JP2003090902A - Antireflection imparting film and antireflection processing method using the same - Google Patents

Antireflection imparting film and antireflection processing method using the same

Info

Publication number
JP2003090902A
JP2003090902A JP2001284904A JP2001284904A JP2003090902A JP 2003090902 A JP2003090902 A JP 2003090902A JP 2001284904 A JP2001284904 A JP 2001284904A JP 2001284904 A JP2001284904 A JP 2001284904A JP 2003090902 A JP2003090902 A JP 2003090902A
Authority
JP
Japan
Prior art keywords
antireflection
film
resin
shaping
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001284904A
Other languages
Japanese (ja)
Inventor
Tomoyuki Suzuki
智之 鈴木
Arimichi Ito
有道 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2001284904A priority Critical patent/JP2003090902A/en
Publication of JP2003090902A publication Critical patent/JP2003090902A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/14Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of indefinite length
    • B29C39/148Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of indefinite length characterised by the shape of the surface

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Moulding By Coating Moulds (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform an antireflection processing using a finely ruggedness, so that can decrease reflection of light and can improve visibility of display, with high productivity and at a low cost. SOLUTION: The antireflection imparting film 10 produced by forming a specified fine ruggedness 2A on the surface E of a release base film 1 is used to impart the pattern to a base material 3 to obtain a desired antireflective article 20. The finely rugged pattern 2A is formed in such a manner that the period PMAX of the lowest position in the recesses is equal to or smaller than the minimum wavelength λMIN of the visible light wavelength region in vacuum and that the cross-sectional area rate of the release film material part in the horizontal cross section continuously and gradually decreases from the lowest position of the recesses to the highest position of the projections in the ruggedness. The antireflection processing is carried out, for example, by attaching this film in an injection molding die, bringing a resin in a fluidized state by heating and fusing into contact with the imparting face of the film, and solidifying the resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、携帯電話
機の液晶表示部等に用いる各種物品へ、反射防止機能を
付与する為の反射防止賦形フィルムと、それを用いた反
射防止加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antireflection shaped film for imparting an antireflection function to various articles used in, for example, a liquid crystal display section of a mobile phone, and an antireflection processing method using the film. .

【0002】[0002]

【従来の技術】現在、液晶表示ディスプレイ(LCD)
等を表示部に利用した携帯電話機等の各種機器の普及に
は目覚しいものがある。そして、この様な表示部を有す
る場合、その表示をより確実にし、また高機能なものと
する為に、各種工夫が成されることが多い。例えば、携
帯電話機等では、その表示部を、水、塵、外力等から保
護するために、LCD等による表示パネルを露出させ
ず、外側に透明プラスチック板等による窓材を設けた構
成として保護する事が多い(特開平7−66859号公
報等参照)。
2. Description of the Related Art Currently, liquid crystal display (LCD)
The widespread use of various devices, such as mobile phones, that use the above as a display unit is remarkable. When such a display unit is provided, various contrivances are often made to make the display more reliable and highly functional. For example, in a mobile phone or the like, in order to protect its display unit from water, dust, external force, etc., a display panel such as an LCD is not exposed, and a window member such as a transparent plastic plate is provided outside to protect it. In many cases (see Japanese Patent Laid-Open No. 7-66859, etc.).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、表示パ
ネルを保護する等の為に、その前方に窓材等を設ける
と、窓材の表裏両面で外光が反射し、表示の視認性が低
下するという問題があった。また、表示パネルの低消費
電力化が重要な要素である携帯電話機等では、表示の視
認性低下の他に更に、窓材の反射によって、表示パネル
からの光の一部が表示パネル側に戻される為に、表示パ
ネルの光の利用効率が低下し、その分、無駄な電力が消
費されているという問題もあった。
However, if a window material or the like is provided in front of the display material in order to protect the display panel or the like, outside light is reflected on both front and back surfaces of the window material, and the visibility of the display is deteriorated. There was a problem. In addition, in mobile phones, etc. where low power consumption of the display panel is an important factor, in addition to the reduction in visibility of the display, part of light from the display panel is returned to the display panel side due to reflection of the window material. Therefore, there is a problem in that the light utilization efficiency of the display panel is reduced, and accordingly unnecessary power is consumed.

【0004】そこで、反射防止が必要な各種物品に対し
て、例えば、蒸着、スパッタリング、或いは塗工等の手
法によって単層或いは低屈折率層と高屈折率層との多層
膜からなる反射防止層を設ける(特開2001−127
852号公報等参照)等の技術が提案されている。しか
し、蒸着、スパッタリング等による反射防止層は、1回
又は多数回のバッチ処理により、屈折率を制御した薄膜
を形成する必要があるので、製品の安定性、良品率等に
問題がある上、バッチ式生産となるので、生産性が低
い。更に、前記した窓材を例にとれば、一旦射出成形で
成形品を作製してから、この成形品に蒸着等で反射防止
層を形成する為に、製造が2工程となる点でも生産性が
低かった。この為、反射防止加工は、生産コストが高い
という問題もあった。或いはまた、反射防止処理として
は、梨地処理によって光反射を低減する方法もあるが、
この方法では光を拡散させる点で、光の利用効率を上げ
ることはできない、という問題があった。
Therefore, for various articles requiring antireflection, for example, an antireflection layer composed of a single layer or a multilayer film of a low refractive index layer and a high refractive index layer by a technique such as vapor deposition, sputtering, or coating. (Japanese Patent Laid-Open No. 2001-127)
852 etc.) has been proposed. However, since the antireflection layer formed by vapor deposition, sputtering or the like needs to form a thin film whose refractive index is controlled by one or multiple batch processes, there is a problem in product stability, non-defective rate, etc. Since it is batch production, productivity is low. Further, taking the above-mentioned window material as an example, since a molded product is once produced by injection molding and then an antireflection layer is formed on this molded product by vapor deposition or the like, the production is also performed in two steps. Was low. Therefore, there is also a problem that the antireflection processing has a high production cost. Alternatively, as an antireflection treatment, there is a method of reducing light reflection by a satin treatment,
This method has a problem in that it is impossible to improve the light utilization efficiency in terms of diffusing the light.

【0005】そこで、本出願人は、これら従来技術に於
ける問題点を解決すべく、特開昭50−70040号公
報に開示された、極めて微細な微細凹凸を表面に設ける
ことによって表面反射率を減少させる技術を、応用する
ことを試みた。但し、同号公報に開示された技術は、表
面反射を減らすべきレンズ等の光学部品に対して、その
表面にフォトレジスト等を塗布し、露光し、現像する等
して、該表面に一品毎に直接に、微細凹凸を作製する方
法であるので、作業能率が悪く、前記した携帯電話機の
窓材等の大量生産品に対しては、工業生産に必要な生産
性(量産性)は得られない。この為、本出願人は、微細
凹凸を、一旦、原版(マザー版)とするガラス基材上に
作製してから、このマザー版から、コンパクトディスク
の製造ライン等で用いられているニッケル電鋳法を利用
して、金属製の(賦形型)マスター版を作製し、このマ
スター版を、射出成形機の金型内に取りつけて、透明樹
脂を射出成形することで、透明な窓材の射出成形と同時
に、窓材の裏面に所望の反射防止性能を有する微細凹凸
を作製する事に成功した(特願2001−185965
号:本特許出願時未公開)。この方法によれば、窓材の
作製後に、追加的に反射防止加工処理を行う事も無く、
成形と反射防止加工とが1工程で行え、しかも大量生産
可能な生産性も備えた方法となる。
Therefore, in order to solve these problems in the prior art, the Applicant of the present invention provides the surface reflectance with extremely fine irregularities disclosed in JP-A-50-70040. I tried to apply the technology to reduce the noise. However, the technique disclosed in the same publication is applied to an optical component such as a lens whose surface reflection should be reduced by coating a photoresist or the like on the surface, exposing, developing, etc. Since it is a method of directly making fine irregularities on the substrate, the work efficiency is poor, and the productivity (mass productivity) necessary for industrial production can be obtained for mass-produced products such as window materials for mobile phones described above. Absent. For this reason, the applicant of the present invention first prepares fine irregularities on a glass base material to be an original plate (mother plate), and then nickel electroforming used in a production line of a compact disc or the like from the mother plate. Using the method, a metal (shaped mold) master plate is made, and the master plate is mounted in the mold of the injection molding machine, and the transparent resin is injection-molded to produce a transparent window material. At the same time as injection molding, we succeeded in producing fine irregularities having a desired antireflection property on the back surface of the window material (Japanese Patent Application No. 2001-185965).
Issue: Not yet published at the time of filing this patent). According to this method, there is no need to additionally perform antireflection processing after the window material is manufactured,
The molding and the antireflection processing can be performed in one step, and the method has the productivity that enables mass production.

【0006】しかし、更なる生産性向上を考えた場合、
解決が望ましい次の様な課題が残った。すなわち、それ
は、賦形型は入れ子等として金型に組み込む関係上、金
型自体の一部であり、作業中に賦形型の表面が傷付いて
損傷した場合等では、金型交換が必要であり、その間は
生産が停止してしまい、しかも、金型交換は時間もかか
るという問題があった。従って、連続生産性が必ずしも
良い方法ではなかった。また、交換用の金型を製造する
為には、費用、時間とも多大なものとなると言う問題点
があった。
However, considering further improvement in productivity,
The following issues remained that should be resolved. That is, it is a part of the mold itself because the mold is incorporated as a nest into the mold, and it is necessary to replace the mold if the surface of the mold is damaged during work. During that time, there was a problem that the production was stopped and the die replacement took time. Therefore, continuous productivity is not always good. In addition, there is a problem in that it costs a lot of money and time to manufacture a replacement mold.

【0007】すなわち、本発明の課題は、光の無駄な反
射を減らし、表示の視認性を向上させると共に、表示光
の光の利用効率も上げられる微細凹凸による反射防止加
工を、連続生産に適して生産性が良く、低コストで出来
る反射防止賦形フィルムと、それを用いた反射防止加工
方法を提供することである。
That is, the object of the present invention is to reduce the useless reflection of light, improve the visibility of the display, and, at the same time, perform the antireflection processing by the fine concavity and convexity which can improve the utilization efficiency of the light of the display light, which is suitable for the continuous production. It is an object of the present invention to provide an antireflection shaped film having good productivity and low cost, and an antireflection processing method using the film.

【0008】[0008]

【課題を解決するための手段】そこで、上記課題を解決
すべく、本発明による反射防止賦形フィルムは、離型性
基材フィルムの賦形面に、反射防止用の微細凹凸が形成
されて成る反射防止賦形フィルムであって、該微細凹凸
は、可視光の波長帯域の真空中に於ける最小波長をλ
MIN、該微細凹凸の最凹部に於ける周期をPMAXとしたと
きに、 PMAX≦λMIN なる関係を有し、且つ該微細凹凸をその凹凸方向と直交
する面で切断したと仮定したときの断面内に於ける離型
性基材フィルムの材料部分の断面積占有率が、該微細凹
凸の最凹部から最凸部に行くに従って連続的に漸次減少
して行く様な凹凸である構成とした。
Therefore, in order to solve the above-mentioned problems, the antireflection shaping film according to the present invention has an antireflection fine unevenness formed on the shaping surface of a releasable substrate film. The antireflection shaped film, wherein the fine irregularities have a minimum wavelength in vacuum of a wavelength band of visible light of λ
MIN , where P MAX is the period of the most concave portion of the fine concavo-convex, and P MAX ≤ λ MIN , and it is assumed that the fine concavo-convex is cut along a plane orthogonal to the concavo-convex direction. The cross-sectional area occupation ratio of the material portion of the release-releasing substrate film in the cross section of the concave and convex is such that it continuously and gradually decreases from the most concave portion to the most convex portion of the fine concave and convex. did.

【0009】この様な構成の反射防止賦形フィルムとす
ることで、この賦形フィルムを用いて、物品表面に微細
凹凸を賦形すれば、所望の反射防止機能を付与した反射
防止物品が得られる。しかも、その反射防止機能は、表
示の視認性を向上させると共に、表示光の光の利用効率
も上げられる。また、賦形フィルムというフィルム形態
の賦形型であるので、物品の一品毎に新しい賦形型(フ
ィルム)を使う、「使い捨て(切り)」の使用が実用上
可能となるので、賦形型(フィルム)の賦形面に傷が付
いたとしても、フィルム交換のみで修復でき、入れ子等
のブロック状の賦形型を取り替えたり、作り変えたりす
る面倒な作業が必要なくなる。従って、射出成形で射出
成形型内に賦形型を配置して物品の成形と同時にその表
面に反射防止加工を行う場合でも、賦形型の傷付きによ
る面倒な型交換による生産性低下は発生せず、生産性が
向上する。また、賦形フィルムというフィルム形態で
は、連続帯状で使用する事もできる為、使い回しも容易
であるので、物品一品毎に新たな賦形フィルム(面)
を、容易に供給できる。従って、反射防止加工を生産性
(量産性)良く低コストで実施できる。
By using the antireflection shaped film having such a constitution, by using the shaped film to form fine irregularities on the surface of the article, an antireflection article having a desired antireflection function is obtained. To be Moreover, the antireflection function improves the visibility of the display and improves the utilization efficiency of the display light. In addition, since it is a film-shaped shaping mold called a shaping film, it is practically possible to use a new shaping mold (film) for each article, or to use "disposable (cut)" practically. Even if the shaping surface of the (film) is scratched, it can be repaired only by exchanging the film, and the troublesome work of replacing or modifying the block-shaped shaping mold such as a nest is unnecessary. Therefore, even if a molding die is placed in the injection molding die by injection molding and anti-reflection processing is performed on the surface of the article simultaneously with molding of the article, productivity deterioration due to troublesome mold replacement due to scratches on the molding die occurs. Without, productivity is improved. In addition, in the form of shaped film, since it can be used in a continuous strip shape, it can be reused easily, so a new shaped film (surface) for each article
Can be easily supplied. Therefore, antireflection processing can be performed at low cost with good productivity (mass productivity).

【0010】また、本発明の反射防止加工方法では、上
記本発明の反射防止賦形フィルムを用い、その賦形面
に、流動状態樹脂を接触させた後、該樹脂を固化させ、
而る後、反射防止賦形フィルムを固化した樹脂から剥離
することで、該樹脂面に、微細凹凸による反射防止機能
を付与する様にした。
In the antireflection processing method of the present invention, the antireflection shaped film of the present invention is used, and a resin in a fluid state is brought into contact with the shaped surface of the film, and then the resin is solidified,
After that, the antireflection shaping film was peeled from the solidified resin so that the resin surface was provided with an antireflection function due to fine irregularities.

【0011】この様な反射防止加工方法とすることで、
樹脂からなる物品の表面に、所望の反射防止機能が付与
された反射防止物品が容易に得られる。しかも、その反
射防止機能は、表示の視認性を向上させると共に、表示
光の光の利用効率も上げられる。また、賦形型としてフ
ィルム形態の型を使用するので、上記反射防止賦形フィ
ルムによる作用効果で述べた如く、反射防止加工を生産
性(量産性)良く低コストで実施できる。なお、流動状
態の樹脂を賦形面に接触させるには、例えば、射出成形
法、キャスティング方法等が挙げられる。そして、流動
状態の樹脂の固化による反射防止物品の形状発現(成
形)と、その反射防止加工とが同時に1工程で完了する
点でも、生産性が良く低コストとなる。
By adopting such an antireflection processing method,
An antireflection article having a desired antireflection function on the surface of an article made of a resin can be easily obtained. Moreover, the antireflection function improves the visibility of the display and improves the utilization efficiency of the display light. Further, since a film-shaped mold is used as the shaping mold, the antireflection processing can be carried out with good productivity (mass productivity) and at low cost, as described in the working effect of the antireflection shaping film. Incidentally, in order to bring the resin in a fluid state into contact with the shaping surface, for example, an injection molding method, a casting method and the like can be mentioned. Further, the productivity is good and the cost is low in that the shape development (molding) of the antireflection article by the solidification of the resin in the fluidized state and the antireflection processing are simultaneously completed in one step.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below.

