JP2006044075A - Production apparatus for optical component made of resin, production method, and optical component made of resin - Google Patents

Production apparatus for optical component made of resin, production method, and optical component made of resin Download PDF

Info

Publication number
JP2006044075A
JP2006044075A JP2004228540A JP2004228540A JP2006044075A JP 2006044075 A JP2006044075 A JP 2006044075A JP 2004228540 A JP2004228540 A JP 2004228540A JP 2004228540 A JP2004228540 A JP 2004228540A JP 2006044075 A JP2006044075 A JP 2006044075A
Authority
JP
Japan
Prior art keywords
optical component
fine
resin
resin optical
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004228540A
Other languages
Japanese (ja)
Inventor
Yoshihiko Ishidaka
良彦 石高
Tetsuya Fukuda
哲也 福田
Hiroyuki Takahagi
広之 高萩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2004228540A priority Critical patent/JP2006044075A/en
Publication of JP2006044075A publication Critical patent/JP2006044075A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin-made optical component improved in reflection preventing characteristics by providing a technique which can prevent the unnecessary deformation of a minute uneven part when the minute uneven part is peeled from a master mold. <P>SOLUTION: As a separation mechanism for separating the resin-made optical component from the master mold 36 installed in a molding cavity, a function to peel the optical component from the master mold within a dislocation direction range of ±15° to the arrangement direction in which minute transfer uneven parts 37 are arranged is provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光の波長以下の高さとピッチで形成された微細凹凸部が複数形成された樹脂製光学部品の成形用型とこの成形用型を用いて前記樹脂製光学部品を製造する方法と樹脂製光学部品に関するものである。   The present invention relates to a molding die for a resin optical component in which a plurality of fine irregularities formed at a height and pitch equal to or less than the wavelength of light are formed, and a method for producing the resin optical component using the molding die. The present invention relates to a resin optical component.

光の波長以下のピッチでサブミクロンオーダーの微細な凹部又は凸部が多数形成された樹脂製光学部品として、例えば、反射型の液晶パネルの前面側に備えられるフロントライトと称する照明装置の導光板に設けられる反射防止膜(ARコート層)を例示することができる。
図24は、導光板と反射防止膜を備えたフロントライトが設けられた反射型液晶表示装置の断面構成図であり、この構成図に示す液晶表示装置100は、液晶パネル120と、この液晶パネル120の前面側に配設されたフロントライト110とを具備して構成されている。
For example, a light guide plate of a lighting device called a front light provided on the front side of a reflective liquid crystal panel as a resin optical component in which a large number of fine concaves or convexes on the order of submicron are formed at a pitch less than the wavelength of light An antireflection film (AR coating layer) provided on the substrate can be exemplified.
FIG. 24 is a cross-sectional configuration diagram of a reflective liquid crystal display device provided with a front light having a light guide plate and an antireflection film. The liquid crystal display device 100 shown in this configuration diagram includes a liquid crystal panel 120 and the liquid crystal panel. 120 and a front light 110 disposed on the front side of 120.

このフロントライト110は、平板状の導光板112と、この導光板112の側端面112a側に配設された棒状の光源113とを備えて構成されており、この光源113から出射された光を導光板112の側端面112aから導光板112の内部側へ導入し、この光を導光板112の上面側の反射面112cで反射させることにより光の伝搬方向を変えて、導光板112の底面側の出射面112bから液晶パネル120側へ向けて照射できるように構成されている。先の導光板112の反射面112cには、断面くさび型の微細な凹部(溝)115が多数配列形成され、三角型の凹凸部を構成する緩斜面と急斜面が形成されており、先の緩斜面において導光板112の内部側で光を伝搬させ、急斜面において光を液晶パネル120側に出射できるように構成されている。
また、前記出射面112bには、反射防止膜117が形成されており、導光板112内部を伝搬する光を効率良く低反射率で液晶パネル120側へ取り出すことができるように構成されており、また、反射型の液晶パネル120からの反射光が導光板112の表面で反射して減衰する現象を防ぐことができるようになっている。この反射防止膜117は、表面にAR(Anti-Reflective)格子と称される光の波長以下のピッチでサブミクロンオーダーの多数の微細な凹凸部(突起)が形成されたものである。
The front light 110 includes a flat light guide plate 112 and a rod-shaped light source 113 disposed on the side end surface 112a side of the light guide plate 112. The front light 110 is configured to transmit light emitted from the light source 113. The light is introduced from the side end surface 112a of the light guide plate 112 to the inner side of the light guide plate 112, and the light is reflected by the reflection surface 112c on the upper surface side of the light guide plate 112 to change the light propagation direction. It is comprised so that it can irradiate toward the liquid crystal panel 120 side from the output surface 112b. On the reflection surface 112c of the previous light guide plate 112, a large number of wedge-shaped concave portions (grooves) 115 having a wedge-shaped cross section are formed, and a gentle slope and a steep slope constituting a triangular concave and convex portion are formed. The light is propagated on the inner side of the light guide plate 112 on the slope, and the light can be emitted to the liquid crystal panel 120 side on the steep slope.
In addition, an antireflection film 117 is formed on the emission surface 112b so that light propagating through the light guide plate 112 can be efficiently extracted to the liquid crystal panel 120 side with low reflectance. Further, it is possible to prevent a phenomenon in which reflected light from the reflective liquid crystal panel 120 is reflected and attenuated by the surface of the light guide plate 112. The antireflection film 117 has a surface on which a large number of fine irregularities (projections) of submicron order are formed at a pitch less than the wavelength of light called an AR (Anti-Reflective) grating.

前記のような導光板112や反射防止膜117などのように光の波長以下のサブミクロンオーダーの微細な凹凸部が多数形成された微細凹凸形成面を有する樹脂製光学部品の従来の製造方法としては、キャビティ空間に前記微細凹凸形成面と逆の凹凸転写面が形成されたNi電鋳型を用い、キャビティ空間に光学部品材料のシリコン系樹脂等を射出する射出成形法が採用されていた(例えば、特許文献1、2参照)。
前記のNi電鋳型を作製するには、前記樹脂製光学部品の外形と同じ凹凸形状のマスター型を用い、このマスター型の表面上にNiを電解によって必要な厚さに付けた後、離型すると、マスター型表面の凹凸形状と凹凸が逆の凹凸形状を有する型面を備えた電鋳型が得られるので、これを用いて樹脂成形により微細凹凸形状を備えた樹脂製の反射防止膜を得ることができる。
特開平6−201908号公報 特開2002−372603号公報
As a conventional method of manufacturing a resin optical component having a fine uneven surface on which a large number of fine uneven portions of submicron order below the wavelength of light are formed, such as the light guide plate 112 and the antireflection film 117 as described above. Has adopted an injection molding method in which a silicon electromolding material such as an optical component material is injected into a cavity space using a Ni electroforming mold in which a concave and convex transfer surface opposite to the fine unevenness forming surface is formed in the cavity space (for example, Patent Documents 1 and 2).
In order to produce the Ni electroforming mold, a master mold having the same concave / convex shape as the outer shape of the resin optical component is used, and Ni is applied to the required thickness by electrolysis on the surface of the master mold, and then released. As a result, an electroforming mold having a concavo-convex shape in which the concavo-convex shape of the master mold surface is opposite to the concavo-convex shape is obtained, and a resin antireflection film having a fine concavo-convex shape is obtained by resin molding. be able to.
JP-A-6-201908 JP 2002-372603 A

しかしながらNi電鋳型を用いる従来の樹脂製光学部品の製造方法において、前記微細凹凸形成面の微細な凸部又は凹部を備えたサブミクロンオーダーの樹脂製光学部品を製造しようとすると、前記マスター型の凹凸形状をNi電鋳型に転写する精度が悪く、従って最終的に得られる樹脂製光学部品の寸法精度が著しく低下してしまう問題がある。また、Ni電鋳型から樹脂射出成形物(樹脂製光学部品)を離型するときの離型性が悪いため、不良率が高く、製造効率を向上できないという問題があった。これらの問題は前記微細凹凸形成面の微細な凸部又は凹部のアスペクト比が1以上の樹脂製光学部品を製造する場合にさらに顕著に生じてしまい、具体的には、樹脂製光学部品の凸部の高さ又は凹部の深さが目標寸法から10%以上も異なってしまうことがあった。   However, in a conventional method for manufacturing a resin optical component using a Ni electroforming mold, if an attempt is made to manufacture a submicron-order resin optical component having a fine convexity or a concave portion on the fine irregularity forming surface, There is a problem in that the accuracy of transferring the concavo-convex shape to the Ni electromold is poor, and therefore the dimensional accuracy of the finally obtained resin optical component is significantly reduced. In addition, there is a problem that the defect rate is high and the production efficiency cannot be improved because the mold release property when the resin injection molded product (resin optical part) is released from the Ni electroforming mold is poor. These problems are more prominent when a resin optical component having an aspect ratio of 1 or more of the fine protrusions or recesses on the fine unevenness forming surface is produced. The height of the part or the depth of the concave part may differ by 10% or more from the target dimension.

なお、樹脂成形後の離型操作を容易にする技術として、Ni電鋳型の表面に高融点のワックス類やシリコーン油等の離型剤を塗布する方法が知られているが、Ni電鋳型の表面に離型剤を逐一塗布する作業自体が面倒であり、また、数回ショットして成形した後に離型剤の塗布が必要になるため、製造効率が悪くなってしまう問題がある。
そこで本発明者らは、Ni電鋳型を用いる代わりに、SiOなどの離型性の良好な無機質膜を型内の成形キャビティに設け、良好な成形性を確保する技術について研究しているが、光の波長以下の高さを有し、光の波長以下の微細なピッチの微細凹凸部をマスター型を用いて樹脂成形により形成した場合、以下に説明する問題を生じることを知見している。
As a technique for facilitating the mold release operation after resin molding, a method of applying a mold release agent such as high melting point waxes or silicone oil to the surface of the Ni electromold is known. The operation itself of applying the release agent to the surface one by one is troublesome, and since it is necessary to apply the release agent after molding after several shots, there is a problem that the production efficiency is deteriorated.
Therefore, the present inventors have been studying a technique for ensuring good moldability by providing an inorganic film having good releasability such as SiO 2 in the mold cavity in place of using the Ni electroforming mold. It has been found that, when a fine concavo-convex portion having a height equal to or smaller than the wavelength of light and having a fine pitch equal to or smaller than the wavelength of light is formed by resin molding using a master mold, the following problem occurs. .

まず、光の波長よりも小さなピッチで微細凹凸部を有する樹脂製光学部品を樹脂の成形法で製造する場合、マスター型から樹脂製光学部品を離型する操作が必要となるが、光の波長以下の高さでピッチの微細な凹凸部がマスター型から外れる時点でマスター型の転写用微細凹凸部内に成形されている微細凹凸部が、マスター型の転写用微細凹凸部から、変形されながら抜け出るので、製造するべきサブミクロンオーダーの微細な凹凸部形状が、いびつな形状に変形する傾向が高いという問題があることを知見している。
例えば、図25に示すように、微細凹凸部を一面側に形成した板状部130Aとそれに隣接する厚肉部130Bとからなる樹脂製光学部品130をマスター型を用いた樹脂形成により製造し、これをマスター型から離型する場合、樹脂製光学部品130の外観に影響がないと思われる隅部の端部130a、130bと、厚肉部130Bの数カ所を矢印で示すように成形装置の突き上げピンや突き出しブロックなどを用いて押し上げて矢印方向に樹脂製光学部品130を引き剥がした場合、特に得られた樹脂製光学部品130の板状部130Aにおいて、整列形成された多数の微細凹凸部131のうち、板状部130Aの左右両側に位置する複数の微細凸部が例えばハート形などのような、いびつな形状に変形し、しかも変形部分の方向がばらついてしまう問題があることを知見した。なお、このような事情は図26の矢印に示す如く、板状部130Aの全周に対して複数の位置を均等に押し上げて離型しようとした場合も同じように変形することを本発明者は知見している。
First, when a resin optical component having fine irregularities with a pitch smaller than the wavelength of light is manufactured by a resin molding method, an operation of releasing the resin optical component from the master mold is required. At the time when the fine irregularities of the pitch at the following heights are removed from the master mold, the fine irregularities formed in the fine irregularities for transfer of the master mold come out from the fine irregularities for transfer of the master mold while being deformed. Therefore, it has been found that there is a problem that the shape of the fine irregularities on the submicron order to be manufactured has a high tendency to deform into an irregular shape.
For example, as shown in FIG. 25, a resin optical component 130 composed of a plate-like portion 130A having a fine uneven portion formed on one surface side and a thick portion 130B adjacent thereto is manufactured by resin formation using a master mold, When this is released from the master mold, the molding apparatus is pushed up as shown by arrows at the corners 130a and 130b and the thick wall 130B, which are considered not to affect the appearance of the resin optical component 130. When the resin optical component 130 is peeled off in the direction of the arrow by pushing it up using a pin or a protruding block, a number of fine irregularities 131 formed in alignment in the plate-like portion 130A of the resin optical component 130 obtained in particular. Among them, a plurality of fine convex portions located on the left and right sides of the plate-like portion 130A are deformed into an irregular shape such as a heart shape, and the directions of the deformed portions are scattered. It was found that there is a problem that had. It should be noted that, as shown by the arrows in FIG. 26, the present inventor has the same deformation when trying to release the plurality of positions evenly with respect to the entire circumference of the plate-like portion 130A. Knows.

