JP2011059180A - Optical element, method for manufacturing the same and fine irregularity structure - Google Patents

Optical element, method for manufacturing the same and fine irregularity structure Download PDF

Info

Publication number
JP2011059180A
JP2011059180A JP2009205925A JP2009205925A JP2011059180A JP 2011059180 A JP2011059180 A JP 2011059180A JP 2009205925 A JP2009205925 A JP 2009205925A JP 2009205925 A JP2009205925 A JP 2009205925A JP 2011059180 A JP2011059180 A JP 2011059180A
Authority
JP
Japan
Prior art keywords
convex
optical element
fine concavo
convex structure
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009205925A
Other languages
Japanese (ja)
Other versions
JP5484837B2 (en
Inventor
Takeshi Hidaka
猛 日▲高▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2009205925A priority Critical patent/JP5484837B2/en
Publication of JP2011059180A publication Critical patent/JP2011059180A/en
Application granted granted Critical
Publication of JP5484837B2 publication Critical patent/JP5484837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce deformation and breakage of a fine irregularity structure by external force, contact or the like, and to prevent deterioration of optical performance such as reflection preventing effect. <P>SOLUTION: The fine irregularity structure 8 wherein recessed parts 5 are disposed to be enclosed by a ridge line part 3 continued in a net shape formed by top parts 2 of projecting parts 1 is formed along the surface of an optical element. A cross section of the projecting part 1 presents a recessed curve in both width direction so that the width Wh of the projecting part increases in the depth direction from the ridge line part 3 (projecting part 2). Since the projecting parts 1 are continued in a net shape, strength to deformation by external force and contact is high, a flat surface does not exist between recessed parts 5 and a satisfactory reflection preventing effect is obtained. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光学素子および光学素子の製造方法ならびに微細凹凸構造に関する。   The present invention relates to an optical element, a method for manufacturing the optical element, and a fine uneven structure.

光学素子を用いて構成される光学系では、個々の光学素子の光学機能面における入射光の反射は、入射光量の損失や、反射光の予期し得ない散乱による光学性能の低下等の要因となり好ましくない。
そこで、従来ではレンズ等の光学素子の表面に反射防止コーティングが行なわれていた。
In an optical system composed of optical elements, the reflection of incident light on the optical function surface of each optical element causes a loss of the incident light quantity and a decrease in optical performance due to unexpected scattering of the reflected light. It is not preferable.
Therefore, conventionally, an antireflection coating has been applied to the surface of an optical element such as a lens.

そして近年では、反射防止コーティングの代わりに、広い波長帯域および広範囲の入射角度での光の反射抑制が可能、光学素子との一体化が可能、等の種々の利点を有する表面無反射構造が提案されている。   In recent years, instead of anti-reflection coatings, surface non-reflection structures with various advantages such as the ability to suppress reflection of light in a wide wavelength band and a wide range of incident angles and integration with optical elements have been proposed. Has been.

この表面無反射構造、すなわち反射防止構造は、光学素子の光学機能面に入射光の波長以下の微細な凹凸を形成することによって実現されている。   This surface non-reflective structure, that is, an antireflection structure is realized by forming fine irregularities having a wavelength equal to or less than the wavelength of incident light on the optical function surface of the optical element.

例えば特許第4197100号公報においては、基材表面に反射防止構造である微細凹凸形状が形成されており、それぞれが孤立した凸部の最凸部の山形状を最凹部の谷形状よりも尖った形状にして反射防止性能を向上させている。   For example, in Japanese Patent No. 4197100, a fine concavo-convex shape, which is an antireflection structure, is formed on the surface of a base material, and the peak shape of the convex portion of each isolated convex portion is sharper than the valley shape of the concave portion. Anti-reflection performance is improved by shape.

特許第4197100号公報Japanese Patent No. 4197100

しかしながら、上述の従来技術では以下の技術的課題が残されていた。
すなわち、反射防止構造体として基材表面にそれぞれが独立した凸部を形成している光学素子においては、物体に対する接触等により反射防止構造体の微細な凸部が倒れるように変形したり、破損することにより反射防止効果等の光学性能が劣化してしまう場合がある。
However, the following technical problems remain in the above-described conventional technology.
In other words, in an optical element in which each convex surface is formed on the substrate surface as an antireflection structure, it is deformed so that the fine convex portion of the antireflection structure collapses due to contact with an object or the like. As a result, the optical performance such as the antireflection effect may be deteriorated.

本発明の目的は、外力や接触等による微細凹凸構造の変形や破損を低減し、反射防止効果等の光学性能の劣化を防止することが可能な技術を提供することにある。   An object of the present invention is to provide a technique capable of reducing deformation and breakage of a fine concavo-convex structure due to external force, contact, etc., and preventing deterioration of optical performance such as antireflection effect.

本発明の第1の観点は、その稜線が網目状に連続する凸部と、前記凸部に囲まれた複数の凹部とを含み、隣り合う複数の前記凹部の各々の中心部を通る断面における前記凸部の幅が前記凹部の深さ方向に曲線的に増加している微細凹凸構造を有する光学素子を提供する。   A first aspect of the present invention includes a convex portion whose ridge line is continuous in a mesh shape, and a plurality of concave portions surrounded by the convex portion, in a cross section passing through the central portion of each of the plurality of adjacent concave portions. Provided is an optical element having a fine concavo-convex structure in which the width of the convex portion is curvedly increased in the depth direction of the concave portion.

本発明の第2の観点は、光学素子の表面に、稜線が網目状に連続する凸部に囲まれた複数の凹部を含む微細凹凸構造を形成する光学素子の製造方法を提供する。   According to a second aspect of the present invention, there is provided an optical element manufacturing method for forming a fine concavo-convex structure including a plurality of concave portions surrounded by convex portions having ridge lines continuous in a mesh shape on the surface of the optical element.

本発明の第3の観点は、その稜線が網目状に連続する凸部と、前記凸部に囲まれた複数の凹部とを含み、隣り合う複数の前記凹部の各々の中心部を通る断面における前記凸部の幅が前記凹部の深さ方向に曲線的に増加している微細凹凸構造を提供する。   A third aspect of the present invention includes a convex portion whose ridgeline is continuous in a mesh shape and a plurality of concave portions surrounded by the convex portion, in a cross section passing through the central portion of each of the plurality of adjacent concave portions. Provided is a fine concavo-convex structure in which the width of the convex portion is curvilinearly increased in the depth direction of the concave portion.

本発明によれば、外力や接触等による微細凹凸構造の変形や破損を低減し、反射防止効果等の光学性能の劣化を防止することが可能な技術を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the technique which can reduce the deformation | transformation and damage of the fine concavo-convex structure by external force, a contact, etc., and can prevent deterioration of optical performance, such as an antireflection effect, can be provided.

本発明の一実施の形態である微細凹凸構造の構成の一例を示す略平面図である。It is a schematic plan view which shows an example of the structure of the fine concavo-convex structure which is one embodiment of the present invention. 本発明の一実施の形態である微細凹凸構造の構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the fine concavo-convex structure which is one embodiment of this invention. 本発明の一実施の形態である微細凹凸構造の凹凸部分を拡大して例示した断面図である。It is sectional drawing which expanded and illustrated the uneven | corrugated | grooved part of the fine concavo-convex structure which is one embodiment of this invention. 本発明の一実施の形態である微細凹凸構造における凹凸部分の形状の定義例を示す概念図である。It is a conceptual diagram which shows the example of a definition of the shape of the uneven | corrugated | grooved part in the fine concavo-convex structure which is one embodiment of this invention. 本発明の一実施の形態である微細凹凸構造を備えた光学素子の一例を示す斜視図である。It is a perspective view which shows an example of the optical element provided with the fine grooving | roughness structure which is one embodiment of this invention. 本発明の他実施の形態である微細凹凸構造を備えた光学素子の構成例を示す斜視図である。It is a perspective view which shows the structural example of the optical element provided with the fine concavo-convex structure which is other embodiment of this invention. 本発明の一実施の形態である微細凹凸構造を備えた光学素子の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the optical element provided with the fine concavo-convex structure which is one embodiment of this invention. 本発明の一実施の形態である微細凹凸構造の凸部の変形例を示す部分断面図である。It is a fragmentary sectional view showing the modification of the convex part of the fine concavo-convex structure which is one embodiment of the present invention.

