JP2011059264A - Optical element - Google Patents

Optical element Download PDF

Info

Publication number
JP2011059264A
JP2011059264A JP2009207171A JP2009207171A JP2011059264A JP 2011059264 A JP2011059264 A JP 2011059264A JP 2009207171 A JP2009207171 A JP 2009207171A JP 2009207171 A JP2009207171 A JP 2009207171A JP 2011059264 A JP2011059264 A JP 2011059264A
Authority
JP
Japan
Prior art keywords
convex
concave
optical element
distance
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009207171A
Other languages
Japanese (ja)
Inventor
Takeshi Hidaka
猛 日▲高▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2009207171A priority Critical patent/JP2011059264A/en
Publication of JP2011059264A publication Critical patent/JP2011059264A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance optical performance such as a reflection preventing function while preventing breakage caused by interference to a fine irregularity part formed on a substrate surface. <P>SOLUTION: The fine irregularity part 16 having many recessed parts 17 and projecting parts 18 is formed on the substrate surface of an optical element 10 and the projecting parts 18 are formed to be continuously connected. When the irregularity part 16 is cut in the irregularity direction by a linear line passing through a center between adjacent recessed parts 17 in plan view, the maximum value of a distance a between recess centers of the adjacent recessed parts 17 is shorter than a wavelength of visible light and a width b in a 1/2 position of the depth d of the recessed part is smaller than the minimum value of the width c in a 1/2 position of the width d of the recessed part. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、基材表面に入射光の反射を防止する微細凹凸部を有する光学素子に関する。   The present invention relates to an optical element having a fine concavo-convex portion for preventing reflection of incident light on the surface of a substrate.

レンズ等の光学素子を用いて構成される光学系では、個々の光学素子の光学機能面における入射光の反射は、入射光量の損失や、反射光の散乱による光学性能の低下等の要因となる。そこで、従来では光学素子表面に反射防止膜をコーティングすることが行なわれていた。また、近年では、反射防止膜のコーティングの代わりに、広い波長帯域および広範囲の入射角度で光の反射抑制が可能、光学素子との一体化が可能等の種々の利点を有する表面無反射構造が提案されている。   In an optical system configured using an optical element such as a lens, the reflection of incident light on the optical functional surface of each optical element causes a loss of incident light quantity or a decrease in optical performance due to scattering of the reflected light. . Therefore, conventionally, an antireflection film is coated on the surface of the optical element. In recent years, instead of coating with an antireflection film, a surface non-reflective structure having various advantages such as being capable of suppressing reflection of light in a wide wavelength band and a wide range of incident angles and being capable of being integrated with an optical element has been developed. Proposed.

この表面無反射構造、すなわち反射防止構造は、光学素子の光学機能面に入射光の波長以下の微細な凹凸を形成することによって実現されている。
例えば、特許文献1においては、基材表面に反射防止構造である微細凹凸形状が形成されている。そして、それぞれが独立した凸部の最凸部の山形状を最凹部の谷形状よりも尖った形状にして反射防止性能を向上させている。
This surface non-reflective structure, that is, an antireflection structure is realized by forming fine irregularities having a wavelength equal to or less than the wavelength of incident light on the optical function surface of the optical element.
For example, in patent document 1, the fine uneven | corrugated shape which is an antireflection structure is formed in the base-material surface. And the peak shape of the most convex part of the convex part which became independent of each is made sharper than the valley shape of the most concave part, and the antireflection performance is improved.

特許第4197100号公報Japanese Patent No. 4197100

しかしながら、特許文献1では、反射防止構造体として基材表面にそれぞれが独立した凸部を形成されている。このため、他の部材との干渉等により凸部が倒れたり破損したりすることにより反射防止効果等の光学性能が劣化してしまうおそれがある。   However, in patent document 1, the convex part which became independent respectively on the base-material surface as an antireflection structure is formed. For this reason, there is a possibility that the optical performance such as the antireflection effect is deteriorated when the convex portion falls down or is damaged due to interference with other members.

本発明は、斯かる課題を解決するためになされたもので、基材表面に形成された微細凹凸部に対する干渉等による破損を防止しつつ反射防止機能等の光学性能の向上を図り得る光学素子を提供することを目的とする。   The present invention has been made in order to solve such a problem, and an optical element capable of improving optical performance such as an antireflection function while preventing damage due to interference or the like with respect to fine irregularities formed on the surface of a substrate. The purpose is to provide.