【0013】〔概要〕先ず、図1(A)は、本発明の反
射防止賦形フィルム10の一形態を例示する断面図であ
る。同図の如く、本発明の反射防止賦形フィルム10
は、離型性基材フィルム1の片面に、これらか詳述する
本発明特有の微細凹凸2Aが形成された構成の賦形フィ
ルムである。該微細凹凸2Aは、光波長以上の大きさの
凹凸によるマット面(艶消し)を利用して光を散乱(拡
散反射)させる方式の従来公知の反射防止処理乃至は防
眩処理とは異なり、可視光線の波長以下の大きさの本発
明特有の形状の凹凸である。なお、本発明の説明では、
微細凹凸について、反射防止賦形フィルム上のものと基
材上のものとを含めて言及する場合は別として、反射防
止賦形フィルム上のものは微細凹凸2A、それが基材上
に賦形されて逆凹凸形状となったものは微細凹凸2とし
て、符号の違いで区別して使用する。
[Outline] First, FIG. 1A is a cross-sectional view illustrating one embodiment of the antireflection shaping film 10 of the present invention. As shown in the figure, the antireflection shaping film 10 of the present invention
Is a shaped film having a constitution in which the fine unevenness 2A peculiar to the present invention, which will be described in detail, is formed on one surface of the releasable substrate film 1. The fine irregularities 2A are different from conventionally known antireflection treatments or antiglare treatments in which light is scattered (diffuse reflection) by utilizing a matte surface (matte) formed by irregularities having a size of a light wavelength or more, The unevenness has a size smaller than the wavelength of visible light and has a shape peculiar to the present invention. In the description of the present invention,
Except when referring to the fine irregularities including those on the antireflection shaping film and those on the substrate, those on the antireflection shaping film are fine irregularities 2A, which are shaped on the substrate. Those which are formed into the reverse concavo-convex shape are used as the fine concavo-convex 2 by distinguishing them according to the reference numerals.

【0014】そして、図1(B)は、図1(A)の如き
本発明の反射防止賦形フィルム10によって、その微細
凹凸2Aとは逆凹凸形状の微細凹凸2が、基材3の表面
に賦形された反射防止物品20の一例を概念的に示す断
面図である。基材3の表面に微細凹凸2を賦形するに
は、好適には、本発明の反射防止加工方法として、例え
ば、上記反射防止賦形フィルムを射出成形型内に挿入し
た状態で、樹脂を射出成形することで得られる。
FIG. 1B shows the surface of the substrate 3 in which the anti-reflective shaping film 10 of the present invention as shown in FIG. It is sectional drawing which shows notionally an example of the antireflection article 20 shape | molded at. In order to shape the fine irregularities 2 on the surface of the base material 3, preferably, as the antireflection processing method of the present invention, for example, in the state where the antireflection shaping film is inserted into an injection molding die, resin is applied. Obtained by injection molding.

【0015】〔微細凹凸〕反射防止賦形フィルム10が
有する微細凹凸2Aによって、基材3表面に賦形された
所望の微細凹凸2が反射防止効果を有する理由は、該微
細凹凸2によって、基材と、外界(空気)との間の急激
で不連続な屈折率変化を、連続的で漸次変化する屈折率
変化に変えることが可能となるからである。それは、光
の反射は、物質界面の不連続な急激な屈折率変化によっ
て生じる現象であるから、物品表面に於ける屈折率変化
を、空間的に連続的に変化する様にすることによって、
該物品面に於ける光反射が減るのである。なお、反射防
止物品20の基材3は、通常は透明で光は透過するが、
不透明の物であっても、その表面反射を低下する反射防
止効果は得られる。
[Fine Concavo-convex] The reason why the desired fine concavo-convex 2 formed on the surface of the substrate 3 has the anti-reflective effect by the fine concavo-convex 2A of the antireflection shaping film 10 is that This is because it is possible to change a sudden and discontinuous change in the refractive index between the material and the outside (air) into a continuous and gradual change in the refractive index. It is a phenomenon that light reflection is caused by a discontinuous and abrupt refractive index change at the material interface, so by making the refractive index change on the article surface spatially and continuously,
The light reflection on the surface of the article is reduced. The base material 3 of the antireflection article 20 is normally transparent and transmits light,
Even if it is opaque, the antireflection effect of reducing the surface reflection can be obtained.

【0016】以下、反射防止賦形フィルムが有する微細
凹凸2Aを賦形する事で、基材3に形状される微細凹凸
2が、反射防止効果を有する理由について、基材3が透
明である場合で詳述する。
Hereinafter, the reason why the fine unevenness 2 formed on the base material 3 has an antireflection effect by shaping the fine unevenness 2A of the antireflection shaping film is as follows. See in detail.

【0017】図2〜図4は、反射防止物品の表面に賦形
された微細凹凸2によって得られる屈折率分布を、概念
的に説明する概念図である。先ず、図2は、微細凹凸2
が表面に賦形された反射防止物品20を構成する透明な
基材3について、該基材3が、Z≦0の部分の空間を占
め、該基材の面、すなわちZ=0に於けるXY平面上
に、Z軸方向を凹凸方向とする多数の微細凹凸2が配置
された状態を示す。
2 to 4 are conceptual views for conceptually explaining the refractive index distribution obtained by the fine irregularities 2 formed on the surface of the antireflection article. First, FIG.
Regarding the transparent base material 3 constituting the antireflection article 20 having the surface formed on the surface, the base material 3 occupies the space of the portion of Z ≦ 0, and the surface of the base material, that is, Z = 0. A state in which a large number of fine unevennesses 2 having the unevenness direction in the Z-axis direction are arranged on the XY plane is shown.

【0018】そして、本発明が反射防止賦形フィルム1
0上の微細凹凸2Aを、その最凹部に於ける周期をP
MAXとしたときに、このPMAXが、可視光の波長帯域の真
空中に於ける最小波長をλMIN以下としてあるのは、該
微細凹凸2Aの賦形により形成される基材3表面の微細
凹凸2は逆凹凸形状となるので、該微細凹凸2につい
て、図2の如く、その最凸部2tに於ける周期をPMAX
としたときに、このPMAXが、可視光の波長帯域の真空
中に於ける最小波長をλMIN以下となる様にする為であ
る。微細凹凸2Aをこの様な形状としてある為、それが
賦形された微細凹凸2の形成面への到達光に対しては、
媒質(基材、及び空気)の屈折率に空間的な分布があっ
ても、それは注目する波長以下の大きさの分布である為
に、その分布がそのまま直接に光に作用せず、それが平
均化されたものとして作用する。従って、平均化された
後の屈折率(有効屈折率)が光が進行するに従って連続
的に変化する様な分布にしておけば、光の反射を防げる
のである。
The present invention also provides an antireflection shaping film 1
The fine concave / convex 2A on 0, the period of the most concave is P
When the MAX, the P MAX is the a at the minimum wavelength in a vacuum wavelength band of visible light it is not more than lambda MIN is the substrate 3 surface formed by the shaping of the fine irregularities 2A fine Since the unevenness 2 has an inverted uneven shape, the period of the finest unevenness 2 at the most convex portion 2t is P MAX as shown in FIG.
This is because P MAX is such that the minimum wavelength in vacuum in the wavelength band of visible light is λ MIN or less. Since the fine irregularities 2A have such a shape, for the light reaching the surface on which the fine irregularities 2 having the shape are formed,
Even if the refractive index of the medium (base material and air) has a spatial distribution, since it is a distribution with a size below the wavelength of interest, that distribution does not directly act on light, and that is Acts as averaged. Therefore, the reflection of light can be prevented by making the distribution such that the averaged refractive index (effective refractive index) continuously changes as the light advances.

【0019】なお、本発明に於いて、(微細凹凸2Aに
於ける)最凹部(すなわち、図2で示す微細凹凸2での
最凸部2tに該当。)に於ける周期PMAXとは、隣接す
る微細凹凸2Aの最凹部間の距離のうち最大の距離であ
って、個々の微細凹凸2Aが規則的に配置され周期性を
有する(隣接する微細凹凸2A同士間の距離が同一)構
成でも良いが、周期性が無い(隣接する微細凹凸2A同
士間の距離が不揃い)構成でも良い。
In the present invention, the period P MAX in the most concave portion (in the fine unevenness 2A) (that is, the most convex portion 2t in the fine unevenness 2 shown in FIG. 2) is Even in the configuration in which the distance is the maximum distance among the most concave portions of the adjacent fine irregularities 2A and the individual fine irregularities 2A are regularly arranged and have periodicity (the distance between the adjacent fine irregularities 2A is the same). Although it is good, a configuration without periodicity (distances between adjacent fine irregularities 2A are not uniform) may be used.

【0020】そして、図2では、直交座標系として、基
材3の包絡面に立てた法線方向にZ軸を、また、それと
直交する平面内にX軸、Y軸をとる。そして、今、光が
表面側から基材に入光して、該基材内部を進み、該基材
の表面近傍をZ軸の負方向に向かって進行しつつあり、
丁度、Z軸座標がzのところに存在するとする。
In FIG. 2, the Z-axis is taken as the orthogonal coordinate system in the direction normal to the envelope surface of the substrate 3, and the X-axis and the Y-axis are taken in the plane orthogonal to it. Then, now, light enters the base material from the front surface side, travels inside the base material, and is traveling in the vicinity of the surface of the base material in the negative direction of the Z axis,
Just assume that the Z-axis coordinate is at z.

【0021】すると、ここのZ=zに居る光にとって
は、媒体の屈折率は基材が特定の微細凹凸2をなす為、
厳密には、Z=zに於いてZ軸と直交するXY平面(横
断面:水平断面)内に於いて、分布f(x,y,z)を
持つ様に見える。すなわち、XY平面内に於いて、基材
3の断面部分は屈折率nb(1.5程度)、其の他の部
分、具体的には空気aの部分は屈折率na(=1.0程
度)となる(図3参照)。ところが実際には、光にとっ
ては、その波長(反射防止の対象とする光の波長が分布
を有する場合は、その波長帯域の最小波長λMINを考え
れば良い。)よりも小さな空間的スケールの屈折率分布
は、平均化されたものとして作用する結果、平均化され
た結果の有効屈折率は、前記XY平面内に於いて、屈折
率分布f(x,y,z)をXY平面内に於いて積分した
もの、
Then, for the light at Z = z, the refractive index of the medium is such that the base material forms specific fine irregularities 2,
Strictly speaking, in Z = z, it appears as having a distribution f (x, y, z) in the XY plane (transverse section: horizontal section) orthogonal to the Z axis. That is, in the XY plane, the cross-sectional portion of the base material 3 has a refractive index n b (about 1.5), and the other portion, specifically, the portion of the air a has a refractive index n a (= 1. 0) (see FIG. 3). However, in reality, for light, refraction on a spatial scale smaller than that wavelength (if the wavelength of the light to be anti-reflection has a distribution, consider the minimum wavelength λ MIN of the wavelength band). As a result of the refractive index distribution acting as an average, the effective refractive index of the averaged result has the refractive index distribution f (x, y, z) in the XY plane in the XY plane. And integrated,

【0022】[0022]

【数1】 [Equation 1]

【0023】となる。その結果、有効屈折率(nef)の
分布はzのみの関数nef(z)となる(図4参照)。
It becomes As a result, the distribution of the effective refractive index (n ef ) becomes a function n ef (z) of only z (see FIG. 4).

【0024】よって、もしも、微細凹凸2に於ける基材
の凸部の断面積が、凹部に向かって連続的に増大する様
な形状であれば(XY平面内に於ける)基材部分と空気
部分との面積比がZ軸方向に向かって連続的に変化する
為、有効屈折率nef(z)はzに付いての連続関数にな
る。
Therefore, if the cross-sectional area of the convex portion of the base material in the fine unevenness 2 is continuously increased toward the concave portion, the base material portion (in the XY plane) is formed. Since the area ratio with the air portion continuously changes in the Z-axis direction, the effective refractive index n ef (z) is a continuous function with respect to z.

【0025】一方、屈折率n0の媒質から、屈折率n1
媒質に光が入射する場合を考える。今、簡単の為に、入
射角θ=0°(垂直入射)を考える。但し、入射角は入
射面の法線に対する角度とする。この場合、媒質界面で
の反射率Rは、偏光、及び入射角には依存せず、下記の
〔式2〕となる。
On the other hand, consider a case where light enters from a medium having a refractive index n 0 to a medium having a refractive index n 1 . Now, for the sake of simplicity, consider an incident angle θ = 0 ° (normal incidence). However, the incident angle is an angle with respect to the normal line of the incident surface. In this case, the reflectance R at the medium interface does not depend on the polarized light and the incident angle, and becomes the following [Formula 2].

【0026】[0026]

【数2】 [Equation 2]

【0027】従って、(有効)屈折率のZ方向への変化
が連続関数であるということは、Z方向(光の進行方
向)に微小距離Δz隔てた2点、Z=zに於ける屈折率
をn0、Z=z+Δzに於ける屈折率をn1、としたとき
に、
Therefore, the fact that the change of the (effective) refractive index in the Z direction is a continuous function means that the refractive index at Z = z, two points separated by a minute distance Δz in the Z direction (the traveling direction of light). Is n 0 and the refractive index at Z = z + Δz is n 1 ,

【0028】Δz→0 ならば、 n1→n0 If Δz → 0, then n 1 → n 0

【0029】となり(連続関数の定義より)、よって、
〔式2〕より、
And (from the definition of the continuous function), therefore
From [Equation 2],

【0030】R→0R → 0

【0031】となる。It becomes

【0032】なお、ここで、より厳密に言うと、物体中
での光の波長は、真空中の波長をλ、物体の屈折率をn
としたときに、λ/nとなり、λよりは一般に或る程度
小となる。但し、物体が空気の場合の屈折率はn≒1の
為、λ/n≒λと考えて良い。但し、硝子、アクリル樹
脂等の基材に使われる材料は、通常1.5前後の屈折率
である為、屈折率nbの基材中の波長(λ/nb)は、
0.7λ程度となる。この点を考慮すると、微細凹凸2
の部分に於いて、空気の側の部分(微細凹凸2の凹部)
について見れば、
Here, to be more precise, the wavelength of light in the object is λ, the wavelength in vacuum is n, and the refractive index of the object is n.
Then λ / n, which is generally smaller than λ to some extent. However, since the refractive index when the object is air is n≈1, it may be considered that λ / n≈λ. However, since the materials used for the base material such as glass and acrylic resin usually have a refractive index of about 1.5, the wavelength (λ / n b ) in the base material having the refractive index n b is
It becomes about 0.7λ. Considering this point, the fine unevenness 2
In the part of, the part on the air side (the concave part of the fine unevenness 2)
If you look at

【0033】PMAX≦λMIN P MAX ≦ λ MIN

【0034】の条件を満たすとき、屈折率平均化による
反射率低減効果が期待出来る。但し、
When the condition (1) is satisfied, the effect of reducing the reflectance by averaging the refractive index can be expected. However,

【0035】λMIN/nb≦PMAX≦λMIN Λ MIN / n b ≤P MAX ≤λ MIN

【0036】である場合は、基材3の部分(微細凹凸2
の凸部)の寄与について見れば、屈折率平均化による反
射率低減効果は、少なくとも完全には期待出来ないこと
になる。しかし、それでも、空気部分に於ける寄与の
為、全体としては反射防止効果を有する。そして、
If it is, the portion of the base material 3 (fine unevenness 2
Concerning the contribution of the convex portion), the effect of reducing the reflectance by averaging the refractive index cannot be expected at least completely. However, it still has an antireflection effect as a whole due to the contribution in the air portion. And

【0037】PMAX≦λMIN/nb P MAX ≤λ MIN / n b

【0038】の条件までも満たす場合は、空気部分、基
材部分とも、周期PMAXが、最短波長よりも小さいと言
う条件が完全に満たされる為、屈折率平均化による反射
防止効果は、より完全となる。具体的には、λMINを可
視光波長帯域の下限380nm、nbを仮に1.5とす
れば、λMIN/nbは250nm、つまりPMAXは250
nm以下とすれば良い。
When the condition (1) is also satisfied, the condition that the period P MAX is smaller than the shortest wavelength is completely satisfied in both the air part and the base material part, so that the antireflection effect by averaging the refractive index is further improved. Be complete. Specifically, if λ MIN is the lower limit of the visible light wavelength band of 380 nm and n b is 1.5, then λ MIN / n b is 250 nm, that is, P MAX is 250.
It may be set to nm or less.

