US20090147235A1 - Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses - Google Patents
Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses Download PDFInfo
- Publication number
- US20090147235A1 US20090147235A1 US12/320,480 US32048009A US2009147235A1 US 20090147235 A1 US20090147235 A1 US 20090147235A1 US 32048009 A US32048009 A US 32048009A US 2009147235 A1 US2009147235 A1 US 2009147235A1
- Authority
- US
- United States
- Prior art keywords
- optical
- radiation
- basic element
- illumination
- optical member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0927—Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/0944—Diffractive optical elements, e.g. gratings, holograms
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4233—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element [DOE] contributing to a non-imaging application
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/4261—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive element with major polarization dependent properties
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/42—Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
- G02B27/44—Grating systems; Zone plate systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70091—Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70091—Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
- G03F7/70108—Off-axis setting using a light-guiding element, e.g. diffractive optical elements [DOEs] or light guides
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/7015—Details of optical elements
- G03F7/70158—Diffractive optical elements
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/7055—Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
- G03F7/70566—Polarisation control
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
Definitions
- the present invention relates to a beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method and, more particularly, to an illumination optical apparatus suitably applicable to exposure apparatus used in production of microdevices such as semiconductor elements, image pickup elements, liquid crystal display elements, and thin-film magnetic heads by lithography.
- a beam emitted from a light source travels through a fly's eye lens as an optical integrator to form a secondary light source as a substantial surface illuminant consisting of a number of light sources.
- Beams from the secondary light source (generally, an illumination pupil distribution formed on or near an illumination pupil of the illumination optical apparatus) are limited through an aperture stop disposed near the rear focal plane of the fly's eye lens and then enter a condenser lens.
- the beams condensed by the condenser lens superposedly illuminate a mask on which a predetermined pattern is formed.
- the light passing through the pattern of the mask is focused on a wafer through a projection optical system.
- the mask pattern is projected for exposure (or transcribed) onto the wafer.
- the pattern formed on the mask is a highly integrated pattern, and, in order to accurately transcribe this microscopic pattern onto the wafer, it is indispensable to obtain a uniform illuminance distribution on the wafer.
- Japanese Patent No. 3246615 owned by the same Applicant of the present application discloses the following technology for realizing the illumination condition suitable for faithful transcription of the microscopic pattern in arbitrary directions: the secondary light source is formed in an annular shape on the rear focal plane of the fly's eye lens and the beams passing the secondary light source of the annular shape are set to be in a linearly polarized state with a direction of polarization along the circumferential direction thereof (hereinafter referred to as a “azimuthal polarization state”).
- An object of the present invention is to form an illumination pupil distribution of an annular shape in a azimuthal polarization state while well suppressing the loss of light quantity.
- Another object of the present invention is to transcribe a microscopic pattern in an arbitrary direction under an appropriate illumination condition faithfully and with high throughput, by forming an illumination pupil distribution of an annular shape in a azimuthal polarization state while well suppressing the loss of light quantity.
- a first aspect of the present embodiment is to provide a beam transforming element for forming a predetermined light intensity distribution on a predetermined surface on the basis of an incident beam, comprising:
- a first basic element made of an optical material with optical activity, for forming a first region distribution of the predetermined light intensity distribution on the basis of the incident beam
- a second basic element made of an optical material with optical activity, for forming a second region distribution of the predetermined light intensity distribution on the basis of the incident beam
- first basic element and the second basic element have their respective thicknesses different from each other along a direction of transmission of light.
- a second aspect of the present embodiment is to provide a beam transforming element for, based on an incident beam, forming a predetermined light intensity distribution of a shape different from a sectional shape of the incident beam, on a predetermined surface, comprising:
- the predetermined light intensity distribution is a distribution in at least a part of a predetermined annular region, which is a predetermined annular region centered around a predetermined point on the predetermined surface, and
- a beam from the beam transforming element passing through the predetermined annular region has a polarization state in which a principal component is linearly polarized light having a direction of polarization along a circumferential direction (azymuthally direction) of the predetermined annular region.
- a third aspect of the present invention is to provide an illumination optical apparatus for illuminating a surface to be illuminated, based on a beam from a light source, comprising:
- a fourth aspect of the present embodiment is to provide an exposure apparatus comprising the illumination optical apparatus of the third aspect for illuminating a pattern
- the exposure apparatus being arranged to project the pattern onto a photosensitive substrate.
- a fifth aspect of the present embodiment is to provide an exposure method comprising: an illumination step of illuminating a pattern by use of the illumination optical apparatus of the third aspect; and an exposure step of projecting the pattern onto a photosensitive substrate.
- the illumination optical apparatus of the present embodiment is able to form the illumination pupil distribution of the annular shape in the azimuthal polarization state, with no substantial loss of light quantity, by diffraction and optical rotating action of the diffractive optical element as the beam transforming element. Namely, the illumination optical apparatus of the present invention is able to form the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity.
- the exposure apparatus and exposure method using the illumination optical apparatus of the present embodiment are arranged to use the illumination optical apparatus capable of forming the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity, they are able to transcribe a microscopic pattern in an arbitrary direction under an appropriate illumination condition faithfully and with high throughput and, in turn, to produce good devices with high throughput.
- FIG. 1 is an illustration schematically showing a configuration of an exposure apparatus with an illumination optical apparatus according to an embodiment of the present invention.
- FIG. 2 is an illustration showing a secondary light source of an annular shape formed in annular illumination.
- FIG. 3 is an illustration schematically showing a configuration of a conical axicon system disposed in an optical path between a front lens unit and a rear lens unit of an afocal lens in FIG. 1 .
- FIG. 4 is an illustration to illustrate the action of the conical axicon system on the secondary light source of the annular shape.
- FIG. 5 is an illustration to illustrate the action of a zoom lens on the secondary light source of the annular shape.
- FIG. 6 is an illustration schematically showing a first cylindrical lens pair and a second cylindrical lens pair disposed in an optical path between the front lens unit and the rear lens unit of the afocal lens in FIG. 1 .
- FIG. 7 is a first drawing to illustrate the action of the first cylindrical lens pair and the second cylindrical lens pair on the secondary light source of the annular shape.
- FIG. 8 is a second drawing to illustrate the action of the first cylindrical lens pair and the second cylindrical lens pair on the secondary light source of the annular shape.
- FIG. 9 is a third drawing to illustrate the action of the first cylindrical lens pair and the second cylindrical lens pair on the secondary light source of the annular shape.
- FIG. 10 is a perspective view schematically showing an internal configuration of a polarization monitor in FIG. 1 .
- FIG. 11 is an illustration schematically showing a configuration of a diffractive optical element for azimuthally polarized annular illumination according to an embodiment of the present invention.
- FIG. 12 is an illustration schematically showing a secondary light source of an annular shape set in the azimuthal polarization state.
- FIG. 13 is an illustration to illustrate the action of a first basic element.
- FIG. 14 is an illustration to illustrate the action of a second basic element.
- FIG. 15 is an illustration to illustrate the action of a third basic element.
- FIG. 16 is an illustration to illustrate the action of a fourth basic element.
- FIG. 17 is an illustration to illustrate the optical activity of crystalline quartz.
- FIGS. 18A and 18B are illustrations showing octapole secondary light sources in the azimuthal polarization state consisting of eight arc regions spaced from each other along the circumferential direction and a quadrupole secondary light source in the azimuthal polarization state consisting of four arc regions spaced from each other along the circumferential direction.
- FIG. 19 is an illustration showing a secondary light source of an annular shape in the azimuthal polarization state consisting of eight arc regions overlapping with each other along the circumferential direction.
- FIGS. 20A and 20B are illustrations showing hexapole secondary light sources in the azimuthal polarization state consisting of six arc regions spaced from each other along the circumferential direction and a secondary light source in the azimuthal polarization state having a plurality of regions spaced from each other along the circumferential direction and a region on the optical axis.
- FIG. 21 is an illustration showing an example in which an entrance-side surface of a diffractive optical element for azimuthally polarized annular illumination is planar.
- FIG. 22 is a flowchart of a procedure of obtaining semiconductor devices as microdevices.
- FIG. 23 is a flowchart of a procedure of obtaining a liquid crystal display element as a microdevice.
- FIG. 1 is an illustration schematically showing a configuration of an exposure apparatus with an illumination optical apparatus according to an embodiment of the present invention.
- the Z-axis is defined along a direction of a normal to a wafer W being a photosensitive substrate, the Y-axis along a direction parallel to the plane of FIG. 1 in the plane of the wafer W, and the X-axis along a direction of a normal to the plane of FIG. 1 in the plane of wafer W.
- the exposure apparatus of the present embodiment is provided with a light source 1 for supplying exposure light (illumination light).
- the light source 1 can be, for example, a KrF excimer laser light source for supplying light with the wavelength of 248 nm, an ArF excimer laser light source for supplying light with the wavelength of 193 nm, or the like.
- a nearly parallel beam emitted along the Z-direction from the light source 1 has a cross section of a rectangular shape elongated along the X-direction, and is incident to a beam expander 2 consisting of a pair of lenses 2 a and 2 b .
- the lenses 2 a and 2 b have a negative refracting power and a positive refracting power, respectively, in the plane of FIG. 1 (or in the YZ plane). Therefore, the beam incident to the beam expander 2 is enlarged in the plane of FIG. 1 and shaped into a beam having a cross section of a predetermined rectangular shape.
- the nearly parallel beam passing through the beam expander 2 as a beam shaping optical system is deflected into the Y-direction by a bending mirror 3 , and then travels through a quarter wave plate 4 a , a half wave plate 4 b , a depolarizer (depolarizing element) 4 c , and a diffractive optical element 5 for annular illumination to enter an afocal lens 6 .
- the quarter wave plate 4 a , half wave plate 4 b , and depolarizer 4 c constitute a polarization state converter 4 , as described later.
- the afocal lens 6 is an afocal system (afocal optic) set so that the front focal position thereof approximately coincides with the position of the diffractive optical element 5 and so that the rear focal position thereof approximately coincides with the position of a predetermined plane 7 indicated by a dashed line in the drawing.
- a diffractive optical element is constructed by forming level differences with the pitch of approximately the wavelength of exposure light (illumination light) in a substrate and has the action of diffracting an incident beam at desired angles.
- the diffractive optical element 5 for annular illumination has the following function: when a parallel beam having a rectangular cross section is incident thereto, it forms a light intensity distribution of an annular shape in its far field (or Fraunhofer diffraction region).
- the nearly parallel beam incident to the diffractive optical element 5 as a beam transforming element forms a light intensity distribution of an annular shape on the pupil plane of the afocal lens 6 and then emerges as a nearly parallel beam from the afocal lens 6 .
- a conical axicon system 8 In an optical path between front lens unit 6 a and rear lens unit 6 b of the afocal lens 6 there are a conical axicon system 8 , a first cylindrical lens pair 9 , and a second cylindrical lens pair 10 arranged in order from the light source side on or near the pupil plane of the afocal lens, and the detailed configuration and action thereof will be described later.
- the fundamental configuration and action will be described below, in disregard of the action of the conical axicon system 8 , first cylindrical lens pair 9 , and second cylindrical lens pair 10 .
- the beam through the afocal lens 6 travels through a zoom lens 11 for variation of ⁇ -value and then enters a micro fly's eye lens (or fly's eye lens) 12 as an optical integrator.
- the micro fly's eye lens 12 is an optical element consisting of a number of micro lenses with a positive refracting power arranged lengthwise and breadthwise and densely.
- a micro fly's eye lens is constructed, for example, by forming a micro lens group by etching of a plane-parallel plate.
- each micro lens forming the micro fly's eye lens is much smaller than each lens element forming a fly's eye lens.
- the micro fly's eye lens is different from the fly's eye lens consisting of lens elements spaced from each other, in that a number of micro lenses (micro refracting surfaces) are integrally formed without being separated from each other.
- the micro fly's eye lens is a wavefront splitting optical integrator of the same type as the fly's eye lens.
- the position of the predetermined plane 7 is arranged near the front focal position of the zoom lens 11
- the entrance surface of the micro fly's eye lens 12 is arranged near the rear focal position of the zoom lens 11 .
- the zoom lens 11 arranges the predetermined plane 7 and the entrance surface of the micro fly's eye lens 12 substantially in the relation of Fourier transform and eventually arranges the pupil plane of the afocal lens 6 and the entrance surface of the micro fly's eye lens 12 approximately optically conjugate with each other.
- an illumination field of an annular shape centered around the optical axis AX is formed on the entrance surface of the micro fly's eye lens 12 , as on the pupil plane of the afocal lens 6 .
- the entire shape of this annular illumination field similarly varies depending upon the focal length of the zoom lens 11 .
- Each micro lens forming the micro fly's eye lens 12 has a rectangular cross section similar to a shape of an illumination field to be formed on a mask M (eventually, a shape of an exposure region to be formed on a wafer W).
- the beam incident to the micro fly's eye lens 12 is two-dimensionally split by a number of micro lenses to form on its rear focal plane (eventually on the illumination pupil) a secondary light source having much the same light intensity distribution as the illumination field formed by the incident beam, i.e., a secondary light source consisting of a substantial surface illuminant of an annular shape centered around the optical axis AX, as shown in FIG. 2 .
- Beams from the secondary light source formed on the rear focal plane of the micro fly's eye lens 12 (in general, an illumination pupil distribution formed on or near the pupil plane of the illumination optical apparatus) travel through beam splitter 13 a and condenser optical system 14 to superposedly illuminate a mask blind 15 .
- an illumination field of a rectangular shape according to the shape and focal length of each micro lens forming the micro fly's eye lens 12 is formed on the mask blind 15 as an illumination field stop.
- the internal configuration and action of polarization monitor 13 incorporating a beam splitter 13 a will be described later. Beam through a rectangular aperture (light transmitting portion) of the mask blind 15 are subject to light condensing action of imaging optical system 16 and thereafter superposedly illuminate the mask M on which a predetermined pattern is formed.
- the imaging optical system 16 forms an image of the rectangular aperture of the mask blind 15 on the mask M.
- a beam passing through the pattern of mask M travels through a projection optical system PL to form an image of the mask pattern on the wafer W being a photosensitive substrate.
- the pattern of the mask M is sequentially printed in each exposure area on the wafer W through full-wafer exposure or scan exposure with two-dimensional drive control of the wafer W in the plane (XY plane) perpendicular to the optical axis AX of the projection optical system PL.
- the quarter wave plate 4 a is arranged so that its crystallographic axis is rotatable around the optical axis AX, and it transforms incident light of elliptical polarization into light of linear polarization.
- the half wave plate 4 b is arranged so that its crystallographic axis is rotatable around the optical axis AX, and it changes the plane of polarization of linearly polarized light incident thereto.
- the depolarizer 4 c is composed of a wedge-shaped crystalline quartz prism (not shown) and a wedge-shaped fused sillica prism (not shown) having complementary shapes.
- the crystalline quartz prism and the fussed sillica prism are constructed as an integral prism assembly so as to be set into and away from the illumination optical path.
- the light source 1 is the KrF excimer laser light source or the ArF excimer laser light source
- light emitted from these light sources typically has the degree of polarization of 95% or more and light of almost linear polarization is incident to the quarter wave plate 4 a .
- a right-angle prism as a back-surface reflector is interposed in the optical path between the light source 1 and the polarization state converter 4 , the linearly polarized light will be changed into elliptically polarized light by virtue of total reflection in the right-angle prism unless the plane of polarization of the incident, linearly polarized light agrees with the P-polarization plane or S-polarization plane.
- the polarization state converter 4 for example, even if light of elliptical polarization is incident thereto because of the total reflection in the right-angle prism, light of linear polarization transformed by the action of the quarter wave plate 4 a will be incident to the half wave plate 4 b .
- the crystallographic axis of the half wave plate 4 b is set at an angle of 0° or 90° relative to the plane of polarization of the incident, linearly polarized light, the light of linear polarization incident to the half wave plate 4 b will pass as it is, without change in the plane of polarization.
- the crystallographic axis of the half wave plate 4 b is set at an angle of 45° relative to the plane of polarization of the incident, linearly polarized light
- the light of linear polarization incident to the half wave plate 4 b will be transformed into light of linear polarization with change of polarization plane of 90°.
- the crystallographic axis of the crystalline quartz prism in the depolarizer 4 c is set at an angle of 45° relative to the polarization plane of the incident, linearly polarized light
- the light of linear polarization incident to the crystalline quartz prism will be transformed (or depolarized) into light in an unpolarized state.
- the polarization state converter 4 is arranged as follows: when the depolarizer 4 c is positioned in the illumination optical path, the crystallographic axis of the crystalline quartz prism makes the angle of 45° relative to the polarization plane of the incident, linearly polarized light. Incidentally, where the crystallographic axis of the crystalline quartz prism is set at the angle of 0° or 90° relative to the polarization plane of the incident, linearly polarized light, the light of linear polarization incident to the crystalline quartz prism will pass as it is, without change of the polarization plane.
- the crystallographic axis of the half wave plate 4 b is set at an angle of 22.5° relative to the polarization plane of incident, linearly polarized light
- the light of linear polarization incident to the half wave plate 4 b will be transformed into light in an unpolarized state including a linear polarization component directly passing without change of the polarization plane and a linear polarization component with the polarization plane rotated by 90°.
- the polarization state converter 4 is arranged so that light of linear polarization is incident to the half wave plate 4 b , as described above, and, for easier description hereinafter, it is assumed that light of linear polarization having the direction of polarization (direction of the electric field) along the Z-axis in FIG. 1 (hereinafter referred to as “Z-directionally polarized light”) is incident to the half wave plate 4 b .
- the depolarizer 4 c When the depolarizer 4 c is positioned in the illumination optical path and when the crystallographic axis of the half wave plate 4 b is set at the angle of 0° or 90° relative to the polarization plane (direction of polarization) of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the half wave plate 4 b passes as kept as Z-directionally polarized light without change of the polarization plane and enters the crystalline quartz prism in the depolarizer 4 c .
- the crystallographic axis of the crystalline quartz prism is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the crystalline quartz prism is transformed into light in an unpolarized state.
- the light depolarized through the crystalline quartz prism travels through the quartz prism as a compensator for compensating the traveling direction of the light and is incident into the diffractive optical element 5 while being in the depolarized state.
- the crystallographic axis of the half wave plate 4 b is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the half wave plate 4 b will be rotated in the polarization plane by 90° and transformed into light of linear polarization having the polarization direction (direction of the electric field) along the X-direction in FIG.
- X-directionally polarized light (hereinafter referred to as “X-directionally polarized light”) and the X-directionally polarized light will be incident to the crystalline quartz prism in the depolarizer 4 c . Since the crystallographic axis of the crystalline quartz prism is set at the angle of 45° relative to the polarization plane of the incident, X-directionally polarized light as well, the light of X-directional polarization incident to the crystalline quartz prism is transformed into light in the depolarized state, and the light travels through the quartz prism to be incident in the depolarized state into the diffractive optical element 5 .
- the depolarizer 4 c when the depolarizer 4 c is set away from the illumination optical path, if the crystallographic axis of the half wave plate 4 b is set at the angle of 0° or 90° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the half wave plate 4 b will pass as kept as Z-directionally polarized light without change of the polarization plane, and will be incident in the Z-directionally polarized state into the diffractive optical element 5 .
- the crystallographic axis of the half wave plate 4 b is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto on the other hand, the light of Z-directional polarization incident to the half wave plate 4 b will be transformed into light of X-directional polarization with the polarization plane rotated by 90°, and will be incident in the X-directionally polarized state into the diffractive optical element 5 .
- the light in the depolarized state can be made incident to the diffractive optical element 5 when the depolarizer 4 c is set and positioned in the illumination optical path.
- the depolarizer 4 c is set away from the illumination optical path and when the crystallographic axis of the half wave plate 4 b is set at the angle of 0° or 90° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light in the Z-directionally polarized state can be made incident to the diffractive optical element 5 .
- the depolarizer 4 c when the depolarizer 4 c is set away from the illumination optical path and when the crystallographic axis of the half wave plate 4 b is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light in the X-directionally polarized state can be made incident to the diffractive optical element 5 .
- the polarization state converter 4 is able to switch the polarization state of the incident light into the diffractive optical element 5 (a state of polarization of light to illuminate the mask M and wafer W in use of an ordinary diffractive optical element except for the diffractive optical element for azimuthally polarized annular illumination according to the present invention as will be described later) between the linearly polarized state and the unpolarized state through the action of the polarization state converter consisting of the quarter wave plate 4 a , half wave plate 4 b , and depolarizer 4 c , and, in the case of the linearly polarized state, it is able to switch between mutually orthogonal polarization states (between the Z-directional polarization and the X-directional polarization).
- FIG. 3 is an illustration schematically showing the configuration of the conical axicon system disposed in the optical path between the front lens unit and the rear lens unit of the afocal lens in FIG. 1 .
- the conical axicon system 8 is composed of a first prism member 8 a whose plane is kept toward the light source and whose refracting surface of a concave conical shape is kept toward the mask, and a second prism member 8 b whose plane is kept toward the mask and whose refracting surface of a convex conical shape is kept toward the light source, in order from the light source side.
- the refracting surface of the concave conical shape of the first prism member 8 a and the refracting surface of the convex conical shape of the second prism member 8 b are formed in a complementary manner so as to be able to be brought into contact with each other. At least one of the first prism member 8 a and the second prism member 8 b is arranged movable along the optical axis AX, so that the spacing can be varied between the refracting surface of the concave conical shape of the first prism member 8 a and the refracting surface of the convex conical shape of the second prism member 8 b.
- the conical axicon system 8 functions as a plane-parallel plate and has no effect on the secondary light source of the annular shape formed.
- the conical axicon system 8 functions a so-called beam expander. Therefore, the angle of the incident beam to the predetermined plane 7 varies according to change in the spacing of the conical axicon system 8 .
- FIG. 4 is an illustration to illustrate the action of the conical axicon system on the secondary light source of the annular shape.
- the secondary light source 30 a of the minimum annular shape formed in a state where the spacing of the conical axicon system 8 is zero and where the focal length of the zoom lens 11 is set at the minimum (this state will be referred to hereinafter as a “standard state”) is changed into secondary light source 30 b of an annular shape with the outside diameter and inside diameter both enlarged and without change in the width (half of the difference between the inside diameter and the outside diameter: indicated by arrows in the drawing) when the spacing of the conical axicon system 8 is increased from zero to a predetermined value.
- an annular ratio (inside diameter/outside diameter) and size (outside diameter) both vary through the action of the conical axicon system 8 , without change in the width of the secondary light source of the annular shape.
- FIG. 5 is an illustration to illustrate the action of the zoom lens on the secondary light source of the annular shape.
- the secondary light source 30 a of the annular shape formed in the standard state is changed into secondary light source 30 c of an annular shape whose entire shape is similarly enlarged by increasing the focal length of the zoom lens 11 from the minimum to a predetermined value.
- the width and size (outside diameter) both vary through the action of zoom lens 11 , without change in the annular ratio of the secondary light source of the annular shape.
- FIG. 6 is an illustration schematically showing the configuration of the first cylindrical lens pair and the second cylindrical lens pair disposed in the optical path between the front lens unit and the rear lens unit of the afocal lens in FIG. 1 .
- the first cylindrical lens pair 9 and the second cylindrical lens pair 10 are arranged in order from the light source side.
- the first cylindrical lens pair 9 is composed, for example, of a first cylindrical negative lens 9 a with a negative refracting power in the YZ plane and with no refracting power in the XY plane, and a first cylindrical positive lens 9 b with a positive refracting power in the YZ plane and with no refracting power in the XY plane, which are arranged in order from the light source side.
- the second cylindrical lens pair 10 is composed, for example, of a second cylindrical negative lens 10 a with a negative refracting power in the XY plane and with no refracting power in the YZ plane, and a second cylindrical positive lens 10 b with a positive refracting power in the XY plane and with no refracting power in the YZ plane, which are arranged in order from the light source side.
- the first cylindrical negative lens 9 a and the first cylindrical positive lens 9 b are arranged so as to integrally rotate around the optical axis AX.
- the second cylindrical negative lens 10 a and the second cylindrical positive lens 10 b are arranged so as to integrally rotate around the optical axis AX.
- the first cylindrical lens pair 9 functions as a beam expander having a power in the Z-direction
- the second cylindrical lens pair 10 as a beam expander having a power in the X-direction.
- the power of the first cylindrical lens pair 9 and the power of the second cylindrical lens pair 10 are set to be equal to each other.
- FIGS. 7 to 9 are illustrations to illustrate the action of the first cylindrical lens pair and the second cylindrical lens pair on the secondary light source of the annular shape.
- FIG. 7 shows such a setting that the direction of the power of the first cylindrical lens pair 9 makes the angle of +45° around the optical axis AX relative to the Z-axis and that the direction of the power of the second cylindrical lens pair 10 makes the angle of ⁇ 45° around the optical axis AX relative to the Z-axis.
- the direction of the power of the first cylindrical lens pair 9 is perpendicular to the direction of the power of the second cylindrical lens pair 10 , and the composite system of the first cylindrical lens pair 9 and the second cylindrical lens pair 10 has the Z-directional power and the X-directional power identical to each other.
- a beam passing through the composite system of the first cylindrical lens pair 9 and the second cylindrical lens pair 10 is subject to enlargement at the same power in the Z-direction and in the X-direction to form the secondary light source of a perfect-circle annular shape on the illumination pupil.
- FIG. 8 shows such a setting that the direction of the power of the first cylindrical lens pair 9 makes, for example, the angle of +80° around the optical axis AX relative to the Z-axis and that the direction of the power of the second cylindrical lens pair 10 makes, for example, the angle of ⁇ 80° around the optical axis AX relative to the Z-axis. Therefore, the power in the X-direction is greater than the power in the Z-direction in the composite system of the first cylindrical lens pair 9 and the second cylindrical lens pair 10 . As a result, in a horizontally elliptic state shown in FIG.
- the beam passing through the composite system of the first cylindrical lens pair 9 and the second cylindrical lens pair 10 is subject to enlargement at the power greater in the X-direction than in the Z-direction, whereby the secondary light source of a horizontally long annular shape elongated in the X-direction is formed on the illumination pupil.
- FIG. 9 shows such a setting that the direction of the power of the first cylindrical lens pair 9 makes, for example, the angle of +10° around the optical axis AX relative to the Z-axis and that the direction of the power of the second cylindrical lens pair 10 makes, for example, the angle of ⁇ 10° around the optical axis AX relative to the Z-axis. Therefore, the power in the Z-direction is greater than the power in the X-direction in the composite system of the first cylindrical lens pair 9 and the second cylindrical lens pair 10 . As a result, in a vertically elliptical state shown in FIG.
- the beam passing through the composite system of the first cylindrical lens pair 9 and the second cylindrical lens pair 10 is subject to enlargement at the power greater in the Z-direction than in the X-direction, whereby the secondary light source of a vertically long annular shape elongated in the Z-direction is formed on the illumination pupil.
- the secondary light source can be formed in a horizontally long annular shape according to any one of various aspect ratios.
- the secondary light source can be formed in a vertically long annular shape according to any one of various aspect ratios.
- FIG. 10 is a perspective view schematically showing the internal configuration of the polarization monitor shown in FIG. 1 .
- the polarization monitor 10 is provided with a first beam splitter 13 a disposed in the optical path between the micro fly's eye lens 12 and the condenser optical system 14 .
- the first beam splitter 13 a has, for example, the form of a non-coated plane-parallel plate made of quartz glass (i.e., raw glass), and has a function of taking reflected light in a polarization state different from a polarization state of incident light, out of the optical path.
- the light taken out of the optical path by the first beam splitter 13 a is incident to a second beam splitter 13 b .
- the second beam splitter 13 b has, for example, the form of a non-coated plane-parallel plate made of quartz glass as the first beam splitter 13 a does, and has a function of generating reflected light in a polarization state different from the polarization state of incident light.
- the polarization monitor is so set that the P-polarized light for the first beam splitter 13 a becomes the S-polarized light for the second beam splitter 13 b and that the S-polarized light for the first beam splitter 13 a becomes the P-polarized light for the second beam splitter 13 b.
- first light intensity detector 13 c Light transmitted by the second beam splitter 13 b is detected by first light intensity detector 13 c , while light reflected by the second beam splitter 13 b is detected by second light intensity detector 13 d .
- Outputs from the first light intensity detector 13 c and from the second light intensity detector 13 d are supplied each to a controller (not shown).
- the controller drives the quarter wave plate 4 a , half wave plate 4 b , and depolarizer 4 c constituting the polarization state converter 4 , according to need.
- the reflectance for the P-polarized light and the reflectance for the S-polarized light are substantially different in the first beam splitter 13 a and in the second beam splitter 13 b .
- the reflected light from the first beam splitter 13 a includes the S-polarization component (i.e., the S-polarization component for the first beam splitter 13 a and P-polarization component for the second beam splitter 13 b ), for example, which is approximately 10% of the incident light to the first beam splitter 13 a , and the P-polarization component (i.e., the P-polarization component for the first beam splitter 13 a and S-polarization component for the second beam splitter 13 b ), for example, which is approximately 1% of the incident light to the first beam splitter 13 a.
- the S-polarization component i.e., the S-polarization component for the first beam splitter 13 a and P-polarization component for the second beam splitter 13 b
- the P-polarization component i.e., the P
- the P-polarization component i.e., the P-polarization component for the first beam splitter 13 a and S-polarization component for the second beam splitter 13 b
- the S-polarization component i.e., the S-polarization component for the first beam splitter 13 a and P-polarization component for the second beam splitter 13 b
- the first beam splitter 13 a has the function of extracting the reflected light in the polarization state different from the polarization state of the incident light out of the optical path in accordance with its reflection characteristic.
- the polarization state degree of polarization
- the polarization state of the illumination light to the mask M, based on the output from the first light intensity detector 13 c (information about the intensity of transmitted light from the second beam splitter 13 b , i.e., information about the intensity of light virtually in the same polarization state as that of the reflected light from the first beam splitter 13 a ).
- the polarization monitor 13 is so set that the P-polarized light for the first beam splitter 13 a becomes the S-polarized light for the second beam splitter 13 b and that the S-polarized light for the first beam splitter 13 a becomes the P-polarized light for the second beam splitter 13 b .
- the controller determines that the illumination light to the mask M (eventually, to the wafer W) is not in the desired unpolarized state or linearly polarized state, based on the detection result of the polarization monitor 13 , it drives and adjusts the quarter wave plate 4 a , half wave plate 4 b , and depolarizer 4 c constituting the polarization state converter 4 so that the state of the illumination light to the mask M can be adjusted into the desired unpolarized state or linearly polarized state.
- Quadrupole illumination can be implemented by setting a diffractive optical element for quadrupole illumination (not shown) in the illumination optical path, instead of the diffractive optical element 5 for annular illumination.
- the diffractive optical element for quadrupole illumination has such a function that when a parallel beam having a rectangular cross section is incident thereto, it forms a light intensity distribution of a quadrupole shape in the far field thereof. Therefore, the beam passing through the diffractive optical element for quadrupole illumination forms an illumination field of a quadrupole shape consisting of four circular illumination fields centered around the optical axis AX, for example, on the entrance surface of the micro fly's eye lens 12 .
- the secondary light source of the same quadrupole shape as the illumination field formed on the entrance surface is also formed on the rear focal plane of the micro fly's eye lens 12 .
- ordinary circular illumination can be implemented by setting a diffractive optical element for circular illumination (not shown) in the illumination optical path, instead of the diffractive optical element 5 for annular illumination.
- the diffractive optical element for circular illumination has such a function that when a parallel beam having a rectangular cross section is incident thereto, it forms a light intensity distribution of a circular shape in the far field. Therefore, a beam passing through the diffraction optical element for circular illumination forms a circular illumination field centered around the optical axis AX, for example, on the entrance plane of the micro fly's eye lens 12 .
- the secondary light source of the same circular shape as the illumination field formed on the entrance surface is also formed on the rear focal plane of the micro fly's eye lens 12 .
- multipole illuminations dipole illumination, octapole illumination, etc.
- diffractive optical elements for multipole illuminations (not shown), instead of the diffractive optical element 5 for annular illumination.
- modified illuminations in various forms can be implemented by setting diffractive optical elements with appropriate characteristics (not shown) in the illumination optical path, instead of the diffractive optical element 5 for annular illumination.