これは、樹脂製光学部品とマスター型とがいずれも樹脂製であり、両者が必然的に撓曲性を有し、しかも先の微細凹凸部が光の波長以下の高さやピッチである構成のように、極めて微細な形状を有するがために、樹脂製光学部品とマスター型の少なくとも一方が必然的に撓みながら変形し、剥離してゆくので、樹脂製光学部品の微細凹凸部とマスター型の凹凸転写面の微細転写凹凸部の両方が斜め方向の力を受けて擦れ合いながら剥離してゆくので、形成直後の加熱された状態の微細凹凸部の各凸部がマスター型の凹凸転写面の微細凹部によって倒されるように変形を受けながら離型した結果であると考えられる。   This is because the resin optical parts and the master mold are both made of resin, both of which have inevitably bendability, and the fine irregularities on the tip have a height or pitch below the wavelength of light. Thus, since it has an extremely fine shape, at least one of the resin optical component and the master mold inevitably bends and deforms and peels off. Since both of the fine transfer concavo-convex portions of the concavo-convex transfer surface are subjected to an oblique force and are rubbed and peeled off, each convex portion of the heated fine concavo-convex portion immediately after formation is formed on the master-type concavo-convex transfer surface. This is considered to be a result of releasing the mold while being deformed so as to be collapsed by the fine recess.

本発明は前記事情に鑑みてなされたもので、光の波長以下の高さとピッチの微細凹凸部を有する樹脂製光学部品を成形により製造する場合、マスター型から微細凹凸部を剥離する際の微細凹凸部の不用な変形を防止できる技術を提供することで反射防止特性を良好なものとした樹脂製光学部品を製造できる装置と製造方法、並びに樹脂製光学部品の提供を目的とする。   The present invention has been made in view of the above circumstances, and in the case of manufacturing a resin optical component having a fine uneven portion having a height below the wavelength of light and a pitch by molding, the fineness when peeling the fine uneven portion from the master mold. It is an object of the present invention to provide an apparatus and a manufacturing method capable of manufacturing a resin optical component having a good antireflection characteristic by providing a technique capable of preventing unnecessary deformation of the uneven portion, and a resin optical component.

本発明は前記事情に鑑みてなされたもので、光透過性樹脂を成形して光の波長以下の高さとピッチで微細凹凸部が複数形成された微細凹凸形成面を有する樹脂製光学部品を射出成形するための成形用型であって、前記微細凹凸部が複数形成された微細凹凸形成面を有する樹脂製光学部品を成形するためのキャビティ空間を画定する第1の母型と第2の母型が型開き自在に備えられ、前記第1の母型と第2の母型の少なくとも一方の内面に前記樹脂製光学部品の微細凹凸部と逆の凹凸形状が形成された微細転写凹凸部を有する無機材料層からなるマスター型が設けられるとともに、前記マスター型から前記樹脂製光学部品を分離するための分離機構が、前記微細転写凹凸部の並ぶ配列方向に対し、±15゜のずれ方向範囲内で前記樹脂製光学部品を前記マスター型から引き剥がす機能を有してなることを特徴とする。   The present invention has been made in view of the above circumstances, and injects a resin optical component having a fine uneven surface formed by molding a light-transmitting resin and forming a plurality of fine uneven portions with a height and a pitch below the wavelength of light. A molding die for molding, a first mother die and a second mother die that define a cavity space for molding a resin optical component having a fine irregularity-formed surface on which a plurality of fine irregularities are formed. A fine transfer concavo-convex portion provided with a mold that can be freely opened and having a concavo-convex shape opposite to the fine concavo-convex portion of the resin optical component formed on at least one inner surface of the first mother die and the second mother die. And a separation mechanism for separating the resin optical component from the master mold has a deviation direction range of ± 15 ° with respect to the arrangement direction of the fine transfer uneven portions. Within the resin optical part The characterized by comprising a function of peeling off from the master mold.

離型時において、マスター型の微細転写凹凸部から樹脂製光学部品の微細凹凸部が抜き出される場合、マスター型の微細転写凹凸部あるいは樹脂製光学部品の微細凹凸部の少なくとも一方あるいは両方が互いに擦れ合いながら斜め方向に変形力を受けながら離型されるので、樹脂製光学部品の微細凹凸部の少なくとも一部には変形力に応じた変形部を必然的に生じる。そして、これらの変形部はマスター型の微細転写凹凸部の配列方向に沿って±15゜のずれ方向範囲内で前記樹脂製光学部品を前記マスター型から引き剥がした場合は、微細転写凹凸部の配列方向に沿って±15゜のずれ方向範囲内に生じる。即ち、得られる樹脂製光学部品の微細凹凸部において、それらの配列方向に沿って±15゜のずれ方向範囲内に変形部を生じた樹脂製光学部品が得られる。ここで変形部が配列方向に沿って±15゜のずれ方向範囲内に存在するならば、得られた樹脂製光学部品に外観上の色むらを生じることがない。また、先の範囲内に変形部があるならば、樹脂製光学部品が曇ることもない。従って外観上の色むらのない、曇りのない、光学的に特性良好な樹脂製光学部品を得ることができる。   At the time of mold release, when the fine uneven portion of the resin optical component is extracted from the fine transfer uneven portion of the master mold, at least one or both of the fine transfer uneven portion of the master mold and the fine uneven portion of the resin optical component are mutually Since the mold is released while receiving a deformation force in an oblique direction while rubbing, a deformation portion corresponding to the deformation force is inevitably generated in at least a part of the fine uneven portion of the resin optical component. When these resin optical parts are peeled off from the master mold within a deviation direction range of ± 15 ° along the direction of arrangement of the master type fine transfer uneven parts, It occurs within a deviation direction range of ± 15 ° along the arrangement direction. In other words, in the fine uneven portion of the resin optical component obtained, a resin optical component in which a deformed portion is generated within a deviation direction range of ± 15 ° along the arrangement direction can be obtained. Here, if the deformed portion exists within a deviation direction range of ± 15 ° along the arrangement direction, the obtained resin optical component does not have uneven color appearance. Further, if there is a deformed portion within the above range, the resin optical component will not be fogged. Accordingly, it is possible to obtain a resin optical component having no color unevenness in appearance, no fogging, and good optical characteristics.

前記分離機構が前記樹脂製光学部品をその一辺側から他辺側に向けて直線的に引き剥がす方向に前記マスター型から分離させる機能を有することを特徴とする。
樹脂製光学部品をその一辺側から他辺側に向けて直線的に引き剥がす方向に前記マスター型から分離させる機能を分離機構が有することで、樹脂製光学部品の微細凹凸部に変形部を生じる場合であってもマスター型の微細転写凹凸部の配列方向に沿って生成することができる。これにより、外観上の色むらのない、曇りのない、光学的に特性良好な樹脂製光学部品を得ることができる。
The separation mechanism has a function of separating the resin optical component from the master mold in a direction in which the resin optical component is linearly peeled from one side to the other side.
The separation mechanism has a function of separating the resin optical component from the master mold in a direction of linearly peeling the resin optical component from one side to the other side, thereby generating a deformed portion in the fine uneven portion of the resin optical component. Even if it is a case, it can produce | generate along the arrangement direction of a master type | mold fine transfer uneven | corrugated | grooved part. As a result, it is possible to obtain a resin optical component having no appearance color unevenness, no fogging, and good optical characteristics.

本発明は、前記マスター型が基板と該基板上に形成されて前記微細凹凸転写面を有するSiO膜からなることを特徴とする。
無機材料層のマスター型として、SiO膜からなるものを用いることができる。このマスター型であるならば、Ni電鋳を用いた従来の型による成形よりも少ない欠陥部の生成で樹脂製光学部品を得ることができ、先に説明した外観上の色むらのない、曇りのない、光学的に特性良好な樹脂製光学部品で欠陥の少ないものを提供できる。
The present invention is characterized in that the master mold includes a substrate and a SiO 2 film formed on the substrate and having the fine unevenness transfer surface.
As the master type of the inorganic material layer, a material made of a SiO 2 film can be used. If this master mold is used, it is possible to obtain a resin optical component with fewer defective parts than with the conventional mold using Ni electroforming, and the above-described appearance of non-uniform color and cloudiness. It is possible to provide a resin optical part having no defects and having good optical characteristics and having few defects.

本発明は、前記微細転写凹凸部の凸部または凹部のピッチが100〜300nmの範囲に、前記凸部または凹部の高さまたは深さが100〜300nmの範囲に設定されてなることを特徴とする。
これらのピッチと高さまたは深さの微細転写凹凸部を有するマスター型から形成される微細凹凸部を有する樹脂製光学部品であるならば、可視光域において確実に防反射効果を発揮し、離型も確実にできる樹脂製光学部品が得られる。
The present invention is characterized in that the pitch of the convex portions or concave portions of the fine transfer concavo-convex portion is set in the range of 100 to 300 nm, and the height or depth of the convex portions or concave portions is set in the range of 100 to 300 nm. To do.
If it is a resin optical component having fine irregularities formed from a master mold having fine transfer irregularities of these pitches and heights or depths, it reliably exhibits an anti-reflection effect in the visible light range and is separated. Resin optical parts that can be reliably molded are obtained.

本発明は、光透過性樹脂を成形用型のキャビティ空間部に射出成形して光の波長以下の高さとピッチで微細凹凸部が複数形成された微細凹凸形成面を有する樹脂製光学部品を成形する樹脂製光学部品の製造方法であって、前記成形用型として、前記微細凹凸部が複数形成された微細凹凸形成面を有する樹脂製光学部品を成形するためのキャビティ空間を画定する第1の母型と第2の母型とが型開き自在に備えられ、前記第1の母型と第2の母型の少なくとも一方の内面に前記樹脂製光学部品の微細凹凸部と逆の凹凸形状が形成された微細凹凸転写面を有する無機材料層からなるマスター型が設けられてなる樹脂製光学部品成形用型を用い、前記キャビティ空間部に光透過性樹脂を注入して微細凹凸部を有する樹脂製光学部品を形成した後、該樹脂製光学部品を前記マスター型から分離する際、前記複数の微細な凹凸部が並ぶ配列方向に対して±15゜のずれ方向範囲内に離型時の引き剥がし方向が入るように樹脂製光学部品を前記マスター型から剥離することを特徴とする。   The present invention molds a resin optical component having a fine uneven surface with a plurality of fine uneven portions formed at a height and a pitch below the wavelength of light by injection molding a light-transmitting resin into a cavity space of a mold. A method of manufacturing a resin optical component, wherein the mold mold defines a cavity space for molding a resin optical component having a fine uneven surface on which a plurality of fine uneven portions are formed. A mother die and a second mother die are provided so that the molds can freely open, and at least one inner surface of the first mother die and the second mother die has an uneven shape opposite to the fine uneven portion of the resin optical component. A resin having a fine uneven portion by injecting a light-transmitting resin into the cavity space portion using a resin mold for molding an optical component provided with a master die made of an inorganic material layer having a fine uneven transfer surface. After forming the optical component, the When separating a fat optical component from the master mold, a resin optical is used so that the peeling direction at the time of mold release is within a deviation direction range of ± 15 ° with respect to the arrangement direction in which the plurality of fine irregularities are arranged. The part is peeled off from the master mold.