【0039】次に、賦形後の形状である微細凹凸2の形
状は、微細凹凸2をその凹凸方向と直交する面(XY平
面)で切断したと仮定したときの断面(水平断面)内に
於ける基材の材料部分の断面積占有率が、該微細凹凸2
の最凸部(頂上)から最凹部(谷底)に行くに従って連
続的に漸次増加して行く形状とする。特に、好ましく
は、最凸部に於いて完全に0に収束し、且つ最凹部に於
いて完全に1に収束する形状とする。具体的には例え
ば、図5(B)、図5(C)の如き形状が挙げられる。
但し、図5(D)、或いは図5(E)の如く、最凸部に
於いては、ほぼ0に漸近した形状、或いは、最凹部に於
いてほぼ1に漸近する様な形状であれば、或る程度の効
果は得られる。微細凹凸2の形状は、この様な条件を満
たせば、どんな形状でも良い。
Next, the shape of the fine unevenness 2 which is the shape after shaping is within a cross section (horizontal cross section) on the assumption that the fine unevenness 2 is cut along a plane (XY plane) orthogonal to the direction of the unevenness. The cross-sectional area occupation ratio of the material portion of the base material in the
The shape is such that it continuously and gradually increases from the most convex portion (top) to the most concave portion (valley bottom). Particularly preferably, the shape is such that the most convex portion converges completely to 0, and the most concave portion completely converges to 1. Specifically, for example, the shapes as shown in FIGS. 5B and 5C can be cited.
However, as shown in FIG. 5 (D) or FIG. 5 (E), if the shape is such that the most convex portion is asymptotically close to 0, or that the most concave portion is asymptotically close to 1. A certain effect can be obtained. The shape of the fine irregularities 2 may be any shape as long as these conditions are satisfied.

【0040】従って、この様な微細凹凸2を賦形で形成
する為の反射防止賦形フィルム上での微細凹凸2Aの形
状としては、微細凹凸2Aをその凹凸方向と直交する面
(XY平面)で切断したと仮定したときの断面(水平断
面)内に於ける離型性基材フィルムの材料部分の断面積
占有率が、該微細凹凸2Aの最凹部から最凸部に行くに
従って連続的に漸次減少して行き、少なくとも最凹部で
ほぼ1に漸近するか、或いは、最凸部に於いてほぼ0に
漸近する様な形状であれば、どんな形状でも良い。特
に、好ましいのは、最凸部に於いて完全に0に収束し、
且つ最凹部に於いて完全に1に収束する断面積占有率を
有する形状である。
Therefore, as the shape of the fine unevenness 2A on the antireflection shaping film for forming such fine unevenness 2 by shaping, the fine unevenness 2A is a surface (XY plane) orthogonal to the uneven direction. The cross-sectional area occupation ratio of the material portion of the releasable substrate film in the cross section (horizontal cross section) assuming that the fine concave and convex portions 2A are continuously cut from the most concave portion to the most convex portion is assumed. Any shape may be used as long as it gradually decreases and approaches at least 1 at the most concave portion or near 0 at the most convex portion. In particular, it is preferable that the most convex portion completely converges to 0,
In addition, it is a shape having a sectional area occupation rate that converges completely to 1 in the most concave portion.

【0041】この為には、反射防止賦形フィルム上での
微細凹凸2Aの形状を、賦形後の形状である微細凹凸2
の形状で捉えれば、該微細凹凸2の山は少なくともその
一部の側面が斜めの斜面を有するものとすれば良いが、
下記する図5(C)の様に斜面と共に垂直側面がある形
状の微細凹凸2でも良い。
For this purpose, the shape of the fine unevenness 2A on the antireflection shaping film is changed to the shape of the fine unevenness 2 which is the shape after shaping.
In view of the shape of, the peaks of the fine irregularities 2 may have at least a part of the side surface thereof having an oblique slope.
As shown in FIG. 5 (C) described below, the fine unevenness 2 may have a shape in which a vertical surface is provided along with a slope.

【0042】例えば、個々の微細凹凸2の垂直断面形状
は、図5(A)の如き正弦波等の曲線のみによる波状の
形状〔図2も参照〕、図5(B)及び図5(C)の如き
三角形等の直線のみによる形状、或いは、図5(D)の
如き三角形の最凸部が平坦面を成す形状である台形の形
状、図5(E)の如き隣接する三角形間の最凹部が平坦
面を成す形状等である。但し、図5(D)や図5(E)
の如く、最凸部或いは最凹部に平坦面を有する形状で
は、最凸部或いは最凹部の平坦面の部分で、その平坦面
の占める面積割合が大きい程、有効屈折率の変化がより
大きく不連続となる。その点で性能的には劣るものとな
る。しかし、この場合でも、微細凹凸2の最凸部から最
凹部に行くに従って有効屈折率を連続的に変化させるこ
とは出来る。従って、反射防止性能の点では、最凸部或
いは最凹部の平坦面の面積割合は少ない程好ましい。
For example, the vertical cross-sectional shape of each fine unevenness 2 is a wavy shape only by a curve such as a sine wave as shown in FIG. 5A (see also FIG. 2), FIG. 5B and FIG. 5C. ), Such as the shape of a straight line such as a triangle, or the trapezoidal shape in which the most convex portion of the triangle as shown in FIG. 5D forms a flat surface, or the shape between the adjacent triangles as shown in FIG. 5E. For example, the recess has a flat surface. However, FIG. 5 (D) and FIG. 5 (E)
As described above, in the shape having the flat surface at the most convex portion or the most concave portion, the larger the area ratio of the flat surface at the most convex portion or the most concave portion is, the larger the change in effective refractive index becomes. It will be continuous. In that respect, the performance is inferior. However, even in this case, the effective refractive index can be continuously changed from the most convex portion to the most concave portion of the fine unevenness 2. Therefore, in terms of antireflection performance, the smaller the area ratio of the flat surface of the most convex portion or the most concave portion, the better.

【0043】なお、もちろんだが、これら微細凹凸2の
形状を賦形する為には、反射防止賦形フィルム上の微細
凹凸2Aの形状は、これらと逆凹凸形状となる形状とす
れば良い。
Of course, in order to shape the shapes of the fine unevenness 2, the shape of the fine unevenness 2A on the antireflection shaping film may be a shape which is the reverse uneven shape.

【0044】また、有効屈折率nef(z)を空気中から
基材中に向かうZ方向の関数として、naからnbに連続
的に変化する様にする為には、微細凹凸2の最凸部に於
いて、基材の断面積占有率が0に収束する図5(B)或
いは図5(C)の如き形状(すなわち、尖った形状)で
且つ最凹部に於いて該断面積占有率が連続的に1に収束
する形状が最も好ましい。
In order to make the effective refractive index n ef (z) continuously change from n a to n b as a function of the Z direction from the air to the substrate, At the most convex portion, the cross-sectional area occupation ratio of the base material converges to 0, and the cross-sectional area at the most concave portion has a shape as shown in FIG. 5 (B) or FIG. 5 (C). The shape in which the occupancy rate continuously converges to 1 is most preferable.

【0045】次に、賦形で形成すべき微細凹凸2につい
て、個々の微細凹凸2の水平断面形状は、円形(例えば
図2)、楕円形、三角形、四角形、長方形、六角形、其
の他多角形等任意である。なお、水平断面形状は、微細
凹凸2の最凸部から最凹部の全てにわたって同じである
必要は無い。従って、微細凹凸2の立体形状は、例え
ば、水平断面形状が円形で垂直断面形状が正三角形の場
合の微細凹凸2の立体形状は円錐に、水平断面形状が円
形で垂直断面形状が三角形の場合の微細凹凸2の立体形
状は斜円錐に、水平断面形状が三角形で垂直断面形状が
正三角形の場合の微細凹凸2の立体形状は三角錐に、水
平断面形状が四角形で垂直断面形状が三角形の場合の微
細凹凸2の立体形状は四角錐になる。
Next, regarding the fine unevenness 2 to be formed by shaping, the horizontal cross-sectional shape of each fine unevenness 2 is a circle (for example, FIG. 2), an ellipse, a triangle, a quadrangle, a rectangle, a hexagon, and others. It is arbitrary such as a polygon. The horizontal cross-sectional shape does not have to be the same from the most convex part to the most concave part of the fine unevenness 2. Therefore, the three-dimensional shape of the fine unevenness 2 is, for example, when the horizontal cross-sectional shape is circular and the vertical cross-sectional shape is an equilateral triangle, the three-dimensional shape of the fine unevenness 2 is conical, and when the horizontal cross-sectional shape is circular and the vertical cross-sectional shape is triangular. The three-dimensional shape of the fine unevenness 2 is an oblique cone, the three-dimensional shape of the fine unevenness 2 when the horizontal cross-sectional shape is triangular and the vertical cross-sectional shape is an equilateral triangle is a triangular pyramid, the horizontal cross-sectional shape is quadrangular, and the vertical cross-sectional shape is triangular. In this case, the three-dimensional shape of the fine unevenness 2 is a quadrangular pyramid.

【0046】また、微細凹凸2の、水平面内に於ける配
置は、図2で例示した如く二次元的配置の他に、図6
(A)の斜視図で例示の直線溝状の微細凹凸2の如く、
一次元的配置でも良く、どちらも効果は得られる。但
し、一次元的配置の場合は、光の波の振幅方向との関係
で、反射防止効果が得られる方向と得られない方向とが
出る、異方性が発生する。従って、図2の斜視図や図6
(B)及び(C)の平面図で例示の様な二次元的配置の
方が、方向性が全く無い点で好ましい。
The arrangement of the fine irregularities 2 in the horizontal plane is not limited to the two-dimensional arrangement shown in FIG.
Like the linear groove-shaped fine unevenness 2 illustrated in the perspective view of FIG.
A one-dimensional arrangement may be used, and both can be effective. However, in the case of the one-dimensional arrangement, anisotropy occurs in which the direction in which the antireflection effect is obtained and the direction in which the antireflection effect is not obtained occur depending on the relationship with the amplitude direction of the light wave. Therefore, the perspective view of FIG.
The two-dimensional arrangement as illustrated in the plan views of (B) and (C) is preferable because it has no directivity.

【0047】なお、個々の微細凹凸2の立体形状は全て
同一でも良いが、全て同一で無くても良い。また、個々
の微細凹凸2を二次元配置する場合に、周期は、個々の
微細凹凸2に於いて全て同一でも良いが、全て同一で無
くても良い。
The three-dimensional shapes of the individual fine concavities and convexities 2 may all be the same, but they may not all be the same. Further, when the individual fine irregularities 2 are two-dimensionally arranged, the periods may be all the same in the individual fine irregularities 2, or may not be the same.

【0048】また、微細凹凸2の高さHは、希望する反
射率(の低減効果)と基材表面に入射する可視光帯域の
最大波長に応じて決定する。例えば、特開昭50−70
040号公報(特にその第3図)記載の反射率、微細凹
凸の高さ、及び光波長との関係を基に設計する場合、例
えば、可視光帯域での反射率を、2%(未処理硝子の半
分)以下に低減させることを目標とするならば、その最
小高さHMINが0.2λMAX以上、すなわち、
The height H of the fine irregularities 2 is determined according to (the effect of reducing) the desired reflectance and the maximum wavelength of the visible light band incident on the surface of the base material. For example, JP-A-50-70
In the case of designing on the basis of the reflectance, the height of fine irregularities, and the relationship with the light wavelength described in JP-A No. 040 (particularly FIG. 3), for example, the reflectance in the visible light band is 2% (untreated). If the goal is to reduce it to less than half of glass), the minimum height H MIN is 0.2λ MAX or more, that is,

【0049】HMIN≧0.2λMAX H MIN ≧ 0.2λ MAX

【0050】また、可視光帯域での反射率を0.5%以
下にまで低減させることを目標とするならば、
If the aim is to reduce the reflectance in the visible light band to 0.5% or less,

【0051】HMIN≧0.4λMAX H MIN ≧ 0.4λ MAX

【0052】とするのが好ましい。なお、ここで、λ
MAXは、可視光波長帯域の真空中に於ける最大波長であ
る。微細凹凸2の高さHは、ゼロから高くなるに従って
反射率が低下して行くが、上記不等号条件を満足させる
高さまで達すると、有為な効果が得られる様になる。具
体的には、例えば、発光スペクトルの最大波長が、λ
MAX=640nmの蛍光灯を用いたとすれば、HMIN
0.2λMAX=128nmとかなる。すなわち、HMIN
128nm以上とすれば良い。また、スペクトルの最大
波長がλMAX=780nmの太陽光線を考えるならば、
MIN≧0.2λMAX=156nm、すなわち、HMIN
156nm以上とすれば良い。また、最小高さHMIN
周期PMAXとの関係では、最小高さHMIN/周期PMAX
比を、1/2〜4/1程度とする。
It is preferable that Here, λ
MAX is the maximum wavelength in vacuum in the visible light wavelength band. The height H of the fine irregularities 2 decreases as the height H increases from zero, but when reaching a height that satisfies the above inequality condition, a significant effect can be obtained. Specifically, for example, the maximum wavelength of the emission spectrum is λ
If a fluorescent lamp with MAX = 640 nm is used, H MIN
0.2λ MAX = 128 nm. That is, H MIN should be 128 nm or more. Also, if we consider a sun ray with the maximum wavelength of the spectrum λ MAX = 780 nm,
H MIN ≧ 0.2λ MAX = 156 nm, that is, H MIN may be 156 nm or more. The minimum in the relationship between the height H MIN and the period P MAX, the ratio of the minimum height H MIN / period P MAX, and about 1 / 2-4 / 1.

【0053】ここで、賦形後の形状である微細凹凸2
で、その具体的形状及び大きさを例示すれば、形状は垂
直断面が正弦波状で水平断面が円形の円錐状の形状のも
のを多数、二次元的に規則的配置した集合体であり、周
期期PMAXが50〜350nm、最小高さHMINを前記周
期PMAXの1.5倍としたもの等がある。
Here, the fine unevenness 2 which is the shape after shaping
To give an example of its concrete shape and size, the shape is an aggregate of two-dimensionally regularly arranged conical shapes whose vertical cross section is sinusoidal and whose horizontal cross section is circular. The period P MAX is 50 to 350 nm, and the minimum height H MIN is 1.5 times the period P MAX .

【0054】〔反射防止賦形フィルムの微細凹凸2Aの
形成法〕反射防止賦形フィルム10として、その離型性
基材フィルム1に上述した微細凹凸2Aを形成する方法
は、特に限定は無い。但し、工業的生産性、コストを考
慮すると、先ず、微細凹凸の原版(マザー版)を作製
し、この原版から直接或いは多段の複製工程を経て本版
(マスター版)を作成し、この本版を用いて、離型性基
材フィルムに所望の微細凹凸2Aを形成するのが好まし
い。
[Method of forming fine irregularities 2A of antireflection shaping film] The method of forming the aforementioned fine irregularities 2A on the releasable substrate film 1 as the antireflection shaping film 10 is not particularly limited. However, in consideration of industrial productivity and cost, first, an original plate with fine irregularities (mother plate) is prepared, and then this original plate (master plate) is prepared directly or through a multi-step duplication process. It is preferable to form the desired fine irregularities 2A on the releasable substrate film by using.

【0055】原版の作製は、微細凹凸2Aとなる凹凸形
状を最初に造形する工程であり、その作製方法として
は、半導体分野等に於ける微細加工技術を流用できる。
但し、半導体の場合は、凹凸形状はその側面が通常垂直
面で良く、本発明の如く斜面にする必要は特に無いた
め、本発明では、斜面が形成できる様にして微細加工す
る。
The production of the original plate is a step of first forming an uneven shape to be the fine unevenness 2A, and as a manufacturing method thereof, a fine processing technique in the semiconductor field or the like can be diverted.
However, in the case of a semiconductor, since the side surface of the uneven shape is usually a vertical surface and it is not particularly necessary to form a slope as in the present invention, in the present invention, fine processing is performed so that a slope can be formed.

【0056】上記の如き微細加工技術としては、電子線
描画法を利用できる。この方法では、先ず、ガラス基板
の上にレジスト層を形成した後、電子線描画法により該
レジスト層を露光し現像してパターニングしてレジスト
パターン層とする。この後、腐蝕マスクに該レジストパ
ターン層を利用してガラス基板をドライエッチング法等
により腐蝕することで、ガラス基板に微細凹凸形状が形
成される。この際、エッチング時にサイドエッチングさ
せて、斜面を形成する。また、ガラス基板腐蝕時の腐蝕
マスクとしてはレジストパターン層自体を直接用いても
良いが、斜面を有する深い凹凸形状を形成するには、好
ましくは、ガラス基板上にクロム等による金属層を設け
た後、レジスト膜を形成してレジストパターン層を得、
前記金属層をこのレジストパターン層を利用して金属パ
ターン層としてたものを、腐蝕マスクとして用いるのが
良い。
As the fine processing technique as described above, an electron beam drawing method can be used. In this method, first, a resist layer is formed on a glass substrate, and then the resist layer is exposed by an electron beam drawing method, developed, and patterned to form a resist pattern layer. After that, the glass substrate is corroded by a dry etching method or the like using the resist pattern layer as an etching mask to form fine irregularities on the glass substrate. At this time, side surfaces are etched during etching to form slopes. Further, the resist pattern layer itself may be directly used as a corrosion mask at the time of corroding the glass substrate, but in order to form a deep uneven shape having a slope, it is preferable to provide a metal layer of chromium or the like on the glass substrate. After that, a resist film is formed to obtain a resist pattern layer,
It is preferable that the metal pattern layer formed by using the resist pattern layer is used as a corrosion mask.

