JP2000071290A - Manufacture of antireflection article - Google Patents

Manufacture of antireflection article

Info

Publication number
JP2000071290A
JP2000071290A JP10257630A JP25763098A JP2000071290A JP 2000071290 A JP2000071290 A JP 2000071290A JP 10257630 A JP10257630 A JP 10257630A JP 25763098 A JP25763098 A JP 25763098A JP 2000071290 A JP2000071290 A JP 2000071290A
Authority
JP
Japan
Prior art keywords
mold
layer
article
film
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10257630A
Other languages
Japanese (ja)
Inventor
Tatsuichiro Kin
辰一郎 金
Hitoshi Mikoshiba
均 御子柴
Toshiaki Yatabe
俊明 谷田部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP10257630A priority Critical patent/JP2000071290A/en
Publication of JP2000071290A publication Critical patent/JP2000071290A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for simply forming a more preferable surface shape to obtain high antireflectivity. SOLUTION: In the method for manufacturing an article having antireflectivity by continuously forming a protrusion and recess shape having a pitch of adjacent protrusions or recesses of a range of 10 to 300 nm on at least one surface in a planar direction, the antireflection article is manufactured by using a mold having the protrusion and recess shape and a shape of the relationship between a key and a keyhole on a surface. As the method for manufacturing the article, an injection molding method, a method for transfer forming a layer having the protrusion and recess shape on a base by radiation curing a precursor liquid layer in the state that the base and the mold are laminated via the liquid of the radiation curable resin and then separating the mold or the like is used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明により製造される反射
防止物品は、液晶ディスプレー、プラズマディスプレ
ー、フィールドエミッション型ディスプレー、CRT等
の各種ディスプレーや、ショウウインドウ、眼鏡レン
ズ、各種の光学部品等において、空気と接する界面で生
じる光の反射量を減じる目的で用いられる。
BACKGROUND OF THE INVENTION The anti-reflection article manufactured by the present invention is used in various displays such as a liquid crystal display, a plasma display, a field emission type display, a CRT, a show window, an eyeglass lens, and various optical parts. It is used for the purpose of reducing the amount of light reflection generated at the interface in contact with.

【0002】[0002]

【従来の技術】前記の各種ディスプレー、ショウウイン
ドウ等においては、太陽光や室内照明光等による表面で
の反射により視認性が低下するという問題がある。こう
した表面反射を減じる方法としては、一般に屈折率の相
異なる厚みが10〜200nm程度の光干渉膜を単層も
しくは数層積層してなる反射防止膜を表面に積層する方
法が広く用いられている。
2. Description of the Related Art The above-mentioned various displays, show windows and the like have a problem that visibility is reduced due to reflection on the surface by sunlight or indoor illumination light. As a method of reducing such surface reflection, generally, a method of laminating an antireflection film formed by laminating a single layer or several layers of an optical interference film having a different refractive index and a thickness of about 10 to 200 nm is widely used. .

【0003】これらの方法では優れた反射防止性を得る
ために多くの場合2〜5層程度の光干渉膜を積層する必
要があり製造に時間を要する事から、より簡易に反射防
止性を得る方法として、例えば特開平7−20451号
公報、特開平7−168006号公報等において、光の
波長の数分の一程度の粒径の微粒子を適当なバインダを
用いて高密度に分散した塗膜を基板表面に形成する事に
より、基板面から塗膜表面側に向けて面内方向の屈折率
(光の振動面に平行な平面での屈折率。以下面内屈折率
と記す)が徐々に低下するような屈折率傾斜性が発現
し、反射防止性が得られるとの提案がなされている。
In these methods, in many cases, about two to five layers of light interference films must be laminated in order to obtain excellent antireflection properties, and it takes a long time to manufacture, so that antireflection properties can be more easily obtained. As a method, for example, in JP-A-7-20451, JP-A-7-168006, etc., a coating film in which fine particles having a particle size of a fraction of the wavelength of light are dispersed at a high density using an appropriate binder. On the substrate surface, the refractive index in the in-plane direction (the refractive index in a plane parallel to the plane of vibration of light; hereinafter referred to as the in-plane refractive index) gradually increases from the substrate surface toward the coating film surface side. It has been proposed that a refractive index gradient that decreases is obtained and antireflection properties are obtained.

【0004】[0004]

【発明が解決しようとする課題】一般に、屈折率が異な
る二種の物質(A、B)がそれぞれ光の波長よりも小さ
いサイズ(領域)で混合している場合には、混合部分の
面内屈折率は両物質の屈折率の中間の値をとり、その値
はおおまかには単位体積内での両物質が占める体積比率
により下式(1)式のように決まる。
Generally, when two types of substances (A, B) having different refractive indexes are mixed in a size (region) smaller than the wavelength of light, the in-plane of the mixed portion is generally considered. The refractive index takes an intermediate value between the refractive indices of both substances, and the value is roughly determined by the following equation (1) depending on the volume ratio occupied by both substances in a unit volume.

【0005】[0005]

【数1】 neff=na・va+nb・vb ・・・・ (1) (ここでneffは混合部分の面内屈折率、naおよびnb
はそれぞれ物質A、Bの屈折率、vaおよびvbはそれぞ
れ単位体積あたりの物質A、Bの占める体積割合を示
す)
## EQU1 ## (1) (where neff is the in-plane refractive index of the mixed portion, na and nb)
Represents the refractive index of each of the substances A and B, and va and vb represent the volume ratio of the substances A and B per unit volume, respectively.)

【0006】すなわち例えば、物品の表面に隣り合う凸
部もしくは凹部のピッチが光の波長よりも小さいような
凹凸形状が形成されている場合には、この凹凸の形成さ
れた部分の面内屈折率は一般に、物品表面の凸部の屈折
率と空気の屈折率(n=1.0)との中間の値、すなわ
ち物品内部より低い屈折率の値をとり、反射防止効果が
発現する。
That is, for example, in the case where an uneven shape is formed such that the pitch of a convex portion or a concave portion adjacent to the surface of an article is smaller than the wavelength of light, the in-plane refractive index of the portion where the unevenness is formed Generally, takes an intermediate value between the refractive index of the convex portion on the article surface and the refractive index of the air (n = 1.0), that is, a value of the refractive index lower than that inside the article, and the antireflection effect is exhibited.

【0007】ここで例えば、凹凸の断面形状が矩形であ
って凹凸の形成される表面が透明である場合には、凸部
と凹部との高さの差(△d)と凹凸部分の面内屈折率
(neff)の積が光の波長の1/4に等しいように凹凸
を形成すれば、この波長の光に対し大きな反射防止効果
が得られる。
Here, for example, when the cross-sectional shape of the unevenness is rectangular and the surface on which the unevenness is formed is transparent, the difference in height (△ d) between the convex portion and the concave portion and the in-plane of the uneven portion If the unevenness is formed so that the product of the refractive index (neff) is equal to 1/4 of the wavelength of light, a large anti-reflection effect can be obtained for light of this wavelength.

【0008】ただし凹凸の形成される表面が不透明であ
る場合、例えば最表面にアルミニウム、銀等の金属薄膜
が積層されている場合等においては、一般に前述のよう
な凹凸部分の屈折率の低下現象は発現しない。ただしこ
の場合には、凸部と凹部との高さの差(△d)が光の波
長の1/4に等しくなるように凹凸を形成すれば、凸部
と凹部で反射した光が相互干渉することによって、この
波長の光に対して反射防止効果が得る事ができる。
However, when the surface on which the unevenness is formed is opaque, for example, when a metal thin film of aluminum, silver, or the like is laminated on the outermost surface, the above-described phenomenon of a decrease in the refractive index of the unevenness is generally caused. Does not appear. However, in this case, if the unevenness is formed so that the height difference (△ d) between the convex portion and the concave portion is equal to 1 / of the wavelength of the light, the light reflected by the convex portion and the concave portion will cause mutual interference. By doing so, an antireflection effect can be obtained for light of this wavelength.

【0009】またここで物品表面の凸部の占める体積比
率が表面側ほど小さくなるような凸部が形成されている
場合には、面内屈折率が物品内部側から表面側に向かっ
て徐々に減少する屈折率傾斜性が発現し、最表面からの
距離に従って面内屈折率が、空気の屈折率(n=1.
0)から物品内部の屈折率まで一次の線形変化をするよ
うな屈折率の傾斜を実現できれば、最大の反射防止効果
が得られることがわかっている。
In the case where a convex portion is formed such that the volume ratio occupied by the convex portion on the surface of the article becomes smaller toward the front side, the in-plane refractive index gradually increases from the inside to the front side of the article. A decreasing refractive index gradient is exhibited, and the in-plane refractive index changes according to the distance from the outermost surface to the refractive index of air (n = 1.
It has been found that the maximum antireflection effect can be obtained if a gradient of the refractive index can be realized such that a linear linear change from 0) to the refractive index inside the article can be achieved.

【0010】この理想的な屈折率の傾斜はおおまかに言
うと、この凹凸部分を平面的に切断した切断面内におけ
る凸部の占める面積比率が、最表面から切断面までの距
離に従って一次の線形変化(リニヤな増加)をするよう
な凹凸の形成により実現することができる。
Generally speaking, the ideal gradient of the refractive index is such that the ratio of the area occupied by the convex portion in the cut plane obtained by cutting the concave and convex portions in a plane is determined by the linear linearity according to the distance from the outermost surface to the cut plane. It can be realized by forming irregularities that change (linearly increase).

【0011】一般的に、高い反射防止性の実現には、凸
部の占める面積比率が前記の理想値を取るか、もしくは
これより若干低い値を取る事が必要である。
In general, in order to realize high antireflection properties, it is necessary that the area ratio occupied by the projections takes the above-mentioned ideal value or a value slightly lower than the ideal value.

【0012】この条件に合致する表面形状としては、前
記の切断平面の一辺もしくは直径等の長さが最表面から
距離の1/2乗に比例する多角形、円、楕円等になるよ
うな凸形状(もしくは凹形状)が連続的に形成された表
面形状がもっとも好ましく挙げることができ、これに加
えて例えば、三角錘、四角錘その他の多角錘、円錐等の
凸形状が連続的に形成された表面形状や半球状の凹形状
が連続的に形成された表面形状等が挙げられる。
The surface shape meeting this condition is a convex shape such as a polygon, a circle, an ellipse, etc., in which the length of one side or the diameter of the cutting plane is proportional to the square of the distance from the outermost surface. The surface shape in which the shape (or the concave shape) is formed continuously is most preferable. In addition, for example, a convex shape such as a triangular pyramid, a quadrangular pyramid, other polygonal pyramids, and a cone is continuously formed. Surface shape or a surface shape in which hemispherical concave shapes are continuously formed.

