JPH06181157A - Apparatus with low dust-generating property - Google Patents

Apparatus with low dust-generating property

Info

Publication number
JPH06181157A
JPH06181157A JP33473892A JP33473892A JPH06181157A JP H06181157 A JPH06181157 A JP H06181157A JP 33473892 A JP33473892 A JP 33473892A JP 33473892 A JP33473892 A JP 33473892A JP H06181157 A JPH06181157 A JP H06181157A
Authority
JP
Japan
Prior art keywords
resin
work
low dust
materials
silicon wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33473892A
Other languages
Japanese (ja)
Inventor
Toshiro Umeda
俊郎 梅田
Hiroshi Ito
伊藤  博
Takeharu Komiya
毅治 小宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP33473892A priority Critical patent/JPH06181157A/en
Publication of JPH06181157A publication Critical patent/JPH06181157A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning

Abstract

PURPOSE:To provide an apparatus with low dust-generating properties, which is used in a clean room to suppress the generation of very fine particles and improved in dust-wiping properties by a clean wiper, etc. CONSTITUTION:The attraction parts 12 of a carrier arm 11 for vacuum- attracting and carrying a silicon wafer 13 are formed by one material selected from a group of materials having mutual wear and abrasion resistance, in which the materials neither wear the silicon wafer 13 nor are worn by the wafer 13, and high dust-wiping properties by a wiper, etc., e.g. polyacetal resin, polyether-imide resin, polyamide resin, polyamide-imide resin and poly- butyleneterephthalate resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体などクリーンル
ームで使用される露光装置や検査装置の搬送機構などに
使用して好適な低発塵性の装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus having low dust generation suitable for use in a transfer mechanism of an exposure apparatus or an inspection apparatus used in a clean room such as a semiconductor.

【0002】[0002]

【従来の技術】従来の低発塵技術は、部材と部材の摺
動、接触により発生する摩擦摩耗による摩耗粉(表面の
微細な破壊)の発生・飛散を抑制するために、部材間に
潤滑油を塗布したり、部材の片方あるいは両方を硬質化
するために硬質薄膜のコーティング、また固体潤滑膜を
コーティングして摩擦係数を低減し、耐摩耗性を高め、
耐久性を図ることにより、低発塵の効果を発揮するもの
である。
2. Description of the Related Art The conventional low dust generation technology is lubricated between members in order to suppress the generation and scattering of wear powder (fine surface damage) due to frictional wear caused by sliding and contact between members. Applying oil, coating a hard thin film to harden one or both of the members, or a solid lubricating film to reduce the friction coefficient and increase wear resistance,
By achieving durability, the effect of low dust generation is exhibited.

【0003】[0003]

【発明が解決しようとする課題】近年、半導体製造にお
ける集積回路の線幅は細くなり、16M-bitでは0.5μm 、
64Mーbitでは0.35μm、256M-bitでは0.25μm、1G-bitで
は0.15μmと言われている。それに伴いその半導体製造
に係る環境のクリーン化の要求もより高まっている。特
にウエハ表面へのその半導体製造環境における微細粒子
(塵埃)による汚染は製品歩留りの悪化など重大な問題
となっている。しかし、上記従来技術は、前述のように
接触する片方あるいは両方の部材の耐摩耗性を向上させ
ることであって、完全な無摩耗を実現させるものではな
い。そのため部材間の接触に伴い発生する微細な摩耗粉
が両部材表面に付着したり、その周辺に飛散したりす
る。すなわち、上記従来技術では上記ウエハ表面や半導
体製造環境における高度なクリーン化は実現できない。
In recent years, the line width of integrated circuits in semiconductor manufacturing has become thin, and 0.5 μm at 16 M-bit,
It is said to be 0.35 μm for 64M-bit, 0.25μm for 256M-bit, and 0.15μm for 1G-bit. Along with this, the demand for a cleaner environment for the semiconductor manufacturing is also increasing. In particular, contamination of the wafer surface with fine particles (dust) in the semiconductor manufacturing environment is a serious problem such as deterioration of product yield. However, the above-mentioned conventional technique is to improve the wear resistance of one or both members that come into contact with each other as described above, and does not realize complete wear-free. Therefore, fine abrasion powder generated due to contact between members adheres to the surfaces of both members or scatters around them. That is, the above-mentioned conventional techniques cannot realize a high degree of cleanliness on the wafer surface or the semiconductor manufacturing environment.

【0004】本発明の目的は、クリーンルームで使用さ
れ、微細粒子の発生を抑制するとともに、ウエハなどに
代表されるワークの表面へのその微細粒子の付着を抑制
し、また、そのクリーンルーム内への微細粒子の飛散を
抑制することができる低発塵性の装置を提供することに
ある。
An object of the present invention is to be used in a clean room, to suppress the generation of fine particles, to suppress the adhesion of the fine particles to the surface of a work represented by a wafer, and to keep the inside of the clean room. An object of the present invention is to provide a device with low dust generation capable of suppressing the scattering of fine particles.