【0057】また、レジスト膜へのパターン形成に際し
ては、電子線描画法の他に、レーザー描画法も利用でき
る。レーザ描画法では、ホログラム、回折格子等の作製
等に利用されているレーザ干渉法が利用できる。回折格
子の場合は、一次元的配置であるが、角度を変えて多重
露光すれば、二次元配置も可能となる。但し、レーザ干
渉法では、得られる微細凹凸は、通常規則的配置となる
が、電子線描画法では、予め所定の描画パターン情報を
記憶装置にデジタルデータとして記憶しておき、該描画
パターン情報により、走査する電子線のON、OFF、
乃至は強弱を変調する。その為、規則配置の他にも、不
規則配置も可能である。また、レーザー描画法、及び電
子線描画法には、各々長所、短所も有る為、設計諸元、
目的、生産性等を考慮の上、適切な手法及び条件を適宜
選択すれば良い。
When forming a pattern on the resist film, a laser drawing method can be used in addition to the electron beam drawing method. In the laser drawing method, a laser interference method used for producing holograms, diffraction gratings, etc. can be used. The diffraction grating has a one-dimensional arrangement, but a two-dimensional arrangement is also possible by changing the angle and performing multiple exposure. However, in the laser interferometry, the resulting fine irregularities are usually arranged regularly, but in the electron beam drawing method, predetermined drawing pattern information is stored in advance in the storage device as digital data and the drawing pattern information is used. , ON / OFF of scanning electron beam,
Or modulates the strength. Therefore, in addition to regular arrangement, irregular arrangement is also possible. In addition, since the laser drawing method and the electron beam drawing method have their respective advantages and disadvantages, design specifications,
Appropriate methods and conditions may be appropriately selected in consideration of the purpose and productivity.

【0058】次に、上記原版(マザー版)から本版(マ
スター版)を作製する方法には、公知の方法、例えば、
マザー版にニッケル等の金属めっきを行って、めっき層
を剥がし金属マスター版を作製する(電鋳法)。或い
は、このマスター版にもう一度めっきして、再度複製し
た型をマスター版としても良い。この際、本版は、原版
から直接或いは多段複製工程を経て得られたプレート状
のニッケル電鋳版を、中空円筒状の鉄等による金属シリ
ンダー表面に貼り込んだ円筒状の版を本版とする事によ
って、連続帯状の反射防止賦形フィルムが容易に製造出
来る様になる。
Next, as a method for producing this plate (master plate) from the above original plate (mother plate), a known method, for example,
The mother plate is plated with a metal such as nickel, and the plating layer is peeled off to produce a metal master plate (electroforming method). Alternatively, this master plate may be plated once again, and a mold duplicated again may be used as the master plate. At this time, the plate is a plate-shaped nickel electroformed plate obtained directly or from the original plate through a multi-step duplication process, and a cylindrical plate formed by sticking it onto the surface of a metal cylinder made of hollow cylindrical iron or the like. By doing so, the continuous strip-shaped antireflection shaping film can be easily manufactured.

【0059】そして、以上の様にして得られた本版を用
いて、離型性基材フィルム表面に微細凹凸2Aを形成し
て、所望の反射防止賦形フィルムを作製することができ
る。反射防止賦形フィルムの作製方法は特に限定は無い
が、次に詳述する、円筒状の原版上(成形版胴)で樹脂
硬化する方法(以降、「成形版胴法」と呼称する)等が
量産性、形状再現性等の点で好適である他、その他の公
知の複製方法、例えば、2P法(Photo Poly
mer法)、熱エンボス法等でも作製できる。なお、成
形版胴法は、賦形型に特に円筒状の型を用いる形式の2
P法と言える方法である。また、2P法では、必要に応
じ適宜、フォトポリマーに揮発溶剤を添加した組成物を
使用しても良い。また、熱エンボス法の場合は、賦形時
は加熱されない反射防止賦形フィルムの利用方法とする
か、加熱してもそれに耐え得る耐熱性を備えた樹脂を使
うと良い。
Then, by using the plate obtained as described above, fine irregularities 2A can be formed on the surface of the releasable substrate film to produce a desired antireflection shaped film. The method for producing the antireflection shaped film is not particularly limited, but is described in detail below, such as a method of resin-curing on a cylindrical original plate (molding plate cylinder) (hereinafter referred to as "molding plate cylinder method"), etc. Is suitable in terms of mass productivity and shape reproducibility, and other known duplication methods such as 2P method (Photo Poly).
Mer method), hot embossing method, etc. In addition, the molding plate cylinder method is a method of using a cylindrical mold as a shaping mold.
This is a method called P method. Further, in the 2P method, a composition obtained by adding a volatile solvent to a photopolymer may be appropriately used if necessary. In the case of the hot embossing method, it is preferable to use an antireflection shaping film that is not heated during shaping, or to use a resin having heat resistance that can withstand the heating.

【0060】成形版胴法では、図7に示す如く、素材フ
ィルム4に微細凹凸2Aを形成して離型性基材フィルム
1を作製する為に、フォトポリマーとして液状の電離放
射線硬化性樹脂(の未硬化物)を、成形版胴(ロール凹
版、賦形版とも呼称される)50の少なくとも凹部に充
填させると共に該樹脂に素材フィルムを接触させ、該樹
脂が素材フィルムと成形版胴との間に保持されている状
態で電離放射線を照射して該樹脂を硬化させて微細凹凸
とする事で、素材フィルム4に微細凹凸2Aを賦形す
る。この結果、微細凹凸2Aが素材フィルム4の表面に
形成された離型性基材フィルム1として、本発明の反射
防止賦形フィルム10が作製される。但し、図7に於い
ては、図示の便宜上、微細凹凸2Aの寸法を実際よりも
大幅に拡大して図示してある。なお、この様な成形版胴
法による凹凸形成方法は、特開昭57−87318号公
報、特公昭57−22755号公報、特公昭63−50
066号公報、特開平7−32476号公報等に開示さ
れるものであって、成形版胴の凹凸形状を忠実に電離放
射性硬化性樹脂の硬化物(微細凹凸)として素材フィル
ムに賦形する方法である。この方法は基本的には、以下
の工程からなる(図7参照)。
In the molding plate cylinder method, as shown in FIG. 7, in order to form the releasable substrate film 1 by forming the fine irregularities 2A on the material film 4, a liquid ionizing radiation curable resin (as a photopolymer) ( Uncured product) is filled in at least the concave portion of the molding plate cylinder (also referred to as a roll intaglio or shaping plate) 50, and the material film is brought into contact with the resin, and the resin is formed between the material film and the molding plate cylinder. By irradiating ionizing radiation in a state of being held between them to cure the resin into fine irregularities, the fine irregularities 2A are formed on the material film 4. As a result, the antireflection shaping film 10 of the present invention is produced as the releasable substrate film 1 in which the fine irregularities 2A are formed on the surface of the material film 4. However, in FIG. 7, for convenience of illustration, the dimensions of the fine concavo-convex 2A are shown in a greatly enlarged manner than they actually are. Incidentally, the method of forming irregularities by such a molding plate cylinder method is described in JP-A-57-87318, JP-B-57-22755, and JP-B-63-50.
No. 066, JP-A No. 7-32476, etc., and a method of faithfully shaping the concavo-convex shape of the molding plate cylinder into a material film as a cured product (fine concavo-convex) of an ionizing radiation curable resin. Is. This method basically comprises the following steps (see FIG. 7).

【0061】(1)表面に目的とする微細凹凸2Aの凹
凸形状と同形状且つ逆凹凸の凹凸形状(微細凹凸2と同
形状)40を形成した円筒形状の成形版胴50を用意
し、これを軸芯60の回りに回転させる。 (2)連続帯状の素材フィルム4を、該成形版胴50の
周速度と同速度で供給する。 (3)該素材フィルム4と該成形版胴50とを、その間
に電離放射線硬化性樹脂の未硬化液状組成物70を介し
て重ね合わせて密着させ、該液状組成物が該成形版胴の
少なくとも凹部を完全に充填する様にする。 (4)その状態のままで電離放射線照射装置80から電
離放射線81を照射して、該液状組成物を架橋、硬化さ
せる。 (5)而る後に、素材フィルム4を、それに接着し且つ
成形版胴上の凹凸形状40が賦形された電離放射線硬化
性樹脂の硬化物からなる微細凹凸2Aと共に、成形版胴
から剥離除去する。この結果、微細凹凸2Aが素材フィ
ルム4に接着した構成で離型性基材フィルム1が得られ
る。この離型性基材フィルム1自体が、反射防止賦形フ
ィルム10である。
(1) A cylinder-shaped molding plate cylinder 50 is prepared, which has a concavo-convex shape (the same shape as the fine concavo-convex 2) 40 having the same concavo-convex shape as the target fine concavo-convex 2A and the reverse concavo-convex shape 40. Is rotated around the axis 60. (2) The continuous strip material film 4 is supplied at the same speed as the peripheral speed of the molding plate cylinder 50. (3) The material film 4 and the molding plate cylinder 50 are superposed and adhered to each other with an uncured liquid composition 70 of an ionizing radiation curable resin interposed therebetween, and the liquid composition is at least the molding plate cylinder. Make sure that the recess is completely filled. (4) In that state, the ionizing radiation 81 is irradiated from the ionizing radiation irradiation device 80 to crosslink and cure the liquid composition. (5) After that, the material film 4 is peeled and removed from the molding plate cylinder together with the fine concavities and convexities 2A made of a cured product of an ionizing radiation curable resin that is adhered to the material film 4 and has the concavo-convex shape 40 on the molding plate cylinder. To do. As a result, the releasable base film 1 is obtained with the structure in which the fine irregularities 2A are adhered to the material film 4. The releasable substrate film 1 itself is the antireflection shaping film 10.

【0062】以上の方法に於いて、成形版胴50として
は、公知の凹版、グラビア版、エンボス版と基本的に
は、同様の材料、同様の構造、同様の製法によるものを
用いれば良い。成形版胴の材料としては、通常は鉄、銅
等の金属が用いられる。但し、成形版胴内部から紫外線
或いは可視光線を照射する場合には、硝子、石英等の透
明な材料を用いる。成形版胴の軸芯の回りの回転駆動
は、通常の輸転式グラビア印刷機、輪転式エンボス機等
と同様な機構、方法を用いれば良い。素材フィルムの成
形版胴への密着の為には、ゴム、金属等の圧着ローラ9
0で圧着する。又素材フィルムの成形版胴からの剥離に
もゴム、金属等の剥離ローラ100で押さえて剥離す
る。素材フィルムは連続帯状のものを用いる。此の様な
素材フィルムは巻出ロール(供給ロール)から巻き出し
て、微細凹凸2Aの形成後は巻取りロール(排紙ロー
ル)で巻き取る。
In the above method, as the molding plate cylinder 50, basically the same material, the same structure and the same manufacturing method as the known intaglio, gravure and embossing plates may be used. As a material for the molding plate cylinder, a metal such as iron or copper is usually used. However, when irradiating ultraviolet rays or visible light from the inside of the molding plate cylinder, a transparent material such as glass or quartz is used. Rotational drive around the axis of the molding plate cylinder may be performed by using the same mechanism and method as those of an ordinary transfer gravure printing machine, rotary embossing machine, or the like. In order to adhere the material film to the molding plate cylinder, a pressure roller 9 made of rubber or metal is used.
Press 0 to crimp. Further, when the material film is peeled from the molding plate cylinder, it is pressed and peeled by a peeling roller 100 made of rubber or metal. The material film is a continuous strip. Such a material film is unwound from an unwinding roll (supplying roll), and after forming the fine irregularities 2A, it is wound up by a winding roll (paper discharge roll).

【0063】素材フィルムと成形版胴とを、その間に電
離放射線硬化性樹脂の未硬化液状組成物を介して重ね合
わせて密着させる態様としては、次の(1)〜(3)が
ある。(1)先ず素材フィルム上に液状組成物を塗布
し、次いで該塗布面が成形版胴表面に向くようにして、
該素材フィルムを該成形版胴に重ね合わせる。(2)図
7の如く先ず成形版胴50上に液状組成物70をTダイ
等の塗液供給装置200を用いて塗布し、次いで該成形
版胴上の塗布面に素材フィルム4を重ね合わせる。
(3)先ず成形版胴上と素材フィルム上との各々に液状
組成物を塗布し、次いで該素材フィルムと該成形版胴と
を各々の塗布面が対向する様にして重ね合わせる。
The following methods (1) to (3) can be adopted as modes in which the material film and the molding plate cylinder are superposed and adhered to each other with the uncured liquid composition of the ionizing radiation curable resin interposed therebetween. (1) First, a liquid composition is applied onto a material film, and then the applied surface is directed to the surface of a molding plate cylinder,
The material film is overlaid on the forming plate cylinder. (2) As shown in FIG. 7, first, the liquid composition 70 is applied onto the molding plate cylinder 50 by using a coating liquid supply device 200 such as a T die, and then the material film 4 is superposed on the coating surface on the molding plate cylinder. .
(3) First, the liquid composition is applied onto each of the molding plate cylinder and the material film, and then the material film and the molding plate cylinder are overlapped so that their coated surfaces face each other.

【0064】成形版胴と素材フィルム間にある未硬化液
状組成物への電離放射線の照射の態様としては、次の
(A)と(B)がある。(A)図7の如く電離放射線に
対して透明な素材フィルムを選び(例えば紫外線に対し
てポリエチレンテレフタレートフィルムを選択)、素材
フィルム側から照射する。(B)電離放射線に対して透
明な成形版胴を選び(例えば、紫外線に対して石英の成
形版胴を選択)、成形版胴の内部から照射する。
There are the following (A) and (B) as modes of irradiating the uncured liquid composition between the molding plate cylinder and the material film with ionizing radiation. (A) As shown in FIG. 7, a material film transparent to ionizing radiation is selected (for example, a polyethylene terephthalate film is selected for ultraviolet rays), and irradiation is performed from the material film side. (B) A molding plate cylinder that is transparent to ionizing radiation is selected (for example, a quartz molding plate cylinder is selected for ultraviolet rays), and irradiation is performed from inside the molding plate cylinder.

【0065】素材フィルム4の材料は、電離放射線の照
射が上記(A)の態様が可能である樹脂シートが代表的
である。すなわち、素材フィルムの材料としては、
(イ)ポリエチレンテレフタレート(PET)、ポリブ
チレンテレフタレート(PBT)、ポリエチレンナフタ
レート(PEN)等の熱可塑性樹脂ポリエステル樹脂、
ポリエチレン、ポリプロピレン、ポリメチルペンテン、
オレフィン系熱可塑性樹脂エラストマー等のポリオレフ
ィン樹脂、ポリ塩化ビニル、ポリカーボネート、ポリス
チレン、ABS樹脂、アクリル樹脂、ポリエーテルスル
ホン(PES)、ポリエーテルエーテルケトン(PEE
K)等の樹脂シート、(ロ)薄葉紙、上質紙、コート紙等
の紙、(ハ)アルミニウム、鉄、銅等の金属箔等があ
る。なお、上記(ロ)及び(ハ)は、透明な成形版胴内か
らの紫外線照射射、又は電子線等の高透過性放射線の場
合のみ可能である。また、素材フィルムの厚さは通常2
0〜200μm程度のものを用いる。また、素材フィル
ムとしては、反射防止賦形フィルムによる賦形時は、射
出成形法等、通常は熱が加わることが多いので、この様
な場合を想定すると、耐熱性を有するものが好ましい。
耐熱性に優れたものとしては、上記に列記の材料のう
ち、例えば、樹脂材料としてはPET、PEN、PE
S、PEEK等があり、また、金属等も優れているが、
素材フィルム側から電離放射線照射が可能である等、樹
脂の方が使い易い点で好ましい。
The material of the material film 4 is typically a resin sheet which can be irradiated with ionizing radiation in the mode (A). That is, as the material of the material film,
(A) Thermoplastic resin polyester resin such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN),
Polyethylene, polypropylene, polymethylpentene,
Polyolefin resin such as olefin thermoplastic elastomer, polyvinyl chloride, polycarbonate, polystyrene, ABS resin, acrylic resin, polyether sulfone (PES), polyether ether ketone (PEE)
K) and other resin sheets, (b) thin paper, fine paper, coated paper and other paper, and (c) aluminum, iron, copper, and other metal foils. Note that the above (b) and (c) are possible only in the case of ultraviolet irradiation from the inside of a transparent molding plate cylinder or highly penetrating radiation such as an electron beam. Also, the thickness of the material film is usually 2
The thing of about 0-200 micrometers is used. In addition, as the material film, heat is usually applied during the shaping by the antireflection shaping film, which is usually performed by the injection molding method or the like. Therefore, assuming such a case, a material having heat resistance is preferable.
Among the materials listed above, those having excellent heat resistance include, for example, PET, PEN, PE as the resin material.
There are S, PEEK, etc., and metals are also excellent,
A resin is preferable because it can be irradiated with ionizing radiation from the side of the material film and is easy to use.