- a diffractive optical element 50 for so-called azimuthally polarized annular illumination can be set, instead of the diffractive optical element 5 for annular illumination, in the illumination optical path, so as to implement the modified illumination in which the beam passing through the secondary light source of the annular shape is set in the azimuthal polarization state, i.e., the azimuthally polarized annular illumination.
- FIG. 11 is an illustration schematically showing the configuration of the diffractive optical element for azimuthally polarized annular illumination according to the present embodiment.
- FIG. 12 is an illustration schematically showing the secondary light source of the annular shape set in the azimuthal polarization state.
- the diffractive optical element 50 for azimuthally polarized annular illumination is constructed in such an arrangement that four types of basic elements 50 A- 50 D having the same cross section of a rectangular shape and having their respective thicknesses different from each other along the direction of transmission of light (Y-direction) (i.e., lengths in the direction of the optical axis) are arranged lengthwise and breadthwise and densely.
- the thicknesses are set as follows: the thickness of the first basic elements 50 A is the largest, the thickness of the fourth basic elements 50 D the smallest, and the thickness of the second basic elements 50 B is greater than the thickness of the third basic elements 50 C.
- the diffractive optical element 50 includes an approximately equal number of first basic elements 50 A, second basic elements 50 B, third basic elements 50 C, and fourth basic elements 50 D, and the four types of basic elements 50 A- 50 D are arranged substantially at random. Furthermore, a diffracting surface (indicated by hatching in the drawing) is formed on the mask side of each basic element 50 A- 50 D, and the diffracting surfaces of the respective basic elements 50 A- 50 D are arrayed along one plane perpendicular to the optical axis AX (not shown in FIG. 11 ). As a result, the mask-side surface of the diffractive optical element 50 is planar, while the light-source-side surface of the diffractive optical element 50 is uneven due to the differences among the thicknesses of the respective basic elements 50 A- 50 D.
- each first basic element 50 A has a function of forming a pair of arc (bow shape) light intensity distributions 32 A symmetric with respect to the axis line of the Z-direction passing the optical axis AX (corresponding to a pair of arc regions 31 A) in the far field 50 E of the diffractive optical element 50 (i.e., in the far field of each basic element 50 A- 50 D).
- each second basic element 50 B is arranged so as to form a pair of arc (bow shape) regions 31 B symmetric with respect to an axis line obtained by rotating the axis line of the Z-direction passing the optical axis AX, by ⁇ 45° around the Y-axis (or obtained by rotating it by 45° counterclockwise in FIG. 12 ). Namely, as shown in FIG.
- each second basic element 50 B has a function of forming a pair of arc (bow shape) light intensity distributions 32 B symmetric with respect to the axis line resulting from the ⁇ 45° rotation around the Y-axis, of the axis line of the Z-direction passing the optical axis AX (corresponding to a pair of arc regions 31 B), in the far field 50 E.
- arc bow shape
- each third basic element 50 C is arranged to form a pair of arc (bow shape) regions 31 C symmetric with respect to an axis line of the X-direction passing the optical axis AX.
- each third basic element 50 C has a function of forming a pair of arc (bow shape) light intensity distributions 32 C symmetric with respect to the axis line of the X-direction passing the optical axis AX (corresponding to a pair of arc regions 31 C), in the far field 50 E.
- each fourth basic element 50 D is arranged so as to form a pair of arc (bow shape) regions 31 D symmetric with respect to an axis line obtained by rotating the axis of the Z-direction passing the optical axis AX by +45° around the Y-axis (i.e., obtained by rotating it by 45° clockwise in FIG. 12 ). Namely, as shown in FIG.
- each fourth basic element 50 D has a function of forming a pair of arc (bow shape) light intensity distributions 32 D symmetric with respect to the axis line resulting from the +45° rotation around the Y-axis, of the axis line of the Z-direction passing the optical axis AX (corresponding to a pair of arc regions 31 D), in the far field 50 E.
- the sizes of the respective arc regions 31 A- 31 D are approximately equal to each other, and they form the secondary light source 31 of the annular shape centered around the optical axis AX, while the eight arc regions 31 A- 31 D are not overlapping with each other and not spaced from each other.
- each basic element 50 A- 50 D is made of crystalline quartz being an optical material with optical activity, and the crystallographic axis of each basic element 50 A- 50 D is set approximately to coincide with the optical axis AX.
- the optical activity of crystalline quartz will be briefly described below with reference to FIG. 17 .
- an optical member 35 of a plane-parallel plate shape made of crystalline quartz and in a thickness d is arranged so that its crystallographic axis coincides with the optical axis AX.
- incident, linearly polarized light emerges in a state in which its-polarization direction is rotated by ⁇ around the optical axis AX.
- the angle ⁇ of rotation of the polarization direction due to the optical activity of the optical member 35 is represented by Eq (1) below, using the thickness d of the optical member 35 and the rotatory power ⁇ of crystalline quartz.
- the rotatory power ⁇ of crystalline quartz tends to increase with decrease in the wavelength of used light and, according to the description on page 167 in “Applied Optics II,” the rotatory power ⁇ of crystalline quartz for light having the wavelength of 250.3 nm is 153.9°/mm.
- the first basic elements 50 A are designed in such a thickness dA that when light of linear polarization having the direction of polarization along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +180° rotation of the Z-direction around the Y-axis, i.e., along the Z-direction, as shown in FIG. 13 .
- the polarization direction of beams passing through a pair of arc light intensity distributions 32 A formed in the far field 50 E is also the Z-direction
- the polarization direction of beams passing through a pair of arc regions 31 A shown in FIG. 12 is also the Z-direction.
- the second basic elements 50 B are designed in such a thickness dB that when light of linear polarization having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +135° rotation of the Z-direction around the Y-axis, i.e., along a direction resulting from ⁇ 45° rotation of the Z-direction around the Y-axis, as shown in FIG. 14 .
- the polarization direction of beams passing through a pair of arc light intensity distributions 32 B formed in the far field 50 E is also the direction obtained by rotating the Z-direction by ⁇ 45° around the Y-axis
- the polarization direction of beams passing through a pair of arc regions 31 A shown in FIG. 12 is also the direction obtained by rotating the Z-direction by ⁇ 45° around the Y-axis.
- the third basic elements 50 C are designed in such a thickness dC that when light of linear polarization having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +90° rotation of the Z-direction around the Y-axis, i.e., along the X-direction, as shown in FIG. 15 .
- the polarization direction of beams passing through a pair of arc light intensity distributions 32 C formed in the far field 50 E is also the X-direction
- the polarization direction of beams passing through a pair of arc regions 31 C shown in FIG. 12 is also the X-direction.
- the fourth basic elements 50 D are designed in such a thickness dD that when light of linear polarization having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +45° rotation of the Z-direction around the Y-axis, as shown in FIG. 16 .
- the polarization direction of beams passing through a pair of arc light intensity distributions 32 D formed in the far field 50 E is also the direction obtained by rotating the Z-direction by +45° around the Y-axis
- the polarization direction of beams passing through a pair of arc regions 31 D shown in FIG. 12 is also the direction obtained by rotating the Z-direction by +45° around the Y-axis.
- the diffractive optical element 50 for azimuthally polarized annular illumination is set in the illumination optical system on the occasion of effecting the azimuthally polarized annular illumination, whereby the light of linear polarization having the polarization direction along the Z-direction is made incident to the diffractive optical element 50 .
- the secondary light source of the annular shape (illumination pupil distribution of annular shape) 31 is formed on the rear focal plane of the micro fly's eye lens 12 (i.e., on or near the illumination pupil), as shown in FIG. 12 , and the beams passing through the secondary light source 31 of the annular shape are set in the azimuthal polarization state.
- the beams passing through the respective arc regions 31 A- 31 D constituting the secondary light source 31 of the annular shape turn into the linearly polarized state having the polarization direction substantially coincident with a tangent line to a circle centered around the optical axis AX, at the central position along the circumferential direction of each arc region 31 A- 31 D.
- the beam transforming element 50 for forming the predetermined light intensity distribution on the predetermined surface on the basis of the incident beam comprises the first basic element 50 A made of the optical material with optical activity, for forming the first region distribution 32 A of the predetermined light intensity distribution on the basis of the incident beam; and the second basic element 50 B made of the optical material with optical activity, for forming the second region distribution 32 B of the predetermined light intensity distribution on the basis of the incident beam, and the first basic element 50 A and the second basic element 50 B have their respective thicknesses different from each other along the direction of transmission of light.
- the present embodiment is able to form the secondary light source 31 of the annular shape in the azimuthal polarization state, with no substantial loss of light quantity, through the diffracting action and optical rotating action of the diffractive optical element 50 as the beam transforming element, different from the conventional technology giving rise to the large loss of light quantity at the aperture stop.
- the thickness of the first basic element 50 A and the thickness of the second basic element 50 B are so set that with incidence of linearly polarized light the polarization direction of the linearly polarized light forming the first region distribution 32 A is different from the polarization direction of the linearly polarized light forming the second region distribution 32 B.
- the first region distribution 32 A and the second region distribution 32 B are positioned in at least a part of a predetermined annular region, which is a predetermined annular region centered around a predetermined point on the predetermined surface, and the beams passing through the first region distribution 32 A and through the second region distribution 32 B have a polarization state in which a principal component is linearly polarized light having the polarization direction along the circumferential direction of the predetermined annular region.
- the predetermined light intensity distribution has a contour of virtually the same shape as the predetermined annular region
- the polarization state of the beam passing through the first region distribution 32 A has a linear polarization component substantially coincident with a tangential direction to a circle centered around a predetermined point at the central position along the circumferential direction of the first region distribution 32 A
- the polarization state of the beam passing through the second region distribution 32 B has a linear polarization component substantially coincident with a tangential direction to a circle centered around a predetermined point at the central position along the circumferential direction of the second region distribution 32 B.
- the predetermined light intensity distribution is a distribution of a multipole shape in the predetermined annular region
- the polarization state of the beam passing through the first region distribution has a linear polarization component substantially coincident with a tangential direction to a circle centered around a predetermined point at the central position along the circumferential direction of the first region distribution
- the polarization state of the beam passing through the second region distribution has a linear polarization component substantially coincident with a tangential direction to a circle centered around a predetermined point at the central position along the circumferential direction of the second region distribution.
- the first basic element and the second basic element are made of an optical material with an optical rotatory power of not less than 100°/mm for light of a wavelength used.
- the first basic element and the second basic element are made of crystalline quartz.
- the beam transforming element preferably includes virtually the same number of first basic elements and second basic elements.
- the first basic element and the second basic element preferably have diffracting action or refracting action.
- the first basic element forms at least two first region distributions on the predetermined surface on the basis of the incident beam
- the second basic element forms at least two second region distributions on the predetermined surface on the basis of the incident beam
- the beam transforming element further comprises the third basic element 50 C made of the optical material with optical activity, for forming the third region distribution 32 C of the predetermined light intensity distribution on the basis of the incident beam
- the fourth basic element 50 D made of the optical material with optical activity, for forming the fourth region distribution 32 D of the predetermined light intensity distribution on the basis of the incident beam.
- the beam transforming element 50 for forming the predetermined light intensity distribution of the shape different from the sectional shape of the incident beam, on the predetermined surface has the diffracting surface or refracting surface for forming the predetermined light intensity distribution on the predetermined surface
- the predetermined light intensity distribution is a distribution in at least a part of a predetermined annular region, which is a predetermined annular region centered around a predetermined point on the predetermined surface
- the beam from the beam transforming element passing through the predetermined annular region has a polarization state in which a principal component is linearly polarized light having the direction of polarization along the circumferential direction of the predetermined annular region.
- the present embodiment different from the conventional technology giving rise to the large loss of light quantity at the aperture stop, is able to form the secondary light source 31 of the annular shape in the azimuthal polarization state, with no substantial loss of light quantity, through the diffracting action and optical rotating action of the diffractive optical element 50 as the beam transforming element.
- the predetermined light intensity distribution has a contour of a multipole shape or annular shape.
- the beam transforming element is preferably made of an optical material with optical activity.
- the illumination optical apparatus of the present embodiment is the illumination optical apparatus for illuminating the surface to be illuminated, based on the beam from the light source, and comprises the above-described beam transforming element for transforming the beam from the light source in order to form the illumination pupil distribution on or near the illumination pupil of the illumination optical apparatus.
- the illumination optical apparatus of the present embodiment is able to form the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity.
- the beam transforming element is preferably arranged to be replaceable with another beam transforming element having a different characteristic.
- the apparatus further comprises the wavefront splitting optical integrator disposed in the optical path between the beam transforming element and the surface to be illuminated, and the beam transforming element forms the predetermined light intensity distribution on the entrance surface of the optical integrator on the basis of the incident beam.
- At least one of the light intensity distribution on the predetermined surface and the polarization state of the beam from the beam transforming element passing through the predetermined annular region is set in consideration of the influence of an optical member disposed in the optical path between the light source and the surface to be illuminated.
- the polarization state of the beam from the beam transforming element is so set that the light illuminating the surface to be illuminated is in a polarization state in which a principal component is S-polarized light.
- the exposure apparatus of the present embodiment comprises the above-described illumination optical apparatus for illuminating the mask, and projects the pattern of the mask onto the photosensitive substrate.
- at least one of the light intensity distribution on the predetermined surface and the polarization state of the beam from the beam transforming element passing through the predetermined annular region is set in consideration of the influence of an optical member disposed in the optical path between the light source and the photosensitive substrate.
- the polarization state of the beam from the beam transforming element is so set that the light illuminating the photosensitive substrate is in a polarization state in which a principal component is S-polarized light.
- the exposure method of the present embodiment comprises the illumination step of illuminating the mask by use of the above-described illumination optical apparatus, and the exposure step of projecting the pattern of the mask onto the photosensitive substrate.
- at least one of the light intensity distribution on the predetermined surface and the polarization state of the beam from the beam transforming element passing through the predetermined annular region is set in consideration of the influence of an optical member disposed in the optical path between the light source and the photosensitive substrate.
- the polarization state of the beam from the beam transforming element is so set that the light illuminating the photosensitive substrate is in a polarization state in which a principal component is S-polarized light.
- the illumination optical apparatus of the present embodiment is able to form the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity.
- the exposure apparatus of the present embodiment is able to transcribe the microscopic pattern in an arbitrary direction under an appropriate illumination condition faithfully and with high throughput because it uses the illumination optical apparatus capable of forming the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity.
- the light illuminating the wafer W as a surface to be illuminated is in the polarization state in which the principal component is the S-polarized light.
- the S-polarized light is linearly polarized light having the direction of polarization along a direction normal to a plane of incidence (i.e., polarized light with the electric vector oscillating in the direction normal to the plane of incidence).
- the plane of incidence herein is defined as the following plane: when light arrives at a boundary surface of a medium (a surface to be illuminated: surface of wafer W), the plane includes the normal to the boundary plane at the arrival point and the direction of incidence of light.
- the diffractive optical element 50 for azimuthally polarized annular illumination is constructed by randomly arranging virtually the same number of four types of basic elements 50 A- 50 D with the same rectangular cross section lengthwise and breadthwise and densely.
- a variety of modification examples can be contemplated as to the number of basic elements of each type, the sectional shape, the number of types, the arrangement, and so on.
- the secondary light source 31 of the annular shape centered around the optical axis AX is composed of the eight arc regions 31 A- 31 D arrayed without overlapping with each other and without being spaced from each other, using the diffractive optical element 50 consisting of the four types of basic elements 50 A- 50 D.
- the diffractive optical element 50 consisting of the four types of basic elements 50 A- 50 D.
- a variety of modification examples can be contemplated as to the number of regions forming the secondary light source of the annular shape, the shape, the arrangement, and so on.
- a secondary light source 33 a of an octapole shape in the azimuthal polarization state consisting of eight arc (bow shape) regions spaced from each other along the circumferential direction for example, using the diffractive optical element consisting of four types of basic elements.
- a secondary light source 33 b of a quadrupole shape in the azimuthal polarization state consisting of four arc (bow shape) regions spaced from each other along the circumferential direction for example, using the diffractive optical element consisting of four types of basic elements.
- the shape of each region is not limited to the arc shape, but it may be, for example, circular, elliptical, or sectorial. Furthermore, as shown in FIG. 19 , it is also possible to form a secondary light source 33 c of an annular shape in the azimuthal polarization state consisting of eight arc regions overlapping with each other along the circumferential direction, for example, using the diffractive optical element consisting of four types of basic elements.
- the secondary light source may be formed in a hexapole shape in the azimuthal polarization state and of six regions spaced from each other along the circumferential direction, as shown in FIG. 20A .
- FIG. 20A shows that as shown in FIG.
- the secondary light source may be formed as one having secondary light source of a multipole shape in the azimuthal polarization state consisting of a plurality of regions spaced from each other along the circumferential direction, and a secondary light source on the center pole in the unpolarized state or linearly polarized state consisting of a region on the optical axis. Furthermore, the secondary light source may also be formed in a dipole shape in the azimuthal polarization state and of two regions spaced from each other along the circumferential direction.
- the four types of basic elements 50 A- 50 D are individually formed, and the diffractive optical element 50 is constructed by combining these elements.
- the diffractive optical element 50 can also be integrally constructed in such a manner that a crystalline quartz substrate is subjected, for example, to etching to form the exit-side diffracting surfaces and the entrance-side uneven surfaces of the respective basic elements 50 A- 50 D.
- each basic element 50 A- 50 D (therefore, the diffractive optical element 50 ) is made of crystalline quartz.
- each basic element can also be made of another appropriate optical material with optical activity.
- use of an optical material with a low rotatory power is undesirable because the thickness necessary for achieving the required rotation angle of the polarization direction becomes too large, so as to cause the loss of light quantity.
- the aforementioned embodiment is arranged to form the illumination pupil distribution of the annular shape (secondary light source), but, without having to be limited to this, the illumination pupil distribution of a circular shape can also be formed on or near the illumination pupil.
- the illumination pupil distribution of the annular shape and the illumination pupil distribution of the multipole shape it is also possible to implement a so-called annular illumination with the center pole and a multipole illumination with the center pole, for example, by forming a center region distribution including the optical axis.
- the illumination pupil distribution in the azimuthal polarization state is formed on or near the illumination pupil.
- the polarization direction can vary because of polarization aberration (retardation) of an optical system (the illumination optical system or the projection optical system) closer to the wafer than the diffractive optical element as the beam transforming element.
- reflected light can have a phase difference in each polarization direction because of a polarization characteristic of a reflecting member disposed in the optical system (the illumination optical system or the projection optical system) closer to the wafer than the beam transforming element.
- the reflectance in the reflecting member can vary depending upon the polarization direction, because of a polarization characteristic of a reflecting member disposed in the optical system (the illumination optical system or the projection optical system) closer to the wafer than the beam transforming element.
- the same technique can also be similarly applied to cases where the transmittance in the optical system closer to the wafer than the beam transforming element varies depending upon the polarization direction.
- the light-source-side surface of the diffractive optical element 50 is of the uneven shape with level differences according to the differences among the thicknesses of respective basic elements 50 A- 50 D. Then the surface on the light source side (entrance side) of the diffractive optical element 50 can also be formed in a planar shape, as shown in FIG. 21 , by adding a compensation member 36 on the entrance side of the basic elements except for the first basic elements 50 A with the largest thickness, i.e., on the entrance side of the second basic elements 50 B, third basic elements 50 C, and fourth basic elements 50 D. In this case, the compensation member 36 is made of an optical material without optical activity.
- the aforementioned embodiment shows the example wherein the beam passing through the illumination pupil distribution formed on or near the illumination pupil has only the linear polarization component along the circumferential direction.
- the expected effect of the present invention can be achieved as long as the polarization state of the beam passing through the illumination pupil distribution is a state in which the principal component is linearly polarized light having the polarization direction along the circumferential direction.
- the foregoing embodiment uses the diffractive optical element consisting of the plural types of basic elements having the diffracting action, as the beam transforming element for forming the light intensity distribution of the shape different from the sectional shape of the incident beam, on the predetermined plane, based on the incident beam.
- the beam transforming element a refracting optical element, for example, consisting of plural types of basic elements having refracting surfaces virtually optically equivalent to the diffracting surfaces of the respective basic elements, i.e., consisting of plural types of basic elements having the refracting action.
- the exposure apparatus is able to produce microdevices (semiconductor elements, image pickup elements, liquid crystal display elements, thin-film magnetic heads, etc.) by illuminating a mask (reticle) by the illumination optical apparatus (illumination step) and projecting a pattern for transcription formed on the mask, onto a photosensitive substrate by use of the projection optical system (exposure step).
- microdevices semiconductor elements, image pickup elements, liquid crystal display elements, thin-film magnetic heads, etc.
- the first step 301 in FIG. 22 is to deposit a metal film on each of wafers in one lot.
- the next step 302 is to apply a photoresist onto the metal film on each wafer in the lot.
- step 303 is to sequentially transcribe an image of a pattern on a mask into each shot area on each wafer in the lot, through the projection optical system by use of the exposure apparatus of the foregoing embodiment.
- step 304 is to perform development of the photoresist on each wafer in the lot, and step 305 thereafter is to perform etching with the resist pattern as a mask on each wafer in the lot, thereby forming a circuit pattern corresponding to the pattern on the mask, in each shot area on each wafer.
- devices such as semiconductor elements are produced through execution of formation of circuit patterns in upper layers and others.
- the semiconductor device production method as described above permits us to produce the semiconductor devices with extremely fine circuit patterns at high throughput.
- pattern forming step 401 is to execute a so-called photolithography step of transcribing a pattern on a mask onto a photosensitive substrate (a glass substrate coated with a resist or the like) by use of the exposure apparatus of the foregoing embodiment.
- the predetermined patterns including a number of electrodes and others are formed on the photosensitive substrate.
- the exposed substrate is subjected to steps such as a development step, an etching step, a resist removing step, etc., to form the predetermined patterns on the substrate, followed by next color filter forming step 402 .
- the next color filter forming step 402 is to form a color filter in which a number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arrayed in a matrix, or in which a plurality of sets of filters of three stripes of R, Q and B are arrayed in the direction of horizontal scan lines.
- cell assembly step 403 is carried out.
- the cell assembly step 403 is to assemble a liquid crystal panel (liquid crystal cell), using the substrate with the predetermined patterns obtained in the pattern forming step 401 , the color filter obtained in the color filter forming step 402 , and so on.
- a liquid crystal is poured into the space between the substrate with the predetermined patterns obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402 to produce the liquid crystal panel (liquid crystal cell).
- module assembly step 404 is carried out to attach such components as an electric circuit, a backlight, and so on for implementing the display operation of the assembled liquid crystal panel (liquid crystal cell), to complete the liquid crystal display element.
- the production method of the liquid crystal display element described above permits us to produce the liquid crystal display elements with extremely fine circuit patterns at high throughput.
- the foregoing embodiment is arranged to use the KrF excimer laser light (wavelength: 248 nm) or the ArF excimer laser light (wavelength: 193 nm) as the exposure light, but, without having to be limited to this, the present invention can also be applied to other appropriate laser light sources, e.g., an F 2 laser light source for supplying laser light of the wavelength of 157 nm.
- the foregoing embodiment described the present invention, using the exposure apparatus with the illumination optical apparatus as an example, but it is apparent that the present invention can be applied to ordinary illumination optical apparatus for illuminating the surface to be illuminated, except for the mask and wafer.
- the so-called liquid immersion method which is a technique of filling a medium (typically, a liquid) with a refractive index larger than 1.1 in the optical path between the projection optical system and the photosensitive substrate.
- the technique of filling the liquid in the optical path between the projection optical system and the photosensitive substrate can be selected from the technique of locally filling the liquid as disclosed in PCT International Publication No. WO99/49504, the technique of moving a stage holding a substrate as an exposure target in a liquid bath as disclosed in Japanese Patent Application Laid-Open No.
- the liquid is preferably one that is transparent to the exposure light, that has the refractive index as high as possible, and that is stable against the projection optical system and the photoresist applied to the surface of the substrate; for example, where the exposure light is the KrF excimer laser light or the ArF excimer laser light, pure water or deionized water can be used as the liquid.
- the liquid can be a fluorinated liquid capable of transmitting the F 2 laser light, e.g., fluorinated oil or perfluoropolyether (PFPE).
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Polarising Elements (AREA)
- Microscoopes, Condenser (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Optical Elements Other Than Lenses (AREA)
- Liquid Crystal (AREA)
- Lenses (AREA)
Abstract
A beam transforming element for forming a predetermined light intensity distribution on a predetermined surface on the basis of an incident beam includes a first basic element made of an optical material with optical activity, for forming a first region distribution of the predetermined light intensity distribution on the basis of the incident beam; and a second basic element made of an optical material with optical activity, for forming a second region distribution of the predetermined light intensity distribution on the basis of the incident beam, wherein the first basic element and the second basic element have their respective thicknesses different from each other along a direction of transmission of light.
Description
- This is a continuation of application Ser. No. 11/319,057, filed Dec. 28, 2005, which is a continuation-in-part application of Application No. PCT/JP2004/016247 filed on Nov. 2, 2004. The disclosure of the prior application is hereby incorporated by reference herein in its entirety.
- 1. Field of the Invention
- The present invention relates to a beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method and, more particularly, to an illumination optical apparatus suitably applicable to exposure apparatus used in production of microdevices such as semiconductor elements, image pickup elements, liquid crystal display elements, and thin-film magnetic heads by lithography.
- 2. Related Background Art
- In the typical exposure apparatus of this type, a beam emitted from a light source travels through a fly's eye lens as an optical integrator to form a secondary light source as a substantial surface illuminant consisting of a number of light sources. Beams from the secondary light source (generally, an illumination pupil distribution formed on or near an illumination pupil of the illumination optical apparatus) are limited through an aperture stop disposed near the rear focal plane of the fly's eye lens and then enter a condenser lens.
- The beams condensed by the condenser lens superposedly illuminate a mask on which a predetermined pattern is formed. The light passing through the pattern of the mask is focused on a wafer through a projection optical system. In this manner, the mask pattern is projected for exposure (or transcribed) onto the wafer. The pattern formed on the mask is a highly integrated pattern, and, in order to accurately transcribe this microscopic pattern onto the wafer, it is indispensable to obtain a uniform illuminance distribution on the wafer.
- For example, Japanese Patent No. 3246615 owned by the same Applicant of the present application discloses the following technology for realizing the illumination condition suitable for faithful transcription of the microscopic pattern in arbitrary directions: the secondary light source is formed in an annular shape on the rear focal plane of the fly's eye lens and the beams passing the secondary light source of the annular shape are set to be in a linearly polarized state with a direction of polarization along the circumferential direction thereof (hereinafter referred to as a “azimuthal polarization state”).
- An object of the present invention is to form an illumination pupil distribution of an annular shape in a azimuthal polarization state while well suppressing the loss of light quantity. Another object of the present invention is to transcribe a microscopic pattern in an arbitrary direction under an appropriate illumination condition faithfully and with high throughput, by forming an illumination pupil distribution of an annular shape in a azimuthal polarization state while well suppressing the loss of light quantity.
- In order to achieve the above objects, a first aspect of the present embodiment is to provide a beam transforming element for forming a predetermined light intensity distribution on a predetermined surface on the basis of an incident beam, comprising:
- a first basic element made of an optical material with optical activity, for forming a first region distribution of the predetermined light intensity distribution on the basis of the incident beam; and
- a second basic element made of an optical material with optical activity, for forming a second region distribution of the predetermined light intensity distribution on the basis of the incident beam,
- wherein the first basic element and the second basic element have their respective thicknesses different from each other along a direction of transmission of light.
- A second aspect of the present embodiment is to provide a beam transforming element for, based on an incident beam, forming a predetermined light intensity distribution of a shape different from a sectional shape of the incident beam, on a predetermined surface, comprising:
- a diffracting surface or a refracting surface for forming the predetermined light intensity distribution on the predetermined surface,
- wherein the predetermined light intensity distribution is a distribution in at least a part of a predetermined annular region, which is a predetermined annular region centered around a predetermined point on the predetermined surface, and
- wherein a beam from the beam transforming element passing through the predetermined annular region has a polarization state in which a principal component is linearly polarized light having a direction of polarization along a circumferential direction (azymuthally direction) of the predetermined annular region.
- A third aspect of the present invention is to provide an illumination optical apparatus for illuminating a surface to be illuminated, based on a beam from a light source, comprising:
-
- the beam transforming element of the first aspect or the second aspect for transforming the beam from the light source in order to form an illumination pupil distribution on or near an illumination pupil of the illumination optical apparatus.
- A fourth aspect of the present embodiment is to provide an exposure apparatus comprising the illumination optical apparatus of the third aspect for illuminating a pattern,
- the exposure apparatus being arranged to project the pattern onto a photosensitive substrate.
- A fifth aspect of the present embodiment is to provide an exposure method comprising: an illumination step of illuminating a pattern by use of the illumination optical apparatus of the third aspect; and an exposure step of projecting the pattern onto a photosensitive substrate.
- The illumination optical apparatus of the present embodiment, different from the conventional technology giving rise to the large loss of light quantity at the aperture stop, is able to form the illumination pupil distribution of the annular shape in the azimuthal polarization state, with no substantial loss of light quantity, by diffraction and optical rotating action of the diffractive optical element as the beam transforming element. Namely, the illumination optical apparatus of the present invention is able to form the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity.
- Since the exposure apparatus and exposure method using the illumination optical apparatus of the present embodiment are arranged to use the illumination optical apparatus capable of forming the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity, they are able to transcribe a microscopic pattern in an arbitrary direction under an appropriate illumination condition faithfully and with high throughput and, in turn, to produce good devices with high throughput.
- The present invention will be more fully understood from the detailed description given hereinbelow and the accompanying drawings, which are given by way of illustration only and are not to be considered as limiting the embodiment.
- Further scope of applicability of the embodiment will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will be apparent to those skilled in the art from this detailed description.
-
FIG. 1 is an illustration schematically showing a configuration of an exposure apparatus with an illumination optical apparatus according to an embodiment of the present invention. -
FIG. 2 is an illustration showing a secondary light source of an annular shape formed in annular illumination. -
FIG. 3 is an illustration schematically showing a configuration of a conical axicon system disposed in an optical path between a front lens unit and a rear lens unit of an afocal lens inFIG. 1 . -
FIG. 4 is an illustration to illustrate the action of the conical axicon system on the secondary light source of the annular shape. -
FIG. 5 is an illustration to illustrate the action of a zoom lens on the secondary light source of the annular shape. -
FIG. 6 is an illustration schematically showing a first cylindrical lens pair and a second cylindrical lens pair disposed in an optical path between the front lens unit and the rear lens unit of the afocal lens inFIG. 1 . -
FIG. 7 is a first drawing to illustrate the action of the first cylindrical lens pair and the second cylindrical lens pair on the secondary light source of the annular shape. -
FIG. 8 is a second drawing to illustrate the action of the first cylindrical lens pair and the second cylindrical lens pair on the secondary light source of the annular shape. -
FIG. 9 is a third drawing to illustrate the action of the first cylindrical lens pair and the second cylindrical lens pair on the secondary light source of the annular shape. -
FIG. 10 is a perspective view schematically showing an internal configuration of a polarization monitor inFIG. 1 . -
FIG. 11 is an illustration schematically showing a configuration of a diffractive optical element for azimuthally polarized annular illumination according to an embodiment of the present invention. -
FIG. 12 is an illustration schematically showing a secondary light source of an annular shape set in the azimuthal polarization state. -
FIG. 13 is an illustration to illustrate the action of a first basic element. -
FIG. 14 is an illustration to illustrate the action of a second basic element. -
FIG. 15 is an illustration to illustrate the action of a third basic element. -
FIG. 16 is an illustration to illustrate the action of a fourth basic element. -
FIG. 17 is an illustration to illustrate the optical activity of crystalline quartz. -
FIGS. 18A and 18B are illustrations showing octapole secondary light sources in the azimuthal polarization state consisting of eight arc regions spaced from each other along the circumferential direction and a quadrupole secondary light source in the azimuthal polarization state consisting of four arc regions spaced from each other along the circumferential direction. -
FIG. 19 is an illustration showing a secondary light source of an annular shape in the azimuthal polarization state consisting of eight arc regions overlapping with each other along the circumferential direction. -
FIGS. 20A and 20B are illustrations showing hexapole secondary light sources in the azimuthal polarization state consisting of six arc regions spaced from each other along the circumferential direction and a secondary light source in the azimuthal polarization state having a plurality of regions spaced from each other along the circumferential direction and a region on the optical axis. -
FIG. 21 is an illustration showing an example in which an entrance-side surface of a diffractive optical element for azimuthally polarized annular illumination is planar. -
FIG. 22 is a flowchart of a procedure of obtaining semiconductor devices as microdevices. -
FIG. 23 is a flowchart of a procedure of obtaining a liquid crystal display element as a microdevice. - Embodiments of the present invention will be described based on the accompanying drawings.