本実施の形態の第1態様では、一例として、基材表面に微細な凹凸形状が形成された光学素子において、凸部が連続的に形成され、隣接する凹部の中心線を通る断面において、凹部中心部の隣り合う距離最大部の最大値が可視光波長よりも小さく、かつ該凸部幅が深さ方向に曲線的に増加する形状の微細凹凸構造を有する構成とする。   In the first aspect of the present embodiment, as an example, in an optical element in which a fine concavo-convex shape is formed on the surface of a substrate, a convex portion is continuously formed, and in a cross section passing through the center line of the adjacent concave portion, the concave portion The maximum value of the distance maximum portion adjacent to the central portion is smaller than the visible light wavelength, and the convex-concave structure has a fine concavo-convex structure in which the convex portion width increases in a depth direction.

この第1態様に係る光学素子においては、凸部が連続的に形成され、隣接する凹部の中心線を通る断面において、凹部中心部の隣り合う距離最大部の最大値が可視光波長よりも小さく、かつ該凸部幅が深さ方向に曲線的に増加して形成されている。   In the optical element according to the first aspect, the convex portions are continuously formed, and the maximum value of the adjacent distance maximum portions of the central portions of the concave portions is smaller than the visible light wavelength in a cross section passing through the center line of the adjacent concave portions. In addition, the convex portion width is formed to increase in a curve in the depth direction.

このような微細凹凸構造を表面に形成した光学素子においては、入射光に対する反射率を効果的に低減でき、かつ凸部の稜線が連続した形状であるため強度が向上することにより、外力や接触等による微細凹凸構造の破損を低減することが可能となる。   In an optical element having such a fine concavo-convex structure formed on the surface, the reflectance with respect to incident light can be effectively reduced, and the ridge line of the convex portion is a continuous shape. It is possible to reduce the breakage of the fine concavo-convex structure due to the like.

第2態様では、第1態様に記載の光学素子において、隣接する凹部の中心線を通る断面において、凹部深さの1/2の位置における凹部幅が、凸部高さの1/2の位置における凸部幅よりも小さく形成されている。   According to the second aspect, in the optical element according to the first aspect, in the cross section passing through the center line of the adjacent concave portion, the concave portion width at a position that is ½ of the concave portion depth is a position that is ½ of the convex portion height. Is formed smaller than the width of the convex portion.

この第2の態様に係る光学素子においては、隣接する凹部の中心線を通る断面において、凹部深さの1/2の位置における凹部幅が、凸部高さの1/2の位置における凸部幅よりも小さく形成されている。   In the optical element according to the second aspect, in the cross section passing through the center line of the adjacent recess, the recess width at the position of 1/2 of the recess depth is the protrusion at the position of 1/2 of the protrusion height. It is formed smaller than the width.

このような微細凹凸構造を表面に形成したことにより、入射光に対する光学面での反射光をさらに均一に低減することが可能になるとともに、さらに凸部の強度が向上することにより接触等による構造体の破損を低減することが可能な光学素子となる。   By forming such a fine concavo-convex structure on the surface, it becomes possible to further uniformly reduce the reflected light on the optical surface with respect to incident light, and further, the structure by contact etc. by improving the strength of the convex part An optical element capable of reducing body breakage is obtained.

第3態様では、第1態様または第2態様に記載の光学素子において、基材の表面形状が曲面である光学素子を提供する。
この第3態様に係る光学素子においては、曲面形状の光学素子基材の表面に前記微細凹凸形状が形成されている。
According to a third aspect, there is provided an optical element according to the first aspect or the second aspect, wherein the surface shape of the substrate is a curved surface.
In the optical element according to the third aspect, the fine concavo-convex shape is formed on the surface of the curved optical element substrate.

このように、表面に微細凹凸構造を形成した反射防止光学素子において、曲面形状の光学素子基材の表面に微細凹凸構造を形成させることにより、入射光に対する反射光を低減することが可能で、かつ凸部形状の強度が向上することにより接触等による構造体の破損を低減することが可能となり、様々な用途の光学系への適応が可能な光学素子となる。   In this way, in the antireflection optical element having a fine concavo-convex structure formed on the surface, it is possible to reduce reflected light with respect to incident light by forming the fine concavo-convex structure on the surface of the curved optical element substrate. In addition, since the strength of the convex shape is improved, damage to the structure due to contact or the like can be reduced, and the optical element can be applied to optical systems for various applications.

以下、図面を参照しながら、本発明の実施の形態について詳細に説明する。
(実施の形態1)
図1は、本発明の一実施の形態である微細凹凸構造の構成の一例を示す略平面図である。
図2は、本発明の一実施の形態である微細凹凸構造の構成の一例を示す断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(Embodiment 1)
FIG. 1 is a schematic plan view showing an example of the configuration of a fine relief structure according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing an example of the configuration of a fine concavo-convex structure according to an embodiment of the present invention.

図3は、本発明の一実施の形態である微細凹凸構造の凹凸部分を拡大して例示した断面図である。
図4は、本発明の一実施の形態である微細凹凸構造における凹凸部分の形状の定義例を示す概念図である。
図5は、本発明の一実施の形態である微細凹凸構造を備えた光学素子の一例を示す斜視図である。
FIG. 3 is an enlarged cross-sectional view illustrating an uneven portion of a fine uneven structure according to an embodiment of the present invention.
FIG. 4 is a conceptual diagram showing a definition example of the shape of the uneven portion in the fine uneven structure according to the embodiment of the present invention.
FIG. 5 is a perspective view showing an example of an optical element having a fine relief structure according to an embodiment of the present invention.

なお、本実施の形態では、各図において、互いに直交するX方向、Y方向、Z方向、は図示のとおりとする。   In the present embodiment, in each drawing, the X direction, the Y direction, and the Z direction orthogonal to each other are as illustrated.

(構成)
図1は基板上に形成された微細凹凸構造8(微細凹凸構造)を上面から見た図であり、図2は図1の線A−A’部分の断面図を示している。
本実施の形態の微細凹凸構造8は、凸頂部2を連ねた稜線部3(稜線部)に沿って網目状に連続する凸部1(凸部)に取り囲まれるように複数の凹部5(凹部)が配列された構成となっている。
(Constitution)
FIG. 1 is a top view of a fine concavo-convex structure 8 (fine concavo-convex structure) formed on a substrate, and FIG. 2 is a cross-sectional view taken along line AA ′ of FIG.
The fine concavo-convex structure 8 according to the present embodiment includes a plurality of concave portions 5 (concave portions) so as to be surrounded by convex portions 1 (convex portions) that are continuous in a mesh shape along the ridge line portions 3 (ridge line portions) connecting the convex top portions 2. ) Are arranged.

たとえば、微細凹凸構造8が配置形成される後述のプリズム20のような光学素子の光学面が平面の場合には、当該光学面に平行なX−Y平面が凹部5の配列面であり、凹部5の深さ方向(すなわち光学面の法線方向)がZ方向である。   For example, when the optical surface of an optical element such as a prism 20 described later on which the fine concavo-convex structure 8 is arranged and formed is a flat surface, an XY plane parallel to the optical surface is an array surface of the concave portions 5. The depth direction of 5 (that is, the normal direction of the optical surface) is the Z direction.

本実施の形態の微細凹凸構造8の場合、凸部1の稜線部3から分かれる稜曲面4(すなわち凹部5の内周面7)は、外側、すなわち凹部5の側に凸となっており、凸部1の断面の幅寸法が凹部5の深さ方向に曲線的に増加している。
すなわち、連続した凸部1に囲まれた凹部5の断面形状は、たとえば、凹底部6に向かって先細りの略ロート形を呈している。
In the case of the fine concavo-convex structure 8 of the present embodiment, the ridge curved surface 4 (that is, the inner peripheral surface 7 of the concave portion 5) separated from the ridge line portion 3 of the convex portion 1 is convex to the outside, that is, the concave portion 5 side. The width dimension of the cross section of the convex portion 1 increases in a curved manner in the depth direction of the concave portion 5.
That is, the cross-sectional shape of the concave portion 5 surrounded by the continuous convex portion 1 has, for example, a substantially funnel shape that tapers toward the concave bottom portion 6.