【0013】ところで先に例示した特許では、光の波長
より粒径が小さい微粒子をバインダ中に高密度に分散し
てなる層を基体上にコーティングする事により、該微粒
子により形成された凸部の単位体積中に占める割合が基
体(物品内部)側から表面側に向けて減少する事に伴う
屈折率傾斜により反射防止性を得ているが、ここで表面
形状は半球状の凸部が連続的に連なった表面形状となる
為に、前記の切断平面内での凸部の占める面積比率は理
想値より大きな値となって高い反射防止性が得られにく
いといった問題があった。
In the patent exemplified above, a layer formed by dispersing fine particles having a particle diameter smaller than the wavelength of light at a high density in a binder is coated on a substrate, so that the convex portions formed by the fine particles are coated. The antireflection property is obtained by the refractive index gradient accompanying the decrease in the ratio of the unit volume to the surface side from the base (inside of the article) to the surface side. Therefore, the area ratio occupied by the protrusions in the cutting plane becomes larger than an ideal value, and there is a problem that it is difficult to obtain a high antireflection property.

【0014】これらの観点から本発明は、前述の高い反
射防止性を得る上でより好ましい表面形状を簡易に形成
できる方法の発案を趣旨として為されたものである。
From these viewpoints, the present invention has been made with the idea of a method of easily forming a more preferable surface shape for obtaining the above-mentioned high antireflection property.

【0015】[0015]

【課題を解決するための手段】本発明の反射防止物品の
製造方法は、少なくとも一方の表面に、隣り合う凸部も
しくは凹部のピッチが10〜300nmの範囲にあるよ
うな凹凸形状が平面方向に連続形成されてなる反射防止
性を有する物品を製造する方法であって、該凹凸形状と
鍵と鍵穴の関係にある形状を表面に有する型を用いて賦
形することにより前記の反射防止物品を製造することを
特徴とするものである。
According to the method for manufacturing an antireflection article of the present invention, at least one surface has an uneven shape such that the pitch between adjacent convex portions or concave portions is in the range of 10 to 300 nm in a plane direction. A method for producing an article having anti-reflection properties formed continuously, wherein the anti-reflection article is formed by shaping using a mold having a surface having a relationship between the concavo-convex shape and a key and a keyhole on the surface. It is characterized by being manufactured.

【0016】尚、本発明の反射防止物品は、およそ10
0〜750nm程度の広い波長範囲の光について反射防
止効果を得られるように意図されたものである。この為
には、反射防止効果を得たい光の波長に比べ物品表面の
凹凸のピッチが小さい事が必要で、反射防止効果を得た
い光の波長に比べ物品表面の凹凸のピッチが1/2以下
であることがより好ましい。また凹凸の深さ(凹部と凸
部の高さの差)は反射防止効果を得たい光の波長のおよ
そ1/6程度から波長と同等程度の範囲にあれば、高い
反射防止効果が得られる。従って物品表面の凹凸のピッ
チの範囲(10〜300nm)についても、対象とする
光の波長もしくは波長域に応じて適切な値が選択され
る。
Incidentally, the antireflection article of the present invention has a size of about 10%.
It is intended to obtain an antireflection effect for light in a wide wavelength range of about 0 to 750 nm. For this purpose, it is necessary that the pitch of the unevenness on the surface of the article is smaller than the wavelength of the light for which the antireflection effect is to be obtained. It is more preferred that: Also, if the depth of the unevenness (the difference between the height of the concave portion and the height of the convex portion) is in a range from about 1/6 of the wavelength of the light for which the antireflection effect is desired to be obtained to a wavelength equivalent to the wavelength, a high antireflection effect is obtained. . Accordingly, an appropriate value is selected for the range of the pitch of the unevenness on the article surface (10 to 300 nm) according to the wavelength or wavelength range of the target light.

【0017】また本発明の反射防止物品の厚みについて
特に限定はないが、厚みとしておよそ20μm〜1cm
程度の範囲が最も適当である。
The thickness of the antireflection article of the present invention is not particularly limited, but may be about 20 μm to 1 cm.
A range of degrees is most appropriate.

【0018】ここで物品表面に凹凸形状を賦形する方法
については、型を用いて射出成形により凹凸形状を一体
成形する方法や、放射線硬化性樹脂の前駆液層を介して
基体と型をラミネートした後、放射線を照射して前駆液
層を硬化させた後に型を剥離することにより、凹凸を有
する放射線硬化性樹脂層が表面に積層された物品を得る
方法等が好ましく用いられる。
Here, the method of shaping the unevenness on the surface of the article includes a method of integrally forming the unevenness by injection molding using a mold, and a method of laminating the base and the mold via a precursor liquid layer of a radiation-curable resin. After that, a method of irradiating radiation to cure the precursor liquid layer and then peeling the mold to obtain an article having a radiation-curable resin layer having irregularities laminated on the surface is preferably used.

【0019】本発明の物品の材質としては、用途に応じ
て各種のガラスや樹脂材料、金属材料等の各種の材料を
広く用いる事ができる。また用途によっては必ずしも透
明性が高い材料である必要はない。ここで好適に使用さ
れる樹脂材料としては、例えば、ポリメチルメタクリレ
ート、トリアセチルセルロース、ポリエチレンテレフタ
レート、ポリカーボネート等の熱可塑性樹脂が好ましく
用いられるが、表面の凹凸形状と一括して射出成形する
場合には、成形性および転写性のよい樹脂の使用が好ま
しく、例えばポリカーボネート、ポリメチルメタクリレ
ート等が好ましく用いられる。
As the material of the article of the present invention, various materials such as various glasses, resin materials, and metal materials can be widely used depending on the application. Depending on the application, the material does not always need to be highly transparent. As the resin material preferably used here, for example, a thermoplastic resin such as polymethyl methacrylate, triacetyl cellulose, polyethylene terephthalate, and polycarbonate is preferably used. It is preferable to use a resin having good moldability and transferability. For example, polycarbonate, polymethyl methacrylate and the like are preferably used.

【0020】本発明において型として用いられる凹凸形
状物は、例えば以下の方法により作成される。一つの方
法としてはフォトリソグラフィー技術を用いた作成法で
あって、例えば適当な支持基板(ガラス、金属等)上に
適当なフォトレジスト膜をコーティングした後に、紫外
線レーザー、電子線、X線等の光を選択的に照射してパ
ターン潜像を形成し、これを現像することにより、凹凸
パターンを有する型が作成できる。ここでいう選択的な
照射によるパターン形成の方法としては、例えば前記の
光を断続的に照射しながら基板上を走査することにより
基板の選択された部分のみに光を照射する方法や、あら
かじめ作成したマスクパターンをステッパ(縮小露光装
置)を用いて基板上に1/4〜1/5程度の割合で縮小
投影する事により微細パターンの露光を行う方法等が挙
げられる。
The uneven shape used as a mold in the present invention is prepared, for example, by the following method. One method is a preparation method using photolithography technology. For example, after coating a suitable photoresist film on a suitable supporting substrate (glass, metal, etc.), an ultraviolet laser, an electron beam, an X-ray, etc. A pattern having a concavo-convex pattern can be created by selectively irradiating light to form a pattern latent image and developing it. As a method of pattern formation by selective irradiation here, for example, a method of irradiating light only to a selected portion of the substrate by scanning the substrate while intermittently irradiating the light, A method of exposing a fine pattern by reducing and projecting the mask pattern thus formed onto a substrate at a rate of about 1/4 to 1/5 using a stepper (reducing exposure apparatus).

【0021】このようなフォトリソグラフィーを用いた
場合、最も基本的には断面が矩形状となる凹凸形状物が
作成されるが、ここで用いるフォトレジスト膜の光感度
や、露光に用いる光の焦点もしくは焦点深度を適切に調
節する事等により、例えば断面が台形状もしくは概ね半
円状となる凹凸形状物も作成できる場合がある。
When such photolithography is used, an uneven shape having a rectangular cross section is most basically formed. However, the light sensitivity of the photoresist film used here and the focus of light used for exposure are determined. Alternatively, by appropriately adjusting the depth of focus, for example, an uneven shape having a trapezoidal cross section or a substantially semicircular cross section may be created.

【0022】露光に用いる光として例えば紫外線レーザ
ーを用いる場合には、例えばArF(波長193n
m)、KrF(波長248nm)、XeCl(波長30
8nm)等の化合物によるエキシマレーザーが好ましく
用いられ、必要に応じてこれらの光をコンデンサレンズ
等の縮小光学系を通して照射すること等により、300
nmピッチ以下の微細なパターニングが可能である。
When an ultraviolet laser is used as the light used for the exposure, for example, ArF (wavelength 193n) is used.
m), KrF (wavelength 248 nm), XeCl (wavelength 30
Excimer laser with a compound such as 8 nm) is preferably used. If necessary, these lights are irradiated through a reduction optical system such as a condenser lens to obtain a 300 nm light.
Fine patterning with a pitch of nm or less is possible.

【0023】このようにして作成された凹凸パターンを
有するフォトレジスト層は、このまま型として用いるこ
ともできるが、場合によってはこのフォトレジスト層を
介して支持基板にドライエッチングを施して、レジスト
の載っていない支持基板面を選択的にエッチングし、最
後にレジスト層を完全に除去することにより、支持基板
そのものの表面に凹凸パターンを形成することも可能で
ある。
The photoresist layer having the concavo-convex pattern formed as described above can be used as it is as a mold. However, in some cases, the support substrate is dry-etched through the photoresist layer to load the resist. It is also possible to form an uneven pattern on the surface of the support substrate itself by selectively etching the unsupported support substrate surface and finally completely removing the resist layer.

【0024】又、こうしたフォトリソグラフィーを用い
た方法の他にも、例えば金属もしくは金属酸化物等を薬
液エッチングもしくはプラズマエッチングする際の各結
晶格子面でのエッチングレートの相違を利用して特定の
結晶格子面を選択的にエッチングする事によって、もし
くはポリエチレンテレフタレートをヘキサフルオロイソ
プロピルアルコール等の溶媒により表面処理する事によ
って、これらの表面に多角錘(四角錘、三角錘、円錐
等)状の多数の微細な凸部を形成できる場合がある。
In addition to the above-described method using photolithography, a specific crystal is utilized by utilizing a difference in an etching rate at each crystal lattice plane when a metal or a metal oxide is etched by a chemical solution or plasma. By selectively etching the lattice plane or by treating polyethylene terephthalate with a solvent such as hexafluoroisopropyl alcohol, a large number of polygonal pyramids (quadrangular pyramids, triangular pyramids, cones, etc.) are formed on these surfaces. In some cases, a convex part can be formed.