-
FIG. 1 is an illustration schematically showing a configuration of an exposure apparatus with an illumination optical apparatus according to an embodiment of the present invention. InFIG. 1 , the Z-axis is defined along a direction of a normal to a wafer W being a photosensitive substrate, the Y-axis along a direction parallel to the plane ofFIG. 1 in the plane of the wafer W, and the X-axis along a direction of a normal to the plane ofFIG. 1 in the plane of wafer W. The exposure apparatus of the present embodiment is provided with alight source 1 for supplying exposure light (illumination light). - The
light source 1 can be, for example, a KrF excimer laser light source for supplying light with the wavelength of 248 nm, an ArF excimer laser light source for supplying light with the wavelength of 193 nm, or the like. A nearly parallel beam emitted along the Z-direction from thelight source 1 has a cross section of a rectangular shape elongated along the X-direction, and is incident to abeam expander 2 consisting of a pair oflenses lenses FIG. 1 (or in the YZ plane). Therefore, the beam incident to thebeam expander 2 is enlarged in the plane ofFIG. 1 and shaped into a beam having a cross section of a predetermined rectangular shape. - The nearly parallel beam passing through the
beam expander 2 as a beam shaping optical system is deflected into the Y-direction by abending mirror 3, and then travels through aquarter wave plate 4 a, ahalf wave plate 4 b, a depolarizer (depolarizing element) 4 c, and a diffractive optical element 5 for annular illumination to enter anafocal lens 6. Here thequarter wave plate 4 a,half wave plate 4 b, anddepolarizer 4 c constitute apolarization state converter 4, as described later. Theafocal lens 6 is an afocal system (afocal optic) set so that the front focal position thereof approximately coincides with the position of the diffractive optical element 5 and so that the rear focal position thereof approximately coincides with the position of apredetermined plane 7 indicated by a dashed line in the drawing. In general, a diffractive optical element is constructed by forming level differences with the pitch of approximately the wavelength of exposure light (illumination light) in a substrate and has the action of diffracting an incident beam at desired angles. Specifically, the diffractive optical element 5 for annular illumination has the following function: when a parallel beam having a rectangular cross section is incident thereto, it forms a light intensity distribution of an annular shape in its far field (or Fraunhofer diffraction region). Therefore, the nearly parallel beam incident to the diffractive optical element 5 as a beam transforming element forms a light intensity distribution of an annular shape on the pupil plane of theafocal lens 6 and then emerges as a nearly parallel beam from theafocal lens 6. - In an optical path between
front lens unit 6 a andrear lens unit 6 b of theafocal lens 6 there are aconical axicon system 8, a firstcylindrical lens pair 9, and a secondcylindrical lens pair 10 arranged in order from the light source side on or near the pupil plane of the afocal lens, and the detailed configuration and action thereof will be described later. For easier description, the fundamental configuration and action will be described below, in disregard of the action of theconical axicon system 8, firstcylindrical lens pair 9, and secondcylindrical lens pair 10. - The beam through the
afocal lens 6 travels through azoom lens 11 for variation of σ-value and then enters a micro fly's eye lens (or fly's eye lens) 12 as an optical integrator. The micro fly'seye lens 12 is an optical element consisting of a number of micro lenses with a positive refracting power arranged lengthwise and breadthwise and densely. In general, a micro fly's eye lens is constructed, for example, by forming a micro lens group by etching of a plane-parallel plate. - Here each micro lens forming the micro fly's eye lens is much smaller than each lens element forming a fly's eye lens. The micro fly's eye lens is different from the fly's eye lens consisting of lens elements spaced from each other, in that a number of micro lenses (micro refracting surfaces) are integrally formed without being separated from each other. In the sense that lens elements with a positive refracting power are arranged lengthwise and breadthwise, however, the micro fly's eye lens is a wavefront splitting optical integrator of the same type as the fly's eye lens. Detailed explanation concerning the micro fly's eye lens capable of being used in the present invention is disclosed, for example, in U.S. Pat. No. 6,913,373(B2) which is incorporated herein by reference in its entirety.
- The position of the
predetermined plane 7 is arranged near the front focal position of thezoom lens 11, and the entrance surface of the micro fly'seye lens 12 is arranged near the rear focal position of thezoom lens 11. In other words, thezoom lens 11 arranges thepredetermined plane 7 and the entrance surface of the micro fly'seye lens 12 substantially in the relation of Fourier transform and eventually arranges the pupil plane of theafocal lens 6 and the entrance surface of the micro fly'seye lens 12 approximately optically conjugate with each other. - Accordingly, for example, an illumination field of an annular shape centered around the optical axis AX is formed on the entrance surface of the micro fly's
eye lens 12, as on the pupil plane of theafocal lens 6. The entire shape of this annular illumination field similarly varies depending upon the focal length of thezoom lens 11. Each micro lens forming the micro fly'seye lens 12 has a rectangular cross section similar to a shape of an illumination field to be formed on a mask M (eventually, a shape of an exposure region to be formed on a wafer W). - The beam incident to the micro fly's
eye lens 12 is two-dimensionally split by a number of micro lenses to form on its rear focal plane (eventually on the illumination pupil) a secondary light source having much the same light intensity distribution as the illumination field formed by the incident beam, i.e., a secondary light source consisting of a substantial surface illuminant of an annular shape centered around the optical axis AX, as shown inFIG. 2 . Beams from the secondary light source formed on the rear focal plane of the micro fly's eye lens 12 (in general, an illumination pupil distribution formed on or near the pupil plane of the illumination optical apparatus) travel throughbeam splitter 13 a and condenseroptical system 14 to superposedly illuminate amask blind 15. - In this manner, an illumination field of a rectangular shape according to the shape and focal length of each micro lens forming the micro fly's
eye lens 12 is formed on themask blind 15 as an illumination field stop. The internal configuration and action of polarization monitor 13 incorporating abeam splitter 13 a will be described later. Beam through a rectangular aperture (light transmitting portion) of themask blind 15 are subject to light condensing action of imagingoptical system 16 and thereafter superposedly illuminate the mask M on which a predetermined pattern is formed. - Namely, the imaging
optical system 16 forms an image of the rectangular aperture of themask blind 15 on the mask M. A beam passing through the pattern of mask M travels through a projection optical system PL to form an image of the mask pattern on the wafer W being a photosensitive substrate. In this manner, the pattern of the mask M is sequentially printed in each exposure area on the wafer W through full-wafer exposure or scan exposure with two-dimensional drive control of the wafer W in the plane (XY plane) perpendicular to the optical axis AX of the projection optical system PL. - In the
polarization state converter 4, thequarter wave plate 4 a is arranged so that its crystallographic axis is rotatable around the optical axis AX, and it transforms incident light of elliptical polarization into light of linear polarization. Thehalf wave plate 4 b is arranged so that its crystallographic axis is rotatable around the optical axis AX, and it changes the plane of polarization of linearly polarized light incident thereto. Thedepolarizer 4 c is composed of a wedge-shaped crystalline quartz prism (not shown) and a wedge-shaped fused sillica prism (not shown) having complementary shapes. The crystalline quartz prism and the fussed sillica prism are constructed as an integral prism assembly so as to be set into and away from the illumination optical path. - Where the
light source 1 is the KrF excimer laser light source or the ArF excimer laser light source, light emitted from these light sources typically has the degree of polarization of 95% or more and light of almost linear polarization is incident to thequarter wave plate 4 a. However, if a right-angle prism as a back-surface reflector is interposed in the optical path between thelight source 1 and thepolarization state converter 4, the linearly polarized light will be changed into elliptically polarized light by virtue of total reflection in the right-angle prism unless the plane of polarization of the incident, linearly polarized light agrees with the P-polarization plane or S-polarization plane. - In the case of the
polarization state converter 4, for example, even if light of elliptical polarization is incident thereto because of the total reflection in the right-angle prism, light of linear polarization transformed by the action of thequarter wave plate 4 a will be incident to thehalf wave plate 4 b. Where the crystallographic axis of thehalf wave plate 4 b is set at an angle of 0° or 90° relative to the plane of polarization of the incident, linearly polarized light, the light of linear polarization incident to thehalf wave plate 4 b will pass as it is, without change in the plane of polarization. - Where the crystallographic axis of the
half wave plate 4 b is set at an angle of 45° relative to the plane of polarization of the incident, linearly polarized light, the light of linear polarization incident to thehalf wave plate 4 b will be transformed into light of linear polarization with change of polarization plane of 90°. Furthermore, where the crystallographic axis of the crystalline quartz prism in thedepolarizer 4 c is set at an angle of 45° relative to the polarization plane of the incident, linearly polarized light, the light of linear polarization incident to the crystalline quartz prism will be transformed (or depolarized) into light in an unpolarized state. - The
polarization state converter 4 is arranged as follows: when thedepolarizer 4 c is positioned in the illumination optical path, the crystallographic axis of the crystalline quartz prism makes the angle of 45° relative to the polarization plane of the incident, linearly polarized light. Incidentally, where the crystallographic axis of the crystalline quartz prism is set at the angle of 0° or 90° relative to the polarization plane of the incident, linearly polarized light, the light of linear polarization incident to the crystalline quartz prism will pass as it is, without change of the polarization plane. Where the crystallographic axis of thehalf wave plate 4 b is set at an angle of 22.5° relative to the polarization plane of incident, linearly polarized light, the light of linear polarization incident to thehalf wave plate 4 b will be transformed into light in an unpolarized state including a linear polarization component directly passing without change of the polarization plane and a linear polarization component with the polarization plane rotated by 90°. - The
polarization state converter 4 is arranged so that light of linear polarization is incident to thehalf wave plate 4 b, as described above, and, for easier description hereinafter, it is assumed that light of linear polarization having the direction of polarization (direction of the electric field) along the Z-axis inFIG. 1 (hereinafter referred to as “Z-directionally polarized light”) is incident to thehalf wave plate 4 b. When thedepolarizer 4 c is positioned in the illumination optical path and when the crystallographic axis of thehalf wave plate 4 b is set at the angle of 0° or 90° relative to the polarization plane (direction of polarization) of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to thehalf wave plate 4 b passes as kept as Z-directionally polarized light without change of the polarization plane and enters the crystalline quartz prism in thedepolarizer 4 c. Since the crystallographic axis of the crystalline quartz prism is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to the crystalline quartz prism is transformed into light in an unpolarized state. - The light depolarized through the crystalline quartz prism travels through the quartz prism as a compensator for compensating the traveling direction of the light and is incident into the diffractive optical element 5 while being in the depolarized state. On the other hand, if the crystallographic axis of the
half wave plate 4 b is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to thehalf wave plate 4 b will be rotated in the polarization plane by 90° and transformed into light of linear polarization having the polarization direction (direction of the electric field) along the X-direction inFIG. 1 (hereinafter referred to as “X-directionally polarized light”) and the X-directionally polarized light will be incident to the crystalline quartz prism in thedepolarizer 4 c. Since the crystallographic axis of the crystalline quartz prism is set at the angle of 45° relative to the polarization plane of the incident, X-directionally polarized light as well, the light of X-directional polarization incident to the crystalline quartz prism is transformed into light in the depolarized state, and the light travels through the quartz prism to be incident in the depolarized state into the diffractive optical element 5. - In contrast, when the
depolarizer 4 c is set away from the illumination optical path, if the crystallographic axis of thehalf wave plate 4 b is set at the angle of 0° or 90° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light of Z-directional polarization incident to thehalf wave plate 4 b will pass as kept as Z-directionally polarized light without change of the polarization plane, and will be incident in the Z-directionally polarized state into the diffractive optical element 5. If the crystallographic axis of thehalf wave plate 4 b is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto on the other hand, the light of Z-directional polarization incident to thehalf wave plate 4 b will be transformed into light of X-directional polarization with the polarization plane rotated by 90°, and will be incident in the X-directionally polarized state into the diffractive optical element 5. - In the
polarization state converter 4, as described above, the light in the depolarized state can be made incident to the diffractive optical element 5 when thedepolarizer 4 c is set and positioned in the illumination optical path. When thedepolarizer 4 c is set away from the illumination optical path and when the crystallographic axis of thehalf wave plate 4 b is set at the angle of 0° or 90° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light in the Z-directionally polarized state can be made incident to the diffractive optical element 5. Furthermore, when thedepolarizer 4 c is set away from the illumination optical path and when the crystallographic axis of thehalf wave plate 4 b is set at the angle of 45° relative to the polarization plane of the Z-directionally polarized light incident thereto, the light in the X-directionally polarized state can be made incident to the diffractive optical element 5. - In other words, the
polarization state converter 4 is able to switch the polarization state of the incident light into the diffractive optical element 5 (a state of polarization of light to illuminate the mask M and wafer W in use of an ordinary diffractive optical element except for the diffractive optical element for azimuthally polarized annular illumination according to the present invention as will be described later) between the linearly polarized state and the unpolarized state through the action of the polarization state converter consisting of thequarter wave plate 4 a,half wave plate 4 b, anddepolarizer 4 c, and, in the case of the linearly polarized state, it is able to switch between mutually orthogonal polarization states (between the Z-directional polarization and the X-directional polarization). -
FIG. 3 is an illustration schematically showing the configuration of the conical axicon system disposed in the optical path between the front lens unit and the rear lens unit of the afocal lens inFIG. 1 . Theconical axicon system 8 is composed of afirst prism member 8 a whose plane is kept toward the light source and whose refracting surface of a concave conical shape is kept toward the mask, and asecond prism member 8 b whose plane is kept toward the mask and whose refracting surface of a convex conical shape is kept toward the light source, in order from the light source side. - The refracting surface of the concave conical shape of the
first prism member 8 a and the refracting surface of the convex conical shape of thesecond prism member 8 b are formed in a complementary manner so as to be able to be brought into contact with each other. At least one of thefirst prism member 8 a and thesecond prism member 8 b is arranged movable along the optical axis AX, so that the spacing can be varied between the refracting surface of the concave conical shape of thefirst prism member 8 a and the refracting surface of the convex conical shape of thesecond prism member 8 b. - In a state in which the refracting surface of the concave conical shape of the
first prism member 8 a and the refracting surface of the convex conical shape of thesecond prism member 8 b are in contact with each other, theconical axicon system 8 functions as a plane-parallel plate and has no effect on the secondary light source of the annular shape formed. However, when the refracting surface of the concave conical shape of thefirst prism member 8 a and the refracting surface of the convex conical shape of thesecond prism member 8 b are spaced from each other, theconical axicon system 8 functions a so-called beam expander. Therefore, the angle of the incident beam to thepredetermined plane 7 varies according to change in the spacing of theconical axicon system 8. -
FIG. 4 is an illustration to illustrate the action of the conical axicon system on the secondary light source of the annular shape. With reference toFIG. 4 , the secondarylight source 30 a of the minimum annular shape formed in a state where the spacing of theconical axicon system 8 is zero and where the focal length of thezoom lens 11 is set at the minimum (this state will be referred to hereinafter as a “standard state”) is changed into secondarylight source 30 b of an annular shape with the outside diameter and inside diameter both enlarged and without change in the width (half of the difference between the inside diameter and the outside diameter: indicated by arrows in the drawing) when the spacing of theconical axicon system 8 is increased from zero to a predetermined value. In other words, an annular ratio (inside diameter/outside diameter) and size (outside diameter) both vary through the action of theconical axicon system 8, without change in the width of the secondary light source of the annular shape. -
FIG. 5 is an illustration to illustrate the action of the zoom lens on the secondary light source of the annular shape. With reference toFIG. 5 , the secondarylight source 30 a of the annular shape formed in the standard state is changed into secondarylight source 30 c of an annular shape whose entire shape is similarly enlarged by increasing the focal length of thezoom lens 11 from the minimum to a predetermined value. In other words, the width and size (outside diameter) both vary through the action ofzoom lens 11, without change in the annular ratio of the secondary light source of the annular shape. -
FIG. 6 is an illustration schematically showing the configuration of the first cylindrical lens pair and the second cylindrical lens pair disposed in the optical path between the front lens unit and the rear lens unit of the afocal lens inFIG. 1 . InFIG. 6 , the firstcylindrical lens pair 9 and the secondcylindrical lens pair 10 are arranged in order from the light source side. The firstcylindrical lens pair 9 is composed, for example, of a first cylindricalnegative lens 9 a with a negative refracting power in the YZ plane and with no refracting power in the XY plane, and a first cylindricalpositive lens 9 b with a positive refracting power in the YZ plane and with no refracting power in the XY plane, which are arranged in order from the light source side. - On the other hand, the second
cylindrical lens pair 10 is composed, for example, of a second cylindricalnegative lens 10 a with a negative refracting power in the XY plane and with no refracting power in the YZ plane, and a second cylindricalpositive lens 10 b with a positive refracting power in the XY plane and with no refracting power in the YZ plane, which are arranged in order from the light source side. The first cylindricalnegative lens 9 a and the first cylindricalpositive lens 9 b are arranged so as to integrally rotate around the optical axis AX. Similarly, the second cylindricalnegative lens 10 a and the second cylindricalpositive lens 10 b are arranged so as to integrally rotate around the optical axis AX. - In the state shown in
FIG. 6 , the firstcylindrical lens pair 9 functions as a beam expander having a power in the Z-direction, and the secondcylindrical lens pair 10 as a beam expander having a power in the X-direction. The power of the firstcylindrical lens pair 9 and the power of the secondcylindrical lens pair 10 are set to be equal to each other. -
FIGS. 7 to 9 are illustrations to illustrate the action of the first cylindrical lens pair and the second cylindrical lens pair on the secondary light source of the annular shape.FIG. 7 shows such a setting that the direction of the power of the firstcylindrical lens pair 9 makes the angle of +45° around the optical axis AX relative to the Z-axis and that the direction of the power of the secondcylindrical lens pair 10 makes the angle of −45° around the optical axis AX relative to the Z-axis. - Therefore, the direction of the power of the first
cylindrical lens pair 9 is perpendicular to the direction of the power of the secondcylindrical lens pair 10, and the composite system of the firstcylindrical lens pair 9 and the secondcylindrical lens pair 10 has the Z-directional power and the X-directional power identical to each other. As a result, in a perfect circle state shown inFIG. 7 , a beam passing through the composite system of the firstcylindrical lens pair 9 and the secondcylindrical lens pair 10 is subject to enlargement at the same power in the Z-direction and in the X-direction to form the secondary light source of a perfect-circle annular shape on the illumination pupil. - In contrast to it,
FIG. 8 shows such a setting that the direction of the power of the firstcylindrical lens pair 9 makes, for example, the angle of +80° around the optical axis AX relative to the Z-axis and that the direction of the power of the secondcylindrical lens pair 10 makes, for example, the angle of −80° around the optical axis AX relative to the Z-axis. Therefore, the power in the X-direction is greater than the power in the Z-direction in the composite system of the firstcylindrical lens pair 9 and the secondcylindrical lens pair 10. As a result, in a horizontally elliptic state shown inFIG. 8 , the beam passing through the composite system of the firstcylindrical lens pair 9 and the secondcylindrical lens pair 10 is subject to enlargement at the power greater in the X-direction than in the Z-direction, whereby the secondary light source of a horizontally long annular shape elongated in the X-direction is formed on the illumination pupil. - On the other hand,
FIG. 9 shows such a setting that the direction of the power of the firstcylindrical lens pair 9 makes, for example, the angle of +10° around the optical axis AX relative to the Z-axis and that the direction of the power of the secondcylindrical lens pair 10 makes, for example, the angle of −10° around the optical axis AX relative to the Z-axis. Therefore, the power in the Z-direction is greater than the power in the X-direction in the composite system of the firstcylindrical lens pair 9 and the secondcylindrical lens pair 10. As a result, in a vertically elliptical state shown inFIG. 9 , the beam passing through the composite system of the firstcylindrical lens pair 9 and the secondcylindrical lens pair 10 is subject to enlargement at the power greater in the Z-direction than in the X-direction, whereby the secondary light source of a vertically long annular shape elongated in the Z-direction is formed on the illumination pupil. - Furthermore, by setting the first
cylindrical lens pair 9 and the secondcylindrical lens pair 10 in an arbitrary state between the perfect circle state shown inFIG. 7 and the horizontally elliptical state shown inFIG. 8 , the secondary light source can be formed in a horizontally long annular shape according to any one of various aspect ratios. By setting the firstcylindrical lens pair 9 and the secondcylindrical lens pair 10 in an arbitrary state between the perfect circle state shown inFIG. 7 and the vertically elliptical state shown inFIG. 9 , the secondary light source can be formed in a vertically long annular shape according to any one of various aspect ratios. -
FIG. 10 is a perspective view schematically showing the internal configuration of the polarization monitor shown inFIG. 1 . With reference toFIG. 10 , the polarization monitor 10 is provided with afirst beam splitter 13 a disposed in the optical path between the micro fly'seye lens 12 and the condenseroptical system 14. Thefirst beam splitter 13 a has, for example, the form of a non-coated plane-parallel plate made of quartz glass (i.e., raw glass), and has a function of taking reflected light in a polarization state different from a polarization state of incident light, out of the optical path. - The light taken out of the optical path by the
first beam splitter 13 a is incident to asecond beam splitter 13 b. Thesecond beam splitter 13 b has, for example, the form of a non-coated plane-parallel plate made of quartz glass as thefirst beam splitter 13 a does, and has a function of generating reflected light in a polarization state different from the polarization state of incident light. The polarization monitor is so set that the P-polarized light for thefirst beam splitter 13 a becomes the S-polarized light for thesecond beam splitter 13 b and that the S-polarized light for thefirst beam splitter 13 a becomes the P-polarized light for thesecond beam splitter 13 b. - Light transmitted by the
second beam splitter 13 b is detected by firstlight intensity detector 13 c, while light reflected by thesecond beam splitter 13 b is detected by secondlight intensity detector 13 d. Outputs from the firstlight intensity detector 13 c and from the secondlight intensity detector 13 d are supplied each to a controller (not shown). The controller drives thequarter wave plate 4 a,half wave plate 4 b, anddepolarizer 4 c constituting thepolarization state converter 4, according to need. - As described above, the reflectance for the P-polarized light and the reflectance for the S-polarized light are substantially different in the
first beam splitter 13 a and in thesecond beam splitter 13 b. In thepolarization monitor 13, therefore, the reflected light from thefirst beam splitter 13 a includes the S-polarization component (i.e., the S-polarization component for thefirst beam splitter 13 a and P-polarization component for thesecond beam splitter 13 b), for example, which is approximately 10% of the incident light to thefirst beam splitter 13 a, and the P-polarization component (i.e., the P-polarization component for thefirst beam splitter 13 a and S-polarization component for thesecond beam splitter 13 b), for example, which is approximately 1% of the incident light to thefirst beam splitter 13 a. - The reflected light from the
second beam splitter 13 b includes the P-polarization component (i.e., the P-polarization component for thefirst beam splitter 13 a and S-polarization component for thesecond beam splitter 13 b), for example, which is approximately 10%×1%=0.1% of the incident light to thefirst beam splitter 13 a, and the S-polarization component (i.e., the S-polarization component for thefirst beam splitter 13 a and P-polarization component for thesecond beam splitter 13 b), for example, which is approximately 1%×10%=0.1% of the incident light to thefirst beam splitter 13 a. - In the
polarization monitor 13, as described above, thefirst beam splitter 13 a has the function of extracting the reflected light in the polarization state different from the polarization state of the incident light out of the optical path in accordance with its reflection characteristic. As a result, though there is slight influence of variation of polarization due to the polarization characteristic of thesecond beam splitter 13 b, it is feasible to detect the polarization state (degree of polarization) of the incident light to thefirst beam splitter 13 a and, therefore, the polarization state of the illumination light to the mask M, based on the output from the firstlight intensity detector 13 c (information about the intensity of transmitted light from thesecond beam splitter 13 b, i.e., information about the intensity of light virtually in the same polarization state as that of the reflected light from thefirst beam splitter 13 a). - The polarization monitor 13 is so set that the P-polarized light for the
first beam splitter 13 a becomes the S-polarized light for thesecond beam splitter 13 b and that the S-polarized light for thefirst beam splitter 13 a becomes the P-polarized light for thesecond beam splitter 13 b. As a result, it is feasible to detect the light quantity (intensity) of the incident light to thefirst beam splitter 13 a and, therefore, the light quantity of the illumination light to the mask M, with no substantial effect of change in the polarization state of the incident light to thefirst beam splitter 13 a, based on the output from the secondlight intensity detector 13 d (information about the intensity of light successively reflected by thefirst beam splitter 13 a and thesecond beam splitter 13 b). - In this manner, it is feasible to detect the polarization state of the incident light to the
first beam splitter 13 a and, therefore, to determine whether the illumination light to the mask M is in the desired unpolarized state or linearly polarized state, using thepolarization monitor 13. When the controller determines that the illumination light to the mask M (eventually, to the wafer W) is not in the desired unpolarized state or linearly polarized state, based on the detection result of thepolarization monitor 13, it drives and adjusts thequarter wave plate 4 a,half wave plate 4 b, anddepolarizer 4 c constituting thepolarization state converter 4 so that the state of the illumination light to the mask M can be adjusted into the desired unpolarized state or linearly polarized state. - Quadrupole illumination can be implemented by setting a diffractive optical element for quadrupole illumination (not shown) in the illumination optical path, instead of the diffractive optical element 5 for annular illumination. The diffractive optical element for quadrupole illumination has such a function that when a parallel beam having a rectangular cross section is incident thereto, it forms a light intensity distribution of a quadrupole shape in the far field thereof. Therefore, the beam passing through the diffractive optical element for quadrupole illumination forms an illumination field of a quadrupole shape consisting of four circular illumination fields centered around the optical axis AX, for example, on the entrance surface of the micro fly's
eye lens 12. As a result, the secondary light source of the same quadrupole shape as the illumination field formed on the entrance surface is also formed on the rear focal plane of the micro fly'seye lens 12. - In addition, ordinary circular illumination can be implemented by setting a diffractive optical element for circular illumination (not shown) in the illumination optical path, instead of the diffractive optical element 5 for annular illumination. The diffractive optical element for circular illumination has such a function that when a parallel beam having a rectangular cross section is incident thereto, it forms a light intensity distribution of a circular shape in the far field. Therefore, a beam passing through the diffraction optical element for circular illumination forms a circular illumination field centered around the optical axis AX, for example, on the entrance plane of the micro fly's
eye lens 12. As a result, the secondary light source of the same circular shape as the illumination field formed on the entrance surface is also formed on the rear focal plane of the micro fly'seye lens 12. - Furthermore, a variety of multipole illuminations (dipole illumination, octapole illumination, etc.) can be implemented by setting other diffractive optical elements for multipole illuminations (not shown), instead of the diffractive optical element 5 for annular illumination. Likewise, modified illuminations in various forms can be implemented by setting diffractive optical elements with appropriate characteristics (not shown) in the illumination optical path, instead of the diffractive optical element 5 for annular illumination.
- In the present embodiment, a diffractive
optical element 50 for so-called azimuthally polarized annular illumination can be set, instead of the diffractive optical element 5 for annular illumination, in the illumination optical path, so as to implement the modified illumination in which the beam passing through the secondary light source of the annular shape is set in the azimuthal polarization state, i.e., the azimuthally polarized annular illumination.FIG. 11 is an illustration schematically showing the configuration of the diffractive optical element for azimuthally polarized annular illumination according to the present embodiment.FIG. 12 is an illustration schematically showing the secondary light source of the annular shape set in the azimuthal polarization state. - With reference to
FIGS. 11 and 12 , the diffractiveoptical element 50 for azimuthally polarized annular illumination according to the present embodiment is constructed in such an arrangement that four types ofbasic elements 50A-50D having the same cross section of a rectangular shape and having their respective thicknesses different from each other along the direction of transmission of light (Y-direction) (i.e., lengths in the direction of the optical axis) are arranged lengthwise and breadthwise and densely. The thicknesses are set as follows: the thickness of the firstbasic elements 50A is the largest, the thickness of the fourthbasic elements 50D the smallest, and the thickness of the secondbasic elements 50B is greater than the thickness of the thirdbasic elements 50C. - The diffractive
optical element 50 includes an approximately equal number of firstbasic elements 50A, secondbasic elements 50B, thirdbasic elements 50C, and fourthbasic elements 50D, and the four types ofbasic elements 50A-50D are arranged substantially at random. Furthermore, a diffracting surface (indicated by hatching in the drawing) is formed on the mask side of eachbasic element 50A-50D, and the diffracting surfaces of the respectivebasic elements 50A-50D are arrayed along one plane perpendicular to the optical axis AX (not shown inFIG. 11 ). As a result, the mask-side surface of the diffractiveoptical element 50 is planar, while the light-source-side surface of the diffractiveoptical element 50 is uneven due to the differences among the thicknesses of the respectivebasic elements 50A-50D. - The diffracting surface of each first
basic element 50A is arranged to form a pair of arc regions (bow shape) 31A symmetric with respect to an axis line of the Z-direction passing the optical axis AX, in the secondarylight source 31 of the annular shape shown inFIG. 12 . Namely, as shown inFIG. 13 , each firstbasic element 50A has a function of forming a pair of arc (bow shape)light intensity distributions 32A symmetric with respect to the axis line of the Z-direction passing the optical axis AX (corresponding to a pair ofarc regions 31A) in thefar field 50E of the diffractive optical element 50 (i.e., in the far field of eachbasic element 50A-50D). - The diffracting surface of each second
basic element 50B is arranged so as to form a pair of arc (bow shape)regions 31B symmetric with respect to an axis line obtained by rotating the axis line of the Z-direction passing the optical axis AX, by −45° around the Y-axis (or obtained by rotating it by 45° counterclockwise inFIG. 12 ). Namely, as shown inFIG. 14 , each secondbasic element 50B has a function of forming a pair of arc (bow shape)light intensity distributions 32B symmetric with respect to the axis line resulting from the −45° rotation around the Y-axis, of the axis line of the Z-direction passing the optical axis AX (corresponding to a pair ofarc regions 31B), in thefar field 50E. - The diffracting surface of each third
basic element 50C is arranged to form a pair of arc (bow shape)regions 31C symmetric with respect to an axis line of the X-direction passing the optical axis AX. Namely, as shown inFIG. 15 , each thirdbasic element 50C has a function of forming a pair of arc (bow shape)light intensity distributions 32C symmetric with respect to the axis line of the X-direction passing the optical axis AX (corresponding to a pair ofarc regions 31C), in thefar field 50E. - The diffracting surface of each fourth
basic element 50D is arranged so as to form a pair of arc (bow shape)regions 31D symmetric with respect to an axis line obtained by rotating the axis of the Z-direction passing the optical axis AX by +45° around the Y-axis (i.e., obtained by rotating it by 45° clockwise inFIG. 12 ). Namely, as shown inFIG. 16 , each fourthbasic element 50D has a function of forming a pair of arc (bow shape)light intensity distributions 32D symmetric with respect to the axis line resulting from the +45° rotation around the Y-axis, of the axis line of the Z-direction passing the optical axis AX (corresponding to a pair ofarc regions 31D), in thefar field 50E. The sizes of therespective arc regions 31A-31D are approximately equal to each other, and they form the secondarylight source 31 of the annular shape centered around the optical axis AX, while the eightarc regions 31A-31D are not overlapping with each other and not spaced from each other. - In the present embodiment, each
basic element 50A-50D is made of crystalline quartz being an optical material with optical activity, and the crystallographic axis of eachbasic element 50A-50D is set approximately to coincide with the optical axis AX. The optical activity of crystalline quartz will be briefly described below with reference toFIG. 17 . With reference toFIG. 17 , anoptical member 35 of a plane-parallel plate shape made of crystalline quartz and in a thickness d is arranged so that its crystallographic axis coincides with the optical axis AX. In this case, by virtue of the optical activity of theoptical member 35, incident, linearly polarized light emerges in a state in which its-polarization direction is rotated by θ around the optical axis AX. - At this time, the angle θ of rotation of the polarization direction due to the optical activity of the
optical member 35 is represented by Eq (1) below, using the thickness d of theoptical member 35 and the rotatory power ρ of crystalline quartz. -
θ=d·ρ (1) - In general, the rotatory power ρ of crystalline quartz tends to increase with decrease in the wavelength of used light and, according to the description on page 167 in “Applied Optics II,” the rotatory power ρ of crystalline quartz for light having the wavelength of 250.3 nm is 153.9°/mm.
