JP2015034835A - Anti-reflection structure, and manufacturing method for the same - Google Patents

Anti-reflection structure, and manufacturing method for the same Download PDF

Info

Publication number
JP2015034835A
JP2015034835A JP2011269059A JP2011269059A JP2015034835A JP 2015034835 A JP2015034835 A JP 2015034835A JP 2011269059 A JP2011269059 A JP 2011269059A JP 2011269059 A JP2011269059 A JP 2011269059A JP 2015034835 A JP2015034835 A JP 2015034835A
Authority
JP
Japan
Prior art keywords
convex
convex portions
portions
antireflection structure
convex portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011269059A
Other languages
Japanese (ja)
Inventor
寛 坂本
Hiroshi Sakamoto
寛 坂本
康宏 池田
Yasuhiro Ikeda
康宏 池田
敏亮 澤田
Toshiaki Sawada
敏亮 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2011269059A priority Critical patent/JP2015034835A/en
Priority to PCT/JP2012/081417 priority patent/WO2013084899A1/en
Priority to TW101145902A priority patent/TW201331613A/en
Publication of JP2015034835A publication Critical patent/JP2015034835A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures

Abstract

PROBLEM TO BE SOLVED: To provide an anti-reflection structure excelling in suppression of reflection and resistance to scratches.SOLUTION: In an anti-reflection structure 10 having periodic convexo-concave parts 20 on its surface, any random convex 21-1, which is not the outermost convex 21, and six convexes 21-2 to 21-7 whose total of distances from the random convex 21-1 is the smallest are so arranged that: (1) between each of four convexes 21-2, 21-3, 21-5 and 21-6 out of six convexes 21-2 to 21-7 and the random convex 21-1, there is a linking part 23, in a position lower than the apex 21a of the convex 21 but higher than the bottom point 22a of the concave 22, to link the convexes, and (2) between each of the remaining two convexes 21-4 and 21-7 of the six convexes 21-2 to 21-7 and the random convex 21-1, there is a concave 22.

Description

本発明は、反射防止構造体、及び反射防止構造体の製造方法に関する。   The present invention relates to an antireflection structure and a method for manufacturing the antireflection structure.

近年、液晶ディスプレイ(LCD)等の表示装置や太陽電池向けに、周期的な凹凸部を表面に有する反射防止構造体が開発されている(例えば、特許文献1参照)。反射防止構造体は、所謂モスアイ(Motheye)型であって、凸部のピッチが可視光の波長以下のため、広い波長範囲で光反射率を低減し光透過率を向上することができる。   In recent years, an antireflection structure having a periodic concavo-convex portion on the surface thereof has been developed for a display device such as a liquid crystal display (LCD) or a solar cell (see, for example, Patent Document 1). The antireflection structure is a so-called moth-eye type, and since the pitch of the convex portions is equal to or less than the wavelength of visible light, the light reflectance can be reduced and the light transmittance can be improved in a wide wavelength range.

国際公開第2011/027909号International Publication No. 2011/027909

従来の反射防止構造体の凹凸部は、平面上に錐状の突起部が多数配列された構造を有する。突起部の充填率を高めるため、突起部は六方格子状又は四方格子状に周期的に配置される。   The concavo-convex portion of the conventional antireflection structure has a structure in which a large number of conical protrusions are arranged on a plane. In order to increase the filling rate of the protrusions, the protrusions are periodically arranged in a hexagonal lattice shape or a tetragonal lattice shape.

反射防止構造体の低反射性の向上を目的として、突起部の充填率をさらに高めるため、突起部の下部同士が重なり合うように配置されることがある。   In order to further improve the filling rate of the protrusions for the purpose of improving the low reflectivity of the antireflection structure, the lower portions of the protrusions may be arranged so as to overlap each other.

しかしながら、突起部の下部同士が重なり過ぎると、凸部の頂点と凹部の底点との高低差が小さくなるので、却って低反射性に悪影響を及ぼす。   However, if the lower portions of the protrusions are excessively overlapped, the difference in height between the top of the convex portion and the bottom point of the concave portion is reduced, which adversely affects low reflectivity.

また、反射防止構造体は、表面に凹凸部を有するので、表面が擦れたときに傷付きやすいという問題もあった。   In addition, since the antireflection structure has an uneven portion on the surface, there is also a problem that the antireflection structure is easily damaged when the surface is rubbed.

本発明は、上記課題に鑑みてなされたものであって、低反射性及び耐擦傷性に優れた反射防止構造体、及び反射防止構造体の製造方法の提供を目的とする。   This invention is made | formed in view of the said subject, Comprising: It aims at provision of the manufacturing method of an antireflection structure excellent in low reflectivity and abrasion resistance, and an antireflection structure.

上記目的を解決するため、本発明の一の態様による反射防止構造体は、
周期的な凹凸部を表面に有する反射防止構造体において、
最外側の凸部を除く任意の凸部と、該任意の凸部からの距離の合計が最短である6個の凸部とは、(1)該6個の凸部のうちの4個の前記凸部のそれぞれと前記任意の凸部との間に凸部の頂点よりも低く凹部の底点よりも高い位置で凸部同士を連結する連結部が存在し、(2)該6個の凸部のうちの残りの2個の前記凸部のそれぞれと前記任意の凸部との間に凹部が存在するように、配置されることを特徴とする。
In order to solve the above object, an antireflection structure according to an aspect of the present invention is provided.
In the antireflection structure having periodic irregularities on the surface,
Arbitrary convex portions excluding the outermost convex portion and the six convex portions having the shortest sum of the distances from the arbitrary convex portions are (1) four of the six convex portions. Between each of the convex portions and the arbitrary convex portion, there is a connecting portion that connects the convex portions at a position lower than the top of the convex portion and higher than the bottom point of the concave portion, and (2) the six It arrange | positions so that a recessed part may exist between each of the remaining two said convex parts of a convex part, and the said arbitrary convex parts, It is characterized by the above-mentioned.

さらに、本発明の他の態様による反射防止構造体の製造方法は、
周期的な凹凸部を表面に有する原型を用いて、周期的な凹凸部を表面に有する反射防止構造体を製造する工程を有する反射防止構造体の製造方法において、
前記原型において、最外側の凸部を除く任意の凸部と、該任意の凸部からの距離の合計が最短である6個の凸部とは、(1)該6個の凸部のうちの4個の前記凸部のそれぞれと前記任意の凸部との間に凸部の頂点よりも低く凹部の底点よりも高い位置で凸部同士を連結する連結部が存在し、(2)該6個の凸部のうちの残りの2個の前記凸部のそれぞれと前記任意の凸部との間に凹部が存在するように、配置されることを特徴とする。
Furthermore, the manufacturing method of the antireflection structure according to another aspect of the present invention includes:
In the manufacturing method of the antireflection structure having the step of manufacturing the antireflection structure having the periodic irregularities on the surface, using the prototype having the periodic irregularities on the surface,
In the prototype, an arbitrary convex portion excluding the outermost convex portion and six convex portions having the shortest total distance from the arbitrary convex portion are (1) of the six convex portions. Between each of the four convex portions and the arbitrary convex portion, there is a connecting portion that connects the convex portions at a position lower than the vertex of the convex portion and higher than the bottom point of the concave portion, (2) The six convex portions are arranged such that a concave portion exists between each of the remaining two convex portions and the arbitrary convex portion.

本発明によれば、低反射性及び耐擦傷性に優れた反射防止構造体、及び反射防止構造体の製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the antireflection structure excellent in low reflectivity and abrasion resistance and an antireflection structure is provided.

本発明の第1の実施形態による反射防止構造体の一部を示す斜視図である。It is a perspective view which shows a part of antireflection structure body by the 1st Embodiment of this invention. 図1の反射防止構造体の表面の凹凸を模式的に示す平面図(1)である。It is a top view (1) which shows typically the unevenness | corrugation of the surface of the antireflection structure of FIG. 図1の反射防止構造体の表面の凹凸を示す図である。It is a figure which shows the unevenness | corrugation of the surface of the reflection preventing structure of FIG. 図1の反射防止構造体の表面の凹凸を模式的に示す平面図(2)である。It is a top view (2) which shows typically the unevenness | corrugation of the surface of the antireflection structure of FIG. 本発明の第1の実施形態による反射防止構造体の製造方法の説明図(1)である。It is explanatory drawing (1) of the manufacturing method of the reflection preventing structure by the 1st Embodiment of this invention. 本発明の第1の実施形態による反射防止構造体の製造方法の説明図(2)である。It is explanatory drawing (2) of the manufacturing method of the reflection preventing structure by the 1st Embodiment of this invention. 本発明の第1の実施形態による反射防止構造体の製造方法の説明図(3)である。It is explanatory drawing (3) of the manufacturing method of the reflection preventing structure by the 1st Embodiment of this invention. 図5の原型の表面の凹凸を模式的に示す平面図である。It is a top view which shows typically the unevenness | corrugation of the surface of the prototype of FIG. 本発明の第2の実施形態による反射防止構造体の一部を示す斜視図である。It is a perspective view which shows a part of antireflection structure body by the 2nd Embodiment of this invention. 図9の反射防止構造体の表面の凹凸を模式的に示す平面図である。It is a top view which shows typically the unevenness | corrugation of the surface of the reflection preventing structure of FIG. 図9の反射防止構造体の表面の凹凸を示す図である。It is a figure which shows the unevenness | corrugation of the surface of the reflection preventing structure of FIG. 実施例1による解析モデルの作製方法を示す説明図である。6 is an explanatory diagram illustrating a method for producing an analysis model according to Example 1. FIG. 比較例1〜3による解析モデルの作製方法を示す説明図である。It is explanatory drawing which shows the preparation methods of the analysis model by Comparative Examples 1-3. 実施例1及び比較例1〜3による反射率の解析結果を示す図である。It is a figure which shows the analysis result of the reflectance by Example 1 and Comparative Examples 1-3.

以下、本発明を実施するための形態について図面を参照して説明する。各図面において、同一の又は対応する構成については同一の又は対応する符号を付して説明を省略する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and description thereof is omitted.

[第1の実施形態]
図1は、本発明の第1の実施形態による反射防止構造体の一部を示す斜視図である。図1において、反射防止構造体の表面の凹凸を表現するため、等高線を細線で示す。図2は、図1の反射防止構造体の表面の凹凸を模式的に示す平面図(1)である。図2(A)は凸部の頂点を結ぶ格子の配列を示し、図2(B)は図2(A)の一部を示す。図2において、図面を見やすくするため、凸部及び連結部を異なる点模様、凸部の頂点を黒丸、凹部の底点を白丸、凸部の頂点を結ぶ格子を太線で示す。図3は、図1の反射防止構造体の表面の凹凸を示す図である。図3(A)は図2のA−A線に沿った断面における凹凸、図3(B)は図2のB−B線に沿った断面における凹凸、図3(C)は図2のC−C線に沿った断面における凹凸、図3(D)は図2のD−D線に沿った断面における凹凸を示す。
[First Embodiment]
FIG. 1 is a perspective view showing a part of an antireflection structure according to a first embodiment of the present invention. In FIG. 1, contour lines are shown by thin lines in order to express irregularities on the surface of the antireflection structure. FIG. 2 is a plan view (1) schematically showing irregularities on the surface of the antireflection structure of FIG. FIG. 2A shows an array of lattices connecting the vertices of the convex portions, and FIG. 2B shows a part of FIG. In FIG. 2, in order to make the drawing easier to see, the convex portions and the connecting portions are indicated by different dot patterns, the vertexes of the convex portions are black circles, the bottom points of the concave portions are white circles, and the grids connecting the vertexes of the convex portions are indicated by bold lines. FIG. 3 is a view showing irregularities on the surface of the antireflection structure of FIG. 1. 3A is unevenness in the cross section along line AA in FIG. 2, FIG. 3B is unevenness in the cross section along line BB in FIG. 2, and FIG. 3C is C in FIG. FIG. 3D shows the unevenness in the cross section along the line DD in FIG. 2.