【0005】[0005]

【課題を解決するための手段】一実施例を示す図1に対
応づけて本発明を説明すると、本発明は、クリーンルー
ム内でワークを処理する低発塵性の装置に適用され、ワ
ーク13が摺動接触する部位12を、ワーク13との間
で相互に耐摩耗性を有し、かつ高被拭浄性を有する一群
の材質の中から選択された1の材料で形成することによ
り、上述した目的を達成する。請求項2の装置におい
て、ワーク13をシリコンウエハとした場合、相互に耐
摩耗性を有する材料は、相互に摺動する時に発生する微
細粒子数が少なくともアルミナに比べて3桁以上少ない
材料であり、高被拭浄性を有する材料は、少なくともア
ルミナよりも被拭浄性のよい材料である。請求項3の装
置において、一群の材質は、ポリアセタール系樹脂、ポ
リエーテルイミド系樹脂、ポリアミド系樹脂、ポリアミ
ドイミド系樹脂およびポリブチレンテレフタレート系樹
脂である。請求項4の装置において、一群の材質が、フ
ッ素系樹脂、ポリエーテル系樹脂、ポリオレフィン系樹
脂およびポリフェニレンサルファイド系樹脂でである。
請求項5の装置において、一群の材料は、帯電列の正極
性側あるいは負極性側の端に近い材料である。請求項6
の装置において、ワークが半導体ウエハまたはガラス基
板である場合、ワークを処理する装置がピンセット、搬
送機構、または芯出し機構である。請求項7の装置にお
いて、シリコンウエハが接触する部位は、真空ピンセッ
ト、搬送機構、または芯出し機構である。
The present invention will be described with reference to FIG. 1 showing an embodiment. The present invention is applied to a low dust generating device for processing a work in a clean room, and the work 13 is By forming the part 12 in sliding contact with the work piece 13 by one material selected from a group of materials having mutual wear resistance and high cleaning property, Achieve the purpose. In the apparatus according to claim 2, when the workpiece 13 is a silicon wafer, the materials having mutual abrasion resistance are materials in which the number of fine particles generated when sliding on each other is at least three digits smaller than that of alumina. A material having a high wiping cleanability is a material having a better wiping cleanability than at least alumina. In the apparatus of claim 3, the group of materials is a polyacetal resin, a polyetherimide resin, a polyamide resin, a polyamideimide resin, and a polybutylene terephthalate resin. In the apparatus of claim 4, the group of materials is a fluororesin, a polyether resin, a polyolefin resin and a polyphenylene sulfide resin.
In the device of claim 5, the group of materials is a material close to the positive side or negative side end of the charging train. Claim 6
In the above device, when the work is a semiconductor wafer or a glass substrate, the device for processing the work is tweezers, a transfer mechanism, or a centering mechanism. In the apparatus according to claim 7, the part which the silicon wafer contacts is vacuum tweezers, a transfer mechanism, or a centering mechanism.

【0006】[0006]

【作用】たとえば、半導体製造装置の搬送装置でワーク
13を搬送するとき、ワーク13が吸着部12などと摺
動接触しても、摩耗粉の発生が抑制される。また、部位
12は高被拭浄性を有するから、クリーンワイパなどで
拭浄したときその表面の塵埃などは良く拭き取られる。
その結果、低発塵性の装置を提供できる。
For example, when the work 13 is carried by the carrying device of the semiconductor manufacturing apparatus, even if the work 13 comes into sliding contact with the suction portion 12 or the like, generation of abrasion powder is suppressed. In addition, since the portion 12 has a high wiping cleanability, dust and the like on the surface can be wiped off well when it is wiped and cleaned by a clean wiper or the like.
As a result, a device with low dust generation can be provided.

【0007】−評価試験1− 発明者等は、まず、図2に示すように直径2インチのシ
リコンウエハ1と各種材料からなる直径10mmの球形状ピ
ン2の組合せでピンオンディスク型摩擦摩耗試験(荷重
100gf 、摩擦速度50mm/s)を行い、それに伴う発塵量の
違いを比較した。シリコンウエハ1あるいはピン2の摩
耗に伴い発生して飛散した微細粒子(摩耗粉)を吸引ノ
ズル3で吸引流量毎分1立方フィートで吸引し、レーザ
パーティクルカウンタ(Met-One 製A249型)を用いて微
細粒子(粒径0.1 μm 以上)の個数を計測した。その結
果を図3,図4に示す。
-Evaluation Test 1-First, the inventors of the present invention used a pin-on-disc type friction and wear test with a combination of a silicon wafer 1 having a diameter of 2 inches and a spherical pin 2 having a diameter of 10 mm made of various materials as shown in FIG. (load
100gf, friction speed 50mm / s) was performed, and the difference in the amount of dust generation was compared. Fine particles (wear particles) generated and scattered due to wear of the silicon wafer 1 or pins 2 are sucked at a suction flow rate of 1 cubic foot per minute with a suction nozzle 3, and a laser particle counter (Met-One A249 type) is used. The number of fine particles (particle size 0.1 μm or more) was measured. The results are shown in FIGS.