【0025】又、例えばアルミニウムその他の金属膜を
真空プロセス(スパッタリング、CVD等)を用いて多
結晶の膜を作成するようにし、結晶を意図的に大きく成
長させるように、製膜時の基板温度や堆積速度等を適切
に調整したり、堆積膜をレーザーアニーリングする等の
方法を用いると、膜の表面に多角錘状の凸部が突き出し
た形状を連続的に形成する事が可能になる場合がある。
Further, for example, a polycrystalline film is formed on a metal film such as aluminum by using a vacuum process (sputtering, CVD, etc.), and the substrate temperature during film formation is increased so that the crystal is intentionally grown large. When it is possible to continuously form a shape in which polygonal pyramid-shaped protrusions protrude on the surface of the film by using a method such as appropriately adjusting the deposition rate and the deposition rate, or laser annealing the deposited film. There is.

【0026】又、例えば酸化アルミニウムの表面を陽極
酸化する等の電気化学的方法によって、これらの表面に
多数の微細な凹部を形成することが可能となる場合があ
る。
In some cases, it is possible to form a large number of fine recesses on the surface of aluminum oxide by an electrochemical method such as anodic oxidation.

【0027】これらの方法により形成された凹凸形状物
(原盤)はそのまま型として用いる事が可能な場合もあ
るが、型の機械的強度もしくは熱的強度等の必要に応
じ、この原盤のレプリカを作成して型として用いること
もできる。レプリカの作成法としては、例えば原盤上に
ニッケル、銀等による厚みが20〜80nm程度の薄膜
を無電界めっき、スパッタ法等により形成し、次にこの
薄膜を電極として、電気めっき法(電鋳法)等により例
えばニッケルを0.3mm程度の厚みまで堆積させた
後、このニッケル層をマスタリング基板から剥離させる
ことにより、原盤のレプリカであって機械的強度、耐熱
性等に優れるニッケル製の型を得る事ができる。
In some cases, the concave-convex shaped article (master) formed by these methods can be used as a mold as it is, but a replica of the master can be used according to the mechanical strength or thermal strength of the mold. It can be created and used as a mold. As a method of forming a replica, for example, a thin film having a thickness of about 20 to 80 nm made of nickel, silver, or the like is formed on a master by electroless plating, sputtering, or the like, and then the thin film is used as an electrode by electroplating (electroforming). For example, after nickel is deposited to a thickness of about 0.3 mm by a method) or the like, the nickel layer is peeled off from the mastering substrate, thereby forming a replica of the master and having excellent mechanical strength and heat resistance. Can be obtained.

【0028】またこれらの方法より簡便に作成でき、よ
り微細な凹凸パターンを有する型の作成方法として、適
当な支持基体上に平均粒径が10〜300nm程度の球
状微粒子を溶剤に分散した塗液、微粒子間のバインダと
なる材料、及び界面活性剤等を混合した塗液をコーティ
ングおよび熱乾燥を行う方法等により、微細な半球状の
凸部が表面に連続的に形成された型を得ることができ
る。
Further, as a method for preparing a mold having a finer concavo-convex pattern which can be prepared more easily than these methods, a coating liquid in which spherical fine particles having an average particle diameter of about 10 to 300 nm are dispersed in a solvent on a suitable supporting substrate is used. To obtain a mold in which fine hemispherical projections are continuously formed on the surface by a method of coating and thermally drying a coating liquid mixed with a material serving as a binder between fine particles and a surfactant, and the like. Can be.

【0029】尚、ここで球状微粒子は膜厚方向に数個以
上積み重なって多層の配列をしていても、単一層状の配
列をしていても構わないが、少なくともその最表面にお
いては各微粒子が隣接した最密充填に近い状態で平面的
に配列していることが好ましい。このような微粒子の配
列状態は、前述のように微粒子の溶剤分散液をコーティ
ングして熱処理するだけで得られる場合が多いが、より
充填度を高めたい場合には、微粒子と溶剤もしくはバイ
ンダや界面活性剤の種類、混合比率、熱処理の条件等を
適切に設定することが必要になる。
Here, the spherical fine particles may be stacked in several layers in the film thickness direction to form a multi-layer arrangement or a single layer arrangement, but at least on the outermost surface of each fine particle. Are preferably arranged two-dimensionally in a state close to the closest packing. Such an arrangement state of the fine particles is often obtained only by coating a solvent dispersion of the fine particles and heat-treating as described above. However, when it is desired to further increase the filling degree, the fine particles and the solvent or the binder or the interface are required. It is necessary to appropriately set the type of activator, mixing ratio, heat treatment conditions, and the like.

【0030】型の支持基体としては各種金属、セラミッ
ク、および高分子樹脂の成形体等を好ましく用いる事が
できるが、前記微粒子分散層を形成する際の熱処理温度
や、実際に型を用いた成形を行う際の成形方法等に応じ
て選択される。ここで型の支持基体としてステンレス等
によるスチールベルトや各種熱可塑性高分子等のフィル
ムもしくは金属ロール、セラミックロール等を用いれば
これらの型を用いてロールtoロールの連続成形に対応
できるのでより好ましい。
As the support base of the mold, molded bodies of various metals, ceramics, and polymer resins can be preferably used. However, the heat treatment temperature for forming the fine particle dispersed layer, the molding using the mold, and the like. Is selected according to a molding method or the like at the time of performing. Here, it is more preferable to use a steel belt made of stainless steel or the like, a film made of various thermoplastic polymers or the like, a metal roll, a ceramic roll, or the like as a support base of the mold, since these molds can be used for continuous roll-to-roll molding.

【0031】球状微粒子としては、市販されている各種
のシリカビーズやポリスチレン、ポリメチルメタクリレ
ート等のプラスチックビーズ等を用いることができる。
As the spherical fine particles, various commercially available silica beads, plastic beads such as polystyrene and polymethyl methacrylate, and the like can be used.

【0032】溶剤としては、これらの微粒子を液中で良
好に分散しうるものが好ましく、例えばエチルアルコー
ル、イソプロピルアルコール、ノルマルプロピルアルコ
ール、イソブチルアルコール、ノルマルブチルアルコー
ル、ターシャルブチルアルコール、1メトキシ2プロピ
ルアルコール等の各種アルコールが好ましく用いられ
る。
As the solvent, those which can disperse these fine particles well in a liquid are preferable. For example, ethyl alcohol, isopropyl alcohol, normal propyl alcohol, isobutyl alcohol, normal butyl alcohol, tert-butyl alcohol, and 1 methoxy-2-propyl Various alcohols such as alcohols are preferably used.

【0033】バインダとしては、例えばテトラメトキシ
シラン、テトラエトキシシラン、メチルトリメトキシシ
ラン、メチルトリエトキシシラン、γーグリシドキシプ
ロピルトリメトキシシラン、ジメチルメトキシシラン等
のアルコキシシランもしくはそれらの混合物を酸性水溶
液で加水分解して部分縮合体としたものや、エポキシ、
メラミン、ウレタン、アルキド、不飽和ポリエステル、
尿素等の熱硬化性樹脂が主成分として好ましく用いられ
る。
As the binder, for example, an alkoxysilane such as tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, dimethylmethoxysilane or a mixture thereof is mixed with an acidic aqueous solution. Hydrolyzed to a partial condensate, epoxy,
Melamine, urethane, alkyd, unsaturated polyester,
A thermosetting resin such as urea is preferably used as a main component.

【0034】界面活性剤としては、市販されている各種
シリコーンオイル、フッ素系界面活性剤等が好ましく用
いられる。
As the surfactant, various commercially available silicone oils, fluorine-based surfactants and the like are preferably used.

【0035】これら溶剤に微粒子を分散した塗液は、型
の支持基体がロール状のフィルムであるような場合には
マイクログラビヤコート、マイヤーバーコート等の方法
により、型の支持基体がリジットな成形体であるような
場合にはスピンコート、スプレーコート等の方法により
コーティングされることが好ましい。
The coating liquid obtained by dispersing the fine particles in these solvents can be formed into a rigid form by a method such as microgravure coating or Meyer bar coating when the supporting base of the mold is a roll-shaped film. When it is a body, it is preferably coated by a method such as spin coating or spray coating.

【0036】又、微粒子分散層と支持基体の密着性を高
める目的で、支持基体上にあらかじめ適当なプライマー
層を積層しておくことも必要に応じて行われる。
In order to enhance the adhesion between the fine particle dispersion layer and the supporting substrate, an appropriate primer layer may be previously laminated on the supporting substrate, if necessary.

【0037】このようなプライマー層としては、例えば
N−β(アミノエチル)γーアミノプロピルトリメトキ
シシラン等のアミノ基を有するアルコキシシランや各種
アルコキシチタン、アルコキシジルコニウムもしくはポ
リメチルメタクリレート等からなる有機層や、スパッタ
リング、真空蒸着等の真空プロセスにより形成した酸化
珪素、酸化チタン、チタン、ITOの層が好適に用いら
れ、通常およそ1〜1000nm程度の範囲の膜厚に形
成される。
As such a primer layer, for example, an organic layer composed of an alkoxysilane having an amino group such as N-β (aminoethyl) γ-aminopropyltrimethoxysilane, various kinds of alkoxytitanium, alkoxyzirconium or polymethylmethacrylate, etc. Alternatively, a layer of silicon oxide, titanium oxide, titanium, or ITO formed by a vacuum process such as sputtering or vacuum deposition is preferably used, and is usually formed to a thickness of about 1 to 1000 nm.

【0038】尚、この微粒子分散膜による型は耐熱性に
劣る場合があり、射出成形における金型温度に耐えられ
ない場合がある。そこでこの場合、まずこの型の表面形
状を適当な支持基板上に積層した放射線硬化性樹脂層に
転写させて半球状の凹部が連続形成されたレプリカ
(A)を得て、このレプリカ(A)を用いて更に前記同
様の電気めっき法による金属製(ニッケル製)のレプリ
カ(B)を作成すれば、レプリカ(B)は先の微粒子分
散膜と同様の凹凸形状パターンを有し、微粒子分散膜よ
りも非常に耐熱性に優れる型として用いることができ
る。
Incidentally, the mold using the fine particle dispersed film may be inferior in heat resistance and may not be able to withstand the mold temperature in injection molding. Therefore, in this case, first, the surface shape of this mold is transferred to a radiation-curable resin layer laminated on an appropriate support substrate to obtain a replica (A) in which hemispherical concave portions are continuously formed, and this replica (A) is obtained. When a replica (B) made of metal (made of nickel) is further formed by the same electroplating method as described above, the replica (B) has the same pattern of concavo-convex shape as the above-mentioned fine particle dispersion film. It can be used as a mold having much higher heat resistance than that.