このように、本実施の形態の微細凹凸構造8は、単に配列面であるX−Y平面に穴を離散的に配列形成した構造とは全く異なり、隣り合う凹部5と凹部5の境界部にはX−Y平面に平行な平坦部は存在せず、凸部1の凸頂部2を連ねて網目状に連続する稜線部3を境に隣り合う凹部5の内部に落ち込む稜曲面4が存在するだけである。そして、この凸部1の稜曲面4が、同時に凹部5の内周面7となる構造である。   As described above, the fine concavo-convex structure 8 of the present embodiment is completely different from the structure in which the holes are discretely formed on the XY plane which is the arrangement surface, and is located at the boundary between the adjacent concave portions 5 and the concave portions 5. There is no flat part parallel to the XY plane, and there is a ridged curved surface 4 that falls into the inside of the concave part 5 adjacent to the ridgeline part 3 that is continuous in a mesh shape connecting the convex top parts 2 of the convex part 1. Only. And the ridge curved surface 4 of this convex part 1 is the structure used as the internal peripheral surface 7 of the recessed part 5 simultaneously.

そして、微細凹凸構造8が配置される光学面が平面の場合には、微細凹凸構造8の稜線部3の包絡面が平面となり、光学面が曲面の場合には、微細凹凸構造8の稜線部3の包絡面が当該曲面となる。
このため、本実施の形態の微細凹凸構造8では、凹部5の間に平坦部が存在することに起因する反射防止効果の低下は生じない。
When the optical surface on which the fine concavo-convex structure 8 is arranged is a flat surface, the envelope surface of the ridge line portion 3 of the fine concavo-convex structure 8 is a flat surface, and when the optical surface is a curved surface, the ridge line portion of the fine concavo-convex structure 8 is formed. The envelope surface of 3 is the curved surface.
For this reason, in the fine concavo-convex structure 8 of this Embodiment, the fall of the antireflection effect resulting from a flat part existing between the recessed parts 5 does not arise.

ここで、図3を参照して、本実施の形態の微細凹凸構造8の形状を特徴付ける各種寸法の一例について説明する。
図3では、凹部幅Wdおよび凸部幅Whの測定位置決める時の基準となる凹部深さDおよび凸部高さHが示されている。
Here, with reference to FIG. 3, an example of various dimensions characterizing the shape of the fine relief structure 8 of the present embodiment will be described.
In FIG. 3, the concave portion depth D and the convex portion height H, which are the reference when measuring and positioning the concave portion width Wd and the convex portion width Wh, are shown.

凸頂部2から凹底部6までのZ方向の距離が、凸部1の凸部高さHであり、同時に凹部5の凹部深さDであり、構造的に両者は等しい。
また、凹部5の中心(本実施の形態での正確な定義は後述する)を通り、Z方向に平行な線が、凹部5の中心線5cである。
The distance in the Z direction from the convex top part 2 to the concave bottom part 6 is the convex part height H of the convex part 1 and at the same time the concave part depth D of the concave part 5, both of which are structurally equal.
A line passing through the center of the recess 5 (the exact definition in this embodiment will be described later) and parallel to the Z direction is the center line 5 c of the recess 5.

そして、隣り合う個々の凹部5の中心線5cを含む断面が、線A−A’の断面である。
なお、図1の例では、線A−A’は直線であるが、複数の凹部5の各々の中心線5cを連ねるX−Y平面内の直線がジグザグの場合もあり得る。
And the cross section containing the centerline 5c of each adjacent recessed part 5 is a cross section of line AA '.
In the example of FIG. 1, the line AA ′ is a straight line, but the straight line in the XY plane connecting the center lines 5 c of the plurality of recesses 5 may be zigzag.

線A−A’の断面において、凸部高さHの1/2(=H/2)の位置における幅が、凸部1の凸部幅Whである。
同様に、凹部5の凹部幅Wdは、凹部深さDの1/2(=D/2)における幅である。
そして、本実施の形態の場合、凸部幅Wh>凹部幅Wdとなるように、凸部1および凹部5の輪郭形状が設定および制御されている。
In the cross section taken along line AA ′, the width at the position of ½ (= H / 2) of the height H of the protrusion is the protrusion width Wh of the protrusion 1.
Similarly, the recess width Wd of the recess 5 is a width at ½ (= D / 2) of the recess depth D.
In the case of the present embodiment, the contour shapes of the convex portion 1 and the concave portion 5 are set and controlled so that the convex portion width Wh> the concave portion width Wd.

また、線A−A’の断面において凸部1を挟んで隣り合う二つの凹部5の中心線5cの距離が凹部中心部間距離Lである。
本実施の形態の微細凹凸構造8における上述の各部寸法の具体的な一例を以下に例示する。
すなわち、凹部深さDの平均値は、一例として200nm、凸部高さHの平均値は、一例として200nmである。
Further, the distance between the center lines 5c of the two recesses 5 adjacent to each other with the protrusion 1 in the cross section taken along the line AA ′ is the distance L between the recesses.
A specific example of the dimensions of the above-described parts in the fine concavo-convex structure 8 of the present embodiment is illustrated below.
That is, the average value of the concave portion depth D is 200 nm as an example, and the average value of the convex portion height H is 200 nm as an example.

また、凸部幅Whの平均値は、一例として60nm、凹部幅Wdの平均値は、一例として45nm、である。
また、凹部中心部間距離Lの平均値は、一例として105nmである。
Moreover, the average value of the convex part width Wh is 60 nm as an example, and the average value of the concave part width Wd is 45 nm as an example.
Moreover, the average value of the distance L between the center parts of the recesses is 105 nm as an example.

そして、本実施の形態の微細凹凸構造8による反射防止を実現する対象が、たとえば可視光線(波長380nm〜780nm)の場合には、微細凹凸構造8における凹部中心部間距離Lの最大値Lmaxは、Lmax<380nmに設定される。   And when the object which implement | achieves reflection prevention by the fine concavo-convex structure 8 of this Embodiment is visible light (wavelength 380 nm-780 nm), for example, the maximum value Lmax of the distance L between recessed part center parts in the fine concavo-convex structure 8 is , Lmax <380 nm.

ここで、図4を参照して、本実施の形態の微細凹凸構造8における各部の寸法やばらつきを評価する方法の一例を説明する。
上述の図1の例では、個々の凹部5のX−Y平面に平行な平面での断面形状は略円形の場合が例示されているが、たとえば、楕円形、繭形、勾玉形等の任意の閉曲線の図形でもよい。
Here, with reference to FIG. 4, an example of a method for evaluating the size and variation of each part in the fine concavo-convex structure 8 of the present embodiment will be described.
In the example of FIG. 1 described above, the case where the cross-sectional shape of each concave portion 5 in a plane parallel to the XY plane is exemplified as a substantially circular shape. It may be a closed curve.

また、図4では、図示の便宜上、凹部5の輪郭を円形の実線で例示しているが、実際は、周囲の凸部1の稜線部3から凹底部6まで連続する曲面としての内周面7(稜曲面4)によって凹部5は形成されている。   Further, in FIG. 4, for convenience of illustration, the contour of the concave portion 5 is illustrated by a circular solid line, but actually, the inner peripheral surface 7 as a curved surface continuous from the ridge line portion 3 to the concave bottom portion 6 of the surrounding convex portion 1. The recess 5 is formed by the (ridged curved surface 4).

この本実施の形態では、一例として、図4に例示されるように、任意の形状の凹部5の中心は、当該凹部5を取り囲む凸部1の稜線部3が交差するすべての稜線交点3aを頂点とする多角形5aの重心5b(中心部)と定義する。
そして、中心線5cは、この重心5bを通りZ方向に平行な線分である。
In this embodiment, as an example, as illustrated in FIG. 4, the center of the concave portion 5 having an arbitrary shape has all the ridge line intersections 3 a intersecting with the ridge line portion 3 of the convex portion 1 surrounding the concave portion 5. It is defined as the center of gravity 5b (center portion) of the polygon 5a as the vertex.
The center line 5c is a line segment passing through the center of gravity 5b and parallel to the Z direction.

また、凹部中心部間距離Lは、微細凹凸構造8の配置面が平面や曲面に関係なく、隣り合う凹部5の重心5b間の距離とする。   Further, the distance L between the center portions of the recesses is a distance between the centroids 5b of the adjacent recesses 5 regardless of whether the arrangement surface of the fine concavo-convex structure 8 is a flat surface or a curved surface.

