has a desired critical wavelength λc, the refractive index of the medium on the incident side is n 1 , as will be described later with reference to a specific example. It is possible to easily set the refractive index of the medium on the output side by performing a simulation based on n 2 and the incident angle θ so as to satisfy the required antireflection characteristics (make the reflection substantially zero). . Hereinafter, the method of setting the random pitch of the concavo-convex structure according to the present embodiment and the effects of the randomly set antireflection structure will be described with reference to specific examples.
【0013】(ランダムピッチ設定方法)本方法では、
まず、最初に、次の式(2)を用いて、ピッチの平均値
daを初期設定する。
da=λc/n2…(2)
ここで、λcは臨界波長であり、その臨界波長以上の光
の反射は実質的にゼロとなる。また、n2は出射側媒体
の屈折率である。尚、主として、入射角θで入射される
光を取り扱う光学素子においては、上記式(2)に代え
て、次の式(3)を用いてピッチの平均値daを初期設
定してもよい。
da=λc/(n1sinθ+n2)…(3)
ここで、n1は入射側媒体の屈折率である。(Random pitch setting method) In this method,
First, the average value da of the pitch is initially set using the following equation (2). da = λc / n 2 (2) Here, λc is a critical wavelength, and reflection of light having a wavelength equal to or longer than the critical wavelength is substantially zero. Further, n 2 is the refractive index of the medium on the output side. In an optical element that mainly handles light incident at an incident angle θ, the average value da of the pitch may be initialized using the following expression (3) instead of the above expression (2). da = λc / (n 1 sin θ + n 2 ) ... (3) Here, n 1 is the refractive index of the incident side medium.
【0014】次に、ピッチの平均値daを中心として初
期設定された範囲Δd内において、例えば、コンピュー
ター上で乱数を発生させることにより各ピッチをランダ
ムに設定する。そして、ランダムに設定されたピッチに
基づいて透過(又は反射)0次回折効率と透過高次(一
次以上)光の回折効率とをコンピューター上でシミュレ
ーションすることにより求める。尚、このシミュレーシ
ョンでは、凹凸形状のピッチが光の波長と同程度である
ことから、光を電磁波として取り扱うベクトル回折理論
を用いる必要があり、例えば、“市川裕之,光学,27
(11),p647−654,(1998)”及び
“H.Ichikawa,J.Opt.Soc.Am.
A,15(1),152−157,(1998)”に開
示された時間領域差分法(FDTD法)により精度よく
シミュレーションすることができる。Next, each pitch is randomly set by, for example, generating a random number on a computer within a range Δd initially set around the average value da of pitches. Then, the transmission (or reflection) 0th-order diffraction efficiency and the transmission high-order (first or higher order) light diffraction efficiency are obtained by simulating on a computer based on a randomly set pitch. In this simulation, since the pitch of the uneven shape is about the same as the wavelength of light, it is necessary to use the vector diffraction theory that treats light as an electromagnetic wave. For example, “Hiroyuki Ichikawa, Optics, 27
(11), p647-654, (1998) "and" H. Ichikawa, J .; Opt. Soc. Am.
A, 15 (1), 152-157, (1998) ”, and a time domain difference method (FDTD method) enables accurate simulation.
【0015】以上のようにして、求めた透過(又は反
射)0次回折効率と透過高次(一次以上)光の回折効率
とが、要求特性を満足する場合は、その基にしたランダ
ムに設定されたピッチの凹凸形状を透過膜12の表面に
形成する。また、透過(又は反射)0次回折効率と透過
高次(一次以上)光の回折効率の双方またはいずれか一
方が要求特性を満足しない場合には、ピッチの平均値d
aとピッチの設定範囲の双方又はいずれか一方を変更し
て、再度シミュレーションを実行して要求特性を満足す
るか否かを評価する。この際、ピッチの平均値daとそ
の設定範囲の変更は、次のようにして行うことができ
る。When the transmission (or reflection) zero-order diffraction efficiency and the transmission high-order (first or higher) diffraction efficiency thus obtained satisfy the required characteristics, they are randomly set based on the required characteristics. An uneven shape having the formed pitch is formed on the surface of the permeable film 12. Further, when the transmission (or reflection) zero-order diffraction efficiency and / or the transmission high-order (first or higher) diffraction efficiency do not satisfy the required characteristics, the average pitch d
Either or both of a and the pitch setting range are changed, and the simulation is executed again to evaluate whether or not the required characteristics are satisfied. At this time, the average value da of the pitch and the setting range thereof can be changed as follows.