反射防止構造体10は、所謂モスアイ型であって、図1に示すように、基体12と基体12上に形成される樹脂層14とで構成される。基体12及び樹脂層14は、透光性を有してよい。樹脂層14の表面には、周期的な凹凸部20が形成されている。尚、反射防止構造体10は、樹脂層14のみで構成されてもよい。   The antireflection structure 10 is of a so-called moth-eye type, and includes a base 12 and a resin layer 14 formed on the base 12 as shown in FIG. The base 12 and the resin layer 14 may have translucency. Periodic uneven portions 20 are formed on the surface of the resin layer 14. In addition, the antireflection structure 10 may be configured by only the resin layer 14.

基体12は、例えばシート状、板状、又はブロック状に形成される。基体12の材料は、特に限定されないが、例えばガラス又はプラスチック等が用いられる。   The base 12 is formed in a sheet shape, a plate shape, or a block shape, for example. Although the material of the base | substrate 12 is not specifically limited, For example, glass or a plastics etc. are used.

ガラスとしては、例えばソーダライムガラス、無アルカリガラス、石英ガラス等が用いられる。ガラスの成形方法としては、例えばフロート法、フュージョン法等が用いられる。   As the glass, for example, soda lime glass, non-alkali glass, quartz glass or the like is used. As a glass forming method, for example, a float method, a fusion method or the like is used.

プラスチックとしては、例えばポリメチルメタアクリレート、メチルメタクリレートと他のアルキル(メタ)アクリレート、スチレンなどといったビニルモノマーとの共重合体などの(メタ)アクリル系樹脂;ポリカーボネート、ジエチレングリコールビスアリルカーボネート(CR-39)などのポリカーボネート系樹脂;(臭素化)ビスフェノールA型のジ(メタ)アクリレートの単独重合体ないし共重合体、(臭素化)ビスフェノールAモノ(メタ)アクリレートのウレタン変性モノマーの重合体及び共重合体などといった熱硬化性(メタ)アクリル系樹脂;ポリエステル特にポリエチレンテレフタレート、ポリエチレンナフタレートおよび不飽和ポリエステル、アクリロニトリル−スチレン共重合体、ポリ塩化ビニル、ポリウレタン、エポキシ樹脂、ポリアリレート、ポリエーテルスルホン、ポリエーテルケトン、シクロオレフィンポリマー(商品名:アートン、ゼオノア)などが好ましい。また、耐熱性を考慮したアラミド系樹脂の使用も可能である。   Examples of plastics include (meth) acrylic resins such as polymethyl methacrylate, methyl methacrylate and other alkyl (meth) acrylates, and copolymers of vinyl monomers such as styrene; polycarbonate, diethylene glycol bisallyl carbonate (CR-39) (Brominated) bisphenol A type di (meth) acrylate homopolymer or copolymer, (brominated) polymer of urethane-modified monomer of bisphenol A mono (meth) acrylate and copolymer Thermosetting (meth) acrylic resins such as coalescence; polyesters, especially polyethylene terephthalate, polyethylene naphthalate and unsaturated polyesters, acrylonitrile-styrene copolymers, polyvinyl chloride, polyurethane, epoxy Shi resins, polyarylate, polyether sulfone, polyether ketone, cycloolefin polymer (trade name: ARTON, ZEONOR) and the like are preferable. In addition, an aramid resin considering heat resistance can be used.

樹脂層14は、例えば基体12上に熱硬化性又は光硬化性の樹脂を塗布し、硬化してなる。樹脂層14の表面には凹凸部20が形成される。   The resin layer 14 is formed, for example, by applying a thermosetting or photocurable resin on the substrate 12 and curing it. An uneven portion 20 is formed on the surface of the resin layer 14.

凹凸部20は、図1及び図2に示すように、凸部21と、凹部22と、凸部21の頂点21aよりも低く凹部22の底点22aよりも高い位置で所定の凸部21同士を連結する連結部23とを有する。複数の凸部21と、複数の凹部22と、複数の連結部23とが2次元的に配列されている。   As shown in FIG. 1 and FIG. 2, the concavo-convex portion 20 is formed between the predetermined convex portions 21 at a position lower than the convex portion 21, the concave portion 22, and the vertex 22 a of the convex portion 21 and higher than the bottom point 22 a of the concave portion 22. And a connecting portion 23 for connecting the two. A plurality of convex portions 21, a plurality of concave portions 22, and a plurality of connecting portions 23 are two-dimensionally arranged.

凸部21は、例えば正六方格子状、準六方格子状、正四方格子状、又は準四方格子状(図1及び図2では正六方格子状)に周期的に配置される。凸部21の充填率を高めるため、凸部21は六方格子状に周期的に配置されることが好ましい。以下、凸部21が六方格子状に周期的に配置される場合について説明する。尚、凸部21が四方格子状に周期的に配置される場合については、第2の実施形態で説明する。   The convex portions 21 are periodically arranged in, for example, a regular hexagonal lattice shape, a quasi-hexagonal lattice shape, a regular tetragonal lattice shape, or a quasi-tetragonal lattice shape (a regular hexagonal lattice shape in FIGS. 1 and 2). In order to increase the filling rate of the convex portions 21, the convex portions 21 are preferably periodically arranged in a hexagonal lattice shape. Hereinafter, a case where the convex portions 21 are periodically arranged in a hexagonal lattice shape will be described. Note that the case where the convex portions 21 are periodically arranged in a tetragonal lattice pattern will be described in the second embodiment.

「正六方格子状に周期的に配置される」とは、図2に示すように、最外側の凸部21を除く任意の凸部21−1の周囲に、該任意の凸部21−1からの距離が最短で且つ等しい6個の凸部21−2〜21−7が配置されることを意味する。6個の凸部21−2〜21−7の頂点は、凸部21−1の頂点を中心に60°間隔で等ピッチで配置され、正六角形状の格子を構成する。   “Periodically arranged in a regular hexagonal lattice” means that, as shown in FIG. 2, the arbitrary convex portion 21-1 is disposed around the arbitrary convex portion 21-1 excluding the outermost convex portion 21. Means that six convex portions 21-2 to 21-7 that are the shortest and the same distance from each other are arranged. The vertices of the six convex portions 21-2 to 21-7 are arranged at an equal pitch with an interval of 60 ° around the vertex of the convex portion 21-1, and constitute a regular hexagonal lattice.

「準六方格子状に周期的に配置される」とは、正六方格子に準ずる形状に周期的に配置されることを意味する。正六方格子に準ずる形状は、正六角形状の格子を所定の方向に引き伸ばした形状等、正六角形状の格子を歪ませた形状である。正六角形状の格子を歪ませた形状の格子は、直線形状、曲線形状、又は蛇行形状に連続的に並んでよい。   “Periodically arranged in a quasi-hexagonal lattice shape” means that they are periodically arranged in a shape that conforms to a regular hexagonal lattice. The shape conforming to the regular hexagonal lattice is a shape obtained by distorting a regular hexagonal lattice such as a shape obtained by stretching a regular hexagonal lattice in a predetermined direction. A lattice having a shape obtained by distorting a regular hexagonal lattice may be continuously arranged in a linear shape, a curved shape, or a meandering shape.

本実施形態では、図2に示すように、最外側の凸部21を除く任意の凸部21−1と、該凸部21−1からの距離の合計(和)が最短である6個の凸部21−2〜21−7とは、下記の(1)及び(2)を満たすように配置される。
(1)6個の凸部21−2〜21−7のうちの4個の凸部21−2、21−3、21−5、21−6のそれぞれと、凸部21−1との間に連結部23が存在する。
(2)6個の凸部21−2〜21−7のうちの残りの2個の凸部21−4、21−7のそれぞれと、凸部21−1との間に凹部22が存在する。
In the present embodiment, as shown in FIG. 2, there are six convex portions 21-1 excluding the outermost convex portion 21, and the total (sum) of the distances from the convex portions 21-1 being the shortest. The convex portions 21-2 to 21-7 are arranged so as to satisfy the following (1) and (2).
(1) Between each of the four convex portions 21-2, 21-3, 21-5, 21-6 among the six convex portions 21-2 to 21-7 and the convex portion 21-1. There is a connecting portion 23.
(2) A concave portion 22 exists between each of the remaining two convex portions 21-4 and 21-7 among the six convex portions 21-2 to 21-7 and the convex portion 21-1. .

「距離」は、凸部21の頂点21a同士の間の距離のことである。距離の合計が最短である6個の凸部の組合せが複数有る場合、全ての組合せについて上記の(1)及び(2)が成立する。尚、本実施形態では、距離の合計が最短である6個の凸部の組合せは1つだけである。   “Distance” is the distance between the vertices 21 a of the convex portions 21. When there are a plurality of combinations of six convex portions having the shortest total distance, the above (1) and (2) are established for all combinations. In the present embodiment, there is only one combination of six convex portions with the shortest total distance.

上記の(1)及び(2)が成立する場合、図2に示すように、例えば任意の凸部21−1を中心に交差する3方向のうち、2方向(F1方向及びF2方向)に沿って凸部21と連結部23とが交互に配置され、残りの一方向(F3方向)に沿って凸部21と凹部22とが交互に配置される。F1方向、F2方向、及びF3に間隔をおいて並ぶ凸部21のピッチP1(図3(A)及び図3(B)参照)は、可視光の波長以下の長さに設定されてよい。F3方向と垂直な方向に間隔をおいて並ぶ凸部21のピッチP2(図3(C)参照)は、ピッチP1よりも大きい。F1方向と平行な方向に沿って凹部22と連結部23とが交互に配置されている(図2及び図3(D)参照)。   When the above (1) and (2) are established, as shown in FIG. 2, for example, along three directions intersecting around an arbitrary convex portion 21-1, along two directions (F1 direction and F2 direction). The convex portions 21 and the connecting portions 23 are alternately arranged, and the convex portions 21 and the concave portions 22 are alternately arranged along the remaining one direction (F3 direction). The pitch P1 (see FIGS. 3A and 3B) of the convex portions 21 arranged at intervals in the F1 direction, the F2 direction, and F3 may be set to a length equal to or shorter than the wavelength of visible light. The pitch P2 (see FIG. 3C) of the convex portions 21 arranged at intervals in the direction perpendicular to the F3 direction is larger than the pitch P1. Concave portions 22 and connecting portions 23 are alternately arranged along a direction parallel to the F1 direction (see FIGS. 2 and 3D).

