JPH06181157A - Apparatus with low dust-generating property - Google Patents

Apparatus with low dust-generating property

Info

Publication number
JPH06181157A
JPH06181157A JP33473892A JP33473892A JPH06181157A JP H06181157 A JPH06181157 A JP H06181157A JP 33473892 A JP33473892 A JP 33473892A JP 33473892 A JP33473892 A JP 33473892A JP H06181157 A JPH06181157 A JP H06181157A
Authority
JP
Japan
Prior art keywords
material
device
resin
workpiece
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33473892A
Other languages
Japanese (ja)
Inventor
Hiroshi Ito
Takeharu Komiya
Toshiro Umeda
伊藤  博
毅治 小宮
俊郎 梅田
Original Assignee
Nikon Corp
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, 株式会社ニコン filed Critical Nikon Corp
Priority to JP33473892A priority Critical patent/JPH06181157A/en
Publication of JPH06181157A publication Critical patent/JPH06181157A/en
Application status is Pending legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/708Construction of apparatus, e.g. environment, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution, removing pollutants from apparatus; electromagnetic and electrostatic-charge pollution
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants

Abstract

PURPOSE:To provide an apparatus with low dust-generating properties, which is used in a clean room to suppress the generation of very fine particles and improved in dust-wiping properties by a clean wiper, etc. CONSTITUTION:The attraction parts 12 of a carrier arm 11 for vacuum- attracting and carrying a silicon wafer 13 are formed by one material selected from a group of materials having mutual wear and abrasion resistance, in which the materials neither wear the silicon wafer 13 nor are worn by the wafer 13, and high dust-wiping properties by a wiper, etc., e.g. polyacetal resin, polyether-imide resin, polyamide resin, polyamide-imide resin and poly- butyleneterephthalate resin.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、半導体などクリーンルームで使用される露光装置や検査装置の搬送機構などに使用して好適な低発塵性の装置に関する。 The present invention relates to an apparatus suitable low dusting property by using such a transport mechanism of the exposure apparatus and inspection apparatus used in a clean room or a semiconductor.

【0002】 [0002]

【従来の技術】従来の低発塵技術は、部材と部材の摺動、接触により発生する摩擦摩耗による摩耗粉(表面の微細な破壊)の発生・飛散を抑制するために、部材間に潤滑油を塗布したり、部材の片方あるいは両方を硬質化するために硬質薄膜のコーティング、また固体潤滑膜をコーティングして摩擦係数を低減し、耐摩耗性を高め、 Conventional low dust technology, in order to suppress the sliding of the member and the member, the generation and scattering of abrasion powder (fine fracture surface) by frictional wear caused by contact, lubrication between the members the oil was applied or, in the hard thin film coatings, also be coated with a solid lubricating film to reduce the coefficient of friction one or both members in order to harden, enhanced abrasion resistance,
耐久性を図ることにより、低発塵の効果を発揮するものである。 By promoting the durability is intended to exhibit the effect of low dust.

【0003】 [0003]

【発明が解決しようとする課題】近年、半導体製造における集積回路の線幅は細くなり、16M-bitでは0.5μm 、 [SUMMARY OF THE INVENTION In recent years, the line width of the integrated circuit in the semiconductor manufacturing becomes thinner, 0.5 [mu] m in 16M-bit,
64Mーbitでは0.35μm、256M-bitでは0.25μm、1G-bitでは0.15μmと言われている。 In 64M over bit 0.35 .mu.m, 0.25 [mu] m in 256M-bit, it is said to 0.15μm in 1G-bit. それに伴いその半導体製造に係る環境のクリーン化の要求もより高まっている。 Demand for cleaner environment according with it to the semiconductor manufacturing are also increasingly more. 特にウエハ表面へのその半導体製造環境における微細粒子(塵埃)による汚染は製品歩留りの悪化など重大な問題となっている。 Especially contamination by fine particles in the semiconductor manufacturing environment to the wafer surface (dust) is a serious worsening of the product yield problem. しかし、上記従来技術は、前述のように接触する片方あるいは両方の部材の耐摩耗性を向上させることであって、完全な無摩耗を実現させるものではない。 However, the prior art described above, the method comprising improving the wear resistance of one or both of the members in contact as described above, it is not intended to achieve full free wear. そのため部材間の接触に伴い発生する微細な摩耗粉が両部材表面に付着したり、その周辺に飛散したりする。 Therefore fine abrasion powder generated due to contact between members or adhering to both the surface of the member, or scattered around the. すなわち、上記従来技術では上記ウエハ表面や半導体製造環境における高度なクリーン化は実現できない。 That is, the above conventional art can not be realized high cleanliness in the wafer surface and a semiconductor manufacturing environment.