【0066】電離放射線硬化性樹脂としては、分子中に
(メタ)アクリロイル基、(メタ)アクリロイルオキシ
基等の重合性不飽和結合、又は、エポキシ基等のカチオ
ン重合性官能基を有するプレポリマー、モノマー、又は
ポリマーを、1種のみ又は2種以上適宜混合した組成物
を用いる。或いは、ポリエンとポリチオールとの組み合
わせによるポリエン/チオール系のプレポリマーからな
る組成物も用いることができる。組成物は、未硬化時に
液状のものを用いる。
As the ionizing radiation curable resin, a prepolymer having a polymerizable unsaturated bond such as a (meth) acryloyl group or a (meth) acryloyloxy group in the molecule, or a cationically polymerizable functional group such as an epoxy group, A composition in which only one kind or two or more kinds of monomers or polymers are appropriately mixed is used. Alternatively, a composition comprising a polyene / thiol-based prepolymer obtained by combining polyene and polythiol can also be used. A liquid composition is used when it is not cured.

【0067】前記分子中に重合性不飽和結合を有するプ
レポリマーの例としては、不飽和ジカルボン酸と多価ア
ルコールの縮合物等の不飽和ポリエステル類、ポリエス
テル(メタ)アクリレート、ウレタン(メタ)アクリレ
ート、エポキシ(メタ)アクリレート、メラミン(メ
タ)アクリレート、シリコーン(メタ)アクリレート等
の(メタ)アクリレート類がある〔尚、本明細書では
(メタ)アクリレートとは、アクリレート又はメタクリ
レートの意味で用いる。以下同様〕。前記分子中に重合
性不飽和結合を有するモノマーの例としては、スチレ
ン、α−メチルスチレン等のスチレン系モノマー、(メ
タ)アクリル酸メチル、(メタ)アクリル酸−2−エチ
ルヘキシル、(メタ)アクリル酸メトキシエチル、(メ
タ)アクリル酸ブトキシエチル等の単官能(メタ)アク
リル酸エステル類、エチレングリコールジ(メタ)アク
リレート、プロピレングリコールジ(メタ)アクリレー
ト、1,6−ヘキサンジオールジ(メタ)アクリレー
ト、ジエチレングリコールジ(メタ)アクリレート、ト
リエチレングリコールジ(メタ)アクリート、トリメチ
ロールプロパントリ(メタ)アクリレート、ペンタエリ
スリトールテトラ(メタ)アクリレート、ジペンタエリ
スリトールヘキサ(メタ)アクリレート等の多官能(メ
タ)アクリル酸エステル類、(メタ)アクリル酸−2−
(N,N−ジエチルアミノ)エチル、(メタ)アクリル
酸−2−(N,N−ジメチルアミノ)エチル、(メタ)
アクリル酸−2−(N,N−ジベンジルアミノ)エチル
等の不飽和酸の置換アミノアルコールエステル類、(メ
タ)アクリルアミド等の不飽和カルボン酸アミド等があ
る。
Examples of the prepolymer having a polymerizable unsaturated bond in the molecule include unsaturated polyesters such as condensates of unsaturated dicarboxylic acids and polyhydric alcohols, polyester (meth) acrylates, urethane (meth) acrylates. , (Epoxy (meth) acrylate, melamine (meth) acrylate, silicone (meth) acrylate and the like (here, (meth) acrylate is used in the meaning of acrylate or methacrylate. The same applies below. Examples of the monomer having a polymerizable unsaturated bond in the molecule include styrene-based monomers such as styrene and α-methylstyrene, methyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and (meth) acrylic. Acid methoxyethyl, butoxyethyl (meth) acrylate monofunctional (meth) acrylates, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate Polyfunctional (meth) s such as diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate Acrylic acid esters, (meth) acrylic acid-2
(N, N-diethylamino) ethyl, (meth) acrylic acid-2- (N, N-dimethylamino) ethyl, (meth)
Substituted amino alcohol esters of unsaturated acids such as acrylate (2- (N, N-dibenzylamino) ethyl), unsaturated carboxylic acid amides such as (meth) acrylamide, and the like can be given.

【0068】また、分子中にカチオン重合性官能基を有
するプレポリマーとしては、ビスフェノール型エポキシ
樹脂、ノボラック型エポキシ樹脂、脂肪族型エポキシ樹
脂等、脂肪環型エポキシ樹脂等のエポキシ樹脂、脂肪族
系ビニルエーテル、芳香族系ビニルエーテル、ウレタン
系ビニルエーテル、エステル系ビニルエーテル等のビニ
ルエーテル系樹脂、環状エーテル系樹脂、スピロ系化合
物等のプレポリマー等がある。
As the prepolymer having a cationically polymerizable functional group in the molecule, bisphenol type epoxy resin, novolac type epoxy resin, aliphatic type epoxy resin, epoxy resin such as alicyclic type epoxy resin, aliphatic type Examples thereof include vinyl ether resins such as vinyl ether, aromatic vinyl ether, urethane vinyl ether, and ester vinyl ether, cyclic ether resins, and prepolymers such as spiro compounds.

【0069】また、ポリエン/チオール系のプレポリマ
ーとしては、分子中に2個以上のメルカプト基を有する
ポリチオール化合物、例えば、トリメチロールプロパン
トリチオグリコレート、トリメチロールプロパントリチ
オプロピレート、ペンタエリスリトールテトラチオグリ
コール等がある。一方、ポリエンとしては、ジオールと
ジイソシアネートによるポリウレタンの両端にアリルア
ルコールを付加したもの等がある。
The polyene / thiol-based prepolymer may be a polythiol compound having two or more mercapto groups in the molecule, such as trimethylolpropane trithioglycolate, trimethylolpropane trithiopropylate, pentaerythritol tetral. For example, thioglycol. On the other hand, examples of the polyene include those obtained by adding allyl alcohol to both ends of polyurethane made of diol and diisocyanate.

【0070】電離放射線硬化性樹脂としては、以上の化
合物を必要に応じ1種もしくは2種以上混合して用いる
が、樹脂組成物に通常の塗工適性を付与するために、前
記プレポリマー又はオリゴマーを5質量%以上、前記モ
ノマー及び/又はポリチオールを95質量%以下とする
ことが好ましい。また、硬化物の可撓性、表面硬度、剥
離性等の物性を調節する為に前記電離放射線硬化性樹脂
に対して、以下の様な電離放射線非硬化性樹脂を1〜7
0質量%程度混合して用いることができる。電離放射線
非硬化性樹脂としてはウレタン系樹脂、セルロース系樹
脂、ポリエステル系樹脂、アクリル系樹脂、ブチラール
樹脂、ポリ塩化ビニル、ポリ酢酸ビニル等の熱可塑性樹
脂を用いることができる。
As the ionizing radiation curable resin, one kind or a mixture of two or more kinds of the above compounds may be used, if necessary, and the above prepolymer or oligomer may be added in order to impart ordinary coating suitability to the resin composition. Is preferably 5% by mass or more and the monomer and / or polythiol is 95% by mass or less. Further, in order to adjust the physical properties such as flexibility, surface hardness, and releasability of the cured product, the following ionizing radiation non-curable resin is used in addition to the ionizing radiation curable resin.
About 0% by mass can be mixed and used. As the ionizing radiation non-curable resin, a thermoplastic resin such as urethane resin, cellulose resin, polyester resin, acrylic resin, butyral resin, polyvinyl chloride or polyvinyl acetate can be used.

【0071】また、離型性を向上させる為は、電離放射
線非硬化性樹脂としてシリコーン樹脂、ポリオレフィン
樹脂等の樹脂の他に、ワックス等を用いても良い。これ
らは1種又は2種以上を用いて離型性を調整する。
Further, in order to improve the releasability, wax or the like may be used as the non-ionizing radiation non-curable resin in addition to the resin such as silicone resin and polyolefin resin. The releasability is adjusted by using one kind or two or more kinds of these.

【0072】なお、紫外線で硬化させる場合には前記電
離放射線硬化性樹脂に光重合開始剤を添加する。分子中
にラジカル重合性不飽和結合を有する化合物に対して
は、アセトフェノン類、ベンゾフェノン類、ミヒラーベ
ンゾイルベンゾエート、α−アミロキシムエステル、テ
トラメチルメウラムモノサルファイド、チオキサントン
類等がある。分子中にカチオン重合性官能基を有する化
合物に対しては、芳香族ジアゾニウム塩、芳香族スルホ
ニウム塩、芳香族ヨードニウム塩、メタロセン化合物、
ベンゾインスルホン酸エステル、ジアリルヨードシル塩
等がある。又、必要に応じて更に、光増感剤としてn−
ブチルアミン、トリエチルアミン、トリ−n−ブチルホ
スフィン等を混合して用いることもできる。
When curing with ultraviolet rays, a photopolymerization initiator is added to the ionizing radiation curable resin. Examples of the compound having a radical-polymerizable unsaturated bond in the molecule include acetophenones, benzophenones, Michler benzoyl benzoate, α-amyloxime ester, tetramethylmeuram monosulfide and thioxanthones. For compounds having a cationically polymerizable functional group in the molecule, aromatic diazonium salts, aromatic sulfonium salts, aromatic iodonium salts, metallocene compounds,
Examples thereof include benzoin sulfonate and diallyl iodosyl salt. Further, if necessary, as a photosensitizer, n-
Butylamine, triethylamine, tri-n-butylphosphine and the like can be mixed and used.

【0073】以上の電離放射線硬化性樹脂の未硬化液状
組成物を成形版胴、或いは素材フィルムに塗工するには
公知の各種方法、例えば、ロールコート、カーテンフロ
ーコート、Tダイコート(図7)等の方法を用る。特に
成形版胴への塗工の場合はインキパン中の液状組成物
に、回転する成形版胴を浸漬させる(所謂ドブ浸け)も
可能である。
Various known methods such as roll coating, curtain flow coating, and T die coating (FIG. 7) are used for coating the uncured liquid composition of the above ionizing radiation-curable resin on the molding plate cylinder or the material film. And so on. In particular, in the case of coating on the molding plate cylinder, it is also possible to immerse the rotating molding plate cylinder in the liquid composition in the ink pan (so-called dipping).

【0074】尚、ここで電離放射線としては、電磁波又
は荷電粒子線のうち分子を重合、架橋し得るエネルギー
を有するものを意味し、紫外線、可視光線、X線、電子
線、α線等があるが、通常紫外線、又は電子線が用いら
れる。紫外線源としては、超高圧水銀灯、高圧水銀灯、
低圧水銀灯、カーボンアーク灯、ブラックライトラン
プ、メタルハライドランプ等の光源が使用される。電子
線源としては、コッククロフトワルトン型、バンデグラ
フト型、共振変圧器型、絶縁コア変圧器型、或いは、直
線型、ダイナミトロン型、高周波型等の各種電子線加速
器を用い、100〜1000keV、好ましくは、10
0〜300keVのエネルギーをもつ電子を照射するも
のが使用される。
Here, the ionizing radiation means an electromagnetic wave or a charged particle beam having energy capable of polymerizing and cross-linking molecules, and includes ultraviolet rays, visible rays, X rays, electron rays, α rays and the like. However, ultraviolet rays or electron beams are usually used. Ultra-high pressure mercury lamp, high pressure mercury lamp,
Light sources such as a low pressure mercury lamp, a carbon arc lamp, a black light lamp, and a metal halide lamp are used. As the electron beam source, various electron beam accelerators such as Cockcroft-Walton type, Van de Graft type, resonance transformer type, insulating core transformer type, linear type, dynamitron type, high frequency type, etc. are used, preferably 100 to 1000 keV. Is 10
The one that radiates electrons having an energy of 0 to 300 keV is used.

【0075】以上の様な成形版胴法で作製された反射防
止賦形フィルム10は、図8に例示の如く、その離型性
基材フィルム1は、素材フィルム4上に、表面に微細凹
凸2Aを有する賦形層5を電離放射線硬化性樹脂の硬化
物として積層した構成の2層構成となる。なお、賦形層
5は微細凹凸2Aの個々の凹凸が分離独立しその凹部に
て素材フィルム4が露出したものでも、個々の凹凸が連
続したもの(図8はこの様に描いてある)でもどちらで
も良い。この様に、離型性基材フィルム1は単層以外に
多層構成でも良い。なお、単層構成の離型性基材フィル
ムの例としては、熱可塑性樹脂フィルムに熱エンボス法
で微細凹凸2Aを形成して得られるもの等がある〔図1
(A)参照〕。
As shown in FIG. 8, the antireflection shaping film 10 produced by the molding plate cylinder method as described above has the releasable base film 1 on the material film 4 with fine irregularities on the surface. The shaping layer 5 having 2A is laminated as a cured product of an ionizing radiation curable resin to form a two-layer structure. The shape-imparting layer 5 may be one in which the individual irregularities of the fine irregularities 2A are separated and independent and the material film 4 is exposed in the concave portions, or one in which the individual irregularities are continuous (FIG. 8 is drawn in this way). both are fine. Thus, the releasable substrate film 1 may have a multi-layer structure other than a single layer. As an example of the releasable substrate film having a single-layer structure, there is one obtained by forming fine irregularities 2A on a thermoplastic resin film by a hot embossing method [FIG.
(See (A)].

【0076】なお、上述成形版胴法は、連続帯状の素材
フィルム4上に賦形層5を電離放射線硬化性樹脂の硬化
物として形成できる方法であるが、素材フィルム4上
に、表面に微細凹凸2Aを有する賦形層5を設けた構成
の離型性基材フィルム1としては、この他の方法で作製
したものでも良い。例えば、電離放射線硬化性樹脂以外
の樹脂、つまり、フォトポリマー以外の樹脂を用いて作
製したものでも良い。例えば、ウレタン樹脂、メラミン
樹脂、エポキシ樹脂等の熱硬化性樹脂、或いは、賦形時
の熱に耐えうる様な耐熱性を有する熱可塑性樹脂等を賦
形層として使用したものでも良い。この際、素材フィル
ムは、上記成形版胴法で列記したもの等が使用できる。
但し、賦形層5には、電離放射線硬化性樹脂を用いるの
が、耐熱性も容易に得られる上、硬化が瞬間的に短時間
で終了するので、成形版胴等と円筒状の成形型の採用に
より連続的に樹脂硬化できるので生産性に優れ、また、
形状再現性が良い点でも好ましい。
The molding plate cylinder method described above is a method in which the shaping layer 5 can be formed on the continuous strip-shaped material film 4 as a cured product of an ionizing radiation-curable resin. The releasable substrate film 1 having the shape-imparting layer 5 having the irregularities 2A may be produced by another method. For example, a resin other than the ionizing radiation curable resin, that is, a resin other than the photopolymer may be used. For example, a thermosetting resin such as urethane resin, melamine resin, or epoxy resin, or a thermoplastic resin having heat resistance capable of withstanding heat during shaping may be used as the shaping layer. In this case, as the material film, those listed by the molding plate cylinder method can be used.
However, since ionizing radiation curable resin is used for the shaping layer 5 because heat resistance is easily obtained and curing is instantaneously completed in a short time, a molding plate cylinder and a cylindrical molding die are used. By adopting, the resin can be cured continuously, resulting in excellent productivity.
It is also preferable in terms of good shape reproducibility.