このように、凸部21及び凹部22が交互に配置される方向と、凸部21及び連結部23が交互に配置される方向とが異なる。そのため、凸部21の頂点21aと凹部22の底点22aとの高低差H1(図3(B)参照)と、凸部21の頂点21aと連結部23の所定部分23a(図1参照)との高低差H2(図3(A)参照)とを独立に設計可能である。従って、高低差H1と、高低差H2とを独立に最適化することが可能である。ここで、連結部23の所定部分23aは、凸部21の頂点21a同士の間における最も低い部分であって、凹部22の底点22a同士の間における最も高い部分である。   Thus, the direction where the convex part 21 and the recessed part 22 are arrange | positioned alternately differs from the direction where the convex part 21 and the connection part 23 are arrange | positioned alternately. Therefore, the height difference H1 (see FIG. 3B) between the vertex 21a of the convex portion 21 and the bottom point 22a of the concave portion 22, and the vertex 21a of the convex portion 21 and the predetermined portion 23a of the connecting portion 23 (see FIG. 1). The height difference H2 (see FIG. 3A) can be designed independently. Therefore, the height difference H1 and the height difference H2 can be optimized independently. Here, the predetermined portion 23 a of the connecting portion 23 is the lowest portion between the vertices 21 a of the convex portions 21 and is the highest portion between the bottom points 22 a of the concave portions 22.

高低差H1と高低差H2の最適化のため、先ず、ピッチP1の範囲が設定されてよい。ピッチP1は、上述の如く、可視光の波長以下の長さに設定されるので、例えば400nm以下(好ましくは300nm以下)であってよい。また、ピッチP1は、生産性の観点から、例えば50nm以上(好ましくは100nm以上)であってよい。従って、ピッチP1は50〜400nmであってよい。   In order to optimize the height difference H1 and the height difference H2, first, the range of the pitch P1 may be set. As described above, the pitch P1 is set to a length equal to or shorter than the wavelength of visible light, and may be, for example, 400 nm or less (preferably 300 nm or less). The pitch P1 may be, for example, 50 nm or more (preferably 100 nm or more) from the viewpoint of productivity. Therefore, the pitch P1 may be 50 to 400 nm.

次いで、凹凸部20のアスペクト比の範囲が設定される。凹凸部20のアスペクト比は、凸部21の頂点21aと凹部22の底点22aとの高低差H1と、凸部21のピッチP1との比H1/P1で表される。アスペクト比H1/P1は、反射防止構造体10の低反射性の観点から、例えば0.5以上(好ましくは0.7以上、より好ましくは1以上)である。また、アスペクト比H1/P1は、生産性の観点から、例えば4以下(好ましくは3以下、より好ましくは2以下)である。尚、凸部21のF1方向におけるピッチと、凸部21のF2方向におけるピッチと、凸部21のF3方向におけるピッチとが異なる場合、最短のピッチでアスペクト比が求められる。アスペクト比H1/P1が0.5〜4であるので、高低差H1は例えば100〜500nmであってよい。   Next, the range of the aspect ratio of the uneven portion 20 is set. The aspect ratio of the concavo-convex portion 20 is represented by a ratio H1 / P1 between the height difference H1 between the apex 21a of the convex portion 21 and the bottom point 22a of the concave portion 22 and the pitch P1 of the convex portion 21. The aspect ratio H1 / P1 is, for example, 0.5 or more (preferably 0.7 or more, more preferably 1 or more) from the viewpoint of low reflectivity of the antireflection structure 10. The aspect ratio H1 / P1 is, for example, 4 or less (preferably 3 or less, more preferably 2 or less) from the viewpoint of productivity. In addition, when the pitch in the F1 direction of the convex part 21, the pitch in the F2 direction of the convex part 21, and the pitch in the F3 direction of the convex part 21 are different, the aspect ratio is obtained with the shortest pitch. Since the aspect ratio H1 / P1 is 0.5 to 4, the height difference H1 may be 100 to 500 nm, for example.

次いで、高低差H1と高低差H2との比H2/H1が設定される。比H2/H1が大きくなるほど、連結部23の所定部分23aの高さが低くなるので、反射防止構造体10の低反射性が良くなる。比H2/H1は、例えば0.1以上(好ましくは0.2以上、より好ましくは0.3以上)である。一方、比H2/H1が小さくなるほど、連結部23の所定部分23aの高さが高くなり、凸部21が補強されるので、反射防止構造体10の耐擦傷性が良くなる。比H2/H1は、例えば0.9以下(好ましくは0.7以下、より好ましくは0.5以下)である。比H2/H1が0.1〜0.9であるので、高低差H2は例えば30〜300nmであってよい。   Next, a ratio H2 / H1 between the height difference H1 and the height difference H2 is set. As the ratio H2 / H1 increases, the height of the predetermined portion 23a of the connecting portion 23 decreases, so that the low reflectivity of the antireflection structure 10 is improved. The ratio H2 / H1 is, for example, 0.1 or more (preferably 0.2 or more, more preferably 0.3 or more). On the other hand, as the ratio H2 / H1 is decreased, the height of the predetermined portion 23a of the connecting portion 23 is increased and the convex portion 21 is reinforced, so that the anti-reflection structure 10 has better scratch resistance. The ratio H2 / H1 is, for example, 0.9 or less (preferably 0.7 or less, more preferably 0.5 or less). Since the ratio H2 / H1 is 0.1 to 0.9, the height difference H2 may be 30 to 300 nm, for example.

本実施形態では、高低差H1と、高低差H2とを独立に最適化することが可能であるので、アスペクト比H1/P1と、比H2/H1を独立に最適化することが可能であり、低反射性と耐擦傷性の両立が可能である。   In this embodiment, since the height difference H1 and the height difference H2 can be optimized independently, the aspect ratio H1 / P1 and the ratio H2 / H1 can be optimized independently. Both low reflectivity and scratch resistance are possible.

ピッチP1、高低差H1、高低差H2等は、原子間力顕微鏡(AFM:Atomic Force Microscope)により撮影したAFM画像、及びその断面プロファイルから求められる。   The pitch P1, the height difference H1, the height difference H2, and the like are obtained from an AFM image taken with an atomic force microscope (AFM) and a cross-sectional profile thereof.

尚、本実施形態では、直線方向であるF1方向及びF2方向に沿って凸部21と連結部23とが交互に配列され、直線方向であるF3方向に沿って凸部21と凹部22とが交互に配列されるが、上記の(1)及び(2)が成立する限り、本発明はこれに限定されない。例えば、六角形状の格子を湾曲状に配列する場合、所定の曲線方向に沿って凸部21と連結部23とが交互に配列されてもよい。   In the present embodiment, the convex portions 21 and the connecting portions 23 are alternately arranged along the F1 direction and the F2 direction which are linear directions, and the convex portions 21 and the concave portions 22 are arranged along the F3 direction which is a linear direction. Although alternately arranged, the present invention is not limited to this as long as the above (1) and (2) are established. For example, when hexagonal lattices are arranged in a curved shape, the convex portions 21 and the connecting portions 23 may be alternately arranged along a predetermined curved direction.

尚、本実施形態では、凸部21の配置について着目したが、凹部22の配置について着目してもよい。   In the present embodiment, attention is paid to the arrangement of the convex portions 21, but attention may be paid to the arrangement of the concave portions 22.

図4は、図1の反射防止構造体の表面の凹凸を模式的に示す平面図(2)である。図4(A)は凹部の底点を結ぶ格子の配列を示し、図4(B)は図4(A)の一部を示す。図4において、図面を見やすくするため、凸部及び連結部を異なる点模様、凸部の頂点を黒丸、凹部の底点を白丸、凹部の底点を結ぶ格子を太線で示す。   FIG. 4 is a plan view (2) schematically showing irregularities on the surface of the antireflection structure of FIG. FIG. 4A shows an array of grids connecting the bottoms of the recesses, and FIG. 4B shows a part of FIG. In FIG. 4, in order to make the drawing easy to see, the convex portions and the connecting portions are indicated by different dot patterns, the vertexes of the convex portions are indicated by black circles, the bottom points of the concave portions are indicated by white circles, and the grids connecting the bottom points of the concave portions are indicated by bold lines.

図4に示すように、最外側の凹部22を除く任意の凹部22−1と、該凹部22−1からの距離の合計(和)が最短である6個の凹部22−2〜22−7とは、下記の(3)及び(4)を満たすように配置される。
(3)6個の凹部22−2〜22−7のうちの4個の凹部22−2、22−3、22−5、22−6のそれぞれと、凹部22−1との間に連結部23が存在する。
(4)6個の凹部22−2〜22−7のうちの残りの2個の凹部22−4、22−7のそれぞれと、凹部22−1との間に凸部21が存在する。
As shown in FIG. 4, six concave portions 22-2 to 22-7 having the shortest sum (sum) of arbitrary concave portions 22-1 except the outermost concave portion 22 and the distance from the concave portion 22-1. Are arranged so as to satisfy the following (3) and (4).
(3) A connecting portion between each of the four recesses 22-2, 22-3, 22-5, 22-6 of the six recesses 22-2 to 22-7 and the recess 22-1. 23 exists.
(4) The convex part 21 exists between each of the remaining two concave parts 22-4 and 22-7 of the six concave parts 22-2 to 22-7 and the concave part 22-1.

「距離」は、凹部22の底点22a同士の間の距離のことである。距離の合計が最短である6個の凹部22の組合せが複数有る場合、全ての組合せについて上記の(3)及び(4)が成立する。本実施形態では、距離の合計が最短である6個の凹部22の組合せは1つだけである。   “Distance” is the distance between the bottom points 22 a of the recesses 22. When there are a plurality of combinations of the six recesses 22 having the shortest total distance, the above (3) and (4) are established for all the combinations. In the present embodiment, there is only one combination of the six recesses 22 having the shortest total distance.

図5〜図6は、本発明の第1の実施形態による反射防止構造体の製造方法の説明図(1)〜(2)である。図5は原型を用いてレプリカを作製する第1の工程を示し、図6はレプリカを用いて反射防止構造体を作製する第2の工程を示す。   5-6 is explanatory drawing (1)-(2) of the manufacturing method of the reflection preventing structure by the 1st Embodiment of this invention. FIG. 5 shows a first step of producing a replica using a prototype, and FIG. 6 shows a second step of producing an antireflection structure using the replica.

反射防止構造体の製造方法は、周期的な凹凸部60を表面に有する原型50を用いて、周期的な凹凸部20を表面に有する反射防止構造体10を製造する工程を有する。該工程は、例えば、原型50の凹凸部60の形状を反転転写した凹凸部80を表面に有するレプリカ70を作製する第1の工程と、レプリカ70の凹凸部80の形状を反転転写した凹凸部20を表面に有する反射防止構造体10を作製する第2の工程とを有する。原型50は第1の工程において繰り返し使用可能であり、レプリカ70は第2の工程において繰り返し使用可能である。   The manufacturing method of the antireflection structure includes a step of manufacturing the antireflection structure 10 having the periodic uneven portions 20 on the surface by using the prototype 50 having the periodic uneven portions 60 on the surface. This step includes, for example, a first step of producing a replica 70 having a concavo-convex portion 80 on which the shape of the concavo-convex portion 60 of the prototype 50 is transferred, and a concavo-convex portion obtained by inverting and transferring the shape of the uneven portion 80 of the replica 70 And a second step of producing the antireflection structure 10 having 20 on the surface. The prototype 50 can be used repeatedly in the first step, and the replica 70 can be used repeatedly in the second step.