前記目的を達成するため、本発明に係る光学素子は、基材表面に多数の凹部及び凸部を有する微細凹凸部が形成された光学素子において、前記凸部は連続的に連なって形成され、前記微細凹凸部を、平面視隣接する前記凹部の中心を通る直線で凹凸方向に切断したときに、隣接する前記凹部の中心間の前記凹凸方向と直交する幅方向の距離の最大値が可視光波長よりも小さく、かつ前記凹部の前記凹凸方向の深さの1/2位置での前記凸部の前記幅方向の距離が、前記凹部の前記凹凸方向の深さの1/2位置での当該凹部の前記幅方向の距離の最小値よりも小さいことを特徴とする。   In order to achieve the above object, an optical element according to the present invention is an optical element in which fine irregularities having a large number of depressions and projections are formed on the surface of a substrate, and the projections are continuously formed, When the fine uneven portion is cut in the uneven direction by a straight line passing through the center of the recessed portion adjacent in plan view, the maximum distance in the width direction perpendicular to the uneven direction between the centers of the adjacent recessed portions is visible light. The distance in the width direction of the convex portion at a position that is smaller than the wavelength and is ½ of the depth in the concave-convex direction of the concave portion is the half-depth of the concave portion in the concave-convex direction. It is smaller than the minimum value of the distance of the said recessed part in the said width direction.

また、本発明に係る光学素子は、前記発明の光学素子において、平面視隣接する複数の前記凹部に囲まれた部位に形成された凸部接点を有し、隣接する前記凸部接点間の距離の標準偏差が2nmよりも大きくてもよい。   Further, the optical element according to the present invention is the optical element of the present invention, wherein the optical element has a convex contact formed at a portion surrounded by the plurality of concave portions adjacent in plan view, and the distance between the adjacent convex contacts The standard deviation may be greater than 2 nm.

また、本発明に係る光学素子は、前記発明の光学素子において、前記凹部の前記凹凸方向の深さが、隣接する前記凸部の先端の中心を結ぶ前記幅方向の距離の最大値よりも大きくてもよい。   In the optical element according to the present invention, in the optical element according to the invention, a depth of the concave portion in the concave-convex direction is greater than a maximum value in the width direction connecting the centers of the tips of the adjacent convex portions. May be.

また、本発明に係る光学素子は、前記発明の光学素子において、前記基材表面が曲面であってもよい。   In the optical element according to the present invention, the substrate surface may be a curved surface in the optical element of the invention.

本発明によれば、基材表面に形成された微細凹凸部に対する干渉等による破損を防止しつつ反射防止機能等の光学性能の向上を図り得る光学素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the optical element which can aim at the improvement of optical performance, such as an antireflection function, can be provided, preventing the damage by interference etc. with respect to the fine unevenness | corrugation part formed in the base-material surface.

実施の形態1の光学素子の微細凹凸部の平面図である。3 is a plan view of a fine uneven portion of the optical element according to Embodiment 1. FIG. 同上のA−A’線に沿う断面図である。It is sectional drawing which follows the A-A 'line same as the above. 微細凹凸部の拡大平面図である。It is an enlarged plan view of a fine uneven part. 実施の形態2の光学素子の外観図である。6 is an external view of an optical element according to Embodiment 2. FIG. その断面図である。FIG. 微細凹凸部の平面図である。It is a top view of a fine uneven part. 同上のB−B’線に沿う断面図である。It is sectional drawing which follows the B-B 'line same as the above.

[実施の形態1]
図1は、光学素子10の微細凹凸部16の平面図であり、図2は、そのA−A’線に沿う断面図、図3は、微細凹凸部16の拡大平面図である。
[Embodiment 1]
1 is a plan view of the fine uneven portion 16 of the optical element 10, FIG. 2 is a cross-sectional view taken along the line AA ′, and FIG. 3 is an enlarged plan view of the fine uneven portion 16.

図1及び図2において、この光学素子10は、基材12の表面が平面で、その基材12の表面に微細凹凸部16が形成された光学平板である。
この微細凹凸部16は、多数の微細な凹部17と凸部18とを有している。この凸部18は、連続的に連なって形成されている。すなわち、本実施の形態の凸部18は、基材12の表面に多数の凸部が単体で突出しているのではなく、凹部17を囲む壁のような構造として、蜂の巣状に連続的に連なって形成されている点が特徴的なことである。
1 and 2, the optical element 10 is an optical flat plate in which the surface of a base material 12 is a flat surface, and fine uneven portions 16 are formed on the surface of the base material 12.
The fine uneven portion 16 has a large number of fine concave portions 17 and convex portions 18. The convex portion 18 is continuously formed. That is, the convex portion 18 of the present embodiment is not a single convex projection on the surface of the substrate 12 but is continuously connected in a honeycomb shape as a wall structure surrounding the concave portion 17. This is a characteristic feature.

また、多数の凹部17の大きさは同じとは限らない。大きいものもあれば小さいものもある。さらに、凹部17の形状は平面視で円形とは限らず、歪んだ円形、三角形や四角形等の多角形、或いは楕円形等でもよい。   Moreover, the size of the large number of recesses 17 is not necessarily the same. Some are big and some are small. Furthermore, the shape of the recess 17 is not limited to a circle in plan view, and may be a distorted circle, a polygon such as a triangle or a rectangle, or an ellipse.