【0039】これらの型を用いて凹凸形状を物品表面に
転写形成する方法としては前述したように、一般の射出
成形機の金型内に型をセットすることにより、凹凸形状
が一体成形された物品を得る方法や、放射線硬化性樹脂
の前駆液を介して基体と型をラミネートした後に基体側
もしくは型を通して放射線を照射し前駆液を硬化させた
後に型を分離することにより、表面に凹凸を有する放射
線硬化性樹脂層が積層された物品を得る方法等が好まし
く用いられる。
As described above, as a method of transferring and forming an uneven shape on the surface of an article by using these molds, the uneven shape is integrally formed by setting the mold in a mold of a general injection molding machine. Irregularities on the surface are obtained by obtaining the article, or by laminating the substrate and the mold through the precursor liquid of the radiation-curable resin and then irradiating the substrate side or through the mold with radiation to cure the precursor liquid and separating the mold. For example, a method of obtaining an article having a radiation-curable resin layer laminated thereon is preferably used.

【0040】放射線硬化性樹脂とは紫外線や電子線等の
照射により樹脂の架橋が進行する樹脂を指し、その中で
も官能基を多く有する高架橋性の(メタ)アクリレート
の使用が好ましい。これらの例としてはたとえば、トリ
メチロールプロパントリ(メタ)アクリレート、ペンタ
エリスリトールテトラ(メタ)アクリレート、ジペンタ
エリスリトールペンタ(メタ)アクリレート、ジメチロ
ールトリシクロデカンジ(メタ)アクリレート等の(メ
タ)アクリレートモノマーや、単位構造内に2個以上の
(メタ)アクリロイル基を有するウレタン(メタ)アク
リレートオリゴマー、ポリエステル(メタ)アクリレー
トオリゴマー、エポキシ(メタ)アクリレートオリゴマ
ー等の(メタ)アクリレートオリゴマー、もしくはこれ
らの混合物等が挙げられる。
The radiation-curable resin refers to a resin in which the crosslinking of the resin proceeds by irradiation with ultraviolet rays, electron beams, or the like. Among them, the use of a highly crosslinkable (meth) acrylate having many functional groups is preferable. Examples of these include (meth) acrylate monomers such as trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dimethylol tricyclodecane di (meth) acrylate. Or (meth) acrylate oligomers such as urethane (meth) acrylate oligomers, polyester (meth) acrylate oligomers, epoxy (meth) acrylate oligomers having two or more (meth) acryloyl groups in the unit structure, or mixtures thereof Is mentioned.

【0041】尚、同樹脂に紫外線照射して架橋を進行さ
せる場合には、光反応開始剤を適量添加する。このよう
な光反応開始剤としては、たとえばジエトキシアセトフ
ェノン、2ーメチルー1ー(4ー(メチルチオ)フェニ
ル)ー2ーモルフォリノプロパン、2ーヒドロキシー2
ーメチルー1ーフェニルプロパンー1ーオン、1ーヒド
ロキシシクロヘキシルフェニルケトン等のアセトフェノ
ン系化合物、ベンゾイン、ベンジルジメチルケタール等
のベンゾイン系化合物、ベンゾフェノン、ベンゾイル安
息香酸等のベンゾフェノン系化合物、チオキサンソン、
2、4ージクロロチオキサンソン等のチオキサンソン系
化合物等が挙げられる。
When the resin is irradiated with ultraviolet rays to promote crosslinking, an appropriate amount of a photoreaction initiator is added. Such photoreaction initiators include, for example, diethoxyacetophenone, 2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropane, 2-hydroxy-2
Acetophenone compounds such as 1-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexylphenyl ketone, benzoin compounds such as benzoin and benzyldimethyl ketal, benzophenone compounds such as benzophenone and benzoylbenzoic acid, thioxanthone,
And thioxanthone compounds such as 2,4 dichlorothioxanthone.

【0042】尚、これらの放射線硬化性樹脂のコーティ
ング方法としては、通常スピンコート、ナイフコート等
の諸方式を好ましく用いる事ができる。
As a method for coating these radiation-curable resins, usually, various methods such as spin coating and knife coating can be preferably used.

【0043】又、フレキシブルなフィルムの上にコーテ
ィングする場合にはマイクログラビヤコート、マイヤー
バーコート、ダイコート等の諸方式を用いる事ができ、
ロールtoロールでの連続的な加工が可能となる。
When coating on a flexible film, various methods such as micro gravure coat, Meyer bar coat, die coat and the like can be used.
Continuous processing by roll-to-roll becomes possible.

【0044】これら放射線硬化性樹脂の前駆液は無溶剤
でコーティングが行われる事がより好ましいが、前駆液
の粘度が非常に高い場合等には溶剤希釈を行った方がよ
い場合があり、この場合は基体と型を前駆液層を介して
ラミネートする以前に液面を十分に熱乾燥させ、含有す
る溶剤を揮発させる必要がある。
It is more preferable that the precursor solution of the radiation curable resin is coated without a solvent. However, when the viscosity of the precursor solution is extremely high, it may be better to dilute the solvent. In this case, before laminating the substrate and the mold via the precursor liquid layer, it is necessary to sufficiently dry the liquid surface and volatilize the contained solvent.

【0045】尚、ここまでに説明した本発明の方法によ
り製造された凹凸形状の形成された物品表面には、場合
によって表面の機械的強度を高める為に二酸化珪素等の
透明な薄膜をスパッタリングや真空蒸着その等の方法に
より積層する事も好ましく行われ、又、場合によっては
表面での指紋等の付着汚れを目立ちにくくしたり、汚れ
を拭き取りやすくするような防汚染処理を行う事が好ま
しい。具体的な防汚染処理の方法としては、膜厚が数n
m以下の極薄の撥油性に優れた層を表面に設ける処理を
行う事が好ましく、これらの層としては、例えば各種の
界面活性剤やCF3(CF27CH2CH2−SiCl3
CF3(CF27CH2CH2−SiCH3Cl2、CF
3(CF2)CH2CH2−Si−(OCH33等の各種フ
ルオロアルキルシラン、フルオロアルコキシシランおよ
びこれらを他の高分子材料と共重合体した材料等が好適
に用いられる。これらの層のコーティング方法として
は、支持基体がロール状のフィルムであるような場合に
はマイクログラビヤコート、マイヤーバーコート等の方
法が好ましく、支持基体がリジットな成形体であるよう
な場合にはスピンコート、スプレーコート等の方法が好
ましい。
In addition, a transparent thin film of silicon dioxide or the like may be sputtered on the surface of the article having the unevenness produced by the method of the present invention described above in order to increase the mechanical strength of the surface. Lamination is preferably performed by a method such as vacuum deposition, and in some cases, it is preferable to perform an anti-contamination treatment to make the adhered dirt such as fingerprints on the surface less noticeable or to easily wipe off dirt. As a specific method of the anti-contamination treatment, the film thickness is several n.
It is preferable to perform a process of providing an extremely thin layer having excellent oil repellency of not more than m on the surface. Examples of such a layer include various surfactants and CF 3 (CF 2 ) 7 CH 2 CH 2 —SiCl 3. ,
CF 3 (CF 2 ) 7 CH 2 CH 2 —SiCH 3 Cl 2 , CF
3 (CF 2) CH 2 CH 2 -Si- (OCH 3) 3 various fluoroalkyl silanes such as, fluoroalkoxy silane and materials these were other polymeric materials and copolymerised is preferably used. As a coating method of these layers, a method such as microgravure coating or a Meyer bar coating is preferable when the supporting substrate is a roll-shaped film, and when the supporting substrate is a rigid molded body, Methods such as spin coating and spray coating are preferred.

【0046】[0046]

【実施例】以下、実施例を挙げ、本発明を更に詳しく説
明するが、本発明はかかる実施例に限定されるものでは
ない。尚、本実施例は、可視波長域の光(およそ400
〜700nmの波長範囲)を反射防止の対象としている
が、本発明により作成される反射防止物品は必ずしも可
視波長域に限定されるものではなく、本実施例よりも小
さいピッチで凹凸の形成を行えば100〜400nm程
度の波長範囲の紫外線に対しても反射防止効果を得る事
が可能である。
EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples. In the present embodiment, light in the visible wavelength range (about 400
(Wavelength range from 700 nm to 700 nm) is an object of antireflection, but the antireflection article produced by the present invention is not necessarily limited to the visible wavelength range, and the unevenness is formed at a smaller pitch than in this embodiment. For example, it is possible to obtain an antireflection effect even for ultraviolet rays in a wavelength range of about 100 to 400 nm.

【0047】[実施例1]まずフィルム状の型(以下型
フィルムと記す)を作成した。支持基体として厚みが7
5μmのPETフィルム(帝人製、HSL−75)を用
い、その片面にまずプライマー層としてテトラブトキシ
チタネート(日本曹達製B−4)をリグロインとノルマ
ルブチルアルコールを3:1の重量比率で混合した溶剤
で希釈した後、マイクログラビヤによりロールコーティ
ングを行い、130℃で1分間乾燥して膜厚が30nm
程度のアルコキシチタンの架橋層を形成した。
Example 1 First, a film-shaped mold (hereinafter referred to as a mold film) was prepared. 7 thickness as supporting substrate
Using a 5 μm PET film (HSL-75 manufactured by Teijin), a solvent in which tetrabutoxy titanate (B-4 manufactured by Nippon Soda) is mixed as a primer layer on one side with ligroin and normal butyl alcohol at a weight ratio of 3: 1. And then roll-coated with microgravure and dried at 130 ° C. for 1 minute to a film thickness of 30 nm.
A crosslinked layer of about a certain degree of alkoxy titanium was formed.

【0048】次にプライマー層上に球状微粒子が隣接配
列した層を積層した。球状微粒子として平均粒径が約1
60nmのエチルアルコール分散オルガノシリカゾル
(触媒化成製)を用い、バインダとしてメチルトリメト
キシシランとジメチルトリメトキシシランを重量比率で
4:1に混合した後に希塩酸により加水分解したものを
用い、両者を固形分換算の重量比率で約2:1に混合し
た後にノルマルプロパノールで希釈してマイクログラビ
ヤによるロールコーティングを行い、130℃で3分間
の熱処理を施した。
Next, a layer in which spherical fine particles were arranged adjacent to each other was laminated on the primer layer. Average particle size of about 1 as spherical fine particles
Using a 60 nm ethyl alcohol-dispersed organosilica sol (manufactured by Catalyst Chemicals Co., Ltd.), a mixture obtained by mixing methyltrimethoxysilane and dimethyltrimethoxysilane at a weight ratio of 4: 1 and then hydrolyzing with dilute hydrochloric acid was used. After mixing at a reduced weight ratio of about 2: 1, the mixture was diluted with normal propanol, roll-coated with microgravure, and heat-treated at 130 ° C. for 3 minutes.