マスター型から樹脂製光学部品を分離する場合において、マスター型の微細転写凹凸部から樹脂製光学部品の微細凹凸部が抜き出される場合、マスター型の微細転写凹凸部あるいは樹脂製光学部品の微細凹凸部の少なくとも一方あるいは両方が互いに擦れ合いながら斜め方向に変形力を受けながら離型されるので、樹脂製光学部品の微細凹凸部の少なくとも一部には変形力に応じた変形部を必然的に生じる。
そして、これらの変形部はマスター型の微細転写凹凸部の配列方向に沿って±15゜のずれ方向範囲内で前記樹脂製光学部品を前記マスター型から引き剥がした場合は、微細転写凹凸部の配列方向に沿って±15゜のずれ方向範囲内に生じる。即ち、得られる樹脂製光学部品の微細凹凸部において、それらの配列方向に沿って±15゜のずれ方向範囲内に変形部を生じた樹脂製光学部品が得られる。ここで変形部が配列方向に沿って±15゜のずれ方向範囲内に存在するならば、得られた樹脂製光学部品に外観上の色むらを生じることがない。また、先の範囲内に変形部があるならば、樹脂製光学部品が曇ることもない。従って外観上の色むらのない、曇りのない、光学的に特性良好な樹脂製光学部品を得ることができる。
When separating the resin optical parts from the master mold, if the fine uneven parts of the resin optical parts are extracted from the fine transfer uneven parts of the master mold, the fine transfer uneven parts of the master mold or the fine uneven parts of the resin optical component Since at least one or both of the parts are released from each other while receiving a deformation force in an oblique direction while rubbing each other, at least a part of the fine uneven portion of the resin optical component necessarily has a deformation portion corresponding to the deformation force. Arise.
When these resin optical parts are peeled off from the master mold within a deviation direction range of ± 15 ° along the direction of arrangement of the master type fine transfer uneven parts, It occurs within a deviation direction range of ± 15 ° along the arrangement direction. In other words, in the fine uneven portion of the resin optical component obtained, a resin optical component in which a deformed portion is generated within a deviation direction range of ± 15 ° along the arrangement direction can be obtained. Here, if the deformed portion exists within a deviation direction range of ± 15 ° along the arrangement direction, the obtained resin optical component does not have uneven color appearance. Further, if there is a deformed portion within the above range, the resin optical component will not be fogged. Accordingly, it is possible to obtain a resin optical component having no color unevenness in appearance, no fogging, and good optical characteristics.

本発明は、前記樹脂製光学部品を前記マスター型から剥離する場合にその一辺側から他辺側に向けて直線状に引き剥がして剥離することを特徴とする。
樹脂製光学部品をその一辺側から他辺側に向けて直線的に引き剥がす方向に前記マスター型から分離させることで、樹脂製光学部品の微細凹凸部に変形部を生じる場合であってもマスター型の微細転写凹凸部の配列方向に沿って生成することができる。これにより、外観上の色むらのない、曇りのない、光学的に特性良好な樹脂製光学部品を得ることができる。
The present invention is characterized in that when the resin optical component is peeled off from the master mold, it is peeled off linearly from one side to the other side.
Even when a deformed portion is generated in the fine uneven portion of the resin optical component by separating the resin optical component from the master mold in a direction in which the resin optical component is linearly peeled from one side to the other side, the master It can be generated along the direction of arrangement of the fine transfer irregularities of the mold. As a result, it is possible to obtain a resin optical component having no appearance color unevenness, no fogging, and good optical characteristics.

本発明は、前記微細凹凸転写面の凸部または凹部のピッチを100〜300nmの範囲に、前記凸部または凹部の高さまたは深さを100〜300nmの範囲に設定してなることを特徴とする。
これらのピッチと高さまたは深さの微細転写凹凸部を有するマスター型から形成される微細凹凸部を有する樹脂製光学部品であるならば、可視光域において確実に防反射効果を発揮し、離型も確実にできる樹脂製光学部品が得られる。
The present invention is characterized in that the pitch of convex portions or concave portions of the fine unevenness transfer surface is set in the range of 100 to 300 nm, and the height or depth of the convex portions or concave portions is set in the range of 100 to 300 nm. To do.
If it is a resin optical component having fine irregularities formed from a master mold having fine transfer irregularities of these pitches and heights or depths, it reliably exhibits an anti-reflection effect in the visible light range and is separated. Resin optical parts that can be reliably molded are obtained.

本発明は、光透過性樹脂を成形用型のキャビティ空間部に射出成形して光の波長以下の高さとピッチで微細凹凸部が複数形成された微細凹凸形成面を有する樹脂製光学部品であり、前記複数の微細凹凸部においてこれらの配列方向に対して±15゜の範囲内の部分に、変形部が形成されてなることを特徴とする。
変形部が微細凹凸部の配列方向に沿って±15゜のずれ方向範囲内に生じている構造であると、樹脂製光学部品に外観上の色むらを生じることがない。また、先の範囲内に変形部があるならば、樹脂製光学部品が曇ることもない。従って外観上の色むらのない、曇りのない、光学的に特性良好な樹脂製光学部品を提供できる。
The present invention is a resin-made optical component having a fine uneven surface on which a plurality of fine uneven portions are formed at a height and a pitch below the wavelength of light by injection molding a light-transmitting resin into a cavity space of a mold. In the plurality of fine uneven portions, deformed portions are formed in portions within a range of ± 15 ° with respect to the arrangement direction.
If the deformed portion has a structure that occurs within a deviation direction range of ± 15 ° along the arrangement direction of the fine concavo-convex portions, color unevenness in appearance does not occur in the resin optical component. Further, if there is a deformed portion within the above range, the resin optical component will not be fogged. Therefore, it is possible to provide a resin optical component having no appearance color unevenness, no fogging, and good optical characteristics.

前記微細凹凸部における変形部は前記形成用型からの分離時に形成されたものである。
これにより、成形用型からの分離時に変形部を生じた樹脂製光学部品であっても外観上の色むらのない、曇りのない、光学的に特性良好な樹脂製光学部品を提供できる。
The deformed portion in the fine uneven portion is formed at the time of separation from the forming mold.
As a result, it is possible to provide a resin optical component that has a deformed portion at the time of separation from the molding die and has no optical color unevenness, no fogging, and good optical characteristics.

本発明は、前記微細凹凸部における凸部または凹部の平面形状が丸形であり、これら複数の丸形の凸部あるいは凹部のうち、少なくとも一部の凸部あるいは凹部が平面視略ハート形に変形され、これら少なくとも一部の凸部あるいは凹部のハート形変形部の窪み側あるいは突起側が、前記凸部または凹部の配列軸方向に対して±15゜の範囲に位置されてなることを特徴とする。
前記微細凹凸部における凸部または凹部として平面形状が丸形のものを適用することができ、これらが離型時にマスター型の微細転写凹凸部により変形を受けて平面視ハート形に変形されたとしても、ハート形の変形部の窪み側あるいは突起側などの変形部が凸部または凹部の配列軸方向に対して±15゜の範囲に位置されているならば、外観上の色むらのない、曇りのない、光学的に特性良好な樹脂製光学部品を提供できる。
In the present invention, the planar shape of the convex portion or the concave portion in the fine concavo-convex portion is round, and at least some of the convex portions or concave portions of the plurality of round convex portions or concave portions have a substantially heart shape in plan view. It is deformed, and the concave side or the projection side of the heart-shaped deformed portion of at least some of the convex portions or concave portions is positioned within a range of ± 15 ° with respect to the arrangement axis direction of the convex portions or concave portions. To do.
As the projections or recesses in the fine concavo-convex part, those having a round planar shape can be applied, and these were deformed by the master-type fine transfer concavo-convex part at the time of mold release and transformed into a heart shape in plan view. However, if the deformed part such as the depression side or the protruding side of the heart-shaped deformed part is located within a range of ± 15 ° with respect to the arrangement axis direction of the convex part or the concave part, there is no color unevenness in appearance. It is possible to provide a resin optical component having no optical fog and good optical characteristics.

本発明は、前記凸部または凹部のピッチが100〜300nmの範囲に、前記凸部または凹部の高さまたは深さが100〜300nmの範囲に設定されてなるので、これらのピッチと高さまたは深さの微細転写凹凸部を有するマスター型から形成される微細凹凸部を有する樹脂製光学部品であるならば、可視光域において確実に防反射効果を発揮し、離型も確実にできる樹脂製光学部品が得られる。   In the present invention, the pitch of the projections or recesses is set in the range of 100 to 300 nm, and the height or depth of the projections or recesses is set in the range of 100 to 300 nm. If it is a resin optical part with fine irregularities formed from a master mold with a fine transfer irregularity in the depth, it is made of resin that can reliably exhibit anti-reflection effect in the visible light range and also ensure mold release An optical component is obtained.

本発明により、離型時において、マスター型の微細転写凹凸部から樹脂製光学部品の微細凹凸部が抜き出される場合、マスター型の微細転写凹凸部あるいは樹脂製光学部品の微細凹凸部の少なくとも一方あるいは両方が互いに擦れ合いながら斜め方向に変形力を受けながら離型されるので、樹脂製光学部品の微細凹凸部の少なくとも一部には変形力に応じた変形部を必然的に生じる。そして、これらの変形部はマスター型の微細転写凹凸部の配列方向に沿って±15゜のずれ方向範囲内で前記樹脂製光学部品を前記マスター型から引き剥がした場合は、微細転写凹凸部の配列方向に沿って±15゜のずれ方向範囲内に生じる。即ち、得られる樹脂製光学部品の微細凹凸部において、それらの配列方向に沿って±15゜のずれ方向範囲内に変形部を生じた樹脂製光学部品が得られる。ここで変形部が配列方向に沿って±15゜のずれ方向範囲内に存在するならば、得られた樹脂製光学部品に外観上の色むらを生じることがない。また、先の範囲内に変形部があるならば、樹脂製光学部品が曇ることもない。従って外観上の色むらのない、曇りのない、光学的に特性良好な樹脂製光学部品を得ることができる。   According to the present invention, at the time of mold release, when the fine uneven portion of the resin optical component is extracted from the fine transfer uneven portion of the master mold, at least one of the fine transfer uneven portion of the master mold or the fine uneven portion of the resin optical component Alternatively, both are rubbed against each other and are released while receiving a deformation force in an oblique direction, so that a deformation portion corresponding to the deformation force is inevitably generated in at least a part of the fine uneven portion of the resin optical component. When these resin optical parts are peeled off from the master mold within a deviation direction range of ± 15 ° along the direction of arrangement of the master type fine transfer uneven parts, It occurs within a deviation direction range of ± 15 ° along the arrangement direction. In other words, in the fine uneven portion of the resin optical component obtained, a resin optical component in which a deformed portion is generated within a deviation direction range of ± 15 ° along the arrangement direction can be obtained. Here, if the deformed portion exists within a deviation direction range of ± 15 ° along the arrangement direction, the obtained resin optical component does not have uneven color appearance. Further, if there is a deformed portion within the above range, the resin optical component will not be fogged. Accordingly, it is possible to obtain a resin optical component having no color unevenness in appearance, no fogging, and good optical characteristics.