また、同一形状および同一サイズの凹部5が規則的に配列している場合、光学面の全体での均一な反射防止効果を得られないことがある。   Further, when the concave portions 5 having the same shape and the same size are regularly arranged, it may not be possible to obtain a uniform antireflection effect on the entire optical surface.

そこで、本実施の形態では、必要に応じて凹部5のサイズや形状(この場合、多角形5aの大きさや形状、さらには凹部5の位置関係、等)にばらつきを持たせて、微細凹凸構造8がむらなく配置されるようにする。   Thus, in the present embodiment, the size and shape of the concave portion 5 (in this case, the size and shape of the polygon 5a, and the positional relationship of the concave portion 5, etc.) are varied as necessary, so that the fine uneven structure 8 should be arranged evenly.

この場合の微細凹凸構造8における凹部5のサイズや形状、配列位置関係等のばらつきを評価する指標として、本実施の形態では、一例として、上述の多角形5aの稜線交点間距離5dのばらつきを用いる。   In this embodiment, as an index for evaluating variations in the size and shape of the concave portions 5 in the fine concavo-convex structure 8 in this case, the arrangement positional relationship, and the like, as an example, the variation in the distance 5d between the ridge line intersections of the polygon 5a described above is used. Use.

本実施の形態の場合、稜線交点間距離5dの標準偏差が、たとえば、2から14の範囲となるように制御することにより、微細凹凸構造8の凹部5をむらなく配置し、光学面の全体での均一な反射防止効果を実現する。   In the case of the present embodiment, by controlling the standard deviation of the distance 5d between the ridge line intersections to be in the range of 2 to 14, for example, the concave portions 5 of the fine concavo-convex structure 8 are arranged evenly, and the entire optical surface A uniform anti-reflection effect is realized.

また、本実施の形態のように、微細凹凸構造8における凹部5のサイズや形状のばらつきを持たせることにより、光の入射方向における反射防止効果の異方性を解消できる。   Further, as in the present embodiment, by providing variation in the size and shape of the concave portion 5 in the fine concavo-convex structure 8, the anisotropy of the antireflection effect in the light incident direction can be eliminated.

図5には、本実施の形態の微細凹凸構造8を備えた光学素子K1の一例としてプリズム20の場合が例示されている。
このプリズム20は、三角柱の三つの側面の各々に、反射コート形成面21、入射面22、出射面23が配置されている。
反射コート形成面21は、たとえば、アルミニウム被覆層からなる反射面である。
FIG. 5 illustrates a prism 20 as an example of the optical element K1 including the fine concavo-convex structure 8 of the present embodiment.
In this prism 20, a reflective coating forming surface 21, an incident surface 22, and an output surface 23 are disposed on each of the three side surfaces of the triangular prism.
The reflective coat forming surface 21 is a reflective surface made of, for example, an aluminum coating layer.

そして、光30の光路31に例示されるように、入射面22から入射した光30は、反射コート形成面21で反射され、出射面23から出射する。
入射面22および出射面23の各々の表面には、上述の微細凹凸構造8が形成されている。
Then, as illustrated in the optical path 31 of the light 30, the light 30 incident from the incident surface 22 is reflected by the reflective coating forming surface 21 and is emitted from the emission surface 23.
The fine concavo-convex structure 8 described above is formed on each of the incident surface 22 and the exit surface 23.

この場合、入射面22および出射面23の各々の平面が上述の微細凹凸構造8におけるX−Y平面であり、法線方向が、Z方向となる位置関係である。   In this case, the planes of the entrance surface 22 and the exit surface 23 are XY planes in the fine concavo-convex structure 8 described above, and the normal direction is a positional relationship in the Z direction.

(作用)
本実施の形態の微細凹凸構造8を備えた光学素子K1であるプリズム20によれば、入射面22および出射面23等の表面に形成された微細凹凸構造8において、凹部5を取り囲む凸部1が、その凸頂部2を連ねた稜線部3が網目状に連続するように連続的に形成されていることにより、凸部が単独で孤立して形成されている形状に比べて、凸部1の外力に対する強度が大幅に向上する。
(Function)
According to the prism 20 which is the optical element K1 provided with the fine concavo-convex structure 8 of the present embodiment, the convex portion 1 surrounding the concave portion 5 in the fine concavo-convex structure 8 formed on the surfaces such as the entrance surface 22 and the exit surface 23. However, since the ridge line portion 3 connecting the convex top portions 2 is continuously formed so as to be continuous in a mesh shape, the convex portion 1 is compared with a shape in which the convex portions are formed independently. The strength against external force is greatly improved.

さらに、凸部1の断面形状の凸部幅が、深さ方向に両側に凸に曲線的に増加する形状であるため、凸部1の外力に対する強度はより一層大きくなる。
この結果、外部の物体に対する微細凹凸構造8の接触や外力の作用による凸部1の倒れや破損を減少させることが出来、微細凹凸構造8による反射防止効果を安定に維持できる。
Furthermore, since the convex part width of the cross-sectional shape of the convex part 1 is a shape that increases in a convex manner on both sides in the depth direction, the strength of the convex part 1 against an external force is further increased.
As a result, it is possible to reduce the collapse or breakage of the convex portion 1 due to the contact of the fine concavo-convex structure 8 with an external object or the action of external force, and the antireflection effect by the fine concavo-convex structure 8 can be stably maintained.

また、隣接する凹部5の中心線5cを通る断面において、凹部中心部の隣り合う距離最大部(すなわち、凹部中心部間距離L)の最大値Lmaxが可視光波長よりも小さく、かつ、この凸部幅Whが深さ方向に曲線的に増加しているために、可視光波長に対して反射防止性能および光の透過率が向上し、かつ凸部1の外力に対する強度がより保たれる。   Further, in a cross section passing through the center line 5c of the adjacent recesses 5, the maximum value Lmax of the adjacent distance maximum portions (that is, the distance L between the recess center portions) is smaller than the visible light wavelength. Since the part width Wh is increased in a curve in the depth direction, the antireflection performance and the light transmittance are improved with respect to the visible light wavelength, and the strength against the external force of the convex part 1 is further maintained.

さらに、本実施形態においては、一例として、凹部中心部間距離Lの平均値を可視光波長以下の105nmとし、隣接する凹部5の中心線を通る断面において、凹部深さD=200nmの1/2の100nm位置における凹部幅Wdが45nm、凸部高さH=200nmの1/2の100nm位置における凸部幅Whが60nmであるために、可視光線に対する微細凹凸構造8の反射防止効果がより顕著に発現され、凸部1の外力に対する強度もより顕著になる。   Further, in the present embodiment, as an example, the average value of the distance L between the recesses is 105 nm which is equal to or less than the visible light wavelength, and in the cross section passing through the center line of the adjacent recess 5, the recess depth D = 1 / nm of 200 nm. 2 has a recess width Wd at the 100 nm position of 45 nm and a protrusion height H = 200 nm, and the protrusion width Wh at the 100 nm position of 60 nm is 60 nm. Remarkably expressed and the strength of the convex portion 1 with respect to the external force becomes more remarkable.

また、必要に応じて、微細凹凸構造8における形状的なランダムさの指標である稜線交点間距離5dのばらつきの標準偏差を2〜14とすることで、反射防止効果の異方性を解消でき、微細凹凸構造8による反射防止効果の性能を向上させることができる。   Further, if necessary, the anisotropy of the antireflection effect can be eliminated by setting the standard deviation of the variation of the distance 5d between the ridge line intersections, which is an index of the geometric randomness in the fine concavo-convex structure 8, to 2-14. The performance of the antireflection effect by the fine concavo-convex structure 8 can be improved.

(効果)
これにより微細凹凸構造8の凸部1の外力に対する強度が保たれ、接触などによる構造体の倒れや損傷の発生を抑え、かつ反射防止効果等の光学性能を向上させた光学素子K1を実現できる。
(effect)
As a result, the strength against the external force of the convex portion 1 of the fine concavo-convex structure 8 is maintained, and it is possible to realize an optical element K1 that suppresses the occurrence of collapse and damage of the structure due to contact and improves the optical performance such as the antireflection effect. .