【0004】本発明の目的は、クリーンルームで使用され、微細粒子の発生を抑制するとともに、ウエハなどに代表されるワークの表面へのその微細粒子の付着を抑制し、また、そのクリーンルーム内への微細粒子の飛散を抑制することができる低発塵性の装置を提供することにある。 An object of the present invention is used in a clean room, it is possible to suppress the generation of fine particles, and suppress the adhesion of fine particles to the surface of the workpiece typified by a wafer, also, to the clean room to provide a low dusting device capable of suppressing the scattering of fine particles.

【0005】 [0005]

【課題を解決するための手段】一実施例を示す図1に対応づけて本発明を説明すると、本発明は、クリーンルーム内でワークを処理する低発塵性の装置に適用され、ワーク13が摺動接触する部位12を、ワーク13との間で相互に耐摩耗性を有し、かつ高被拭浄性を有する一群の材質の中から選択された1の材料で形成することにより、上述した目的を達成する。 When the present invention in association with Figure 1 showing a Means for Solving the Problems One embodiment will be described, the present invention is applied to the low dust generation apparatus for processing a workpiece in a clean room, a work 13 the member 12 to be in sliding contact, by forming a single material selected from a group of materials which mutually have a wear resistance, and have a high target wiping resistance between the workpiece 13, above to achieve the purpose. 請求項2の装置において、ワーク13をシリコンウエハとした場合、相互に耐摩耗性を有する材料は、相互に摺動する時に発生する微細粒子数が少なくともアルミナに比べて3桁以上少ない材料であり、高被拭浄性を有する材料は、少なくともアルミナよりも被拭浄性のよい材料である。 The apparatus of claim 2, when the workpiece 13 and the silicon wafer, the material having a wear resistance to each other, be less material 3 digits or more as compared to at least alumina number fine particles generated when slide relative to each other a material having a high target wiping property is good material to be wiped than at least alumina. 請求項3の装置において、一群の材質は、ポリアセタール系樹脂、ポリエーテルイミド系樹脂、ポリアミド系樹脂、ポリアミドイミド系樹脂およびポリブチレンテレフタレート系樹脂である。 The apparatus of claim 3, a group of materials are polyacetal resins, polyether imide resins, polyamide resins, polyamide-imide resin and polybutylene terephthalate resin. 請求項4の装置において、一群の材質が、フッ素系樹脂、ポリエーテル系樹脂、ポリオレフィン系樹脂およびポリフェニレンサルファイド系樹脂でである。 The apparatus of claim 4, a group of the material is in a fluorine-based resin, a polyether resin, a polyolefin resin and a polyphenylene sulfide resin.
請求項5の装置において、一群の材料は、帯電列の正極性側あるいは負極性側の端に近い材料である。 Apparatus according to claim 5, a group of materials, which is close material on the positive polarity side or the negative polarity side of the end of the triboelectric series. 請求項6 According to claim 6
の装置において、ワークが半導体ウエハまたはガラス基板である場合、ワークを処理する装置がピンセット、搬送機構、または芯出し機構である。 In the apparatus, when the workpiece is a semiconductor wafer or a glass substrate, apparatus for processing a workpiece tweezers, a transfer mechanism or centering mechanism. 請求項7の装置において、シリコンウエハが接触する部位は、真空ピンセット、搬送機構、または芯出し機構である。 The apparatus of claim 7, a portion the silicon wafer is in contact is a vacuum tweezers, transfer mechanism or centering mechanism.

【0006】 [0006]

【作用】たとえば、半導体製造装置の搬送装置でワーク13を搬送するとき、ワーク13が吸着部12などと摺動接触しても、摩耗粉の発生が抑制される。 [Action] For example, when transporting the workpiece 13 by the conveying apparatus for a semiconductor manufacturing apparatus, the workpiece 13 is also in sliding contact with such suction unit 12, the generation of abrasion powder can be suppressed. また、部位12は高被拭浄性を有するから、クリーンワイパなどで拭浄したときその表面の塵埃などは良く拭き取られる。 Moreover, the site 12 because have high target wiping property, dust of the surface when cleaning with such clean wiper wiped well.
その結果、低発塵性の装置を提供できる。 As a result, it is possible to provide a low-dusting equipment.