以下、本発明の実施の形態を図面を参照して説明するが、本発明は以下に説明する実施形態に限定されるものではない。
図1は、本発明に係る微細凹凸面を有する樹脂製光学部品の製造方法により製造された樹脂製光学部品を備えた液晶表示装置の一実施形態を示す断面図である。
この形態の液晶表示装置1は、反射型の液晶パネル20と、その上面側(前面側)に配設されたフロントライト(照明装置)10とを備えて構成されている。
このフロントライト10は、略平板状の透明の導光板12と、この導光板12の側端面(入光面)12a側に一体接続された光源13とを備えて構成されている。前記導光板12は、アクリル系樹脂やポリカーボネート系樹脂などの光透過性樹脂から構成され、この導光板12の図示下面側(液晶パネル20側)は、フロントライト10の照明光が出射される出射面12bとされており、図示上面側(液晶パネル20と反対側)には、断面視三角波状のプリズム形状が形成されている。より詳細には、前記出射面12bに対して傾斜して形成された緩斜面部14aと、この緩斜面部14aよりも急な傾斜角度で形成された急斜面部14bとからなる断面視三角形状の複数の凸部14が互いに平行に所定のピッチで形成されている。そして、導光板12の出射面12bの表面に反射防止膜(樹脂製光学部品)17が被着形成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments described below.
FIG. 1 is a cross-sectional view showing an embodiment of a liquid crystal display device including a resin optical component manufactured by the method for manufacturing a resin optical component having a fine uneven surface according to the present invention.
The liquid crystal display device 1 of this embodiment includes a reflective liquid crystal panel 20 and a front light (illumination device) 10 disposed on the upper surface side (front surface side) thereof.
The front light 10 includes a substantially flat transparent light guide plate 12 and a light source 13 integrally connected to the side end surface (light incident surface) 12 a side of the light guide plate 12. The light guide plate 12 is made of a light transmissive resin such as acrylic resin or polycarbonate resin, and the lower surface side (the liquid crystal panel 20 side) of the light guide plate 12 emits illumination light from the front light 10. A prism shape having a triangular wave shape in cross section is formed on the upper surface side (the side opposite to the liquid crystal panel 20) in the figure. More specifically, it has a triangular shape in a sectional view including a gentle slope portion 14a formed to be inclined with respect to the emission surface 12b and a steep slope portion 14b formed with a steeper slope angle than the gentle slope portion 14a. A plurality of convex portions 14 are formed in parallel with each other at a predetermined pitch. An antireflection film (resin optical component) 17 is deposited on the surface of the light exit surface 12 b of the light guide plate 12.

導光板12の側端面12a側に配設された光源13は、導光板12の側端面12aに沿って設けられた棒状の光源であり、具体的には棒状の導光体13bの両端部にそれぞれ白色LED(Light Emitting Diode)などからなる図示略の発光素子が配設されている。そして、発光素子から出射された光を導光体13bを介して導光板12に導入できるようになっている。このように発光素子と導光板12との間に棒状の導光体13bを設けることにより、点光源であるLEDなどの発光素子の光を、導光板12の側端面12aに均一に照射することができる。
尚、光源13は、導光板12の側端面12a側に光を導入し得るものであれば問題なく用いることができ、例えば導光板12の側端面12aに沿ってLEDなどの発光素子を並べた構成、あるいは、冷陰極管を用いた発光体であっても良い。また、発光素子が導光体13bの一端部側に1つのみ備えられた構成であっても良い。
The light source 13 disposed on the side end surface 12a side of the light guide plate 12 is a rod-shaped light source provided along the side end surface 12a of the light guide plate 12, and specifically, at both ends of the rod-shaped light guide 13b. Light emitting elements (not shown) each including a white LED (Light Emitting Diode) are disposed. And the light radiate | emitted from the light emitting element can be introduce | transduced into the light-guide plate 12 through the light guide 13b. Thus, by providing the rod-shaped light guide 13b between the light emitting element and the light guide plate 12, the side end face 12a of the light guide plate 12 is uniformly irradiated with light from a light emitting element such as an LED as a point light source. Can do.
The light source 13 can be used without any problem as long as light can be introduced to the side end face 12a side of the light guide plate 12. For example, light emitting elements such as LEDs are arranged along the side end face 12a of the light guide plate 12. The structure or a light emitter using a cold cathode tube may be used. Moreover, the structure by which only one light emitting element was provided in the one end part side of the light guide 13b may be sufficient.

前記構成のフロントライト10は、光源13から出射された光を、導光板12の側端面12aから導光板12の内部側へ導入し、内部を伝搬するこの光を、反射面12cに設けられた凸部14の急斜面部14bで反射させることで光の伝搬方向を変化させ、出射面12bから照明光として液晶パネル20側に出射できるようになっている。
本実施形態に係るフロントライト10の導光板12は、その出射面12b側に、本発明の製造方法により製造された反射防止膜(樹脂製光学部品)17が被着形成されており、この反射防止膜17の表面には、光の波長以下の高さとピッチで複数整列されたサブミクロンオーダーの微細な凹部又は凸部が格子状に配列形成されている。
The front light 10 configured as described above is provided on the reflection surface 12c by introducing the light emitted from the light source 13 from the side end surface 12a of the light guide plate 12 to the inside of the light guide plate 12 and propagating the light. By reflecting the light from the steep slope 14b of the convex portion 14, the light propagation direction can be changed, and the light can be emitted from the emission surface 12b to the liquid crystal panel 20 side as illumination light.
The light guide plate 12 of the front light 10 according to the present embodiment is provided with an antireflection film (resin optical component) 17 manufactured by the manufacturing method of the present invention on the emission surface 12b side. On the surface of the prevention film 17, a plurality of submicron-order fine concave portions or convex portions arranged in a lattice shape are arranged in a plurality at a height and a pitch below the wavelength of light.

この反射防止膜17の構造の一例について、図2と図3を参照して以下に説明する。図2は、反射防止膜17の表面形状を模式的に示す部分斜視図である。図3は図2の反射防止膜17の部分断面図である。
前記反射防止膜17の一方の面(導光板側の面)には、直径150〜400nm(0.15〜0.4μm)程度の多数の微細な凸部17aが格子状に配列形成された微細凹凸部17Aとされており、幅広い波長域の光を高い透過率で透過させ、反射を防止できるようになっている。前記のようなサブミクロンオーダーの微細な凹凸形状を設けることにより光の反射を防止できるのは、それぞれの凸部が可視領域の波長以下の高さ及び繰り返しピッチで配列形成されているために、入射した光の反射が生じないことによる。反射防止膜17の面のうち前記ような微細な凸部17aを多数設けた面が微細凹凸面とされ、その反対側の面が平面状の取付面17Bとされている。反射防止膜17は先の微細凹凸部17Aを導光板12の出射面12b側となるように向けて先の取付面17Bをフロントライト10の導光板12の裏面側に貼着してフロントライト10に一体化されている。
An example of the structure of the antireflection film 17 will be described below with reference to FIGS. FIG. 2 is a partial perspective view schematically showing the surface shape of the antireflection film 17. FIG. 3 is a partial cross-sectional view of the antireflection film 17 of FIG.
On one surface of the antireflection film 17 (surface on the light guide plate side), a plurality of fine protrusions 17a having a diameter of about 150 to 400 nm (0.15 to 0.4 μm) are arranged in a lattice pattern. The concavo-convex portion 17 </ b> A allows light in a wide wavelength range to be transmitted with high transmittance, thereby preventing reflection. The reason why the reflection of light can be prevented by providing a fine uneven shape on the order of submicron as described above is because the respective convex portions are arranged and formed at a height below the wavelength of the visible region and a repeating pitch. This is because the incident light is not reflected. Of the surface of the antireflection film 17, the surface provided with a large number of such fine protrusions 17a is a fine uneven surface, and the opposite surface is a flat mounting surface 17B. The antireflection film 17 is attached so that the fine concave and convex portion 17 </ b> A is on the light exit surface 12 b side of the light guide plate 12 and the front mounting surface 17 </ b> B is attached to the back side of the light guide plate 12 of the front light 10. Is integrated.

前記反射防止膜17において整列形成された複数の凸部17aのピッチは100〜300nm(0.1〜0.3μm)の範囲とすることが好ましく、また凸部17aの高さHは100〜300nm(0.1〜0.3μm)の範囲とすることが好ましい。これは、凸部17aのピッチPが300nmを越えると、可視光領域で反射防止効果が得られ難くなるとともに、導光板に光を入射させた際に色づきが発生するという問題があるり、ピッチPが100nm未満となると成形用のマスタ型を作成する場合に現状の加工技術の上から凹凸形状形成困難となる。また、凸部17aの高さHが100nm未満であると、防反射効果が発現しなくなり、反射率が高くなり、逆に高さHが300nmを越えると離型が困難となる問題がある。
また、凸部17aのアスペクト比(高さHと凸部17aのピッチPの比)は、1以上の範囲とされ、好ましくは1以上、2以下の範囲である。これは凸部17aのアスペクト比が1未満であると、充分な防反射効果が得られ難くなるからである。
前記反射防止膜17の材質としては、シリコン系樹脂、アクリル樹脂、ノルボルネン樹脂などの光透過性樹脂が用いられる。
The pitch of the plurality of convex portions 17a formed in alignment in the antireflection film 17 is preferably in the range of 100 to 300 nm (0.1 to 0.3 μm), and the height H of the convex portions 17a is 100 to 300 nm. It is preferable to be in the range of (0.1 to 0.3 μm). This is because when the pitch P of the convex portions 17a exceeds 300 nm, it is difficult to obtain an antireflection effect in the visible light region, and coloring occurs when light is incident on the light guide plate. When P is less than 100 nm, it becomes difficult to form a concavo-convex shape from the viewpoint of the current processing technique when forming a molding master mold. Further, when the height H of the convex portion 17a is less than 100 nm, there is a problem that the antireflection effect is not exhibited and the reflectance is increased, and conversely, when the height H exceeds 300 nm, it is difficult to release the mold.
Further, the aspect ratio of the convex portion 17a (the ratio of the height H to the pitch P of the convex portion 17a) is in a range of 1 or more, and preferably in the range of 1 or more and 2 or less. This is because if the aspect ratio of the convex portion 17a is less than 1, it is difficult to obtain a sufficient antireflection effect.
As the material of the antireflection film 17, a light transmissive resin such as silicon resin, acrylic resin, norbornene resin is used.

なお、本発明に係る導光板12において、反射防止膜17は出射面12bのみに設けられるものではなく、光源13が配置される側端面12aにも反射防止膜17を形成しても良い。このような構成とすることで、光源13(導光体13b)から導光板12に光が導入される際の導光板12の側端面12aでの反射も抑えることができるので、光源の利用効率を更に高めて、フロントライト10の輝度を向上させることができる。また、反射防止膜17として導光板と反対側の面に微細な凸部17aを多数けた場合について説明したが、導光板側の面にサブミクロンオーダーの微細な凹部が多数設けられた構造であっても良い。   In the light guide plate 12 according to the present invention, the antireflection film 17 is not provided only on the emission surface 12b, and the antireflection film 17 may be formed also on the side end surface 12a on which the light source 13 is disposed. By adopting such a configuration, it is possible to suppress reflection on the side end surface 12a of the light guide plate 12 when light is introduced from the light source 13 (light guide 13b) to the light guide plate 12, and thus the light source utilization efficiency Can be further improved, and the brightness of the front light 10 can be improved. Further, the case where a large number of fine convex portions 17a are provided on the surface opposite to the light guide plate as the antireflection film 17 has been described. However, the structure has a large number of fine concave portions on the order of submicron on the surface on the light guide plate side. May be.