【0008】図3に示すように、シリコンウエハ1と接
触するピン2がセラミックス球(例えば、窒化珪素、ア
ルミナ)の場合、セラミックス側に比べシリコンウエハ
側の方が多く削られ摩耗粉を飛散し発塵を示した。ま
た、ピン2が金属球(例えば、高炭素クロム鋼)、石英
ガラス球の場合、シリコンウエハ1およびピン2の両方
が摩耗し発塵を示した。しかし、ピン2が、ポリエーテ
ルエーテルケトン、ポリエーテルイミド、ポリアセター
ル(商品名デルリン)、ポリエチレン、ポリフェニレン
サルファイドなどのプラスティック球の場合、シリコン
ウエハ1およびピン2とも摩耗が少なく低発塵性を示し
た。ただし、ピン2がポリテトラフルオロエチレン(商
品名テフロン)の球の場合、ピン2側は摩耗したが、摩
耗粉は飛散し難く、レーザパーティクルカウンタには計
測されなかった。
As shown in FIG. 3, when the pin 2 contacting the silicon wafer 1 is a ceramic sphere (for example, silicon nitride or alumina), the silicon wafer side is scraped more than the ceramic side and the abrasion powder is scattered. It showed dusting. When the pin 2 is a metal ball (for example, high carbon chrome steel) or a quartz glass ball, both the silicon wafer 1 and the pin 2 are worn and dust is generated. However, when the pin 2 is a plastic sphere such as polyetheretherketone, polyetherimide, polyacetal (trade name Delrin), polyethylene, or polyphenylene sulfide, both the silicon wafer 1 and the pin 2 have little wear and show low dust generation. . However, in the case where the pin 2 was a ball of polytetrafluoroethylene (trade name Teflon), the pin 2 side was worn, but the abrasion powder was difficult to scatter and was not measured by the laser particle counter.

【0009】このようにシリコンウエハなどのワークと
接触する、低発塵性の装置の各部位には耐摩耗性の優れ
た材料を使用することが必要ではあるが、それによって
ワークが摩耗して摩耗粉が飛散することは好ましくな
い。逆に、ワークによって摩耗する材料でもいけない。
したがって、ワークを摩耗させず、しかもワークで摩耗
されることがない上述したプラスティックを用いること
によって、ワークおよびワークと接触する部位の摩耗を
抑制し、低発塵性の装置を提供できる。本明細書では、
このような摩耗特性を有する材料を相互に耐摩耗性を有
する材料と呼ぶ。
As described above, it is necessary to use a material having excellent wear resistance for each part of the device of low dust generation that comes into contact with a work such as a silicon wafer. Scattering of wear particles is not preferable. On the contrary, it should not be a material that is worn by the work.
Therefore, by using the above-described plastic that does not wear the work and is not worn by the work, it is possible to suppress the wear of the work and the part in contact with the work, and to provide a device with low dust generation. In this specification,
Materials having such wear characteristics are called materials having mutual wear resistance.

【0010】以上説明したように、ポリアセタール系樹
脂、ポリエーテルイミド系樹脂、ポリアミド系樹脂、ポ
リアミドイミド系樹脂およびポリブチレンテレフタレー
ト系樹脂などは、上述したピンオンディスク型摩耗摩擦
試験においてアルミナなどに比べて発生する摩耗粉が3
桁以上少なく、上述した相互に耐摩耗性を有する材料と
して好適に使用できる。
As described above, the polyacetal resin, the polyetherimide resin, the polyamide resin, the polyamideimide resin, the polybutylene terephthalate resin, and the like are compared with alumina and the like in the above-described pin-on-disc type abrasion friction test. Generated abrasion powder is 3
It can be suitably used as the above-mentioned materials having mutual wear resistance, which are less than the order of magnitude.