すなわち、外力や接触等による微細凹凸構造8の変形や破損を低減し、反射防止効果等の光学性能の劣化を防止することが可能な光学素子K1を提供することができる。   That is, it is possible to provide the optical element K1 that can reduce deformation and breakage of the fine concavo-convex structure 8 due to external force, contact, etc., and can prevent deterioration of optical performance such as antireflection effect.

また、微細凹凸構造8の強度が大きく、把持や接触等によっても変形しにくいため、光学素子K1の取り扱いが容易となり、光学素子K1を任意の光学系に組み込む際の作業性が向上する。   In addition, since the fine concavo-convex structure 8 has a high strength and is not easily deformed by gripping or contact, the optical element K1 can be easily handled, and workability when the optical element K1 is incorporated into an arbitrary optical system is improved.

(実施の形態2)
本発明の光学素子の他の実施の形態について図6を参照して説明する。
(Embodiment 2)
Another embodiment of the optical element of the present invention will be described with reference to FIG.

(構成)
図6は、本発明の他実施の形態である微細凹凸構造を備えた光学素子の構成例を示す斜視図である。
本実施の形態の光学素子K2は、図6が示すように第1面として有効径D0が5.4mm、曲率半径R0が3.5mmの球面である凸光学面41と、第2面として平光学面42を備えた平凸レンズ40である。
(Constitution)
FIG. 6 is a perspective view showing a configuration example of an optical element having a fine relief structure according to another embodiment of the present invention.
As shown in FIG. 6, the optical element K2 of the present embodiment includes a convex optical surface 41 that is a spherical surface having an effective diameter D0 of 5.4 mm and a curvature radius R0 of 3.5 mm as a first surface, and a flat surface as a second surface. This is a plano-convex lens 40 having an optical surface 42.

そして、第1面である凸光学面41に、上述の図1から図4に例示した微細凹凸構造8が形成されている。
なお、必要に応じて、平光学面42にも微細凹凸構造8を形成してよい。
平凸レンズ40の凸光学面41に形成された微細凹凸構造8は、上述の実施の形態1と同じ形状である。
The fine concavo-convex structure 8 illustrated in FIGS. 1 to 4 is formed on the convex optical surface 41 that is the first surface.
If necessary, the fine concavo-convex structure 8 may be formed also on the flat optical surface 42.
The fine concavo-convex structure 8 formed on the convex optical surface 41 of the plano-convex lens 40 has the same shape as that of the first embodiment.

この場合、微細凹凸構造8が形成される凸光学面41が曲面であるため、上述のZ方向(凹部5の中心線5cの方向)が、凸光学面41の法線方向となるように、当該微細凹凸構造8が形成される。   In this case, since the convex optical surface 41 on which the fine concavo-convex structure 8 is formed is a curved surface, the Z direction (the direction of the center line 5c of the concave portion 5) is the normal direction of the convex optical surface 41. The fine uneven structure 8 is formed.

この場合、曲面からなる凸光学面41の表面全体で均一に、しかも異方性を生じないような反射防止効果が得られるように、凸光学面41の設計形状に合わせて、凹部5のサイズや配列状態が決定される。すなわち、凹部5に関する上述の凹部中心部間距離Lや、稜線交点間距離5dの標準偏差等のパラメータが設定される。   In this case, the size of the concave portion 5 is adjusted in accordance with the design shape of the convex optical surface 41 so that an antireflection effect can be obtained uniformly over the entire surface of the convex convex optical surface 41 and without causing anisotropy. And the array state is determined. That is, parameters such as the above-described distance L between the center portions of the recesses 5 and the standard deviation of the distance 5d between the ridge line intersections are set.

(作用)
本実施の形態2の光学素子K2によれば、平凸レンズ40の凸光学面41に、凸部1の凸頂部2を連ねた稜線部3が連続的に形成された微細凹凸構造8を形成することにより、凸部が単独で孤立して形成されている形状に比べ、凸部1の外力に対する強度が大きくなる。
(Function)
According to the optical element K2 of the second embodiment, the fine concavo-convex structure 8 in which the ridge line portion 3 connecting the convex top portions 2 of the convex portions 1 is continuously formed on the convex optical surface 41 of the plano-convex lens 40 is formed. As a result, the strength of the convex portion 1 with respect to the external force is increased as compared with a shape in which the convex portion is formed independently.

また、隣接する凹部5の中心線5cを通る断面において、凹部中心部の隣り合う距離最大部の最大値、すなわち、凹部中心部間距離Lの最大値Lmaxが可視光波長よりも小さく、かつ、この凸部幅Whが深さ方向に曲線的に増加する構造であるために、可視光波長に対する反射防止性能および光の透過率が向上し、かつ凸部1の外力に対する強度がより大きくなる。   Further, in the cross section passing through the center line 5c of the adjacent recesses 5, the maximum value of the adjacent distance maximum part of the recess center part, that is, the maximum value Lmax of the distance L between the recess center parts is smaller than the visible light wavelength, and Since the convex portion width Wh increases in a curve in the depth direction, the antireflection performance and the light transmittance with respect to the visible light wavelength are improved, and the strength of the convex portion 1 against the external force is further increased.

さらに、本実施の形態2においては凹部中心部間距離Lを可視光波長以下の105nmとし、隣接する凹部5の中心線を通る断面において、凹部深さD=200nmの1/2の100nmの位置における凹部幅Wdが45nm、凸部高さH=200nmの1/2の100nmの位置における凸部幅Whが60nmであるために、可視光線に対する微細凹凸構造8の反射防止効果がより顕著に発現され、凸部1の外力に対する強度もより顕著に大きくなる。   Further, in the second embodiment, the distance L between the center portions of the recesses is set to 105 nm which is equal to or less than the visible light wavelength, and the position of 100 nm which is 1/2 of the recess depth D = 200 nm in the cross section passing through the center line of the adjacent recesses 5. The concave width Wd is 45 nm, and the convex width Wh is 60 nm at the position of 100 nm, which is 1/2 of the convex height H = 200 nm. In addition, the strength of the convex portion 1 with respect to the external force is significantly increased.

(効果)
外力や接触等による微細凹凸構造8の変形や破損を低減し、反射防止効果等の光学性能の劣化を防止することが可能な光学素子K2を提供することができる。
(effect)
It is possible to provide an optical element K2 that can reduce deformation or breakage of the fine concavo-convex structure 8 due to external force or contact, and can prevent deterioration of optical performance such as antireflection effect.

すなわち、光学素子K2としての平凸レンズ40の凸光学面41に微細凹凸構造8が形成されていることにより、凸部1の外力に対しての強度が保たれ、可視光波長に対して反射防止効果および高い光の透過率を具備する光学素子K2を提供することができ、また、入射光を効率よく集光することが出来る。   That is, since the fine concavo-convex structure 8 is formed on the convex optical surface 41 of the plano-convex lens 40 as the optical element K2, the strength against the external force of the convex portion 1 is maintained, and reflection is prevented with respect to the visible light wavelength. The optical element K2 having an effect and high light transmittance can be provided, and incident light can be efficiently condensed.

このように、微細凹凸構造8を備えた平凸レンズ40は、入射光を効率よく集光できることにより、様々な光学系への適応が可能となる。   As described above, the plano-convex lens 40 having the fine concavo-convex structure 8 can be applied to various optical systems by efficiently collecting incident light.

なお、光学系において、特に入射側の第1面などの光が入射する位置に本実施の形態の、光学素子K1や光学素子K2を配置することにより、光学面内においてより効果的に反射防止効果を得ることが出来るため、高い反射防止能を有する光学系を構築することが可能となる。   In the optical system, in particular, the optical element K1 or the optical element K2 of the present embodiment is disposed at a position where light such as the first surface on the incident side is incident, thereby preventing reflection more effectively in the optical surface. Since an effect can be obtained, it becomes possible to construct an optical system having high antireflection performance.

なお、上述の実施の形態1および実施の形態2において凸部1と凸部1の間の凹部5の深さが反射防止効果および強度などの効果が実現できる範囲で異なってもよい。このような場合でも、凸頂部2が稜線部3をなすように連続して形成された凸部1と見なすことができる。   In the first and second embodiments described above, the depth of the concave portion 5 between the convex portion 1 and the convex portion 1 may be different within a range in which an effect such as an antireflection effect and strength can be realized. Even in such a case, it can be regarded as the convex part 1 formed continuously so that the convex top part 2 forms the ridge line part 3.