【0049】このようにして形成された層の表面を走査
型電子顕微鏡により観察したところ、シリカ微粒子が半
球部分をほぼ空気に露出した状態で非常に高密度に隣接
配列している様子が観察された。
When the surface of the layer thus formed was observed with a scanning electron microscope, it was observed that the silica fine particles were arranged at very high density adjacently with the hemispherical portion almost exposed to air. Was.

【0050】次に以下の工程を用いて、厚みが100μ
mのポリカーボネートフィルム(帝人製ピュアエースC
110)の片面に型フィルムの型形状を転写した厚みが
約5μmの紫外線硬化性樹脂の硬化層を形成した。
Next, by using the following steps,
m polycarbonate film (Pure Ace C manufactured by Teijin)
110), a cured layer of an ultraviolet curable resin having a thickness of about 5 μm obtained by transferring the mold shape of the mold film was formed on one surface.

【0051】紫外線硬化性樹脂として、比較的低粘性で
高い架橋性能が得られるトリメチロールプロパントリア
クリレート(東亜合成化学製M309)を主剤として用
い、光開始剤として1−ヒドロキシシクロヘキシルフェ
ニルケトン(チバガイギー製イルガキュア184)を主
剤に対し3重量%、およびレベリング剤としてポリエー
テル変成シリコーンオイル(東芝シリコーン性SH28
PA)を主剤に対し0.1重量%混合した塗液を溶剤で
希釈する事なく、マイクログラビヤにより前記ポリカー
ボネートフィルム上にロールコーティングした。この後
このコーティングフィルムには再びロール状に巻き取ら
れるまでの搬送過程において以下の工程が連続的に施さ
れる。すなわちコーティングに用いられる搬送経路とは
別の搬送経路を用いて巻き出した型フィルムをニップロ
ールを用いてコーティング面にラミネートする工程、コ
ーティングされた塗液と型面をよくなじませる為に60
℃の乾燥炉を1分間通過させる工程、型フィルム側に配
置されたランプ強度120W/cmの高圧水銀灯により
型フィルムを通して紫外線(積算光量500mJ/cm
2)を照射してコーティング層を硬化させる工程、紫外
線照射部をフィルムが通過した直後にニップロールを介
して型フィルムを剥離する工程、ポリカーボネートフィ
ルムと型フィルムを別々の搬送経路を用いてロール状に
巻き取る工程である。
As a UV-curable resin, trimethylolpropane triacrylate (M309, manufactured by Toa Gosei Chemical Co., Ltd.), which has a relatively low viscosity and high cross-linking performance, is used as a main agent, and 1-hydroxycyclohexylphenyl ketone (manufactured by Ciba Geigy) is used as a photoinitiator. Irgacure 184) as a leveling agent, and a polyether-modified silicone oil (Toshiba silicone SH28) as a leveling agent.
PA) was roll-coated on the polycarbonate film by microgravure without diluting a coating solution containing 0.1% by weight of the main component with a solvent. Thereafter, the coating film is continuously subjected to the following steps in the transport process until it is wound up again in a roll shape. That is, a step of laminating a mold film unwound using a transport path different from the transport path used for coating on a coating surface using a nip roll, and a step of 60 minutes in order to make the coated coating liquid and the mold surface well blend.
C. through a drying oven for 1 minute, ultraviolet rays (integrated light amount 500 mJ / cm) through a mold film by a high-pressure mercury lamp having a lamp intensity of 120 W / cm arranged on the mold film side.
2) irradiating the coating layer by irradiating it, removing the mold film via a nip roll immediately after the film has passed the ultraviolet irradiation section, and forming the polycarbonate film and the mold film into a roll using separate transport paths. This is a winding step.

【0052】このようにして形成された紫外線硬化性樹
脂の硬化層の表面を走査型電子顕微鏡等により観察した
ところ、平均径がおよそ160nm前後の半球状の凹部
が160〜200nm程度のピッチで連続形成されてい
る様子が観察された。
When the surface of the cured layer of the ultraviolet curable resin thus formed was observed by a scanning electron microscope or the like, hemispherical concave portions having an average diameter of about 160 nm were continuously formed at a pitch of about 160 to 200 nm. The formation was observed.

【0053】次にこの表面上に二酸化珪素による薄膜を
スパッタリング法により形成した。すなわち、多結晶S
iのメタルターゲットを用い、圧力1.3mPaまで排
気後に、Ar/O2混合ガス(O2濃度12vol%)を
ガス流量100sccmで導入し、圧力が0.27Pa
になるように調整した後に、投入電力密度1W/cm2
の条件でDCマグネトロンスパッタリングを行い、蛍光
X線測定による膜厚が約20nmのSiO2膜を形成し
た。
Next, a thin film of silicon dioxide was formed on the surface by sputtering. That is, the polycrystalline S
After evacuation to a pressure of 1.3 mPa using a metal target of i, an Ar / O 2 mixed gas (O 2 concentration 12 vol%) was introduced at a gas flow rate of 100 sccm, and the pressure was 0.27 Pa
After adjusting so that the input power density becomes 1 W / cm 2
DC magnetron sputtering was performed under the conditions described above to form an SiO 2 film having a thickness of about 20 nm by fluorescent X-ray measurement.

【0054】次に防汚染層としてCF3(CF27CH2
CH2−Si(OCH33をあらかじめ希塩酸により公
知の方法により加水分解した液を0.02重量%の固形
分濃度にエタノールで希釈した塗液を用いてマイクログ
ラビヤコーティングを行い、130℃で5分間熱乾燥し
て前記フルオロアルキルアルコキシシラン縮合物による
極薄の層を形成した。
Next, CF 3 (CF 2 ) 7 CH 2 is used as an anti-contamination layer.
A solution obtained by previously hydrolyzing CH 2 —Si (OCH 3 ) 3 with dilute hydrochloric acid by a known method is diluted with ethanol to a solid content concentration of 0.02% by weight to carry out microgravure coating using a coating solution. By heat drying for 5 minutes, an extremely thin layer of the fluoroalkylalkoxysilane condensate was formed.

【0055】このように紫外線硬化性樹脂の硬化層、二
酸化珪素層、防汚染層がこの順に積層されたポリカーボ
ネートフィルムの積層面側の光反射率を日立製分光光度
計U−3500の拡散反射率測定モードにて測定したと
ころ(フィルム裏面側には黒色の塗料をコーティングし
て裏面反射の影響を無くした)、400〜700nmの
可視波長域において反射率が0.7〜0.9%の範囲に
あり、反射防止性に非常に優れていた。また、このフィ
ルムのヘイズを日本電色工業製ヘイズメーターCOH−
300Aを用いて測定したところ、ヘイズは0.6%と
小さかった。更に、この表面における油脂の接触角を測
定した。測定液としてオレイン酸(和光純薬工業製)を
用い、表面に液を静かに滴下した場合の接触角を測定し
たところ接触角は約107度を示し、表面の撥油性が大
変優れていた。
As described above, the light reflectance on the laminated surface side of the polycarbonate film on which the cured layer of the ultraviolet curable resin, the silicon dioxide layer, and the anti-contamination layer are laminated in this order is measured by the diffuse reflectance of a Hitachi spectrophotometer U-3500. When measured in the measurement mode (the back surface of the film was coated with black paint to eliminate the influence of back surface reflection), the reflectance was in the range of 0.7 to 0.9% in the visible wavelength region of 400 to 700 nm. And had very excellent antireflection properties. The haze of this film was measured using a haze meter COH- manufactured by Nippon Denshoku Industries Co., Ltd.
When measured using 300A, the haze was as small as 0.6%. Furthermore, the contact angle of fats and oils on this surface was measured. When oleic acid (manufactured by Wako Pure Chemical Industries) was used as a measuring solution and the contact angle was measured when the solution was gently dropped on the surface, the contact angle was about 107 degrees, indicating that the surface was very excellent in oil repellency.

【0056】[実施例2]1.1mm厚のガラス基板の
片面に、実施例1と同組成の紫外線硬化性樹脂をナイフ
コーターを用いてコーティングし、実施例1で作成した
型フィルムをラミネートした後に、基板温度60℃、ラ
ンプ強度120W/cmの高圧水銀ランプにより紫外線
の照射を行い(積算光量500mJ/cm2)、型フィ
ルムを剥離することにより、表面に半球状の凹部が連続
形成された厚みが約5μmの紫外線硬化性樹脂の硬化層
をガラス基板上に形成した。
Example 2 One side of a 1.1 mm thick glass substrate was coated with an ultraviolet curable resin having the same composition as in Example 1 using a knife coater, and the mold film prepared in Example 1 was laminated. Thereafter, the substrate was irradiated with ultraviolet light from a high-pressure mercury lamp having a substrate temperature of 60 ° C. and a lamp intensity of 120 W / cm (integrated light amount: 500 mJ / cm 2 ), and the mold film was peeled off, whereby hemispherical concave portions were continuously formed on the surface. A cured layer of an ultraviolet curable resin having a thickness of about 5 μm was formed on a glass substrate.

【0057】次に、この紫外線硬化性樹脂の硬化層が積
層されたガラス基板をDCスパッタリング装置に導入し
て、硬化層上に電極層として30nm厚のAl膜をスパ
ッタリングにより形成した。この電極層の形成された基
板をすばやくめっき装置に導入し、電気めっきによって
先の電極層上にニッケル膜を0.3mmの厚みに堆積し
た。さらに、このニッケル堆積表面を研磨して平坦化し
た後、先の紫外線硬化性樹脂の硬化層が積層されたガラ
ス基板を剥離した。そして紫外線硬化性樹脂の残査をよ
く洗浄除去して、表面に半球状の凹部が連続形成された
ニッケル製の型を得た。
Next, the glass substrate on which the cured layer of the ultraviolet curable resin was laminated was introduced into a DC sputtering apparatus, and an Al film having a thickness of 30 nm was formed as an electrode layer on the cured layer by sputtering. The substrate on which this electrode layer was formed was quickly introduced into a plating apparatus, and a nickel film was deposited to a thickness of 0.3 mm on the previous electrode layer by electroplating. Further, after the nickel deposition surface was polished and flattened, the glass substrate on which the cured layer of the ultraviolet curable resin was laminated was peeled off. Then, the residue of the ultraviolet curable resin was thoroughly washed and removed to obtain a nickel mold in which hemispherical concave portions were continuously formed on the surface.