第1の工程は、例えば、原型50を用意する工程(図5(A)参照)と、原型50の凹凸部60上に金属膜を成膜してレプリカ70を作製する工程(図5(B)参照)と、レプリカ70を原型50から剥離する工程(図5(C)参照)とを有する。レプリカ70は、例えば原型50の凹凸部60上に導電膜を形成した後、導電膜上にNi等の金属膜を電鋳法で形成してなる。導電膜の形成方法としては、無電解メッキ、スパッタリングや真空蒸着等のPVD法が用いられる。   The first step includes, for example, a step of preparing the prototype 50 (see FIG. 5A), and a step of forming a replica 70 by forming a metal film on the uneven portion 60 of the prototype 50 (FIG. 5B). )) And a step of peeling the replica 70 from the master 50 (see FIG. 5C). The replica 70 is formed, for example, by forming a conductive film on the concavo-convex portion 60 of the prototype 50 and then forming a metal film such as Ni on the conductive film by electroforming. As a method for forming the conductive film, PVD methods such as electroless plating, sputtering, and vacuum deposition are used.

第2の工程は、例えば基体12上に硬化性樹脂を塗布する工程(図6(A)参照)と、塗布層13の表面にレプリカ70の凹凸部80を押し付けた状態で塗布層13を硬化する工程(図6(B)参照)と、塗布層13を硬化してなる樹脂層14からレプリカ70を剥離する工程(図6(C)参照)とを有する。硬化性樹脂には、例えば熱硬化性樹脂又は光硬化性樹脂が用いられる。硬化性樹脂の塗布方法としては、例えばスピンコート法、ダイコート法、インクジェット法等の一般的な方法が用いられる。   In the second step, for example, a step of applying a curable resin onto the base 12 (see FIG. 6A), and the coating layer 13 is cured in a state where the concavo-convex portion 80 of the replica 70 is pressed against the surface of the coating layer 13. And a step of peeling the replica 70 from the resin layer 14 formed by curing the coating layer 13 (see FIG. 6C). As the curable resin, for example, a thermosetting resin or a photocurable resin is used. As a method for applying the curable resin, for example, a general method such as a spin coating method, a die coating method, or an ink jet method is used.

このようにして、反射防止構造体10が製造される。反射防止構造体10の凹凸部20は、原型50の凹凸部60の形状を2回反転した形状を有するので、原型50の凹凸部60と略同じ形状、略同じ寸法を有する。   In this way, the antireflection structure 10 is manufactured. Since the uneven portion 20 of the antireflection structure 10 has a shape obtained by inverting the shape of the uneven portion 60 of the prototype 50 twice, it has substantially the same shape and substantially the same dimensions as the uneven portion 60 of the prototype 50.

図7は、図5の原型の表面の凹凸を模式的に示す平面図である。図7(A)は凸部の頂点を結ぶ格子の配列を示し、図7(B)は図7(A)の一部を示す。図7において、図面を見やすくするため、凸部及び連結部を異なる点模様、凸部の頂点を黒丸、凹部の底点を白丸、凸部の頂点を結ぶ格子を太線で示す。   FIG. 7 is a plan view schematically showing irregularities on the surface of the prototype of FIG. FIG. 7A shows an array of lattices connecting the vertices of the convex portions, and FIG. 7B shows a part of FIG. In FIG. 7, in order to make the drawing easier to see, the convex portions and the connecting portions are indicated by different dot patterns, the vertexes of the convex portions are indicated by black circles, the bottom points of the concave portions are indicated by white circles, and the grids connecting the vertexes of the convex portions are indicated by bold lines.

原型50の凹凸部60は、反射防止構造体10の凹凸部20と同様に、図7に示すように、凸部61と、凹部62と、凸部61の頂点61aよりも低く凹部62の底点62aよりも高い位置で所定の凸部61同士を連結する連結部63とを有する。複数の凸部61と、複数の凹部62と、複数の連結部63とが2次元的に配列されている。   As shown in FIG. 7, the concavo-convex part 60 of the prototype 50 is lower than the convex part 61, the concave part 62, and the apex 61 a of the convex part 61, as in the concave-convex part 20 of the antireflection structure 10. It has the connection part 63 which connects predetermined convex parts 61 in the position higher than the point 62a. A plurality of convex portions 61, a plurality of concave portions 62, and a plurality of connecting portions 63 are two-dimensionally arranged.

凸部61は、例えば正六方格子状、準六方格子状、正四方格子状、又は準四方格子状(本実施形態では正六方格子状)に周期的に配置される。凸部61の充填率を高めるため、凸部61は、六方格子状に周期的に配置されることが好ましい。   The convex portions 61 are periodically arranged, for example, in a regular hexagonal lattice shape, a quasi-hexagonal lattice shape, a regular tetragonal lattice shape, or a quasi-tetragonal lattice shape (in this embodiment, a regular hexagonal lattice shape). In order to increase the filling rate of the convex portions 61, the convex portions 61 are preferably arranged periodically in a hexagonal lattice shape.

凸部61が正六方格子状に周期的に配置される場合、最外側の凸部61を除く任意の凸部61−1の周囲に、該任意の凸部61−1からの距離が最短で且つ等しい6個の凸部61−2〜61−7が配置される。6個の凸部61−2〜61−7の頂点は、凸部61−1の頂点を中心に60°間隔で等ピッチで配置され、正六角形状の格子を構成する。   When the convex portions 61 are periodically arranged in a regular hexagonal lattice shape, the distance from the arbitrary convex portion 61-1 is the shortest around the arbitrary convex portion 61-1 excluding the outermost convex portion 61. And six equal convex parts 61-2 to 61-7 are arranged. The vertices of the six convex portions 61-2 to 61-7 are arranged at an equal pitch with an interval of 60 ° around the vertex of the convex portion 61-1, and constitute a regular hexagonal lattice.

本実施形態では、図7に示すように、最外側の凸部61を除く任意の凸部61−1と、該凸部61−1からの距離の合計(和)が最短である6個の凸部61−2〜61−7とは、下記の(5)及び(6)を満たすように配置される。
(5)6個の凸部61−2〜61−7のうちの4個の凸部61−2、61−3、61−5、61−6のそれぞれと、凸部61−1との間に連結部63が存在する。
(6)6個の凸部61−2〜61−7のうちの残りの2個の凸部61−4、61−7のそれぞれと、凸部61−1との間に凹部62が存在する。
In the present embodiment, as shown in FIG. 7, there are six arbitrary convex portions 61-1 excluding the outermost convex portion 61 and the total (sum) of the distances from the convex portions 61-1. The convex portions 61-2 to 61-7 are arranged so as to satisfy the following (5) and (6).
(5) Between each of four convex parts 61-2, 61-3, 61-5, 61-6 of the six convex parts 61-2 to 61-7 and the convex part 61-1. There is a connecting portion 63.
(6) A concave portion 62 exists between each of the remaining two convex portions 61-4 and 61-7 among the six convex portions 61-2 to 61-7 and the convex portion 61-1. .

尚、本実施形態では、距離の合計が最短である6個の凸部の組合せは1つだけである。   In the present embodiment, there is only one combination of six convex portions with the shortest total distance.

上記の(5)及び(6)が成立する場合、例えば任意の凸部61−1を中心に交差する3方向のうち、2方向(F1方向及びF2方向)に沿って凸部61と連結部63とが交互に配置され、残りの一方向(F3方向)に沿って凸部61と凹部62とが交互に配置される。F1方向と平行な方向に沿って、凹部62と連結部63とが交互に配置されている。   When the above (5) and (6) are established, for example, the convex portion 61 and the connecting portion along two directions (F1 direction and F2 direction) among three directions intersecting with an arbitrary convex portion 61-1. 63 are alternately arranged, and the convex portions 61 and the concave portions 62 are alternately arranged along the remaining one direction (F3 direction). Concave portions 62 and connecting portions 63 are alternately arranged along a direction parallel to the F1 direction.

このように、原型50において、凸部61及び凹部62が交互に配置される方向と、凸部61及び連結部63が交互に配置される方向とが異なる。そのため、凸部61の頂点61aと凹部62の底点62aとの高低差と、凸部61の頂点61aと連結部63の所定部分(反射防止構造体10の連結部23の所定部分23aに対応する部分)との高低差とを独立に設計可能である。よって、図1〜図4に示す反射防止構造体10において凸部21の頂点21aと凹部22の底点22aとの高低差H1と、凸部21の頂点21aと連結部23の所定部分23aとの高低差H2とを独立に設計可能である。よって、高低差H1と、高低差H2とを独立に最適化することが可能であるので、低反射性と耐擦傷性との両立が可能である。   Thus, in the prototype 50, the direction in which the convex portions 61 and the concave portions 62 are alternately arranged is different from the direction in which the convex portions 61 and the connecting portions 63 are alternately arranged. Therefore, the height difference between the apex 61a of the convex portion 61 and the bottom point 62a of the concave portion 62, and the predetermined portion of the apex 61a of the convex portion 61 and the connecting portion 63 (corresponding to the predetermined portion 23a of the connecting portion 23 of the antireflection structure 10). It is possible to design the difference in height with respect to the portion). Accordingly, in the antireflection structure 10 shown in FIGS. 1 to 4, the height difference H1 between the vertex 21a of the convex portion 21 and the bottom point 22a of the concave portion 22, the vertex 21a of the convex portion 21 and the predetermined portion 23a of the connecting portion 23, The height difference H2 can be designed independently. Therefore, since the height difference H1 and the height difference H2 can be optimized independently, both low reflectivity and scratch resistance can be achieved.

尚、本実施形態では、反射防止構造体10の凹凸部20は、原型50の凹凸部60の形状を2回反転した形状を有するが、原型50の凹凸部60の形状を1回以上反転した形状を有していればよく、塗布層13(図6参照)の表面に原型50の凹凸部60を押し付けた状態で塗布層13を硬化してもよい。反転転写の回数に関係なく、反射防止構造体10の凸部21は上記の(1)及び(2)を満たすので、低反射性と耐擦傷性との両立が可能である。   In the present embodiment, the concavo-convex portion 20 of the antireflection structure 10 has a shape obtained by inverting the shape of the concavo-convex portion 60 of the prototype 50 twice, but the shape of the concavo-convex portion 60 of the prototype 50 is inverted one or more times. It is only necessary to have a shape, and the coating layer 13 may be cured in a state in which the uneven portion 60 of the prototype 50 is pressed against the surface of the coating layer 13 (see FIG. 6). Regardless of the number of times of reversal transfer, the convex portion 21 of the antireflection structure 10 satisfies the above (1) and (2), so that both low reflectivity and scratch resistance can be achieved.