【0016】例えば、臨界波長以上(特に、臨界波長以
上でかつその近傍)において、透過0次回折効率が要求
特性を満足していない場合は、ピッチの平均値を式
(2)に基づいて設定されたdaより小さい値に変更す
る。透過高次光の回折効率が要求特性を満足しない場合
(例えば、臨界波長以下において高次光のピークが顕著
に表われる場合等)には、ピッチの設定範囲を広くして
再度シミュレーションを実行する。以上のシミュレーシ
ョンを、要求性能とシミュレーションにより得られる特
性との差が順次減少するようにパラメータを変更してコ
ンピューター上で繰り返すことにより、要求特性に対し
て最適なランダムピッチを設定することができる。For example, when the transmission zeroth-order diffraction efficiency does not satisfy the required characteristics above the critical wavelength (particularly above the critical wavelength and in the vicinity thereof), the average value of the pitch is set based on the equation (2). The value is changed to a value smaller than da. When the diffraction efficiency of the transmitted high-order light does not satisfy the required characteristics (for example, when the peak of the higher-order light is conspicuous below the critical wavelength), the pitch setting range is widened and the simulation is performed again. By repeating the above simulation on the computer by changing the parameters so that the difference between the required performance and the characteristic obtained by the simulation is successively reduced, the optimum random pitch can be set for the required characteristic.
【0017】(具体例)図5は、図1に示す断面を有す
る凹凸形状の種々のピッチに対する透過0次回折効率の
波長特性を示すグラフである。本シミュレーションは、
入射側媒体を大気(n1=1)、透過側媒体をシリカガ
ラスとし、入射面に対して光が垂直に入射する場合を想
定して計算した。尚、この計算では、n2として用いた
シリカガラスの屈折率は波長依存性も考慮した。参考と
して示すと、シリカガラスの屈折率は、400nmの波
長の光に対しては約1.47であり、800nmの波長
の光に対しては約1.45である。また、この具体例の
凹凸形状は一端から他端に至る峰状(三角波格子)と仮
定し、格子の長手方向に対して垂直な断面における断面
形状は常に一定とした。さらに、この具体例における凹
凸形状の深さ(凸部の高さ)は、550nmに設定し
た。(Specific Example) FIG. 5 is a graph showing the wavelength characteristics of the transmission zero-order diffraction efficiency with respect to various pitches of the uneven shape having the cross section shown in FIG. This simulation is
Calculations were made assuming that the incident side medium was the atmosphere (n 1 = 1), the transmitting side medium was silica glass, and light was incident perpendicularly to the incident surface. In this calculation, the wavelength dependence of the refractive index of the silica glass used as n 2 was also taken into consideration. For reference, the refractive index of silica glass is about 1.47 for light with a wavelength of 400 nm and about 1.45 for light with a wavelength of 800 nm. Further, the concavo-convex shape of this specific example is assumed to be a peak shape (triangular wave lattice) from one end to the other end, and the cross-sectional shape in a cross section perpendicular to the longitudinal direction of the lattice is always constant. Further, the depth of the uneven shape (height of the convex portion) in this example was set to 550 nm.
【0018】図5において、25の符号を付して示すグ
ラフは凹凸形状のピッチdを300nm〜360nmの
間でランダムに設定した本発明に係る反射防止構造であ
り、26の符号を付して示すグラフは凹凸形状のピッチ
dを330nm〜360nmの間でランダムに設定した
本発明に係る反射防止構造である。これに対して、21
の符号を付して示すグラフは凹凸形状のピッチdを全て
360nmに設定した従来例に係る一定周期構造の反射
防止構造、23の符号を付して示すグラフは凹凸形状の
ピッチdを全て330nmに設定した従来例に係る一定
周期構造の反射防止構造、24の符号を付して示すグラ
フは凹凸形状のピッチdを全て300nmに設定した従
来例に係る一定周期構造の反射防止構造である。In FIG. 5, the graph indicated by the reference numeral 25 is the antireflection structure according to the present invention in which the pitch d of the concavo-convex shape is randomly set between 300 nm and 360 nm, and the reference numeral 26 is added. The graph shown is the antireflection structure according to the present invention in which the pitch d of the uneven shape is randomly set between 330 nm and 360 nm. In contrast, 21
The graph indicated by the reference numeral indicates the antireflection structure of the constant period structure according to the conventional example in which all the pitches d of the uneven shape are set to 360 nm, and the graph indicated by the reference numeral 23 indicates that all the pitch d of the uneven shape is 330 nm. The antireflection structure having a constant period structure according to the conventional example set to No. 4 and the graph denoted by reference numeral 24 are the antireflection structure having the constant period structure according to the related art example in which all pitches d of the concavo-convex shape are set to 300 nm.