【0011】−評価試験2− 次に発明者等は、シリコンウエハと各種材料の接触に伴
うシリコンウエハへの微細粒子(ワイパーから発生する
塵挨など)の移着性を比較した。試験に先立って、直径
4インチのシリコンウエハの表面を清浄して付着してい
る微細粒子をできるだけ除去する。一方、シリコンウエ
ハに接触させる部材として直径50mmの平面基板を用
い、その表面を極性溶剤(例えばイソプロピルアルコー
ル)を浸み込ませた周知のクリーンルーム用ワイパーで
拭浄した。シリコンウエハに平面基板を重ね合わせて一
定荷重で接触させた後、シリコンウエハ表面の微細粒子
の付着の程度をレーザ散乱によるゴミ検査機(SURFSCAN
#4500 )で計測した。その結果を図5に示す。
-Evaluation Test 2- Next, the inventors compared the transferability of fine particles (such as dust generated from the wiper) to the silicon wafer due to contact between the silicon wafer and various materials. Prior to the test, the surface of a silicon wafer having a diameter of 4 inches is cleaned to remove as much as possible fine particles adhering thereto. On the other hand, a flat substrate having a diameter of 50 mm was used as a member to be brought into contact with the silicon wafer, and the surface thereof was wiped with a known wiper for a clean room in which a polar solvent (eg isopropyl alcohol) was soaked. After a flat substrate is placed on a silicon wafer and brought into contact with it with a constant load, the degree of adhesion of fine particles on the surface of the silicon wafer is determined by a laser scattering dust inspection machine (SURFSCAN
# 4500). The result is shown in FIG.

【0012】拭浄前の平面基板の表面は機械的な光学研
磨面を精密洗浄したものであり、供試材表面の汚染度は
材料により若干の違いはあると思われるが、次に数回に
わたってワイパー拭浄を行うためその違いは無視でき
る。また、その表面粗さの違いは本評価には大きな影響
はなかった。極性溶剤を含浸したワイパーで拭浄するた
め、物質の違いに関係なく平面基板表面は帯電しにく
く、帯電電圧は約±0.5kV以内であった。
The surface of the flat substrate before wiping and cleaning is a mechanically optically polished surface that has been precisely cleaned, and the degree of contamination on the surface of the test material may vary depending on the material, but next several times. The difference can be ignored because the wiper is wiped across. Moreover, the difference in the surface roughness did not have a great influence on this evaluation. Since it was wiped with a wiper impregnated with a polar solvent, the surface of the flat substrate was difficult to be charged regardless of the difference in the substance, and the charging voltage was within ± 0.5 kV.

【0013】クリーンルーム内でシリコンウエハが接触
する部位表面のワイパー拭浄を手作業で行う時、物質の
表面自由エネルギー(表面張力)の違いによって、被拭
浄性に違いがある可能性がある。すなわち、被拭浄性の
優れた物質はそうでない物質に比べてその表面の清浄度
が良い。半導体製造において搬送装置のメンテナンス時
あるいは定期的に、シリコンウエハなどのワークと接触
する搬送体の表面はクリーンワイパー等を用いて汚れの
拭き取り作業が必要となる。この実作業を考慮すれば、
平面基板表面の被拭浄性を含めて、移着性を評価するこ
とは現実的である。
When the wiper cleaning of the surface of the portion where the silicon wafer comes into contact is manually performed in the clean room, there may be a difference in the cleaning property due to the difference in the surface free energy (surface tension) of the substance. That is, the substance having excellent wiping cleanability has a better surface cleanness than the substance having no such property. In semiconductor manufacturing, the surface of a carrier that comes into contact with a workpiece such as a silicon wafer needs to be cleaned with a clean wiper or the like during maintenance of the carrier or at regular intervals. Considering this actual work,
It is realistic to evaluate the transferability including the cleanability of the surface of the flat substrate.

【0014】図5から分かるように、ポリテトラフルオ
ロエチレン(テフロン)、ポリエーテルイミドやポリア
セタールは、石英ガラス、炭化珪素あるいはアルミナに
比べてシリコンウエハに対して微細粒子の移着性が少な
い。すなわち、ワークが接触する部位の材料を、帯電列
の正極性側の端に近い物質、例えばポリアセタール(デ
ルリン)、ポリエーテルイミド、ポリアミド(ナイロ
ン)などや、帯電列の負極性側の端に近い物質、例えば
ポリテトラフルオロエチレン(テフロン)、ポリエーテ
ルエーテルケトン、ポリエチレンなどで形成すると、こ
れらの材料は帯電列において正負極性側の端に近い物質
であり、接触帯電しやすいため、微細粒子がシリコンウ
エハに移着し難いと考える。
As can be seen from FIG. 5, polytetrafluoroethylene (Teflon), polyetherimide and polyacetal have less transferability of fine particles to a silicon wafer than quartz glass, silicon carbide or alumina. That is, the material of the part where the workpiece contacts is close to the end of the charging column on the positive side, such as polyacetal (Delrin), polyetherimide, polyamide (nylon), or the end of the charging column on the negative side. When formed of substances such as polytetrafluoroethylene (Teflon), polyetheretherketone, polyethylene, etc., these materials are substances close to the positive and negative polarity side ends in the charging train and are easily charged by contact, so that fine particles are not I think that it is difficult to transfer to a wafer.