次に先の構造の反射防止膜17の製造方法について説明する。
図1〜図3に示す反射防止膜17は、例えば図4〜図5に示す反射防止膜成形用型(樹脂製光学部品成形用型)を用いる射出成形法により製造することができる。図4は、反射防止膜成形用型30の概略構成を示す断面図であり、図5は、図4の反射防止膜成形用型に備えられたマスター型の一部を示す部分拡大断面図である。
この形態の反射防止膜成形用型30は、反射防止膜17を成形するためのキャビティ空間35を画定する第1の母型30a及び第2の母型30bとが型開き自在(分割自在)に備えられ、第1の母型30aの内面31aに反射防止膜17の微細凹凸部17aと逆の凹凸形状が形成された微細凹凸形成面36aを有する無機酸化層からなるマスター型36が配置され、第2の母型30bの内面31bは反射防止膜17の微細凹凸部17aの形成面と反対側の面を成形するための平面とされている。また、第1の母型30aと第2の母型30bの側端には型内に反射防止膜17の構成材料のシリコン系などの樹脂を注入するための射出口32が形成され、図4では略しているが、第1の母型30aと第2の母型30bは分割自在な構成とされている。
第1の母型30aと第2の母型30bの材質としては、シリコンウエハ等のセラミックスが用いられる。
Next, a method for manufacturing the antireflection film 17 having the above structure will be described.
The antireflection film 17 shown in FIGS. 1 to 3 can be manufactured, for example, by an injection molding method using an antireflection film molding die (resin optical component molding die) shown in FIGS. 4 is a cross-sectional view showing a schematic configuration of the anti-reflection film molding die 30, and FIG. 5 is a partially enlarged cross-sectional view showing a part of the master die provided in the anti-reflection film molding die of FIG. is there.
In this form of the antireflection film molding die 30, the first mother mold 30 a and the second mother mold 30 b that define the cavity space 35 for molding the antireflection film 17 can be freely opened (divided). A master die 36 made of an inorganic oxide layer having a fine concavo-convex surface 36a in which a concavo-convex shape opposite to the fine concavo-convex portion 17a of the antireflection film 17 is formed on the inner surface 31a of the first mother die 30a, The inner surface 31b of the second mother die 30b is a flat surface for molding the surface opposite to the surface on which the fine uneven portion 17a of the antireflection film 17 is formed. Further, an injection port 32 for injecting a resin such as a silicon-based material of the antireflection film 17 into the mold is formed at the side ends of the first matrix 30a and the second matrix 30b. Although omitted, the first mother die 30a and the second mother die 30b are configured to be separable.
As the material of the first mother die 30a and the second mother die 30b, ceramics such as a silicon wafer is used.

前記マスター型36の微細凹凸形成面36aは、サブミクロンオーダーの微細転写凹凸部37を複数有し、しかもこれら微細転写凹凸部37がこの形態では格子状に縦横に配列されたものである。微細転写凹凸部37の各凹部の内径あるいはピッチP2は、製造しようとする反射防止膜17の微細凸部17aの径あるいはピッチPと略同じ大きさの150〜400nm(0.15〜0.4μm)の範囲、あるいは100〜300nm(0.1〜0.3μm)の範囲とされる。
また、マスター型36の微細転写凹凸部37の深さDは、例えば先の反射防止膜17の凸部17aの高さHと略同じ大きさとされる。また、マスター型36の微細転写凹凸部37のアスペクト比(深さDと微細転写凹凸部の凹部のピッチPの比)は、例えば反射防止膜17の凸部17aのアスペクト比と略同じ大きさの1以上の範囲とされ、さらに好ましくは1以上、2以下の範囲とされる。
The fine unevenness forming surface 36a of the master die 36 has a plurality of fine transfer unevenness portions 37 on the order of submicrons, and these fine transfer unevenness portions 37 are arranged vertically and horizontally in a lattice shape in this embodiment. The inner diameter or pitch P2 of each concave portion of the fine transfer concavo-convex portion 37 is 150 to 400 nm (0.15 to 0.4 μm) which is substantially the same size as the diameter or pitch P of the fine convex portion 17a of the antireflection film 17 to be manufactured. ) Range or 100 to 300 nm (0.1 to 0.3 μm).
Further, the depth D of the fine transfer concavo-convex portion 37 of the master die 36 is set to be substantially the same as the height H of the convex portion 17a of the antireflection film 17, for example. Moreover, (the ratio of the pitch P 2 of the recess of the depth D and the fine transfer uneven portion) aspect ratio of the fine transfer uneven portion 37 of the master mold 36, for example, substantially the same size as the aspect ratio of the projection 17a of the anti-reflection film 17 The range is 1 or more, more preferably 1 or more and 2 or less.

この形態のマスター型36の微細凹凸部36aは、例えば、表面自由エネルギーが4μJ/cm以下(40erg/cm以下)、好ましくは3.5μJ/cm以下(35erg/cm以下)の被覆層38で覆われている。被覆層38の表面自由エネルギーが4μJ/cmを超えると、被転写物(樹脂射出成形物)との物理結合が弱くなるため、樹脂射出成形物を成形用型から離型する際の離型性が低下してしまう。この被覆層38の表面には、先のマスター型36の微細転写凹凸部37と同様の凹凸形状が形成されている。前記被覆層38は、フッ素を含有するDLC層、フッ素構造を有するシラン化合物層等から構成されている。前記被覆層38の厚さは例えば50nm以下とされる。
前記のような被覆層38の作製方法としては、フッ素を含有するDLC層の場合、フッ素を含有する雰囲気中でスパッタを行うことにより成膜できる。傾斜DLC層の場合は、雰囲気中のフッ素濃度を変更しながらスパッタを行うことにより成膜できる。フッ素構造を有するシラン化合物層の場合は、デイップコーティングすることより成膜できる。
The fine uneven portion 36a of the master mold 36 in this form has a surface free energy of 4 μJ / cm 2 or less (40 erg / cm 2 or less), preferably 3.5 μJ / cm 2 or less (35 erg / cm 2 or less). Covered with layer 38. When the surface free energy of the coating layer 38 exceeds 4 μJ / cm 2 , the physical bond with the transfer target (resin injection molded product) becomes weak, so that the mold release when releasing the resin injection molded product from the molding die The nature will decline. On the surface of the coating layer 38, the same uneven shape as the fine transfer uneven portion 37 of the master mold 36 is formed. The coating layer 38 is composed of a DLC layer containing fluorine, a silane compound layer having a fluorine structure, and the like. The coating layer 38 has a thickness of, for example, 50 nm or less.
As a method for producing the coating layer 38 as described above, in the case of a DLC layer containing fluorine, it can be formed by sputtering in an atmosphere containing fluorine. In the case of an inclined DLC layer, it can be formed by performing sputtering while changing the fluorine concentration in the atmosphere. In the case of a silane compound layer having a fluorine structure, it can be formed by dip coating.

以上の構成の反射防止膜成形用型30を用いて反射防止膜(樹脂製光学部品)17を作製するには、図4に示す反射防止膜成形用型30を射出成型機にセットして、射出口32から溶融した反射防止膜形成材料のシリコン系樹脂等の光透過性樹脂を射出してキャビティ空間35に樹脂射出成形物を成形すると、マスター型36の微細凹凸形成面の微細転写凹凸形状を転写した樹脂射出成形物が成形されるので、第1の母型30aと第2の母型30bを型開きして成形キャビティを開放し、キャビティ内の成形物をマスター型36から離型することで目的とする反射防止膜17が得られる。
なお、この形態で製造しようとする反射防止膜17は、図6に示すように反射防止膜17の側部に厚肉の板状の支持部18を有した構成とされ、図4に示す母型30a、30bとマスター型36の断面形状では略されているが、微細凹凸部を形成していない側の厚肉の樹脂部分からなる支持部18を成形できるように型内のキャビティ空間35の形状が加工されている。
In order to produce the antireflection film (resin optical component) 17 using the antireflection film molding die 30 having the above configuration, the antireflection film molding die 30 shown in FIG. 4 is set in an injection molding machine. When a resin-injected molded product is formed in the cavity space 35 by injecting a light-transmitting resin such as a silicon-based resin, which is an antireflective film forming material, melted from the injection port 32, a fine transfer uneven shape on the fine unevenness forming surface of the master die 36 is obtained. Since the resin injection molded product to which is transferred is molded, the first mother mold 30a and the second mother mold 30b are opened to open the molding cavity, and the molded article in the cavity is released from the master mold 36. Thus, the target antireflection film 17 is obtained.
The antireflection film 17 to be manufactured in this form has a structure having a thick plate-like support 18 on the side of the antireflection film 17 as shown in FIG. 6, and the mother shown in FIG. Although not shown in the cross-sectional shapes of the molds 30a and 30b and the master mold 36, the cavity space 35 in the mold can be formed so that the support portion 18 made of a thick resin portion on the side where the fine uneven portions are not formed can be molded. The shape is processed.

ここで本実施形態では、成形物をマスター型36から離型する場合、図6に示すように反射防止膜17の一側に離型の力の作用点が作用するようにしてマスター型36から反射防止膜17を引き剥がす。即ち、図4では略されているが反射防止膜成形用型30をセットした射出成型機について、把持部18の複数位置、図6では矢印a、b、c、d、eで示す方向にできる限り均一に押し上げるための突き出しブロックを設け、成形後にこの突き出しブロックにて図6の矢印a、b、c、d、eの方向に把持部18を押し上げて先にマスター型36から引き剥がし、このまま把持部18をマスター型36から更に離れるように押圧してマスター型36から反射防止膜17を順次引き剥がしてゆく。   Here, in this embodiment, when the molded product is released from the master die 36, the application point of the release force acts on one side of the antireflection film 17 as shown in FIG. The antireflection film 17 is peeled off. That is, although omitted in FIG. 4, the injection molding machine with the antireflection film molding die 30 set therein can be set at a plurality of positions of the gripping portion 18, and in the directions indicated by arrows a, b, c, d, and e in FIG. A protruding block is provided to push up as uniformly as possible, and after molding, the gripping portion 18 is pushed up in the directions of arrows a, b, c, d and e in FIG. The grip 18 is pressed further away from the master die 36, and the antireflection film 17 is sequentially peeled off from the master die 36.

この操作は、換言すると、図2に示す如く複数の微細凸部17aがx方向とy方向に縦横に所定のピッチで整列形成された反射防止膜17においてx方向(あるいは反射防止膜17の向きが90°異なる場合はy方向)に沿って、直線的に順次引き剥がされることと等価になる。ここでマスター型36の微細転写凹凸部から反射防止膜17の微細凸部17aが抜け出る際には、図7に示す如く微細転写凹凸部37の内面の一部に、反射防止膜17の微細凸部17aが必然的に当接して擦りながら該微細凸部17aの一部が変形を受けつつ引き抜かれてゆくことになる。従って離型後の反射防止膜17の複数の微細凸部17aの一部には反射防止膜17の引き抜き方向に沿ったラインに沿う引き抜き方向手前側と奥側に変形部が形成される。
しかしながら先に説明した如く支持部18側から一方向、例えば図8に示すx方向に反射防止膜17を引き抜きながら形成した反射防止膜17にあっては、図8に模式的に記載した如く反射防止膜17の一面側に縦横に多数の凸部17aが形成された場合に、反射防止膜17の一面において、その幅方向(y方向)両側の一部の微細凸部17cが、ばらついて個々に図9に示す如く平面視ハート形に変形して、その平面視ハート形の微細凸部17cの変形部のうち、窪み部17d側を引き抜き方向(手前)側に揃え、変形部のうち、突起17e側を引き抜き方向(先方)側に揃えた状態で点在された状態の反射防止膜17を得ることができる。なお、図8に示す微細凸部17cの存在位置はこの形態での一例であり、例えば微細凸部の全数が一様に平面視ハート形にされる場合、あるいは半数程度または数10%程度の微細凸部が平面視ハート形に形成される場合もあり得る。
In other words, this operation is performed in the x direction (or the direction of the antireflection film 17) in the antireflection film 17 in which a plurality of fine protrusions 17a are formed in a predetermined pitch vertically and horizontally in the x and y directions as shown in FIG. This is equivalent to sequentially peeling along the y direction in the case where the angle differs by 90 °. Here, when the fine convex portion 17a of the antireflection film 17 comes out of the fine transfer uneven portion of the master die 36, the fine convex portion of the antireflection film 17 is formed on a part of the inner surface of the fine transfer uneven portion 37 as shown in FIG. While the portion 17a inevitably contacts and rubs, a part of the fine convex portion 17a is pulled out while being deformed. Accordingly, deformed portions are formed on the front side and the back side in the drawing direction along a line along the drawing direction of the antireflection film 17 in a part of the plurality of fine convex portions 17a of the antireflection film 17 after the mold release.
However, as described above, the antireflection film 17 formed by pulling out the antireflection film 17 in one direction from the support portion 18 side, for example, the x direction shown in FIG. 8, reflects the light as schematically shown in FIG. When a large number of protrusions 17a are formed vertically and horizontally on one surface side of the anti-reflection film 17, some of the fine protrusions 17c on both sides in the width direction (y direction) on the one surface of the anti-reflection film 17 vary. 9 is deformed into a heart shape in a plan view as shown in FIG. 9, and among the deformed portions of the fine convex portion 17 c in the plan view heart shape, the depression 17 d side is aligned with the drawing direction (front side), and among the deformed portions, It is possible to obtain the antireflection film 17 in a state where the protrusions 17e are aligned in the drawing direction (front side) side. 8 is an example in this form. For example, when the total number of the fine protrusions is uniformly formed into a heart shape in plan view, or about half or several tens of percent. There may be a case where the fine convex portion is formed in a heart shape in a plan view.