【0007】−評価試験1− 発明者等は、まず、図2に示すように直径2インチのシリコンウエハ1と各種材料からなる直径10mmの球形状ピン2の組合せでピンオンディスク型摩擦摩耗試験(荷重 [0007] - such as Evaluation Test 1 inventor, first, the pin-on-disk type friction and wear testing a combination of spherical pin 2 of diameter 10mm made of silicon wafer 1 and the various materials two-inch diameter as shown in FIG. 2 (load
100gf 、摩擦速度50mm/s)を行い、それに伴う発塵量の違いを比較した。 100 gf, perform friction velocity 50 mm / s), and compared the differences in particle generation associated therewith. シリコンウエハ1あるいはピン2の摩耗に伴い発生して飛散した微細粒子(摩耗粉)を吸引ノズル3で吸引流量毎分1立方フィートで吸引し、レーザパーティクルカウンタ(Met-One 製A249型)を用いて微細粒子(粒径0.1 μm 以上)の個数を計測した。 Silicon wafer 1 or with the pin 2 wear generated by scattered fine particles (wear powder) sucked by the suction flow rate per minute 1 cubic foot in the suction nozzle 3, a laser particle counter (Met-One Ltd. A249 type) Te was measured the number of fine particles (particle size 0.1 [mu] m or more). その結果を図3,図4に示す。 3 The results are shown in FIG.

【0008】図3に示すように、シリコンウエハ1と接触するピン2がセラミックス球(例えば、窒化珪素、アルミナ)の場合、セラミックス側に比べシリコンウエハ側の方が多く削られ摩耗粉を飛散し発塵を示した。 [0008] As shown in FIG. 3, the pin 2 is ceramic spheres in contact with the silicon wafer 1 (for example, silicon nitride, alumina), the silicon towards the wafer side many shaved scattered wear debris than in the ceramics side It showed the dust. また、ピン2が金属球(例えば、高炭素クロム鋼)、石英ガラス球の場合、シリコンウエハ1およびピン2の両方が摩耗し発塵を示した。 The pin 2 is a metal ball (e.g., high-carbon chromium steel), if the quartz glass bulb, both of the silicon wafer 1 and the pin 2 showed wear dust. しかし、ピン2が、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアセタール(商品名デルリン)、ポリエチレン、ポリフェニレンサルファイドなどのプラスティック球の場合、シリコンウエハ1およびピン2とも摩耗が少なく低発塵性を示した。 However, pin 2, polyetheretherketone, polyetherimide, polyacetal (trade name Delrin), polyethylene, if plastic spheres such as polyphenylene sulfide, silicon wafer 1 and pin 2 both wear showed little low particle generation property . ただし、ピン2がポリテトラフルオロエチレン(商品名テフロン)の球の場合、ピン2側は摩耗したが、摩耗粉は飛散し難く、レーザパーティクルカウンタには計測されなかった。 However, if the pin 2 is in the sphere of polytetrafluoroethylene (trade name Teflon), although the pin 2 side is worn, abraded powder is hardly scattered, the laser particle counter was not measured.

【0009】このようにシリコンウエハなどのワークと接触する、低発塵性の装置の各部位には耐摩耗性の優れた材料を使用することが必要ではあるが、それによってワークが摩耗して摩耗粉が飛散することは好ましくない。 [0009] Thus in contact with the workpiece such as a silicon wafer, each part of the low dust generation devices some require the use of wear-resistant material excellent, but the workpiece is worn it is not preferable that the abrasion powder from being scattered. 逆に、ワークによって摩耗する材料でもいけない。 Conversely, dont even material worn by the work.
したがって、ワークを摩耗させず、しかもワークで摩耗されることがない上述したプラスティックを用いることによって、ワークおよびワークと接触する部位の摩耗を抑制し、低発塵性の装置を提供できる。 Therefore, without wear the workpiece, yet by using the above-mentioned plastic it is not being worn by the work to suppress the wear of the parts in contact with the workpiece and the workpiece, can provide a low-dusting equipment. 本明細書では、 In the present specification,
このような摩耗特性を有する材料を相互に耐摩耗性を有する材料と呼ぶ。 It referred to as a material having a wear-resistant material having such wear characteristics to each other.

【0010】以上説明したように、ポリアセタール系樹脂、ポリエーテルイミド系樹脂、ポリアミド系樹脂、ポリアミドイミド系樹脂およびポリブチレンテレフタレート系樹脂などは、上述したピンオンディスク型摩耗摩擦試験においてアルミナなどに比べて発生する摩耗粉が3 [0010] As described above, polyacetal resins, polyether imide resins, polyamide resins, such as polyamide-imide resin and polybutylene terephthalate resin are, than are alumina at pin-on-disk type wear friction test described above generated Te wear powder 3
桁以上少なく、上述した相互に耐摩耗性を有する材料として好適に使用できる。 Least digits less can be suitably used as a material having a wear resistance to each other as described above.