【0019】図5から分るように、例えば、グラフ25
の凹凸形状のピッチdを300nm〜360nmの間で
ランダムに設定した本発明に係る反射防止構造は、臨界
波長λcが約485nmであり、同じく臨界波長が約4
85nmであるグラフ22で示す従来例に係る反射防止
構造(凹凸形状のピッチdを全て330nmに設定)と
ほぼ同等の透過0次回折効率が得られる。また、グラフ
26の凹凸形状のピッチdを330nm〜360nmの
間でランダムに設定した本発明に係る反射防止構造(臨
界波長λc:約510nm)は、グラフ22で示す従来
例の臨界波長とグラフ21で示す従来例の臨界波長の間
の臨界波長を有し、その臨界波長以上の波長では規則的
な一定ピッチの凹凸構造による従来例の反射防止構造と
同等の透過0次回折効率が得られることが分る。このよ
うに、本発明に係る反射防止構造は、ランダムに設定す
るピッチの平均値da、範囲Δdを要求特性に基づいて
特定の範囲に設定することにより、透過0次回折効率に
関しては従来の反射防止構造(ピッチが一定値に設定さ
れたもの)と同等の特性が得られる。As can be seen from FIG. 5, for example, graph 25
In the antireflection structure according to the present invention, in which the pitch d of the uneven shape is randomly set between 300 nm and 360 nm, the critical wavelength λc is about 485 nm, and the critical wavelength is about 4
A transmission zero-order diffraction efficiency almost equal to that of the antireflection structure according to the conventional example shown by the graph 22 of 85 nm (all pitches d of the concavo-convex shape are set to 330 nm) can be obtained. Further, the antireflection structure (critical wavelength λc: about 510 nm) according to the present invention in which the pitch d of the uneven shape of the graph 26 is randomly set between 330 nm and 360 nm is the critical wavelength of the conventional example shown in the graph 22 and the graph 21. A critical wavelength between the critical wavelengths of the conventional example shown in FIG. 2 and a wavelength equal to or higher than the critical wavelength can obtain the transmission zero-order diffraction efficiency equivalent to that of the conventional antireflection structure due to the irregular structure having a regular constant pitch. I understand. As described above, the antireflection structure according to the present invention sets the average value da of the pitch randomly set and the range Δd in a specific range based on the required characteristics, so that the transmission zero-order diffraction efficiency of the conventional reflection is reduced. The same characteristics as the prevention structure (with the pitch set to a constant value) can be obtained.
【0020】さらに、図5に示すグラフにおいて、臨界
波長以下の0次回折効率について検討すると以下のよう
なことがわかる。例えば、従来の反射防止構造に関する
グラフ21(360nmの一定ピッチ)について見れ
ば、臨界波長(約530nm)以下になると透過0次回
折効率が徐徐に減少した後、480nm付近から増加に
転じ、420nm付近でピークに達してその後、急激に
減少する。従来の反射防止構造において、ピッチを小さ
くした場合の透過0次回折効率は、グラフ22(330
nmの一定ピッチ)及びグラフ23(300nmの一定
ピッチ)に示すように同様のカーブを保ったまま短波長
側に平行移動する。次に、本発明に係る反射防止構造の
グラフ25,26をみると、グラフ25(ピッチ:36
0nm〜300nm)は、グラフ21(360nmの一
定ピッチ)とグラフ23(300nmの一定ピッチ)の
間のほぼ中間に位置し、グラフ26(ピッチ:360n
m〜330nm)は、グラフ21(360nmの一定ピ
ッチ)とグラフ22(330nmの一定ピッチ)の間の
ほぼ中間に位置する。すなわち、本発明に係る反射防止
構造において、所望の波長特性(臨界波長)がピッチの
異なる2つの反射防止構造の2つの波長特性(臨界波
長)の中間的な位置に有る場合には、その2つのピッチ
の範囲内でランダムにピッチを設定することにより、所
望の波長特性を実現することができ、本発明の効果が得
られる。Further, in the graph shown in FIG. 5, the following can be understood by examining the 0th-order diffraction efficiency below the critical wavelength. For example, referring to Graph 21 (constant pitch of 360 nm) related to the conventional antireflection structure, the transmission 0th-order diffraction efficiency gradually decreases at a critical wavelength (about 530 nm) or less, and then increases from about 480 nm to about 420 nm. It peaks at and then decreases sharply. In the conventional antireflection structure, the transmission zero-order diffraction efficiency when the pitch is reduced is shown in graph 22 (330).
(constant pitch of nm) and graph 23 (constant pitch of 300 nm), the parallel curve is moved to the shorter wavelength side while maintaining the same curve. Next, looking at graphs 25 and 26 of the antireflection structure according to the present invention, graph 25 (pitch: 36
0 nm to 300 nm is located approximately in the middle between graph 21 (constant pitch of 360 nm) and graph 23 (constant pitch of 300 nm), and graph 26 (pitch: 360 n).
m to 330 nm) is located approximately in the middle between the graph 21 (constant pitch of 360 nm) and the graph 22 (constant pitch of 330 nm). That is, in the antireflection structure according to the present invention, when the desired wavelength characteristic (critical wavelength) is located at an intermediate position between the two wavelength characteristics (critical wavelength) of the two antireflection structures having different pitches, By setting the pitches randomly within the range of one pitch, desired wavelength characteristics can be realized, and the effect of the present invention can be obtained.