このように例えば、両側の一部の微細凸部17cのみがハート形に方向を揃えて変形した反射防止膜17、あるいは、全数、または、数10%の微細凸部17cがx方向に沿う方向に変形部(窪み部17dあるいは突起部17e)を揃えた構造の反射防止膜17については、反射防止膜17の必要な機能としての問題を生じない。即ち、前記変形部17d、17eを有する微細凸部17cが方向を揃えているので、外観上色むらを生じることがなく、反射防止膜17に曇りが生じない。従って反射率のバラツキが少なく、光学特性の良好な反射防止膜17を得ることができる。また、このバラツキ角度がx方向に対して±15゜の範囲内であれば、反射率のバラツキが少なく、光学特性の良好な反射防止膜17を得ることができる。   Thus, for example, the antireflection film 17 in which only some of the fine convex portions 17c on both sides are deformed in a heart shape, or the total or several tens of percent of the fine convex portions 17c are in the direction along the x direction. In addition, the antireflection film 17 having a structure in which the deformed portions (the recessed portions 17d or the protrusions 17e) are aligned does not cause a problem as a necessary function of the antireflection film 17. That is, since the fine convex portions 17c having the deformed portions 17d and 17e are aligned, the appearance of the color unevenness does not occur and the antireflection film 17 is not fogged. Therefore, it is possible to obtain the antireflection film 17 with less variation in reflectance and good optical characteristics. Further, if the variation angle is within a range of ± 15 ° with respect to the x direction, the antireflection film 17 having a small variation in reflectance and good optical characteristics can be obtained.

次に、先のような構成の反射防止膜17を図1に示すフロントライト10に設けていることで、フロントライト10において、導光板12内部を伝搬する光が出射面12bに入射した際に反射光がほとんど生じず、効率良く液晶パネル20を照明できるようになっている。また、出射面12bの内面側での反射がほとんど生じないことで、出射面12bで反射された光が使用者に到達することにより生じる白化現象を抑え、液晶パネル20のコントラストを向上させて表示品質を向上させることができる。
また、反射型の液晶パネル20により反射された光が、導光板12の出射面12bに入射する際にも、先の反射防止膜17が有効に作用し、高い透過率で液晶パネル20の反射光を透過させ、結果として高輝度の表示が得られるようになっている。これは、液晶パネル20の反射光が、導光板12の出射面12bで反射されると表示光の一部が損失されて輝度が低下することとなり、また出射面12bでの反射により導光板12の白化がおこるために表示のコントラストが低下することとなるが、前記導光板12に、反射防止膜17が設けられていることで、前記の現象を防止することができるためである。
Next, since the antireflection film 17 having the above-described configuration is provided in the front light 10 shown in FIG. 1, when the light propagating through the light guide plate 12 enters the emission surface 12 b in the front light 10. Almost no reflected light is generated, and the liquid crystal panel 20 can be efficiently illuminated. Further, since the reflection on the inner surface side of the emission surface 12b hardly occurs, the whitening phenomenon caused by the light reflected by the emission surface 12b reaching the user is suppressed, and the contrast of the liquid crystal panel 20 is improved and displayed. Quality can be improved.
In addition, when the light reflected by the reflective liquid crystal panel 20 enters the light exit surface 12b of the light guide plate 12, the antireflection film 17 acts effectively, and the liquid crystal panel 20 reflects with high transmittance. Light is transmitted, and as a result, a high-luminance display can be obtained. This is because when the reflected light of the liquid crystal panel 20 is reflected by the exit surface 12b of the light guide plate 12, a part of the display light is lost and the brightness is lowered, and the light guide plate 12 is reflected by the reflection at the exit surface 12b. This is because the display contrast is reduced due to whitening of the light, but the above-described phenomenon can be prevented by providing the light guide plate 12 with the antireflection film 17.

なお、これまで反射防止膜として微細凸部を複数配列形成した構成のものについて説明してきたが、微細凹部を複数配列形成した形状の反射防止層であっても良い。その例として例えば図10に示すように、樹脂製の本体部50の上面側に先の実施形態の微細凸部17aに合致する形をくり抜いた形状の微細凹部51を縦横に複数整列形成した形状の反射防止膜52を例示することができる。これらの微細凹部51の深さやピッチ、内径は、先の形態の微細凸部17aの高さやピッチ、外径と同じ大きさに形成すればよい。
この形態の反射防止膜52であっても先の形態の微細凸部17aを備えた反射防止膜17と同等の効果を得ることができる。
In addition, although the thing of the structure which formed multiple array of the fine convex part as an anti-reflective film was demonstrated until now, the antireflection layer of the shape which formed multiple array of the fine recessed part may be sufficient. As an example, for example, as shown in FIG. 10, a shape in which a plurality of fine concave portions 51 are formed in the top and bottom sides of a resin main body portion 50, which are formed by hollowing out a shape that matches the fine convex portions 17 a of the previous embodiment. The antireflection film 52 can be exemplified. The depth, pitch, and inner diameter of these fine recesses 51 may be formed to be the same size as the height, pitch, and outer diameter of the fine protrusions 17a of the previous form.
Even with this form of the antireflection film 52, it is possible to obtain the same effect as the antireflection film 17 provided with the fine protrusions 17a of the previous form.

凹部の内径が0.23μm、凹部のピッチが0.24μmの微細転写凹凸部を有するSiO膜からなる縦60mm、横50mmのマスター型をキャビティ内部に有する第1の母型と第2の母型からなる形成型を射出成形機にセットして、成形樹脂としてアートン(JSR(株)社製)を先のキャビティ内に290℃で射出成形し、マスター型の微細転写凹凸部の形状に合致した形状の微細凹凸部を有する樹脂製光学部品をキャビティ内に成形した。
第1の母型と第2の母型を分離してキャビティを開放し、次に、射出成形機の突き上げブロックにて図6または図8に示す厚肉の支持部(幅50mm、長さ7mm)に相当する部分を突き上げてマスター型から反射防止膜を離型した。
以上の工程により得られた反射防止膜において、反射防止膜を平面視した場合の左上隅コーナ部(左端から10mm、上端から10mmの位置)のAFM(原子間力顕微鏡)像を図11に、左下隅コーナ部(左端から10mm、上端から50mmの位置)のAFM(原子間力顕微鏡)像を図12に、反射防止膜を平面視した場合の対角線交差点中央位置のAFM(原子間力顕微鏡)像を図13に、右上隅コーナ部(右端から10mm、上端から10mmの位置)のAFM(原子間力顕微鏡)像を図14に、右下隅コーナ部(右端から10mm、上端から50mmの位置)のAFM(原子間力顕微鏡)像を図15に各々示す。
A first mother mold and a second mother mold having a master mold having a length of 60 mm and a width of 50 mm made of a SiO 2 film having fine transfer irregularities with an inner diameter of the recess of 0.23 μm and a pitch of the recesses of 0.24 μm. Set the forming mold consisting of the mold on the injection molding machine and injection mold Arton (manufactured by JSR Co., Ltd.) as the molding resin into the previous cavity at 290 ° C to match the shape of the fine transfer uneven part of the master mold A resin optical component having fine irregularities of the shape was molded into the cavity.
The first mother die and the second mother die are separated to open the cavity, and then the thick support portion (width 50 mm, length 7 mm) shown in FIG. 6 or FIG. ) Was pushed up to release the antireflection film from the master mold.
In the antireflection film obtained by the above steps, an AFM (atomic force microscope) image of the upper left corner corner portion (position from 10 mm from the left end and 10 mm from the upper end) when the antireflection film is viewed in plan view is shown in FIG. The AFM (atomic force microscope) image of the corner at the lower left corner (10 mm from the left end and 50 mm from the upper end) is shown in FIG. 12, and the AFM (atomic force microscope) at the center of the diagonal intersection when the antireflection film is viewed in plan view. The image is shown in FIG. 13, the AFM (atomic force microscope) image of the upper right corner (10 mm from the right end, 10 mm from the upper end), and the lower right corner (at 10 mm from the right end, 50 mm from the upper end) is shown in FIG. AFM (atomic force microscope) images are shown in FIG.

これらの図11〜図15に示す結果から、反射防止膜においてその微細凹凸部が配列された方向に沿って一側から一直線方向(x方向と平行な方向)に向けて剥離させて離型して得られた反射防止膜においては多くの微細凸部が平面視ハート形に変形してはいるが、剥離方向に沿って変形部の窪み部か突起部が揃っている微細凸部を有した反射防止膜を得られていることが判明した。   From these results shown in FIGS. 11 to 15, the anti-reflection film is peeled from one side along the direction in which the fine uneven portions are arranged in a direction (parallel to the x direction) and released. In the antireflection film obtained in this way, many fine convex portions were deformed into a heart shape in plan view, but had fine convex portions in which the dents or protrusions of the deformed portions were aligned along the peeling direction. It was found that an antireflection film was obtained.

「比較例」
先の実施例に対し、樹脂材料と第1の母型及び第2の母型とマスター型と成形条件は同じ条件として、マスター型から反射防止膜を離型する際に、成形機の突き上げブロックにて図8に示す支持部に相当する部分に加え、図8に示す矩形状の反射防止膜における左側隅部の微細凸部が形成されていない額縁部と図8に示す矩形状の反射防止膜における右側隅部の微細凸部が形成されていない額縁部とをそれぞれ突き上げブロックにて押し上げて離型して反射防止膜を製造した。
得られた反射防止膜において、反射防止膜を平面視した場合の左上隅コーナ部(左端から10mm、上端から10mmの位置)のAFM(原子間力顕微鏡)像を図16に、左下隅コーナ部(左端から10mm、上端から50mmの位置)のAFM(原子間力顕微鏡)像を図17に、反射防止膜を平面視した場合の対角線交差点中央位置のAFM(原子間力顕微鏡)像を図18に、右上隅コーナ部(右端から10mm、上端から10mmの位置)のAFM(原子間力顕微鏡)像を図19に、右下隅コーナ部(右端から10mm、上端から50mmの位置)のAFM(原子間力顕微鏡)像を図20に各々示す。
"Comparative example"
The molding machine push-up block when the anti-reflection film is released from the master mold, assuming that the molding conditions are the same as the resin material, the first matrix, the second matrix, and the master mold. 8 in addition to the portion corresponding to the support portion shown in FIG. 8, the frame portion in which the fine convex portion at the left corner of the rectangular antireflection film shown in FIG. 8 is not formed and the rectangular antireflection portion shown in FIG. 8. The anti-reflective film was manufactured by pushing up and releasing the frame part where the fine convex part at the right corner of the film was not formed, with a push-up block.
In the obtained antireflection film, an AFM (atomic force microscope) image of an upper left corner corner portion (position 10 mm from the left end and 10 mm from the upper end) when the antireflection film is viewed in plan is shown in FIG. FIG. 17 shows an AFM (atomic force microscope) image (position 10 mm from the left end and 50 mm from the upper end), and FIG. 18 shows an AFM (atomic force microscope) image at the center of the diagonal intersection when the antireflection film is viewed in plan. FIG. 19 shows an AFM (atomic force microscope) image of the upper right corner (the position 10 mm from the right end and 10 mm from the upper end). FIG. 19 shows the AFM (atomic position from the right end 10 mm, the position 50 mm from the upper end). An atomic force microscope) image is shown in FIG.