【0077】なお、本発明の反射防止賦形フィルムは、
枚葉のシート状でも良いが、連続帯状とすれば、反射防
止賦形フィルム使用時に、反射防止賦形フィルムを容易
に連続供給できるので、生産性の点で好ましい。しか
も、連続帯状の反射防止賦形フィルムは、前述した成形
版胴法によれば、容易に作製できる。
The antireflection shaped film of the present invention is
Although it may be in the form of a sheet, a continuous strip is preferred from the viewpoint of productivity because the antireflection shaped film can be easily continuously supplied when the antireflection shaped film is used. Moreover, the continuous strip-shaped antireflection shaped film can be easily produced by the above-mentioned forming plate cylinder method.

【0078】なお、反射防止賦形フィルムを用いた賦形
時に、該フィルムの賦形面Eの離型性向上が必要な場合
には、賦形層5、或いは樹脂性の離型性基材フィルム1
には、シリコーン樹脂、ワックス等の公知の離型剤を添
加しても良い。
When it is necessary to improve the releasability of the shaping surface E of the film at the time of shaping using the antireflection shaping film, the shaping layer 5 or a resin-based releasable substrate. Film 1
A known release agent such as silicone resin or wax may be added to the above.

【0079】なお、本発明の反射防止賦形フィルムで
は、その離型性基材フィルム、或いは賦形層等は、透明
であっても良いが、不透明であっても良い。また、本発
明の反射防止賦形フィルムを用いて、物品に反射防止加
工する際に、該物品に対する賦形方法は、特に限定され
ない。但し、以下に述べる本発明の反射防止加工方法
が、生産性が良い等の点で好適である。
In the antireflection shaping film of the present invention, the releasable substrate film, the shaping layer, or the like may be transparent or opaque. Further, when the antireflection shaping film of the present invention is used to perform antireflection processing on an article, the shaping method for the article is not particularly limited. However, the antireflection processing method of the present invention described below is preferable in terms of good productivity.

【0080】〔反射防止加工方法〕本発明の反射防止加
工方法は、図9で概念的に説明する如く、上述した如き
反射防止賦形フィルム10を賦形型として用いて、その
微細凹凸2Aを有する賦形面に、流動状態の樹脂30を
接触させた後〔図9(A)〕、該樹脂を固化させ〔図9
(B)〕、而る後、反射防止賦形フィルム10を固化し
た樹脂から剥離することで、固化した該樹脂面に、微細
凹凸2Aとは逆凹凸形状の微細凹凸2を賦形して〔図9
(C)〕、該微細凹凸2による反射防止機能を付与する
方法である。この結果、図1(B)で例示の様な、基材
3の表面に、微細凹凸2が形成された反射防止物品20
が生産性良く得られることになる。
[Anti-Reflection Processing Method] The anti-reflection processing method of the present invention uses the anti-reflection shaping film 10 as described above as a shaping die to form fine irregularities 2A thereof as conceptually described with reference to FIG. After the resin 30 in a fluid state is brought into contact with the shape-imparting surface of the resin [FIG. 9 (A)], the resin is solidified [FIG.
(B)] After that, the antireflection shaping film 10 is peeled off from the solidified resin to form fine irregularities 2 having a shape opposite to that of the fine irregularities 2A on the solidified resin surface. Figure 9
(C)] is a method of imparting an antireflection function by the fine irregularities 2. As a result, the antireflection article 20 having the fine irregularities 2 formed on the surface of the base material 3 as illustrated in FIG.
Will be obtained with high productivity.

【0081】本発明の反射防止加工方法において、流動
状態の樹脂を、反射防止賦形フィルムの賦形面に接触さ
せる方法としては、代表的には、いわゆる射出成形法が
利用できるが、この他、キャスティング法(乾湿式成膜
法)等も利用できる。但し、射出成形法の方が、例えば
携帯電話の窓材等と反射防止物品を任意の形状で作製で
きる点で、キャスティング法よりも優れている。もっと
も、反射防止物品としてフィルム(或いはシート)状の
ものを得たい場合はに、キャスティング法の方が、射出
成形法よりも好適である。
In the antireflection processing method of the present invention, a so-called injection molding method can be typically used as a method for bringing the resin in a fluid state into contact with the shaping surface of the antireflection shaping film. A casting method (dry-wet film forming method) or the like can also be used. However, the injection molding method is superior to the casting method in that, for example, a window material of a mobile phone and an antireflection article can be produced in arbitrary shapes. However, when it is desired to obtain a film (or sheet) in the form of an antireflection article, the casting method is more suitable than the injection molding method.

【0082】射出成形法は、樹脂を流動状態とする為
に、樹脂を加熱軟化等により流動状態として、射出成形
型中に射出し充填し固化させる樹脂成形法であるが、こ
の方法の場合、反射防止賦形フィルムを枚葉では無く特
に連続帯状として使用することで、射出成形型内に、射
出成形の1ショット毎に新しい反射防止賦形フィルムを
連続的に供給し、また排出する事が、容易に出来る様に
なる。この様な、連続帯状フィルムの射出成形型への供
給・排出方法については、樹脂成形品の加飾技術分野に
て、例えば、特開平6−315950号公報等に開示さ
れた技術を利用できる。
The injection molding method is a resin molding method in which the resin is made to be in a fluid state by heating and softening so as to make the resin in a fluid state, and the resin is injected into an injection mold to be filled and solidified. In the case of this method, By using the antireflection shaped film as a continuous strip rather than a sheet, it is possible to continuously supply and discharge a new antireflection shaped film into the injection mold for each shot of injection molding. , It will be easy to do. Regarding such a method of supplying / discharging the continuous strip film to / from the injection molding die, the technology disclosed in, for example, JP-A-6-315950 can be used in the technical field of decorating resin molded products.

【0083】一方、キャスティング法の場合は、エンド
レスのキャスティングベルトの表面に反射防止賦形フィ
ルムを配置して該賦形フィルムを好ましくはエンドレス
化して、表面が賦形面となったキャスティングベルト上
に、溶液化により流動状態となった樹脂を流延して成膜
して、フィルム(或いはシート)状の反射防止物品を作
製する。
On the other hand, in the case of the casting method, an antireflection shaped film is arranged on the surface of an endless casting belt, and the shaped film is preferably made endless, and the surface is a shaped surface. A film (or sheet) antireflection article is produced by casting a resin in a fluidized state by solution casting and forming a film.

【0084】或いはまた、Tダイ等から加熱溶融して流
動状態とした樹脂を押出して成膜する溶融押出法にて、
冷却ローラに反射防止賦形フィルムを巻き付けておき、
成膜すれば、樹脂成膜と同時に賦形できる。或いはま
た、冷却ローラに反射防止賦形フィルムを巻き付けず
に、連続帯状の反射防止賦形フィルムを冷却ローラに導
きながら、反射防止賦形フィルム上で前記樹脂を冷却固
化させた後、反射防止賦形フィルムを剥離することで、
成膜と同時に賦形することもできる。
Alternatively, by a melt extrusion method of extruding a resin in a fluidized state by heating and melting from a T-die or the like to form a film,
Wrap the anti-reflection shaping film around the cooling roller,
If a film is formed, it can be shaped simultaneously with the resin film formation. Alternatively, without winding the antireflection shaping film around the cooling roller, while guiding the continuous strip antireflection shaping film to the cooling roller, the resin is cooled and solidified on the antireflection shaping film, and then the antireflection shaping film is applied. By peeling the shaped film,
It can also be shaped simultaneously with the film formation.

【0085】なお、流動状態の樹脂が固化した後、直ち
に反射防止賦形フィルムを剥離せずに、該賦形フィルム
を保護フィルムとして残しておいても良い。残しておい
た反射防止賦形フィルムは、反射防止物品の使用直前等
の適宜なときに、剥離する。
It is also possible to leave the anti-reflection shaping film as a protective film without peeling off the antireflection shaping film immediately after the resin in the fluidized state is solidified. The remaining antireflection shaping film is peeled off at an appropriate time immediately before using the antireflection article.

【0086】〔反射防止物品〕本発明を利用して得られ
る反射防止物品20は、図1(B)の断面図で例示した
如く、少なくとも、基材3上に本発明特有の微細凹凸2
が賦形されたものであるが、基材3は、用途により適宜
各種材料が使用され得る。また、反射防止物品20の形
状は、フィルム(或いはシート)、板、三次元形状等、
これも用途により各種形状のものとなり得る。また、基
材3は通常は透明であるが、不透明なものを除外するも
のでも無い。また、反射防止物品は、少なくとも基材表
面に微細凹凸2を有するものであり、多層構造の基材3
や、その他構成要素を有する構造等、用途に応じた物と
なる。
[Antireflection Article] The antireflection article 20 obtained by utilizing the present invention has, as illustrated in the sectional view of FIG.
However, various materials can be appropriately used for the base material 3 depending on the application. The shape of the antireflection article 20 may be a film (or sheet), a plate, a three-dimensional shape, or the like.
This can also be of various shapes depending on the application. The base material 3 is usually transparent, but opaque material is not excluded. Further, the antireflection article has at least fine irregularities 2 on the surface of the base material, and has a multi-layered base material 3
Or a structure having other components, etc., depending on the application.

【0087】なお、基材3の材料としては、熱可塑性樹
脂が代表的であり、例えば、ポリ(メタ)アクリル酸メ
チル、ポリ(メタ)アクリル酸エチル、(メタ)アクリ
ル酸メチル−(メタ)アクリル酸ブチル共重合体等のア
クリル樹脂〔但し、(メタ)アクリルとはアクリル、或
いはメタクリルを意味する。〕、ポリカーボネート樹
脂、ポリプロピレン、ポリメチルペンテン、環状オレフ
ィン系高分子(代表的にはノルボルネン系樹脂等がある
が、例えば、日本ゼオン株式会社製の製品名「ゼオノ
ア」、JSR株式会社製の「アートン」等がある)等の
ポリオレフィン系樹脂、ポリエチレンテレフタレート、
ポリエチレンナフタレート等の熱可塑性ポリエステル樹
脂、ポリアミド樹脂、ポリスチレン、アクリロニトリル
−スチレン共重合体、ポリエーテルスルフォン、ポリス
ルフォン、セルロース系樹脂、塩化ビニル樹脂、ポリエ
ーテルエーテルケトン、ポリウレタン等が挙げられる。
The material of the base material 3 is typically a thermoplastic resin, for example, methyl poly (meth) acrylate, ethyl poly (meth) acrylate, methyl (meth) acrylate- (meth) acrylate. Acrylic resin such as butyl acrylate copolymer [however, (meth) acrylic means acrylic or methacrylic. ], Polycarbonate resin, polypropylene, polymethylpentene, cyclic olefin polymer (typically, norbornene resin, etc., but for example, product name "Zeonor" manufactured by Nippon Zeon Co., Ltd., "Arton" manufactured by JSR Co., Ltd. , Etc.) and other polyolefin resins, polyethylene terephthalate,
Examples thereof include thermoplastic polyester resins such as polyethylene naphthalate, polyamide resins, polystyrene, acrylonitrile-styrene copolymers, polyether sulfones, polysulfones, cellulosic resins, vinyl chloride resins, polyether ether ketones and polyurethanes.

【0088】また、ゾルゲル法を利用して賦形すれば、
ガラス等の無機材料も可能である。なお、ゾルゲル法と
は、特開平6−64907号公報等に開示の如く、金属
アルコキシド等と増粘剤としてポリエチレングリコール
等を含む組成物を、塗工し、ゾルが軟らかいうちに型押
しして凹凸を賦形して、その後に最終的な乾燥、熱処理
を行って、無機質の塗膜として微細凹凸を形成する方法
である。型押しに上述反射防止賦形フィルムを用いれば
良い。
If the sol-gel method is used for shaping,
Inorganic materials such as glass are also possible. The sol-gel method, as disclosed in JP-A-6-64907, applies a composition containing a metal alkoxide or the like and polyethylene glycol or the like as a thickener, and embosses it while the sol is soft. This is a method of forming irregularities and then performing final drying and heat treatment to form fine irregularities as an inorganic coating film. The antireflection shaping film may be used for embossing.

【0089】〔本発明の用途〕本発明によって得られる
反射防止物品は、形状は、フィルム(或いはシート)、
板、三次元形状等任意であり、用途も特に限定れるもの
では無い。但し、賦形される微細凹凸2は、極めて微細
であるが故に汚れや傷に対して保護する意味で、微細凹
凸は外面には露出させず、内面に設けられる用途、或い
は、装置内部に設けられる用途等が好適である。なお、
本発明が適用し得る用途は、これから例示される用途に
限定されるものではない。
[Use of the Invention] The antireflection article obtained by the present invention has a shape of a film (or sheet),
The plate, the three-dimensional shape and the like are arbitrary, and the use is not particularly limited. However, since the fine unevenness 2 to be shaped is extremely fine, in order to protect against dirt and scratches, the fine unevenness is not exposed on the outer surface, and is provided on the inner surface or provided inside the device. Suitable applications are suitable. In addition,
Applications to which the present invention can be applied are not limited to the applications exemplified below.

【0090】例えば、携帯電話等の各種機器に於ける表
示部の窓材である。これら表示部では、LCD等の表示
パネルの前面に、板や成形品等となった樹脂製の窓材が
配置される。窓材としての反射防止物品は、外側は露出
する為に傷や汚れへの耐性の点で本発明特有の微細凹凸
は設けず、内側の裏面に側に該微細凹凸を設けたものと
すると良い。なお、表示部は、LCD等の表示パネル以
外に、時計に代表される機械式アナログメータ等の様な
機械的手段で表示するものでもよく、これらの窓材でも
良い。なお、窓材は、平板状もあるが、組み付けやデザ
イン上の観点から周囲に突起等有するものもあり、この
様な複雑形状のものは、射出成形法等による本発明の反
射防止加工方法は、基材成形と同時に反射防止加工する
ことも出来る点で特に好適である。
For example, it is a window material for the display section in various devices such as mobile phones. In these display units, a resin window material such as a plate or a molded product is arranged in front of a display panel such as an LCD. Since the antireflection article as the window material is exposed on the outside, it is preferable that the fine unevenness peculiar to the present invention is not provided in terms of resistance to scratches and dirt, and the fine unevenness is provided on the inner rear surface side. . In addition to the display panel such as an LCD, the display unit may display by a mechanical means such as a mechanical analog meter typified by a timepiece, or a window material of these. The window material has a flat plate shape, but there are also those having protrusions and the like in the periphery from the viewpoint of assembly and design, and such a complicated shape is not processed by the antireflection processing method of the present invention by injection molding or the like In particular, it is particularly preferable in that antireflection processing can be performed at the same time when the base material is molded.

【0091】なお、上記の様な窓付き表示部を有する機
器としては、携帯電話、時計の外にも、パソコン、電子
手帳等のPDA乃至は携帯情報端末、電卓、或いは、C
Dプレーヤー、DVDプレーヤ、MDプレーヤ、半導体
メモリ方式音楽プレーヤ等の各種携帯型音楽プレーヤ、
或いは、ビデオテープレコーダ、ICレコーダ、ビデオ
カメラ、デシタルカメラ、ラベルプリンタ等の電子機
器、或いは、電気炊飯器、電子ポット、洗濯機等の電気
製品等がある。
As the device having the windowed display section as described above, in addition to a mobile phone and a clock, a personal computer, a PDA such as an electronic notebook, a personal digital assistant, a calculator, or C
Various portable music players such as D player, DVD player, MD player, and semiconductor memory type music player,
Alternatively, there are electronic devices such as a video tape recorder, an IC recorder, a video camera, a digital camera, and a label printer, or electric appliances such as an electric rice cooker, an electronic pot, and a washing machine.

【0092】また、フィルム(或いはシート)や板状の
反射防止物品に於いては、透明タッチパネル等に使用す
る、透明電極フィルムや透明板等の透明基材が挙げられ
る。透明タッチパネルは、表示部に入力機能を付加する
ものであるが、該製品組立上、LCD、CRT等の表示
パネルと別部品として組み付けるので、表示パネルと透
明タッチパネル間に空隙が残り、光反射が生じる。そこ
で、透明タッチパネルの裏面側を成す透明基材を、その
裏面を本発明特有の微細凹凸を設けた反射防止物品とす
れば、光反射が防げる。
In the case of a film (or sheet) or plate-shaped antireflection article, transparent base materials such as transparent electrode films and transparent plates used for transparent touch panels and the like can be mentioned. The transparent touch panel is for adding an input function to the display unit, but since it is assembled as a separate part from the display panel such as LCD and CRT in the product assembly, a gap remains between the display panel and the transparent touch panel, and light reflection does not occur. Occurs. Therefore, light reflection can be prevented by using a transparent base material forming the back surface side of the transparent touch panel as an antireflection article having the back surface provided with fine irregularities peculiar to the present invention.