【0021】また、図6は本発明に係る反射防止構造の
透過高次光の回折効率の回折角依存性を示すグラフであ
り、波長を臨界波長以下の400nmとした時のシミュ
レーション結果である。図6において、グラフ35は凹
凸形状のピッチdを300nm〜360nmの間でラン
ダムに設定した本発明に係る反射防止構造の透過高次光
の回折効率であり、グラフ36は凹凸形状のピッチdを
330nm〜360nmの間でランダムに設定した本発
明に係る反射防止構造の透過高次光の回折効率である。
尚、図6において、符号31の×印は、凹凸形状のピッ
チdを全て360nmに設定した従来例に係る反射防止
構造における透過一次光のピークであり、符号32の白
抜きの丸印は凹凸形状のピッチdを全て330nmに設
定した従来例に係る反射防止構造における透過一次光の
ピークであり、符号33の黒丸印は凹凸形状のピッチd
を全て300nmに設定した従来例に係る反射防止構造
における透過一次光のピークである。また、符号31,
32,33により示した従来例における高次光のピーク
以外の角度における回折効率は理論的にはゼロである。
尚、図6のグラフ35,36における0°のピークは、
透過0次光のピークである。FIG. 6 is a graph showing the diffraction angle dependence of the diffraction efficiency of the transmitted high-order light of the antireflection structure according to the present invention, which is the simulation result when the wavelength is 400 nm which is less than the critical wavelength. In FIG. 6, a graph 35 is the diffraction efficiency of the transmitted high-order light of the antireflection structure according to the present invention in which the pitch d of the uneven shape is randomly set between 300 nm and 360 nm, and the graph 36 is the pitch d of the uneven shape of 330 nm. It is the diffraction efficiency of transmitted high-order light of the antireflection structure according to the present invention randomly set between 360 nm.
In FIG. 6, the cross mark 31 indicates the peak of the transmitted primary light in the antireflection structure according to the conventional example in which all the pitches d of the uneven shape are set to 360 nm, and the open circle mark 32 indicates the unevenness. It is the peak of the transmitted primary light in the antireflection structure according to the conventional example in which all the pitches d of the shapes are set to 330 nm, and the black circles 33 are the pitches d of the uneven shape.
Is the peak of the transmitted primary light in the antireflection structure according to the conventional example in which all are set to 300 nm. Also, reference numerals 31,
The diffraction efficiency at angles other than the peak of the higher-order light in the conventional example indicated by 32 and 33 is theoretically zero.
The peak at 0 ° in the graphs 35 and 36 of FIG.
It is the peak of the transmitted zero-order light.
【0022】図6に示すように、従来例の反射防止構造
では、臨界波長以下の波長において凹凸形状のピッチに
対応した角度に鋭いピークの高次回折光(一次回折光)
が発生するのに対して、本発明に係る反射防止構造では
特定の角度における高次(一次)回折光の発生が抑制さ
れている。これは、本発明に係る反射防止構造において
は凹凸形状のピッチがランダムに設定されているので、
一定ピッチの従来構造においては特定角度に生じるはず
の高次光のエネルギーが0°〜90°の広い範囲に分散
されるようになり、特定の角度における高次(一次)回
折光の発生が抑制されたことによるものである。As shown in FIG. 6, in the antireflection structure of the conventional example, the high-order diffracted light (first-order diffracted light) having a sharp peak at an angle corresponding to the pitch of the uneven shape at a wavelength equal to or shorter than the critical wavelength.
However, in the antireflection structure according to the present invention, generation of high-order (first-order) diffracted light at a specific angle is suppressed. This is because the pitch of the uneven shape is randomly set in the antireflection structure according to the present invention,
The energy of high-order light, which should occur at a specific angle in the conventional structure with a constant pitch, is dispersed in a wide range of 0 ° to 90 °, and the generation of high-order (first-order) diffracted light at a specific angle is suppressed. This is due to the fact.
【0023】以上、図5及び図6を用いて説明したよう
に、本発明に係る反射防止構造は、従来例の反射防止構
造とほぼ同等の反射防止特性を有する一方、臨界波長以
下の波長の光に対して特定回折角に生じる高次光を抑え
ることができる。したがって、本発明のピッチがランダ
ムに設定された反射防止構造を有する光学素子では、臨
界波長以下における透過側(又は反射側)の高次回折波
が出現を防止でき、高次回折波の出現による光学特性の
悪化を防止できる。また、本発明に係る実施の形態の光
学素子では、反射防止が必要とされる波長に対して余裕
を持って微細な凹凸形状を寸法精度良く形成しなければ
ならないという製造上の制約もなく、製造コストを低減
することができる。As described above with reference to FIGS. 5 and 6, the antireflection structure according to the present invention has almost the same antireflection characteristics as the conventional antireflection structure, but at wavelengths below the critical wavelength. Higher-order light generated at a specific diffraction angle with respect to light can be suppressed. Therefore, in the optical element having the antireflection structure in which the pitch of the present invention is randomly set, the higher-order diffracted wave on the transmission side (or the reflection side) at the critical wavelength or less can be prevented from appearing, and It is possible to prevent deterioration of optical characteristics. Further, in the optical element of the embodiment according to the present invention, there is no manufacturing constraint that a fine concavo-convex shape must be formed with sufficient dimensional accuracy with a margin for a wavelength that requires antireflection, The manufacturing cost can be reduced.