なお、実施の形態2において、光学素子K2として、一方が凸光学面41で他方が平光学面42の平凸レンズ40を例示したが、両面とも曲面でも良く、また曲面形状であれば球面、非球面、自由曲面など、どのような曲面であっても構わない。
また、微細凹凸構造8が形成される光学面が凹面の凹レンズでもよい。
In the second embodiment, the optical element K2 is exemplified by the plano-convex lens 40, one of which is a convex optical surface 41 and the other is a flat optical surface 42. However, both surfaces may be curved surfaces. Any curved surface such as a spherical surface or a free-form surface may be used.
The optical surface on which the fine concavo-convex structure 8 is formed may be a concave lens having a concave surface.

なお、実施の形態2において、凸光学面41における微細凹凸構造8の形成方向(この場合、凹部5の中心線5cの方向、またはZ方向)は反射防止効果および強度などの本発明の効果が保たれる範囲で、平凸レンズ40の光軸43に対して、同じ方向や傾いた方向など、凸光学面41の法線方向からずれて形成しても構わない。   In the second embodiment, the direction in which the fine concavo-convex structure 8 is formed on the convex optical surface 41 (in this case, the direction of the center line 5c of the recess 5 or the Z direction) is the effect of the present invention such as antireflection effect and strength. As long as the optical axis 43 of the plano-convex lens 40 is maintained, it may be formed so as to deviate from the normal direction of the convex optical surface 41, such as the same direction or an inclined direction.

ここで、本発明の上述の各実施の形態における光学素子K1または光学素子K2等に備えられる反射防止効果を有する微細凹凸構造8の形成方法について説明する。
本実施の形態の光学素子においては、どのような方法を用いて光学素子基板および光学素子曲面に微細凹凸構造8を形成しても構わない。
Here, a method of forming the fine concavo-convex structure 8 having an antireflection effect provided in the optical element K1 or the optical element K2 in each of the above-described embodiments of the present invention will be described.
In the optical element of the present embodiment, the fine uneven structure 8 may be formed on the optical element substrate and the optical element curved surface by any method.

微細凹凸構造8を形成する方法としては、形成しようとする微細凹凸構造8とは逆の凹凸形状を有する成形型を用いて光学素子を成形すると同時に光学素子曲面に微細凹凸構造8を形成する方法を用いることができる。   As a method for forming the fine concavo-convex structure 8, a method for forming the fine concavo-convex structure 8 on the curved surface of the optical element at the same time as forming an optical element using a mold having a concavo-convex shape opposite to the fine concavo-convex structure 8 to be formed. Can be used.

あるいは、光学素子の表面に硬化性材料を形成した後に形成しようとする微細凹凸構造8とは逆の凹凸形状を有する成形型を用いて硬化性材料に微細凹凸構造8の形状を転写し、硬化性材料を硬化させる方法を用いることができる。
あるいは、光学素子曲面に直接的に電子線描画する方法を用いることができる。
Alternatively, after the curable material is formed on the surface of the optical element, the shape of the fine concavo-convex structure 8 is transferred to the curable material using a mold having a concavo-convex shape opposite to the fine concavo-convex structure 8 to be formed and cured. A method of curing the functional material can be used.
Alternatively, a method of directly drawing an electron beam on the optical element curved surface can be used.

また、これらの方法を任意に組み合わせて用いても構わない。
なお、形成しようとする微細凹凸構造8とは逆の凹凸形状を有する成形型の製作方法においてもどのような方法を用いても構わない。
Moreover, you may use combining these methods arbitrarily.
It should be noted that any method may be used for manufacturing a mold having an uneven shape opposite to the fine uneven structure 8 to be formed.

例えば半導体プロセスの電子線描画やイオンエッチングなどのリソグラフィー技術を利用して型基材に形成しようとする微細構造体とは逆形状の微細構造体を形成して型を作製する方法を用いることができる。   For example, a method of forming a mold by forming a microstructure having a shape opposite to the microstructure to be formed on the mold base using lithography techniques such as electron beam lithography and ion etching in a semiconductor process may be used. it can.

あるいは、型基材に、目的の微細凹凸構造8を形成した後、ニッケル(Ni)などの金属を用いて電鋳法により反転型を作製する方法を用いることもできる。
次に、図7のフローチャートを参照して、本実施の形態における光学素子の製造方法の一例を説明する。
Alternatively, a method of forming an inverted mold by electroforming using a metal such as nickel (Ni) after the target fine concavo-convex structure 8 is formed on the mold substrate can be used.
Next, an example of a method for manufacturing an optical element in the present embodiment will be described with reference to the flowchart of FIG.

図7は、本発明の一実施の形態である微細凹凸構造を備えた光学素子の製造方法の一例を示すフローチャートである。
まず、光学素子K1や光学素子K2に対する光学的機能の要求仕様に応じて光学面(この場合、プリズム20の入射面22、出射面23、または平凸レンズ40の凸光学面41)の形状を決定する(ステップ101)。
FIG. 7 is a flowchart showing an example of a method for manufacturing an optical element having a fine relief structure according to an embodiment of the present invention.
First, the shape of the optical surface (in this case, the entrance surface 22 of the prism 20, the exit surface 23, or the convex optical surface 41 of the plano-convex lens 40) is determined according to the required specification of the optical function for the optical element K1 and the optical element K2. (Step 101).

次に、光学面の全域で一様な反射防止効果が実現されるように、微細凹凸構造8における凸部1や凹部5のサイズやレイアウト、すなわち、凹部中心部間距離Lや、上述の稜線交点間距離5d等のばらつきを設定する(ステップ102)。   Next, the size and layout of the convex portions 1 and the concave portions 5 in the fine concavo-convex structure 8, that is, the distance L between the central portions of the concave portions and the above-described ridge lines so that a uniform antireflection effect can be realized over the entire optical surface. Variations such as the distance 5d between the intersections are set (step 102).

なお、光学素子K1としてのプリズム20における微細凹凸構造8の形成領域である入射面22および出射面23は平面であるが、稜線交点間距離5dに、適宜、ばらつきをもたせることにより、反射防止効果の異方性が解消されるようにする。   In addition, although the incident surface 22 and the output surface 23 which are the formation regions of the fine concavo-convex structure 8 in the prism 20 as the optical element K1 are flat, an antireflection effect can be obtained by appropriately varying the distance 5d between the ridge lines. The anisotropy of is eliminated.

また、光学素子K2のように、凸光学面41に微細凹凸構造8を形成する場合には、凸光学面41の形状に応じて凹部中心部間距離Lや、上述の稜線交点間距離5d等のばらつきを設定することにより、凸光学面41の設計形状を損なうことなく、反射防止効果が全面で一様に実現されるようにする。   Further, when the fine concavo-convex structure 8 is formed on the convex optical surface 41 as in the optical element K2, the distance L between the central portions of the concave portions, the above-mentioned distance 5d between the ridge line intersections, etc. according to the shape of the convex optical surface 41 By setting the variation in the above, the antireflection effect is uniformly realized on the entire surface without impairing the design shape of the convex optical surface 41.

そして、光学素子K1における微細凹凸構造8の形成に型を使用するか否かで、以下のように、微細凹凸構造8の形成方法を分ける(ステップ103)。   Then, depending on whether or not a mold is used to form the fine concavo-convex structure 8 in the optical element K1, the method for forming the fine concavo-convex structure 8 is divided as follows (step 103).

すなわち、微細凹凸構造8の形成に型を用いる場合には、当該微細凹凸構造8と凹凸が反転した表面形状を有する成形型を作成し(ステップ104)、この成形型の形状を光学素子K1の表面に転写する(ステップ105)。   That is, when a mold is used to form the fine concavo-convex structure 8, a mold having a surface shape in which the concavo-convex structure 8 and the concavo-convex are reversed is created (step 104), and the shape of the mold is changed to the optical element K1. Transfer to the surface (step 105).