【0093】なお、透明タッチパネルは、例えば、電子
手帳等のPDA乃至は携帯情報端末(機器)、或いは、
カーナビゲーションシステム、POS(販売時点情報管
理)端末、携帯型オーダー入力端末、ATM(現金自動
預金支払兼用機)、ファクシミリ、固定電話端末、携帯
電話機、デシタルカメラ、ビデオカメラ、パソコン、パ
ソコン用ディスプレイ、テレビジョン受像機、テレビ用
モニターディスプレイ、券売機、計測機器、電卓、電子
楽器等の電子機器、複写機、ECR(金銭登録機)等の
事務器、或いは、洗濯機、電子レンジ等の電気製品に使
用される。
The transparent touch panel is, for example, a PDA such as an electronic notebook or a personal digital assistant (device), or
Car navigation system, POS (point-of-sale information management) terminal, portable order input terminal, ATM (cash automatic teller machine), facsimile, fixed telephone terminal, mobile phone, digital camera, video camera, personal computer, display for personal computer, Electronic devices such as television receivers, television monitor displays, ticket vending machines, measuring instruments, calculators, electronic musical instruments, copiers, ECR (cash register), or electric appliances such as washing machines and microwave ovens. Used for.

【0094】[0094]

【実施例】以下、実施例により本発明を更に詳述する。The present invention will be described in more detail with reference to the following examples.

【0095】〔実施例1〕ガラス基板上にスピンコート
法により感光性樹脂のレジスト層を形成し、レーザ干渉
露光装置により、アルゴンイオンレーザーを50°の入
射角度で2方向から露光する操作を、ガラス基板の90
度回転させて2回行った。次いで、現像液で現像してレ
ジストパターン層を形成した。
Example 1 An operation of forming a resist layer of a photosensitive resin on a glass substrate by a spin coating method and exposing an argon ion laser from two directions at an incident angle of 50 ° by a laser interference exposure apparatus was performed. 90 of glass substrate
It was rotated twice and performed twice. Then, it was developed with a developing solution to form a resist pattern layer.

【0096】次に、ドライエッチング法によりガラス基
板の腐蝕を行って、所望の微細凹凸形状が形成されたガ
ラス基板からなる原版(マザー版)を作製した。このマ
ザー版に、電気めっき法によって、ニッケルめっきプレ
ートを作製した。そして、マザー版から剥離したニッケ
ルめっきプレートを、鉄製の中空円筒状の版胴(シリン
ダー)の表面に巻き付けて貼り込んで、成形版胴とする
円筒状の本版(マスター版)を作製した。
Then, the glass substrate was corroded by a dry etching method to prepare an original plate (mother plate) made of the glass substrate on which desired fine irregularities were formed. A nickel-plated plate was produced on this mother plate by an electroplating method. Then, the nickel-plated plate separated from the mother plate was wrapped around the surface of the hollow cylindrical plate cylinder (cylinder) made of iron and stuck to it to prepare a cylindrical main plate (master plate) to be a molding plate cylinder.

【0097】そして、図7の如き装置で、上記本版を成
形版胴50として用い、素材フィルム4には連続帯状で
厚さ38μmの透明な2軸延伸ポリエチレンテレフタレ
ートフィルムを用い、賦形層5とする電離放射線硬化性
樹脂としては、ウレタンアクリレート系プレポリマー、
ジペンタエリスリトールヘキサアクリレート、及びベン
ゾフェノン系光重合開始剤を含む組成物を用いて、目的
とする反射防止賦形フィルム10を作製した。電離放射
線硬化性樹脂の組成物は、成形版胴と素材フィルム間に
存在するうちに紫外線照射で硬化させた後、素材フィル
ムと共に成形版胴から剥離した。その結果、図8の断面
の如く、微細凹凸2Aを表面に有する賦形層5が素材フ
ィルム4に積層された構成の離型性基材フィルム1から
なる、連続帯状の反射防止賦形フィルム10が得られ
た。
Then, using the apparatus as shown in FIG. 7, the above-mentioned plate was used as a molding plate cylinder 50, a transparent biaxially stretched polyethylene terephthalate film having a continuous band shape and a thickness of 38 μm was used as the material film 4, and the shaping layer 5 was used. As the ionizing radiation curable resin to be, urethane acrylate prepolymer,
A target antireflection shaping film 10 was produced using a composition containing dipentaerythritol hexaacrylate and a benzophenone photopolymerization initiator. The composition of the ionizing radiation-curable resin was cured by being irradiated with ultraviolet rays while existing between the molding plate cylinder and the material film, and then peeled off from the molding plate cylinder together with the material film. As a result, as shown in the cross section of FIG. 8, a continuous strip anti-reflection shaping film 10 composed of the releasable substrate film 1 in which the shaping layer 5 having the fine irregularities 2A on the surface is laminated on the material film 4. was gotten.

【0098】〔実施例2〕上記で得た、反射防止賦形フ
ィルム10によって、透明樹脂板からなる窓材の裏面
に、その成形と同時に反射防止加工を行った。連続帯状
の反射防止賦形フィルム10は、その賦形面を、固定盤
側(射出ノズル側)を向けて、射出成形機の可動盤上方
に設置した送出ロールから1ショット分づつ巻き出し
て、型開き状態の射出成形型間を通して、前記可動盤下
方に設置した巻取ロールで巻き取る様にした。そして、
該反射防止賦形フィルムを雌雄両成形型間に挟んで型締
めして、射出成形型内に加熱溶融で流動状態となった透
明アクリル樹脂を射出した。なお、射出条件は、樹脂温
度260℃、型温度95℃、射出圧力150MPa、射
出時間0.75s、保圧時間2sとした。そして、樹脂
が冷却して固化後、反射防止物品として成形品を取り出
した。成形品は、厚みが1.5mmの透明板で、その裏
側とする片面に、所望の微細凹凸2が賦形された反射防
止物品20となった〔図1(B)参照〕。
Example 2 Using the antireflection shaping film 10 obtained above, the antireflection processing was performed on the back surface of the window material made of the transparent resin plate at the same time as the molding. The continuous strip-shaped antireflection shaping film 10 has its shaping surface facing the fixed platen side (injection nozzle side), and is unwound one shot at a time from a delivery roll installed above the movable platen of the injection molding machine, It was configured to be wound by a winding roll installed below the movable plate through the injection molds in the mold open state. And
The antireflection shaped film was sandwiched between male and female molds and clamped, and a transparent acrylic resin in a fluidized state by heating and melting was injected into the injection mold. The injection conditions were a resin temperature of 260 ° C., a mold temperature of 95 ° C., an injection pressure of 150 MPa, an injection time of 0.75 s, and a pressure holding time of 2 s. After the resin was cooled and solidified, a molded article was taken out as an antireflection article. The molded product was a transparent plate having a thickness of 1.5 mm, and it became an antireflection article 20 in which desired fine irregularities 2 were formed on one side which was the back side thereof (see FIG. 1 (B)).

【0099】上記反射防止物品の微細凹凸2は、原子間
力顕微鏡での観察により、高さHMI Nが200nm、周
期PMAXが300nmの、図2の如き形状が多数縦横に
正方格子状に規則的に配列された微細凹凸であった。
[0099] fine irregularities 2 of the antireflective article, by observation of an atomic force microscope, the height H MI N is 200 nm, the period P MAX is 300 nm, in a square lattice pattern to such a shape many aspect of FIG. 2 The fine irregularities were regularly arranged.

【0100】そして、上記反射防止物品について、透過
率と反射率を測定した。その結果、透過率は95%、反
射率は0.5%であった。なお、微細凹凸を設けなかっ
た反射防止加工が未加工の単なる透明板では、透過率9
1%、反射率4%であり、反射防止効果が認められた。
また、反射防止された光は拡散せず、その分、透過率が
向上している事も認められた。
Then, the transmittance and reflectance of the above antireflection article were measured. As a result, the transmittance was 95% and the reflectance was 0.5%. In addition, in the case of a simple transparent plate which is not processed with antireflection processing without providing fine irregularities, the transmittance is 9
The reflectance was 1% and the reflectance was 4%, and the antireflection effect was recognized.
It was also confirmed that the antireflection light did not diffuse, and the transmittance was improved accordingly.

【0101】[0101]

【発明の効果】(1)本発明の反射防止賦形フィルムに
よれば、物品表面に微細凹凸を賦形することで、反射防
止機能を付与した反射防止物品が得られる。しかも、そ
の反射防止機能は、表示の視認性を向上させると共に、
表示光の光の利用効率も上げられる。また、賦形フィル
ムというフィルム形態の賦形型であり、且つ金型よりも
著しく安価であるので、物品の一品毎に新しい賦形型
(フィルム)を使う、「使い捨て(切り)」の使用が実
用上可能となるので、賦形型(フィルム)の賦形面に傷
が付いたとしても、フィルム交換のみで修復でき、入れ
子等のブロック状の賦形型を取り替えたり、作り変えた
りする面倒な作業が必要なくなる。従って、射出成形で
射出成形型内に賦形型を配置して物品の成形と同時にそ
の表面に反射防止加工を行う場合でも、賦形型の傷付き
による面倒な型交換による生産性低下は発生せず、生産
性が向上する。また、賦形フィルムというフィルム形態
では、連続帯状で使用する事もできる為、使い回しも容
易であるので、物品一品毎に新たな賦形フィルム(面)
を、容易に供給できる。従って、反射防止加工を生産性
(量産性)良く低コストで実施できる。
(1) According to the antireflection shaping film of the present invention, an antireflection article having an antireflection function is obtained by shaping fine irregularities on the article surface. Moreover, the antireflection function improves the visibility of the display and
The utilization efficiency of the display light can be increased. Also, since it is a film-shaped shaping mold called a shaping film and is significantly cheaper than a mold, it is recommended to use a new shaping mold (film) for each article, or to use "disposable (cut)". Since it is practically possible, even if the shaping surface of the shaping die (film) is scratched, it can be repaired only by exchanging the film, and it is troublesome to replace or modify the block shaped shaping die such as nesting. Unnecessary work. Therefore, even if a molding die is placed in the injection molding die by injection molding and anti-reflection processing is performed on the surface of the article at the same time as the molding of the article, productivity deterioration due to troublesome mold replacement due to scratches on the molding die occurs. Without, productivity is improved. In addition, in the form of shaped film, since it can be used in a continuous strip shape, it can be reused easily, so a new shaped film (surface) for each article
Can be easily supplied. Therefore, antireflection processing can be performed at low cost with good productivity (mass productivity).

【0102】(2)本発明の反射防止加工方法によれ
ば、樹脂からなる物品の表面に、反射防止機能が付与さ
れた反射防止物品が容易に得られる。しかも、その反射
防止機能は、表示の視認性を向上させると共に、表示光
の光の利用効率も上げられる。また、賦形型として反射
防止賦形フィルムというフィルム形態の型を使用するの
で、上記反射防止賦形フィルムによる作用効果で述べた
如く、反射防止加工を生産性(量産性)良く低コストで
実施できる。なお、流動状態の樹脂を賦形面に接触させ
るには、例えば、射出成形法、キャスティング方法等が
挙げられる。そして、流動状態の樹脂の固化による反射
防止物品の形状発現(成形)と、その反射防止加工とが
同時に1工程で完了する点でも、生産性が良く低コスト
となる。
(2) According to the antireflection processing method of the present invention, an antireflection article having an antireflection function provided on the surface of an article made of resin can be easily obtained. Moreover, the antireflection function improves the visibility of the display and improves the utilization efficiency of the display light. In addition, since a film-shaped mold called an antireflection shaped film is used as the shaping mold, the antireflection processing is performed with good productivity (mass productivity) and at low cost, as described in the action and effect of the antireflection shaped film. it can. Incidentally, in order to bring the resin in a fluid state into contact with the shaping surface, for example, an injection molding method, a casting method and the like can be mentioned. Further, the productivity is good and the cost is low in that the shape development (molding) of the antireflection article by the solidification of the resin in the fluidized state and the antireflection processing are simultaneously completed in one step.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の反射防止賦形フィルムの一形態を示す
断面図。
FIG. 1 is a sectional view showing an embodiment of an antireflection shaping film of the present invention.

【図2】賦形された微細凹凸2で得られる有効屈折率の
分布を概念的に説明する為の図(その1)。
FIG. 2 is a diagram (1) for conceptually explaining the distribution of the effective refractive index obtained by the shaped fine irregularities 2.

【図3】賦形された微細凹凸2で得られる有効屈折率の
分布を概念的に説明する為の図(その2)。
FIG. 3 is a diagram (part 2) for conceptually explaining the distribution of the effective refractive index obtained by the shaped fine irregularities 2.

【図4】賦形された微細凹凸2で得られる有効屈折率の
分布を概念的に説明する為の図(その3)。
FIG. 4 is a diagram (part 3) for conceptually explaining the distribution of the effective refractive index obtained by the shaped fine irregularities 2.

【図5】賦形された微細凹凸2の(垂直)断面形状の幾
つかを例示する断面図。
FIG. 5 is a cross-sectional view illustrating some (vertical) cross-sectional shapes of the shaped fine irregularities 2;

【図6】賦形された微細凹凸2の水平面内での配置の幾
つかを例示する断面図。
FIG. 6 is a cross-sectional view illustrating some arrangements of the shaped fine irregularities 2 in a horizontal plane.

【図7】微細凹凸2Aの成形版胴法による作製方法を概
念的に示す説明図。
FIG. 7 is an explanatory view conceptually showing a method for producing the fine irregularities 2A by the molding plate cylinder method.

【図8】本発明の反射防止賦形フィルムの別の一形態
(多層構成)を例示する断面図。
FIG. 8 is a cross-sectional view illustrating another embodiment (multilayer structure) of the antireflection shaping film of the present invention.

【図9】本発明の反射防止加工方法を概念的に示す説明
図。
FIG. 9 is an explanatory view conceptually showing the antireflection processing method of the present invention.