【0015】このように、シリコンウエハが摺動接触す
る部位の材料として、帯電列の正極性側あるいは負極性
側の端に近いものを使用することにより、発生した摩耗
粉あるいはその環境中に浮遊する塵埃は帯電列の正極性
側あるいは負極性側の端に近い物質で構成した部材側に
付着しやすい。その結果、相手部材がウエハであれば、
そのウエハ接触表面には摩耗粉、塵埃などの微細粒子の
付着を抑制することができる。このような帯電列の正極
性側あるいは負極性側の端に近い材料であって被拭浄性
の良好な特性を、本明細書では高被拭浄性と呼び、少な
くとも図5から分かるように、ワークがシリコンウエハ
の場合には、アルミナが有する被拭浄性よりも良好な材
料が好適である。
As described above, by using a material close to the positive side or the negative side of the charging train as the material of the portion in which the silicon wafer is in sliding contact, the generated abrasion powder or its floating in the environment. The generated dust tends to adhere to the side of the member made of a substance close to the positive side or negative side end of the charging column. As a result, if the mating member is a wafer,
Adhesion of fine particles such as abrasion powder and dust can be suppressed on the wafer contact surface. Such a characteristic that the material is close to the positive side or negative side of the charging line and has good wiping cleanability is referred to as high wiping cleanability in this specification, and as can be seen at least from FIG. When the work is a silicon wafer, a material having a better cleaning property than that of alumina is suitable.

【0016】図6は各種材料の「帯電列」を示したもの
である。二つの物体を接触あるいは摩擦させると一方は
正極性に、他方は負極性に帯電する。これを多くの物質
について実験すると、正に帯電しやすいものから、反対
に負に帯電しやすいものまでを一列に並べると帯電列と
なる。
FIG. 6 shows "charge trains" of various materials. When two objects are contacted or rubbed, one is charged positively and the other negatively charged. When this is tested on many substances, a series of charged particles is formed by arranging from ones that are easily positively charged to those that are easily negatively charged in a row.

【0017】帯電列の正極性側あるいは負極性側の端に
近い物質であっても、低発塵性を実現するためにはシリ
コンウエハ、ガラス基板を摩耗させずしかも自身もシリ
コンウエハやガラス基板で摩耗されないような相互に耐
摩耗性を有することは必須である。図6の帯電列と図4
の図から、ワークとの間で相互に耐摩耗性を有する図4
に示す樹脂系材料はいずれも帯電列が正極側または負極
側の材料であることがわかる。また、図6の帯電列と図
5の図から、図4に示す高被拭浄性の樹脂系材料はいず
れも帯電列が正極側または負極側の材料であることがわ
かる。したがって、本発明が適用される低発塵性の装置
でワークとの摺動接触部位に使用される材料を、帯電列
が正極側あるいは負極側に近い1群の中から選択するこ
とができる。
In order to realize low dust generation, even if the substance is close to the positive side or negative side of the charging train, the silicon wafer and the glass substrate are not abraded, and the silicon wafer and the glass substrate themselves are used. It is essential that they have mutual wear resistance so that they are not abraded by. The charging train of FIG. 6 and FIG.
From the figure of Fig. 4, it is shown in Fig.
It can be seen that all of the resin-based materials shown in (1) are materials whose charge train is on the positive electrode side or the negative electrode side. Further, from the charging train of FIG. 6 and the drawing of FIG. 5, it can be seen that in the highly wipeable resin material shown in FIG. 4, the charging train is a material on the positive electrode side or the negative electrode side. Therefore, the material used for the sliding contact portion with the work in the low dust generating device to which the present invention is applied can be selected from the group of ones in which the charging train is close to the positive electrode side or the negative electrode side.

【0018】[0018]

【実施例】図1は本発明をシリコンウエハ搬送装置に適
用した場合の一例を示す図である。図において、真空吸
着式搬送アーム11の内部には通路11aが形成され、
その先端には通路11aと連通する3つの吸着部12が
設けられている。この吸着部12は、上述したように高
被拭浄性と相互に耐摩耗性を有する各種材料の中から選
択した1の材料で形成されている。したがって、シリコ
ンウエハ13を搬送するときシリコンウエハ13が搬送
アーム11の吸着部12と摺動接触しても、摩耗粉が発
生せず、しかも、定期的にあるいは搬送作業の前に吸着
部12の表面をクリーンワイパで拭浄して表面の微細粒
子の付着を抑制しておけば、シリコンウエハ13の表面
が常に清浄に保たれて歩留りが向上する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing an example in which the present invention is applied to a silicon wafer transfer apparatus. In the figure, a passage 11a is formed inside the vacuum suction type transfer arm 11,
Three suction portions 12 that communicate with the passage 11a are provided at the tip thereof. The suction portion 12 is made of one material selected from various materials having high wiping cleanability and mutual wear resistance as described above. Therefore, when the silicon wafer 13 is transferred, even if the silicon wafer 13 makes sliding contact with the suction portion 12 of the transfer arm 11, no abrasion powder is generated, and the suction portion 12 of the suction portion 12 is regularly or before the transfer operation. If the surface is wiped with a clean wiper to suppress the adhesion of fine particles on the surface, the surface of the silicon wafer 13 is always kept clean and the yield is improved.