図8は、本発明の第1の実施形態による反射防止構造体の製造方法の説明図(3)である。図8は、原型を製造する工程を示す。   FIG. 8 is an explanatory view (3) of the manufacturing method of the antireflection structure according to the first embodiment of the present invention. FIG. 8 shows a process of manufacturing a prototype.

反射防止構造体の製造方法は、原型50を製造する工程をさらに有してよい。該工程は、例えば、基体51(図5及び図6参照)上にレジスト膜52を成膜する工程と、レジスト膜52の表面に、第1の方向(G1方向)に光強度が変化する第1の干渉縞を露光する工程(図8(A)参照)と、レジスト膜52の表面に、第1の方向と交差する第2の方向(G2方向)に光強度が変化する第2の干渉縞を露光する工程(図8(B)参照)と、第1及び第2の干渉縞の露光後にレジスト膜52を現像する工程とを含む。   The method for manufacturing the antireflection structure may further include a step of manufacturing the prototype 50. This step includes, for example, a step of forming a resist film 52 on the substrate 51 (see FIGS. 5 and 6), and a step of changing the light intensity on the surface of the resist film 52 in the first direction (G1 direction). A step of exposing one interference fringe (see FIG. 8A), and a second interference whose light intensity changes on the surface of the resist film 52 in a second direction (G2 direction) intersecting the first direction. A step of exposing the stripes (see FIG. 8B) and a step of developing the resist film 52 after the exposure of the first and second interference fringes.

基体51(図5及び図6参照)は、例えばシート状、板状、ブロック状、又はロール状に形成される。基体51の材料は、特に限定されないが、例えばシリコン、石英ガラス、ソーダガラス、無アルカリガラス等が用いられる。   The base | substrate 51 (refer FIG.5 and FIG.6) is formed in a sheet form, plate shape, block shape, or roll shape, for example. Although the material of the base | substrate 51 is not specifically limited, For example, a silicon | silicone, quartz glass, soda glass, an alkali free glass etc. are used.

レジスト膜52の材料としては、一般的なものが用いられ、ネガ型、ポジ型のいずれも使用可能である。レジスト膜52の材料に応じて、現像液が選定される。   As a material of the resist film 52, a general material is used, and either a negative type or a positive type can be used. A developing solution is selected according to the material of the resist film 52.

第1の干渉縞は、2光束干渉露光法で形成される。第1の干渉縞によって感光した複数の感光部53が第1の方向(G1方向)に間隔をおいて並ぶ。干渉波の光源としては、He−Cdレーザ(波長325nm)等の一般的なレーザ発振器が用いられる。   The first interference fringes are formed by a two-beam interference exposure method. A plurality of photosensitive portions 53 exposed by the first interference fringes are arranged at intervals in the first direction (G1 direction). As a light source for the interference wave, a general laser oscillator such as a He—Cd laser (wavelength: 325 nm) is used.

第2の干渉縞は、レジスト膜52を回転した後、第1の干渉縞と同様に、2光束干渉露光法で形成される。第1の干渉縞によって感光した複数の感光部54が第2の方向(G2方向)に間隔をおいて並ぶ。   The second interference fringes are formed by the two-beam interference exposure method after rotating the resist film 52 in the same manner as the first interference fringes. A plurality of photosensitive portions 54 exposed by the first interference fringes are arranged at intervals in the second direction (G2 direction).

尚、本実施形態では、第1の干渉縞の露光と、第2の干渉縞の露光とは、別々に行われるが、同時に行われてもよい。   In the present embodiment, the exposure of the first interference fringe and the exposure of the second interference fringe are performed separately, but may be performed simultaneously.

レジスト膜52の現像は、第1及び第2の干渉縞の露光後に行われる。レジスト膜52を現像することにより、周期的な凹凸部60を表面に有する樹脂層56(図5(A)参照)が得られる。   The development of the resist film 52 is performed after the exposure of the first and second interference fringes. By developing the resist film 52, a resin layer 56 (see FIG. 5A) having periodic uneven portions 60 on the surface is obtained.

レジスト膜52がネガ型の場合、強く感光した部分ほど現像後に残りやすい。そのため、感光部53と感光部54との交差部分55が、現像後に凸部61となる。凸部61は、頂点61aに向けて先細り状に形成される。感光部53、54の交差部分55以外の部分が、現像後に連結部63となる。   When the resist film 52 is a negative type, the more strongly exposed part tends to remain after development. Therefore, the intersection 55 between the photosensitive portion 53 and the photosensitive portion 54 becomes the convex portion 61 after development. The convex portion 61 is formed in a tapered shape toward the vertex 61a. The portions other than the intersecting portion 55 of the photosensitive portions 53 and 54 become the connecting portion 63 after development.

また、レジスト膜52がポジ型の場合、強く感光した部分ほど現像によって除去されやすい。そのため、感光部53と感光部54との交差部分55が、現像後に凹部62となる。凹部62は、底点62aに向けて先細り状に形成される。感光部53、54の交差部分55以外の部分が、現像後に連結部63となる。   In addition, when the resist film 52 is a positive type, a strongly exposed portion is easily removed by development. Therefore, a crossing portion 55 between the photosensitive portion 53 and the photosensitive portion 54 becomes a concave portion 62 after development. The recess 62 is formed in a tapered shape toward the bottom point 62a. The portions other than the intersecting portion 55 of the photosensitive portions 53 and 54 become the connecting portion 63 after development.

このようにして、原型50が作製される。第1の方向と第2の方向とのなす角θが60°の場合、凸部61が正六方格子状に周期的に配置される。尚、第1の方向と第2の方向とのなす角θが90°の場合、凸部61が正四方格子状に周期的に配置される。   In this way, the prototype 50 is produced. When the angle θ formed by the first direction and the second direction is 60 °, the convex portions 61 are periodically arranged in a regular hexagonal lattice shape. When the angle θ formed by the first direction and the second direction is 90 °, the convex portions 61 are periodically arranged in a regular tetragonal lattice shape.

尚、本実施形態の原型50は、2光束干渉露光法でレジスト膜52に干渉縞を露光して作製されるが、原型50の作製方法は特に限定されない。例えば、フォトリソグラフィ法、電子線(EB)描画法、レーザ描画法等で基体51の表面に凹凸部60を形成してもよい。   In addition, although the prototype 50 of this embodiment is produced by exposing the interference fringes to the resist film 52 by the two-beam interference exposure method, the production method of the prototype 50 is not particularly limited. For example, the concavo-convex portion 60 may be formed on the surface of the substrate 51 by photolithography, electron beam (EB) drawing, laser drawing, or the like.

[第2の実施形態]
図9は、本発明の第2の実施形態による反射防止構造体の一部を示す斜視図である。図9において、反射防止構造体の表面の凹凸を表現するため、等高線を細線で示す。図10は、図9の反射防止構造体の表面の凹凸を模式的に示す平面図である。図10(A)は凸部の頂点を結ぶ格子の配列を示し、図10(B)は図10(A)の一部を示す。図10において、図面を見やすくするため、凸部及び連結部を異なる点模様、凸部の頂点を黒丸、凹部の底点を白丸、凸部の頂点同士を結ぶ格子を太線で示す。図11は、図9の反射防止構造体の表面の凹凸を示す図である。図11(A)は図10のA−A線に沿った断面における凹凸、図11(B)は図10のB−B線に沿った断面における凹凸、図11(C)は図10のC−C線に沿った断面における凹凸を示す。
[Second Embodiment]
FIG. 9 is a perspective view showing a part of the antireflection structure according to the second embodiment of the present invention. In FIG. 9, contour lines are shown by thin lines in order to express irregularities on the surface of the antireflection structure. FIG. 10 is a plan view schematically showing irregularities on the surface of the antireflection structure of FIG. FIG. 10A shows an array of lattices connecting the vertices of the convex portions, and FIG. 10B shows a part of FIG. In FIG. 10, in order to make the drawing easy to see, the convex portions and the connecting portions are indicated by different dot patterns, the vertexes of the convex portions are indicated by black circles, the bottom points of the concave portions are indicated by white circles, and the lattices connecting the vertexes of the convex portions are indicated by bold lines. FIG. 11 is a view showing irregularities on the surface of the antireflection structure of FIG. 9. 11A is unevenness in the cross section along line AA in FIG. 10, FIG. 11B is unevenness in the cross section along line BB in FIG. 10, and FIG. 11C is C in FIG. The unevenness | corrugation in the cross section along -C line | wire is shown.

反射防止構造体110は、所謂モスアイ型であって、図9に示すように、第1の実施形態と同様に、基体112と基体112上に形成される樹脂層114とで構成される。樹脂層114の表面には、周期的な凹凸部120が形成されている。尚、反射防止構造体110は、樹脂層114のみで構成されてもよい。   The antireflection structure 110 is a so-called moth-eye type, and includes a base 112 and a resin layer 114 formed on the base 112 as in the first embodiment, as shown in FIG. Periodic uneven portions 120 are formed on the surface of the resin layer 114. Note that the antireflection structure 110 may be formed of only the resin layer 114.

凹凸部120は、凸部121と、凹部122と、凸部121の頂点121aよりも低く凹部122の底点122aよりも高い位置で所定の凸部121同士を連結する連結部123とを有する。複数の凸部121と、複数の凹部122と、複数の連結部123とが2次元的に配列されている。   The concavo-convex part 120 includes a convex part 121, a concave part 122, and a connecting part 123 that connects the predetermined convex parts 121 to each other at a position lower than the vertex 121 a of the convex part 121 and higher than the bottom point 122 a of the concave part 122. A plurality of convex portions 121, a plurality of concave portions 122, and a plurality of connecting portions 123 are two-dimensionally arranged.

凸部121は、例えば正四方格子状に周期的に配置される。「正四方格子状に周期的に配置される」とは、図10に示すように、最外側の凹部122を除く任意の凹部122の周囲に、該任意の凹部122からの距離が最短で且つ等しい4個の凸部121が配置されることを意味する。4個の凸部121の頂点121aは、凹部122の底点122aを中心に90°間隔で等ピッチで配置され、正四角形の格子を構成する。   The convex portions 121 are periodically arranged in a regular tetragonal lattice shape, for example. “Periodically arranged in the form of a tetragonal lattice” means that, as shown in FIG. 10, the distance from any recess 122 is shortest around any recess 122 except the outermost recess 122. It means that four equal convex portions 121 are arranged. The vertices 121a of the four convex portions 121 are arranged at equal pitches at 90 ° intervals around the bottom point 122a of the concave portion 122, and constitute a regular tetragonal lattice.

尚、凸部121は、準四方格子状に周期的に配置されてもよい。「準四方格子状に周期的に配置される」とは、正四方格子に準ずる形状に周期的に配置されることを意味する。正四方格子に準ずる形状は、正四角形状の格子を所定の方向に引き伸ばした形状等、正四角形状の格子を歪ませた形状である。正四角形状の格子を歪ませた形状の格子は、直線形状、曲線形状、又は蛇行形状に連続的に並んでよい。   The convex portions 121 may be periodically arranged in a quasi-tetragonal lattice shape. “Periodically arranged in a quasi-tetragonal lattice shape” means periodically arranged in a shape that conforms to a regular tetragonal lattice. The shape conforming to the tetragonal lattice is a shape obtained by distorting a regular tetragonal lattice such as a shape obtained by stretching a regular tetragonal lattice in a predetermined direction. A lattice having a shape obtained by distorting a regular tetragonal lattice may be continuously arranged in a linear shape, a curved shape, or a meandering shape.