これらの図16〜図20に示す写真から、反射防止膜の3辺(支持部と左右の額縁部で合計3辺)を突き上げブロックにて押し上げて離型すると、変形部の方向が反射防止膜の平面位置において大きくばらつくことが判明した。これは、反射防止膜の左右の額縁部と支持部とを合計して3辺、ブロックで突き上げ離型した場合、反射防止膜は3方向から同時に突き上げられながらマスター型から剥離するが、その際、3辺同時突き上げしたとしても、樹脂製で柔軟性を有する反射防止膜はサブミクロンオーダーの微細凹凸部として見れば、位置毎に3方向のいずれか、ランダムな方向から引き抜き力が作用し、マスター型の微細転写凹凸部から引き剥がされる結果、位置毎に異なる方向に変形力を受けた各微細凸部が変形したことに起因すると考えられる。
この比較例の構造の反射防止膜は色づきは薄くなり、表示装置用として不適なものであった。
From these photographs shown in FIGS. 16 to 20, when the three sides of the antireflection film (a total of three sides of the support portion and the left and right frame portions) are pushed up by the pushing block and released from the mold, the direction of the deformed portion is changed to the antireflection film. It was found that there was a large variation in the plane position. This is because when the left and right frame parts of the antireflection film and the support part are combined and pushed up with three blocks, the antireflection film is peeled off from the master mold while being pushed up simultaneously from three directions. Even if the three sides are pushed up at the same time, if the antireflection film made of resin and having flexibility is viewed as a fine uneven part on the order of submicrons, a pulling force acts from one of the three directions at random for each position, As a result of being peeled off from the master type fine transfer concavo-convex part, it is considered that each fine convex part that received a deformation force in a different direction for each position was deformed.
The antireflective film having the structure of this comparative example has a thin color and is unsuitable for a display device.

次に、先の実施例で得られた反射防止膜と比較例で得られた反射防止膜について、反射防止膜の面内5ポイント(先のAFM(原子間力顕微鏡)像計測位置と同じ位置で)の反射率を測定した。   Next, with respect to the antireflection film obtained in the previous example and the antireflection film obtained in the comparative example, in-plane 5 points of the antireflection film (the same position as the previous AFM (atomic force microscope) image measurement position) The reflectance was measured.

図21は実施例の反射防止膜の測定結果を示し、図22は比較例の反射防止膜の測定結果を示す。図21と図22に示す結果から、実施例の反射防止膜の反射率のバラツキが小さく、比較例の反射防止膜の反射率のバラツキが大きいことが明らかである。
この測定結果から、離型時に反射防止膜に対して微細凸部の並ぶ方向に沿ってマスター型から引き剥がして製造した反射防止膜であって、微細凸部の変形部の向きが揃っている反射防止膜の方が、変形部の向きが揃っていない反射防止膜よりもバラツキの少ない良好な反射特性を示すことが明らかになった。
FIG. 21 shows the measurement result of the antireflection film of the example, and FIG. 22 shows the measurement result of the antireflection film of the comparative example. From the results shown in FIGS. 21 and 22, it is clear that the variation in the reflectance of the antireflection film of the example is small, and the variation in the reflectance of the antireflection film of the comparative example is large.
From this measurement result, the anti-reflection film manufactured by peeling off the master mold along the direction in which the fine projections are aligned with respect to the anti-reflection film at the time of mold release, and the direction of the deformed portions of the fine projections are aligned. It has been clarified that the antireflection film exhibits better reflection characteristics with less variation than the antireflection film in which the direction of the deformed portion is not uniform.

図23は、反射防止膜を型から引き剥がす際に、反射防止膜の面内での剥離方向(゜)と面内反射率差(%)との関係を測定した結果を示す。面内での剥離方向を3゜、7゜、13゜、15゜、17゜、20゜と変えてゆくと、反射率ムラ(面内の平均反射率差=平均反射率max-min)は徐々に増加するが、縦軸の面内反射率差(反射率ムラ)が0.5%を越えると外観ムラとして肉眼で視認できるようになる。従って、マスター型から反射防止膜を剥離する場合の剥離方向としては、15゜以下(換言すると図8の平面図において、x方向に対して±15゜以内)とすることが好ましいことが分かる。   FIG. 23 shows the results of measuring the relationship between the in-plane peel direction (°) and the in-plane reflectance difference (%) when peeling off the antireflection film from the mold. When the peeling direction in the surface is changed to 3 °, 7 °, 13 °, 15 °, 17 °, 20 °, the reflectance unevenness (average reflectance difference in the surface = average reflectance max-min) Although gradually increasing, if the in-plane reflectance difference (reflectance unevenness) on the vertical axis exceeds 0.5%, it becomes visible to the naked eye as uneven appearance. Therefore, it can be seen that the peeling direction when peeling the antireflection film from the master mold is preferably 15 ° or less (in other words, within ± 15 ° with respect to the x direction in the plan view of FIG. 8).

図1は、本発明の微細凹凸面を有する樹脂製光学部品の製造方法により製造された反射防止膜が備えられた液晶表示装置の一実施形態を示す断面図。FIG. 1 is a cross-sectional view showing an embodiment of a liquid crystal display device provided with an antireflection film manufactured by the method for manufacturing a resin optical component having fine uneven surfaces according to the present invention. 図2は図1に示す反射防止膜の表面形状を模式的に示す部分拡大斜視図。2 is a partially enlarged perspective view schematically showing a surface shape of the antireflection film shown in FIG. 図3は図2に示す反射防止膜の部分拡大断面図。3 is a partially enlarged cross-sectional view of the antireflection film shown in FIG. 図4は図2に示す反射防止膜の製造に用いる反射防止膜成形用型とその内部に設けられたマスター型の概略構成を示す断面図。4 is a cross-sectional view showing a schematic configuration of an antireflection film molding die used for manufacturing the antireflection film shown in FIG. 2 and a master die provided therein. 図5は図4に示す反射防止膜成形用型内に備えられたマスター型を示す部分拡大断面図。FIG. 5 is a partially enlarged cross-sectional view showing a master die provided in the antireflection film molding die shown in FIG. 4. 図6は図4に示す成形用型で製造された反射防止膜をマスター型から剥離する際の離型位置と離型方向を示す説明図。FIG. 6 is an explanatory view showing a mold release position and a mold release direction when the antireflection film manufactured by the molding mold shown in FIG. 4 is peeled from the master mold. 図7は本発明に係る反射防止膜をマスター型から引き剥がす状態において微細凹凸部と微細転写凹凸部の剥離状態の一例を示す説明図。FIG. 7 is an explanatory view showing an example of a peeled state of the fine concavo-convex part and the fine transfer concavo-convex part in a state where the antireflection film according to the present invention is peeled from the master mold. 図8は本発明に係る反射防止膜の微細凹凸部をマスター型の微細凹凸部から離型している状態を示す説明図。FIG. 8 is an explanatory view showing a state in which the fine uneven portion of the antireflection film according to the present invention is released from the master fine uneven portion. 図9は図8に示すように離型された微細凹凸部を有する反射防止膜の説明図。FIG. 9 is an explanatory view of an antireflection film having a fine uneven portion which has been released as shown in FIG. 図10は本発明に係る反射防止膜の他の形態を示す斜視図。FIG. 10 is a perspective view showing another embodiment of the antireflection film according to the present invention. 図11は実施例で製造された 反射防止膜の第1の位置における微細凸部の変形状態を示す写真。FIG. 11 is a photograph showing a deformed state of the fine convex portion at the first position of the antireflection film manufactured in the example. 図12は実施例で製造された 反射防止膜の第2の位置における微細凸部の変形状態を示す写真。FIG. 12 is a photograph showing a deformed state of the fine convex portion at the second position of the antireflection film manufactured in the example. 図13は実施例で製造された 反射防止膜の第3の位置における微細凸部の変形状態を示す写真。FIG. 13 is a photograph showing a deformed state of the fine convex portion at the third position of the antireflection film manufactured in the example. 図14は実施例で製造された 反射防止膜の第4の位置における微細凸部の変形状態を示す写真。FIG. 14 is a photograph showing a deformed state of the fine convex portion at the fourth position of the antireflection film manufactured in the example. 図15は実施例で製造された 反射防止膜の第5の位置における微細凸部の変形状態を示す写真。FIG. 15 is a photograph showing a deformed state of the fine convex portion at the fifth position of the antireflection film manufactured in the example. 図16は比較例で製造された 反射防止膜の第1の位置における微細凸部の変形状態を示す写真。FIG. 16 is a photograph showing the deformation state of the fine convex portion at the first position of the antireflection film manufactured in the comparative example. 図17は比較例で製造された 反射防止膜の第2の位置における微細凸部の変形状態を示す写真。FIG. 17 is a photograph showing a deformed state of the fine convex portion at the second position of the antireflection film manufactured in the comparative example. 図18は比較例で製造された 反射防止膜の第3の位置における微細凸部の変形状態を示す写真。FIG. 18 is a photograph showing a deformed state of the fine convex portion at the third position of the antireflection film manufactured in the comparative example. 図19は比較例で製造された 反射防止膜の第4の位置における微細凸部の変形状態を示す写真。FIG. 19 is a photograph showing a deformed state of the fine convex portion at the fourth position of the antireflection film manufactured in the comparative example. 図20は比較例で製造された 反射防止膜の第5の位置における微細凸部の変形状態を示す写真。FIG. 20 is a photograph showing a deformed state of the fine convex portion at the fifth position of the antireflection film manufactured in the comparative example. 図21は実施例で製造された 反射防止膜の反射率のバラツキ状態を示す図。FIG. 21 is a view showing a variation state of the reflectance of the antireflection film manufactured in the example. 図22は比較例で製造された反射防止膜の反射率のバラツキ状態を示す図。FIG. 22 is a diagram showing a variation state of reflectance of an antireflection film manufactured in a comparative example. 図23は一般的なフロントライトと反射防止膜を備えた液晶パネルの断面図。FIG. 23 is a cross-sectional view of a liquid crystal panel provided with a general front light and an antireflection film. 図24は反射防止膜を型から剥離する場合の面内での剥離方向(゜)と面内反射率差(%)との関係を測定した結果を示す図。FIG. 24 is a view showing a result of measuring a relationship between an in-plane peeling direction (°) and an in-plane reflectance difference (%) when the antireflection film is peeled from the mold. 図25は従来方法における反射防止膜の成形後の突き出し位置を示す説明図。FIG. 25 is an explanatory view showing a protruding position after forming the antireflection film in the conventional method. 図26は従来方法における反射防止膜の成形後の突き出し位置の他の例を示す説明図。FIG. 26 is an explanatory view showing another example of the protruding position after forming the antireflection film in the conventional method.

符号の説明Explanation of symbols

10…フロントライト、 17…反射防止膜、17a…微細凸部、17A…微細凹凸部、20…液晶パネル、30…反射防止膜形成用型、30a…第1の母型、30b…第2の母型、36…微細凹凸形成面、37…微細転写凹凸部、17c…微細凸部、17d…窪み部、17e…突起部、51…微細凹部、52…反射防止膜。


DESCRIPTION OF SYMBOLS 10 ... Front light, 17 ... Antireflection film, 17a ... Fine convex part, 17A ... Fine uneven part, 20 ... Liquid crystal panel, 30 ... Antireflection film formation type | mold, 30a ... 1st mother mold, 30b ... 2nd Matrix, 36 ... fine uneven surface, 37 ... fine transfer uneven portion, 17c ... fine convex portion, 17d ... hollow portion, 17e ... projection, 51 ... fine concave portion, 52 ... antireflection film.