【0011】−評価試験2− 次に発明者等は、シリコンウエハと各種材料の接触に伴うシリコンウエハへの微細粒子(ワイパーから発生する塵挨など)の移着性を比較した。 [0011] - Evaluation Test 2 Next inventors have compared the transfer adhesive properties of the fine particles to the silicon wafer due to contact of the silicon wafer and various materials (such as Chiri挨 generated from the wiper). 試験に先立って、直径4インチのシリコンウエハの表面を清浄して付着している微細粒子をできるだけ除去する。 Prior to testing, remove as much as possible the fine particles adhering to clean the surface of the silicon wafer having a diameter of 4 inches. 一方、シリコンウエハに接触させる部材として直径50mmの平面基板を用い、その表面を極性溶剤(例えばイソプロピルアルコール)を浸み込ませた周知のクリーンルーム用ワイパーで拭浄した。 On the other hand, using a flat substrate with a diameter of 50mm as a member for contact with the silicon wafer and by cleaning the surface with a known cleanroom wiper soaked with a polar solvent (e.g., isopropyl alcohol). シリコンウエハに平面基板を重ね合わせて一定荷重で接触させた後、シリコンウエハ表面の微細粒子の付着の程度をレーザ散乱によるゴミ検査機(SURFSCAN After contact with a constant load by superimposing flat substrate to a silicon wafer, dust inspection machine of the degree of adhesion of fine particles of the silicon wafer surface by a laser scattering (SURFSCAN
#4500 )で計測した。 # Measured in 4500). その結果を図5に示す。 The results are shown in FIG.

【0012】拭浄前の平面基板の表面は機械的な光学研磨面を精密洗浄したものであり、供試材表面の汚染度は材料により若干の違いはあると思われるが、次に数回にわたってワイパー拭浄を行うためその違いは無視できる。 [0012] surface of the planar substrate before wiping is obtained by precision cleaning mechanical optically polished surface, but contamination of the test material surface seems there are some differences according to the material, then several times the difference for performing wiper wiping over is negligible. また、その表面粗さの違いは本評価には大きな影響はなかった。 Also, there was no significant effect on the difference in this evaluation of the surface roughness. 極性溶剤を含浸したワイパーで拭浄するため、物質の違いに関係なく平面基板表面は帯電しにくく、帯電電圧は約±0.5kV以内であった。 To cleaning with wiper impregnated with a polar solvent, planar substrate surface irrespective of the difference in material hardly charged, the charging voltage was within about ± 0.5 kV.

【0013】クリーンルーム内でシリコンウエハが接触する部位表面のワイパー拭浄を手作業で行う時、物質の表面自由エネルギー(表面張力)の違いによって、被拭浄性に違いがある可能性がある。 [0013] When performing a wiper wiping the site surface the silicon wafer in a clean room contacts manually, by surface difference in free energy (surface tension) of the material, there may be a difference in the wiping properties. すなわち、被拭浄性の優れた物質はそうでない物質に比べてその表面の清浄度が良い。 In other words, a good cleanliness of the surface compared to the good material is not so material of the wiping properties. 半導体製造において搬送装置のメンテナンス時あるいは定期的に、シリコンウエハなどのワークと接触する搬送体の表面はクリーンワイパー等を用いて汚れの拭き取り作業が必要となる。 During maintenance or periodically in the transport apparatus in the semiconductor manufacturing, the surface of the carrier in contact with the workpiece, such as a silicon wafer is required wiping operation dirt with a clean wiper or the like. この実作業を考慮すれば、 Considering this actual work,
平面基板表面の被拭浄性を含めて、移着性を評価することは現実的である。 Including the wiping of the planar substrate surface, it is realistic to evaluate the transfer adhesive properties.

【0014】図5から分かるように、ポリテトラフルオロエチレン(テフロン)、ポリエーテルイミドやポリアセタールは、石英ガラス、炭化珪素あるいはアルミナに比べてシリコンウエハに対して微細粒子の移着性が少ない。 [0014] As can be seen from FIG. 5, polytetrafluoroethylene (Teflon), polyetherimide and polyacetal, quartz glass, is less transfer adhesion of fine particles to the silicon wafer as compared with silicon carbide or alumina. すなわち、ワークが接触する部位の材料を、帯電列の正極性側の端に近い物質、例えばポリアセタール(デルリン)、ポリエーテルイミド、ポリアミド(ナイロン)などや、帯電列の負極性側の端に近い物質、例えばポリテトラフルオロエチレン(テフロン)、ポリエーテルエーテルケトン、ポリエチレンなどで形成すると、これらの材料は帯電列において正負極性側の端に近い物質であり、接触帯電しやすいため、微細粒子がシリコンウエハに移着し難いと考える。 That is, the portion of the material which the work is in contact, material close to the positive polarity end of the triboelectric series, for example, polyacetal (Delrin), polyetherimide, and polyamide (nylon), close to the negative end of the triboelectric series material, such as polytetrafluoroethylene (Teflon), poly ether ether ketone, to form polyethylene or the like, these materials are substances near the edge of the positive and negative side in the triboelectric series, for easy contact charging, silicon micro particles wafer to think that it is difficult to transcribing.