本実施形態では、図10に示すように、最外側の凸部121を除く任意の凸部121−1と、該凸部121−1からの距離の合計(和)が最短である6個の凸部(例えば凸部121−2〜121−7)とは、下記の(7)及び(8)を満たすように配置される。
(7)6個の凸部121−2〜121−7のうちの4個の凸部121−2、121−3、121−5、121−6のそれぞれと、凸部121−1との間に連結部123が存在する。
(8)6個の凸部121−2〜121−7のうちの残りの2個の凸部121−4、121−7のそれぞれと、凸部121−1との間に凹部122が存在する。
In the present embodiment, as shown in FIG. 10, there are six arbitrary convex portions 121-1 excluding the outermost convex portion 121 and the total (sum) of the distances from the convex portions 121-1 being the shortest. The convex portions (for example, convex portions 121-2 to 121-7) are arranged so as to satisfy the following (7) and (8).
(7) Between the four convex portions 121-2, 121-3, 121-5, 121-6 of the six convex portions 121-2 to 121-7 and the convex portion 121-1. There is a connecting portion 123.
(8) A concave portion 122 exists between each of the remaining two convex portions 121-4 and 121-7 among the six convex portions 121-2 to 121-7 and the convex portion 121-1. .

「距離」は、凸部121の頂点121a同士の間の距離のことである。距離の合計が最短である6個の凸部の組合せが複数有る場合、全ての組合せについて上記の(7)及び(8)が成立する。本実施形態では、凸部121−1からの距離が最短で且つ等しい凸部が4個あり、凸部121−1からの距離が次に短く且つ等しい凸部が4個あるので、凸部121−1からの距離の合計が最短である6個の凸部の組合せは6個ある。6個全ての組合せについて上記の(7)及び(8)が成立する。   “Distance” refers to the distance between the vertices 121 a of the convex portions 121. When there are a plurality of combinations of six convex portions with the shortest total distance, the above (7) and (8) are established for all combinations. In this embodiment, there are four convex portions with the shortest and equal distance from the convex portion 121-1, and there are four convex portions with the next shortest and equal distance from the convex portion 121-1. There are six combinations of six convex portions with the shortest total distance from -1. The above (7) and (8) hold for all six combinations.

上記の(7)及び(8)が成立する場合、例えば任意の凸部121−1を中心に交差する3方向のうち、2方向(J1方向及びJ2方向)に沿って凸部121と連結部123とが交互に配置され、残りの一方向(J3方向)に沿って凸部121と凹部122とが交互に配置される。J1方向及びJ2方向に間隔をおいて並ぶ凸部121のピッチP11(図11(A)参照)は、可視光の波長以下の長さに設定されてよい。J3方向に間隔をおいて並ぶ凸部121のピッチP12(図11(B)参照)はピッチP11よりも大きい。J1方向と平行な方向に沿って、凹部122と連結部123とが交互に配置されている(図10及び図11(C)参照)。   When the above (7) and (8) are established, for example, the convex portion 121 and the connecting portion along two directions (the J1 direction and the J2 direction) among the three directions intersecting around the arbitrary convex portion 121-1. 123 are alternately arranged, and the convex portions 121 and the concave portions 122 are alternately arranged along the remaining one direction (J3 direction). The pitch P11 (see FIG. 11A) of the convex portions 121 arranged at intervals in the J1 direction and the J2 direction may be set to a length equal to or shorter than the wavelength of visible light. The pitch P12 (see FIG. 11B) of the protrusions 121 arranged at intervals in the J3 direction is larger than the pitch P11. Concave portions 122 and connecting portions 123 are alternately arranged along a direction parallel to the J1 direction (see FIGS. 10 and 11C).

このように、凸部121及び凹部122が交互に配置される方向と、凸部121及び連結部123が交互に配置される方向とが異なる。そのため、凸部121の頂点121aと凹部122の底点122aとの高低差H11(図11(B)参照)と、凸部121の頂点121aと連結部123の所定部分123a(図9参照)との高低差H12(図11(A)参照)とを独立に設計可能である。従って、高低差H11と、高低差H12とを独立に最適化することが可能である。ここで、連結部123の所定部分123aは、凸部121の頂点121a同士の間における最も低い部分であって、凹部122の底点122a同士の間における最も高い部分である。   Thus, the direction where the convex part 121 and the recessed part 122 are arrange | positioned alternately differs from the direction where the convex part 121 and the connection part 123 are arrange | positioned alternately. Therefore, the height difference H11 (see FIG. 11B) between the vertex 121a of the convex portion 121 and the bottom point 122a of the concave portion 122, the vertex 121a of the convex portion 121, and the predetermined portion 123a of the connecting portion 123 (see FIG. 9). The height difference H12 (see FIG. 11A) can be designed independently. Therefore, the height difference H11 and the height difference H12 can be optimized independently. Here, the predetermined portion 123 a of the connecting portion 123 is the lowest portion between the vertices 121 a of the convex portions 121 and the highest portion between the bottom points 122 a of the concave portions 122.

高低差H11と高低差H12の最適化のため、先ず、ピッチP11の範囲が設定されてよい。ピッチP11は、上述の如く、可視光の波長以下の長さに設定されるので、例えば400nm以下(好ましくは300nm以下)であってよい。また、ピッチP11は、生産性の観点から、例えば50nm以上(好ましくは100nm以上)であってよい。従って、ピッチP11は50〜400nmであってよい。   In order to optimize the height difference H11 and the height difference H12, first, the range of the pitch P11 may be set. As described above, the pitch P11 is set to a length equal to or shorter than the wavelength of visible light, and may be, for example, 400 nm or less (preferably 300 nm or less). Further, the pitch P11 may be, for example, 50 nm or more (preferably 100 nm or more) from the viewpoint of productivity. Therefore, the pitch P11 may be 50 to 400 nm.

次いで、凹凸部120のアスペクト比の範囲が設定される。凹凸部120のアスペクト比は、凸部121の頂点121aと凹部122の底点122aとの高低差H11と、凸部121のピッチP11との比H11/P11で表される。アスペクト比H11/P11は、反射防止構造体110の低反射性の観点から、例えば0.5以上(好ましくは0.7以上、より好ましくは1以上)である。また、アスペクト比H11/P11は、生産性の観点から、例えば4以下(好ましくは3以下、より好ましくは2以下)である。尚、凸部121のJ1方向におけるピッチと、凸部21のJ2方向におけるピッチとが異なる場合、最短のピッチでアスペクト比が求められる。アスペクト比H11/P11が0.5〜4であるので、高低差H11は例えば100〜500nmであってよい。   Next, the range of the aspect ratio of the uneven portion 120 is set. The aspect ratio of the concavo-convex portion 120 is represented by a ratio H11 / P11 between the height difference H11 between the apex 121a of the convex portion 121 and the bottom point 122a of the concave portion 122 and the pitch P11 of the convex portion 121. The aspect ratio H11 / P11 is, for example, 0.5 or more (preferably 0.7 or more, more preferably 1 or more) from the viewpoint of low reflectivity of the antireflection structure 110. The aspect ratio H11 / P11 is, for example, 4 or less (preferably 3 or less, more preferably 2 or less) from the viewpoint of productivity. When the pitch of the convex portion 121 in the J1 direction is different from the pitch of the convex portion 21 in the J2 direction, the aspect ratio is obtained with the shortest pitch. Since the aspect ratio H11 / P11 is 0.5 to 4, the height difference H11 may be, for example, 100 to 500 nm.

次いで、高低差H11と高低差H12との比H12/H11が設定される。比H12/H11が大きくなるほど、連結部123の所定部分123aの高さが低くなるので、反射防止構造体110の低反射性が良くなる。比H12/H11は、例えば0.1以上(好ましくは0.2以上、より好ましくは0.3以上)である。一方、比H12/H11が小さくなるほど、連結部123の所定部分123aの高さが高くなり、凸部121が補強されるので、反射防止構造体110の耐擦傷性が良くなる。比H12/H11は、例えば0.9以下(好ましくは0.7以下、より好ましくは0.5以下)である。比H12/H11が0.1〜0.9であるので、高低差H12は例えば30〜300nmであってよい。   Next, a ratio H12 / H11 between the height difference H11 and the height difference H12 is set. As the ratio H12 / H11 increases, the height of the predetermined portion 123a of the connecting portion 123 decreases, so that the low reflectivity of the antireflection structure 110 improves. The ratio H12 / H11 is, for example, 0.1 or more (preferably 0.2 or more, more preferably 0.3 or more). On the other hand, as the ratio H12 / H11 decreases, the height of the predetermined portion 123a of the connecting portion 123 increases and the convex portion 121 is reinforced, so that the anti-reflection structure 110 has better scratch resistance. The ratio H12 / H11 is, for example, 0.9 or less (preferably 0.7 or less, more preferably 0.5 or less). Since the ratio H12 / H11 is 0.1 to 0.9, the height difference H12 may be, for example, 30 to 300 nm.

本実施形態では、高低差H11と、高低差H12とを独立に最適化することが可能であるので、アスペクト比H11/P11と、比H12/H11を独立に最適化することが可能であり、低反射性と耐擦傷性の両立が可能である。   In this embodiment, since the height difference H11 and the height difference H12 can be optimized independently, the aspect ratio H11 / P11 and the ratio H12 / H11 can be optimized independently. Both low reflectivity and scratch resistance are possible.

尚、本実施形態では、凸部121の配置について着目したが、第1の実施形態と同様に、凹部122の配置について着目してもよい。   In the present embodiment, attention is paid to the arrangement of the convex portions 121. However, the arrangement of the concave portions 122 may be noted, as in the first embodiment.

上記構成の反射防止構造体110の製造方法は、第1の実施形態による反射防止構造体10の製造方法と同様であるので、説明を省略する。   Since the manufacturing method of the antireflection structure 110 having the above-described configuration is the same as the manufacturing method of the antireflection structure 10 according to the first embodiment, the description thereof is omitted.

以上、本発明の第1〜第2の実施形態について説明したが、本発明は、上記の実施形態に制限されない。本発明の範囲を逸脱することなく、上記の実施形態に種々の変形や置換を加えることができる。   As mentioned above, although the 1st-2nd embodiment of this invention was described, this invention is not restrict | limited to said embodiment. Various modifications and substitutions can be made to the above-described embodiment without departing from the scope of the present invention.