【0058】住友重機械工業(株)製射出成形機(型
名:DISK・MIII)を用い、前記のニッケル製の型
を金型に取り付けて、ポリカーボネート樹脂(帝人化成
AD9000TG)を用いて、厚みが0.7mmで縦横
が80mmのポリカーボネート樹脂板を成形した。
Using an injection molding machine (model name: DISK-MIII) manufactured by Sumitomo Heavy Industries, Ltd., the above-mentioned nickel mold was attached to a mold, and a thickness was determined using a polycarbonate resin (Teijin Chemicals AD9000TG). A polycarbonate resin plate having a length of 0.7 mm and a length and width of 80 mm was molded.

【0059】この時の条件としては、可動側金型を11
8℃、固定側金型温度を115℃とした。射出速度は1
00mm/秒で380℃の溶融樹脂を前記型が取り付け
られた金型のキャビティにスプルー部を通して充填し
た。圧縮部コアの圧力は、射出完了から0.5秒間は2
500kPa、その後は6500kPaに変化させた。
型開時間は射出終了から9秒後に設定した。成形された
樹脂版は金型が空冷された後に、素手で金型から取り外
した。尚、この時樹脂板の裏面にはスプルー部に充填さ
れていた樹脂が凸状につながっていたが、カッターでこ
の部分を切り落として裏面を平坦にした。
The condition at this time is as follows.
8 ° C., and the fixed mold temperature was 115 ° C. Injection speed is 1
A molten resin at 380 ° C. at 00 mm / sec was filled into the cavity of the mold to which the mold was attached, through a sprue portion. The pressure of the compression part core is 2 for 0.5 second after the injection is completed.
The pressure was changed to 500 kPa and thereafter to 6500 kPa.
The mold opening time was set 9 seconds after the end of injection. After the mold was air-cooled, the molded resin plate was removed from the mold with bare hands. At this time, the resin filled in the sprue portion was connected to the back surface of the resin plate in a convex shape, but this portion was cut off by a cutter to flatten the back surface.

【0060】こうして得られたポリカーボネート樹脂板
の型の転写された側の表面を走査型電子顕微鏡等により
観察したところ、平均径がおよそ160nm前後の半球
状の凹部が160〜200nm程度のピッチで連続形成
されている様子が観察された。
When the surface of the thus obtained polycarbonate resin plate on the side where the mold was transferred was observed by a scanning electron microscope or the like, hemispherical concave portions having an average diameter of about 160 nm were continuously formed at a pitch of about 160 to 200 nm. The formation was observed.

【0061】このポリカーボネート樹脂板の半球状の凹
部が連続形成された表面の光反射率は、400〜700
nmの可視波長域において0.6〜0.8%の範囲にあ
り、ヘイズは0.8%と小さかった。
The light reflectance of the surface of the polycarbonate resin plate on which hemispherical concave portions are continuously formed is 400 to 700.
It was in the range of 0.6 to 0.8% in the visible wavelength region of nm, and the haze was as small as 0.8%.

【0062】[比較例1]実施例1においてポリカーボ
ネートフィルムにコーティングした紫外線硬化性樹脂に
実施例の型フィルムをラミネートせずに大気下で紫外線
を照射して硬化させ、厚みが約5μmの表面平滑な硬化
層を形成した後、実施例同様の二酸化珪素の層、防汚染
層を積層した。このフィルムの積層面の400〜700
nmの可視波長域での光反射率はおよそ3.5〜3.7
%の範囲にあった。
[Comparative Example 1] The UV curable resin coated on the polycarbonate film in Example 1 was cured by irradiating it with UV light in the air without laminating the mold film of the Example, and the surface was smoothed to a thickness of about 5 μm. After forming a hardened layer, a silicon dioxide layer and an antifouling layer were laminated as in the example. 400 to 700 of the laminated surface of this film
The light reflectance in the visible wavelength region of nm is about 3.5 to 3.7.
% Range.

【0063】[比較例2]実施例1同様にポリカーボネ
ートフィルムにコーティングした紫外線硬化性樹脂に、
実施例1の型フィルムをラミネートせずに大気下で紫外
線を照射して硬化させ、厚みが約5μmの表面が平滑な
硬化層を形成した。次にこの硬化層表面に処理強度10
0W・分/m2のコロナ処理を施した後に、実施例同様
の球状シリカ微粒子とアルコキシシラン加水分解物のバ
インダからなる塗液をコーティングして、表面に半球状
の凸部が隣接配列した層を形成した。更にこの表面上に
実施例同様の二酸化珪素の層、防汚染層を積層した。こ
のフィルムの積層面の400〜700nmの可視波長域
での光反射率はおよそ1.7〜2.0%の範囲にあり、
反射防止性はあまり優れていなかった。
Comparative Example 2 An ultraviolet curable resin coated on a polycarbonate film in the same manner as in Example 1
The mold film of Example 1 was cured by irradiating it with ultraviolet light in the air without laminating, to form a cured layer having a thickness of about 5 μm and a smooth surface. Next, a treatment strength of 10
After applying a corona treatment of 0 W · min / m 2, a coating liquid composed of a spherical silica fine particle and a binder of an alkoxysilane hydrolyzate is coated as in the example, and a layer in which hemispherical convex portions are arranged adjacently on the surface. Was formed. Further, a layer of silicon dioxide and an antifouling layer were laminated on this surface as in the example. The light reflectance of the laminated surface of this film in the visible wavelength region of 400 to 700 nm is in a range of about 1.7 to 2.0%,
The antireflection properties were not so good.

【0064】[比較例3]実施例2においてポリカーボ
ネート樹脂板の射出成形を、実施例2で用いたニッケル
製の型の代わりに、両面をよく研磨して平坦化した0.
3mm厚のニッケル板を用いて行った。こうして射出成
形されたポリカーボネート樹脂板表面の反射率は、40
0〜700nmの可視波長域でおよそ4.9〜5.4%
の範囲にあった。
[Comparative Example 3] The injection molding of the polycarbonate resin plate in Example 2 was flattened by well polishing both sides instead of the nickel mold used in Example 2.
The test was performed using a nickel plate having a thickness of 3 mm. The reflectance of the surface of the injection-molded polycarbonate resin plate is 40
About 4.9 to 5.4% in a visible wavelength range of 0 to 700 nm
Was in the range.

【0065】[0065]

【発明の効果】本発明により、従来より簡易な方法で反
射防止性に優れた物品を得る事が可能になった。なお、
本発明において用いられる型は通常、数回もしくはそれ
以上の繰り返し使用が可能である為、製造プロセスの更
なる簡略化、および型からの大量複製が可能で、より高
い生産性を得る事ができる。
According to the present invention, it has become possible to obtain an article having excellent antireflection properties by a simpler method than before. In addition,
Since the mold used in the present invention can be used several times or more usually, the production process can be further simplified, and mass replication from the mold can be performed, and higher productivity can be obtained. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いられる屈折率傾斜性を有する層の
形状を模式的に示した断面図である。
FIG. 1 is a cross-sectional view schematically showing the shape of a layer having a refractive index gradient used in the present invention.

【図2】従来提案されていた屈折率傾斜性を有する層の
形状を模式的に示した断面図である。
FIG. 2 is a cross-sectional view schematically showing the shape of a layer having a refractive index gradient conventionally proposed.

【図3】本発明に用いられる屈折率傾斜性を有する層を
成形する型の構造を模式的に示した断面図である。
FIG. 3 is a cross-sectional view schematically showing a structure of a mold for molding a layer having a refractive index gradient used in the present invention.

【図4】本発明において型を用いて屈折率傾斜性を有す
る層を成形する方法の一例を示す模式図である。
FIG. 4 is a schematic view showing an example of a method for forming a layer having a refractive index gradient using a mold in the present invention.

【図5】本発明において、凹凸形状が表面に一体成形さ
れた物品を得るのに用いる射出成形金型の模式図であ
る。
FIG. 5 is a schematic view of an injection molding die used to obtain an article having an uneven shape integrally formed on a surface in the present invention.

【図6】本発明の実施例において型フィルムの表面形状
が転写された紫外線硬化性樹脂の硬化層表面の走査型電
子顕微鏡写真である。
FIG. 6 is a scanning electron micrograph of a cured layer surface of an ultraviolet curable resin to which the surface shape of a mold film is transferred in an example of the present invention.

【符号の説明】[Explanation of symbols]

1.高分子樹脂層 2.屈折率傾斜性を有する層 3.支持基体 4.プライマー層 5.バインダ層 6.球状微粒子 7.支持基体 8.支持基体 9.紫外線硬化性樹脂 10.型 11.屈折率傾斜性を有する層 12.可動型金型 13.圧縮部 14.固定型金型 15.外周リング 16.スプルー部 17.キャビティ 18.型 1. 1. Polymer resin layer 2. Layer having refractive index gradient Support base 4. Primer layer 5. Binder layer 6. 6. spherical fine particles Support base 8. Support base 9. UV curable resin 10. Type 11. Layer having refractive index gradient 12. Movable mold 13. Compression unit 14. Fixed mold 15. Outer ring 16. Sprue section 17. Cavity 18. Type

フロントページの続き (72)発明者 谷田部 俊明 東京都日野市旭が丘4丁目3番2号 帝人 株式会社東京研究センター内 Fターム(参考) 2H042 BA03 BA13 BA15 BA16 BA20 2K009 AA12 AA15 BB14 BB24 DD05 DD12 DD15 EE05 4F202 AG03 AG05 CA11 CA27 CB01 CB22 CB29 CD23 CD28 CD30 CK09 5G435 AA01 AA17 DD12 HH02 HH03 KK07 Continued on the front page (72) Inventor Toshiaki Yatabe 4-3-2 Asahigaoka, Hino-shi, Tokyo Teijin Co., Ltd. Tokyo Research Center F-term (reference) 2H042 BA03 BA13 BA15 BA16 BA20 2K009 AA12 AA15 BB14 BB24 DD05 DD12 DD15 EE05 4F202 AG03 AG05 CA11 CA27 CB01 CB22 CB29 CD23 CD28 CD30 CK09 5G435 AA01 AA17 DD12 HH02 HH03 KK07