本実施の形態では、図1に示すように、微細凹凸部16を、平面視隣接する凹部17,17の中心C1、C2、C3、C4、・・・を通る直線A−A’で凹凸方向(図2の矢印Z−Z方向)に切断したときに、隣接する凹部17,17の中心C1、C2、・・・間の凹凸方向と直交する幅方向(図2の矢印X−X方向)の距離a(a1,a2,・・・)(以下、「凹部中心間距離a」という)の最大値が、可視光波長(400nm〜780nm)よりも小さい。   In the present embodiment, as shown in FIG. 1, the fine uneven portion 16 is formed in the uneven direction along a straight line AA ′ passing through the centers C 1, C 2, C 3, C 4,. When cut in the direction of the arrow ZZ in FIG. 2, the width direction perpendicular to the concavo-convex direction between the centers C <b> 1, C <b> 2 of the adjacent recesses 17, 17 (arrow XX direction in FIG. 2). The maximum value of the distance a (a1, a2,...) (Hereinafter referred to as “concave center distance a”) is smaller than the visible light wavelength (400 nm to 780 nm).

かつ、凹部17の凹凸方向の深さ(以下、「凹部深さd」という)の1/2位置での凸部18の幅方向の距離b(以下、「凸部幅b」という)が、同位置での凹部17の幅方向の距離c(以下、「凹部幅c」という)の最小値よりも小さい。   And the distance b (hereinafter referred to as “convex width b”) in the width direction of the convex portion 18 at a half position of the depth of the concave portion 17 in the concave and convex direction (hereinafter referred to as “concave portion depth d”), The distance c in the width direction of the concave portion 17 at the same position is smaller than the minimum value (hereinafter referred to as “recess width c”).

なお、凹部17の中心とは、真円や正多角形等の場合は平面視凹部17の幾何学的中心をいう。また、平面形状が歪んだ円形や多角形等の場合には図心をいう。
また、凹部中心間距離aを可視光波長よりも小さいとしたのは以下の理由による。
In addition, the center of the recessed part 17 means the geometric center of the recessed part 17 in planar view in the case of a perfect circle, a regular polygon, or the like. In the case of a circular shape or a polygonal shape whose plane shape is distorted, it is the centroid.
Further, the reason why the distance a between the recess centers is smaller than the visible light wavelength is as follows.

すなわち、微細凹凸部16に到達する入射光に対して、基材12及び空気の屈折率に空間的な分布があったとしても、それは想定する波長以下の分布であるため、その分布がそのまま直接に光に作用せず、それが平均化されたものとして作用する。従って、平均化された後の屈折率が、光が進行するに従って連続的に変化するような分布にしておけば、光の反射を防止できるからである。   That is, even if there is a spatial distribution in the refractive index of the base material 12 and air with respect to the incident light reaching the fine uneven portion 16, it is a distribution below the assumed wavelength, so the distribution is directly as it is. Does not act on the light, it acts as an average. Therefore, if the refractive index after averaging is distributed so as to continuously change as the light advances, reflection of light can be prevented.

なお、本実施の形態では、多数の凹部17,17は、マトリクス状等のように周期的に一定の規律に従って配置されているものではなく、ランダムに配置されている。ランダムに配置することで、反射防止効果の異方性を解消でき、反射防止効果の性能を向上させることができるためである。   In the present embodiment, the large number of recesses 17 are not randomly arranged according to a certain rule like a matrix or the like, but are randomly arranged. This is because by arranging them randomly, the anisotropy of the antireflection effect can be eliminated and the performance of the antireflection effect can be improved.

また、本実施の形態では、凸部18の断面形状は略二等辺三角形をなしている。ただし、三角形の斜辺は直線でなくてもよく、2次曲線又は3次曲線、或いは正弦曲線のようになだらかに傾斜していてもよい。   Moreover, in this Embodiment, the cross-sectional shape of the convex part 18 has comprised the substantially isosceles triangle. However, the hypotenuse of the triangle may not be a straight line, and may be inclined gently like a quadratic curve, a cubic curve, or a sine curve.

さらに、図3に示すように、微細凹凸部16は、平面視隣接する複数(例えば3個)の凹部17に囲まれた部位に形成された凸部接点19を有し、隣接する凸部接点19と凸部接点19との間の距離(以下、「凸部接点間距離e」という)の標準偏差が2nmよりも大きい。   Further, as shown in FIG. 3, the fine uneven portion 16 has a convex contact 19 formed in a portion surrounded by a plurality of (for example, three) concave portions 17 that are adjacent in plan view. The standard deviation of the distance between the protrusion 19 and the convex contact 19 (hereinafter referred to as “distance between the convex contacts e”) is larger than 2 nm.