- In the present embodiment the first
basic elements 50A are designed in such a thickness dA that when light of linear polarization having the direction of polarization along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +180° rotation of the Z-direction around the Y-axis, i.e., along the Z-direction, as shown inFIG. 13 . As a result, the polarization direction of beams passing through a pair of arclight intensity distributions 32A formed in thefar field 50E is also the Z-direction, and the polarization direction of beams passing through a pair ofarc regions 31A shown inFIG. 12 is also the Z-direction. - The second
basic elements 50B are designed in such a thickness dB that when light of linear polarization having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +135° rotation of the Z-direction around the Y-axis, i.e., along a direction resulting from −45° rotation of the Z-direction around the Y-axis, as shown inFIG. 14 . As a result, the polarization direction of beams passing through a pair of arclight intensity distributions 32B formed in thefar field 50E is also the direction obtained by rotating the Z-direction by −45° around the Y-axis, and the polarization direction of beams passing through a pair ofarc regions 31A shown inFIG. 12 is also the direction obtained by rotating the Z-direction by −45° around the Y-axis. - The third
basic elements 50C are designed in such a thickness dC that when light of linear polarization having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +90° rotation of the Z-direction around the Y-axis, i.e., along the X-direction, as shown inFIG. 15 . As a result, the polarization direction of beams passing through a pair of arclight intensity distributions 32C formed in thefar field 50E is also the X-direction, and the polarization direction of beams passing through a pair ofarc regions 31C shown inFIG. 12 is also the X-direction. - The fourth
basic elements 50D are designed in such a thickness dD that when light of linear polarization having the polarization direction along the Z-direction is incident thereto, they output light of linear polarization having the polarization direction along a direction resulting from +45° rotation of the Z-direction around the Y-axis, as shown inFIG. 16 . As a result, the polarization direction of beams passing through a pair of arclight intensity distributions 32D formed in thefar field 50E is also the direction obtained by rotating the Z-direction by +45° around the Y-axis, and the polarization direction of beams passing through a pair ofarc regions 31D shown inFIG. 12 is also the direction obtained by rotating the Z-direction by +45° around the Y-axis. - In the present embodiment, the diffractive
optical element 50 for azimuthally polarized annular illumination is set in the illumination optical system on the occasion of effecting the azimuthally polarized annular illumination, whereby the light of linear polarization having the polarization direction along the Z-direction is made incident to the diffractiveoptical element 50. As a result, the secondary light source of the annular shape (illumination pupil distribution of annular shape) 31 is formed on the rear focal plane of the micro fly's eye lens 12 (i.e., on or near the illumination pupil), as shown inFIG. 12 , and the beams passing through the secondarylight source 31 of the annular shape are set in the azimuthal polarization state. - In the azimuthal polarization state, the beams passing through the
respective arc regions 31A-31D constituting the secondarylight source 31 of the annular shape turn into the linearly polarized state having the polarization direction substantially coincident with a tangent line to a circle centered around the optical axis AX, at the central position along the circumferential direction of eacharc region 31A-31D. - In the present embodiment, as described above, the
beam transforming element 50 for forming the predetermined light intensity distribution on the predetermined surface on the basis of the incident beam comprises the firstbasic element 50A made of the optical material with optical activity, for forming thefirst region distribution 32A of the predetermined light intensity distribution on the basis of the incident beam; and the secondbasic element 50B made of the optical material with optical activity, for forming thesecond region distribution 32B of the predetermined light intensity distribution on the basis of the incident beam, and the firstbasic element 50A and the secondbasic element 50B have their respective thicknesses different from each other along the direction of transmission of light. - Thanks to this configuration, the present embodiment is able to form the secondary
light source 31 of the annular shape in the azimuthal polarization state, with no substantial loss of light quantity, through the diffracting action and optical rotating action of the diffractiveoptical element 50 as the beam transforming element, different from the conventional technology giving rise to the large loss of light quantity at the aperture stop. - In a preferred form of the present embodiment, the thickness of the first
basic element 50A and the thickness of the secondbasic element 50B are so set that with incidence of linearly polarized light the polarization direction of the linearly polarized light forming thefirst region distribution 32A is different from the polarization direction of the linearly polarized light forming thesecond region distribution 32B. Preferably, thefirst region distribution 32A and thesecond region distribution 32B are positioned in at least a part of a predetermined annular region, which is a predetermined annular region centered around a predetermined point on the predetermined surface, and the beams passing through thefirst region distribution 32A and through thesecond region distribution 32B have a polarization state in which a principal component is linearly polarized light having the polarization direction along the circumferential direction of the predetermined annular region. - In this case, preferably, the predetermined light intensity distribution has a contour of virtually the same shape as the predetermined annular region, the polarization state of the beam passing through the
first region distribution 32A has a linear polarization component substantially coincident with a tangential direction to a circle centered around a predetermined point at the central position along the circumferential direction of thefirst region distribution 32A, and the polarization state of the beam passing through thesecond region distribution 32B has a linear polarization component substantially coincident with a tangential direction to a circle centered around a predetermined point at the central position along the circumferential direction of thesecond region distribution 32B. In another preferred configuration, the predetermined light intensity distribution is a distribution of a multipole shape in the predetermined annular region, the polarization state of the beam passing through the first region distribution has a linear polarization component substantially coincident with a tangential direction to a circle centered around a predetermined point at the central position along the circumferential direction of the first region distribution, and the polarization state of the beam passing through the second region distribution has a linear polarization component substantially coincident with a tangential direction to a circle centered around a predetermined point at the central position along the circumferential direction of the second region distribution. - In a preferred form of the present embodiment, the first basic element and the second basic element are made of an optical material with an optical rotatory power of not less than 100°/mm for light of a wavelength used. Preferably, the first basic element and the second basic element are made of crystalline quartz. The beam transforming element preferably includes virtually the same number of first basic elements and second basic elements. The first basic element and the second basic element preferably have diffracting action or refracting action.
- In another preferred form of the present embodiment, preferably, the first basic element forms at least two first region distributions on the predetermined surface on the basis of the incident beam, and the second basic element forms at least two second region distributions on the predetermined surface on the basis of the incident beam. In addition, preferably, the beam transforming element further comprises the third
basic element 50C made of the optical material with optical activity, for forming thethird region distribution 32C of the predetermined light intensity distribution on the basis of the incident beam, and the fourthbasic element 50D made of the optical material with optical activity, for forming thefourth region distribution 32D of the predetermined light intensity distribution on the basis of the incident beam. - In the present embodiment, the
beam transforming element 50 for forming the predetermined light intensity distribution of the shape different from the sectional shape of the incident beam, on the predetermined surface, has the diffracting surface or refracting surface for forming the predetermined light intensity distribution on the predetermined surface, the predetermined light intensity distribution is a distribution in at least a part of a predetermined annular region, which is a predetermined annular region centered around a predetermined point on the predetermined surface, and the beam from the beam transforming element passing through the predetermined annular region has a polarization state in which a principal component is linearly polarized light having the direction of polarization along the circumferential direction of the predetermined annular region. - In the configuration as described above, the present embodiment, different from the conventional technology giving rise to the large loss of light quantity at the aperture stop, is able to form the secondary
light source 31 of the annular shape in the azimuthal polarization state, with no substantial loss of light quantity, through the diffracting action and optical rotating action of the diffractiveoptical element 50 as the beam transforming element. - In a preferred form of the present embodiment, the predetermined light intensity distribution has a contour of a multipole shape or annular shape. The beam transforming element is preferably made of an optical material with optical activity.
- The illumination optical apparatus of the present embodiment is the illumination optical apparatus for illuminating the surface to be illuminated, based on the beam from the light source, and comprises the above-described beam transforming element for transforming the beam from the light source in order to form the illumination pupil distribution on or near the illumination pupil of the illumination optical apparatus. In this configuration, the illumination optical apparatus of the present embodiment is able to form the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity.
- Here the beam transforming element is preferably arranged to be replaceable with another beam transforming element having a different characteristic. Preferably, the apparatus further comprises the wavefront splitting optical integrator disposed in the optical path between the beam transforming element and the surface to be illuminated, and the beam transforming element forms the predetermined light intensity distribution on the entrance surface of the optical integrator on the basis of the incident beam.
- In a preferred form of the illumination optical apparatus of the present embodiment, at least one of the light intensity distribution on the predetermined surface and the polarization state of the beam from the beam transforming element passing through the predetermined annular region is set in consideration of the influence of an optical member disposed in the optical path between the light source and the surface to be illuminated. Preferably, the polarization state of the beam from the beam transforming element is so set that the light illuminating the surface to be illuminated is in a polarization state in which a principal component is S-polarized light.
- The exposure apparatus of the present embodiment comprises the above-described illumination optical apparatus for illuminating the mask, and projects the pattern of the mask onto the photosensitive substrate. Preferably, at least one of the light intensity distribution on the predetermined surface and the polarization state of the beam from the beam transforming element passing through the predetermined annular region is set in consideration of the influence of an optical member disposed in the optical path between the light source and the photosensitive substrate. Preferably, the polarization state of the beam from the beam transforming element is so set that the light illuminating the photosensitive substrate is in a polarization state in which a principal component is S-polarized light.
- The exposure method of the present embodiment comprises the illumination step of illuminating the mask by use of the above-described illumination optical apparatus, and the exposure step of projecting the pattern of the mask onto the photosensitive substrate. Preferably, at least one of the light intensity distribution on the predetermined surface and the polarization state of the beam from the beam transforming element passing through the predetermined annular region is set in consideration of the influence of an optical member disposed in the optical path between the light source and the photosensitive substrate. Preferably, the polarization state of the beam from the beam transforming element is so set that the light illuminating the photosensitive substrate is in a polarization state in which a principal component is S-polarized light.
- In other words, the illumination optical apparatus of the present embodiment is able to form the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity. As a result, the exposure apparatus of the present embodiment is able to transcribe the microscopic pattern in an arbitrary direction under an appropriate illumination condition faithfully and with high throughput because it uses the illumination optical apparatus capable of forming the illumination pupil distribution of the annular shape in the azimuthal polarization state while well suppressing the loss of light quantity.
- In the azimuthally polarized annular illumination based on the illumination pupil distribution of the annular shape in the azimuthal polarization state, the light illuminating the wafer W as a surface to be illuminated is in the polarization state in which the principal component is the S-polarized light. Here the S-polarized light is linearly polarized light having the direction of polarization along a direction normal to a plane of incidence (i.e., polarized light with the electric vector oscillating in the direction normal to the plane of incidence). The plane of incidence herein is defined as the following plane: when light arrives at a boundary surface of a medium (a surface to be illuminated: surface of wafer W), the plane includes the normal to the boundary plane at the arrival point and the direction of incidence of light.
- In the above-described embodiment, the diffractive
optical element 50 for azimuthally polarized annular illumination is constructed by randomly arranging virtually the same number of four types ofbasic elements 50A-50D with the same rectangular cross section lengthwise and breadthwise and densely. However, without having to be limited to this, a variety of modification examples can be contemplated as to the number of basic elements of each type, the sectional shape, the number of types, the arrangement, and so on. - In the above-described embodiment, the secondary
light source 31 of the annular shape centered around the optical axis AX is composed of the eightarc regions 31A-31D arrayed without overlapping with each other and without being spaced from each other, using the diffractiveoptical element 50 consisting of the four types ofbasic elements 50A-50D. However, without having to be limited to this, a variety of modification examples can be contemplated as to the number of regions forming the secondary light source of the annular shape, the shape, the arrangement, and so on. - Specifically, as shown in
FIG. 18A , it is also possible to form a secondarylight source 33 a of an octapole shape in the azimuthal polarization state consisting of eight arc (bow shape) regions spaced from each other along the circumferential direction, for example, using the diffractive optical element consisting of four types of basic elements. In addition, as shown inFIG. 18B , it is also possible to form a secondarylight source 33 b of a quadrupole shape in the azimuthal polarization state consisting of four arc (bow shape) regions spaced from each other along the circumferential direction, for example, using the diffractive optical element consisting of four types of basic elements. In the secondary light source of the octapole shape or the secondary light source of the quadrupole shape, the shape of each region is not limited to the arc shape, but it may be, for example, circular, elliptical, or sectorial. Furthermore, as shown inFIG. 19 , it is also possible to form a secondarylight source 33 c of an annular shape in the azimuthal polarization state consisting of eight arc regions overlapping with each other along the circumferential direction, for example, using the diffractive optical element consisting of four types of basic elements. - In addition to the quadrupole or octapole secondary light source in the azimuthal polarization state consisting of the four or eight regions spaced from each other along the circumferential direction, the secondary light source may be formed in a hexapole shape in the azimuthal polarization state and of six regions spaced from each other along the circumferential direction, as shown in
FIG. 20A . In addition, as shown inFIG. 20B , the secondary light source may be formed as one having secondary light source of a multipole shape in the azimuthal polarization state consisting of a plurality of regions spaced from each other along the circumferential direction, and a secondary light source on the center pole in the unpolarized state or linearly polarized state consisting of a region on the optical axis. Furthermore, the secondary light source may also be formed in a dipole shape in the azimuthal polarization state and of two regions spaced from each other along the circumferential direction. - In the aforementioned embodiment, as shown in
FIG. 11 , the four types ofbasic elements 50A-50D are individually formed, and the diffractiveoptical element 50 is constructed by combining these elements. However, without having to be limited to this, the diffractiveoptical element 50 can also be integrally constructed in such a manner that a crystalline quartz substrate is subjected, for example, to etching to form the exit-side diffracting surfaces and the entrance-side uneven surfaces of the respectivebasic elements 50A-50D. - In the aforementioned embodiment each
basic element 50A-50D (therefore, the diffractive optical element 50) is made of crystalline quartz. However, without having to be limited to this, each basic element can also be made of another appropriate optical material with optical activity. In this case, it is preferable to use an optical material with an optical rotatory power of not less than 100°/mm for light of a wavelength used. Specifically, use of an optical material with a low rotatory power is undesirable because the thickness necessary for achieving the required rotation angle of the polarization direction becomes too large, so as to cause the loss of light quantity. - The aforementioned embodiment is arranged to form the illumination pupil distribution of the annular shape (secondary light source), but, without having to be limited to this, the illumination pupil distribution of a circular shape can also be formed on or near the illumination pupil. In addition to the illumination pupil distribution of the annular shape and the illumination pupil distribution of the multipole shape, it is also possible to implement a so-called annular illumination with the center pole and a multipole illumination with the center pole, for example, by forming a center region distribution including the optical axis.
- In the aforementioned embodiment, the illumination pupil distribution in the azimuthal polarization state is formed on or near the illumination pupil. However, the polarization direction can vary because of polarization aberration (retardation) of an optical system (the illumination optical system or the projection optical system) closer to the wafer than the diffractive optical element as the beam transforming element. In this case, it is necessary to properly set the polarization state of the beam passing through the illumination pupil distribution formed on or near the illumination pupil, with consideration to the influence of polarization aberration of these optical systems.
- In connection with the foregoing polarization aberration, reflected light can have a phase difference in each polarization direction because of a polarization characteristic of a reflecting member disposed in the optical system (the illumination optical system or the projection optical system) closer to the wafer than the beam transforming element. In this case, it is also necessary to properly set the polarization state of the beam passing through the illumination pupil distribution formed on or near the illumination pupil, with consideration to the influence of the phase difference due to the polarization characteristic of the reflecting member.
- The reflectance in the reflecting member can vary depending upon the polarization direction, because of a polarization characteristic of a reflecting member disposed in the optical system (the illumination optical system or the projection optical system) closer to the wafer than the beam transforming element. In this case, it is desirable to provide offsets on the light intensity distribution formed on or near the illumination pupil, i.e. to provide a distribution of numbers of respective basic elements, in consideration of the reflectance in each polarization direction. The same technique can also be similarly applied to cases where the transmittance in the optical system closer to the wafer than the beam transforming element varies depending upon the polarization direction.
- In the foregoing embodiment, the light-source-side surface of the diffractive
optical element 50 is of the uneven shape with level differences according to the differences among the thicknesses of respectivebasic elements 50A-50D. Then the surface on the light source side (entrance side) of the diffractiveoptical element 50 can also be formed in a planar shape, as shown inFIG. 21 , by adding acompensation member 36 on the entrance side of the basic elements except for the firstbasic elements 50A with the largest thickness, i.e., on the entrance side of the secondbasic elements 50B, thirdbasic elements 50C, and fourthbasic elements 50D. In this case, thecompensation member 36 is made of an optical material without optical activity. - The aforementioned embodiment shows the example wherein the beam passing through the illumination pupil distribution formed on or near the illumination pupil has only the linear polarization component along the circumferential direction. However, without having to be limited to this, the expected effect of the present invention can be achieved as long as the polarization state of the beam passing through the illumination pupil distribution is a state in which the principal component is linearly polarized light having the polarization direction along the circumferential direction.
- The foregoing embodiment uses the diffractive optical element consisting of the plural types of basic elements having the diffracting action, as the beam transforming element for forming the light intensity distribution of the shape different from the sectional shape of the incident beam, on the predetermined plane, based on the incident beam. However, without having to be limited to this, it is also possible to use as the beam transforming element a refracting optical element, for example, consisting of plural types of basic elements having refracting surfaces virtually optically equivalent to the diffracting surfaces of the respective basic elements, i.e., consisting of plural types of basic elements having the refracting action.
- The exposure apparatus according to the foregoing embodiment is able to produce microdevices (semiconductor elements, image pickup elements, liquid crystal display elements, thin-film magnetic heads, etc.) by illuminating a mask (reticle) by the illumination optical apparatus (illumination step) and projecting a pattern for transcription formed on the mask, onto a photosensitive substrate by use of the projection optical system (exposure step). The following will describe an example of a procedure of producing semiconductor devices as microdevices by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate by means of the exposure apparatus of the foregoing embodiment, with reference to the flowchart of
FIG. 22 . - The
first step 301 inFIG. 22 is to deposit a metal film on each of wafers in one lot. Thenext step 302 is to apply a photoresist onto the metal film on each wafer in the lot. Thereafter,step 303 is to sequentially transcribe an image of a pattern on a mask into each shot area on each wafer in the lot, through the projection optical system by use of the exposure apparatus of the foregoing embodiment. Subsequently,step 304 is to perform development of the photoresist on each wafer in the lot, and step 305 thereafter is to perform etching with the resist pattern as a mask on each wafer in the lot, thereby forming a circuit pattern corresponding to the pattern on the mask, in each shot area on each wafer. Thereafter, devices such as semiconductor elements are produced through execution of formation of circuit patterns in upper layers and others. The semiconductor device production method as described above permits us to produce the semiconductor devices with extremely fine circuit patterns at high throughput. - The exposure apparatus of the foregoing embodiment can also be applied to production of a liquid crystal display element as a microdevice in such a manner that predetermined patterns (a circuit pattern, an electrode pattern, etc.) are formed on a plate (glass substrate). An example of a procedure of this production will be described below with reference to the flowchart of
FIG. 23 . InFIG. 23 ,pattern forming step 401 is to execute a so-called photolithography step of transcribing a pattern on a mask onto a photosensitive substrate (a glass substrate coated with a resist or the like) by use of the exposure apparatus of the foregoing embodiment. In this photolithography step, the predetermined patterns including a number of electrodes and others are formed on the photosensitive substrate. Thereafter, the exposed substrate is subjected to steps such as a development step, an etching step, a resist removing step, etc., to form the predetermined patterns on the substrate, followed by next colorfilter forming step 402. - The next color
filter forming step 402 is to form a color filter in which a number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arrayed in a matrix, or in which a plurality of sets of filters of three stripes of R, Q and B are arrayed in the direction of horizontal scan lines. After the colorfilter forming step 402,cell assembly step 403 is carried out. Thecell assembly step 403 is to assemble a liquid crystal panel (liquid crystal cell), using the substrate with the predetermined patterns obtained in thepattern forming step 401, the color filter obtained in the colorfilter forming step 402, and so on. - In the
cell assembly step 403, for example, a liquid crystal is poured into the space between the substrate with the predetermined patterns obtained in thepattern forming step 401 and the color filter obtained in the colorfilter forming step 402 to produce the liquid crystal panel (liquid crystal cell). Thereafter,module assembly step 404 is carried out to attach such components as an electric circuit, a backlight, and so on for implementing the display operation of the assembled liquid crystal panel (liquid crystal cell), to complete the liquid crystal display element. The production method of the liquid crystal display element described above permits us to produce the liquid crystal display elements with extremely fine circuit patterns at high throughput. - The foregoing embodiment is arranged to use the KrF excimer laser light (wavelength: 248 nm) or the ArF excimer laser light (wavelength: 193 nm) as the exposure light, but, without having to be limited to this, the present invention can also be applied to other appropriate laser light sources, e.g., an F2 laser light source for supplying laser light of the wavelength of 157 nm. Furthermore, the foregoing embodiment described the present invention, using the exposure apparatus with the illumination optical apparatus as an example, but it is apparent that the present invention can be applied to ordinary illumination optical apparatus for illuminating the surface to be illuminated, except for the mask and wafer.
- In the foregoing embodiment, it is also possible to apply the so-called liquid immersion method, which is a technique of filling a medium (typically, a liquid) with a refractive index larger than 1.1 in the optical path between the projection optical system and the photosensitive substrate. In this case, the technique of filling the liquid in the optical path between the projection optical system and the photosensitive substrate can be selected from the technique of locally filling the liquid as disclosed in PCT International Publication No. WO99/49504, the technique of moving a stage holding a substrate as an exposure target in a liquid bath as disclosed in Japanese Patent Application Laid-Open No. 6-124873, the technique of forming a liquid bath in a predetermined depth on a stage and holding the substrate therein as disclosed in Japanese Patent Application Laid-Open No. 10-303114, and so on. The PCT International Publication No. WO99/49504, Japanese Patent Application Laid-Open No. 6-124873, and Japanese Patent Application Laid-Open No. 10-303114 are incorporated herein by reference.
- The liquid is preferably one that is transparent to the exposure light, that has the refractive index as high as possible, and that is stable against the projection optical system and the photoresist applied to the surface of the substrate; for example, where the exposure light is the KrF excimer laser light or the ArF excimer laser light, pure water or deionized water can be used as the liquid. Where the F2 laser light is used as the exposure light, the liquid can be a fluorinated liquid capable of transmitting the F2 laser light, e.g., fluorinated oil or perfluoropolyether (PFPE).
- From the invention thus described, it will be obvious that the invention may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended for inclusion within the scope of the following claims.
Claims (74)
1. An apparatus which illuminates a surface to be illuminated with radiation from a radiation source, the apparatus comprising:
an optical member having a first portion of a first thickness along an optical axis direction of the apparatus and a second portion of a second thickness along the optical axis direction of the apparatus, wherein
the first and second portion thicknesses are different from each other, and the optical member is made of an optical material with optical activity.
2. The apparatus according to claim 1 , wherein the optical member includes a first basic element and a second basic element.
3. The apparatus according to claim 2 , further comprising:
a diffractive surface arranged in an illumination path of the apparatus which generates a first diffracted radiation and a second diffracted radiation from the radiation from the radiation source, the first and second diffracted radiations reach different regions on an illumination pupil of the apparatus;
the first basic element provides the first diffracted radiation with optical rotation;
the second basic element provides the second diffracted radiation with optical rotation, and the first and second basic element thicknesses are different from each other along a direction of transmission of the radiation.
4. The apparatus according to claim 3 , further comprising an optical integrator arranged between the first and second basic elements and the surface to be illuminated.
5. The apparatus according to claim 4 , wherein the diffractive surface is arranged between the first and second basic elements and the surface to be illuminated.
6. The apparatus according to claim 3 , wherein the diffractive surface is arranged between the first and second basic elements and the surface to be illuminated.
7. The apparatus according to claim 2 , wherein the first and second basic elements are arranged in a plane in an illumination path of the apparatus.
8. The apparatus according to claim 2 , further comprising:
a diffractive surface which is arranged in an illumination path of the apparatus, and which forms a first region distribution of the predetermined light intensity distribution and a second region distribution of the predetermined light intensity distribution based on the radiation from the radiation source;
the first basic element provides a first rotation angle to an incident linearly polarized radiation and has a first thickness along a direction of transmission of radiation, and a linearly polarized radiation from the first basic element propagates to the first region distribution;
the second basic element provides a second rotation angle to an incident linearly polarized radiation and has a second thickness along a direction of transmission of radiation, the second thickness differs from the first thickness, and a linearly polarized radiation from the second basic element propagates to the second region distribution.
9. The apparatus according to claim 8 , further comprising an optical integrator arranged between the first and second basic elements and the surface to be illuminated.
10. The apparatus according to claim 9 , wherein the diffractive surface is arranged between the first and second basic elements and the surface to be illuminated.
11. The apparatus according to claim 8 , wherein the diffractive surface is arranged between the first and second basic elements and the surface to be illuminated.
12. The apparatus according to claim 2 , further comprising a diffractive surface arranged in an illumination path of the apparatus which generates a first diffracted radiation and a second diffracted radiation based on the radiation from the radiation source, the first and second diffracted radiations reach different regions on an illumination pupil of the apparatus.
13. The apparatus according to claim 12 , wherein the diffractive surface forms an illumination pupil distribution which is formed on or near an illumination pupil of the apparatus.
14. The apparatus according to claim 2 , wherein the first basic element and the second basic element are integrally formed.
15. The apparatus according to claim 1 , further comprising an optical integrator arranged between the optical member and the surface to be illuminated.
16. The apparatus according to claim 1 , further comprising:
a first optical unit including a first optical axis;
a second optical unit including a second optical axis which crosses the first optical axis, the first optical unit arranged in an illumination path between the radiation source and the second optical unit;
a third optical unit including a third optical axis which crosses the second optical axis, and the third optical unit is arranged in an illumination path between the second optical unit and the surface to be illuminated, wherein
the second optical unit includes the optical member.
17. The apparatus according to claim 16 , wherein the optical member includes a first basic element and a second basic element.
18. The apparatus according to claim 17 , further comprising:
a diffractive surface arranged in an illumination path of the apparatus which generates a first diffracted radiation and a second diffracted radiation based on the radiation from the radiation source, the first and second diffracted radiations reach different regions on an illumination pupil of the apparatus;
the first basic element provides the first diffracted radiation with optical rotation; and
the second basic element provides the second diffracted radiation with optical rotation, wherein
the first and second basic elements have thicknesses that are different from each other along a direction of transmission of the radiation.
19. The apparatus according to claim 16 , wherein the second optical unit includes an optical integrator.
20. The apparatus according to claim 19 , wherein the second optical unit includes a mask blind.
21. The apparatus according to claim 16 , wherein the first basic element and the second basic element are integrally formed.
22. The apparatus according to claim 16 , wherein the third optical unit includes a folding mirror.
23. The apparatus according to claim 16 , wherein the second optical unit includes a polarization state converter.
24. The apparatus according to claim 23 , wherein the optical member is arranged in an illumination path between the polarization converter and the third optical unit.
25. The apparatus according to claim 1 , further comprising a polarization state converter arranged in an illumination path between the radiation source and the optical member.
26. The apparatus according to claim 1 , wherein a polarization state of the beam from the optical member is set based on an influence of a second optical member in an illumination path between the light source and a substrate arranged surface.
27. The apparatus according to claim 26 , wherein the second optical member includes a reflective member.
28. An exposure apparatus comprising the apparatus as defined in claim 1 , which illuminates a predetermined pattern, and which projects the predetermined pattern onto a photosensitive substrate.
29. The exposure apparatus according to claim 28 , wherein an illumination pupil distribution on or near an illumination pupil of the apparatus is a distribution in at least a part of a predetermined annular region centered around an optical axis of the apparatus.
30. The exposure apparatus according to claim 29 , wherein a polarization state of the beam at the illumination pupil is set based on an influence of a second optical member disposed in an optical path between the light source and the photosensitive substrate.
31. The exposure apparatus according to claim 30 , wherein the second optical member includes a reflective surface.
32. The exposure apparatus according to claim 31 , wherein the polarization state of the beam at the illumination pupil is set so that light illuminating the photosensitive substrate is in a polarization state in which a principal component is s-polarized light.
33. An exposure apparatus comprising the apparatus as defined in claim 16 , which illuminates a predetermined pattern, and that projects the predetermined pattern onto a photosensitive substrate.
34. The exposure apparatus according to claim 33 , wherein an illumination pupil distribution on or near an illumination pupil of the apparatus is a distribution in at least a part of a predetermined annular region centered around an optical axis of the apparatus.
35. The exposure apparatus according to claim 33 , wherein a polarization state of the beam at the illumination pupil is set based on an influence of a second optical member in an optical path between the light source and the photosensitive substrate.
36. The exposure apparatus according to claim 35 , wherein the second optical member includes a reflective surface.
37. The exposure apparatus according to claim 36 , wherein the polarization state of the beam at the illumination pupil is set so that light illuminating the photosensitive substrate is in a polarization state in which a principal component is s-polarized light.
38. An exposure apparatus comprising the apparatus as defined in claim 25 , which illuminates a predetermined pattern, and that projects the predetermined pattern onto a photosensitive substrate.
39. The exposure apparatus according to claim 38 , wherein an illumination pupil distribution on or near an illumination pupil of the apparatus is a distribution in at least a part of a predetermined annular region centered around an optical axis of the apparatus.
40. The exposure apparatus according to claim 39 , wherein a polarization state of the beam at the illumination pupil is set based on an influence of a second optical member in an optical path between the light source and the photosensitive substrate.
41. The exposure apparatus according to claim 40 , wherein the second optical member including a reflective surface.
42. The exposure apparatus according to claim 41 , wherein the polarization state of the beam at the illumination pupil is set so that light illuminating the photosensitive substrate is in a polarization state in which a principal component is s-polarized light.
43. An exposure method comprising:
illuminating a predetermined pattern using the exposure apparatus as defined in claim 28 ; and
projecting an image of the predetermined pattern onto a photosensitive substrate.
44. A device manufacturing method comprising:
illuminating a predetermined pattern using the exposure apparatus as defined in claim 28 ;
projecting an image of the predetermined pattern onto a photosensitive substrate; and
developing the photosensitive substrate.
45. An exposure method comprising:
illuminating a predetermined pattern using the exposure apparatus as defined in claim 33 ; and
projecting an image of the predetermined pattern onto a photosensitive substrate.
46. A device manufacturing method comprising:
illuminating a predetermined pattern using the exposure apparatus as defined in claim 33 ;
projecting an image of the predetermined pattern onto a photosensitive substrate; and
developing the photosensitive substrate.
47. An exposure method comprising:
illuminating a predetermined pattern using the exposure apparatus as defined in claim 38 ; and
projecting an image of the predetermined pattern onto a photosensitive substrate.
48. A device manufacturing method comprising:
illuminating a predetermined pattern using the exposure apparatus as defined in claim 38 ;
projecting an image of the predetermined pattern onto a photosensitive substrate; and
developing the photosensitive substrate.
49. An exposure method comprising:
supplying radiation;
passing the radiation through an optical member made of an optical material with optical activity, the optical member including a first thickness along a traveling direction of an incident radiation and a second thickness along a traveling direction of an incident radiation, the first and second thicknesses are different from each other;
illuminating a pattern with radiation that has passed through the optical member; and
projecting an image of the pattern using the radiation with which the pattern was illuminated.