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一方の表面に、隣り合う凸部
もしくは凹部のピッチが10〜300nmの範囲にある
凹凸形状が平面方向に連続形成されてなる反射防止性を
有する物品を製造する方法であって、該凹凸形状と鍵と
鍵穴の関係にある形状を表面に有する型を用いて賦形す
ることを特徴とする反射防止物品の製造方法。
1. A method for producing an article having an antireflection property, in which a concavo-convex shape having a pitch of an adjacent convex portion or concave portion in a range of 10 to 300 nm is continuously formed in at least one surface in a planar direction. Forming a shape having a relationship of a key and a keyhole on the surface using a mold having a relationship between the concave and convex shape and the key and the keyhole.
【請求項2】 少なくとも一方の表面に、隣り合う凸部
もしくは凹部のピッチが10〜300nmの範囲にある
凹凸形状が平面方向に連続形成されてなる反射防止性を
有する物品を製造する方法であって、該凹凸形状と鍵と
鍵穴の関係にある形状を表面に有する型を用いて射出成
形法により成形することを特徴とする反射防止物品の製
造方法。
2. A method for producing an article having an antireflection property in which a concavo-convex shape having a pitch of adjacent convex portions or concave portions in a range of 10 to 300 nm is continuously formed in at least one surface in a planar direction. A method having a shape having a relation of a key and a keyhole on the surface by the injection molding method.
【請求項3】 少なくとも一方の表面に、隣り合う凸部
もしくは凹部のピッチが10〜300nmの範囲にある
凹凸形状が平面方向に連続形成されてなる反射防止性を
有する物品を製造する方法であって、放射線硬化性樹脂
の前駆液を介して基体と型をラミネートした後に基体側
もしくは型を通して放射線を照射し前駆液を硬化させた
後に型を分離することにより、基体上に該凹凸形状を有
する層を積層形成することを特徴とする請求項1記載の
反射防止物品の製造方法。
3. A method for producing an article having an antireflection property in which a concavo-convex shape having a pitch of adjacent convex portions or concave portions in a range of 10 to 300 nm is continuously formed on at least one surface in a planar direction. Then, after laminating the substrate and the mold via the precursor liquid of the radiation-curable resin, the substrate is irradiated with radiation through the mold or through the mold to cure the precursor liquid, and then the mold is separated. The method for producing an anti-reflective article according to claim 1, wherein the layers are formed by lamination.
JP10257630A 1998-08-28 1998-08-28 Manufacture of antireflection article Pending JP2000071290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10257630A JP2000071290A (en) 1998-08-28 1998-08-28 Manufacture of antireflection article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10257630A JP2000071290A (en) 1998-08-28 1998-08-28 Manufacture of antireflection article

Publications (1)

Publication Number Publication Date
JP2000071290A true JP2000071290A (en) 2000-03-07

Family

ID=17308923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10257630A Pending JP2000071290A (en) 1998-08-28 1998-08-28 Manufacture of antireflection article

Country Status (1)

Country Link
JP (1) JP2000071290A (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321406A (en) * 1999-03-11 2000-11-24 Hitachi Chem Co Ltd Transfer film and production of diffusion reflection plate
JP2001264520A (en) * 2000-03-16 2001-09-26 Dainippon Printing Co Ltd Reflection preventing film, polarizing element, display device and method for manufacturing reflection preventing film
WO2002012586A1 (en) * 2000-08-10 2002-02-14 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. METHOD FOR PRODUCING A TOOL WHICH CAN BE USED TO CREATE SURFACE STRUCTURES IN THE SUB-νM RANGE
JP2002122702A (en) * 2000-10-17 2002-04-26 Matsushita Electric Ind Co Ltd Optical film and display device
JP2002250917A (en) * 2001-02-26 2002-09-06 Dainippon Printing Co Ltd Front light device having antireflection property and display device
JP2002267816A (en) * 2001-03-08 2002-09-18 Dainippon Printing Co Ltd Sheet for imparting antireflection layer to be used for injection molding, injection molding method using the same and injection molded article having antireflection layer laminated
JP2002267815A (en) * 2001-03-08 2002-09-18 Dainippon Printing Co Ltd Reflection preventive molded part and method for manufacturing the same
JP2002333502A (en) * 2001-05-10 2002-11-22 Dainippon Printing Co Ltd Antireflection window plate for display cover of portable device having display and portable device
JP2002333508A (en) * 2001-05-10 2002-11-22 Dainippon Printing Co Ltd Method for producing antireflection material
JP2003004916A (en) * 2001-06-20 2003-01-08 Dainippon Printing Co Ltd Window material of display device, method of manufacturing for the same and display device
JP2003090902A (en) * 2001-09-19 2003-03-28 Dainippon Printing Co Ltd Antireflection imparting film and antireflection processing method using the same
JP2003098304A (en) * 2001-09-26 2003-04-03 Dainippon Printing Co Ltd Antireflective transfer film and method for antireflection processing by using the same
JP2003205564A (en) * 2002-01-15 2003-07-22 Dainippon Printing Co Ltd Electrification preventing transfer foil with reflection preventing function
JP2004502625A (en) * 2000-07-06 2004-01-29 サン−ゴバン グラス フランス Transparent textured substrate and method for obtaining the same
JP2006048026A (en) * 2004-07-06 2006-02-16 Nof Corp Anti-reflection film for transfer and transfer method and display device using the same
JP2006065302A (en) * 2004-07-28 2006-03-09 Dainippon Printing Co Ltd Antireflection structure and optical member having the same
WO2007007755A1 (en) * 2005-07-14 2007-01-18 Matsushita Electric Industrial Co., Ltd. Forming member of reflection preventing structure and transfer material using this, and optical apparatus provided with reflection preventing structure and production method thereof
US7268948B2 (en) 2004-03-31 2007-09-11 Canon Kabushiki Kaisha Optical element and optical scanning device using the same
JP2008203473A (en) * 2007-02-20 2008-09-04 Nissan Motor Co Ltd Antireflection structure and structure
JP2008216743A (en) * 2007-03-06 2008-09-18 Refuraito Kk Method of manufacturing optical sheet for backlight unit
JP2008231580A (en) * 2008-07-01 2008-10-02 Kanagawa Acad Of Sci & Technol Method for manufacturing porous anodizing alumina film and porous anodizing alumina film produced by the method
JP2008248388A (en) * 2000-04-28 2008-10-16 Sharp Corp Stamping tool
JP2011059264A (en) * 2009-09-08 2011-03-24 Olympus Corp Optical element
CN102004273A (en) * 2009-09-02 2011-04-06 索尼公司 Optical element and method for manufacturing optical element
WO2011125699A1 (en) 2010-03-31 2011-10-13 三菱レイヨン株式会社 Laminate and production method for same
US8133538B2 (en) 2006-03-17 2012-03-13 Canon Kabushiki Kaisha Method of producing mold having uneven structure
JP2012077147A (en) * 2010-09-30 2012-04-19 Lintec Corp Water-repellent sheet
JP2012078438A (en) * 2010-09-30 2012-04-19 Dainippon Printing Co Ltd Antireflection film composition
WO2012096322A1 (en) 2011-01-12 2012-07-19 三菱レイヨン株式会社 Active energy ray-curable resin composition, microrelief structure, and method for producing microrelief structure
JP2012166475A (en) * 2011-02-15 2012-09-06 Ube Nitto Kasei Co Ltd Method for producing molded article
USRE43694E1 (en) 2000-04-28 2012-10-02 Sharp Kabushiki Kaisha Stamping tool, casting mold and methods for structuring a surface of a work piece
JP2012208526A (en) * 2009-09-02 2012-10-25 Sony Corp Optical element, and display unit
WO2013005769A1 (en) * 2011-07-05 2013-01-10 三菱レイヨン株式会社 Article having fine concavo-convex structure on surface, and image display device provided therewith
JP2013047838A (en) * 2012-10-30 2013-03-07 Dainippon Printing Co Ltd Method for manufacturing antireflection material
WO2013187528A1 (en) 2012-06-15 2013-12-19 三菱レイヨン株式会社 Article and active energy ray-curable resin composition
WO2014007401A1 (en) 2012-07-04 2014-01-09 Canon Kabushiki Kaisha Fine structure, optical member, antireflection film, water-repellent film, substrate for mass spectrometry, phase plate, process for producing fine structure, and process for producing antireflection film
WO2014157718A1 (en) 2013-03-29 2014-10-02 三菱レイヨン株式会社 Article
WO2014163185A1 (en) 2013-04-05 2014-10-09 三菱レイヨン株式会社 Microrelief structural body, decorative sheet, decorative resin molded body, method for producing microrelief structural body, and method for producing decorative resin molded body
WO2014163198A1 (en) 2013-04-05 2014-10-09 三菱レイヨン株式会社 Multilayer structure, method for producing same, and article
JP2015055746A (en) * 2013-09-11 2015-03-23 大日本印刷株式会社 Head-up display unit
JP2016029457A (en) * 2014-07-18 2016-03-03 大日本印刷株式会社 Low reflection sheet
US9784889B2 (en) 2012-06-22 2017-10-10 Sharp Kabushiki Kaisha Antireflection structure and display device
KR101836307B1 (en) 2011-05-06 2018-03-09 엘지이노텍 주식회사 Optical member, solar cell apparatus having the same and method of fabricating the same
JP2019034468A (en) * 2017-08-16 2019-03-07 凸版印刷株式会社 Film-like mold and method for producing water-repellent film using the same
JP2020152093A (en) * 2019-03-15 2020-09-24 パナック株式会社 Method for producing composite body, and composite body