凸部接点間距離eの標準偏差を2nmよりも大きいとすることで、凹部開口径fや凹部開口形状がランダムとなり、入射光に対する光学面での反射光をさらに低減して反射防止性能が向上する。   By setting the standard deviation of the distance e between the convex contact points to be larger than 2 nm, the concave opening diameter f and the concave opening shape are random, and the reflected light on the optical surface with respect to the incident light is further reduced to improve the antireflection performance. To do.

なお、凹部開口径fとは、図2において、隣接する凸部18,18の先端の中心を結ぶ幅方向(X−X方向)の距離をいう。
本実施の形態の光学素子10は、凸部接点間距離eの平均値は51nm、その標準偏差は14nmであった。また、凹部17の凹部開口径fの平均値は67nmであった。
In addition, the recessed part opening diameter f means the distance of the width direction (XX direction) which ties the center of the front-end | tip of the adjacent convex parts 18 and 18 in FIG.
In the optical element 10 of the present embodiment, the average value of the distance e between the convex contact points was 51 nm, and the standard deviation thereof was 14 nm. The average value of the recess opening diameter f of the recess 17 was 67 nm.

ここで、標準偏差とはバラツキを表わす目安であり、次の式で表わされる。
σ=√(Σ(e−μ)/n)
ただし、σは標準偏差、eは凸部接点19,19間の距離、μは凸部接点19,19間の距離eの平均値、nは隣接する凸部接点19の組合せの個数である。
Here, the standard deviation is a standard indicating variation and is expressed by the following equation.
σ = √ (Σ (e i −μ) 2 / n)
However, sigma is the standard deviation, e i is the distance between the convex portions contacts 19 and 19, the average value of the distance e between the μ protrusion contacts 19 and 19, n is the number of combinations of the convex portion contacts 19 adjacent .

なお、本実施の形態では、凹部中心間距離aの平均値は105nm、凸部幅bの平均値は33nm、凹部深さdの平均値は270nmであった。
また、本実施の形態では、凹部深さdが凹部開口径fの最大値よりも大きい。
In the present embodiment, the average value of the recess center distance a is 105 nm, the average value of the protrusion width b is 33 nm, and the average value of the recess depth d is 270 nm.
In the present embodiment, the recess depth d is larger than the maximum value of the recess opening diameter f.

すなわち、図2に示すように、凹部深さdが凹部開口径fの最大値よりも大きく、例えば凹部深さdが凹部開口径fの1〜10倍に形成されている。ただし、1〜10倍に限らず、例えば10倍以上であってもよい。   That is, as shown in FIG. 2, the recess depth d is larger than the maximum value of the recess opening diameter f. For example, the recess depth d is 1 to 10 times the recess opening diameter f. However, it is not limited to 1 to 10 times, and may be 10 times or more, for example.

このようにすることで、入射光に対する反射光をさらに低減することができる。
なお、凸部18の断面形状は、反射防止効果及び強度が保たれる範囲で、凸部18の先端(突出端)から基端側(根元側)に向かって凸部幅bが幅方向に大きく拡大していく形状であっても構わない。
By doing in this way, the reflected light with respect to incident light can further be reduced.
In addition, the cross-sectional shape of the convex part 18 is the range in which the antireflection effect and strength are maintained, and the convex part width b is in the width direction from the distal end (protruding end) of the convex part 18 toward the base end side (root side). It may be a shape that expands greatly.

このような形状であっても、凸部幅bが凹部開口径fの最小値よりも小さければ、反射防止効果が維持される。
なお、本実施の形態において、凸部接点19と凸部接点19との間の凹部深さdが反射防止効果及び強度などの効果が保たれる範囲で異なっていてもよい。このような場合でも、連続して形成された凸部18と見なすことができる。
Even if it is such a shape, if the convex part width b is smaller than the minimum value of the concave part opening diameter f, the antireflection effect is maintained.
In the present embodiment, the concave depth d between the convex contact 19 and the convex contact 19 may be different within a range in which the effects such as the antireflection effect and the strength are maintained. Even in such a case, it can be regarded as the convex part 18 formed continuously.

次に、微細凹凸部16の形成方法について説明する。
基本的には、どのような方法を用いて基材12及び基材曲面に微細凹凸部16を形成してもかまわない。
Next, a method for forming the fine uneven portion 16 will be described.
Basically, the fine irregularities 16 may be formed on the base material 12 and the base material curved surface by any method.