50. The method according to claim 49 , wherein the passing the radiation through the optical member includes passing the radiation through a first basic element and a second basic element.
51. The method according to claim 50 , further comprising:
generating a first diffracted radiation and a second diffracted radiation, the first and second diffracted radiations reach different regions on an illumination pupil;
optically rotating the first diffracted radiation with the first basic element; and
optically rotating the second diffracted radiation with the second basic element, wherein
the first and second basic elements have thicknesses different from each other along a direction of transmission of the radiation.
52. The method according to claim 51 , further comprising passing the radiations from the first and second basic elements through an optical integrator.
53. The method according to claim 52 , wherein the first and second diffracted radiations are generated by radiations from the first and second basic elements.
54. The method according to claim 51 , wherein the first and second diffracted radiations are generated by radiations from the first and second basic elements.
55. The method according to claim 50 , wherein the first and second basic elements are in an illumination path of the radiation.
56. The method according to claim 50 , wherein the first basic element and the second basic element are integrally formed.
57. The method according to claim 49 , wherein a polarization state of the beam at an illumination pupil is set based on a second optical member in an optical path upstream of the photosensitive substrate.
58. The method according to claim 57 , wherein the second optical member includes a reflective surface.
59. A device manufacturing method comprising:
projecting an image of a pattern onto a photosensitive substrate using the exposure method according to claim 49 ; and
developing the photosensitive substrate.
60. An exposure method comprising:
supplying radiation;
folding the supplied radiation;
passing the folded radiation through an optical member made of an optical material with optical activity, the optical member including a first portion having a first thickness along a traveling direction of an incident radiation and a second portion having a second thickness along a traveling direction of an incident radiation, the first and second portions having thicknesses that are different from each other;
folding the radiation that has passed through the optical member;
illuminating a pattern by use of the folded radiation that has passed through the optical member; and
projecting an image of the pattern using the radiation with which the pattern was illuminated.
61. The method according to claim 60 , wherein a polarization state of the beam at an illumination pupil is set based on an influence of a second optical member disposed in an optical path upstream of the photosensitive substrate.
62. The method according to claim 61 , wherein the second optical member includes a reflective surface.
63. A device manufacturing method comprising:
projecting an image of a pattern onto a photosensitive substrate using the exposure method according to claim 60 ; and
developing the photosensitive substrate.
64. An exposure method comprising:
supplying radiation;
passing the supplied radiation through a polarization state converter;
passing the radiation from the polarization state converter through an optical member made of an optical material with optical activity, the optical member including a first thickness along a traveling direction of an incident radiation and a second thickness along a traveling direction of an incident radiation, and the first and second thicknesses being different from each other;
illuminating a pattern with the radiation that has passed through the optical member; and
projecting an image of the pattern image using the radiation with which the pattern was illuminated.
65. The method according to claim 64 , wherein a polarization state of the beam at an illumination pupil is set based on an influence of a second optical member disposed in an optical path upstream of the photosensitive substrate.
66. The method according to claim 65 , wherein the second optical member includes a reflective surface.
67. A device manufacturing method comprising:
projecting an image of a pattern onto a photosensitive substrate using the exposure method according to claim 64 ; and
developing the photosensitive substrate.
68. The apparatus according to claim 2 , wherein the first basic element and the second basic element are made of same optical material.
69. The apparatus according to claim 17 , wherein the first basic element and the second basic element are made of same optical material.
70. The method according to claim 50 , wherein the first basic element and the second basic element are made of same optical material.
71. The method according to claim 60 , wherein the optical member includes a first basic element including the first thickness and a second basic element including the second thickness.
72. The method according to claim 71 , wherein the first basic element and the second basic element are made of same optical material.
73. The method according to claim 64 , wherein the optical member includes a first basic element including the first thickness and a second basic element including the second thickness.
74. The method according to claim 73 , wherein the first basic element and the second basic element are made of same optical material.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/320,480 US20090147235A1 (en) | 2003-11-20 | 2009-01-27 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US13/137,003 US9164209B2 (en) | 2003-11-20 | 2011-07-14 | Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003390674 | 2003-11-20 | ||
JP2003-390674 | 2003-11-20 | ||
PCT/JP2004/016247 WO2005050718A1 (en) | 2003-11-20 | 2004-11-02 | Light flux conversion element, lighting optical device, exposure system, and exposure method |
US11/319,057 US20060158624A1 (en) | 2003-11-20 | 2005-12-28 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method |
US12/320,480 US20090147235A1 (en) | 2003-11-20 | 2009-01-27 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/319,057 Continuation US20060158624A1 (en) | 2003-11-20 | 2005-12-28 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/137,003 Continuation US9164209B2 (en) | 2003-11-20 | 2011-07-14 | Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090147235A1 true US20090147235A1 (en) | 2009-06-11 |
Family
ID=34616350
Family Applications (12)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/319,057 Abandoned US20060158624A1 (en) | 2003-11-20 | 2005-12-28 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method |
US12/320,468 Abandoned US20090147234A1 (en) | 2003-11-20 | 2009-01-27 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US12/320,465 Abandoned US20090147233A1 (en) | 2003-11-20 | 2009-01-27 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US12/320,480 Abandoned US20090147235A1 (en) | 2003-11-20 | 2009-01-27 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US12/461,852 Abandoned US20090323041A1 (en) | 2003-11-20 | 2009-08-26 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US13/137,002 Granted US20110273692A1 (en) | 2003-11-20 | 2011-07-14 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US13/137,004 Abandoned US20110273698A1 (en) | 2003-11-20 | 2011-07-14 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US13/137,003 Expired - Fee Related US9164209B2 (en) | 2003-11-20 | 2011-07-14 | Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction |
US13/137,342 Active US10281632B2 (en) | 2003-11-20 | 2011-08-08 | Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction |
US13/889,965 Active US9885872B2 (en) | 2003-11-20 | 2013-05-08 | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US14/818,788 Abandoned US20150338663A1 (en) | 2003-11-20 | 2015-08-05 | Beam transforming optical system, illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thickness to rotate linear polarization direction |
US15/662,948 Abandoned US20170351100A1 (en) | 2003-11-20 | 2017-07-28 | Beam transforming optical system, illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thickness to rotate linear polarization direction |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/319,057 Abandoned US20060158624A1 (en) | 2003-11-20 | 2005-12-28 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method |
US12/320,468 Abandoned US20090147234A1 (en) | 2003-11-20 | 2009-01-27 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US12/320,465 Abandoned US20090147233A1 (en) | 2003-11-20 | 2009-01-27 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
Family Applications After (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/461,852 Abandoned US20090323041A1 (en) | 2003-11-20 | 2009-08-26 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US13/137,002 Granted US20110273692A1 (en) | 2003-11-20 | 2011-07-14 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US13/137,004 Abandoned US20110273698A1 (en) | 2003-11-20 | 2011-07-14 | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US13/137,003 Expired - Fee Related US9164209B2 (en) | 2003-11-20 | 2011-07-14 | Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction |
US13/137,342 Active US10281632B2 (en) | 2003-11-20 | 2011-08-08 | Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction |
US13/889,965 Active US9885872B2 (en) | 2003-11-20 | 2013-05-08 | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US14/818,788 Abandoned US20150338663A1 (en) | 2003-11-20 | 2015-08-05 | Beam transforming optical system, illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thickness to rotate linear polarization direction |
US15/662,948 Abandoned US20170351100A1 (en) | 2003-11-20 | 2017-07-28 | Beam transforming optical system, illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thickness to rotate linear polarization direction |
Country Status (9)
Country | Link |
---|---|
US (12) | US20060158624A1 (en) |
EP (5) | EP3118890A3 (en) |
JP (11) | JP4976015B2 (en) |
KR (8) | KR101220636B1 (en) |
CN (8) | CN101685265B (en) |
AT (1) | ATE540424T1 (en) |
HK (8) | HK1094093A1 (en) |
TW (5) | TW201809801A (en) |
WO (1) | WO2005050718A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060291057A1 (en) * | 2004-01-16 | 2006-12-28 | Damian Fiolka | Polarization-modulating optical element |
US20070081114A1 (en) * | 2004-01-16 | 2007-04-12 | Damian Fiolka | Polarization-modulating optical element |
US20080316459A1 (en) * | 2004-01-16 | 2008-12-25 | Carl Zeiss Smt Ag | Polarization-modulating optical element |
US20090147234A1 (en) * | 2003-11-20 | 2009-06-11 | Nikon Corporation | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US20100142051A1 (en) * | 2004-01-27 | 2010-06-10 | Nikon Corporation | Optical system, exposure system, and exposure method |
US20110037962A1 (en) * | 2009-08-17 | 2011-02-17 | Nikon Corporation | Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method |
US7916391B2 (en) | 2004-05-25 | 2011-03-29 | Carl Zeiss Smt Gmbh | Apparatus for providing a pattern of polarization |
US20110205519A1 (en) * | 2010-02-25 | 2011-08-25 | Nikon Corporation | Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method |
US20130271945A1 (en) | 2004-02-06 | 2013-10-17 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US8675177B2 (en) | 2003-04-09 | 2014-03-18 | Nikon Corporation | Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas |
US9140992B2 (en) | 2003-10-28 | 2015-09-22 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080273185A1 (en) * | 2004-06-16 | 2008-11-06 | Nikon Corporation | Optical System, Exposing Apparatus and Exposing Method |
JPWO2006016469A1 (en) * | 2004-08-10 | 2008-05-01 | 株式会社ニコン | Illumination optical apparatus, exposure apparatus, and exposure method |
KR100614651B1 (en) * | 2004-10-11 | 2006-08-22 | 삼성전자주식회사 | Apparatus And Method For Pattern Exposure, Photomask Used Therefor, Design Method For The Photomask, Illuminating System Therefor and Implementing Method For The Illuminating System |
WO2006131517A2 (en) * | 2005-06-07 | 2006-12-14 | Carl Zeiss Smt Ag | Illuminating device of a microlithographic projection exposure system |
DE102006031807A1 (en) * | 2005-07-12 | 2007-01-18 | Carl Zeiss Smt Ag | Lighting device for microlithographic projection exposure system, has depolarizing system to effect polarization direction variation such that light mixer produces light without preferred direction, and including plates of crystal material |
US20090115989A1 (en) * | 2005-11-10 | 2009-05-07 | Hirohisa Tanaka | Lighting optical system, exposure system, and exposure method |
US7884921B2 (en) * | 2006-04-12 | 2011-02-08 | Nikon Corporation | Illumination optical apparatus, projection exposure apparatus, projection optical system, and device manufacturing method |
EP2009678A4 (en) * | 2006-04-17 | 2011-04-06 | Nikon Corp | Illuminating optical apparatus, exposure apparatus and device manufacturing method |
KR20090029686A (en) | 2006-06-16 | 2009-03-23 | 가부시키가이샤 니콘 | Variable slit device, illuminating device, exposure device, exposure method, and method of manufacturing device |
DE102006032878A1 (en) * | 2006-07-15 | 2008-01-17 | Carl Zeiss Smt Ag | Illumination system of a microlithographic projection exposure apparatus |
JP2008070870A (en) * | 2006-08-25 | 2008-03-27 | Jds Uniphase Corp | Passive depolarizer |
DE102007007907A1 (en) * | 2007-02-14 | 2008-08-21 | Carl Zeiss Smt Ag | Method for producing a diffractive optical element, diffractive optical element produced by such a method, illumination optics having such a diffractive optical element, microlithography projection exposure apparatus with such illumination optics, method for producing a microelectronic component using such a projection exposure apparatus, and method produced by such a method module |
DE102007019831B4 (en) | 2007-04-25 | 2012-03-01 | Carl Zeiss Smt Gmbh | Illumination device of a microlithographic projection exposure apparatus |
KR100896875B1 (en) * | 2007-07-23 | 2009-05-12 | 주식회사 동부하이텍 | Exposure apparatus and method thereof |
DE102007043958B4 (en) | 2007-09-14 | 2011-08-25 | Carl Zeiss SMT GmbH, 73447 | Illumination device of a microlithographic projection exposure apparatus |
US7996762B2 (en) * | 2007-09-21 | 2011-08-09 | Microsoft Corporation | Correlative multi-label image annotation |
SG185313A1 (en) * | 2007-10-16 | 2012-11-29 | Nikon Corp | Illumination optical system, exposure apparatus, and device manufacturing method |
WO2009050976A1 (en) * | 2007-10-16 | 2009-04-23 | Nikon Corporation | Illumination optical system, exposure apparatus, and device manufacturing method |
JP5224027B2 (en) * | 2007-10-22 | 2013-07-03 | 大日本印刷株式会社 | Diffraction grating fabrication method using phase mask for diffraction grating fabrication |
JP2009198903A (en) * | 2008-02-22 | 2009-09-03 | Olympus Corp | Optical equipment |
DE102008041179B4 (en) | 2008-08-12 | 2010-11-04 | Carl Zeiss Smt Ag | Illumination optics for a microlithography projection exposure apparatus |
DE102009006685A1 (en) * | 2009-01-29 | 2010-08-05 | Carl Zeiss Smt Ag | Illumination system for micro-lithography |
JP5360399B2 (en) * | 2009-08-06 | 2013-12-04 | 大日本印刷株式会社 | Diffraction grating phase mask |
DE102010046133B4 (en) * | 2010-09-13 | 2014-01-09 | Klaus Becker | Trunking generator |
JP6120001B2 (en) * | 2011-10-24 | 2017-04-26 | 株式会社ニコン | Illumination optical system, exposure apparatus, and device manufacturing method |
DE102011085334A1 (en) | 2011-10-27 | 2013-05-02 | Carl Zeiss Smt Gmbh | Optical system in a lighting device of a microlithographic projection exposure apparatus |
JPWO2013089258A1 (en) * | 2011-12-15 | 2015-04-27 | 株式会社ニコン | Microscope and stimulator |
DE102012200370A1 (en) | 2012-01-12 | 2013-08-01 | Carl Zeiss Smt Gmbh | Method for manufacturing optical element in microlithographic projection exposure system of optical system for manufacturing microstructured components, involves providing substrate that is made from material and has thickness |
DE102012200371A1 (en) | 2012-01-12 | 2013-07-18 | Carl Zeiss Smt Gmbh | Optical system for a microlithographic projection exposure apparatus and microlithographic exposure method |
CN103792767B (en) * | 2012-10-31 | 2015-10-07 | 深圳市绎立锐光科技开发有限公司 | Wavelength conversion devices, its manufacture method and relevant wavelength conversion equipment |
GB201713740D0 (en) | 2017-08-25 | 2017-10-11 | Nkt Photonics As | Depolarizing homogenizer |
JP7227775B2 (en) * | 2019-01-31 | 2023-02-22 | キヤノン株式会社 | Illumination optical system, exposure apparatus and article manufacturing method |
Citations (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3892470A (en) * | 1974-02-01 | 1975-07-01 | Hughes Aircraft Co | Optical device for transforming monochromatic linearly polarized light to ring polarized light |
US4744615A (en) * | 1986-01-29 | 1988-05-17 | International Business Machines Corporation | Laser beam homogenizer |
US4755027A (en) * | 1985-07-02 | 1988-07-05 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | Method and device for polarizing light radiation |
US5312513A (en) * | 1992-04-03 | 1994-05-17 | Texas Instruments Incorporated | Methods of forming multiple phase light modulators |
US5541026A (en) * | 1991-06-13 | 1996-07-30 | Nikon Corporation | Exposure apparatus and photo mask |
US5621498A (en) * | 1991-10-15 | 1997-04-15 | Kabushiki Kaisha Toshiba | Projection exposure apparatus |
US5631721A (en) * | 1995-05-24 | 1997-05-20 | Svg Lithography Systems, Inc. | Hybrid illumination system for use in photolithography |
US5739898A (en) * | 1993-02-03 | 1998-04-14 | Nikon Corporation | Exposure method and apparatus |
US5933219A (en) * | 1994-04-22 | 1999-08-03 | Canon Kabushiki Kaisha | Projection exposure apparatus and device manufacturing method capable of controlling polarization direction |
US6031658A (en) * | 1998-09-25 | 2000-02-29 | University Of Central Florida | Digital control polarization based optical scanner |
US6191880B1 (en) * | 1995-09-23 | 2001-02-20 | Carl-Zeiss-Stiftung | Radial polarization-rotating optical arrangement and microlithographic projection exposure system incorporating said arrangement |
US6208407B1 (en) * | 1997-12-22 | 2001-03-27 | Asm Lithography B.V. | Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement |
US6211944B1 (en) * | 1990-08-21 | 2001-04-03 | Nikon Corporation | Projection exposure method and apparatus |
US6229647B1 (en) * | 1992-12-14 | 2001-05-08 | Canon Kabushiki Kaisha | Reflection and refraction optical system and projection exposure apparatus using the same |
US6233041B1 (en) * | 1990-08-21 | 2001-05-15 | Nikon Corporation | Exposure method utilizing diffracted light having different orders of diffraction |
US6252712B1 (en) * | 1998-02-20 | 2001-06-26 | Carl-Zeiss-Stiftung | Optical system with polarization compensator |
US6259512B1 (en) * | 1997-08-04 | 2001-07-10 | Canon Kabushiki Kaisha | Illumination system and exposure apparatus having the same |
US6341007B1 (en) * | 1996-11-28 | 2002-01-22 | Nikon Corporation | Exposure apparatus and method |
US20020024008A1 (en) * | 2000-08-24 | 2002-02-28 | Asahi Kogaku Kogyo Kabushiki Kaisha | Method of detecting arrangement of beam spots |
US20020027719A1 (en) * | 2000-04-25 | 2002-03-07 | Silicon Valley Group, Inc. | Optical reduction system with control of illumination polarization |
US6361909B1 (en) * | 1999-12-06 | 2002-03-26 | Industrial Technology Research Institute | Illumination aperture filter design using superposition |
US6404482B1 (en) * | 1992-10-01 | 2002-06-11 | Nikon Corporation | Projection exposure method and apparatus |
US20020085276A1 (en) * | 2000-11-29 | 2002-07-04 | Nikon Corporation | Illumination optical apparatus and exposure apparatus provided with illumination optical apparatus |
US20020085176A1 (en) * | 1999-01-06 | 2002-07-04 | Nikon Corporation | Projection optical system, production method thereof, and projection exposure apparatus using it |
US20030007158A1 (en) * | 2001-07-06 | 2003-01-09 | Hill Henry A. | Method and apparatus to reduce effects of sheared wavefronts on interferometric phase measurements |
US20030038225A1 (en) * | 2001-06-01 | 2003-02-27 | Mulder Heine Melle | Lithographic apparatus, device manufacturing method, device manufactured thereby, control system, computer program, and computer program product |
US20030043356A1 (en) * | 1990-11-15 | 2003-03-06 | Nikon Corporation | Projection exposure apparatus and method |
US6535273B1 (en) * | 1998-07-02 | 2003-03-18 | Carl-Zeiss-Stiftung | Microlithographic illumination system with depolarizer |
US20030053036A1 (en) * | 2001-07-10 | 2003-03-20 | Nikon Corporation | Production method of projection optical system |
US6597430B1 (en) * | 1998-05-18 | 2003-07-22 | Nikon Corporation | Exposure method, illuminating device, and exposure system |
US6674514B2 (en) * | 2000-03-16 | 2004-01-06 | Canon Kabushiki Kaisha | Illumination optical system in exposure apparatus |
US20040004771A1 (en) * | 2002-04-26 | 2004-01-08 | Nikon Corporation | Projection optical system, exposure system provided with the projection optical system, and exposure method using the projection optical system |
US20040012764A1 (en) * | 2002-05-31 | 2004-01-22 | Mulder Heine Melle | Kit of parts for assembling an optical element, method of assembling an optical element, optical element, lithographic apparatus, and device manufacturing method |
US20040057036A1 (en) * | 2002-09-19 | 2004-03-25 | Miyoko Kawashima | Exposure method |
US20040104654A1 (en) * | 2002-08-31 | 2004-06-03 | Samsung Electronics Co., Ltd. | Cabinet for recessed refrigerators |
US20040119954A1 (en) * | 2002-12-10 | 2004-06-24 | Miyoko Kawashima | Exposure apparatus and method |
US6842223B2 (en) * | 2003-04-11 | 2005-01-11 | Nikon Precision Inc. | Enhanced illuminator for use in photolithographic systems |
US6856379B2 (en) * | 2001-05-22 | 2005-02-15 | Carl Zeiss Smt Ag | Polarizer and microlithography projection system with a polarizer |
US6870668B2 (en) * | 2000-10-10 | 2005-03-22 | Nikon Corporation | Method for evaluating image formation performance |
US6885493B2 (en) * | 2001-02-05 | 2005-04-26 | Micronic Lasersystems Ab | Method and a device for reducing hysteresis or imprinting in a movable micro-element |
US20050095749A1 (en) * | 2002-04-29 | 2005-05-05 | Mathias Krellmann | Device for protecting a chip and method for operating a chip |
US20050094268A1 (en) * | 2002-03-14 | 2005-05-05 | Carl Zeiss Smt Ag | Optical system with birefringent optical elements |
US6891655B2 (en) * | 2003-01-02 | 2005-05-10 | Micronic Laser Systems Ab | High energy, low energy density, radiation-resistant optics used with micro-electromechanical devices |
US6900915B2 (en) * | 2001-11-14 | 2005-05-31 | Ricoh Company, Ltd. | Light deflecting method and apparatus efficiently using a floating mirror |
US6913373B2 (en) * | 2002-05-27 | 2005-07-05 | Nikon Corporation | Optical illumination device, exposure device and exposure method |
US20050146704A1 (en) * | 2003-09-26 | 2005-07-07 | Carl Zeiss Smt Ag | Microlithographic exposure method as well as a projection exposure system for carrying out the method |
US20060012769A1 (en) * | 2003-09-12 | 2006-01-19 | Canon Kabushiki Kaisha | Illumination optical system and exposure apparatus using the same |
US6999157B2 (en) * | 2002-04-23 | 2006-02-14 | Canon Kabushiki Kaisha | Illumination optical system and method, and exposure apparatus |
US20060055834A1 (en) * | 2002-12-03 | 2006-03-16 | Nikon Corporation | Illumination optical system, exposure apparatus, and exposure method |
US20060072095A1 (en) * | 2003-04-09 | 2006-04-06 | Nikon Corporation | Exposure method and apparatus, and method for fabricating device |
US20060077370A1 (en) * | 2004-10-12 | 2006-04-13 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method |
US20060092398A1 (en) * | 2004-11-02 | 2006-05-04 | Asml Holding N.V. | Method and apparatus for variable polarization control in a lithography system |
US20060132748A1 (en) * | 2004-12-20 | 2006-06-22 | Kazuya Fukuhara | Exposure system, exposure method and method for manufacturing a semiconductor device |
US20060139611A1 (en) * | 2004-12-28 | 2006-06-29 | Asml Netherlands B.V. | Polarized radiation in lithographic apparatus and device manufacturing method |
US20060146384A1 (en) * | 2003-05-13 | 2006-07-06 | Carl Zeiss Smt Ag | Optical beam transformation system and illumination system comprising an optical beam transformation system |
US20060158624A1 (en) * | 2003-11-20 | 2006-07-20 | Nikon Corporation | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method |
US20060164711A1 (en) * | 2005-01-24 | 2006-07-27 | Asml Holding N.V. | System and method utilizing an electrooptic modulator |
US20070008511A1 (en) * | 2005-07-11 | 2007-01-11 | Asml Netherlands B.V. | Polarized radiation in lithographic apparatus and device manufacturing method |
US20070019179A1 (en) * | 2004-01-16 | 2007-01-25 | Damian Fiolka | Polarization-modulating optical element |
US20070058151A1 (en) * | 2005-09-13 | 2007-03-15 | Asml Netherlands B.V. | Optical element for use in lithography apparatus and method of conditioning radiation beam |
US20070081114A1 (en) * | 2004-01-16 | 2007-04-12 | Damian Fiolka | Polarization-modulating optical element |
US20070146676A1 (en) * | 2005-01-21 | 2007-06-28 | Nikon Corporation | Method of adjusting lighting optical device, lighting optical device, exposure system, and exposure method |
US20080030707A1 (en) * | 2004-08-17 | 2008-02-07 | Nikon Corporation | Lighting Optical Device, Regulation Method for Lighting Optical Device, Exposure System, and Exposure Method |
US20080030706A1 (en) * | 2006-08-01 | 2008-02-07 | Fujitsu Limited | Illumination optical system, exposure method and designing method |
US7345740B2 (en) * | 2004-12-28 | 2008-03-18 | Asml Netherlands B.V. | Polarized radiation in lithographic apparatus and device manufacturing method |
US20090073441A1 (en) * | 2004-02-06 | 2009-03-19 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US20090073411A1 (en) * | 2007-09-14 | 2009-03-19 | Nikon Corporation | Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method |
US20090091730A1 (en) * | 2007-10-03 | 2009-04-09 | Nikon Corporation | Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method |
US20090097007A1 (en) * | 2007-10-16 | 2009-04-16 | Hirohisa Tanaka | Illumination optical system, exposure apparatus, and device manufacturing method |
US20090109417A1 (en) * | 2007-10-24 | 2009-04-30 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US20090116093A1 (en) * | 2007-11-06 | 2009-05-07 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
US20090122292A1 (en) * | 2003-10-28 | 2009-05-14 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US20090128886A1 (en) * | 2007-10-12 | 2009-05-21 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
US20090185154A1 (en) * | 2007-10-31 | 2009-07-23 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure appartus, exposure method, and device manufacturing method |
US20100141926A1 (en) * | 2004-01-27 | 2010-06-10 | Nikon Corporation | Optical system,exposure system, and exposure method |
Family Cites Families (933)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3293882B2 (en) | 1992-03-27 | 2002-06-17 | 株式会社東芝 | Projection exposure equipment |
GB856621A (en) | 1956-07-20 | 1960-12-21 | Nat Res Dev | Improvements in or relating to polarising microscopes |
US3146294A (en) | 1959-02-13 | 1964-08-25 | American Optical Corp | Interference microscope optical systems |
US3180216A (en) | 1962-08-13 | 1965-04-27 | American Optical Corp | System and apparatus for variable phase microscopy |
JPS444993Y1 (en) | 1964-05-28 | 1969-02-24 | ||
US3758201A (en) | 1971-07-15 | 1973-09-11 | American Optical Corp | Optical system for improved eye refraction |
JPS557673B2 (en) | 1972-11-25 | 1980-02-27 | ||
US3892469A (en) | 1974-02-01 | 1975-07-01 | Hughes Aircraft Co | Electro-optical variable focal length lens using optical ring polarizer |
FR2385241A1 (en) * | 1976-12-23 | 1978-10-20 | Marie G R P | POLARIZATION MODE CONVERTERS FOR LASER BEAMS AND PLASMA GENERATORS USING THEM |