【符号の説明】[Explanation of symbols]

1 離型性基材フィルム 2A (賦形前の賦形フィルム上の)微細凹凸 2 (賦形後の基材上の)微細凹凸 2t (微細凹凸2の)最凸部 3 基材 4 素材フィルム 5 賦形層 10 反射防止賦形フィルム 20 反射防止物品 30 樹脂 40 凹凸形状 50 成形版胴 60 軸芯 70 液状組成物 80 電離放射線照射装置 81 電離放射線 90 圧着ローラ 100 剥離ローラ 200 塗液供給装置 E 賦形面 n 屈折率 na 屈折率(空気) nb 屈折率(基材) n0 屈折率 n1 屈折率 nef(Z) 有効屈折率 HMIN (微細凹凸2の)最小高さ PMAX 周期 R 反射率 λMIN 最小波長 λMAX 最大波長1 Releasable substrate film 2A Fine irregularities 2 (on the shaping film before shaping) Fine irregularities 2t (on the substrate after shaping) The most convex portions 3 (of the fine irregularities 2) Substrate 4 Material film 5 shaping layer 10 antireflection shaping film 20 antireflection article 30 resin 40 uneven shape 50 molding plate cylinder 60 shaft core 70 liquid composition 80 ionizing radiation irradiation device 81 ionizing radiation 90 pressure bonding roller 100 peeling roller 200 coating liquid supply device E Fukatachimen n the refractive index n a refractive index (air) n b refractive index (substrate) n 0 the refractive index n 1 the refractive index n ef (Z) effective refractive index H MIN (minute irregularities 2) minimum height P MAX Period R Reflectance λ MIN Minimum wavelength λ MAX Maximum wavelength

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B29L 7:00 G02B 1/10 A Fターム(参考) 2H042 BA04 BA05 BA15 BA20 2H091 FA31X FA37X FC14 FC17 LA12 2K009 AA12 BB24 DD15 4F205 AG05 AH73 AP11 GA01 GC02 GD02 GE27 GN01 GN04 GN29 4F209 AG01 AG05 PA08 PB02 PC05 PN20 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) // B29L 7:00 G02B 1/10 A F term (reference) 2H042 BA04 BA05 BA15 BA20 2H091 FA31X FA37X FC14 FC17 LA12 2K009 AA12 BB24 DD15 4F205 AG05 AH73 AP11 GA01 GC02 GD02 GE27 GN01 GN04 GN29 4F209 AG01 AG05 PA08 PB02 PC05 PN20

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 離型性基材フィルムの賦形面に、反射防
止用の微細凹凸が形成されて成る反射防止賦形フィルム
であって、 該微細凹凸は、可視光の波長帯域の真空中に於ける最小
波長をλMIN、該微細凹凸の最凹部に於ける周期をPMAX
としたときに、 PMAX≦λMIN なる関係を有し、 且つ該微細凹凸をその凹凸方向と直交する面で切断した
と仮定したときの断面内に於ける離型性基材フィルムの
材料部分の断面積占有率が、該微細凹凸の最凹部から最
凸部に行くに従って連続的に漸次減少して行く様な凹凸
である、反射防止賦形フィルム。
1. An antireflection shaping film comprising a release-molding base material film, on the shaping surface of which fine irregularities for antireflection are formed, wherein the fine irregularities are in a vacuum in a wavelength band of visible light. the at minimum wavelength lambda MIN in the in period on the outermost recess of the fine unevenness P MAX
And P MAX ≤ λ MIN , and the material part of the releasable substrate film in the cross section when it is assumed that the fine unevenness is cut by a plane orthogonal to the uneven direction. The antireflection shaped film, wherein the cross-sectional area occupancy is such a concavo-convex pattern that it gradually and gradually decreases from the most concave part of the fine concavity and convexity to the most convex part.
【請求項2】 請求項1記載の反射防止賦形フィルムの
賦形面に、流動状態の樹脂を接触させた後、該樹脂を固
化させ、而る後、反射防止賦形フィルムを固化した樹脂
から剥離することで、該樹脂面に、微細凹凸による反射
防止機能を付与する、反射防止加工方法。
2. A resin obtained by bringing a resin in a fluid state into contact with the shaping surface of the antireflection shaping film according to claim 1 and then solidifying the resin, and thereafter, solidifying the antireflection shaping film. An antireflection processing method for imparting an antireflection function to the resin surface by peeling from the resin surface.
JP2001284904A 2001-09-19 2001-09-19 Antireflection imparting film and antireflection processing method using the same Pending JP2003090902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001284904A JP2003090902A (en) 2001-09-19 2001-09-19 Antireflection imparting film and antireflection processing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001284904A JP2003090902A (en) 2001-09-19 2001-09-19 Antireflection imparting film and antireflection processing method using the same

Publications (1)

Publication Number Publication Date
JP2003090902A true JP2003090902A (en) 2003-03-28

Family

ID=19108146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001284904A Pending JP2003090902A (en) 2001-09-19 2001-09-19 Antireflection imparting film and antireflection processing method using the same

Country Status (1)

Country Link
JP (1) JP2003090902A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098304A (en) * 2001-09-26 2003-04-03 Dainippon Printing Co Ltd Antireflective transfer film and method for antireflection processing by using the same
WO2008102882A1 (en) * 2007-02-23 2008-08-28 Nippon Sheet Glass Company, Limited Reflection-preventing structure
JP2011018035A (en) * 2009-06-10 2011-01-27 Mitsubishi Rayon Co Ltd Casting mold film and method of producing anti-dazzling resin plate
JP2011118327A (en) * 2009-03-25 2011-06-16 Sumitomo Chemical Co Ltd Anti-dazzle processing method, and methods of manufacturing anti-dazzle film and die
WO2011129378A1 (en) * 2010-04-13 2011-10-20 旭化成イーマテリアルズ株式会社 Self-supporting film, self-supporting structure, method for manufacturing self-supporting film, and pellicle
KR101114854B1 (en) * 2004-12-24 2012-03-07 엘지디스플레이 주식회사 A backlight unit
WO2012105357A1 (en) * 2011-02-01 2012-08-09 シャープ株式会社 Laminated body and method for producing laminated body
JP2012244178A (en) * 2011-05-24 2012-12-10 Agency For Science Technology & Research Method and device for forming structure on resin
WO2013065384A1 (en) * 2011-10-31 2013-05-10 Jx日鉱日石エネルギー株式会社 Method for producing concave-convex substrate using sol-gel method, sol solution used in same, method for producing organic el element using same, and organic el element obtained thereby
JP5200271B1 (en) * 2012-01-25 2013-06-05 ウシオ電機株式会社 Polarized light irradiation device
JP2013116622A (en) * 2011-10-31 2013-06-13 Jx Nippon Oil & Energy Corp Method for producing concave-convex substrate using sol-gel method, sol solution used in same, method for producing organic el element using same, and organic el element obtained thereby
JP2013121713A (en) * 2011-11-11 2013-06-20 Jx Nippon Oil & Energy Corp Method for producing concave-convex substrate using sol-gel method, sol solution used in same, method for producing organic el element using same, and organic el element obtained thereby
JP5244976B2 (en) * 2009-08-05 2013-07-24 シャープ株式会社 Plate member and structure with observation window
JP5376029B1 (en) * 2012-09-28 2013-12-25 大日本印刷株式会社 Anti-reflective article
JP2014071312A (en) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd Repair method and manufacturing method for anti-reflection-article forming mold plate
WO2015194649A1 (en) * 2014-06-19 2015-12-23 デクセリアルズ株式会社 Optical body, film adhesive body, and method for manufacturing optical body
KR20180095821A (en) 2015-12-18 2018-08-28 데쿠세리아루즈 가부시키가이샤 A method of forming an antireflective optical element and a method of forming a display panel
KR20180096613A (en) 2015-12-18 2018-08-29 데쿠세리아루즈 가부시키가이샤 METHOD OF FORMING REFLECTION-ABSORBING OPTICAL SUBSTRATE
KR20220162895A (en) * 2021-05-31 2022-12-09 김성준 Manufacturing method of low-reflective plastic blackboard

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616851A (en) * 1991-11-25 1994-01-25 Dainippon Printing Co Ltd Mar-resistant antiglaring film, polarizing plate and production thereof
JPH07333404A (en) * 1994-02-15 1995-12-22 Dainippon Printing Co Ltd Optical functional membrane, optical functional film, antidazzle antireflection film, its production, polarizing plate and liquid crystal display device
JPH10206603A (en) * 1997-01-20 1998-08-07 Dainippon Printing Co Ltd Reflection preventive film and manufacture thereof
JPH10300902A (en) * 1997-01-20 1998-11-13 Dainippon Printing Co Ltd Antireflection film and manufacturing method therefor
JP2000071290A (en) * 1998-08-28 2000-03-07 Teijin Ltd Manufacture of antireflection article
JP2003098304A (en) * 2001-09-26 2003-04-03 Dainippon Printing Co Ltd Antireflective transfer film and method for antireflection processing by using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616851A (en) * 1991-11-25 1994-01-25 Dainippon Printing Co Ltd Mar-resistant antiglaring film, polarizing plate and production thereof
JPH07333404A (en) * 1994-02-15 1995-12-22 Dainippon Printing Co Ltd Optical functional membrane, optical functional film, antidazzle antireflection film, its production, polarizing plate and liquid crystal display device
JPH10206603A (en) * 1997-01-20 1998-08-07 Dainippon Printing Co Ltd Reflection preventive film and manufacture thereof
JPH10300902A (en) * 1997-01-20 1998-11-13 Dainippon Printing Co Ltd Antireflection film and manufacturing method therefor
JP2000071290A (en) * 1998-08-28 2000-03-07 Teijin Ltd Manufacture of antireflection article
JP2003098304A (en) * 2001-09-26 2003-04-03 Dainippon Printing Co Ltd Antireflective transfer film and method for antireflection processing by using the same

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098304A (en) * 2001-09-26 2003-04-03 Dainippon Printing Co Ltd Antireflective transfer film and method for antireflection processing by using the same
KR101114854B1 (en) * 2004-12-24 2012-03-07 엘지디스플레이 주식회사 A backlight unit
WO2008102882A1 (en) * 2007-02-23 2008-08-28 Nippon Sheet Glass Company, Limited Reflection-preventing structure
JP2011118327A (en) * 2009-03-25 2011-06-16 Sumitomo Chemical Co Ltd Anti-dazzle processing method, and methods of manufacturing anti-dazzle film and die
JP2011018035A (en) * 2009-06-10 2011-01-27 Mitsubishi Rayon Co Ltd Casting mold film and method of producing anti-dazzling resin plate
JP5244976B2 (en) * 2009-08-05 2013-07-24 シャープ株式会社 Plate member and structure with observation window
US9122002B2 (en) 2009-08-05 2015-09-01 Sharp Kabushiki Kaisha Tabular member and structure with observation port
CN102859397A (en) * 2010-04-13 2013-01-02 旭化成电子材料株式会社 Self-supporting film, self-supporting structure, method for manufacturing self-supporting film, and pellicle
CN104597531A (en) * 2010-04-13 2015-05-06 旭化成电子材料株式会社 Self-supporting film, self-supporting structure, and method for manufacturing self-supporting film
EP2560048A1 (en) * 2010-04-13 2013-02-20 Asahi Kasei E-Materials Corporation Self-supporting film, self-supporting structure, method for manufacturing self-supporting film, and pellicle
CN102859397B (en) * 2010-04-13 2015-11-25 旭化成电子材料株式会社 The manufacture method of self-supported membrane, self supporting structure body, self-supported membrane and pellicle
JP5827217B2 (en) * 2010-04-13 2015-12-02 旭化成イーマテリアルズ株式会社 Self-supporting film, self-supporting structure, manufacturing method of self-supporting film, and pellicle
KR101552002B1 (en) 2010-04-13 2015-09-09 아사히 가세이 이-매터리얼즈 가부시키가이샤 Self-supporting film, self-supporting structure, method for manufacturing self-supporting film, and pellicle
KR101578633B1 (en) * 2010-04-13 2015-12-17 아사히 가세이 이-매터리얼즈 가부시키가이샤 Self-supporting film, self-supporting structure, method for manufacturing self-supporting film, and pellicle
JPWO2011129378A1 (en) * 2010-04-13 2013-07-18 旭化成イーマテリアルズ株式会社 Self-supporting film, self-supporting structure, manufacturing method of self-supporting film, and pellicle
WO2011129378A1 (en) * 2010-04-13 2011-10-20 旭化成イーマテリアルズ株式会社 Self-supporting film, self-supporting structure, method for manufacturing self-supporting film, and pellicle
US10578962B2 (en) 2010-04-13 2020-03-03 Asahi Kasei E-Materials Corporation Self-supporting film, self-supporting structure, method for manufacturing self-supporting film, and pellicle
EP2560048A4 (en) * 2010-04-13 2017-08-23 Asahi Kasei E-materials Corporation Self-supporting film, self-supporting structure, method for manufacturing self-supporting film, and pellicle
CN104597531B (en) * 2010-04-13 2017-04-12 旭化成株式会社 Self-supporting film, self-supporting structure, and method for manufacturing self-supporting film
WO2012105357A1 (en) * 2011-02-01 2012-08-09 シャープ株式会社 Laminated body and method for producing laminated body
JP2012244178A (en) * 2011-05-24 2012-12-10 Agency For Science Technology & Research Method and device for forming structure on resin
AU2012330526B2 (en) * 2011-10-31 2015-07-30 Jx Nippon Oil & Energy Corporation Method for producing concave-convex substrate using sol-gel method, sol solution used in same, method for producing organic EL element using same, and organic EL element obtained thereby
JP2013116622A (en) * 2011-10-31 2013-06-13 Jx Nippon Oil & Energy Corp Method for producing concave-convex substrate using sol-gel method, sol solution used in same, method for producing organic el element using same, and organic el element obtained thereby
WO2013065384A1 (en) * 2011-10-31 2013-05-10 Jx日鉱日石エネルギー株式会社 Method for producing concave-convex substrate using sol-gel method, sol solution used in same, method for producing organic el element using same, and organic el element obtained thereby
US9221214B2 (en) 2011-10-31 2015-12-29 Jx Nippon Oil & Energy Corporation Method for producing concave-convex substrate using sol-gel method, sol used in same, method for producing organic EL element using same, and organic EL element obtained thereby
JP2013121713A (en) * 2011-11-11 2013-06-20 Jx Nippon Oil & Energy Corp Method for producing concave-convex substrate using sol-gel method, sol solution used in same, method for producing organic el element using same, and organic el element obtained thereby
JP5200271B1 (en) * 2012-01-25 2013-06-05 ウシオ電機株式会社 Polarized light irradiation device
JP2014112119A (en) * 2012-01-25 2014-06-19 Ushio Inc Polarization light irradiation apparatus
JP5376029B1 (en) * 2012-09-28 2013-12-25 大日本印刷株式会社 Anti-reflective article
JP2014071312A (en) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd Repair method and manufacturing method for anti-reflection-article forming mold plate
US9427894B2 (en) 2012-09-28 2016-08-30 Dai Nippon Printing Co., Ltd. Anti-reflection article
CN106461813A (en) * 2014-06-19 2017-02-22 迪睿合株式会社 Optical body, film adhesive body, and method for manufacturing optical body
JP2016004259A (en) * 2014-06-19 2016-01-12 デクセリアルズ株式会社 Optical film and method for manufacturing the same
CN106461813B (en) * 2014-06-19 2020-03-27 迪睿合株式会社 Optical body, film-attached body, and method for producing optical body
US11693156B2 (en) 2014-06-19 2023-07-04 Dexerials Corporation Optical body, film adhesive body, and method for manufacturing optical body
WO2015194649A1 (en) * 2014-06-19 2015-12-23 デクセリアルズ株式会社 Optical body, film adhesive body, and method for manufacturing optical body
KR20180096613A (en) 2015-12-18 2018-08-29 데쿠세리아루즈 가부시키가이샤 METHOD OF FORMING REFLECTION-ABSORBING OPTICAL SUBSTRATE
EP3809167A1 (en) 2015-12-18 2021-04-21 Dexerials Corporation Method of forming antireflection optical body, display panel, and optical film
US10987884B2 (en) 2015-12-18 2021-04-27 Dexerials Corporation Method of forming antireflection optical body, display panel, and optical film
EP3869242A1 (en) 2015-12-18 2021-08-25 Dexerials Corporation Optical film and antireflection optical body
US11110673B2 (en) 2015-12-18 2021-09-07 Dexerials Corporation Method of forming antireflection optical body, and display panel
KR20180095821A (en) 2015-12-18 2018-08-28 데쿠세리아루즈 가부시키가이샤 A method of forming an antireflective optical element and a method of forming a display panel
KR20220162895A (en) * 2021-05-31 2022-12-09 김성준 Manufacturing method of low-reflective plastic blackboard
KR102528462B1 (en) * 2021-05-31 2023-05-10 김성준 Manufacturing method of low-reflective plastic blackboard

Similar Documents

Publication Publication Date Title
JP2003090902A (en) Antireflection imparting film and antireflection processing method using the same
US6677703B2 (en) Cover plate for display device, method of making the same, display device and reflection reducing structure
US8318056B2 (en) Optical sheet manufacturing method
US7094452B2 (en) Antireflective member and electronic equipment using same
JP4632589B2 (en) Transparent touch panel with antireflection function and display device using the same
JP2003098304A (en) Antireflective transfer film and method for antireflection processing by using the same
JP2003240903A (en) Antireflection article
JP2003240904A (en) Antireflection article
WO2000008494A1 (en) Lens sheet and method for producing the same
JPH0855507A (en) Surface light source, display device using it and light diffusing sheet used therefor
JP2003215314A (en) Antireflection article
JP2004205990A (en) Manufacturing method of fine rugged pattern having antireflection performance and antireflection article
EP3462081B1 (en) Optical body, method for manufacturing optical body, and light-emitting apparatus
JP2003205564A (en) Electrification preventing transfer foil with reflection preventing function
JP2019071275A (en) Optical body, method for manufacturing optical body, light-emitting device, and image display device
JP2007090656A (en) Translucent article
JP4304001B2 (en) Authenticator
JP2003149405A (en) Method for manufacturing antireflection article by photopolymerization method
JPWO2020145265A1 (en) Display and printed matter with labels
JP7088650B2 (en) Optical body and light emitting device
JP2003154555A (en) Manufacturing method for reflection-preventing article by injection-molding
JP2004163530A (en) Manufacturing method for lenticular lens sheet
JP5509566B2 (en) Optical component and liquid crystal display unit
JP2001133608A (en) Diffused reflection plate and transfer original mold
JP5732622B2 (en) Optical member manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308