【0024】(変形例)以下、本発明に係る変形例につ
いて説明する。上述の具体例として示した反射防止構造
1では、凹凸構造の凸部の高さは一定としたが、本発明
はこれに限られるものではなく、高さをランダムに設定
しても良い。この場合、図2に示すように各凸部の頂点
の位置は揃えて(頂点が1つの平面上に位置するように
する)、その頂点から谷までの位置をランダムに設定す
るようにしても良いし、谷の位置は揃えて(谷が1つの
平面上に位置するようにする)、その谷から頂点までの
高さをランダムに設定するようにしても良い。さらに、
図3に示すように、谷及び頂点をいずれも揃えることな
く高さをランダムに設定するようにしてもよい。(Modification) A modification according to the present invention will be described below. In the antireflection structure 1 shown as the above-mentioned specific example, the height of the convex portion of the concavo-convex structure is constant, but the present invention is not limited to this, and the height may be set randomly. In this case, as shown in FIG. 2, the positions of the vertices of the respective protrusions are aligned (the vertices are located on one plane), and the positions from the vertices to the valleys are randomly set. Alternatively, the positions of the valleys may be aligned (the valleys may be located on one plane), and the heights from the valleys to the vertices may be set randomly. further,
As shown in FIG. 3, the heights may be set randomly without aligning the valleys and the vertices.
【0025】このように深さをランダムに設定すると、
深さの異なる部分で回折された回折光の位相は異なるの
で高次光の強度がランダムに変化し、臨界波長以下の高
次光のエネルギーをより効果的に分散させることができ
る。When the depth is set randomly in this way,
Since the phases of diffracted light diffracted at different depths are different, the intensity of higher-order light changes randomly, and the energy of higher-order light below the critical wavelength can be more effectively dispersed.
【0026】また、上述した本実施の形態の反射防止構
造の具体例では、三角波格子を用いたが、本発明はこれ
に限られるものではなく、矩形波格子、円錐又は角錐
等、種々の凹凸形状の反射防止構造に適用することがで
きる。例えば、円錐又は角錐の凹凸形状とする場合、具
体例における2次元的なシミュレーションを3次元に拡
張する必要があり、シミュレーションに要する時間は増
加するが、変更できるパラメータが増えるので(例え
ば、一方向のピッチとその方向に直交する方向のピッチ
の2つになる)、より最適なランダムピッチを設定する
ことができ、より効果的に臨界波長以下の高次光のエネ
ルギーを分散させることができる。Further, although the triangular wave grating is used in the specific example of the antireflection structure of the present embodiment described above, the present invention is not limited to this, and various irregularities such as a rectangular wave grating, a cone or a pyramid are used. It can be applied to a shape-shaped antireflection structure. For example, when the conical or pyramidal uneven shape is used, the two-dimensional simulation in the specific example needs to be expanded to three-dimensional, and the time required for the simulation increases, but the number of parameters that can be changed increases (for example, in one direction. 2) and a pitch in a direction orthogonal to that direction), a more optimal random pitch can be set, and the energy of higher-order light below the critical wavelength can be more effectively dispersed.
【0027】さらに、具体例では、入射面に対して垂直
に光が入射する場合について説明したが、本発明はこれ
に限られるものではなく、任意の入射角の光に対して同
様の作用効果が得られる。尚、この場合、式(1)〜
(3)から明らかなように、入射角が大きくなれば臨界
波長は長くなる。Furthermore, in the specific example, the case where light is incident perpendicularly to the incident surface has been described, but the present invention is not limited to this, and the same operational effect is obtained for light having an arbitrary incident angle. Is obtained. In this case, equations (1)-
As is clear from (3), the larger the incident angle, the longer the critical wavelength.
【0028】以上の具体例では、特定の方向(入射面に
対して垂直方向)から入射される光について説明した。
しかしながら、光学素子において特定の方向からの光だ
けを取り扱う素子は少なく、通常はあらゆる方向から入
射される光を処理するように構成される。このような光
学素子においても、当然に具体例で説明した作用効果が
得られるが、かかる光学素子に本発明に係る反射防止構
造を適用した場合さらに以下のような作用効果が得られ
る。In the above specific examples, the light incident from a specific direction (direction perpendicular to the incident surface) has been described.
However, few optical elements handle only light from a particular direction, and are usually configured to process light incident from any direction. In such an optical element, of course, the operation and effect described in the specific example can be obtained, but when the antireflection structure according to the present invention is applied to such an optical element, the following operation and effect can be further obtained.