US4103260A (en) | 1977-01-03 | 1978-07-25 | Hughes Aircraft Company | Spatial polarization coding electro-optical transmitter |
US4198123A (en) | 1977-03-23 | 1980-04-15 | Baxter Travenol Laboratories, Inc. | Optical scrambler for depolarizing light |
FR2413678A1 (en) | 1977-12-28 | 1979-07-27 | Marie G R P | MODE CONVERTERS FROM A NON-CONFINANT WAVE TO A CONFINANT WAVE IN THE FAR INFRARED |
US4286843A (en) | 1979-05-14 | 1981-09-01 | Reytblatt Zinovy V | Polariscope and filter therefor |
JPS5857066B2 (en) | 1979-06-29 | 1983-12-17 | 古河電気工業株式会社 | linear motor |
EP0023231B1 (en) | 1979-07-27 | 1982-08-11 | Tabarelli, Werner, Dr. | Optical lithographic method and apparatus for copying a pattern onto a semiconductor wafer |
FR2465241A1 (en) | 1979-09-10 | 1981-03-20 | Thomson Csf | ILLUMINATOR DEVICE FOR PROVIDING AN ADJUSTABLE INTENSITY DISTRIBUTION ILLUMINATION BEAM AND PATTERN TRANSFER SYSTEM COMPRISING SUCH A DEVICE |
FR2474708B1 (en) | 1980-01-24 | 1987-02-20 | Dme | HIGH-RESOLUTION MICROPHOTOLITHOGRAPHY PROCESS |
US4346164A (en) | 1980-10-06 | 1982-08-24 | Werner Tabarelli | Photolithographic method for the manufacture of integrated circuits |
JPS57117238A (en) | 1981-01-14 | 1982-07-21 | Nippon Kogaku Kk <Nikon> | Exposing and baking device for manufacturing integrated circuit with illuminometer |
JPS57152129A (en) | 1981-03-13 | 1982-09-20 | Sanyo Electric Co Ltd | Developing method of resist |
JPS57153433A (en) | 1981-03-18 | 1982-09-22 | Hitachi Ltd | Manufacturing device for semiconductor |
JPS5845502U (en) | 1981-09-21 | 1983-03-26 | 株式会社津山金属製作所 | wide angle reflector |
JPS5849932A (en) | 1981-09-21 | 1983-03-24 | Ushio Inc | Adjuster for illuminance distribution pattern |
JPS58115945A (en) | 1981-12-29 | 1983-07-09 | Toyoda Gosei Co Ltd | Power transmission and signal transmission and reception method to steering section |
JPS58202448A (en) | 1982-05-21 | 1983-11-25 | Hitachi Ltd | Exposing device |
DD206607A1 (en) | 1982-06-16 | 1984-02-01 | Mikroelektronik Zt Forsch Tech | METHOD AND DEVICE FOR ELIMINATING INTERFERENCE EFFECTS |
JPS5919912A (en) | 1982-07-26 | 1984-02-01 | Hitachi Ltd | Immersion distance holding device |
DD242880A1 (en) | 1983-01-31 | 1987-02-11 | Kuch Karl Heinz | DEVICE FOR PHOTOLITHOGRAPHIC STRUCTURAL TRANSMISSION |
JPS59226317A (en) | 1983-06-06 | 1984-12-19 | Nippon Kogaku Kk <Nikon> | Illuminating device |
DD221563A1 (en) | 1983-09-14 | 1985-04-24 | Mikroelektronik Zt Forsch Tech | IMMERSIONS OBJECTIVE FOR THE STEP-BY-STEP PROJECTION IMAGING OF A MASK STRUCTURE |
JPS59155843A (en) | 1984-01-27 | 1984-09-05 | Hitachi Ltd | Exposing device |
DD224448A1 (en) | 1984-03-01 | 1985-07-03 | Zeiss Jena Veb Carl | DEVICE FOR PHOTOLITHOGRAPHIC STRUCTURAL TRANSMISSION |
JPS6144429A (en) | 1984-08-09 | 1986-03-04 | Nippon Kogaku Kk <Nikon> | Alignment method |
JPS6145923A (en) | 1984-08-10 | 1986-03-06 | Aronshiya:Kk | Manufacture of rotary disk for reflection type rotary encoder |
JPH0682598B2 (en) | 1984-10-11 | 1994-10-19 | 日本電信電話株式会社 | Projection exposure device |
JPS61217434A (en) | 1985-03-20 | 1986-09-27 | Mitsubishi Chem Ind Ltd | Conveying device |
JPS6194342U (en) | 1984-11-27 | 1986-06-18 | ||
JPS61156736A (en) | 1984-12-27 | 1986-07-16 | Canon Inc | Exposing device |
JPS61196532A (en) | 1985-02-26 | 1986-08-30 | Canon Inc | Exposure device |
JPS61251025A (en) | 1985-04-30 | 1986-11-08 | Canon Inc | Projection exposing apparatus |
JPS61270049A (en) | 1985-05-24 | 1986-11-29 | Toshiba Corp | Table device |
JPS622539A (en) | 1985-06-28 | 1987-01-08 | Canon Inc | Illumination optical system |
JPS622540A (en) | 1985-06-28 | 1987-01-08 | Canon Inc | Light integrator and koehler illumination system including integrator thereof |
US4683420A (en) | 1985-07-10 | 1987-07-28 | Westinghouse Electric Corp. | Acousto-optic system for testing high speed circuits |
JPS6217705A (en) | 1985-07-16 | 1987-01-26 | Nippon Kogaku Kk <Nikon> | Telecentric optical system lighting device |
JPS6265326A (en) | 1985-09-18 | 1987-03-24 | Hitachi Ltd | Exposure device |
JPS62100161A (en) | 1985-10-23 | 1987-05-09 | Shin Etsu Chem Co Ltd | Flat motor |
JPS62120026A (en) | 1985-11-20 | 1987-06-01 | Fujitsu Ltd | X-ray exposing apparatus |
JPH07105323B2 (en) | 1985-11-22 | 1995-11-13 | 株式会社日立製作所 | Exposure method |
JPS62121417A (en) | 1985-11-22 | 1987-06-02 | Hitachi Ltd | Liquid-immersion objective lens device |
JPS62153710A (en) | 1985-12-27 | 1987-07-08 | Furukawa Alum Co Ltd | Preparation of reflective substrate for rotary encoder |
JPH0782981B2 (en) | 1986-02-07 | 1995-09-06 | 株式会社ニコン | Projection exposure method and apparatus |
JPS62188316A (en) | 1986-02-14 | 1987-08-17 | Canon Inc | Projection exposure device |
JPS62203526A (en) | 1986-02-28 | 1987-09-08 | トヨタ自動車株式会社 | Radio power transmitter |
JPH0666246B2 (en) | 1986-05-14 | 1994-08-24 | キヤノン株式会社 | Illumination optics |
JP2506616B2 (en) | 1986-07-02 | 1996-06-12 | キヤノン株式会社 | Exposure apparatus and circuit manufacturing method using the same |
JPS6336526A (en) | 1986-07-30 | 1988-02-17 | Oki Electric Ind Co Ltd | Wafer exposure equipment |
JPS6344726A (en) * | 1986-08-12 | 1988-02-25 | Norihisa Ito | Illumination optical device of stepper using excimer laser |
JPH0695511B2 (en) | 1986-09-17 | 1994-11-24 | 大日本スクリ−ン製造株式会社 | Washing and drying treatment method |
JPS63128713A (en) | 1986-11-19 | 1988-06-01 | Matsushita Electric Ind Co Ltd | Correction of distortion in scanning aligner |
JPS63131008A (en) | 1986-11-20 | 1988-06-03 | Fujitsu Ltd | Optical alignment method |
JPS63141313A (en) | 1986-12-03 | 1988-06-13 | Hitachi Ltd | Thin plate deforming device |
JPS63157419A (en) | 1986-12-22 | 1988-06-30 | Toshiba Corp | Fine pattern transfer apparatus |
JPS63160192A (en) | 1986-12-23 | 1988-07-02 | 株式会社明電舎 | Connecting conductor of radio frequency heater |
JPS63231217A (en) | 1987-03-19 | 1988-09-27 | Omron Tateisi Electronics Co | Measuring instrument for movement quantity |
JPH0718699B2 (en) | 1987-05-08 | 1995-03-06 | 株式会社ニコン | Surface displacement detector |
JPS6426704A (en) | 1987-05-11 | 1989-01-30 | Jiei Shirinian Jiyon | Pocket structure of garment |
JPS63292005A (en) | 1987-05-25 | 1988-11-29 | Nikon Corp | Detecting apparatus of amount of movement corrected from running error |
JPH07117371B2 (en) | 1987-07-14 | 1995-12-18 | 株式会社ニコン | measuring device |
JPS6468926A (en) | 1987-09-09 | 1989-03-15 | Nikon Corp | Measurement of image distortion in projection optical system |
US4981342A (en) | 1987-09-24 | 1991-01-01 | Allergan Inc. | Multifocal birefringent lens system |
JPH0191419A (en) | 1987-10-01 | 1989-04-11 | Canon Inc | Aligner |
JPH01115033A (en) | 1987-10-28 | 1989-05-08 | Hitachi Ltd | Gas discharge display device |
JPH01147516A (en) | 1987-12-04 | 1989-06-09 | Canon Inc | Beam position controller |
JP2728133B2 (en) | 1987-12-09 | 1998-03-18 | 株式会社リコー | Digital image forming equipment |
JPH01202833A (en) | 1988-02-09 | 1989-08-15 | Toshiba Corp | Accurate xy stage device |
JPH0831513B2 (en) | 1988-02-22 | 1996-03-27 | 株式会社ニコン | Substrate suction device |
JPH0545102Y2 (en) | 1988-02-24 | 1993-11-17 | ||
JPH01255404A (en) | 1988-04-05 | 1989-10-12 | Toshiba Corp | Electromagnet device for levitation |
US4952815A (en) | 1988-04-14 | 1990-08-28 | Nikon Corporation | Focusing device for projection exposure apparatus |
JPH01276043A (en) | 1988-04-28 | 1989-11-06 | Mitsubishi Cable Ind Ltd | Waveguide type liquid detector |
JPH01278240A (en) | 1988-04-28 | 1989-11-08 | Tokyo Electron Ltd | Uninterruptible power source for apparatus for manufacture of semiconductor |
JPH01286478A (en) | 1988-05-13 | 1989-11-17 | Hitachi Ltd | Beam uniformizing optical system and manufacture thereof |
JPH01292343A (en) | 1988-05-19 | 1989-11-24 | Fujitsu Ltd | Pellicle |
JPH01314247A (en) | 1988-06-13 | 1989-12-19 | Fuji Plant Kogyo Kk | Automatic exposing device for printed circuit board |
JPH0831514B2 (en) | 1988-06-21 | 1996-03-27 | 株式会社ニコン | Substrate suction device |
JPH0242382A (en) | 1988-08-02 | 1990-02-13 | Canon Inc | Moving stage structure |
WO1990002125A1 (en) | 1988-08-22 | 1990-03-08 | Idemitsu Kosan Co. Ltd. | Oxirane derivatives and herbicides containing same as active ingredients |
JPH0265149A (en) | 1988-08-30 | 1990-03-05 | Mitsubishi Electric Corp | Semiconductor device |
JP2729058B2 (en) | 1988-08-31 | 1998-03-18 | 山形日本電気株式会社 | Exposure equipment for semiconductor devices |
JPH0297239A (en) | 1988-09-30 | 1990-04-09 | Canon Inc | Power source equipment for aligner |
JP2682067B2 (en) | 1988-10-17 | 1997-11-26 | 株式会社ニコン | Exposure apparatus and exposure method |
JP2697014B2 (en) | 1988-10-26 | 1998-01-14 | 株式会社ニコン | Exposure apparatus and exposure method |
JPH02139146A (en) | 1988-11-15 | 1990-05-29 | Matsushita Electric Ind Co Ltd | Positioning table of one step six degrees of freedom |
JP2940553B2 (en) | 1988-12-21 | 1999-08-25 | 株式会社ニコン | Exposure method |
US5253110A (en) | 1988-12-22 | 1993-10-12 | Nikon Corporation | Illumination optical arrangement |
JPH07104442B2 (en) | 1989-04-06 | 1995-11-13 | 旭硝子株式会社 | Method for producing magnesium fluoride film and low reflection film |
DE3907136A1 (en) | 1989-03-06 | 1990-09-13 | Jagenberg Ag | DEVICE FOR JOINING MATERIAL RAILS |
JPH02261073A (en) | 1989-03-29 | 1990-10-23 | Sony Corp | Ultrasonic motor |
JPH02287308A (en) | 1989-04-03 | 1990-11-27 | Mikhailovich Khodosovich Vladimir | Method for centering lenses in optical unit mount |
JPH02285320A (en) | 1989-04-27 | 1990-11-22 | Olympus Optical Co Ltd | Stop device for endoscope |
JP2527807B2 (en) | 1989-05-09 | 1996-08-28 | 住友大阪セメント株式会社 | Optical associative identification device |
JPH02298431A (en) | 1989-05-12 | 1990-12-10 | Mitsubishi Electric Corp | Electric discharge machining device |
JPH02311237A (en) | 1989-05-25 | 1990-12-26 | Fuji Electric Co Ltd | Carrying device |
JPH0341399A (en) | 1989-07-10 | 1991-02-21 | Nikon Corp | Manufacture of multilayered film reflecting mirror |
JPH0364811A (en) | 1989-07-31 | 1991-03-20 | Okazaki Seisakusho:Kk | Hollow core wire mi cable and manufacture thereof |
JPH0372298A (en) | 1989-08-14 | 1991-03-27 | Nikon Corp | Manufacture of multilayer film reflecting mirror |
JPH0394445A (en) | 1989-09-06 | 1991-04-19 | Mitsubishi Electric Corp | Semiconductor wafer transfer system |
JPH03132663A (en) | 1989-10-18 | 1991-06-06 | Fujitsu Ltd | Pellicle |
JPH03134341A (en) | 1989-10-20 | 1991-06-07 | Fuji Photo Film Co Ltd | Damper mechanism, vibrationproof mechanism and optical beam scanning device into which this damper mechanism, etc. are incorporated |
JP2784225B2 (en) | 1989-11-28 | 1998-08-06 | 双葉電子工業株式会社 | Relative displacement measurement device |
JP3067142B2 (en) | 1989-11-28 | 2000-07-17 | 富士通株式会社 | Photomask inspection apparatus and photomask inspection method |
JPH03211812A (en) | 1990-01-17 | 1991-09-17 | Canon Inc | Exposure aligner |
JPH03263810A (en) | 1990-03-14 | 1991-11-25 | Sumitomo Heavy Ind Ltd | Vibration control method of semiconductor aligner |
JP2624560B2 (en) | 1990-04-20 | 1997-06-25 | 日鐵溶接工業株式会社 | Flux-cored wire for gas shielded arc welding |
JPH0710897B2 (en) | 1990-04-27 | 1995-02-08 | 日本油脂株式会社 | Plastic lens |
JPH0432154A (en) | 1990-05-25 | 1992-02-04 | Iwasaki Electric Co Ltd | Metal halide lamp device |
JP2897355B2 (en) | 1990-07-05 | 1999-05-31 | 株式会社ニコン | Alignment method, exposure apparatus, and position detection method and apparatus |
JP3077176B2 (en) | 1990-08-13 | 2000-08-14 | 株式会社ニコン | Exposure method, apparatus, and element manufacturing method |
JP3049774B2 (en) | 1990-12-27 | 2000-06-05 | 株式会社ニコン | Projection exposure apparatus and method, and element manufacturing method |
JPH04130710A (en) | 1990-09-21 | 1992-05-01 | Hitachi Ltd | Apparatus for exposure of light |
JP2548834B2 (en) | 1990-09-25 | 1996-10-30 | 三菱電機株式会社 | Electron beam dimension measuring device |
JPH04133414A (en) | 1990-09-26 | 1992-05-07 | Nec Yamaguchi Ltd | Reduced projection and aligner |
JPH04152512A (en) | 1990-10-16 | 1992-05-26 | Fujitsu Ltd | Wafer chuck |
DE4033556A1 (en) | 1990-10-22 | 1992-04-23 | Suess Kg Karl | MEASURING ARRANGEMENT FOR X, Y, (PHI) COORDINATE TABLES |
US5072126A (en) | 1990-10-31 | 1991-12-10 | International Business Machines Corporation | Promixity alignment using polarized illumination and double conjugate projection lens |
JPH04179115A (en) | 1990-11-08 | 1992-06-25 | Nec Kyushu Ltd | Contracted projection aligner |
US6252647B1 (en) | 1990-11-15 | 2001-06-26 | Nikon Corporation | Projection exposure apparatus |
JP3094439B2 (en) | 1990-11-21 | 2000-10-03 | 株式会社ニコン | Exposure method |
JPH0480052U (en) | 1990-11-27 | 1992-07-13 | ||
JPH04235558A (en) | 1991-01-11 | 1992-08-24 | Toshiba Corp | Exposure device |
JP3084760B2 (en) | 1991-02-28 | 2000-09-04 | 株式会社ニコン | Exposure method and exposure apparatus |
JP3255168B2 (en) | 1991-02-28 | 2002-02-12 | 株式会社ニコン | Exposure method, device manufacturing method using the exposure method, and exposure apparatus |
JP3084761B2 (en) | 1991-02-28 | 2000-09-04 | 株式会社ニコン | Exposure method and mask |
JP2860174B2 (en) | 1991-03-05 | 1999-02-24 | 三菱電機株式会社 | Chemical vapor deposition equipment |
JP3200894B2 (en) | 1991-03-05 | 2001-08-20 | 株式会社日立製作所 | Exposure method and apparatus |
JPH04280619A (en) | 1991-03-08 | 1992-10-06 | Canon Inc | Wafer retaining method and retaining device |
JPH04282539A (en) | 1991-03-11 | 1992-10-07 | Hitachi Ltd | Method for forming reflection-charge preventing film |
JPH05259069A (en) | 1991-03-13 | 1993-10-08 | Tokyo Electron Ltd | Method of exposing periphery of wafer |
JPH04211110A (en) | 1991-03-20 | 1992-08-03 | Hitachi Ltd | Projection aligner and aligning method |
JPH04296092A (en) | 1991-03-26 | 1992-10-20 | Matsushita Electric Ind Co Ltd | Reflow device |
JP2602345Y2 (en) | 1991-03-29 | 2000-01-11 | 京セラ株式会社 | Hydrostatic bearing device |
US5251222A (en) | 1991-04-01 | 1993-10-05 | Teledyne Industries, Inc. | Active multi-stage cavity sensor |
JPH04305917A (en) | 1991-04-02 | 1992-10-28 | Nikon Corp | Adhesion type exposure device |
JPH04305915A (en) | 1991-04-02 | 1992-10-28 | Nikon Corp | Adhesion type exposure device |
JP3200874B2 (en) | 1991-07-10 | 2001-08-20 | 株式会社ニコン | Projection exposure equipment |
JPH04330961A (en) | 1991-05-01 | 1992-11-18 | Matsushita Electron Corp | Development processing equipment |
FR2676288B1 (en) | 1991-05-07 | 1994-06-17 | Thomson Csf | LIGHT COLLECTOR FOR PROJECTOR. |
JPH04343307A (en) | 1991-05-20 | 1992-11-30 | Ricoh Co Ltd | Laser adjusting device |
JP2884830B2 (en) | 1991-05-28 | 1999-04-19 | キヤノン株式会社 | Automatic focusing device |
JPH0590128A (en) | 1991-06-13 | 1993-04-09 | Nikon Corp | Aligner |
JPH0545886A (en) | 1991-08-12 | 1993-02-26 | Nikon Corp | Exposure device for square substrate |
US5272501A (en) | 1991-08-28 | 1993-12-21 | Nikon Corporation | Projection exposure apparatus |
JPH0562877A (en) | 1991-09-02 | 1993-03-12 | Yasuko Shinohara | Optical system for lsi manufacturing contraction projection aligner by light |
US5348837A (en) | 1991-09-24 | 1994-09-20 | Hitachi, Ltd. | Projection exposure apparatus and pattern forming method for use therewith |
JPH05109601A (en) | 1991-10-15 | 1993-04-30 | Nikon Corp | Aligner and exposure method |
JPH05129184A (en) | 1991-10-30 | 1993-05-25 | Canon Inc | Projection aligner |
JPH05127086A (en) | 1991-11-01 | 1993-05-25 | Matsushita Electric Ind Co Ltd | Method for uniformizing light intensity and exposure device using the same |
JP3203719B2 (en) | 1991-12-26 | 2001-08-27 | 株式会社ニコン | Exposure apparatus, device manufactured by the exposure apparatus, exposure method, and device manufacturing method using the exposure method |
JPH05199680A (en) | 1992-01-17 | 1993-08-06 | Honda Motor Co Ltd | Power supply |
JPH0794969B2 (en) | 1992-01-29 | 1995-10-11 | 株式会社ソルテック | Positioning method and device thereof |
JP3194155B2 (en) | 1992-01-31 | 2001-07-30 | キヤノン株式会社 | Semiconductor device manufacturing method and projection exposure apparatus using the same |
JPH05217837A (en) | 1992-02-04 | 1993-08-27 | Toshiba Corp | X-y movable table |
JP2796005B2 (en) | 1992-02-10 | 1998-09-10 | 三菱電機株式会社 | Projection exposure apparatus and polarizer |
JPH05241324A (en) | 1992-02-26 | 1993-09-21 | Nikon Corp | Photomask and exposing method |
JP3153372B2 (en) | 1992-02-26 | 2001-04-09 | 東京エレクトロン株式会社 | Substrate processing equipment |
JPH05243364A (en) | 1992-03-02 | 1993-09-21 | Hitachi Ltd | Eliminating method for charge from semiconductor wafer and semiconductor integrated circuit manufacturing apparatus using same |
JP3278896B2 (en) | 1992-03-31 | 2002-04-30 | キヤノン株式会社 | Illumination apparatus and projection exposure apparatus using the same |
JPH05304072A (en) | 1992-04-08 | 1993-11-16 | Nec Corp | Manufacture of semiconductor device |
JP3242693B2 (en) | 1992-05-15 | 2001-12-25 | 富士通株式会社 | Pellicle sticking device |
JP2673130B2 (en) | 1992-05-20 | 1997-11-05 | 株式会社キトー | Suspension support device for traveling rail |
JP2929839B2 (en) * | 1992-06-17 | 1999-08-03 | 住友電装株式会社 | Wire harness production management method |
JP2946950B2 (en) | 1992-06-25 | 1999-09-13 | キヤノン株式会社 | Illumination apparatus and exposure apparatus using the same |
JPH0629204A (en) | 1992-07-08 | 1994-02-04 | Fujitsu Ltd | Method and apparatus for development of resist |
JPH0636054A (en) | 1992-07-20 | 1994-02-10 | Mitsubishi Electric Corp | One-chip microcomputer |
JP3246615B2 (en) * | 1992-07-27 | 2002-01-15 | 株式会社ニコン | Illumination optical device, exposure apparatus, and exposure method |
JPH06188169A (en) * | 1992-08-24 | 1994-07-08 | Canon Inc | Method of image formation, exposure system, and manufacture of device |
JPH07318847A (en) | 1994-05-26 | 1995-12-08 | Nikon Corp | Illumination optical device |
JPH06104167A (en) | 1992-09-18 | 1994-04-15 | Hitachi Ltd | Manufacture of aligner and semiconductor device |
JP2884947B2 (en) | 1992-10-01 | 1999-04-19 | 株式会社ニコン | Projection exposure apparatus, exposure method, and method of manufacturing semiconductor integrated circuit |
JPH06118623A (en) | 1992-10-07 | 1994-04-28 | Fujitsu Ltd | Reticle and semiconductor aligner using the same |
JPH06124873A (en) | 1992-10-09 | 1994-05-06 | Canon Inc | Liquid-soaking type projection exposure apparatus |
JP2724787B2 (en) | 1992-10-09 | 1998-03-09 | キヤノン株式会社 | Positioning device |
US5459000A (en) | 1992-10-14 | 1995-10-17 | Canon Kabushiki Kaisha | Image projection method and device manufacturing method using the image projection method |
JPH06124872A (en) * | 1992-10-14 | 1994-05-06 | Canon Inc | Image forming method and manufacture of semiconductor device using the method |
JP3322274B2 (en) | 1992-10-29 | 2002-09-09 | 株式会社ニコン | Projection exposure method and projection exposure apparatus |
JPH06148399A (en) | 1992-11-05 | 1994-05-27 | Nikon Corp | Multilayer film mirror for x rays and x-ray microscope |
JPH06163350A (en) | 1992-11-19 | 1994-06-10 | Matsushita Electron Corp | Projection exposure method and device thereof |
JP2753930B2 (en) | 1992-11-27 | 1998-05-20 | キヤノン株式会社 | Immersion type projection exposure equipment |
JP3180133B2 (en) | 1992-12-01 | 2001-06-25 | 日本電信電話株式会社 | Projection exposure equipment |
JPH06177007A (en) | 1992-12-01 | 1994-06-24 | Nippon Telegr & Teleph Corp <Ntt> | Projection aligner |
JP2866267B2 (en) | 1992-12-11 | 1999-03-08 | 三菱電機株式会社 | Optical drawing apparatus and optical drawing method for wafer substrate |
JPH06181157A (en) | 1992-12-15 | 1994-06-28 | Nikon Corp | Apparatus with low dust-generating property |
JPH06186025A (en) | 1992-12-16 | 1994-07-08 | Yunisun:Kk | Three dimensional measuring device |
JP2520833B2 (en) | 1992-12-21 | 1996-07-31 | 東京エレクトロン株式会社 | Immersion type liquid treatment device |
JP3201027B2 (en) | 1992-12-22 | 2001-08-20 | 株式会社ニコン | Projection exposure apparatus and method |
JP3316833B2 (en) | 1993-03-26 | 2002-08-19 | 株式会社ニコン | Scanning exposure method, surface position setting device, scanning type exposure device, and device manufacturing method using the method |
JPH06204121A (en) | 1992-12-28 | 1994-07-22 | Canon Inc | Illuminator and projection aligner using the same |
JP2765422B2 (en) | 1992-12-28 | 1998-06-18 | キヤノン株式会社 | Exposure apparatus and method for manufacturing semiconductor device using the same |
JP2786070B2 (en) | 1993-01-29 | 1998-08-13 | セントラル硝子株式会社 | Inspection method and apparatus for transparent plate |
JPH07245258A (en) | 1994-03-08 | 1995-09-19 | Nikon Corp | Exposure and exposure device |
JPH06241720A (en) | 1993-02-18 | 1994-09-02 | Sony Corp | Measuring method for displacement quantity and displacement meter |
JPH06244082A (en) | 1993-02-19 | 1994-09-02 | Nikon Corp | Projection exposure device |
JP3412704B2 (en) | 1993-02-26 | 2003-06-03 | 株式会社ニコン | Projection exposure method and apparatus, and exposure apparatus |
JP3747958B2 (en) | 1995-04-07 | 2006-02-22 | 株式会社ニコン | Catadioptric optics |
JP3291818B2 (en) | 1993-03-16 | 2002-06-17 | 株式会社ニコン | Projection exposure apparatus and semiconductor integrated circuit manufacturing method using the apparatus |
JP3537843B2 (en) | 1993-03-19 | 2004-06-14 | 株式会社テクノ菱和 | Clean room ionizer |
JPH0777191B2 (en) | 1993-04-06 | 1995-08-16 | 日本電気株式会社 | Exposure light projection device |
JP3309871B2 (en) | 1993-04-27 | 2002-07-29 | 株式会社ニコン | Projection exposure method and apparatus, and element manufacturing method |
JPH06326174A (en) | 1993-05-12 | 1994-11-25 | Hitachi Ltd | Vacuum suction device for wafer |
DE00203732T1 (en) * | 1993-05-25 | 2006-07-13 | Nordson Corp., Westlake | Powder coating system |
JP3265503B2 (en) | 1993-06-11 | 2002-03-11 | 株式会社ニコン | Exposure method and apparatus |
JP3463335B2 (en) | 1994-02-17 | 2003-11-05 | 株式会社ニコン | Projection exposure equipment |
US5677757A (en) | 1994-03-29 | 1997-10-14 | Nikon Corporation | Projection exposure apparatus |
JP3291849B2 (en) | 1993-07-15 | 2002-06-17 | 株式会社ニコン | Exposure method, device formation method, and exposure apparatus |
US6304317B1 (en) | 1993-07-15 | 2001-10-16 | Nikon Corporation | Projection apparatus and method |
JPH0757993A (en) * | 1993-08-13 | 1995-03-03 | Nikon Corp | Projection aligner |
JPH0757992A (en) * | 1993-08-13 | 1995-03-03 | Nikon Corp | Projection aligner |
JP3844787B2 (en) | 1993-09-02 | 2006-11-15 | 日産化学工業株式会社 | Magnesium fluoride hydrate sol and its production method |
JP3359123B2 (en) | 1993-09-20 | 2002-12-24 | キヤノン株式会社 | Aberration correction optical system |
JP3099933B2 (en) | 1993-12-28 | 2000-10-16 | 株式会社東芝 | Exposure method and exposure apparatus |
KR0153796B1 (en) | 1993-09-24 | 1998-11-16 | 사토 후미오 | Exposure apparatus and method |
JPH07122469A (en) | 1993-10-20 | 1995-05-12 | Nikon Corp | Projection aligner |
JP3505810B2 (en) | 1993-10-29 | 2004-03-15 | 株式会社日立製作所 | Pattern exposure method and apparatus |
KR0166612B1 (en) * | 1993-10-29 | 1999-02-01 | 가나이 쓰토무 | Method and apparatus for exposing pattern, mask used therefor and semiconductor integrated circuit formed by using the same |
JP3376045B2 (en) | 1993-11-09 | 2003-02-10 | キヤノン株式会社 | Scanning exposure apparatus and device manufacturing method using the scanning exposure apparatus |
JP3339144B2 (en) | 1993-11-11 | 2002-10-28 | 株式会社ニコン | Scanning exposure apparatus and exposure method |
JPH07134955A (en) | 1993-11-11 | 1995-05-23 | Hitachi Ltd | Display apparatus and reflectance controlling method of apparatus thereof |
JP3278303B2 (en) | 1993-11-12 | 2002-04-30 | キヤノン株式会社 | Scanning exposure apparatus and device manufacturing method using the scanning exposure apparatus |
JPH07147223A (en) | 1993-11-26 | 1995-06-06 | Hitachi Ltd | Pattern forming method |
EP0656555B1 (en) | 1993-12-01 | 2003-03-19 | Sharp Kabushiki Kaisha | Display for 3D images |
JPH07161622A (en) * | 1993-12-10 | 1995-06-23 | Nikon Corp | Projection aligner |
JPH07167998A (en) | 1993-12-15 | 1995-07-04 | Nikon Corp | Target for laser plasma x-ray source |
JP3487517B2 (en) | 1993-12-16 | 2004-01-19 | 株式会社リコー | Reciprocating device |
JP3508190B2 (en) | 1993-12-21 | 2004-03-22 | セイコーエプソン株式会社 | Lighting device and projection display device |
JPH07183201A (en) * | 1993-12-21 | 1995-07-21 | Nec Corp | Exposure device and method therefor |
JPH07190741A (en) | 1993-12-27 | 1995-07-28 | Nippon Telegr & Teleph Corp <Ntt> | Measuring error correction method |
JPH07220989A (en) | 1994-01-27 | 1995-08-18 | Canon Inc | Exposure apparatus and manufacture of device using the same |
JPH07220990A (en) | 1994-01-28 | 1995-08-18 | Hitachi Ltd | Pattern forming method and exposure apparatus therefor |
JP2715895B2 (en) | 1994-01-31 | 1998-02-18 | 日本電気株式会社 | Light intensity distribution simulation method |
JP3372633B2 (en) | 1994-02-04 | 2003-02-04 | キヤノン株式会社 | Positioning method and positioning apparatus using the same |
US5559583A (en) | 1994-02-24 | 1996-09-24 | Nec Corporation | Exposure system and illuminating apparatus used therein and method for exposing a resist film on a wafer |
JP2836483B2 (en) | 1994-05-13 | 1998-12-14 | 日本電気株式会社 | Illumination optics |
JPH07239212A (en) | 1994-02-28 | 1995-09-12 | Nikon Corp | Position detector |
JPH07243814A (en) | 1994-03-03 | 1995-09-19 | Fujitsu Ltd | Measuring method of line width |
JPH07263315A (en) * | 1994-03-25 | 1995-10-13 | Toshiba Corp | Projection aligner |
US6333776B1 (en) | 1994-03-29 | 2001-12-25 | Nikon Corporation | Projection exposure apparatus |
US20020080338A1 (en) | 1994-03-29 | 2002-06-27 | Nikon Corporation | Projection exposure apparatus |
US5874820A (en) | 1995-04-04 | 1999-02-23 | Nikon Corporation | Window frame-guided stage mechanism |
US5528118A (en) | 1994-04-01 | 1996-06-18 | Nikon Precision, Inc. | Guideless stage with isolated reaction stage |
JPH07283119A (en) * | 1994-04-14 | 1995-10-27 | Hitachi Ltd | Aligner and exposure method |
JP3193567B2 (en) | 1994-04-27 | 2001-07-30 | キヤノン株式会社 | Substrate storage container |
JP3555230B2 (en) | 1994-05-18 | 2004-08-18 | 株式会社ニコン | Projection exposure equipment |
JPH07335748A (en) | 1994-06-07 | 1995-12-22 | Miyazaki Oki Electric Co Ltd | Manufacture of semiconductor element |
EP0687956B2 (en) | 1994-06-17 | 2005-11-23 | Carl Zeiss SMT AG | Illumination device |
US5473465A (en) | 1994-06-24 | 1995-12-05 | Ye; Chun | Optical rotator and rotation-angle-variable half-waveplate rotator |
JP3800616B2 (en) | 1994-06-27 | 2006-07-26 | 株式会社ニコン | Target moving device, positioning device, and movable stage device |
JP3205663B2 (en) | 1994-06-29 | 2001-09-04 | 日本電子株式会社 | Charged particle beam equipment |
JP3090577B2 (en) | 1994-06-29 | 2000-09-25 | 浜松ホトニクス株式会社 | Conductor layer removal method and system |
JPH0822948A (en) | 1994-07-08 | 1996-01-23 | Nikon Corp | Scanning aligner |
JP3205468B2 (en) | 1994-07-25 | 2001-09-04 | 株式会社日立製作所 | Processing apparatus and exposure apparatus having wafer chuck |
JPH0846751A (en) | 1994-07-29 | 1996-02-16 | Sanyo Electric Co Ltd | Illumination optical system |
JP3613288B2 (en) | 1994-10-18 | 2005-01-26 | 株式会社ニコン | Cleaning device for exposure apparatus |
DE69533645T2 (en) | 1994-10-26 | 2006-02-23 | Seiko Epson Corp. | LIQUID CRYSTAL DEVICE AND ELECTRONIC DEVICE |
JPH08136475A (en) | 1994-11-14 | 1996-05-31 | Kawasaki Steel Corp | Surface observing apparatus for plate-like material |
JPH08151220A (en) | 1994-11-28 | 1996-06-11 | Nippon Sekiei Glass Kk | Method for molding quartz glass |
JPH08162397A (en) | 1994-11-30 | 1996-06-21 | Canon Inc | Projection light exposure device and manufacture of semiconductor device by use thereof |
JPH08171054A (en) | 1994-12-16 | 1996-07-02 | Nikon Corp | Reflection refraction optical system |
JPH08195375A (en) | 1995-01-17 | 1996-07-30 | Sony Corp | Spin-drying method and spin-dryer |
JPH08203803A (en) | 1995-01-24 | 1996-08-09 | Nikon Corp | Exposure apparatus |
JP3521544B2 (en) | 1995-05-24 | 2004-04-19 | 株式会社ニコン | Exposure equipment |
JP3312164B2 (en) | 1995-04-07 | 2002-08-05 | 日本電信電話株式会社 | Vacuum suction device |
JPH08297699A (en) | 1995-04-26 | 1996-11-12 | Hitachi Ltd | System and method for supporting production failure analysis and production system |
JPH08316125A (en) | 1995-05-19 | 1996-11-29 | Hitachi Ltd | Method and apparatus for projection exposing |
US5663785A (en) | 1995-05-24 | 1997-09-02 | International Business Machines Corporation | Diffraction pupil filler modified illuminator for annular pupil fills |
US5680588A (en) | 1995-06-06 | 1997-10-21 | International Business Machines Corporation | Method and system for optimizing illumination in an optical photolithography projection imaging system |