Claims (11)

光透過性樹脂を成形して光の波長以下の高さとピッチで微細凹凸部が複数形成された微細凹凸形成面を有する樹脂製光学部品を射出成形するための成形用型であって、
前記微細凹凸部が複数形成された微細凹凸形成面を有する樹脂製光学部品を成形するためのキャビティ空間を画定する第1の母型と第2の母型が型開き自在に備えられ、前記第1の母型と第2の母型の少なくとも一方の内面に前記樹脂製光学部品の微細凹凸部と逆の凹凸形状が形成された微細転写凹凸部を有する無機材料層からなるマスター型が設けられるとともに、前記マスター型から前記樹脂製光学部品を分離するための分離機構が、前記微細転写凹凸部の並ぶ配列方向に対し、±15゜のずれ方向範囲内で前記樹脂製光学部品を前記マスター型から引き剥がす機能を有してなることを特徴とする微細凹凸形成面を有する樹脂製光学部品成形用型。
A molding die for injection-molding a resin optical component having a fine concavo-convex forming surface in which a plurality of fine concavo-convex portions are formed at a height and pitch below the wavelength of light by molding a light-transmitting resin,
A first mother die and a second mother die for defining a cavity space for molding a resin optical component having a fine irregularity-formed surface on which a plurality of fine irregularities are formed are provided so that the mold can be opened. There is provided a master mold composed of an inorganic material layer having a fine transfer concavo-convex portion in which a concavo-convex shape opposite to the fine concavo-convex portion of the resin optical component is formed on the inner surface of at least one of the first master die and the second master die. In addition, a separation mechanism for separating the resin optical component from the master mold allows the resin optical component to be placed within the misalignment direction range of ± 15 ° with respect to the arrangement direction of the fine transfer concavo-convex portions. A mold for molding resin optical parts having a fine unevenness-forming surface, which has a function of peeling from a resin.
前記分離機構が前記樹脂製光学部品をその一辺側から他辺側に向けて直線的に引き剥がす方向に前記マスター型から分離させる機能を有することを特徴とする請求項1に記載の樹脂製光学部品成形用型。   2. The resin optical according to claim 1, wherein the separation mechanism has a function of separating the resin optical component from the master mold in a direction in which the resin optical component is linearly peeled from one side to the other side. Mold for molding parts. 前記マスター型が基板と該基板上に形成されて前記微細転写凹凸部を有するSiO膜からなることを特徴とする請求項1又は2に記載の樹脂製光学部品成形用型。 Plastic optical component mold according to claim 1 or 2, wherein the master mold is characterized in that it consists of SiO 2 film having a fine transfer uneven portion is formed on a substrate and the substrate. 前記微細転写凹凸部の凸部または凹部のピッチが100〜300nmの範囲に、前記凸部または凹部の高さまたは深さが100〜300nmの範囲に設定されてなることを特徴とする請求項1〜3のいずれかに記載の樹脂製光学部品成形用型。   The pitch of the convex part or concave part of the fine transfer concave-convex part is set in a range of 100 to 300 nm, and the height or depth of the convex part or concave part is set in a range of 100 to 300 nm. The resin-made optical component shaping | molding die in any one of -3. 光透過性樹脂を成形用型のキャビティ空間部に射出成形して光の波長以下の高さとピッチで微細凹凸部が複数形成された微細凹凸形成面を有する樹脂製光学部品を成形する樹脂製光学部品の製造方法であって、
前記成形用型として、前記微細凹凸部が複数形成された微細凹凸形成面を有する樹脂製光学部品を成形するためのキャビティ空間を画定する第1の母型と第2の母型とが型開き自在に備えられ、前記第1の母型と第2の母型の少なくとも一方の内面に前記樹脂製光学部品の微細凹凸部と逆の凹凸形状が形成された微細転写凹凸部を有する無機材料層からなるマスター型が設けられてなる樹脂製光学部品成形用型を用い、
前記キャビティ空間部に光透過性樹脂を注入して微細凹凸部を有する樹脂製光学部品を形成した後、該樹脂製光学部品を前記マスター型から分離する際、前記樹脂製光学部品の微細凹凸部が並ぶ配列方向に対して±15゜のずれ方向範囲内に離型時の引き剥がし方向が入るように前記樹脂製光学部品を前記マスター型から剥離することを特徴とする樹脂製光学部品の製造方法。
Resin optics for molding a resin optical component having a fine uneven surface with a plurality of fine uneven portions formed at a height and pitch below the wavelength of light by injection molding a light-transmitting resin into a cavity space of a mold A method of manufacturing a component,
As the molding die, a first mother die and a second mother die that define a cavity space for molding a resin optical component having a fine irregularity-formed surface on which a plurality of fine irregularities are formed are opened. An inorganic material layer having a fine transfer concavo-convex portion that is freely provided and has a concavo-convex shape opposite to the fine concavo-convex portion of the resin optical component formed on the inner surface of at least one of the first and second mother dies. Using a mold for resin optical parts molding provided with a master mold consisting of
After injecting a light-transmitting resin into the cavity space to form a resin optical component having fine uneven portions, when separating the resin optical component from the master mold, the fine uneven portions of the resin optical component The resin optical component is peeled off from the master mold so that the peeling direction at the time of mold release is within a deviation direction range of ± 15 ° with respect to the arrangement direction in which the resin is arranged. Method.
前記樹脂製光学部品を前記マスター型から剥離する場合にその一辺側から他辺側に向けて直線状に引き剥がして剥離することを特徴とする請求項5に記載の樹脂製光学部品の製造方法。   6. The method for producing a resin optical component according to claim 5, wherein when the resin optical component is peeled off from the master mold, the resin optical component is peeled off in a straight line from one side to the other side. . 前記樹脂製光学部品の微細凹凸部の凸部または凹部のピッチを100〜300nmの範囲に、前記凸部または凹部の高さまたは深さを100〜300nmの範囲に設定してなることを特徴とする請求項5または6に記載の樹脂製光学部品の製造方法。   The pitch of the convex part or concave part of the fine uneven part of the resin optical component is set in the range of 100 to 300 nm, and the height or depth of the convex part or concave part is set in the range of 100 to 300 nm. The manufacturing method of the resin-made optical components of Claim 5 or 6. 光透過性樹脂を成形用型のキャビティ空間部に射出成形して光の波長以下の高さとピッチで微細凹凸部が複数形成された微細凹凸形成面を有する樹脂製光学部品であり、
前記複数の微細凹凸部においてこれらの配列方向に対して±15゜の範囲内の部分に、変形部が形成されてなることを特徴とする樹脂製光学部品。
A resinous optical component having a fine irregularity-formed surface in which a plurality of fine irregularities are formed at a height and pitch below the wavelength of light by injection molding a light-transmitting resin into a cavity space of a molding die,
A resin optical component, wherein a deformed portion is formed in a portion within a range of ± 15 ° with respect to the arrangement direction in the plurality of fine uneven portions.
前記微細凹凸部における変形部が前記形成用型からの分離時に形成された平面視窪み型または突起型であることを特徴とする樹脂製光学部品。   The resin optical component, wherein the deformed portion in the fine uneven portion is a hollow in a plan view or a projection type formed at the time of separation from the forming mold. 前記微細凹凸部における凸部または凹部の平面形状が丸形であり、これら複数の丸形の凸部あるいは凹部のうち、少なくとも一部の凸部あるいは凹部が平面視略ハート形に変形され、これら少なくとも一部の凸部あるいは凹部のハート形変形部の窪み側あるいは突起側が、前記凸部または凹部の配列軸方向に対して±15゜の範囲に位置されてなることを特徴とする請求項8または9に記載の樹脂製光学部品。   The planar shape of the convex portion or concave portion in the fine uneven portion is round, and at least some of the convex portions or concave portions of the plurality of round convex portions or concave portions are deformed into a substantially heart shape in plan view. 9. The depression side or projection side of at least a part of the convex portions or concave portions is positioned within a range of ± 15 ° with respect to the arrangement axis direction of the convex portions or concave portions. Or 9. The resin optical component according to 9. 前記微細凹凸部の凸部または凹部のピッチが100〜300nmの範囲に、前記凸部または凹部の高さまたは深さが100〜300nmの範囲に設定されてなることを特徴とする請求項8〜10のいずれかに記載の樹脂製光学部品。




The pitch of the convex part or the concave part of the fine uneven part is set in a range of 100 to 300 nm, and the height or depth of the convex part or the concave part is set in a range of 100 to 300 nm. The resinous optical component according to any one of 10.




JP2004228540A 2004-08-04 2004-08-04 Production apparatus for optical component made of resin, production method, and optical component made of resin Withdrawn JP2006044075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004228540A JP2006044075A (en) 2004-08-04 2004-08-04 Production apparatus for optical component made of resin, production method, and optical component made of resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004228540A JP2006044075A (en) 2004-08-04 2004-08-04 Production apparatus for optical component made of resin, production method, and optical component made of resin

Publications (1)

Publication Number Publication Date
JP2006044075A true JP2006044075A (en) 2006-02-16

Family

ID=36023185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004228540A Withdrawn JP2006044075A (en) 2004-08-04 2004-08-04 Production apparatus for optical component made of resin, production method, and optical component made of resin

Country Status (1)

Country Link
JP (1) JP2006044075A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528326A (en) * 2007-05-18 2010-08-19 スリーエム イノベイティブ プロパティズ カンパニー Backlight for LCD
JP2011059264A (en) * 2009-09-08 2011-03-24 Olympus Corp Optical element
JP2013076899A (en) * 2011-09-30 2013-04-25 Dainippon Printing Co Ltd Mold, method for manufacturing mold, and method for manufacturing anti-reflection film using mold
US10153137B2 (en) 2015-10-16 2018-12-11 Semes Co., Ltd. Support unit, substrate treating apparatus including the same, and method for treating a substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010528326A (en) * 2007-05-18 2010-08-19 スリーエム イノベイティブ プロパティズ カンパニー Backlight for LCD
JP2011059264A (en) * 2009-09-08 2011-03-24 Olympus Corp Optical element
JP2013076899A (en) * 2011-09-30 2013-04-25 Dainippon Printing Co Ltd Mold, method for manufacturing mold, and method for manufacturing anti-reflection film using mold
US10153137B2 (en) 2015-10-16 2018-12-11 Semes Co., Ltd. Support unit, substrate treating apparatus including the same, and method for treating a substrate

Similar Documents

Publication Publication Date Title
JP4374368B2 (en) Method for manufacturing light guide plate
JP4992721B2 (en) Surface light emitting device and liquid crystal display device
JP3785093B2 (en) Light guide plate, manufacturing method therefor, lighting device, and liquid crystal display device
TW201027191A (en) Plane type light source device and image display device having the same
US6215936B1 (en) Lightguide having trapezoidally-shaped main body with a level surface at an angle to a rear surface
JP2008015449A (en) Backlight unit of liquid crystal display and method of fabricating light guide member
JP2019520609A (en) Microstructured and patterned light guide plate and devices including the same
JP2007148413A (en) Method for manufacturing light guiding plate
JP2007214001A (en) Light guide plate, mold for forming light guide plate, manufacturing method of mold for forming light guide plate, and manufacturing method of light guide plate
US20040105646A1 (en) Anti-reflective structure, illuminating device, liquid crystal display device, and mold for forming anti-reflective film
TWI739952B (en) Microstructured light guide plates and devices comprising the same
JP2010244730A (en) Light guide plate, surface light-emitting apparatus, liquid crystal display apparatus, and method of manufacturing light guide plate
EP2927576A1 (en) Display device
JP2011159510A (en) Light conductive plate and method for manufacturing the same
JP2000352719A (en) Light guide plate for liquid crystal display device, and its production
JP2006010831A (en) Antireflection structure, antireflection body, lighting device, and liquid crystal display device
JP2021520044A (en) Glass article with elongated microstructure and light extraction mechanism
JP2008129579A (en) Optical plate and its manufacturing method
JP2005047080A (en) Mold for molding optical part made of resin having fine uneven surface and manufacturing method of optical part made of resin using it
JPH1048429A (en) Side light type surface light source device, and metal mold for parts for side light type surface light source device
JP2006044075A (en) Production apparatus for optical component made of resin, production method, and optical component made of resin
KR20010098683A (en) Reflection type screen illumination apparatus
KR101147095B1 (en) Composite Light Guide Plate, and Backlight Unit Using the Same
JP2011138698A (en) Surface light source device and liquid crystal display device
JP2005324538A (en) Light guide plate structure and its production method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106