【0029】すなわち、上述したように入射角が大きく
なれば臨界波長は長い方にシフトし、一定周期の凹凸形
状による反射防止構造では、入射角の大きい光ではより
長い波長域で高次回折光が現れることになる。しかしな
がら、本発明に係るランダムピッチの凹凸形状の反射防
止構造では、臨界波長以下の光において高次回折光の発
生が抑制されることから、入射角の大きい光の高次回折
光の発生が抑制でき、比較的広い入射角度域において特
性劣化のない光学素子を実現できる。That is, as described above, as the incident angle increases, the critical wavelength shifts to the longer side, and in the antireflection structure having the irregular shape with a constant period, the high-order diffracted light is generated in the longer wavelength region for the light with a large incident angle. Will appear. However, in the antireflection structure of the irregular pitch of the random pitch according to the present invention, since the generation of high-order diffracted light in the light of the critical wavelength or less is suppressed, it is possible to suppress the generation of high-order diffracted light of light with a large incident angle, It is possible to realize an optical element without characteristic deterioration in a relatively wide incident angle range.
【0030】以上実施の形態及び変形例では、主とし
て、透過0次回折光の波長依存性に基づいて本発明の効
果を説明したが、透過0次回折光の入射角依存性に着目
すると次のような効果がある。すなわち、従来例の説明
において用いた式(1)d<λ/(n1sinθ+n2)
から明らかなように、一定の波長の光を入射角を徐徐に
大きくして従来の一定ピッチの反射防止構造に入射させ
ると、ある入射角以上になると急激に透過1次光が発生
するようになり、素子の光学特性を悪化させるようにな
る。しかしながら、本発明に係る反射防止構造では、凹
凸形状のピッチをランダムに設定しているので、波長特
性と同様に特定の入射角以上における高次回折光の急激
な発生を抑制できるので、素子の光学特性の急激な悪化
を防止できる。In the above embodiments and modifications, the effect of the present invention has been mainly described based on the wavelength dependence of the transmitted 0th order diffracted light. However, focusing on the incident angle dependence of the transmitted 0th order diffracted light, the following is obtained. effective. That is, equation (1) d <λ / (n 1 sin θ + n 2 ) used in the description of the conventional example
As is clear from the above, when light of a certain wavelength is made to gradually increase the incident angle and is incident on the conventional antireflection structure of a certain pitch, the transmitted primary light is abruptly generated when the incident angle exceeds a certain angle. Therefore, the optical characteristics of the device are deteriorated. However, in the antireflection structure according to the present invention, since the pitch of the concave-convex shape is set at random, it is possible to suppress the abrupt generation of higher-order diffracted light at a specific incident angle or more similarly to the wavelength characteristic, and thus the optical element It is possible to prevent sudden deterioration of characteristics.
【0031】[0031]
【発明の効果】以上、詳細に説明したように、本発明に
係る光学素子は、反射防止構造として用いている凹凸形
状のピッチをランダムにかつ臨界波長以上の光の入射側
及び出射側における一以上の次数の回折光が実質的にゼ
ロになるように設定したので、上記臨界波長以下の光の
高次回折光を抑制することができ、高次回折波による特
性劣化を防止できる。また、凹凸形状の加工精度の許容
範囲を広くできるので、製造コストを低減することが可
能になり、特性劣化のない安価な光学素子を実現でき
る。As described above in detail, in the optical element according to the present invention, the pitch of the uneven shape used as the antireflection structure is randomly arranged on the incident side and the emitting side of light having a critical wavelength or more. Since the diffracted light of the above orders is set to be substantially zero, it is possible to suppress the higher-order diffracted light of the light having the critical wavelength or less and prevent the characteristic deterioration due to the higher-order diffracted waves. Further, since the allowable range of the processing accuracy of the uneven shape can be widened, the manufacturing cost can be reduced, and the inexpensive optical element without the characteristic deterioration can be realized.
【図1】 本発明に係る実施の形態の光学素子の反射防
止構造の構成を示す断面図である。FIG. 1 is a cross-sectional view showing a configuration of an antireflection structure for an optical element according to an embodiment of the present invention.
【図2】 本発明に係る変形例の反射防止構造の構成を
示す断面図である。FIG. 2 is a cross-sectional view showing a configuration of an antireflection structure of a modified example according to the present invention.
【図3】 本発明に係る図2とは異なる変形例の反射防
止構造の構成を示す断面図である。FIG. 3 is a cross-sectional view showing a configuration of an antireflection structure of a modified example different from FIG. 2 according to the present invention.
【図4】 本発明に係る実施の形態の光学素子の構成を
模式的に示す断面図である。FIG. 4 is a sectional view schematically showing a configuration of an optical element according to an embodiment of the present invention.
【図5】 本発明に係る反射防止構造において、ピッチ
を種々の値に設定した場合の通過0次回折効率の波長依
存性を示すグラフである。FIG. 5 is a graph showing the wavelength dependence of the passing zero-order diffraction efficiency when the pitch is set to various values in the antireflection structure according to the present invention.
【図6】 本発明に係る反射防止構造において、ピッチ
を種々の値に設定した場合の通過高次回折効率の入射角
依存性を示すグラフである。FIG. 6 is a graph showing incident angle dependence of passing high-order diffraction efficiency when the pitch is set to various values in the antireflection structure according to the present invention.
【図7】 従来例の反射防止構造の構成を模式的に示す
断面図である。FIG. 7 is a cross-sectional view schematically showing a configuration of a conventional antireflection structure.