例えば、反射防止構造体の裏面(モスアイ型の凹凸部が形成される面と対向する面)には、低反射層が設けられてもよい。低反射層は透光性を有する。低反射層は、光の干渉作用によって反射率を低下させてもよいし、光の吸収によって反射率を低下させてもよい。低反射層は、有機物及び/又は無機物で形成される。低反射層の形成方法には、PVD法やCVD法等のドライコーティング、ダイコート法、スプレイコート法、インクジェット法、スピンコート法等のウェットコーティングが用いられる。反射防止構造体がタッチパネルに用いられる場合、低反射層が外側、モスアイ型の凹凸部が内側に配置されてよい。   For example, a low-reflection layer may be provided on the back surface of the antireflection structure (the surface facing the surface on which the moth-eye type uneven portion is formed). The low reflection layer has translucency. The low reflection layer may reduce the reflectance by the interference action of light, or may reduce the reflectance by absorption of light. The low reflection layer is formed of an organic material and / or an inorganic material. As a method for forming the low reflection layer, dry coating such as PVD method or CVD method, wet coating such as die coating method, spray coating method, ink jet method or spin coating method is used. When the antireflection structure is used for a touch panel, the low reflection layer may be disposed on the outer side and the moth-eye type uneven portion may be disposed on the inner side.

また、上記実施形態の凸部は頂点に向けて先細り状であるが、凸部が平らな頂部を有してもよい。この場合、特許請求の範囲における「距離」は、凸部の頂部の中心点同士の間の距離である。同様に、上記実施形態の凹部は底点に向けて先細り状であるが、凹部が平らな底部を有してもよい。   Moreover, although the convex part of the said embodiment is a taper shape toward the top, a convex part may have a flat top part. In this case, the “distance” in the claims is the distance between the center points of the tops of the convex portions. Similarly, although the recessed part of the said embodiment is tapered toward the bottom point, the recessed part may have a flat bottom part.

以下に、実施例等により本発明を具体的に説明するが、本発明はこれらの例によって限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples and the like, but the present invention is not limited to these examples.

[実施例1]
実施例1では、図1〜図3に示す凹凸部を表面に有する反射防止構造体の解析用モデルを作製し、コンピュータを用いてシミュレーション解析を行った。
[Example 1]
In Example 1, a model for analysis of the antireflection structure having the uneven portions shown in FIGS. 1 to 3 on the surface was prepared, and simulation analysis was performed using a computer.

解析用モデルは、図12に示すように、断面形状が正弦波状の凸条部群91を仮想平面92上で2つ(図12には1つのみ図示)重ねて作製した。レジスト膜に干渉縞を1回露光し、現像すると、断面形状が正弦波状の凹凸面が形成されることを考慮している。2つの凸条部群91の重なる部分が図1〜図2に示す凸部21に相当する。凸部が正六方格子状に周期的に配置されるように、2つの凸条部群91の交差角は60°に設定した。凸部の頂点と凹部の底点(仮想平面92)との高低差H1(図3(B)参照)は300nm、凸部の頂点と連結部の所定部分との高低差H2(図3(A)参照)は150nm、凸部のピッチP1(図3(A)及び図3(B)参照)は250nmとした。凸条部群91の物性値(例えば屈折率やヤング率等)としては、アクリル樹脂の物性値を用いた。   As shown in FIG. 12, the analysis model was prepared by overlapping two ridge portions 91 having a sinusoidal cross section on a virtual plane 92 (only one is shown in FIG. 12). It is considered that when the interference fringes are exposed to the resist film once and developed, an uneven surface having a sinusoidal cross section is formed. The overlapping portion of the two protruding strip group 91 corresponds to the protruding portion 21 shown in FIGS. The crossing angle of the two convex stripe groups 91 was set to 60 ° so that the convex portions were periodically arranged in a regular hexagonal lattice pattern. The height difference H1 (see FIG. 3B) between the vertex of the convex portion and the bottom point of the concave portion (virtual plane 92) is 300 nm, and the height difference H2 between the vertex of the convex portion and a predetermined portion of the connecting portion (FIG. 3A). )) Was 150 nm, and the pitch P1 of the protrusions (see FIGS. 3A and 3B) was 250 nm. As a physical property value (for example, a refractive index, a Young's modulus, etc.) of the ridge portion group 91, a physical property value of an acrylic resin was used.

解析用モデルの凹凸部上での反射率は、FDTD法(有限差分時間領域法)で解析した。解析ソフトには、CYBERNET社製「Poynting for Optics」を用いた。結果を図14に示す。図14において、横軸は光の波長、縦軸は光の反射率である。また、図14において、L1は実施例1の解析結果、L11〜L13は後述の比較例1〜3の解析結果を表す。尚、反射率の解析では、仮想平面92の代わりに、厚さ0.7μmの基板の表面を用いた。基板の物性値(例えば屈折率)としては、凸条部群91の物性値と同じく、アクリル樹脂の物性値を用いた。   The reflectance on the concavo-convex portion of the analysis model was analyzed by the FDTD method (finite difference time domain method). As the analysis software, “Poying for Optics” manufactured by CYBERNET was used. The results are shown in FIG. In FIG. 14, the horizontal axis represents the light wavelength, and the vertical axis represents the light reflectance. Moreover, in FIG. 14, L1 represents the analysis result of Example 1, L11-L13 represents the analysis result of Comparative Examples 1-3 mentioned later. In the reflectance analysis, the surface of the substrate having a thickness of 0.7 μm was used instead of the virtual plane 92. As the physical property value (for example, the refractive index) of the substrate, the physical property value of the acrylic resin was used in the same manner as the physical property value of the protruding strip group 91.

解析用モデルの耐擦傷性として、各凸部の高さ方向と垂直な方向の外力を各凸部の頂点に与えた場合に凸部に生じる最大応力を有限要素法で解析した。解析ソフトには、Solid Works社製「Solid Works Simulation」を用いた。最大応力が小さいほど、耐擦傷性が高いことを意味する。最大応力の相対値(後述の比較例1の最大応力を1とする)を表1に示す。相対値で示すのは、ソフト上の制約で応力解析用のモデルの長さ(例えば、高低差H1、H2、ピッチP1など)を実際の1000倍の長さに設定したためである。   As the scratch resistance of the analysis model, the maximum stress generated in the convex portion when an external force in a direction perpendicular to the height direction of each convex portion is applied to the vertex of each convex portion was analyzed by a finite element method. “Solid Works Simulation” manufactured by Solid Works was used as the analysis software. A smaller maximum stress means higher scratch resistance. Table 1 shows the relative value of the maximum stress (the maximum stress of Comparative Example 1 described later is 1). The reason for the relative value is that the length of the model for stress analysis (for example, height difference H1, H2, pitch P1, etc.) is set to 1000 times the actual length due to software restrictions.

[比較例1]
比較例1では、従来と同様の凹凸部を表面に有する反射防止構造体の解析用モデルを作製し、実施例1と同様にコンピュータを用いてシミュレーション解析を行った。
[Comparative Example 1]
In Comparative Example 1, a model for analysis of an antireflection structure having a concavo-convex portion similar to the conventional one was produced, and simulation analysis was performed using a computer in the same manner as in Example 1.

解析用モデルは、図13に示すように、円錐台93の底面93aの中心を250nmのピッチで正六方格子状に周期的に仮想平面92上に並べ(図13(A)参照、図13では3つの円錐台93のみ図示)、各円錐台93の頂面93bとテーパ面93cとの角部を丸く面取りし、先端部が球面の一部で構成される突起部94で形成した(図13(B)参照)。突起部94の高さ(底面94aと頂点94bとの高低差)H21は300nm、突起部94の頂点94bのピッチP21は250nmに設定した。突起部94の底面94a同士が離れるように、底面94aの半径Rは120nmとした。突起部94を高さ方向中央で切断したときの切断面の半径rは94nmであった。円錐台93の底面93aとテーパ面93cとのなす角α(図13(A)参照)は80°に設定した。突起部94の物性値(例えば屈折率やヤング率等)としては、アクリル樹脂の物性値を用いた。光反射率の解析結果を図14、応力の解析結果を表1に示す。   As shown in FIG. 13, the analysis model is arranged on the virtual plane 92 periodically in a regular hexagonal lattice pattern at a pitch of 250 nm (see FIG. 13A, in FIG. 13). Only the three truncated cones 93 are shown), and the corners of the top surface 93b and the tapered surface 93c of each truncated cone 93 are rounded, and the tip portion is formed by a protrusion 94 composed of a part of a spherical surface (FIG. 13). (See (B)). The height (the height difference between the bottom surface 94a and the apex 94b) H21 of the protrusion 94 was set to 300 nm, and the pitch P21 of the apex 94b of the protrusion 94 was set to 250 nm. The radius R of the bottom surface 94a was set to 120 nm so that the bottom surfaces 94a of the protrusions 94 were separated from each other. The radius r of the cut surface when the protrusion 94 was cut at the center in the height direction was 94 nm. An angle α (see FIG. 13A) formed by the bottom surface 93a of the truncated cone 93 and the tapered surface 93c was set to 80 °. As the physical property values (for example, refractive index and Young's modulus) of the protrusions 94, the physical property values of acrylic resin were used. FIG. 14 shows the analysis result of the light reflectance, and Table 1 shows the analysis result of the stress.

[比較例2]
比較例2では、円錐台93の底面93aとテーパ面93cとのなす角α(図13(A)参照)を70°、突起部94の底面94aの半径Rを150nmとし、図13(C)に示すように突起部94の底面94a同士を一部重ねて、突起部94の頂点94b同士の間に鞍部95を形成した他は比較例1と同様に反射防止構造体の解析用モデルを作製し、実施例1と同様にコンピュータを用いてシミュレーション解析を行った。突起部94の頂点94bと鞍部95との高低差H22は160nm、突起部94を高さ方向中央で切断したときの切断面の半径rは124nmであった。光反射率の解析結果を図14、応力の解析結果を表1に示す。
[Comparative Example 2]
In Comparative Example 2, the angle α (see FIG. 13A) formed by the bottom surface 93a of the truncated cone 93 and the tapered surface 93c is 70 °, the radius R of the bottom surface 94a of the protrusion 94 is 150 nm, and FIG. The analysis model of the antireflection structure is produced in the same manner as in Comparative Example 1 except that the bottom surfaces 94a of the protrusions 94 are partially overlapped to form the flanges 95 between the apexes 94b of the protrusions 94 as shown in FIG. In the same manner as in Example 1, simulation analysis was performed using a computer. The height difference H22 between the apex 94b of the protrusion 94 and the flange 95 is 160 nm, and the radius r of the cut surface when the protrusion 94 is cut at the center in the height direction is 124 nm. FIG. 14 shows the analysis result of the light reflectance, and Table 1 shows the analysis result of the stress.

[比較例3]
比較例3では、円錐台93の底面93aとテーパ面93cとのなす角α(図13(A)参照)を80°に設定することによって突起部94の頂点94bと鞍部95との高低差H22を230nmとした他は比較例2と同様に反射防止構造体の解析用モデルを作製し、実施例1と同様にコンピュータを用いてシミュレーション解析を行った。突起部94を高さ方向中央で切断したときの切断面の半径rは95nmであった。光反射率の解析結果を図14、応力の解析結果を表1に示す。
[Comparative Example 3]
In Comparative Example 3, the height difference H22 between the apex 94b of the protrusion 94 and the flange 95 is set by setting the angle α (see FIG. 13A) formed by the bottom surface 93a of the truncated cone 93 and the tapered surface 93c to 80 °. A model for analysis of the antireflection structure was prepared in the same manner as in Comparative Example 2 except that the thickness was set to 230 nm, and simulation analysis was performed using a computer in the same manner as in Example 1. The radius r of the cut surface when the protrusion 94 was cut at the center in the height direction was 95 nm. FIG. 14 shows the analysis result of the light reflectance, and Table 1 shows the analysis result of the stress.