【0019】図7は本発明を真空ピンセットに適用した
場合の一例を示す図である。真空ピンセット21の内部
には通路21aが形成され、ピンセット21の先端に通
路21aと連通する吸着部22が設けられている。この
吸着部22も搬送アーム11の吸着部12と同様に、高
被拭浄性と相互に耐摩耗性を有する各種材料の中から選
択した1の材料で形成されている。したがって、この場
合も同様に低発塵な真空ピンセットを提供できる。
FIG. 7 is a diagram showing an example in which the present invention is applied to vacuum tweezers. A passage 21 a is formed inside the vacuum tweezers 21, and a suction portion 22 communicating with the passage 21 a is provided at the tip of the tweezers 21. Like the suction portion 12 of the transfer arm 11, the suction portion 22 is also made of one material selected from various materials having high cleaning property and mutual wear resistance. Therefore, also in this case, it is possible to provide the vacuum tweezers with low dust generation.

【0020】図8は本発明をウエハ位置決め機構に適用
した場合の一例を示す図である。ウエハ回転テーブル3
0の回転軸心に対して放射状に3本の位置決めアーム3
1が設けられている。この位置決めアーム31の先端
は、搬送アーム11の吸着部12と同様に、高被拭浄性
を有し、かつ相互に耐摩耗性を有する各種材料の中から
選択した1の材料で形成された円盤32で形成されてい
る。したがって、この場合も、ウエハ位置決めの際にシ
リコンウエハ13が位置決めアーム31の先端円板32
と摺動接触しても、上述したと同様に摩耗粉が発生せず
低発塵な位置決め機構を提供できる。
FIG. 8 is a diagram showing an example in which the present invention is applied to a wafer positioning mechanism. Wafer rotary table 3
Three positioning arms 3 radially with respect to the axis of rotation of 0
1 is provided. The tip of the positioning arm 31 is formed of one material selected from various materials having high wiping cleanability and mutual abrasion resistance, like the suction portion 12 of the transfer arm 11. It is formed of a disk 32. Therefore, also in this case, the silicon wafer 13 is moved to the tip end disk 32 of the positioning arm 31 when the wafer is positioned.
Even if it comes into sliding contact with, it is possible to provide a positioning mechanism with low dust generation without generating abrasion powder as in the above.

【0021】なお、図1,図7および図8の吸着部1
2,22および円盤32はその全体を上述した材料で形
成するようにしたが、シリコンウエハが接触する面にそ
れらの材料をコーティングしてもよい。
The suction unit 1 shown in FIGS. 1, 7 and 8 is used.
Although 2, 22 and the disk 32 are made of the above-mentioned materials in their entirety, they may be coated on the surface in contact with the silicon wafer.

【0022】[0022]

【発明の効果】以上詳細に説明したように、ワークを摩
耗せずしかもワークで摩耗されないという相互に耐摩耗
性を有し、かつ被拭浄性に優れる一群の材質の中から選
択された1の材料でワークが摺動接触する部位を形成す
るようにしたので、ワークへの微細粒子の付着およびワ
ークを使用する環境への微細粒子の飛散を抑制すること
ができるため、微細粒子の付着、飛散を重大な問題とす
る機器の信頼性の向上、またその機器を設置するクリー
ン環境の清浄度の悪化を抑制することができる。
As described in detail above, the materials selected from a group of materials having mutual wear resistance that neither the work wears nor the work wear, and which is excellent in wiping cleanliness. Since the work is made to form the part in which the work is in sliding contact, it is possible to suppress the adhesion of the fine particles to the work and the scattering of the fine particles to the environment where the work is used. It is possible to improve the reliability of a device in which scattering is a serious problem and to suppress deterioration of cleanliness of a clean environment in which the device is installed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明をシリコンウエハ搬送アームに適用した
場合の一例を示す図
FIG. 1 is a diagram showing an example in which the present invention is applied to a silicon wafer transfer arm.

【図2】シリコンウエハと各種材料の組合せにおけるピ
ンオンディスク型摩擦摩耗試験による飛散微細粒子測定
方法を説明する模式図
FIG. 2 is a schematic diagram illustrating a method for measuring scattered fine particles by a pin-on-disk type friction and wear test in a combination of a silicon wafer and various materials.

【図3】シリコンウエハと各種材料の組合せで摩擦摩耗
試験を行った時に飛散する微細粒子の個数を示した図
FIG. 3 is a diagram showing the number of fine particles scattered when a friction and wear test is performed on a combination of a silicon wafer and various materials.