【0015】このように、シリコンウエハが摺動接触する部位の材料として、帯電列の正極性側あるいは負極性側の端に近いものを使用することにより、発生した摩耗粉あるいはその環境中に浮遊する塵埃は帯電列の正極性側あるいは負極性側の端に近い物質で構成した部材側に付着しやすい。 [0015] Thus, as a material of a portion the silicon wafer is in sliding contact, floating by using close to the positive polarity side or the negative polarity side of the end of the triboelectric series, abrasion powder generated or the environment dust easily adheres to the member side which is formed with the material close to the positive side or negative polarity end of the triboelectric series that. その結果、相手部材がウエハであれば、 As a result, if mating member a wafer,
そのウエハ接触表面には摩耗粉、塵埃などの微細粒子の付着を抑制することができる。 Its the wafer contact surface can be suppressed abrasion powder, the adhesion of fine particles such as dust. このような帯電列の正極性側あるいは負極性側の端に近い材料であって被拭浄性の良好な特性を、本明細書では高被拭浄性と呼び、少なくとも図5から分かるように、ワークがシリコンウエハの場合には、アルミナが有する被拭浄性よりも良好な材料が好適である。 Such positive side or a negative polarity side good characteristics of a to-be wiped with a close material to the end of the triboelectric series, referred to herein as high to be wiping resistance, as can be seen from at least 5 , if the workpiece is a silicon wafer, better material than the wiping properties with alumina being preferred.

【0016】図6は各種材料の「帯電列」を示したものである。 [0016] FIG. 6 shows the "triboelectric series" of various materials. 二つの物体を接触あるいは摩擦させると一方は正極性に、他方は負極性に帯電する。 One Contacting or rub two objects in the positive polarity and the other negatively charged. これを多くの物質について実験すると、正に帯電しやすいものから、反対に負に帯電しやすいものまでを一列に並べると帯電列となる。 Experimentation this for many substances, consisting of exactly what easily charged, and the triboelectric series arranged in a row to those negatively easily oppositely charged.

【0017】帯電列の正極性側あるいは負極性側の端に近い物質であっても、低発塵性を実現するためにはシリコンウエハ、ガラス基板を摩耗させずしかも自身もシリコンウエハやガラス基板で摩耗されないような相互に耐摩耗性を有することは必須である。 The positive polarity side or even material closer to the negative polarity side of the end, a silicon wafer, moreover himself a silicon wafer or a glass substrate without wearing the glass substrate in order to achieve a low dusting the triboelectric series in that it has a wear resistance to each other as not wear it is essential. 図6の帯電列と図4 Triboelectric series and Figure 6 4
の図から、ワークとの間で相互に耐摩耗性を有する図4 From figure 4 having wear resistance to each other with the workpiece
に示す樹脂系材料はいずれも帯電列が正極側または負極側の材料であることがわかる。 Resin-based materials it can be seen that both a material of triboelectric series positive electrode side or the negative electrode side shown in. また、図6の帯電列と図5の図から、図4に示す高被拭浄性の樹脂系材料はいずれも帯電列が正極側または負極側の材料であることがわかる。 Further, the illustration of the triboelectric series and 5 in FIG. 6, the high the wiping of the resin-based material of FIG. 4 it can be seen that both a material of triboelectric series positive electrode side or the negative electrode side. したがって、本発明が適用される低発塵性の装置でワークとの摺動接触部位に使用される材料を、帯電列が正極側あるいは負極側に近い1群の中から選択することができる。 Therefore, it is possible to select a material to which the present invention is used in the sliding contact portion between the workpiece with low dust generation of device applied, from among the triboelectric series is a group of close to the positive electrode side or the negative side.

【0018】 [0018]

【実施例】図1は本発明をシリコンウエハ搬送装置に適用した場合の一例を示す図である。 DETAILED DESCRIPTION FIG. 1 is a diagram illustrating an example in which the present invention is applied to a silicon wafer carrier. 図において、真空吸着式搬送アーム11の内部には通路11aが形成され、 In the figure, the passage 11a is formed inside of the vacuum suction type conveying arm 11,
その先端には通路11aと連通する3つの吸着部12が設けられている。 Three suction unit 12 which communicates with the passage 11a is provided at the front end. この吸着部12は、上述したように高被拭浄性と相互に耐摩耗性を有する各種材料の中から選択した1の材料で形成されている。 The suction portion 12 is formed at one of the materials selected from among various materials having wear resistance to the high target wiping resistance and cross, as described above. したがって、シリコンウエハ13を搬送するときシリコンウエハ13が搬送アーム11の吸着部12と摺動接触しても、摩耗粉が発生せず、しかも、定期的にあるいは搬送作業の前に吸着部12の表面をクリーンワイパで拭浄して表面の微細粒子の付着を抑制しておけば、シリコンウエハ13の表面が常に清浄に保たれて歩留りが向上する。 Therefore, even if the silicon wafer 13 is in sliding contact with the suction portion 12 of the transfer arm 11 when transporting the silicon wafer 13, abrasion powder is not generated, moreover, the suction unit 12 before the periodically or transport task if to suppress the adhesion of fine particles on the surface was wiped clean wiper surfaces, improves the yield always kept clean the surface of the silicon wafer 13.