Figure 2015034835
図14及び表1から、実施例1の構造は、比較例1〜3の構造と異なり、低反射性及び耐擦傷性の両方を有していることがわかる。比較例1では、突起部94の底面94a同士が離れており、鞍部95が形成されないため、耐擦傷性が悪い。比較例2及び比較例3では、反射防止構造体の凹凸部が上記の(1)及び(2)を満たしておらず、低反射性が悪い。比較例2及び比較例3では、鞍部95が形成されるように突起部94の底面94a同士が一部重なるので、反射防止構造体の凹部の底点が仮想平面92から離れ、凹部の底点と凸部の頂点との高低差が小さくなるためである。
Figure 2015034835
14 and Table 1, it can be seen that the structure of Example 1 has both low reflectivity and scratch resistance, unlike the structures of Comparative Examples 1 to 3. In Comparative Example 1, since the bottom surfaces 94a of the protrusions 94 are separated from each other and the flange portion 95 is not formed, the scratch resistance is poor. In Comparative Example 2 and Comparative Example 3, the uneven portion of the antireflection structure does not satisfy the above (1) and (2), and the low reflectivity is poor. In Comparative Example 2 and Comparative Example 3, the bottom surfaces 94a of the protrusions 94 partially overlap each other so that the flange portion 95 is formed, so that the bottom point of the concave portion of the antireflection structure is separated from the virtual plane 92, This is because the difference in height between the top and the top of the convex portion becomes small.

10 反射防止構造体
20 凹凸部
21 凸部
21a 頂点
22 凹部
22a 底点
23 連結部
23a 連結部の所定部分
50 原型
51 基体
52 レジスト膜
53、54 感光部
DESCRIPTION OF SYMBOLS 10 Antireflection structure 20 Concavity and convexity 21 Convex part 21a Vertex 22 Concave part 22a Bottom point 23 Connecting part 23a Predetermined part 50 of connecting part Original 51 Base 52 Resist film 53, 54

Claims (9)

周期的な凹凸部を表面に有する反射防止構造体において、
最外側の凸部を除く任意の凸部と、該任意の凸部からの距離の合計が最短である6個の凸部とは、(1)該6個の凸部のうちの4個の前記凸部のそれぞれと前記任意の凸部との間に凸部の頂点よりも低く凹部の底点よりも高い位置で凸部同士を連結する連結部が存在し、(2)該6個の凸部のうちの残りの2個の前記凸部のそれぞれと前記任意の凸部との間に凹部が存在するように、配置されることを特徴とする反射防止構造体。
In the antireflection structure having periodic irregularities on the surface,
Arbitrary convex portions excluding the outermost convex portion and the six convex portions having the shortest sum of the distances from the arbitrary convex portions are (1) four of the six convex portions. Between each of the convex portions and the arbitrary convex portion, there is a connecting portion that connects the convex portions at a position lower than the top of the convex portion and higher than the bottom point of the concave portion, and (2) the six An antireflection structure, wherein a concave portion exists between each of the remaining two convex portions of the convex portions and the arbitrary convex portion.
前記任意の凸部を中心に交差する3方向のうち、2方向に沿って前記凸部と前記連結部とが交互に配置され、残りの一方向に沿って前記前記凸部と前記凹部とが交互に配置される請求項1に記載の反射防止構造体。   Among the three directions intersecting with the arbitrary convex portion as the center, the convex portions and the connecting portions are alternately arranged along two directions, and the convex portions and the concave portions are arranged along the remaining one direction. The antireflection structure according to claim 1, wherein the antireflection structures are arranged alternately. 前記凸部は、正六方格子状に周期的に配置される請求項1又は2に記載の反射防止構造体。   The antireflection structure according to claim 1, wherein the convex portions are periodically arranged in a regular hexagonal lattice shape. 前記凸部は、正四方格子状に周期的に配置される請求項1又は2に記載の反射防止構造体。   The antireflection structure according to claim 1, wherein the convex portions are periodically arranged in a regular tetragonal lattice shape. 周期的な凹凸部を表面に有する原型を用いて、周期的な凹凸部を表面に有する反射防止構造体を製造する工程を有する反射防止構造体の製造方法において、
前記原型において、最外側の凸部を除く任意の凸部と、該任意の凸部からの距離の合計が最短である6個の凸部とは、(1)該6個の凸部のうちの4個の前記凸部のそれぞれと前記任意の凸部との間に凸部の頂点よりも低く凹部の底点よりも高い位置で凸部同士を連結する連結部が存在し、(2)該6個の凸部のうちの残りの2個の前記凸部のそれぞれと前記任意の凸部との間に凹部が存在するように、配置されることを特徴とする反射防止構造体の製造方法。
In the manufacturing method of the antireflection structure having the step of manufacturing the antireflection structure having the periodic irregularities on the surface, using the prototype having the periodic irregularities on the surface,
In the prototype, any convex portion excluding the outermost convex portion and the six convex portions having the shortest total distance from the arbitrary convex portion are (1) of the six convex portions. Between each of the four convex portions and the arbitrary convex portion, there is a connecting portion that connects the convex portions at a position lower than the vertex of the convex portion and higher than the bottom point of the concave portion, (2) Manufacturing of an antireflection structure, characterized in that a concave portion exists between each of the remaining two convex portions of the six convex portions and the arbitrary convex portion. Method.
前記任意の凸部を中心に交差する3方向のうち、2方向に沿って前記凸部と前記連結部とが交互に配置され、残りの一方向に沿って前記前記凸部と前記凹部とが交互に配置される請求項5に記載の反射防止構造体の製造方法。   Among the three directions intersecting with the arbitrary convex portion as the center, the convex portions and the connecting portions are alternately arranged along two directions, and the convex portions and the concave portions are arranged along the remaining one direction. The manufacturing method of the antireflection structure according to claim 5 arranged alternately. 前記原型を製造する工程をさらに有し、
該工程は、
基体上にレジスト膜を成膜する工程と、
該レジスト膜の表面に、第1の方向に沿って光強度が変化する第1の干渉縞を露光する工程と、
該レジスト膜の表面に、前記第1の方向と交差する第2の方向に沿って光強度が変化する第2の干渉縞を露光する工程と、
前記第1及び第2の干渉縞の露光後に、前記レジスト膜を現像する工程とを有する請求項5又は6に記載の反射防止構造体の製造方法。
Further comprising the step of producing the prototype,
The process
Forming a resist film on the substrate;
Exposing the surface of the resist film with a first interference fringe whose light intensity varies along a first direction;
Exposing the surface of the resist film with a second interference fringe whose light intensity varies along a second direction intersecting the first direction;
The method for manufacturing an antireflection structure according to claim 5, further comprising: developing the resist film after the exposure of the first and second interference fringes.
前記第1の方向と前記第2の方向とのなす角が60°である請求項7に記載の反射防止構造体の製造方法。   The method for manufacturing an antireflection structure according to claim 7, wherein an angle formed by the first direction and the second direction is 60 °. 前記第1の方向と前記第2の方向とのなす角が90°である請求項7に記載の反射防止構造体の製造方法。   The method for manufacturing an antireflection structure according to claim 7, wherein an angle formed by the first direction and the second direction is 90 °.
JP2011269059A 2011-12-08 2011-12-08 Anti-reflection structure, and manufacturing method for the same Pending JP2015034835A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011269059A JP2015034835A (en) 2011-12-08 2011-12-08 Anti-reflection structure, and manufacturing method for the same
PCT/JP2012/081417 WO2013084899A1 (en) 2011-12-08 2012-12-04 Anti-reflection structure and method for manufacturing anti-reflection structure
TW101145902A TW201331613A (en) 2011-12-08 2012-12-06 Anti-reflection structure and method for manufacturing anti-reflection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011269059A JP2015034835A (en) 2011-12-08 2011-12-08 Anti-reflection structure, and manufacturing method for the same

Publications (1)

Publication Number Publication Date
JP2015034835A true JP2015034835A (en) 2015-02-19

Family

ID=48574257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011269059A Pending JP2015034835A (en) 2011-12-08 2011-12-08 Anti-reflection structure, and manufacturing method for the same

Country Status (3)

Country Link
JP (1) JP2015034835A (en)
TW (1) TW201331613A (en)
WO (1) WO2013084899A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190247A1 (en) * 2015-05-25 2016-12-01 旭硝子株式会社 Article having fine uneven structure on surface, and method for producing same
JP2020077006A (en) * 2020-01-30 2020-05-21 株式会社ジャパンディスプレイ Mask for manufacturing display

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015068853A (en) * 2013-09-26 2015-04-13 ソニー株式会社 Laminated body, imaging element package, imaging apparatus, and electronic apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006243633A (en) * 2005-03-07 2006-09-14 Matsushita Electric Ind Co Ltd Manufacturing method of member having antireflection structure body
JP2009187001A (en) * 2008-01-11 2009-08-20 Panasonic Corp Antireflection structure, method of manufacturing antireflection structure, and optical device provided with antireflection structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016190247A1 (en) * 2015-05-25 2016-12-01 旭硝子株式会社 Article having fine uneven structure on surface, and method for producing same
JP2020077006A (en) * 2020-01-30 2020-05-21 株式会社ジャパンディスプレイ Mask for manufacturing display
JP7055156B2 (en) 2020-01-30 2022-04-15 株式会社ジャパンディスプレイ Display device manufacturing mask

Also Published As

Publication number Publication date
WO2013084899A1 (en) 2013-06-13
TW201331613A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP6079637B2 (en) LAMINATE, DISPLAY DEVICE, LIGHTING DEVICE, SOLAR CELL, AND METHOD FOR PRODUCING LAMINATE
WO2011027518A1 (en) Conductive optical device, production method therefor, touch panel device, display device, and liquid crystal display apparatus
JP4535199B2 (en) Optical element and method for manufacturing the same, polarizer, display device, solar cell, and method for manufacturing master
JP4197100B2 (en) Anti-reflective article
JP5439783B2 (en) Optical element, optical component with antireflection function, and master
TWI467214B (en) A conductive optical element, a touch panel, an information input device, a display device, a solar cell, and a conductive optical element
JP5440165B2 (en) Conductive optical element, touch panel, and liquid crystal display device
TWI409494B (en) An optical element, a display device, an optical part having a reflection preventing function, and a master disk
JP4632589B2 (en) Transparent touch panel with antireflection function and display device using the same
TWI446368B (en) A transparent conductive element, an input device, and a display device
US20100195204A1 (en) Optical film
JP2003004916A (en) Window material of display device, method of manufacturing for the same and display device
JP2011107195A (en) Optical element, method of manufacturing the same, minutely rugged structure, and molding die
JP2011248324A (en) Conductive element and method of manufacturing the same, interconnection element, information input device, display device, and electronic apparatus
WO2013084899A1 (en) Anti-reflection structure and method for manufacturing anti-reflection structure
JP2008209448A (en) Antireflection structure
JPWO2016038853A1 (en) Antireflection member and manufacturing method thereof
KR101615092B1 (en) Method of manufacturing patternen functional film