JP3531297B2 (en) | 1995-06-19 | 2004-05-24 | 株式会社ニコン | Projection exposure apparatus and projection exposure method |
KR0155830B1 (en) | 1995-06-19 | 1998-11-16 | 김광호 | Advanced exposure apparatus and exposure method using the same |
KR100474578B1 (en) | 1995-06-23 | 2005-06-21 | 가부시키가이샤 니콘 | Exp0sure apparatus |
JP3561556B2 (en) | 1995-06-29 | 2004-09-02 | 株式会社ルネサステクノロジ | Manufacturing method of mask |
JP3637639B2 (en) | 1995-07-10 | 2005-04-13 | 株式会社ニコン | Exposure equipment |
JPH09108551A (en) | 1995-08-11 | 1997-04-28 | Mitsubishi Rayon Co Ltd | Water purifier |
JPH0961686A (en) | 1995-08-23 | 1997-03-07 | Nikon Corp | Plastic lens |
JPH0982626A (en) | 1995-09-12 | 1997-03-28 | Nikon Corp | Projection exposure device |
JP3487527B2 (en) | 1995-09-14 | 2004-01-19 | 株式会社東芝 | Light refraction device |
US5815247A (en) | 1995-09-21 | 1998-09-29 | Siemens Aktiengesellschaft | Avoidance of pattern shortening by using off axis illumination with dipole and polarizing apertures |
JPH0992593A (en) | 1995-09-21 | 1997-04-04 | Nikon Corp | Projection exposure system |
JP3433403B2 (en) | 1995-10-16 | 2003-08-04 | 三星電子株式会社 | Stepper interface device |
JPH09134870A (en) | 1995-11-10 | 1997-05-20 | Hitachi Ltd | Method and device for forming pattern |
JPH09148406A (en) | 1995-11-24 | 1997-06-06 | Dainippon Screen Mfg Co Ltd | Substrate carrying apparatus |
JPH09151658A (en) | 1995-11-30 | 1997-06-10 | Nichibei Co Ltd | Runner connection device for mobile partition wall |
JPH09160004A (en) | 1995-12-01 | 1997-06-20 | Denso Corp | Liquid crystal cell and its empty cell |
JP3406957B2 (en) * | 1995-12-06 | 2003-05-19 | キヤノン株式会社 | Optical element and exposure apparatus using the same |
JPH09162106A (en) | 1995-12-11 | 1997-06-20 | Nikon Corp | Scanning aligner |
JPH09178415A (en) | 1995-12-25 | 1997-07-11 | Nikon Corp | Light wave interference measuring device |
JPH09184787A (en) | 1995-12-28 | 1997-07-15 | Olympus Optical Co Ltd | Analysis/evaluation device for optical lens |
JP3232473B2 (en) | 1996-01-10 | 2001-11-26 | キヤノン株式会社 | Projection exposure apparatus and device manufacturing method using the same |
JP3189661B2 (en) | 1996-02-05 | 2001-07-16 | ウシオ電機株式会社 | Light source device |
JP3576685B2 (en) | 1996-02-07 | 2004-10-13 | キヤノン株式会社 | Exposure apparatus and device manufacturing method using the same |
JPH09232213A (en) | 1996-02-26 | 1997-09-05 | Nikon Corp | Projection aligner |
JPH09227294A (en) | 1996-02-26 | 1997-09-02 | Toyo Commun Equip Co Ltd | Production of artificial quartz crystal |
JPH09243892A (en) | 1996-03-06 | 1997-09-19 | Matsushita Electric Ind Co Ltd | Optical element |
JP3782151B2 (en) | 1996-03-06 | 2006-06-07 | キヤノン株式会社 | Gas supply device for excimer laser oscillator |
JP3601174B2 (en) | 1996-03-14 | 2004-12-15 | 株式会社ニコン | Exposure apparatus and exposure method |
JPH09281077A (en) | 1996-04-16 | 1997-10-31 | Hitachi Ltd | Capillary electrophoretic apparatus |
RU2084941C1 (en) | 1996-05-06 | 1997-07-20 | Йелстаун Корпорейшн Н.В. | Adaptive optical module |
JP2691341B2 (en) | 1996-05-27 | 1997-12-17 | 株式会社ニコン | Projection exposure equipment |
JPH09326338A (en) | 1996-06-04 | 1997-12-16 | Nikon Corp | Production management system |
JPH09325255A (en) | 1996-06-06 | 1997-12-16 | Olympus Optical Co Ltd | Electronic camera |
JPH103039A (en) | 1996-06-14 | 1998-01-06 | Nikon Corp | Reflective/refractive optical system |
JPH102865A (en) | 1996-06-18 | 1998-01-06 | Nikon Corp | Inspecting device of reticle and inspecting method therefor |
JPH1020195A (en) | 1996-06-28 | 1998-01-23 | Nikon Corp | Cata-dioptric system |
JPH1032160A (en) | 1996-07-17 | 1998-02-03 | Toshiba Corp | Pattern exposure method and device |
JP3646415B2 (en) | 1996-07-18 | 2005-05-11 | ソニー株式会社 | Mask defect detection method |
JPH1038517A (en) | 1996-07-23 | 1998-02-13 | Canon Inc | Optical displacement measuring instrument |
JPH1079337A (en) | 1996-09-04 | 1998-03-24 | Nikon Corp | Projection aligner |
JP3646757B2 (en) | 1996-08-22 | 2005-05-11 | 株式会社ニコン | Projection exposure method and apparatus |
JPH1055713A (en) | 1996-08-08 | 1998-02-24 | Ushio Inc | Ultraviolet irradiation device |
JPH1062305A (en) | 1996-08-19 | 1998-03-06 | Advantest Corp | Sensitivity correcting method of ccd camera, and lcd panel display test system with ccd camera sensitivity correcting function |
JPH1082611A (en) | 1996-09-10 | 1998-03-31 | Nikon Corp | Apparatus for detecting position of face |
JPH1092735A (en) | 1996-09-13 | 1998-04-10 | Nikon Corp | Aligner |
JP2914315B2 (en) | 1996-09-20 | 1999-06-28 | 日本電気株式会社 | Scanning reduction projection exposure apparatus and distortion measuring method |
JPH10104427A (en) | 1996-10-03 | 1998-04-24 | Sankyo Seiki Mfg Co Ltd | Wavelength plate, and optical pickup unit equipped with the same |
US5825043A (en) * | 1996-10-07 | 1998-10-20 | Nikon Precision Inc. | Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus |
DE19781041B4 (en) | 1996-10-08 | 2010-02-18 | Citizen Holdings Co., Ltd., Nishitokyo | Optical device |
JPH10116760A (en) | 1996-10-08 | 1998-05-06 | Nikon Corp | Aligner and substrate holding device |
JPH10116778A (en) | 1996-10-09 | 1998-05-06 | Canon Inc | Scanning aligner |
JPH10116779A (en) | 1996-10-11 | 1998-05-06 | Nikon Corp | Stage device |
JP3955985B2 (en) | 1996-10-16 | 2007-08-08 | 株式会社ニコン | Mark position detection apparatus and method |
KR100191329B1 (en) | 1996-10-23 | 1999-06-15 | 윤종용 | Internet education method and device |
JPH10135099A (en) | 1996-10-25 | 1998-05-22 | Sony Corp | Exposure device and exposure method |
JP3991166B2 (en) | 1996-10-25 | 2007-10-17 | 株式会社ニコン | Illumination optical apparatus and exposure apparatus provided with the illumination optical apparatus |
JP4029183B2 (en) | 1996-11-28 | 2008-01-09 | 株式会社ニコン | Projection exposure apparatus and projection exposure method |
JP4029182B2 (en) | 1996-11-28 | 2008-01-09 | 株式会社ニコン | Exposure method |
JP3624065B2 (en) | 1996-11-29 | 2005-02-23 | キヤノン株式会社 | Substrate transport apparatus, semiconductor manufacturing apparatus, and exposure apparatus |
JPH10169249A (en) | 1996-12-12 | 1998-06-23 | Ohbayashi Corp | Base isolating structure |
JPH10189700A (en) | 1996-12-20 | 1998-07-21 | Sony Corp | Wafer holding mechanism |
DE69735016T2 (en) | 1996-12-24 | 2006-08-17 | Asml Netherlands B.V. | Lithographic device with two object holders |
US5841500A (en) | 1997-01-09 | 1998-11-24 | Tellium, Inc. | Wedge-shaped liquid crystal cell |
JP2910716B2 (en) | 1997-01-16 | 1999-06-23 | 日本電気株式会社 | Parametric analysis method of light intensity calculation |
JPH10206714A (en) | 1997-01-20 | 1998-08-07 | Canon Inc | Lens moving device |
JP2926325B2 (en) | 1997-01-23 | 1999-07-28 | 株式会社ニコン | Scanning exposure method |
JPH10209018A (en) | 1997-01-24 | 1998-08-07 | Nippon Telegr & Teleph Corp <Ntt> | X-ray mask frame and maintenance of x-ray mask |
JP3612920B2 (en) | 1997-02-14 | 2005-01-26 | ソニー株式会社 | Exposure apparatus for producing an optical recording medium master |
JPH10255319A (en) | 1997-03-12 | 1998-09-25 | Hitachi Maxell Ltd | Master disk exposure device and method therefor |
JPH10294268A (en) | 1997-04-16 | 1998-11-04 | Nikon Corp | Projection aligner and positioning method |
JP3747566B2 (en) | 1997-04-23 | 2006-02-22 | 株式会社ニコン | Immersion exposure equipment |
JPH118194A (en) | 1997-04-25 | 1999-01-12 | Nikon Corp | Exposure condition measuring method, and evaluation method and lithography system for projection optical system |
KR100261888B1 (en) | 1997-04-30 | 2000-07-15 | 전주범 | Method for processing the user information of a digital video disc recorder |
JP3817836B2 (en) | 1997-06-10 | 2006-09-06 | 株式会社ニコン | EXPOSURE APPARATUS, ITS MANUFACTURING METHOD, EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD |
JPH113856A (en) | 1997-06-11 | 1999-01-06 | Canon Inc | Method and device for projection exposure |
JPH113849A (en) | 1997-06-12 | 1999-01-06 | Sony Corp | Deformable illumination filter and semiconductor aligner |
JP3233341B2 (en) | 1997-06-12 | 2001-11-26 | 船井電機株式会社 | Bread maker and recording medium used therein |
JPH1114876A (en) | 1997-06-19 | 1999-01-22 | Nikon Corp | Optical structural body, projection exposing optical system incorporating the same and projection aligner |
JPH1116816A (en) | 1997-06-25 | 1999-01-22 | Nikon Corp | Projection aligner, method for exposure with the device, and method for manufacturing circuit device using the device |
JPH1140657A (en) | 1997-07-23 | 1999-02-12 | Nikon Corp | Sample holding device and scanning-type aligner |
US6829041B2 (en) | 1997-07-29 | 2004-12-07 | Canon Kabushiki Kaisha | Projection optical system and projection exposure apparatus having the same |
JP3413074B2 (en) | 1997-08-29 | 2003-06-03 | キヤノン株式会社 | Exposure apparatus and device manufacturing method |
JPH1187237A (en) | 1997-09-10 | 1999-03-30 | Nikon Corp | Alignment device |
JP4164905B2 (en) | 1997-09-25 | 2008-10-15 | 株式会社ニコン | Electromagnetic force motor, stage apparatus and exposure apparatus |
JP2000106340A (en) | 1997-09-26 | 2000-04-11 | Nikon Corp | Aligner, scanning exposure method, and stage device |
JPH11111819A (en) | 1997-09-30 | 1999-04-23 | Asahi Kasei Micro Syst Co Ltd | Wafer fixing method and light exposing device |
JPH11111818A (en) | 1997-10-03 | 1999-04-23 | Oki Electric Ind Co Ltd | Holding device and holder for wafer |
JPH11111601A (en) | 1997-10-06 | 1999-04-23 | Nikon Corp | Method and device for exposure |
JPH11195602A (en) | 1997-10-07 | 1999-07-21 | Nikon Corp | Projection exposing method and device |
JP3097620B2 (en) | 1997-10-09 | 2000-10-10 | 日本電気株式会社 | Scanning reduction projection exposure equipment |
JP4210871B2 (en) | 1997-10-31 | 2009-01-21 | 株式会社ニコン | Exposure equipment |
JPH11142556A (en) | 1997-11-13 | 1999-05-28 | Nikon Corp | Controlling method for stage, stage device and exposing device thereof |
JPH11150062A (en) | 1997-11-14 | 1999-06-02 | Nikon Corp | Vibration isolator, aligner, and method for canceling vibration of vibration canceling base |
JPH11162831A (en) | 1997-11-21 | 1999-06-18 | Nikon Corp | Projection aligner and projection aligning method |
WO1999027568A1 (en) | 1997-11-21 | 1999-06-03 | Nikon Corporation | Projection aligner and projection exposure method |
JPH11283903A (en) | 1998-03-30 | 1999-10-15 | Nikon Corp | Projection optical system inspection device and projection aligner provided with the device |
JPH11163103A (en) | 1997-11-25 | 1999-06-18 | Hitachi Ltd | Method and device for manufacturing semiconductor device |
JPH11159571A (en) | 1997-11-28 | 1999-06-15 | Nikon Corp | Machine device, exposure device and its operating method |
JPH11166990A (en) | 1997-12-04 | 1999-06-22 | Nikon Corp | Stage device, exposure device and scanning exposure device |
JPH11176727A (en) | 1997-12-11 | 1999-07-02 | Nikon Corp | Projection aligner |
JP3673633B2 (en) | 1997-12-16 | 2005-07-20 | キヤノン株式会社 | Assembling and adjusting method of projection optical system |
WO1999031716A1 (en) | 1997-12-16 | 1999-06-24 | Nikon Corporation | Aligner, exposure method and method of manufacturing device |
TW449672B (en) | 1997-12-25 | 2001-08-11 | Nippon Kogaku Kk | Process and apparatus for manufacturing photomask and method of manufacturing the same |
AU1689899A (en) | 1997-12-26 | 1999-07-19 | Nikon Corporation | Exposure method and exposure apparatus |
JPH11204390A (en) | 1998-01-14 | 1999-07-30 | Canon Inc | Semiconductor manufacturing equipment and device manufacture |
JPH11219882A (en) | 1998-02-02 | 1999-08-10 | Nikon Corp | Stage and aligner |
JP3820728B2 (en) | 1998-02-04 | 2006-09-13 | 東レ株式会社 | Substrate measuring device |
JPH11288879A (en) | 1998-02-04 | 1999-10-19 | Hitachi Ltd | Exposure conditions detecting method and device thereof, and manufacture of semiconductor device |
JPH11233434A (en) | 1998-02-17 | 1999-08-27 | Nikon Corp | Exposure condition determining method, exposure method, aligner, and manufacture of device |
JP4207240B2 (en) | 1998-02-20 | 2009-01-14 | 株式会社ニコン | Illuminometer for exposure apparatus, lithography system, illuminometer calibration method, and microdevice manufacturing method |
JPH11239758A (en) | 1998-02-26 | 1999-09-07 | Dainippon Screen Mfg Co Ltd | Substrate treatment apparatus |
JPH11260791A (en) | 1998-03-10 | 1999-09-24 | Toshiba Mach Co Ltd | Drying method of semiconductor wafer and drying equipment |
JPH11260686A (en) | 1998-03-11 | 1999-09-24 | Toshiba Corp | Exposure method |
JPH11264756A (en) | 1998-03-18 | 1999-09-28 | Tokyo Electron Ltd | Level detector and level detecting method, and substrate processing device |
WO1999049366A1 (en) | 1998-03-20 | 1999-09-30 | Nikon Corporation | Photomask and projection exposure system |
JP4329266B2 (en) * | 1998-03-24 | 2009-09-09 | 株式会社ニコン | Illumination apparatus, exposure method and apparatus, and device manufacturing method |
AU2747999A (en) | 1998-03-26 | 1999-10-18 | Nikon Corporation | Projection exposure method and system |
KR20010042133A (en) | 1998-03-26 | 2001-05-25 | 오노 시게오 | Exposure method and system, photomask, method of manufacturing photomask, micro-device and method of manufacturing micro-device |
DE69931690T2 (en) | 1998-04-08 | 2007-06-14 | Asml Netherlands B.V. | Lithographic apparatus |
JPH11307610A (en) | 1998-04-22 | 1999-11-05 | Nikon Corp | Substrate transfer equipment and aligner |
JPH11312631A (en) | 1998-04-27 | 1999-11-09 | Nikon Corp | Illuminating optical device and aligner |
US6238063B1 (en) | 1998-04-27 | 2001-05-29 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
JP4090115B2 (en) | 1998-06-09 | 2008-05-28 | 信越ポリマー株式会社 | Substrate storage container |
JP3985346B2 (en) | 1998-06-12 | 2007-10-03 | 株式会社ニコン | Projection exposure apparatus, projection exposure apparatus adjustment method, and projection exposure method |
WO1999066370A1 (en) | 1998-06-17 | 1999-12-23 | Nikon Corporation | Method for producing mask |
JP2000012453A (en) | 1998-06-18 | 2000-01-14 | Nikon Corp | Aligner and its using method, exposure method, and manufacturing method of mask |
JP2000021748A (en) | 1998-06-30 | 2000-01-21 | Canon Inc | Method of exposure and exposure equipment |
JP2000021742A (en) | 1998-06-30 | 2000-01-21 | Canon Inc | Method of exposure and exposure equipment |
JP2000032403A (en) | 1998-07-14 | 2000-01-28 | Sony Corp | Data transmission method, data transmitter and receiver thereof |
JP2000029202A (en) | 1998-07-15 | 2000-01-28 | Nikon Corp | Production of mask |
JP2000036449A (en) | 1998-07-17 | 2000-02-02 | Nikon Corp | Aligner |
JP2000058436A (en) | 1998-08-11 | 2000-02-25 | Nikon Corp | Projection aligner and exposure method |
AU4930099A (en) | 1998-08-18 | 2000-03-14 | Nikon Corporation | Illuminator and projection exposure apparatus |
JP2000081320A (en) | 1998-09-03 | 2000-03-21 | Canon Inc | Face position detector and fabrication of device employing it |
JP2000092815A (en) | 1998-09-10 | 2000-03-31 | Canon Inc | Stage device and aligner using the same |
JP4132397B2 (en) | 1998-09-16 | 2008-08-13 | 積水化学工業株式会社 | Photocurable resin composition, liquid crystal inlet sealing agent and liquid crystal display cell |
JP2000097616A (en) | 1998-09-22 | 2000-04-07 | Nikon Corp | Interferometer |
JP4065923B2 (en) | 1998-09-29 | 2008-03-26 | 株式会社ニコン | Illumination apparatus, projection exposure apparatus including the illumination apparatus, projection exposure method using the illumination apparatus, and adjustment method of the projection exposure apparatus |
JP2000121491A (en) | 1998-10-20 | 2000-04-28 | Nikon Corp | Evaluation method for optical system |
JP2001176766A (en) | 1998-10-29 | 2001-06-29 | Nikon Corp | Illuminator and projection aligner |
JP2000147346A (en) | 1998-11-09 | 2000-05-26 | Toshiba Corp | Fitting mechanism for mold lens |
JP2000180371A (en) | 1998-12-11 | 2000-06-30 | Sharp Corp | Foreign matter inspecting apparatus and semiconductor process apparatus |
US6563567B1 (en) | 1998-12-17 | 2003-05-13 | Nikon Corporation | Method and apparatus for illuminating a surface using a projection imaging apparatus |
EP1014196A3 (en) | 1998-12-17 | 2002-05-29 | Nikon Corporation | Method and system of illumination for a projection optical apparatus |
US6406148B1 (en) | 1998-12-31 | 2002-06-18 | Texas Instruments Incorporated | Electronic color switching in field sequential video displays |
JP4146952B2 (en) | 1999-01-11 | 2008-09-10 | キヤノン株式会社 | Exposure apparatus and device manufacturing method |
JP2000208407A (en) | 1999-01-19 | 2000-07-28 | Nikon Corp | Aligner |
JP2000243684A (en) | 1999-02-18 | 2000-09-08 | Canon Inc | Aligner and device manufacture |
JP2000240717A (en) | 1999-02-19 | 2000-09-05 | Canon Inc | Active vibration resistant device |
JP2000252201A (en) | 1999-03-02 | 2000-09-14 | Nikon Corp | Method and device for detecting surface position, method and device for projection exposure using, and manufacture of semiconductor device |
JP2000283889A (en) | 1999-03-31 | 2000-10-13 | Nikon Corp | Inspection device and method of projection optical system, aligner, and manufacture of micro device |
JP2000286176A (en) | 1999-03-31 | 2000-10-13 | Hitachi Ltd | Semiconductor substrate processing unit and display method of its processing status |
JP2001174615A (en) | 1999-04-15 | 2001-06-29 | Nikon Corp | Diffraction optical element, method of producing the element, illumination device equipped with the element, projection exposure device, exposure method, light homogenizer, and method of producing the light homogenizer |
AU4143000A (en) * | 1999-04-28 | 2000-11-17 | Nikon Corporation | Exposure method and apparatus |
DE19921795A1 (en) | 1999-05-11 | 2000-11-23 | Zeiss Carl Fa | Projection exposure system and exposure method of microlithography |
US6498869B1 (en) | 1999-06-14 | 2002-12-24 | Xiaotian Steve Yao | Devices for depolarizing polarized light |
JP2000003874A (en) | 1999-06-15 | 2000-01-07 | Nikon Corp | Exposure method and aligner |
JP2001007015A (en) | 1999-06-25 | 2001-01-12 | Canon Inc | Stage device |
WO2001003170A1 (en) | 1999-06-30 | 2001-01-11 | Nikon Corporation | Exposure method and device |
US6769273B1 (en) | 1999-07-05 | 2004-08-03 | Nikon Corporation | Method of manufacturing silica glass member and silica glass member obtained by the method |
JP2001020951A (en) | 1999-07-07 | 2001-01-23 | Toto Ltd | Static pressure gas bearing |
JP2001023996A (en) | 1999-07-08 | 2001-01-26 | Sony Corp | Manufacturing method of semiconductor |
DE10029938A1 (en) | 1999-07-09 | 2001-07-05 | Zeiss Carl | Optical system for projection exposure device, includes optical element which consists of magnesium fluoride, as main constituent |
JP2001037201A (en) | 1999-07-21 | 2001-02-09 | Nikon Corp | Motor device, stage equipment and exposure device |
JP2001100311A (en) | 1999-07-23 | 2001-04-13 | Seiko Epson Corp | Projector |
JP2001044097A (en) | 1999-07-26 | 2001-02-16 | Matsushita Electric Ind Co Ltd | Aligner |
US6280034B1 (en) | 1999-07-30 | 2001-08-28 | Philips Electronics North America Corporation | Efficient two-panel projection system employing complementary illumination |
JP3110023B1 (en) | 1999-09-02 | 2000-11-20 | 岩堀 雅行 | Fuel release device |
JP4362857B2 (en) | 1999-09-10 | 2009-11-11 | 株式会社ニコン | Light source apparatus and exposure apparatus |
JP2001083472A (en) | 1999-09-10 | 2001-03-30 | Nikon Corp | Optical modulating device, light source device and exposure source |
EP1139521A4 (en) | 1999-09-10 | 2006-03-22 | Nikon Corp | Light source and wavelength stabilization control method, exposure apparatus and exposure method, method for producing exposure apparatus, and device manufacturing method and device |
WO2001022480A1 (en) | 1999-09-20 | 2001-03-29 | Nikon Corporation | Parallel link mechanism, exposure system and method of manufacturing the same, and method of manufacturing devices |
WO2001023933A1 (en) | 1999-09-29 | 2001-04-05 | Nikon Corporation | Projection optical system |
WO2001023935A1 (en) | 1999-09-29 | 2001-04-05 | Nikon Corporation | Projection exposure method and apparatus and projection optical system |
JP2001097734A (en) | 1999-09-30 | 2001-04-10 | Toshiba Ceramics Co Ltd | Quartz glass container and method for producing the same |
KR100625625B1 (en) | 1999-10-07 | 2006-09-20 | 가부시키가이샤 니콘 | Substrate, stage device, method of driving stage, exposure system and exposure method |
JP2001110707A (en) | 1999-10-08 | 2001-04-20 | Orc Mfg Co Ltd | Optical system of peripheral aligner |
JP2001118773A (en) | 1999-10-18 | 2001-04-27 | Nikon Corp | Stage device and exposure system |
JP2001135560A (en) | 1999-11-04 | 2001-05-18 | Nikon Corp | Illuminating optical device, exposure, and method of manufacturing micro-device |
WO2001035451A1 (en) * | 1999-11-09 | 2001-05-17 | Nikon Corporation | Illuminator, aligner, and method for fabricating device |
JP2001144004A (en) | 1999-11-16 | 2001-05-25 | Nikon Corp | Exposing method, aligner and method of manufacturing device |
JP2001167996A (en) | 1999-12-10 | 2001-06-22 | Tokyo Electron Ltd | Substrate treatment apparatus |
EP1109067B1 (en) | 1999-12-13 | 2006-05-24 | ASML Netherlands B.V. | Illuminator |
TW546550B (en) | 1999-12-13 | 2003-08-11 | Asml Netherlands Bv | An illuminator for a lithography apparatus, a lithography apparatus comprising such an illuminator, and a manufacturing method employing such a lithography apparatus |
JP2002118058A (en) | 2000-01-13 | 2002-04-19 | Nikon Corp | Projection aligner and projection exposure method |
JP2001203140A (en) | 2000-01-20 | 2001-07-27 | Nikon Corp | Stage device, aligner and device manufacturing method |
JP3413485B2 (en) | 2000-01-31 | 2003-06-03 | 住友重機械工業株式会社 | Thrust ripple measurement method for linear motor |
JP2005233979A (en) | 2000-02-09 | 2005-09-02 | Nikon Corp | Catadioptric system |
JP4018309B2 (en) | 2000-02-14 | 2007-12-05 | 松下電器産業株式会社 | Circuit parameter extraction method, semiconductor integrated circuit design method and apparatus |
JP2001228404A (en) | 2000-02-14 | 2001-08-24 | Nikon Engineering Co Ltd | Vertical illumination type microscope, inspection apparatus for probe card and method for manufacturing probe card |
JP3302965B2 (en) | 2000-02-15 | 2002-07-15 | 株式会社東芝 | Inspection method for exposure equipment |
JP2001228401A (en) | 2000-02-16 | 2001-08-24 | Canon Inc | Projection optical system, projection aligner by this projection optical system and method for manufacturing device |
KR20010085493A (en) | 2000-02-25 | 2001-09-07 | 시마무라 기로 | Exposure apparatus, method for adjusting the same, and method for manufacturing device using the exposure apparatus |
JP2002100561A (en) | 2000-07-19 | 2002-04-05 | Nikon Corp | Aligning method and aligner and method for fabricating device |
JP2001313250A (en) | 2000-02-25 | 2001-11-09 | Nikon Corp | Aligner, its adjusting method, and method for fabricating device using aligner |
JP2001242269A (en) | 2000-03-01 | 2001-09-07 | Nikon Corp | Stage device, stage driving method, exposure device and exposure method |
DE10010131A1 (en) * | 2000-03-03 | 2001-09-06 | Zeiss Carl | Microlithography projection exposure with tangential polarization involves using light with preferred direction of polarization oriented perpendicularly with respect to plane of incidence |
US7301605B2 (en) | 2000-03-03 | 2007-11-27 | Nikon Corporation | Projection exposure apparatus and method, catadioptric optical system and manufacturing method of devices |
JP2001265581A (en) | 2000-03-21 | 2001-09-28 | Canon Inc | System and method for preventing illegal use of software |
JP2001267227A (en) | 2000-03-21 | 2001-09-28 | Canon Inc | Vibration isolating system, exposure system, and device manufacturing method |
JP2001338868A (en) | 2000-03-24 | 2001-12-07 | Nikon Corp | Illuminance-measuring device and aligner |
JP2001272764A (en) * | 2000-03-24 | 2001-10-05 | Canon Inc | Photomask for projection exposure and for projection exposure method using the photomask |
JP4689064B2 (en) | 2000-03-30 | 2011-05-25 | キヤノン株式会社 | Exposure apparatus and device manufacturing method |
JP2001282526A (en) | 2000-03-31 | 2001-10-12 | Canon Inc | Software management device, its method and computer readable storage medium |
JP3927753B2 (en) * | 2000-03-31 | 2007-06-13 | キヤノン株式会社 | Exposure apparatus and device manufacturing method |
JP2001296105A (en) | 2000-04-12 | 2001-10-26 | Nikon Corp | Surface-position detecting apparatus, and aligner and aligning method using the detecting apparatus |
JP2001297976A (en) | 2000-04-17 | 2001-10-26 | Canon Inc | Method of exposure and aligner |
JP2001307983A (en) | 2000-04-20 | 2001-11-02 | Nikon Corp | Stage device and aligner |
JP3514439B2 (en) | 2000-04-20 | 2004-03-31 | キヤノン株式会社 | Support structure for optical element, exposure apparatus configured using the support structure, and method for manufacturing devices and the like using the apparatus |
JP2001304332A (en) | 2000-04-24 | 2001-10-31 | Canon Inc | Active vibration damping device |
JP2002014005A (en) | 2000-04-25 | 2002-01-18 | Nikon Corp | Measuring method of spatial image, measuring method of imaging characteristic, measuring device for spatial image, and exposuring device |
JP2003532282A (en) | 2000-04-25 | 2003-10-28 | エーエスエムエル ユーエス,インコーポレイテッド | Optical reduction system without reticle diffraction induced bias |
JP2002057097A (en) | 2000-05-31 | 2002-02-22 | Nikon Corp | Aligner, and microdevice and its manufacturing method |
JP2002016124A (en) | 2000-06-28 | 2002-01-18 | Sony Corp | Wafer transporting arm mechanism |
JP2002015978A (en) | 2000-06-29 | 2002-01-18 | Canon Inc | Exposure system |
JP2002043213A (en) | 2000-07-25 | 2002-02-08 | Nikon Corp | Stage device and exposure system |
EP1744193A1 (en) | 2000-08-18 | 2007-01-17 | Nikon Corporation | Optical element holding device with drive mechanism allowing movement of the element along three coordinate axes |
JP2002071513A (en) | 2000-08-28 | 2002-03-08 | Nikon Corp | Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective |
JP4504537B2 (en) | 2000-08-29 | 2010-07-14 | 芝浦メカトロニクス株式会社 | Spin processing equipment |
JP2002075835A (en) * | 2000-08-30 | 2002-03-15 | Nikon Corp | Illumination optical device and exposure system with the same |
US6373614B1 (en) | 2000-08-31 | 2002-04-16 | Cambridge Research Instrumentation Inc. | High performance polarization controller and polarization sensor |
JP2002093686A (en) | 2000-09-19 | 2002-03-29 | Nikon Corp | Stage device and aligner |
JP2002093690A (en) | 2000-09-19 | 2002-03-29 | Hitachi Ltd | Method for manufacturing semiconductor device |
JP2002091922A (en) | 2000-09-20 | 2002-03-29 | Fujitsu General Ltd | Method and system for distributing and managing application software and contents |
JP4245286B2 (en) | 2000-10-23 | 2009-03-25 | 株式会社ニコン | Catadioptric optical system and exposure apparatus provided with the optical system |
JP2002141270A (en) | 2000-11-01 | 2002-05-17 | Nikon Corp | Exposing system |
US20020075467A1 (en) | 2000-12-20 | 2002-06-20 | Nikon Corporation | Exposure apparatus and method |
JP2002158157A (en) | 2000-11-17 | 2002-05-31 | Nikon Corp | Illumination optical device and aligner and method for fabricating microdevice |
JP2002162655A (en) * | 2000-11-27 | 2002-06-07 | Sony Corp | Optical apparatus |
JP2002170495A (en) | 2000-11-28 | 2002-06-14 | Akira Sekino | Integrate barrier rib synthetic resin rear substrate |
JP2002190438A (en) | 2000-12-21 | 2002-07-05 | Nikon Corp | Projection aligner |
JP2002198284A (en) | 2000-12-25 | 2002-07-12 | Nikon Corp | Stage device and projection aligner |
JP2002203763A (en) | 2000-12-27 | 2002-07-19 | Nikon Corp | Optical characteristic measuring method and device, signal sensitivity setting method, exposure unit and device manufacturing method |
JP2002195912A (en) | 2000-12-27 | 2002-07-10 | Nikon Corp | Method and apparatus for measuring optical property, exposure apparatus and method for producing device |
JP2002202221A (en) | 2000-12-28 | 2002-07-19 | Nikon Corp | Position detection method, position detector, optical characteristic measuring method, optical characteristic measuring device, exposure device, and device manufacturing method |
JP3495992B2 (en) | 2001-01-26 | 2004-02-09 | キヤノン株式会社 | Correction apparatus, exposure apparatus, device manufacturing method and device |
US6563566B2 (en) | 2001-01-29 | 2003-05-13 | International Business Machines Corporation | System and method for printing semiconductor patterns using an optimized illumination and reticle |