1,2,3…反射防止構造、 10…基板、 11…受光素子、 12…透光性膜。 1, 2, 3 ... Anti-reflection structure, 10 ... substrate, 11 ... Light receiving element, 12 ... Translucent film.
Claims (5)
防止構造を有する光学素子であって、該反射防止構造は
入射面に形成された凹凸形状により構成され、上記凹凸
形状のピッチは、ランダムにかつ上記臨界波長以上の光
の入射側及び出射側における0次以外の回折光が実質的
にゼロになるように設定されていることを特徴とする光
学素子。1. An optical element having an antireflection structure for preventing reflection of light having a critical wavelength or more, wherein the antireflection structure is formed by an uneven shape formed on an incident surface, and the pitch of the uneven shape is: An optical element, wherein diffracted light other than the 0th order on the incident side and the emitting side of light having the critical wavelength or more is set to be substantially zero.
に位置する請求項1に記載の光学素子。2. The optical element according to claim 1, wherein the peaks of the convexes and concaves are located on the same plane.
に位置する請求項1又は2に記載の光学素子。3. The optical element according to claim 1, wherein the valleys of the concave and convex portions are located on the same plane.
に設定された請求項1〜3のうちのいずれか1つに記載
の光学素子。4. The optical element according to claim 1, wherein heights of the convexes and concaves of the concave and convex shape are set at random.
定された請求項1〜3のうちのいずれか1つに記載の光
学素子。5. The optical element according to any one of claims 1 to 3, wherein the heights of the convex and concave portions are set to be the same.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001309906A JP2003114316A (en) | 2001-10-05 | 2001-10-05 | Optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001309906A JP2003114316A (en) | 2001-10-05 | 2001-10-05 | Optical element |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003114316A true JP2003114316A (en) | 2003-04-18 |
Family
ID=19128978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001309906A Pending JP2003114316A (en) | 2001-10-05 | 2001-10-05 | Optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003114316A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005316393A (en) * | 2004-03-31 | 2005-11-10 | Canon Inc | Optical element, its manufacturing method and optical appliance using the same |
JP2006100257A (en) * | 2004-09-06 | 2006-04-13 | Fuji Photo Film Co Ltd | Organic electroluminescent element |
JP2006201371A (en) * | 2005-01-19 | 2006-08-03 | Canon Inc | Optical element, optical scanner provided with the same |
JP2007264613A (en) * | 2006-02-28 | 2007-10-11 | Univ Of Tsukuba | Antireflection structure and light emitting element having the antireflection structure |
JP2007304468A (en) * | 2006-05-15 | 2007-11-22 | Matsushita Electric Ind Co Ltd | Anti-reflection structure and optical device having the same |
JP2008066702A (en) * | 2006-08-10 | 2008-03-21 | Matsushita Electric Ind Co Ltd | Solid-state image sensor and camera |
JP2008190979A (en) * | 2007-02-05 | 2008-08-21 | Fujifilm Corp | Electromagnetic analysis apparatus and program thereof |
US7535509B2 (en) | 2003-08-22 | 2009-05-19 | Konica Minolta Opto, Inc. | Transparent member in a solid-state image pick-up apparatus supported through use of micro-lenses larger in size than pixel micro-lenses and a method for producing the micro-lenses and transparent member |
JP2010152411A (en) * | 2010-04-05 | 2010-07-08 | Sony Corp | Optical element and its manufacturing method, and replicate substrate for manufacturing optical element and its manufacturing method |
JP2010250349A (en) * | 2004-03-31 | 2010-11-04 | Canon Inc | Optical element and optical scanner using the same |
JP2011059180A (en) * | 2009-09-07 | 2011-03-24 | Olympus Corp | Optical element, method for manufacturing the same and fine irregularity structure |
US8023190B2 (en) | 2006-05-15 | 2011-09-20 | Panasonic Corporation | Antireflection structure and optical device including the same |
US20120243097A1 (en) * | 2011-03-23 | 2012-09-27 | Sony Corporation | Optical element, optical system, imaging apparatus, optical instrument, and stamper |
WO2012160662A1 (en) * | 2011-05-25 | 2012-11-29 | 株式会社日立製作所 | Solar cell |
US8665688B2 (en) | 2007-01-18 | 2014-03-04 | Sony Corporation | Optical device, method of manufacturing the same, replica substrate for producing optical device, and method of producing the same |
-
2001
- 2001-10-05 JP JP2001309906A patent/JP2003114316A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7535509B2 (en) | 2003-08-22 | 2009-05-19 | Konica Minolta Opto, Inc. | Transparent member in a solid-state image pick-up apparatus supported through use of micro-lenses larger in size than pixel micro-lenses and a method for producing the micro-lenses and transparent member |
JP2005316393A (en) * | 2004-03-31 | 2005-11-10 | Canon Inc | Optical element, its manufacturing method and optical appliance using the same |
JP2010250349A (en) * | 2004-03-31 | 2010-11-04 | Canon Inc | Optical element and optical scanner using the same |