なお、この微細凹凸構造8の転写による形成の場合には、光学素子K1の基材の成形時に同時に形成してもよいし、基材の表面に被着された樹脂層に微細凹凸構造8を転写形成してもよい。
あるいは、微細凹凸構造8が転写された透明なシートを光学素子K1の基材の表面に貼りつける方法でもよい。
In the case of forming the fine concavo-convex structure 8 by transfer, the fine concavo-convex structure 8 may be formed at the same time as the base material of the optical element K1, or the fine concavo-convex structure 8 is formed on the resin layer deposited on the surface of the base material. It may be formed by transfer.
Or the method of sticking the transparent sheet | seat in which the fine uneven structure 8 was transcribe | transferred on the surface of the base material of the optical element K1 may be used.

一方、型を使用しないで光学素子K1の光学面に直接的に微細凹凸構造8を形成する場合には(ステップ106)、たとえば、光学素子K1の光学面を直接的に加工して微細凹凸構造8を形成する。   On the other hand, when the fine uneven structure 8 is directly formed on the optical surface of the optical element K1 without using a mold (step 106), for example, the optical surface of the optical element K1 is directly processed to form the fine uneven structure. 8 is formed.

このように、本発明の各実施の形態の光学素子の製造方法によれば、外力や接触等による微細凹凸構造8の変形や破損を低減し、反射防止効果等の光学性能の劣化を防止することが可能であるとともに、微細凹凸構造8が形成される光学面の形状に応じて、反射防止効果の偏りのない、一様な反射防止効果を有する光学素子を提供できる。   As described above, according to the method for manufacturing an optical element of each embodiment of the present invention, deformation or breakage of the fine concavo-convex structure 8 due to external force or contact is reduced, and deterioration of optical performance such as antireflection effect is prevented. In addition, it is possible to provide an optical element having a uniform antireflection effect without unevenness of the antireflection effect according to the shape of the optical surface on which the fine concavo-convex structure 8 is formed.

以上のように、本発明の各実施の形態の光学素子によれば、表面に微細凹凸構造を形成させた反射防止光学素子において、凸部の稜線を連続的に形成させ凸部幅が深さ方向に曲線的に増加する構造とすることにより、外力や接触による微細凹凸構造の倒れや破損を減少させることが出来、この凸部と凹部の形状の最適化を行なうことにより反射防止性能等の光学性能を向上させることが出来る光学素子を提供することが出来る。   As described above, according to the optical element of each embodiment of the present invention, in the antireflection optical element having a fine concavo-convex structure formed on the surface, the ridge line of the convex part is continuously formed and the convex part width is deep. By adopting a structure that increases in a curve in the direction, it is possible to reduce the collapse and breakage of the fine concavo-convex structure due to external force or contact, and by optimizing the shape of this convex part and concave part, antireflection performance etc. An optical element capable of improving the optical performance can be provided.

なお、本発明は、上述の実施の形態に例示した構成に限らず、その趣旨を逸脱しない範囲で種々変更可能であることは言うまでもない。   Needless to say, the present invention is not limited to the configuration exemplified in the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

たとえば、図8に例示されるように、微細凹凸構造8における凸部1の断面形状における稜曲面4の輪郭は、稜線部3(凸頂部2)の近傍の直線的な稜面4aと、この稜面4aに滑らかに連続する稜曲面4bからなる構成としてもよい。   For example, as illustrated in FIG. 8, the contour of the ridge curved surface 4 in the cross-sectional shape of the convex portion 1 in the fine concavo-convex structure 8 includes a linear ridge surface 4 a in the vicinity of the ridge line portion 3 (convex apex portion 2), It is good also as a structure which consists of the ridge curved surface 4b smoothly continued to the ridge surface 4a.

(付記1)
基材表面に微細な凹凸形状が形成された光学素子において、凸部が連続的に形成され、隣接する凹部の中心線を通る断面において、凹部中心部の隣り合う距離最大部(L)の最大値(Lmax)が可視光波長よりも小さく、かつ該凸部幅が深さ方向に曲線的に増加していることを特徴とする微細凹凸構造を有する光学素子。
(Appendix 1)
In an optical element in which a fine uneven shape is formed on the surface of a base material, a convex portion is continuously formed, and in the cross section passing through the center line of the adjacent concave portion, the maximum of the adjacent maximum distance portion (L) of the central portion of the concave portion An optical element having a fine concavo-convex structure, wherein the value (Lmax) is smaller than the visible light wavelength, and the width of the convex portion increases in a curve in the depth direction.

(付記2)
隣接する凹部の中心線を通る断面において、凹部深さの1/2の位置における凹部幅が、凸部高さの1/2の位置における凸部幅よりも小さいことを特徴とする付記1に記載の微細凹凸構造を有する光学素子。
(Appendix 2)
Supplementary note 1 characterized in that, in a cross section passing through the center line of the adjacent concave portion, the concave portion width at a half of the concave portion depth is smaller than the convex portion width at a half of the convex portion height. An optical element having the fine concavo-convex structure described.

(付記3)
基材表面の形状が曲面であることを特徴とする付記1または付記2に記載の微細凹凸構造を有する光学素子。
(Appendix 3)
The optical element having a fine concavo-convex structure according to Supplementary Note 1 or Supplementary Note 2, wherein a shape of a substrate surface is a curved surface.

1 凸部
2 凸頂部
3 稜線部
3a 稜線交点
4 稜曲面
4a 稜面
4b 稜曲面
5 凹部
5a 多角形
5b 重心
5c 中心線
5d 稜線交点間距離
6 凹底部
7 内周面
8 微細凹凸構造
20 プリズム
21 反射コート形成面
22 入射面
22a 反射防止構造形成面
23 出射面
23a 反射防止構造形成面
30 光
31 光路
40 平凸レンズ
41 凸光学面
42 平光学面
43 光軸
D 凹部深さ
H 凸部高さ
Wd 凹部幅
Wh 凸部幅
K1 光学素子
K2 光学素子
L 凹部中心部間距離
DESCRIPTION OF SYMBOLS 1 Convex part 2 Convex apex part 3 Edge line part 3a Edge line intersection 4 Edge curved surface 4a Edge surface 4b Edge curved surface 5 Concave part 5a Polygon 5b Center of gravity 5c Center line 5d Distance between edge line intersection 6 Concave bottom part 7 Inner peripheral surface 8 Fine uneven structure 20 Prism 21 Reflective coat forming surface 22 Incident surface 22a Antireflection structure forming surface 23 Output surface 23a Antireflection structure forming surface 30 Light 31 Optical path 40 Plano-convex lens 41 Convex optical surface 42 Plane optical surface 43 Optical axis D Concave depth H Convex height Wd Concave part width Wh Convex part width K1 Optical element K2 Optical element L Distance between central parts of concave part

Claims (13)