【0019】図7は本発明を真空ピンセットに適用した場合の一例を示す図である。 [0019] FIG. 7 is a diagram showing an example in which the present invention is applied to the vacuum tweezers. 真空ピンセット21の内部には通路21aが形成され、ピンセット21の先端に通路21aと連通する吸着部22が設けられている。 The interior of the vacuum tweezers 21 passage 21a is formed, the suction unit 22 which communicates with the passage 21a to the tip of the forceps 21 are provided. この吸着部22も搬送アーム11の吸着部12と同様に、高被拭浄性と相互に耐摩耗性を有する各種材料の中から選択した1の材料で形成されている。 Similar to the suction portion 22 suction portion 12 of the transfer arm 11 is formed of a first material selected from among various materials having wear resistance higher the wiping property and another. したがって、この場合も同様に低発塵な真空ピンセットを提供できる。 Accordingly, it is possible to provide a low dust vacuum tweezers as well in this case.

【0020】図8は本発明をウエハ位置決め機構に適用した場合の一例を示す図である。 [0020] FIG. 8 is a diagram showing an example in which the present invention is applied to a wafer positioning mechanism. ウエハ回転テーブル3 Wafer rotation table 3
0の回転軸心に対して放射状に3本の位置決めアーム3 0 positioning arm 3 of three radially with respect to the rotation axis of the
1が設けられている。 1 is provided. この位置決めアーム31の先端は、搬送アーム11の吸着部12と同様に、高被拭浄性を有し、かつ相互に耐摩耗性を有する各種材料の中から選択した1の材料で形成された円盤32で形成されている。 The tip of the positioning arm 31, similar to the adsorbing portion 12 of the transfer arm 11 has high the wiping properties, and which is formed by one of the materials selected from among various materials having wear resistance to each other It is formed by a disc 32. したがって、この場合も、ウエハ位置決めの際にシリコンウエハ13が位置決めアーム31の先端円板32 Therefore, also in this case, the tip disc 32 of the silicon wafer 13 is positioning arm 31 in the wafer positioning
と摺動接触しても、上述したと同様に摩耗粉が発生せず低発塵な位置決め機構を提供できる。 And also in sliding contact, it can provide a low dust positioning mechanism without abrasion powder generated in the same manner as described above.

【0021】なお、図1,図7および図8の吸着部1 [0021] Incidentally, FIG. 1, the suction portion 1 of FIG. 7 and FIG. 8
2,22および円盤32はその全体を上述した材料で形成するようにしたが、シリコンウエハが接触する面にそれらの材料をコーティングしてもよい。 2,22 and disc 32 has been so formed by the above-described materials in its entirety, to the surface where the silicon wafer is in contact may be coated with these materials.

【0022】 [0022]

【発明の効果】以上詳細に説明したように、ワークを摩耗せずしかもワークで摩耗されないという相互に耐摩耗性を有し、かつ被拭浄性に優れる一群の材質の中から選択された1の材料でワークが摺動接触する部位を形成するようにしたので、ワークへの微細粒子の付着およびワークを使用する環境への微細粒子の飛散を抑制することができるため、微細粒子の付着、飛散を重大な問題とする機器の信頼性の向上、またその機器を設置するクリーン環境の清浄度の悪化を抑制することができる。 As described above in detail, according to the present invention has a wear resistance to each other that it is not worn by the addition workpiece without abrasion of the workpiece, and selected from among a group of material which is excellent in the wiping property 1 because work with the material is to form a part that slides in contact, since the scattering of fine particles to the environment using deposition and work of the fine particles to the work can be suppressed, the adhesion of fine particles, improve the reliability of the device to scattered serious problem and it is possible to suppress the deterioration of the cleanliness of the clean environment of installing the equipment.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明をシリコンウエハ搬送アームに適用した場合の一例を示す図 It illustrates an example in which Figure 1] The present invention is applied to a silicon wafer carrying arm

【図2】シリコンウエハと各種材料の組合せにおけるピンオンディスク型摩擦摩耗試験による飛散微細粒子測定方法を説明する模式図 Figure 2 is a schematic diagram illustrating the scattering fine particle measuring method according to the pin-on-disk type friction and abrasion testing in combination with the silicon wafer and various materials

【図3】シリコンウエハと各種材料の組合せで摩擦摩耗試験を行った時に飛散する微細粒子の個数を示した図 Shows the number of fine particles that scatter when subjected to Figure 3 combined with frictional wear test of the silicon wafer with various material