例えば、微細凹凸部16の形状を反転させた表面形状を有する金型を用いて光学素子を成形すると同時に、基材12の表面に微細凹凸部16を転写してもよい。また、基材12の表面に硬化性材料を形成した後に、形成しようとする微細凹凸部16の形状を反転させた表面形状を有する金型を用いて硬化性材料に形状を転写し硬化性材料を硬化させてもよい。さらに、基材12の表面に直接電子線により微細凹凸部16を描画してもよい。   For example, the fine irregularities 16 may be transferred to the surface of the substrate 12 at the same time as the optical element is molded using a mold having a surface shape obtained by inverting the shape of the fine irregularities 16. Moreover, after forming a curable material on the surface of the base material 12, the shape is transferred to the curable material using a mold having a surface shape obtained by inverting the shape of the fine uneven portion 16 to be formed. May be cured. Furthermore, you may draw the fine uneven | corrugated | grooved part 16 on the surface of the base material 12 with an electron beam directly.

なお、微細凹凸部16の形状を反転させた表面形状を有する金型を作製するには、例えば、半導体プロセスの電子線描画やイオンエッチングなどのリソグラフィー技術を利用して金型に微細凹凸部16の形状を反転させた形状の微細構造体を形成して金型を作製するとよい。また、金型に微細凹凸部16を形成した後、ニッケル(Ni)などの金属を用いて電鋳法により反転型を作製してもよい。   In order to produce a mold having a surface shape obtained by inverting the shape of the fine concavo-convex portion 16, for example, the fine concavo-convex portion 16 is formed on the die using a lithography technique such as electron beam drawing or ion etching in a semiconductor process. A mold may be manufactured by forming a microstructure having a shape obtained by inverting the shape. Further, after forming the fine irregularities 16 on the mold, an inversion mold may be produced by electroforming using a metal such as nickel (Ni).

本実施の形態によれば、微細凹凸部16の凸部18が連続的に形成されているため、凸部18が単独で多数形成されている場合に比べ、凸部18の外力に対する機械的強度を確保することができる。   According to the present embodiment, since the convex portions 18 of the fine concavo-convex portions 16 are continuously formed, the mechanical strength against the external force of the convex portions 18 is greater than when a large number of the convex portions 18 are formed alone. Can be secured.

また、凹部中心間距離a(a1,a2,・・・)の最大値が可視光波長(400nm〜780nm)よりも小さく、かつ凸部幅bが凹部開口径fの最大値よりも小さいため、可視光波長に対して反射防止性能及び光の透過率を向上させることができる。   Further, since the maximum value of the recess center distance a (a1, a2,...) Is smaller than the visible light wavelength (400 nm to 780 nm) and the protrusion width b is smaller than the maximum value of the recess opening diameter f, Antireflection performance and light transmittance can be improved with respect to visible light wavelengths.

また、凸部接点間距離eの標準偏差が2nm以上であるため、凹部開口径fや凹部開口形状がランダムとなり、入射光に対する光学面での反射光をさらに低減して反射防止性能を向上させることができる。   In addition, since the standard deviation of the distance e between the convex contacts is 2 nm or more, the concave opening diameter f and the concave opening shape are random, and the reflected light on the optical surface with respect to incident light is further reduced to improve the antireflection performance. be able to.

さらに、凹部深さdが凹部開口径fの最大値よりも大きいため、反射防止性能及び光の透過率の更なる向上が可能となる。また、光学素子面内の反射防止効果を均一に保つことができる。これに対し、凹部深さdが凹部開口径fの最大値の1倍以下であるときは、高い反射防止効果が期待できない。   Furthermore, since the recess depth d is larger than the maximum value of the recess opening diameter f, the antireflection performance and the light transmittance can be further improved. In addition, the antireflection effect within the optical element surface can be kept uniform. On the other hand, when the recess depth d is not more than 1 times the maximum value of the recess opening diameter f, a high antireflection effect cannot be expected.

また、本実施形態によれば、凹部中心間距離aを可視光波長(400nm〜780nm)以下の105nmとし、凸部幅bが凹部開口径fの約1/2、凹部深さdが凹部開口径fの約4倍、凸部接点間距離eの標準偏差が14nmとなっているため、微細凹凸部16の反射防止効果をより顕著に実現することができる。   In addition, according to the present embodiment, the distance a between the recess centers is 105 nm which is not more than the visible light wavelength (400 nm to 780 nm), the protrusion width b is about ½ of the recess opening diameter f, and the recess depth d is the recess opening. Since the standard deviation of the distance e between the convex contact points is about 4 times the diameter f and the distance e between the convex contact points is 14 nm, the antireflection effect of the fine uneven portion 16 can be realized more remarkably.

こうして、本実施の形態によれば、微細凹凸部16の凸部18の外力に対する機械的強度が保たれ、接触などによる微細凹凸部16の倒れや損傷の発生を抑え、かつ反射防止効果等の光学性能の向上を図ることができる。   Thus, according to the present embodiment, the mechanical strength against the external force of the convex portion 18 of the fine concavo-convex portion 16 is maintained, the occurrence of collapse or damage of the fine concavo-convex portion 16 due to contact, etc., and the antireflection effect, etc. The optical performance can be improved.