稜線部が網目状に連続する凸部と、前記凸部に囲まれた複数の凹部とを含み、隣り合う複数の前記凹部の各々の中心部を通る断面における前記凸部の幅が前記凹部の深さ方向に曲線的に増加している微細凹凸構造を有することを特徴とする光学素子。   The ridge line portion includes a convex portion having a mesh shape and a plurality of concave portions surrounded by the convex portion, and the width of the convex portion in a cross section passing through the central portion of each of the plurality of adjacent concave portions is the width of the concave portion. An optical element having a fine concavo-convex structure increasing in a curve in the depth direction. 請求項1記載の光学素子において、
前記微細凹凸構造における前記断面において、前記凹部の凹部深さの1/2の位置における前記凹部の凹部幅が、前記凸部の凸部高さの1/2の位置における前記凸部の凸部幅よりも小さいことを特徴とする光学素子。
The optical element according to claim 1, wherein
In the cross section of the fine concavo-convex structure, the convex portion of the convex portion at a position where the concave portion width of the concave portion at a half of the concave portion depth of the concave portion is half the convex portion height of the convex portion. An optical element characterized by being smaller than the width.
請求項1または請求項2記載の光学素子において、
前記微細凹凸構造における隣り合う前記凹部の前記中心部の距離の最大値が、可視光波長よりも小さいことを特徴とする光学素子。
The optical element according to claim 1 or 2,
An optical element, wherein a maximum value of a distance between the central portions of adjacent concave portions in the fine concavo-convex structure is smaller than a visible light wavelength.
請求項1から請求項3のいずれか1項に記載の光学素子において、
前記微細凹凸構造は、前記凹部の形状および大きさの少なくとも一方がランダムになるように形成されていることを特徴とする光学素子。
The optical element according to any one of claims 1 to 3,
The fine concavo-convex structure is formed such that at least one of the shape and size of the concave portion is random.
光学素子の表面に、稜線部が網目状に連続する凸部に囲まれた複数の凹部を含む微細凹凸構造を形成することを特徴とする光学素子の製造方法。   A method for producing an optical element, comprising: forming a fine concavo-convex structure including a plurality of concave parts surrounded by convex parts whose ridge lines are continuous in a mesh pattern on the surface of the optical element. 請求項5記載の光学素子の製造方法において、
隣り合う複数の前記凹部の各々の中心部を通る断面における前記凸部の幅が前記凹部の深さ方向に曲線的に増加するように前記微細凹凸構造を形成することを特徴とする光学素子の製造方法。
In the manufacturing method of the optical element according to claim 5,
An optical element characterized in that the fine concavo-convex structure is formed such that the width of the convex portion in a cross section passing through the central portion of each of the plurality of adjacent concave portions is increased in a curve in the depth direction of the concave portion. Production method.
請求項6記載の光学素子の製造方法において、
前記断面において、前記凹部の凹部深さの1/2の位置における前記凹部の凹部幅を、前記凸部の凸部高さの1/2の位置における前記凸部の凸部幅よりも小さくすることを特徴とする光学素子の製造方法。
In the manufacturing method of the optical element according to claim 6,
In the cross section, the concave portion width of the concave portion at a position that is ½ of the concave portion depth of the concave portion is made smaller than the convex portion width of the convex portion at a position that is ½ of the convex height of the convex portion. A method for manufacturing an optical element.
請求項6または請求項7に記載の光学素子の製造方法において、
前記微細凹凸構造における隣り合う前記凹部の前記中心部の距離の最大値が、所望の光の波長よりも小さいことを特徴とする光学素子の製造方法。
In the manufacturing method of the optical element of Claim 6 or Claim 7,
The method of manufacturing an optical element, wherein a maximum value of a distance between the central portions of adjacent concave portions in the fine concavo-convex structure is smaller than a desired wavelength of light.
請求項5から請求項8のいずれか1項に記載の光学素子の製造方法において、
前記微細凹凸構造における前記凹部の形状および大きさの少なくとも一方がランダムになるように形成することを特徴とする光学素子の製造方法。
In the manufacturing method of the optical element of any one of Claims 5-8,
A method of manufacturing an optical element, wherein at least one of the shape and size of the recess in the fine concavo-convex structure is random.
稜線部が網目状に連続する凸部と、前記凸部に囲まれた複数の凹部とを含み、隣り合う複数の前記凹部の各々の中心部を通る断面における前記凸部の幅が前記凹部の深さ方向に曲線的に増加していることを特徴とする微細凹凸構造。   The ridge line portion includes a convex portion having a mesh shape and a plurality of concave portions surrounded by the convex portion, and the width of the convex portion in a cross section passing through the central portion of each of the plurality of adjacent concave portions is the width of the concave portion. A fine concavo-convex structure characterized by increasing in a curve in the depth direction. 請求項10記載の微細凹凸構造において、
前記断面における、前記凹部の凹部深さの1/2の位置における前記凹部の凹部幅が、前記凸部の凸部高さの1/2の位置における前記凸部の凸部幅よりも小さいことを特徴とする微細凹凸構造。
The fine concavo-convex structure according to claim 10,
In the cross section, the recess width of the recess at a position that is 1/2 the recess depth of the recess is smaller than the protrusion width of the protrusion at a position that is 1/2 of the height of the protrusion. A fine concavo-convex structure characterized by
請求項10または請求項11記載の微細凹凸構造において、
隣り合う前記凹部の前記中心部の距離の最大値が、所望の光の波長よりも小さいことを特徴とする微細凹凸構造。
In the fine concavo-convex structure according to claim 10 or 11,
A fine concavo-convex structure, wherein a maximum value of a distance between the central portions of adjacent concave portions is smaller than a desired wavelength of light.
請求項10から請求項12のいずれか1項に記載の微細凹凸構造において、
前記凹部の形状および大きさの少なくとも一方がランダムであることを特徴とする微細凹凸構造。
In the fine concavo-convex structure according to any one of claims 10 to 12,
A fine concavo-convex structure, wherein at least one of the shape and size of the concave portion is random.
JP2009205925A 2009-09-07 2009-09-07 Optical element, method for manufacturing optical element, and fine uneven structure Active JP5484837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009205925A JP5484837B2 (en) 2009-09-07 2009-09-07 Optical element, method for manufacturing optical element, and fine uneven structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009205925A JP5484837B2 (en) 2009-09-07 2009-09-07 Optical element, method for manufacturing optical element, and fine uneven structure

Publications (2)

Publication Number Publication Date
JP2011059180A true JP2011059180A (en) 2011-03-24
JP5484837B2 JP5484837B2 (en) 2014-05-07

Family

ID=43946921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009205925A Active JP5484837B2 (en) 2009-09-07 2009-09-07 Optical element, method for manufacturing optical element, and fine uneven structure

Country Status (1)

Country Link
JP (1) JP5484837B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114316A (en) * 2001-10-05 2003-04-18 Japan Science & Technology Corp Optical element
JP2003294910A (en) * 2002-04-08 2003-10-15 Sanyo Electric Co Ltd Optical element and light source device
JP2004012856A (en) * 2002-06-07 2004-01-15 Nippon Sheet Glass Co Ltd Optical element, mold for optical element, and method for manufacturing optical element
JP2009020355A (en) * 2007-07-12 2009-01-29 Nissan Motor Co Ltd Antireflection structure, and structure
JP2009166502A (en) * 2004-12-03 2009-07-30 Sharp Corp Reflection preventing material, stamper, stamper manufacturing method, and reflection preventing material manufacturing method using the stamper

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114316A (en) * 2001-10-05 2003-04-18 Japan Science & Technology Corp Optical element
JP2003294910A (en) * 2002-04-08 2003-10-15 Sanyo Electric Co Ltd Optical element and light source device
JP2004012856A (en) * 2002-06-07 2004-01-15 Nippon Sheet Glass Co Ltd Optical element, mold for optical element, and method for manufacturing optical element
JP2009166502A (en) * 2004-12-03 2009-07-30 Sharp Corp Reflection preventing material, stamper, stamper manufacturing method, and reflection preventing material manufacturing method using the stamper
JP2009020355A (en) * 2007-07-12 2009-01-29 Nissan Motor Co Ltd Antireflection structure, and structure

Also Published As

Publication number Publication date
JP5484837B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
JP2011107195A (en) Optical element, method of manufacturing the same, minutely rugged structure, and molding die
JP7041259B2 (en) Nanostructured metamaterials and metasurfaces for collimating light emission from LEDs
US10678127B2 (en) Photolithography device for generating pattern on a photoresist substrate
CN108139512B (en) Diffusion plate, display device, projection device, and illumination device
JP2007127855A (en) Optical element
JP5519386B2 (en) Optical element
US11002889B2 (en) Reflective diffuser plate, display device, projection device, and lighting device
JP4206447B2 (en) Fine lattice and its mold
CN114556168A (en) Diffusion plate, display device, projection device, and illumination device
JP2009187001A (en) Antireflection structure, method of manufacturing antireflection structure, and optical device provided with antireflection structure
JP2003114316A (en) Optical element
JP2011017781A (en) Optical device and optical system
JP6755076B2 (en) Optical elements, projection devices and measuring devices
JP5484837B2 (en) Optical element, method for manufacturing optical element, and fine uneven structure
TWI825055B (en) Concave-convex structures, optical components and electronic equipment
JP2011059264A (en) Optical element
KR101079415B1 (en) Semiconductor light-emitting device and fabrication method thereof
JP2008310160A5 (en)
JP2015034835A (en) Anti-reflection structure, and manufacturing method for the same
CN113376721A (en) Engineering diffusion sheet and design and manufacturing method thereof
JP2013105054A (en) Anti-reflection film and optical apparatus including the same
JP2005178052A (en) Manufacturing method of mold roll used for manufacturing microlens plastic sheet
JP7381544B2 (en) Microlens array and projection type image display device
CN113376719B (en) Engineering diffusion sheet and random micro-lens array boundary processing method
WO2020149209A1 (en) Radiation angle expansion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131126

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140219

R151 Written notification of patent or utility model registration

Ref document number: 5484837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250