【図4】シリコンウエハと各種材料の組合せで摩擦摩耗
試験を行った時に飛散する微細粒子の個数を示した図
FIG. 4 is a diagram showing the number of fine particles scattered when a friction and wear test is performed using a combination of a silicon wafer and various materials.

【図5】溶剤含浸のクリーンワイパーで拭浄した各種材
料とシリコンウエハを接触させ、そのシリコンウエハ表
面に付着した微細粒子の付着程度を示した図
FIG. 5 is a diagram showing the degree of adhesion of fine particles adhering to the surface of the silicon wafer by bringing various materials wiped with a solvent-impregnated clean wiper into contact with the silicon wafer.

【図6】各種材料の静電気に関する「帯電列」を示す図FIG. 6 is a diagram showing a “charging sequence” related to static electricity of various materials.

【図7】本発明を真空ピンセットに適用した場合の一例
を示す図
FIG. 7 is a diagram showing an example in which the present invention is applied to vacuum tweezers.

【図8】本発明をウエハ位置決め機構に適用した場合の
一例を示す図
FIG. 8 is a diagram showing an example in which the present invention is applied to a wafer positioning mechanism.

【符号の説明】[Explanation of symbols]

1 シリコンウエハ 2 ピン 3 吸引ノズル 11 搬送アーム 12 吸着部 13 シリコンウエハ 21 ピンセット 22 吸着部 31 位置決めアーム 32 円盤 1 Silicon Wafer 2 Pins 3 Suction Nozzle 11 Transfer Arm 12 Adsorption Part 13 Silicon Wafer 21 Tweezers 22 Adsorption Part 31 Positioning Arm 32 Disk

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 クリーンルーム内でワークを処理する低
発塵性の装置において、 前記ワークが摺動接触する部位は、前記ワークとの間で
相互に耐摩耗性を有し、かつ高被拭浄性を有する一群の
材質の中から選択された1の材料で形成することを特徴
とする低発塵性の装置。
1. A low dust-generating apparatus for treating a work in a clean room, wherein a portion where the work slides and contacts has mutual wear resistance with the work and is highly cleaned. A low dust-generating device, which is formed of one material selected from a group of materials having properties.
【請求項2】 請求項1の装置において、前記ワークが
シリコンウエハの場合、前記相互に耐摩耗性を有する材
料は、相互に摺動する時に発生する微細粒子数が少なく
ともアルミナに比べて3桁以上少ない材料であり、高被
拭浄性を有する材料は、少なくともアルミナよりも被拭
浄性のよい材料であることを特徴とする低発塵性の装
置。
2. The apparatus according to claim 1, wherein when the work is a silicon wafer, the mutually wear-resistant materials have a number of fine particles generated when they slide with each other of at least 3 digits compared to alumina. A low dust generating device, characterized in that the material having a small amount of cleaning material and having a high cleaning property is a material having a cleaning property which is at least better than that of alumina.
【請求項3】 請求項1の装置において、前記一群の材
質が、ポリアセタール系樹脂、ポリエーテルイミド系樹
脂、ポリアミド系樹脂、ポリアミドイミド系樹脂および
ポリブチレンテレフタレート系樹脂であることを特徴と
する低発塵性の装置。
3. The apparatus according to claim 1, wherein the group of materials is a polyacetal resin, a polyetherimide resin, a polyamide resin, a polyamideimide resin, and a polybutylene terephthalate resin. Dust-generating device.
【請求項4】 請求項1の装置において、前記一群の材
質が、フッ素系樹脂、ポリエーテル系樹脂、ポリオレフ
ィン系樹脂およびポリフェニレンサルファイド系樹脂で
あることを特徴とする低発塵性の装置。
4. The low dust generating device according to claim 1, wherein the group of materials is a fluororesin, a polyether resin, a polyolefin resin, and a polyphenylene sulfide resin.
【請求項5】 請求項1の装置において、前記一群の材
料は、帯電列の正極性側あるいは負極性側の端に近い材
料であることを特徴とする低発塵性の装置。
5. The low dust generating device according to claim 1, wherein the group of materials is a material close to a positive side or a negative side end of the charging train.
【請求項6】 請求項1,3〜5のいずれかに記載の装
置において、前記ワークが半導体ウエハまたはガラス基
板であり、前記ワークを処理する装置がピンセット、搬
送機構、または芯出し機構であることを特徴とする低発
塵性の装置。
6. The apparatus according to claim 1, wherein the work is a semiconductor wafer or a glass substrate, and the device for processing the work is tweezers, a transfer mechanism, or a centering mechanism. A device with low dust generation, which is characterized in that
【請求項7】 請求項2に記載の装置において、前記シ
リコンウエハが接触する部位は、真空ピンセット、搬送
機構、または芯出し機構であることを特徴とする低発塵
性の装置。
7. The low dust-generating device according to claim 2, wherein the portion in contact with the silicon wafer is vacuum tweezers, a transfer mechanism, or a centering mechanism.
JP33473892A 1992-12-15 1992-12-15 Apparatus with low dust-generating property Pending JPH06181157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33473892A JPH06181157A (en) 1992-12-15 1992-12-15 Apparatus with low dust-generating property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33473892A JPH06181157A (en) 1992-12-15 1992-12-15 Apparatus with low dust-generating property