[実施の形態2]
図4は、本実施の形態の光学素子20の外観図であり、図5は、その断面図、図6は、微細凹凸部26の平面図であり、図7は、そのB−B’線に沿う断面図である。
[Embodiment 2]
4 is an external view of the optical element 20 of the present embodiment, FIG. 5 is a cross-sectional view thereof, FIG. 6 is a plan view of the fine uneven portion 26, and FIG. 7 is a BB ′ line thereof. FIG.

この光学素子20は平凸レンズである。この光学素子20は、基材22の表面に凸曲面状の第1の光学機能面23と、基材22の裏面に平面状の第2の光学機能面24とを有している。なお、本実施の形態では、第1の光学機能面23を凸球面状として説明するが、これに限らない。例えば、第1の光学機能面23を凸非球面状や凸自由曲面状としても良い。   The optical element 20 is a plano-convex lens. The optical element 20 has a first optical functional surface 23 having a convex curved surface on the surface of the base material 22 and a second optical functional surface 24 having a flat shape on the back surface of the base material 22. In the present embodiment, the first optical function surface 23 is described as a convex spherical shape, but the present invention is not limited to this. For example, the first optical function surface 23 may be a convex aspheric surface or a convex free-form surface.

第1の光学機能面23には、反射防止用の微細凹凸部26が形成されている。この微細凹凸部26は、実施の形態1で説明したものと同じ形状である。
本実施の形態では、凸部接点間距離eの平均値は51nm、その標準偏差は14nmであった。また、凹部開口径fの平均値は67nmであり、凹部中心間距離aの平均値は105nm、凸部幅bの平均値は33nm、凹部深さdの平均値は270nmである。
On the first optical function surface 23, a fine uneven portion 26 for preventing reflection is formed. The fine uneven portion 26 has the same shape as that described in the first embodiment.
In this Embodiment, the average value of the distance e between convex contact was 51 nm, and the standard deviation was 14 nm. Further, the average value of the recess opening diameter f is 67 nm, the average value of the recess center distance a is 105 nm, the average value of the protrusion width b is 33 nm, and the average value of the recess depth d is 270 nm.

なお、前述した凸部接点間距離e、凸部接点29等の定義は、実施の形態1で説明したものと同一の意味で使用するので、ここではその説明を省略する。
本実施の形態では、光学素子20の表面の微細凹凸部26の凸部28が連続的に形成され、凹部中心間距離a(a1,a2,・・・)の最大部の最大値が可視光波長(400nm〜780nm)よりも小さく、かつ凸部幅bが凹部幅cの最小値よりも小さい。
Note that the definitions of the distance e between convex contact points, the convex contact point 29, and the like described above are used in the same meaning as described in the first embodiment, and thus the description thereof is omitted here.
In the present embodiment, the convex portions 28 of the fine concave and convex portions 26 on the surface of the optical element 20 are continuously formed, and the maximum value of the maximum portion of the concave portion center distance a (a1, a2,...) Is visible light. The wavelength is smaller than the wavelength (400 nm to 780 nm), and the convex portion width b is smaller than the minimum value of the concave portion width c.

また、凸部接点間距離eの標準偏差が2nm以上であり、また凹部深さdが凹部開口径fの最大値よりも大きくしている。このため、光学素子20の表面の微細凹凸部26の凸部28の外力に対しての機械的強度が保持される。また、可視光波長に対して反射防止効果および高い光の透過率を有することができ、高い光学性能を発揮することができる。   In addition, the standard deviation of the distance e between the convex contacts is 2 nm or more, and the concave depth d is larger than the maximum value of the concave opening diameter f. For this reason, the mechanical strength with respect to the external force of the convex part 28 of the fine uneven part 26 of the surface of the optical element 20 is maintained. Moreover, it can have an antireflection effect and high light transmittance with respect to visible light wavelengths, and can exhibit high optical performance.

なお、本実施の形態において、凸部28の断面形状は、反射防止効果及び強度が保たれる範囲で、凸部28の先端(突出端)から基端側(根元側)に向かって凸部幅bが幅方向に大きく拡大していく形状であってもかまわない。   In the present embodiment, the cross-sectional shape of the convex portion 28 is a convex portion from the distal end (protruding end) of the convex portion 28 toward the base end side (root side) as long as the antireflection effect and strength are maintained. The width b may be a shape that greatly expands in the width direction.

このような形状であっても、凸部幅bが凹部開口径fの最小値よりも小さければ、反射防止効果が維持される。
なお、本実施の形態において、凸部接点29と凸部接点29との間の凹部深さdが、反射防止効果及び強度などの効果が保たれる範囲で異なっていてもよい。このような場合でも、連続して形成された凸部28と見なすことができる。
Even if it is such a shape, if the convex part width b is smaller than the minimum value of the concave part opening diameter f, the antireflection effect is maintained.
In the present embodiment, the depth d of the concave portion between the convex contact 29 and the convex contact 29 may be different within a range in which the effects such as the antireflection effect and the strength are maintained. Even in such a case, it can be regarded as the convex part 28 formed continuously.