JP2006100257A (en) * | 2004-09-06 | 2006-04-13 | Fuji Photo Film Co Ltd | Organic electroluminescent element |
JP2006201371A (en) * | 2005-01-19 | 2006-08-03 | Canon Inc | Optical element, optical scanner provided with the same |
US7362487B2 (en) | 2005-01-19 | 2008-04-22 | Canon Kabushiki Kaisha | Optical element and optical scanning device using the same |
JP2007264613A (en) * | 2006-02-28 | 2007-10-11 | Univ Of Tsukuba | Antireflection structure and light emitting element having the antireflection structure |
US7957064B2 (en) | 2006-05-15 | 2011-06-07 | Panasonic Corporation | Antireflection structure and optical device including the same |
JP2007304468A (en) * | 2006-05-15 | 2007-11-22 | Matsushita Electric Ind Co Ltd | Anti-reflection structure and optical device having the same |
US8259394B2 (en) | 2006-05-15 | 2012-09-04 | Panasonic Corporation | Antireflection structure and optical device including the same |
US8023190B2 (en) | 2006-05-15 | 2011-09-20 | Panasonic Corporation | Antireflection structure and optical device including the same |
JP2008066702A (en) * | 2006-08-10 | 2008-03-21 | Matsushita Electric Ind Co Ltd | Solid-state image sensor and camera |
US8665688B2 (en) | 2007-01-18 | 2014-03-04 | Sony Corporation | Optical device, method of manufacturing the same, replica substrate for producing optical device, and method of producing the same |
JP2008190979A (en) * | 2007-02-05 | 2008-08-21 | Fujifilm Corp | Electromagnetic analysis apparatus and program thereof |
JP2011059180A (en) * | 2009-09-07 | 2011-03-24 | Olympus Corp | Optical element, method for manufacturing the same and fine irregularity structure |
JP2010152411A (en) * | 2010-04-05 | 2010-07-08 | Sony Corp | Optical element and its manufacturing method, and replicate substrate for manufacturing optical element and its manufacturing method |
US20120243097A1 (en) * | 2011-03-23 | 2012-09-27 | Sony Corporation | Optical element, optical system, imaging apparatus, optical instrument, and stamper |
JP2012203018A (en) * | 2011-03-23 | 2012-10-22 | Sony Corp | Optical element, optical system, imaging apparatus, optical equipment, and master disk |
US9945984B2 (en) * | 2011-03-23 | 2018-04-17 | Sony Corporation | Optical element, optical system, imaging apparatus, optical instrument, and stamper |
WO2012160662A1 (en) * | 2011-05-25 | 2012-11-29 | 株式会社日立製作所 | Solar cell |
CN103548149A (en) * | 2011-05-25 | 2014-01-29 | 株式会社日立制作所 | Solar battery |
JP5808400B2 (en) * | 2011-05-25 | 2015-11-10 | 株式会社日立製作所 | Solar cell |
US9257583B2 (en) | 2011-05-25 | 2016-02-09 | Hitachi, Ltd. | Solar cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2003114316A (en) | Optical element | |
US10267956B2 (en) | Multi-wavelength optical dielectric metasurfaces | |
US8430539B2 (en) | Sheet and light emitting device | |
JP4870195B2 (en) | Light emitting device | |
JP4228058B2 (en) | Colored body and method for producing the same | |
US9726794B2 (en) | High index contrast grating structure for light manipulation and related method | |
JP5658569B2 (en) | Sheet and light emitting device | |
JP2023113622A (en) | Depth-modulated slanted gratings using gray-tone lithography and slant etch | |
WO2016168173A1 (en) | Multi-wavelength optical dielectric metasurfaces | |
JP2009134287A (en) | Diffractive optical element, manufacturing method thereof, and laser processing method | |
CN1363048A (en) | Broadband grid polarizer for the visible spectrum | |
JP2011107195A (en) | Optical element, method of manufacturing the same, minutely rugged structure, and molding die | |
TWI751307B (en) | Diffraction optics | |
JP2010169722A (en) | Method of manufacturing optical element, and optical element | |
US8338802B2 (en) | Terahertz radiation anti-reflection devices and methods for handling terahertz radiation | |
JP2004061905A (en) | Optical element and device using the optical element | |
JP2014092730A (en) | Diffraction grating and optical device using the same | |
JP2004085831A (en) | Fine grating and manufacturing method thereof | |
JP2015038579A (en) | Optical element, optical system, imaging device, optical apparatus, and master and method for manufacturing the same | |
CN109212641B (en) | A phase diffraction grating | |
JP7238252B2 (en) | Diffractive optical element, light irradiation device | |
JP4238296B2 (en) | Diffractive optical element | |
JP2005084485A (en) | Diffraction optical element | |
KR101079415B1 (en) | Semiconductor light-emitting device and fabrication method thereof | |
JP4178583B2 (en) | Anti-reflection coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20031031 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20031210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040204 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050111 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050621 |