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321406A (en) * 1999-03-11 2000-11-24 Hitachi Chem Co Ltd Transfer film and production of diffusion reflection plate
JP2001264520A (en) * 2000-03-16 2001-09-26 Dainippon Printing Co Ltd Reflection preventing film, polarizing element, display device and method for manufacturing reflection preventing film
JP4502445B2 (en) * 2000-03-16 2010-07-14 大日本印刷株式会社 Method for producing antireflection film
JP2009191368A (en) * 2000-04-28 2009-08-27 Sharp Corp Stamping-tool production method, stamping tool, and reflection-preventive film
JP2008248388A (en) * 2000-04-28 2008-10-16 Sharp Corp Stamping tool
USRE46606E1 (en) 2000-04-28 2017-11-14 Sharp Kabushiki Kaisha Stamping tool, casting mold and methods for structuring a surface of a work piece
USRE43694E1 (en) 2000-04-28 2012-10-02 Sharp Kabushiki Kaisha Stamping tool, casting mold and methods for structuring a surface of a work piece
USRE44830E1 (en) 2000-04-28 2014-04-08 Sharp Kabushiki Kaisha Stamping tool, casting mold and methods for structuring a surface of a work piece
JP2004502625A (en) * 2000-07-06 2004-01-29 サン−ゴバン グラス フランス Transparent textured substrate and method for obtaining the same
WO2002012586A1 (en) * 2000-08-10 2002-02-14 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. METHOD FOR PRODUCING A TOOL WHICH CAN BE USED TO CREATE SURFACE STRUCTURES IN THE SUB-νM RANGE
JP2002122702A (en) * 2000-10-17 2002-04-26 Matsushita Electric Ind Co Ltd Optical film and display device
JP2002250917A (en) * 2001-02-26 2002-09-06 Dainippon Printing Co Ltd Front light device having antireflection property and display device
JP2002267815A (en) * 2001-03-08 2002-09-18 Dainippon Printing Co Ltd Reflection preventive molded part and method for manufacturing the same
JP2002267816A (en) * 2001-03-08 2002-09-18 Dainippon Printing Co Ltd Sheet for imparting antireflection layer to be used for injection molding, injection molding method using the same and injection molded article having antireflection layer laminated
JP2002333508A (en) * 2001-05-10 2002-11-22 Dainippon Printing Co Ltd Method for producing antireflection material
JP2002333502A (en) * 2001-05-10 2002-11-22 Dainippon Printing Co Ltd Antireflection window plate for display cover of portable device having display and portable device
JP2003004916A (en) * 2001-06-20 2003-01-08 Dainippon Printing Co Ltd Window material of display device, method of manufacturing for the same and display device
JP2003090902A (en) * 2001-09-19 2003-03-28 Dainippon Printing Co Ltd Antireflection imparting film and antireflection processing method using the same
JP2003098304A (en) * 2001-09-26 2003-04-03 Dainippon Printing Co Ltd Antireflective transfer film and method for antireflection processing by using the same
JP2003205564A (en) * 2002-01-15 2003-07-22 Dainippon Printing Co Ltd Electrification preventing transfer foil with reflection preventing function
US7268948B2 (en) 2004-03-31 2007-09-11 Canon Kabushiki Kaisha Optical element and optical scanning device using the same
JP2006048026A (en) * 2004-07-06 2006-02-16 Nof Corp Anti-reflection film for transfer and transfer method and display device using the same
JP2006065302A (en) * 2004-07-28 2006-03-09 Dainippon Printing Co Ltd Antireflection structure and optical member having the same
WO2007007755A1 (en) * 2005-07-14 2007-01-18 Matsushita Electric Industrial Co., Ltd. Forming member of reflection preventing structure and transfer material using this, and optical apparatus provided with reflection preventing structure and production method thereof
US8133538B2 (en) 2006-03-17 2012-03-13 Canon Kabushiki Kaisha Method of producing mold having uneven structure
JP2008203473A (en) * 2007-02-20 2008-09-04 Nissan Motor Co Ltd Antireflection structure and structure
JP2008216743A (en) * 2007-03-06 2008-09-18 Refuraito Kk Method of manufacturing optical sheet for backlight unit
JP2008231580A (en) * 2008-07-01 2008-10-02 Kanagawa Acad Of Sci & Technol Method for manufacturing porous anodizing alumina film and porous anodizing alumina film produced by the method
US9759840B2 (en) 2009-09-02 2017-09-12 Dexerials Corporation Optical element and method for manufacturing optical element
CN102004273A (en) * 2009-09-02 2011-04-06 索尼公司 Optical element and method for manufacturing optical element
JP2012208526A (en) * 2009-09-02 2012-10-25 Sony Corp Optical element, and display unit
JP2011076072A (en) * 2009-09-02 2011-04-14 Sony Corp Optical element and method of manufacturing the same
TWI576603B (en) * 2009-09-02 2017-04-01 Dexerials Corp Optical element and manufacturing method thereof
CN104076412A (en) * 2009-09-02 2014-10-01 迪睿合电子材料有限公司 Optical element and method for manufacturing optical element
JP2011059264A (en) * 2009-09-08 2011-03-24 Olympus Corp Optical element
WO2011125699A1 (en) 2010-03-31 2011-10-13 三菱レイヨン株式会社 Laminate and production method for same
US9290666B2 (en) 2010-03-31 2016-03-22 Mitsubishi Rayon Co., Ltd. Laminate and method for manufacturing the same
JP2012077147A (en) * 2010-09-30 2012-04-19 Lintec Corp Water-repellent sheet
JP2012078438A (en) * 2010-09-30 2012-04-19 Dainippon Printing Co Ltd Antireflection film composition
WO2012096322A1 (en) 2011-01-12 2012-07-19 三菱レイヨン株式会社 Active energy ray-curable resin composition, microrelief structure, and method for producing microrelief structure
US9062142B2 (en) 2011-01-12 2015-06-23 Mitsubishi Rayon Co., Ltd. Active energy ray-curable resin composition, product having the uneven microstructure, and method for producing product having the uneven microstructure
US9234065B2 (en) 2011-01-12 2016-01-12 Mitsubishi Rayon Co., Ltd. Active energy ray-curable resin composition, product having the uneven microstructure, and method for producing product having the uneven microstructure
JP2012166475A (en) * 2011-02-15 2012-09-06 Ube Nitto Kasei Co Ltd Method for producing molded article
KR101836307B1 (en) 2011-05-06 2018-03-09 엘지이노텍 주식회사 Optical member, solar cell apparatus having the same and method of fabricating the same
KR20140018998A (en) 2011-07-05 2014-02-13 미쯔비시 레이온 가부시끼가이샤 Article having fine concavo-convex structure on surface, and image display device provided therewith
WO2013005769A1 (en) * 2011-07-05 2013-01-10 三菱レイヨン株式会社 Article having fine concavo-convex structure on surface, and image display device provided therewith
JPWO2013005769A1 (en) * 2011-07-05 2015-02-23 三菱レイヨン株式会社 Article having fine concavo-convex structure on its surface, and video display device provided with the same
KR101580029B1 (en) 2011-07-05 2015-12-23 미쯔비시 레이온 가부시끼가이샤 article having fine concavo-convex structure on surface, and image display device provided therewith
US9718910B2 (en) 2012-06-15 2017-08-01 Mitsubishi Rayon Co., Ltd. Article and active energy ray-curable resin composition
WO2013187528A1 (en) 2012-06-15 2013-12-19 三菱レイヨン株式会社 Article and active energy ray-curable resin composition
KR20160087399A (en) 2012-06-15 2016-07-21 미쯔비시 레이온 가부시끼가이샤 Article and active energy ray-curable resin composition
US9784889B2 (en) 2012-06-22 2017-10-10 Sharp Kabushiki Kaisha Antireflection structure and display device
US10473823B2 (en) 2012-07-04 2019-11-12 Canon Kabushiki Kaisha Fine structure, optical member, antireflection film, water-repellent film, substrate for mass spectrometry, phase plate, process for producing fine structure, and process for producing antireflection film
WO2014007401A1 (en) 2012-07-04 2014-01-09 Canon Kabushiki Kaisha Fine structure, optical member, antireflection film, water-repellent film, substrate for mass spectrometry, phase plate, process for producing fine structure, and process for producing antireflection film
CN104583812A (en) * 2012-07-04 2015-04-29 佳能株式会社 Fine structure, optical member, antireflection film, water-repellent film, substrate for mass spectrometry, phase plate, process for producing the fine structure, and process for producing the antireflection film
JP2014029476A (en) * 2012-07-04 2014-02-13 Canon Inc Structure, optical member, antireflection film, water-repellent film, mass analysis substrate, phase plate, method of manufacturing structure, and method of manufacturing antireflection film
JP2013047838A (en) * 2012-10-30 2013-03-07 Dainippon Printing Co Ltd Method for manufacturing antireflection material
WO2014157718A1 (en) 2013-03-29 2014-10-02 三菱レイヨン株式会社 Article
JPWO2014157718A1 (en) * 2013-03-29 2017-02-16 三菱レイヨン株式会社 Article
CN105377543A (en) * 2013-03-29 2016-03-02 三菱丽阳株式会社 Article
WO2014163185A1 (en) 2013-04-05 2014-10-09 三菱レイヨン株式会社 Microrelief structural body, decorative sheet, decorative resin molded body, method for producing microrelief structural body, and method for producing decorative resin molded body
WO2014163198A1 (en) 2013-04-05 2014-10-09 三菱レイヨン株式会社 Multilayer structure, method for producing same, and article
US10137661B2 (en) 2013-04-05 2018-11-27 Mitsubishi Chemical Corporation Microrelief structural body, decorative sheet, decorative resin molded body, method for producing microrelief structural body, and method for producing decorative resin molded body
JP2015055746A (en) * 2013-09-11 2015-03-23 大日本印刷株式会社 Head-up display unit
JP2016029457A (en) * 2014-07-18 2016-03-03 大日本印刷株式会社 Low reflection sheet
JP2019034468A (en) * 2017-08-16 2019-03-07 凸版印刷株式会社 Film-like mold and method for producing water-repellent film using the same
JP2020152093A (en) * 2019-03-15 2020-09-24 パナック株式会社 Method for producing composite body, and composite body

Similar Documents

Publication Publication Date Title
JP2000071290A (en) Manufacture of antireflection article
US8840258B2 (en) Antireflection structure formation method and antireflection structure
JP5162344B2 (en) Anti-reflective article and automotive parts equipped with the same
KR101386324B1 (en) Optical sheet, process of manufacturing mold for manufacturing optical sheet, and process for producing optical sheet
JP6032196B2 (en) Stamper manufacturing method and molded body manufacturing method
JP5187495B2 (en) Antireflection film, production method of antireflection film, antireflection film mold, antireflection film obtained using antireflection film mold and antireflection film obtained using replica film
KR101107875B1 (en) Transparent molded body and reflection preventing article using the same
JP5597263B2 (en) Fine structure laminate, method for producing fine structure laminate, and method for producing fine structure
JP5380803B2 (en) A method for producing a non-planar single particle film, a method for producing a fine structure using the single particle film etching mask, and a fine structure obtained by the production method.
CN108241185B (en) Micro-nano structure optical element and preparation method and application thereof
KR20170032382A (en) Multilayer optical adhesives and methods of making same
KR101656978B1 (en) Method for manufacturing mold, and method for manufacturing molded article having fine uneven structure on surface
JP2003222701A (en) Optical parts and its manufacturing method
JP2002286906A (en) Antireflection method, antireflection structure and antireflection structural body having antireflection structure and method for manufacturing the same
JP2010044184A (en) Transparent molded body
WO2014092048A1 (en) Method for producing anodic porous alumina, method for producing molded body having minute corrugated structure at surface, and molded body having minute corrugated structure at surface
JP5940662B2 (en) Method for producing antireflection film
JP2008209540A (en) Reflection preventing article
KR20100006748A (en) Fabricating method of micro-nano pattern using plasma etching
WO2018212051A1 (en) Anti-glare anti-reflection film, anti-glare anti-reflection film production method, polarization plate, image display device, and self-luminous display device
KR102637067B1 (en) optical adhesive
JP2008189914A (en) Formed body and method for manufacturing the same
JP5626636B2 (en) Method and apparatus for producing anodized porous alumina, anodized porous alumina produced by the method, molded article produced using anodized porous alumina as a mold, antireflection article and water-repellent article
JP2009109572A (en) Antireflection article
JP5810591B2 (en) Laminated body, antireflection article and water repellent article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080812