Publications (1)

Publication Number Publication Date
JPH06181157A true JPH06181157A (en) 1994-06-28

Family

ID=18280672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33473892A Pending JPH06181157A (en) 1992-12-15 1992-12-15 Apparatus with low dust-generating property

Country Status (1)

Country Link
JP (1) JPH06181157A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001050503A1 (en) * 1999-12-30 2001-07-12 Speedfam-Ipec Corporation Advanced wafer passive end-effector
US7394521B2 (en) 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589820B2 (en) 2002-12-10 2009-09-15 Nikon Corporation Exposure apparatus and method for producing device
JP2013187451A (en) * 2012-03-09 2013-09-19 Mitsubishi Cable Ind Ltd Transfer pad and transfer arm using the same
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9645505B2 (en) 2004-06-09 2017-05-09 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device to measure specific resistance of liquid
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9684250B2 (en) 2003-12-23 2017-06-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9829799B2 (en) 2004-04-14 2017-11-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9939739B2 (en) 2003-05-23 2018-04-10 Nikon Corporation Exposure apparatus and method for producing device
US9958786B2 (en) 2003-04-11 2018-05-01 Nikon Corporation Cleanup method for optics in immersion lithography using object on wafer holder in place of wafer
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001050503A1 (en) * 1999-12-30 2001-07-12 Speedfam-Ipec Corporation Advanced wafer passive end-effector
US7589820B2 (en) 2002-12-10 2009-09-15 Nikon Corporation Exposure apparatus and method for producing device
US8089611B2 (en) 2002-12-10 2012-01-03 Nikon Corporation Exposure apparatus and method for producing device
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9958786B2 (en) 2003-04-11 2018-05-01 Nikon Corporation Cleanup method for optics in immersion lithography using object on wafer holder in place of wafer
US9939739B2 (en) 2003-05-23 2018-04-10 Nikon Corporation Exposure apparatus and method for producing device
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10613447B2 (en) 2003-12-23 2020-04-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9684250B2 (en) 2003-12-23 2017-06-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9817321B2 (en) 2003-12-23 2017-11-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10768538B2 (en) 2003-12-23 2020-09-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7394521B2 (en) 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9829799B2 (en) 2004-04-14 2017-11-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10705432B2 (en) 2004-04-14 2020-07-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10234768B2 (en) 2004-04-14 2019-03-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9645505B2 (en) 2004-06-09 2017-05-09 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device to measure specific resistance of liquid
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2013187451A (en) * 2012-03-09 2013-09-19 Mitsubishi Cable Ind Ltd Transfer pad and transfer arm using the same

Similar Documents

Publication Publication Date Title
JPH06181157A (en) Apparatus with low dust-generating property
JP2007310336A (en) Lubricant supplying device, cleaning device, process cartridge, and image forming apparatus
Tani et al. Adhesion and friction behavior of magnetic disks with ultrathin perfluoropolyether lubricant films having different end-groups measured using pin-on-disk test
JP2000158157A (en) Minute convex/concave shaped material, coating structural material using it, lining substrate, and powder fluid transferring member
Andoh et al. Evaluation of very thin lubricant films
Blau et al. Microfriction studies of model self-lubricating surfaces
JPS6162092A (en) Blade cleaning device
Ishii et al. Simultaneous measurement of pin wear and change in lubricant thickness on thin-film magnetic disks
JP2004199042A (en) Cleaning device, process cartridge and image forming apparatus
Fusaro How to evaluate solid lubricant films using a pin-on-disk tribometer
JPH02186656A (en) Low dust device
Ishii et al. Lubricant behavior and pin wear on thin-film magnetic disks
JP2005012202A (en) Chuck apparatus, cleaning equipment and cleaning method
US20020030910A1 (en) Method and apparatus for magnetic transfer
JPH0388189A (en) Magnetic disk device
Altshuler et al. The physical effects of intra-drive particulate contamination on the head-disk interface in magnetic hard disk drives
JPS60107076A (en) Cleaning device
JPH06161325A (en) Cleaning device for image forming device
JPS61267771A (en) Developing device
Miyake et al. Particulate Matter Generation Properties from Sliding Parts Made of Various Carbonaceous Films
Chekanov et al. Analysis of Lubricant Morphology Using the AFM
Sinha et al. Topographical and tribo-chemical studies of contact sliding on ultrathin perfluoropolyether film
JPH08272271A (en) Cleaning device
JPH05159285A (en) Magnetic recording medium and production
JPH02130718A (en) Magnetic recording medium