【図4】シリコンウエハと各種材料の組合せで摩擦摩耗試験を行った時に飛散する微細粒子の個数を示した図 Shows the number of fine particles that scatter when subjected to Figure 4 combined with frictional wear test of the silicon wafer with various material

【図5】溶剤含浸のクリーンワイパーで拭浄した各種材料とシリコンウエハを接触させ、そのシリコンウエハ表面に付着した微細粒子の付着程度を示した図 [5] it is brought into contact with various materials and silicon wafer by cleaning with a clean wiper solvent impregnated showed about adhesion of fine particles adhering to the surface of the silicon wafer FIG

【図6】各種材料の静電気に関する「帯電列」を示す図 FIG. 6 is a diagram showing a "triboelectric series" about the static electricity of various materials

【図7】本発明を真空ピンセットに適用した場合の一例を示す図 It illustrates an example of applying the vacuum tweezers to [7] The present invention

【図8】本発明をウエハ位置決め機構に適用した場合の一例を示す図 It illustrates an example of a case where 8 of the present invention is applied to a wafer positioning mechanism

【符号の説明】 DESCRIPTION OF SYMBOLS

1 シリコンウエハ 2 ピン 3 吸引ノズル 11 搬送アーム 12 吸着部 13 シリコンウエハ 21 ピンセット 22 吸着部 31 位置決めアーム 32 円盤 1 silicon wafer 2 pins 3 suction nozzle 11 carrying arm 12 suction portion 13 a silicon wafer 21 tweezers 22 suction portion 31 positioning arm 32 disk

Claims (7)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 クリーンルーム内でワークを処理する低発塵性の装置において、 前記ワークが摺動接触する部位は、前記ワークとの間で相互に耐摩耗性を有し、かつ高被拭浄性を有する一群の材質の中から選択された1の材料で形成することを特徴とする低発塵性の装置。 1. A device with low dusting characteristics for processing a workpiece in a clean room, the site where the work is in sliding contact has a wear resistance with each other between the workpiece and the high target wiping a group of low dust of the device, characterized in that to form one material selected from a material having a resistance.
  2. 【請求項2】 請求項1の装置において、前記ワークがシリコンウエハの場合、前記相互に耐摩耗性を有する材料は、相互に摺動する時に発生する微細粒子数が少なくともアルミナに比べて3桁以上少ない材料であり、高被拭浄性を有する材料は、少なくともアルミナよりも被拭浄性のよい材料であることを特徴とする低発塵性の装置。 2. A device according to claim 1, wherein if the workpiece is a silicon wafer, a material having a wear resistance to the each other, as compared to at least alumina number fine particles generated when slide relative to each other three-digit or a less material, a material having a high target wiping is at least alumina low dust generation of the device, which is a good material to be wiped than.
  3. 【請求項3】 請求項1の装置において、前記一群の材質が、ポリアセタール系樹脂、ポリエーテルイミド系樹脂、ポリアミド系樹脂、ポリアミドイミド系樹脂およびポリブチレンテレフタレート系樹脂であることを特徴とする低発塵性の装置。 3. A device according to claim 1, low the set of material, characterized in that a polyacetal resin, a polyether imide resin, polyamide resin, polyamide-imide resin and polybutylene terephthalate resin dust generation of the device.
  4. 【請求項4】 請求項1の装置において、前記一群の材質が、フッ素系樹脂、ポリエーテル系樹脂、ポリオレフィン系樹脂およびポリフェニレンサルファイド系樹脂であることを特徴とする低発塵性の装置。 4. A device according to claim 1, wherein the set of material is, fluorine-based resins, polyether resins, low dust generation of the device which is a polyolefin resin and a polyphenylene sulfide resin.
  5. 【請求項5】 請求項1の装置において、前記一群の材料は、帯電列の正極性側あるいは負極性側の端に近い材料であることを特徴とする低発塵性の装置。 5. The apparatus of claim 1, wherein the set of material, low dust generation of the device, characterized in that the material close to the positive side or negative polarity end of the triboelectric series.
  6. 【請求項6】 請求項1,3〜5のいずれかに記載の装置において、前記ワークが半導体ウエハまたはガラス基板であり、前記ワークを処理する装置がピンセット、搬送機構、または芯出し機構であることを特徴とする低発塵性の装置。 The apparatus according to any one of claims 6] according to claim 1, 3 to 5, wherein the workpiece is a semiconductor wafer or a glass substrate, a device for processing the workpiece tweezers, is the transport mechanism or centering mechanism, low dust of the device, characterized in that.
  7. 【請求項7】 請求項2に記載の装置において、前記シリコンウエハが接触する部位は、真空ピンセット、搬送機構、または芯出し機構であることを特徴とする低発塵性の装置。 The apparatus according to claim 7 claim 2, part wherein the silicon wafers are in contact, low dust generation of the device, wherein the vacuum tweezers, a transfer mechanism or centering mechanism.
JP33473892A 1992-12-15 1992-12-15 Apparatus with low dust-generating property Pending JPH06181157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33473892A JPH06181157A (en) 1992-12-15 1992-12-15 Apparatus with low dust-generating property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33473892A JPH06181157A (en) 1992-12-15 1992-12-15 Apparatus with low dust-generating property