なお、本実施の形態では、光学素子20として平凸レンズを例として説明したが、両方の光学機能面が曲面でもよく、また、その曲面形状も、球面、非球面、自由曲面などの曲面であってもよい。   In the present embodiment, a plano-convex lens has been described as an example of the optical element 20, but both optical functional surfaces may be curved surfaces, and the curved surface shapes may be curved surfaces such as spherical surfaces, aspheric surfaces, and free curved surfaces. May be.

本実施の形態によれば、基材表面が曲面である光学素子20に微細凹凸部26を形成したので、凸部28の外力に対しての機械的強度を保持することができる。また、可視光波長に対して反射防止効果及び高い光の透過率を有することができ、高い光学性能を発揮することができる。このように、高い光学性能が発揮できることにより、様々な光学系への適応が可能となる。   According to the present embodiment, since the fine uneven portion 26 is formed on the optical element 20 whose substrate surface is a curved surface, the mechanical strength against the external force of the convex portion 28 can be maintained. Moreover, it can have an antireflection effect and high light transmittance with respect to visible light wavelength, and can exhibit high optical performance. As described above, high optical performance can be exhibited, so that adaptation to various optical systems is possible.

なお、光学系において、特に入射側第1面などの光が入射する位置に、本実施の形態の光学素子20を配置することにより、光学素子面内において反射率分布の少ない反射防止効果を得ることができる。このようにして、反射防止機能を有する光学系を得ることができる。   In the optical system, the optical element 20 of the present embodiment is arranged at a position where light such as the incident-side first surface is incident, so that an antireflection effect with a small reflectance distribution in the optical element plane is obtained. be able to. In this way, an optical system having an antireflection function can be obtained.

10 光学素子
12 基材
16 微細凹凸部
17 凹部
18 凸部
19 凸部接点
20 光学素子
22 基材
23 第1の光学機能面
24 第2の光学機能面
26 微細凹凸部
27 凹部
28 凸部
29 凸部接点
a 凹部中心間距離
b 凸部幅
c 凹部幅
d 凹部深さ
e 凸部接点間距離
f 凹部開口径
C1、C2、・・・ 凹部の中心
DESCRIPTION OF SYMBOLS 10 Optical element 12 Base material 16 Fine uneven | corrugated part 17 Concave part 18 Convex part 19 Convex part contact 20 Optical element 22 Base material 23 1st optical function surface 24 2nd optical function surface 26 Fine uneven part 27 Concave part 28 Convex part 29 Convex Part contact a Center distance between recesses b Width of projection part c Width of recess part d Depth depth e Distance between contact points of convex part f Concave opening diameter C1, C2,.

Claims (4)

基材表面に多数の凹部及び凸部を有する微細凹凸部が形成された光学素子において、
前記凸部は連続的に連なって形成され、
前記微細凹凸部を、平面視隣接する前記凹部の中心を通る直線で凹凸方向に切断したときに、
隣接する前記凹部の中心間の前記凹凸方向と直交する幅方向の距離の最大値が可視光波長よりも小さく、
かつ前記凹部の前記凹凸方向の深さの1/2位置での前記凸部の前記幅方向の距離が、前記凹部の前記凹凸方向の深さの1/2位置での当該凹部の前記幅方向の距離の最小値よりも小さい
ことを特徴とする光学素子。
In the optical element in which a fine uneven portion having a large number of concave portions and convex portions is formed on the substrate surface,
The convex portions are continuously formed,
When the fine uneven portion is cut in the uneven direction by a straight line passing through the center of the recessed portion adjacent in plan view,
The maximum value of the distance in the width direction perpendicular to the concave-convex direction between the centers of the adjacent concave portions is smaller than the visible light wavelength,
And the distance in the width direction of the convex portion at the half position of the depth in the concave and convex direction of the concave portion is the width direction of the concave portion in the half position of the concave portion in the concave and convex direction. An optical element characterized by being smaller than the minimum value of the distance.
平面視隣接する複数の前記凹部に囲まれた部位に形成された凸部接点を有し、隣接する前記凸部接点間の距離の標準偏差が2nmよりも大きい
ことを特徴とする請求項1に記載の光学素子。
It has a convex part contact formed in a part surrounded by a plurality of the above-mentioned concave parts adjoining in plan view, and the standard deviation of the distance between the adjacent convex part contacts is larger than 2 nm. The optical element described.
前記凹部の前記凹凸方向の深さが、隣接する前記凸部の先端の中心を結ぶ前記幅方向の距離の最大値よりも大きい
ことを特徴とする請求項1又は2に記載の光学素子。
The optical element according to claim 1, wherein a depth of the concave portion in the concave-convex direction is larger than a maximum value of the distance in the width direction connecting the centers of the tips of the adjacent convex portions.
前記基材表面が曲面である
ことを特徴とする請求項1〜3のいずれかに記載の光学素子。
The optical element according to claim 1, wherein the substrate surface is a curved surface.
JP2009207171A 2009-09-08 2009-09-08 Optical element Pending JP2011059264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009207171A JP2011059264A (en) 2009-09-08 2009-09-08 Optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009207171A JP2011059264A (en) 2009-09-08 2009-09-08 Optical element

Publications (1)

Publication Number Publication Date
JP2011059264A true JP2011059264A (en) 2011-03-24

Family

ID=43946988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009207171A Pending JP2011059264A (en) 2009-09-08 2009-09-08 Optical element

Country Status (1)

Country Link
JP (1) JP2011059264A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012230349A (en) * 2011-04-13 2012-11-22 Ricoh Opt Ind Co Ltd Reflection optical element and reflection optical system
WO2017086296A1 (en) * 2015-11-16 2017-05-26 デクセリアルズ株式会社 Optical body, master, and method for manufacturing optical body
JP2017097344A (en) * 2015-11-16 2017-06-01 デクセリアルズ株式会社 Optical body, matrix, and manufacturing method of optical body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000071290A (en) * 1998-08-28 2000-03-07 Teijin Ltd Manufacture of antireflection article
JP2006044075A (en) * 2004-08-04 2006-02-16 Alps Electric Co Ltd Production apparatus for optical component made of resin, production method, and optical component made of resin
JP2007004155A (en) * 2005-05-27 2007-01-11 Fujifilm Holdings Corp Anti-reflection film and method for manufacturing the same
JP2009198627A (en) * 2008-02-20 2009-09-03 Nissan Motor Co Ltd Anti-reflective structure and anti-reflective molded body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000071290A (en) * 1998-08-28 2000-03-07 Teijin Ltd Manufacture of antireflection article
JP2006044075A (en) * 2004-08-04 2006-02-16 Alps Electric Co Ltd Production apparatus for optical component made of resin, production method, and optical component made of resin
JP2007004155A (en) * 2005-05-27 2007-01-11 Fujifilm Holdings Corp Anti-reflection film and method for manufacturing the same
JP2009198627A (en) * 2008-02-20 2009-09-03 Nissan Motor Co Ltd Anti-reflective structure and anti-reflective molded body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012230349A (en) * 2011-04-13 2012-11-22 Ricoh Opt Ind Co Ltd Reflection optical element and reflection optical system
WO2017086296A1 (en) * 2015-11-16 2017-05-26 デクセリアルズ株式会社 Optical body, master, and method for manufacturing optical body
JP2017097344A (en) * 2015-11-16 2017-06-01 デクセリアルズ株式会社 Optical body, matrix, and manufacturing method of optical body
CN113777677A (en) * 2015-11-16 2021-12-10 迪睿合株式会社 Optical body, master, and method for manufacturing optical body
TWI780033B (en) * 2015-11-16 2022-10-11 日商迪睿合股份有限公司 Optical body, master disk, and manufacturing method of optical body
CN113777677B (en) * 2015-11-16 2024-03-08 迪睿合株式会社 Optical body, master, and method for manufacturing optical body

Similar Documents

Publication Publication Date Title
JP2011107195A (en) Optical element, method of manufacturing the same, minutely rugged structure, and molding die
KR102026005B1 (en) Composite diffusion plate
TWI653471B (en) Design method of diffusion plate and diffusion plate
JP2012502317A5 (en)
JPWO2015182619A1 (en) Microlens array and optical system including microlens array
US10725212B2 (en) Lens
JP5519386B2 (en) Optical element
JP7061823B2 (en) Optical system equipment and optical element manufacturing method
WO2018123465A1 (en) Reflectance-type diffusion plate, display device, projection device, and illumination device
JP2004317922A (en) Surface processing method, optical element, and metal mold therefor
JP2011059264A (en) Optical element
JP4206447B2 (en) Fine lattice and its mold
JP2011017781A (en) Optical device and optical system
JP2009187001A (en) Antireflection structure, method of manufacturing antireflection structure, and optical device provided with antireflection structure
JP6755076B2 (en) Optical elements, projection devices and measuring devices
JP2003114316A (en) Optical element
CN111527421B (en) Concave-convex structure, optical component and electronic device
WO2011108208A1 (en) Optical element and method of manufacturing optical elements
JP4457589B2 (en) Optical apparatus having a transmissive optical element
JP4238296B2 (en) Diffractive optical element
EP3286494B1 (en) A device for modifying light distribution
JP2016057346A (en) Retroreflector and manufacturing method therefor
JP2008310160A5 (en)
JP5484837B2 (en) Optical element, method for manufacturing optical element, and fine uneven structure
CN113625461A (en) Diffractive optical element, projection module, and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140924