Publications (1)

Publication Number Publication Date
JPH06181157A true JPH06181157A (en) 1994-06-28

Family

ID=18280672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33473892A Pending JPH06181157A (en) 1992-12-15 1992-12-15 Apparatus with low dust-generating property

Country Status (1)

Country Link
JP (1) JPH06181157A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001050503A1 (en) * 1999-12-30 2001-07-12 Speedfam-Ipec Corporation Advanced wafer passive end-effector
US7394521B2 (en) 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589820B2 (en) 2002-12-10 2009-09-15 Nikon Corporation Exposure apparatus and method for producing device
JP2013187451A (en) * 2012-03-09 2013-09-19 Mitsubishi Cable Ind Ltd Transfer pad and transfer arm using the same
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9645505B2 (en) 2004-06-09 2017-05-09 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device to measure specific resistance of liquid
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9684250B2 (en) 2003-12-23 2017-06-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9829799B2 (en) 2004-04-14 2017-11-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9939739B2 (en) 2003-05-23 2018-04-10 Nikon Corporation Exposure apparatus and method for producing device
US9958786B2 (en) 2003-04-11 2018-05-01 Nikon Corporation Cleanup method for optics in immersion lithography using object on wafer holder in place of wafer
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001050503A1 (en) * 1999-12-30 2001-07-12 Speedfam-Ipec Corporation Advanced wafer passive end-effector
US8089611B2 (en) 2002-12-10 2012-01-03 Nikon Corporation Exposure apparatus and method for producing device
US7589820B2 (en) 2002-12-10 2009-09-15 Nikon Corporation Exposure apparatus and method for producing device
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9958786B2 (en) 2003-04-11 2018-05-01 Nikon Corporation Cleanup method for optics in immersion lithography using object on wafer holder in place of wafer
US9939739B2 (en) 2003-05-23 2018-04-10 Nikon Corporation Exposure apparatus and method for producing device
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9684250B2 (en) 2003-12-23 2017-06-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7394521B2 (en) 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9817321B2 (en) 2003-12-23 2017-11-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9829799B2 (en) 2004-04-14 2017-11-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10234768B2 (en) 2004-04-14 2019-03-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9645505B2 (en) 2004-06-09 2017-05-09 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device to measure specific resistance of liquid
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2013187451A (en) * 2012-03-09 2013-09-19 Mitsubishi Cable Ind Ltd Transfer pad and transfer arm using the same

Similar Documents

Publication Publication Date Title
US6168502B1 (en) Subsonic to supersonic and ultrasonic conditioning of a polishing pad in a chemical mechanical polishing apparatus
US7166319B2 (en) Magnetic disk and method of producing the same
US6365012B1 (en) Magnetic recording medium and a method of manufacturing the same
US8224224B2 (en) Cleaning blade and image forming apparatus, process cartridge, and image forming method using the same
US5682795A (en) Robotic joint using metal bands
US5688360A (en) Method and apparatus for polishing a semiconductor substrate wafer
US20040175510A1 (en) Production method and production apparatus for magnetic recording medium
US5202810A (en) Magnetic disk having an improved surface configuration
JP4407904B2 (en) A method of manufacturing a magnetic disk
US8551627B2 (en) Magnetic disk and method of manufacturing the same
US5196892A (en) Image forming apparatus having a disordering and charging device for disordering a developing agent remaining on an image bearing member and for charging the image bearing member
US5275498A (en) Mounting apparatus for rotatable optical disk
US4213870A (en) Cleaning and lubricating compositions and method of using the same
EP0767457B1 (en) Magneto-optical recording device
JP4624524B2 (en) Processing method of the hollow cylinder
US4970560A (en) Lubricated metal cleaning blade for use in dry electrophotographic processes
JP2005221403A (en) Evaluation method for solid surface, evaluation method for magnetic disk, magnetic disk, and manufacturing method therefor
EP0600468A1 (en) Hydrodynamic bearing
JP2008214759A (en) Method for producing carbon film-coated member
US6517339B1 (en) Resin molding mold
WO2000065580A1 (en) Method of recording on disk-like recording medium
CN1086613A (en) A fixing rotor having an offset prevention layer containing a hollow double shell conductive substance
Tao et al. Bonding, degradation, and environmental effects on novel perfluoropolyether lubricants
JP2001216633A (en) Method and device for manufacturing magnetic recording disk, and inline type substrate processor
US5958542A (en) Thin film magnetic disc and method of manufacturing the disc