JP2002229215A (en) * | 2001-01-30 | 2002-08-14 | Nikon Corp | Exposure method and exposure device |
JP2002227924A (en) | 2001-01-31 | 2002-08-14 | Canon Inc | Vibration control damper and exposure apparatus with vibration control damper |
WO2002063664A1 (en) | 2001-02-06 | 2002-08-15 | Nikon Corporation | Exposure system and exposure method, and device production method |
TWI285295B (en) | 2001-02-23 | 2007-08-11 | Asml Netherlands Bv | Illumination optimization in lithography |
DE10113612A1 (en) | 2001-02-23 | 2002-09-05 | Zeiss Carl | Sub-objective for illumination system has two lens groups, second lens group with at least first lens with negative refractive index and at least second lens with positive refractive index |
JP4714403B2 (en) | 2001-02-27 | 2011-06-29 | エーエスエムエル ユーエス,インコーポレイテッド | Method and apparatus for exposing a dual reticle image |
JP2002258487A (en) | 2001-02-28 | 2002-09-11 | Nikon Corp | Method and device for aligner |
JP4501292B2 (en) | 2001-03-05 | 2010-07-14 | コニカミノルタホールディングス株式会社 | Coating substrate, coating material coating method, and element manufacturing method |
JP2002289505A (en) | 2001-03-28 | 2002-10-04 | Nikon Corp | Aligner, method for adjusting the aligner and method for manufacturing micro-device |
WO2002080185A1 (en) | 2001-03-28 | 2002-10-10 | Nikon Corporation | Stage device, exposure device, and method of manufacturing device |
JP2002365783A (en) | 2001-04-05 | 2002-12-18 | Sony Corp | Apparatus of forming mask pattern, apparatus and method of manufacturing high-resolution mask as well as method of forming resist pattern |
JP2002305140A (en) | 2001-04-06 | 2002-10-18 | Nikon Corp | Aligner and substrate processing system |
WO2002084850A1 (en) | 2001-04-09 | 2002-10-24 | Kabushiki Kaisha Yaskawa Denki | Canned linear motor armature and canned linear motor |
EP1384117A2 (en) | 2001-04-24 | 2004-01-28 | Canon Kabushiki Kaisha | Exposure method and apparatus |
JP3937903B2 (en) | 2001-04-24 | 2007-06-27 | キヤノン株式会社 | Exposure method and apparatus |
JP2002324743A (en) | 2001-04-24 | 2002-11-08 | Canon Inc | Exposing method and equipment thereof |
JP2002329651A (en) | 2001-04-27 | 2002-11-15 | Nikon Corp | Aligner, method of manufacturing aligner and method of manufacturing micro-device |
DE10123725A1 (en) | 2001-05-15 | 2002-11-21 | Zeiss Carl | Objective for microlithographic projection, includes lens element with axis perpendicular to specified fluoride crystal plane |
EP1390783A2 (en) | 2001-05-15 | 2004-02-25 | Carl Zeiss | Lens system consisting of fluoride crystal lenses |
DE10124566A1 (en) * | 2001-05-15 | 2002-11-21 | Zeiss Carl | Optical imaging system with polarizing agents and quartz crystal plate therefor |
DE10124474A1 (en) | 2001-05-19 | 2002-11-21 | Zeiss Carl | Microlithographic exposure involves compensating path difference by controlled variation of first and/or second optical paths; image plane difference is essentially independent of incident angle |
US7053988B2 (en) | 2001-05-22 | 2006-05-30 | Carl Zeiss Smt Ag. | Optically polarizing retardation arrangement, and microlithography projection exposure machine |
TW544758B (en) * | 2001-05-23 | 2003-08-01 | Nikon Corp | Lighting optical device, exposure system, and production method of micro device |
JP2002353105A (en) | 2001-05-24 | 2002-12-06 | Nikon Corp | Illumination optical apparatus, aligner provided with the same and method of manufacturing microdevice |
JP2002359176A (en) | 2001-05-31 | 2002-12-13 | Canon Inc | Luminaire, illumination control method, aligner, device and manufacturing method thereof |
JP4622160B2 (en) | 2001-05-31 | 2011-02-02 | 旭硝子株式会社 | Diffraction grating integrated optical rotator and optical head device |
JP2002359174A (en) | 2001-05-31 | 2002-12-13 | Mitsubishi Electric Corp | Exposure process managing system, method therefor and program for managing exposure process |
JP4689081B2 (en) | 2001-06-06 | 2011-05-25 | キヤノン株式会社 | Exposure apparatus, adjustment method, and device manufacturing method |
JP3734432B2 (en) | 2001-06-07 | 2006-01-11 | 三星電子株式会社 | Mask transfer device, mask transfer system, and mask transfer method |
JPWO2002101804A1 (en) | 2001-06-11 | 2004-09-30 | 株式会社ニコン | Exposure apparatus, device manufacturing method, and temperature stabilized flow path apparatus |
JP2002367523A (en) | 2001-06-12 | 2002-12-20 | Matsushita Electric Ind Co Ltd | Plasma display panel and method of manufacturing the same |
WO2002103766A1 (en) | 2001-06-13 | 2002-12-27 | Nikon Corporation | Scanning exposure method and scanning exposure system, and device production method |
JP2002373849A (en) | 2001-06-15 | 2002-12-26 | Canon Inc | Aligner |
US6788385B2 (en) | 2001-06-21 | 2004-09-07 | Nikon Corporation | Stage device, exposure apparatus and method |
JP4829429B2 (en) * | 2001-06-27 | 2011-12-07 | キヤノン株式会社 | Transmittance measuring device |
WO2003003429A1 (en) | 2001-06-28 | 2003-01-09 | Nikon Corporation | Projection optical system, exposure system and method |
US6831731B2 (en) | 2001-06-28 | 2004-12-14 | Nikon Corporation | Projection optical system and an exposure apparatus with the projection optical system |
JP2003015314A (en) | 2001-07-02 | 2003-01-17 | Nikon Corp | Illumination optical device and exposure device provided with the same |
JP2003015040A (en) | 2001-07-04 | 2003-01-15 | Nikon Corp | Projection optical system and exposure device equipped therewith |
JP2003017003A (en) | 2001-07-04 | 2003-01-17 | Canon Inc | Lamp and light source device |
JP3507459B2 (en) | 2001-07-09 | 2004-03-15 | キヤノン株式会社 | Illumination apparatus, exposure apparatus, and device manufacturing method |
JP2003028673A (en) | 2001-07-10 | 2003-01-29 | Canon Inc | Optical encoder, semiconductor manufacturing apparatus, device manufacturing method, semiconductor manufacturing plant and maintaining method for semiconductor manufacturing apparatus |
EP1280007B1 (en) | 2001-07-24 | 2008-06-18 | ASML Netherlands B.V. | Imaging apparatus |
JP2003045712A (en) | 2001-07-26 | 2003-02-14 | Japan Aviation Electronics Industry Ltd | Waterproof coil and manufacturing method therefor |
JP4522024B2 (en) | 2001-07-27 | 2010-08-11 | キヤノン株式会社 | Mercury lamp, illumination device and exposure device |
JP2003043223A (en) | 2001-07-30 | 2003-02-13 | Nikon Corp | Beam splitter and wave plate made of crystal material, and optical device, exposure device and inspection device equipped with the crystal optical parts |
JP2003059799A (en) | 2001-08-10 | 2003-02-28 | Nikon Corp | Illumination optical system, exposure system, and method of manufacturing microdevice |
JP2003059803A (en) | 2001-08-14 | 2003-02-28 | Canon Inc | Aligner |
JP2003068600A (en) | 2001-08-22 | 2003-03-07 | Canon Inc | Aligner and cooling method of substrate chuck |
JP2003068607A (en) | 2001-08-23 | 2003-03-07 | Nikon Corp | Aligner and exposure method |
JP2003068604A (en) | 2001-08-23 | 2003-03-07 | Nikon Corp | Illumination optical equipment and aligner using the illumination optical equipment |
TW554411B (en) | 2001-08-23 | 2003-09-21 | Nikon Corp | Exposure apparatus |
KR100452928B1 (en) | 2001-08-31 | 2004-10-14 | 안희석 | Noodle of Potato and Method for manufacturing there of |
JP2003075703A (en) | 2001-08-31 | 2003-03-12 | Konica Corp | Optical unit and optical device |
WO2003021352A1 (en) | 2001-08-31 | 2003-03-13 | Canon Kabushiki Kaisha | Reticle and optical characteristic measuring method |
JP4183166B2 (en) | 2001-08-31 | 2008-11-19 | 京セラ株式会社 | Positioning device components |
JP2003081654A (en) | 2001-09-06 | 2003-03-19 | Toshiba Ceramics Co Ltd | Synthetic quartz glass, and production method therefor |
JPWO2003023832A1 (en) | 2001-09-07 | 2004-12-24 | 株式会社ニコン | Exposure method and apparatus, and device manufacturing method |
JP2003084445A (en) | 2001-09-13 | 2003-03-19 | Canon Inc | Scanning type exposure device and exposure method |
JP2003090978A (en) * | 2001-09-17 | 2003-03-28 | Canon Inc | Illumination device, exposure device and method for manufacturing device |
JP4160286B2 (en) | 2001-09-21 | 2008-10-01 | 東芝マイクロエレクトロニクス株式会社 | LSI pattern dimension measurement location selection method |
JP3910032B2 (en) | 2001-09-25 | 2007-04-25 | 大日本スクリーン製造株式会社 | Substrate developing device |
JP2003114387A (en) | 2001-10-04 | 2003-04-18 | Nikon Corp | Cata-dioptic system and projection exposure device equipped with the same system |
JP4412450B2 (en) | 2001-10-05 | 2010-02-10 | 信越化学工業株式会社 | Anti-reflective filter |
JP2003124095A (en) | 2001-10-11 | 2003-04-25 | Nikon Corp | Projection exposure method, projection aligner, and device manufacturing method |
JP2003130132A (en) | 2001-10-22 | 2003-05-08 | Nec Ameniplantex Ltd | Vibration isolation mechanism |
US6970232B2 (en) | 2001-10-30 | 2005-11-29 | Asml Netherlands B.V. | Structures and methods for reducing aberration in integrated circuit fabrication systems |
JP2003202523A (en) * | 2001-11-02 | 2003-07-18 | Nec Viewtechnology Ltd | Polarization unit, polarization illumination device and projection type display device using the illumination device |
US6577379B1 (en) | 2001-11-05 | 2003-06-10 | Micron Technology, Inc. | Method and apparatus for shaping and/or orienting radiation irradiating a microlithographic substrate |
JP4362999B2 (en) | 2001-11-12 | 2009-11-11 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
JP4307813B2 (en) | 2001-11-14 | 2009-08-05 | 株式会社リコー | Optical deflection method, optical deflection apparatus, method of manufacturing the optical deflection apparatus, optical information processing apparatus, image forming apparatus, image projection display apparatus, and optical transmission apparatus including the optical deflection apparatus |
JP2003166856A (en) | 2001-11-29 | 2003-06-13 | Fuji Electric Co Ltd | Optical encoder |
JP2003161882A (en) | 2001-11-29 | 2003-06-06 | Nikon Corp | Projection optical system, exposure apparatus and exposing method |
JP3809095B2 (en) | 2001-11-29 | 2006-08-16 | ペンタックス株式会社 | Light source system for exposure apparatus and exposure apparatus |
JP3945569B2 (en) | 2001-12-06 | 2007-07-18 | 東京応化工業株式会社 | Development device |
JP2003249443A (en) | 2001-12-21 | 2003-09-05 | Nikon Corp | Stage apparatus, stage position-controlling method, exposure method and projection aligner, and device- manufacturing method |
JP2003188087A (en) | 2001-12-21 | 2003-07-04 | Sony Corp | Aligning method and aligner and method for manufacturing semiconductor device |
TW200301848A (en) | 2002-01-09 | 2003-07-16 | Nikon Corp | Exposure apparatus and exposure method |
TW200302507A (en) | 2002-01-21 | 2003-08-01 | Nikon Corp | Stage device and exposure device |
JP3809381B2 (en) | 2002-01-28 | 2006-08-16 | キヤノン株式会社 | Linear motor, stage apparatus, exposure apparatus, and device manufacturing method |
JP2003229347A (en) | 2002-01-31 | 2003-08-15 | Canon Inc | Semiconductor manufacturing device |
JP2003233001A (en) | 2002-02-07 | 2003-08-22 | Canon Inc | Reflection type projection optical system, exposure device, and method for manufacturing device |
US20050134825A1 (en) | 2002-02-08 | 2005-06-23 | Carl Zeiss Smt Ag | Polarization-optimized illumination system |
DE10206061A1 (en) | 2002-02-08 | 2003-09-04 | Carl Zeiss Semiconductor Mfg S | Polarization-optimized lighting system |
JP2003240906A (en) | 2002-02-20 | 2003-08-27 | Dainippon Printing Co Ltd | Antireflection body and method for manufacturing the same |
JP2003257812A (en) | 2002-02-27 | 2003-09-12 | Nikon Corp | Evaluating method for imaging optical system, adjusting method for the same, aligner, and alignment method |
JP2003258071A (en) | 2002-02-28 | 2003-09-12 | Nikon Corp | Substrate holding apparatus and aligner |
AU2003211559A1 (en) | 2002-03-01 | 2003-09-16 | Nikon Corporation | Projection optical system adjustment method, prediction method, evaluation method, adjustment method, exposure method, exposure device, program, and device manufacturing method |
JP2003263119A (en) | 2002-03-07 | 2003-09-19 | Fuji Xerox Co Ltd | Rib-attached electrode and its manufacturing method |
JP3984841B2 (en) | 2002-03-07 | 2007-10-03 | キヤノン株式会社 | Distortion measuring apparatus, distortion suppressing apparatus, exposure apparatus, and device manufacturing method |
DE10210899A1 (en) | 2002-03-08 | 2003-09-18 | Zeiss Carl Smt Ag | Refractive projection lens for immersion lithography |
JP3975787B2 (en) | 2002-03-12 | 2007-09-12 | ソニー株式会社 | Solid-state image sensor |
JP4100011B2 (en) | 2002-03-13 | 2008-06-11 | セイコーエプソン株式会社 | Surface treatment apparatus, organic EL device manufacturing apparatus, and manufacturing method |
US7085052B2 (en) | 2002-03-14 | 2006-08-01 | Optellios, Inc. | Over-parameterized polarization controller |
JP4335495B2 (en) | 2002-03-27 | 2009-09-30 | 株式会社日立ハイテクノロジーズ | Constant pressure chamber, irradiation apparatus using the same, and circuit pattern inspection apparatus |
JP2003297727A (en) | 2002-04-03 | 2003-10-17 | Nikon Corp | Illumination optical device, exposure apparatus, and method of exposure |
JPWO2003085708A1 (en) | 2002-04-09 | 2005-08-18 | 株式会社ニコン | Exposure method, exposure apparatus, and device manufacturing method |
WO2003085457A1 (en) | 2002-04-10 | 2003-10-16 | Fuji Photo Film Co., Ltd. | Exposure head, exposure apparatus, and its application |
DE10310690A1 (en) | 2002-04-12 | 2003-10-30 | Heidelberger Druckmasch Ag | Sheet guide in sheet-processing machine especially rotary printer has pick-up pieces, free air jet nozzles and air cushion |
EP1499560B1 (en) | 2002-04-29 | 2005-12-14 | Micronic Laser Systems Ab | Device for protecting a chip and method for operating a chip |
JP2004015187A (en) | 2002-06-04 | 2004-01-15 | Fuji Photo Film Co Ltd | Photographing auxiliary system, digital camera, and server |
JP4037179B2 (en) | 2002-06-04 | 2008-01-23 | 東京エレクトロン株式会社 | Cleaning method, cleaning device |
JP2004014876A (en) | 2002-06-07 | 2004-01-15 | Nikon Corp | Adjustment method, method for measuring spatial image, method for measuring image surface, and exposure device |
JP2004022708A (en) | 2002-06-14 | 2004-01-22 | Nikon Corp | Imaging optical system, illumination optical system, aligner and method for exposure |
JP3448812B2 (en) | 2002-06-14 | 2003-09-22 | 株式会社ニコン | Mark detection apparatus, exposure apparatus having the same, and method of manufacturing semiconductor element or liquid crystal display element using the exposure apparatus |
JP2004179172A (en) | 2002-06-26 | 2004-06-24 | Nikon Corp | Aligner, exposure method, and method of manufacturing device |
JP4012771B2 (en) | 2002-06-28 | 2007-11-21 | 富士通エフ・アイ・ピー株式会社 | License management method, license management system, license management program |
JP2004039952A (en) | 2002-07-05 | 2004-02-05 | Tokyo Electron Ltd | Plasma treatment apparatus and monitoring method thereof |
JP2004040039A (en) | 2002-07-08 | 2004-02-05 | Sony Corp | Selecting method of exposing method |
JP2004045063A (en) | 2002-07-09 | 2004-02-12 | Topcon Corp | Method of manufacturing optical rotary encoder plate and optical rotary encoder plate |
JP2004051717A (en) | 2002-07-17 | 2004-02-19 | Mitsubishi Heavy Ind Ltd | Biomass gasifier |
WO2004012013A2 (en) | 2002-07-26 | 2004-02-05 | Massachusetts Institute Of Technology | Optical imaging using a pupil filter and coordinated illumination polarisation |
JP2004063847A (en) | 2002-07-30 | 2004-02-26 | Nikon Corp | Aligner, exposure method, and stage device |
JP2004063988A (en) | 2002-07-31 | 2004-02-26 | Canon Inc | Illumination optical system, aligner having the system, and method of manufacturing device |
JP2004071851A (en) | 2002-08-07 | 2004-03-04 | Canon Inc | Semiconductor exposure method and aligner |
JP2004085612A (en) | 2002-08-22 | 2004-03-18 | Matsushita Electric Ind Co Ltd | Halftone phase shift mask, its manufacturing method and method for forming pattern using same |
JP4095376B2 (en) | 2002-08-28 | 2008-06-04 | キヤノン株式会社 | Exposure apparatus and method, and device manufacturing method |
JP2004095653A (en) | 2002-08-29 | 2004-03-25 | Nikon Corp | Aligner |
JP2004145269A (en) | 2002-08-30 | 2004-05-20 | Nikon Corp | Projection optical system, reflective and refractive projection optical system, scanning exposure apparatus and exposure method |
JP2004103674A (en) | 2002-09-06 | 2004-04-02 | Renesas Technology Corp | Method of manufacturing semiconductor integrated circuit device |
JP2004101362A (en) | 2002-09-10 | 2004-04-02 | Canon Inc | Stage position measurement and positioning device |
JP2004098012A (en) | 2002-09-12 | 2004-04-02 | Seiko Epson Corp | Thin film formation method, thin film formation device, optical device, organic electroluminescent device, semiconductor device, and electronic apparatus |
JP2004104654A (en) | 2002-09-12 | 2004-04-02 | Ricoh Co Ltd | Image reading apparatus |
JP4269610B2 (en) | 2002-09-17 | 2009-05-27 | 株式会社ニコン | Exposure apparatus and method of manufacturing exposure apparatus |
JP2004111579A (en) | 2002-09-17 | 2004-04-08 | Canon Inc | Exposure method and system |
KR100480620B1 (en) | 2002-09-19 | 2005-03-31 | 삼성전자주식회사 | Exposing equipment including a Micro Mirror Array and exposing method using the exposing equipment |
JP2004119497A (en) | 2002-09-24 | 2004-04-15 | Huabang Electronic Co Ltd | Semiconductor manufacturing equipment and method therefor |
JP4333866B2 (en) | 2002-09-26 | 2009-09-16 | 大日本スクリーン製造株式会社 | Substrate processing method and substrate processing apparatus |
JP2004128307A (en) | 2002-10-04 | 2004-04-22 | Nikon Corp | Aligner and its adjustment method |
JP2004134682A (en) | 2002-10-15 | 2004-04-30 | Nikon Corp | Gas cylinder, stage apparatus, and aligner |
US6665119B1 (en) | 2002-10-15 | 2003-12-16 | Eastman Kodak Company | Wire grid polarizer |
JP2004140145A (en) | 2002-10-17 | 2004-05-13 | Nikon Corp | Aligner |
JP2004146702A (en) | 2002-10-25 | 2004-05-20 | Nikon Corp | Method for measuring optical characteristic, exposure method and method for manufacturing device |
JP2004153096A (en) | 2002-10-31 | 2004-05-27 | Nikon Corp | Aligner |
JP2004153064A (en) | 2002-10-31 | 2004-05-27 | Nikon Corp | Aligner |
JP2004152705A (en) | 2002-11-01 | 2004-05-27 | Matsushita Electric Ind Co Ltd | Manufacturing method of organic electroluminescent element |
JP2004165249A (en) | 2002-11-11 | 2004-06-10 | Sony Corp | Aligner and method of exposure |
JP3953460B2 (en) | 2002-11-12 | 2007-08-08 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic projection apparatus |
JP2004163555A (en) | 2002-11-12 | 2004-06-10 | Olympus Corp | Vertical illumination microscope and objective for vertical illumination microscope |
JP2004165416A (en) | 2002-11-13 | 2004-06-10 | Nikon Corp | Aligner and building |
JP2004172471A (en) | 2002-11-21 | 2004-06-17 | Nikon Corp | Exposure method and apparatus |
JP4378938B2 (en) | 2002-11-25 | 2009-12-09 | 株式会社ニコン | Exposure apparatus and device manufacturing method |
US6844927B2 (en) | 2002-11-27 | 2005-01-18 | Kla-Tencor Technologies Corporation | Apparatus and methods for removing optical abberations during an optical inspection |
TWI281099B (en) | 2002-12-02 | 2007-05-11 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
JP4314555B2 (en) | 2002-12-03 | 2009-08-19 | 株式会社ニコン | Linear motor device, stage device, and exposure device |
JP4595320B2 (en) | 2002-12-10 | 2010-12-08 | 株式会社ニコン | Exposure apparatus and device manufacturing method |
KR101036114B1 (en) | 2002-12-10 | 2011-05-23 | 가부시키가이샤 니콘 | Exposure apparatus, exposure method and method for manufacturing device |
SG152063A1 (en) | 2002-12-10 | 2009-05-29 | Nikon Corp | Exposure apparatus and method for producing device |
WO2004053952A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
TW200421444A (en) | 2002-12-10 | 2004-10-16 | Nippon Kogaku Kk | Optical device and projecting exposure apparatus using such optical device |
JP4232449B2 (en) | 2002-12-10 | 2009-03-04 | 株式会社ニコン | Exposure method, exposure apparatus, and device manufacturing method |
US20040108973A1 (en) | 2002-12-10 | 2004-06-10 | Kiser David K. | Apparatus for generating a number of color light components |
WO2004053951A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Exposure method, exposure apparatus and method for manufacturing device |
JP2004301825A (en) | 2002-12-10 | 2004-10-28 | Nikon Corp | Surface position detection device, exposure method and method for manufacturing device |
JP4352874B2 (en) | 2002-12-10 | 2009-10-28 | 株式会社ニコン | Exposure apparatus and device manufacturing method |
DE10257766A1 (en) | 2002-12-10 | 2004-07-15 | Carl Zeiss Smt Ag | Method for setting a desired optical property of a projection lens and microlithographic projection exposure system |
KR20110086130A (en) | 2002-12-10 | 2011-07-27 | 가부시키가이샤 니콘 | Exposure system and device producing method |
KR101157002B1 (en) | 2002-12-10 | 2012-06-21 | 가부시키가이샤 니콘 | Exposure apparatus and method for manufacturing device |
AU2003289272A1 (en) | 2002-12-10 | 2004-06-30 | Nikon Corporation | Surface position detection apparatus, exposure method, and device porducing method |
SG150388A1 (en) | 2002-12-10 | 2009-03-30 | Nikon Corp | Exposure apparatus and method for producing device |
JP2004193425A (en) | 2002-12-12 | 2004-07-08 | Nikon Corp | Movement control method, movement controller, aligner and device manufacturing method |
JP2004198748A (en) | 2002-12-19 | 2004-07-15 | Nikon Corp | Optical integrator, illumination optical system, exposure device, and exposure method |
JP2004205698A (en) | 2002-12-24 | 2004-07-22 | Nikon Corp | Projection optical system, exposure device and exposing method |
JP2004221253A (en) | 2003-01-14 | 2004-08-05 | Nikon Corp | Aligner |
EP1583946B1 (en) | 2003-01-15 | 2006-11-08 | Micronic Laser Systems Ab | A method to detect a defective pixel |
JP2004224421A (en) | 2003-01-27 | 2004-08-12 | Tokyo Autom Mach Works Ltd | Product feeding apparatus |
JP2004228497A (en) | 2003-01-27 | 2004-08-12 | Nikon Corp | Exposure device and manufacturing method of electronic device |
JP2004241666A (en) | 2003-02-07 | 2004-08-26 | Nikon Corp | Measuring method and exposure method |
JP2004007417A (en) | 2003-02-10 | 2004-01-08 | Fujitsu Ltd | Information providing system |
JP4366948B2 (en) | 2003-02-14 | 2009-11-18 | 株式会社ニコン | Illumination optical apparatus, exposure apparatus, and exposure method |
JP2004259828A (en) | 2003-02-25 | 2004-09-16 | Nikon Corp | Semiconductor exposure system |
JP2004259985A (en) | 2003-02-26 | 2004-09-16 | Sony Corp | Resist pattern forming device, method for forming resist pattern and method for manufacturing semiconductor device using the forming method |
JP4604452B2 (en) | 2003-02-26 | 2011-01-05 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
KR101562447B1 (en) | 2003-02-26 | 2015-10-21 | 가부시키가이샤 니콘 | Exposure apparatus and method, and method of producing apparatus |
JP4305003B2 (en) | 2003-02-27 | 2009-07-29 | 株式会社ニコン | EUV optical system and EUV exposure apparatus |
US7206059B2 (en) | 2003-02-27 | 2007-04-17 | Asml Netherlands B.V. | Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems |
JP2004260115A (en) | 2003-02-27 | 2004-09-16 | Nikon Corp | Stage unit, exposure system, and method for manufacturing device |
US6943941B2 (en) | 2003-02-27 | 2005-09-13 | Asml Netherlands B.V. | Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems |
JP2004260081A (en) | 2003-02-27 | 2004-09-16 | Nikon Corp | Reflector for ultraviolet region and projection aligner employing it |
KR101181688B1 (en) | 2003-03-25 | 2012-09-19 | 가부시키가이샤 니콘 | Exposure system and device production method |
JP2004294202A (en) | 2003-03-26 | 2004-10-21 | Seiko Epson Corp | Defect detection method and device of screen |
JP4265257B2 (en) | 2003-03-28 | 2009-05-20 | 株式会社ニコン | Exposure apparatus, exposure method, and film structure |
JP4496711B2 (en) | 2003-03-31 | 2010-07-07 | 株式会社ニコン | Exposure apparatus and exposure method |
JP2004304135A (en) | 2003-04-01 | 2004-10-28 | Nikon Corp | Exposure device, exposing method and manufacturing method of micro-device |
JP4341277B2 (en) | 2003-04-07 | 2009-10-07 | 株式会社ニコン | Method of forming quartz glass |
JP4465974B2 (en) | 2003-04-07 | 2010-05-26 | 株式会社ニコン | Quartz glass molding equipment |
JP4288413B2 (en) | 2003-04-07 | 2009-07-01 | 株式会社ニコン | Quartz glass molding method and molding apparatus |
DE602004020200D1 (en) | 2003-04-07 | 2009-05-07 | Nippon Kogaku Kk | EXPOSURE DEVICE AND METHOD FOR PRODUCING A DEVICE |
JP4281397B2 (en) | 2003-04-07 | 2009-06-17 | 株式会社ニコン | Quartz glass molding equipment |
WO2004091079A1 (en) | 2003-04-07 | 2004-10-21 | Kabushiki Kaisha Yaskawa Denki | Canned linear motor armature and canned linear motor |
JP4374964B2 (en) | 2003-09-26 | 2009-12-02 | 株式会社ニコン | Quartz glass molding method and molding apparatus |
JP4428115B2 (en) | 2003-04-11 | 2010-03-10 | 株式会社ニコン | Immersion lithography system |
JP2004319724A (en) | 2003-04-16 | 2004-11-11 | Ses Co Ltd | Structure of washing tub in semiconductor washing apparatus |
JPWO2004094940A1 (en) | 2003-04-23 | 2006-07-13 | 株式会社ニコン | Interferometer system, signal processing method in interferometer system, and stage using the signal processing method |
US7095546B2 (en) | 2003-04-24 | 2006-08-22 | Metconnex Canada Inc. | Micro-electro-mechanical-system two dimensional mirror with articulated suspension structures for high fill factor arrays |
JP2006524349A (en) | 2003-04-24 | 2006-10-26 | メトコネックス カナダ インコーポレイティッド | Microelectromechanical system two-dimensional mirror with articulated suspension structure for high fill factor arrays |
JP2004327660A (en) | 2003-04-24 | 2004-11-18 | Nikon Corp | Scanning projection aligner, exposure method, and device manufacturing method |
JP2004335808A (en) | 2003-05-08 | 2004-11-25 | Sony Corp | Pattern transfer device, pattern transfer method and program |
JP4487168B2 (en) | 2003-05-09 | 2010-06-23 | 株式会社ニコン | Stage apparatus, driving method thereof, and exposure apparatus |
JP2004335864A (en) | 2003-05-09 | 2004-11-25 | Nikon Corp | Aligner and exposure method |
JP2004342987A (en) | 2003-05-19 | 2004-12-02 | Canon Inc | Stage apparatus |
TW200507055A (en) | 2003-05-21 | 2005-02-16 | Nikon Corp | Polarized cancellation element, illumination device, exposure device, and exposure method |
TW201415536A (en) | 2003-05-23 | 2014-04-16 | 尼康股份有限公司 | Exposure method, exposure device, and device manufacturing method |
TWI503865B (en) | 2003-05-23 | 2015-10-11 | 尼康股份有限公司 | A method of manufacturing an exposure apparatus and an element |
JP2005012190A (en) | 2003-05-23 | 2005-01-13 | Nikon Corp | Estimation method and adjusting method of imaging optical system, exposure apparatus and method |
JP2004349645A (en) | 2003-05-26 | 2004-12-09 | Sony Corp | Liquid-immersed differential liquid-drainage static-pressure floating pad, master-disk exposure apparatus, and method of exposure using liquid-immersed differential liquid-drainage |
KR20060009956A (en) | 2003-05-28 | 2006-02-01 | 가부시키가이샤 니콘 | Exposure method, exposure device, and device manufacturing method |
JP2004356410A (en) | 2003-05-29 | 2004-12-16 | Nikon Corp | Aligner and method for exposure |
DE10324477A1 (en) | 2003-05-30 | 2004-12-30 | Carl Zeiss Smt Ag | Microlithographic projection exposure system |
JPWO2004109780A1 (en) | 2003-06-04 | 2006-07-20 | 株式会社ニコン | STAGE APPARATUS, FIXING METHOD, EXPOSURE APPARATUS, EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD |
JP2005005295A (en) | 2003-06-09 | 2005-01-06 | Nikon Corp | Stage apparatus and exposure device |
JP2005005395A (en) | 2003-06-10 | 2005-01-06 | Nikon Corp | Gas feeding evacuation method and apparatus, mirror cylinder, exposure device, and method |
JP2005005521A (en) | 2003-06-12 | 2005-01-06 | Nikon Corp | Device and method for exposing, and polarization state measurement device |
JP2005011990A (en) | 2003-06-19 | 2005-01-13 | Nikon Corp | Scanning projection aligner, and illuminance calibrating method and aligning method thereof |
EP2216685B1 (en) | 2003-06-19 | 2012-06-27 | Nikon Corporation | Exposure apparatus and device manufacturing method |
US6867844B2 (en) | 2003-06-19 | 2005-03-15 | Asml Holding N.V. | Immersion photolithography system and method using microchannel nozzles |
JP2005019628A (en) | 2003-06-25 | 2005-01-20 | Nikon Corp | Optical apparatus, aligner, manufacturing method of device |
JP3862678B2 (en) | 2003-06-27 | 2006-12-27 | キヤノン株式会社 | Exposure apparatus and device manufacturing method |
DE10328938A1 (en) | 2003-06-27 | 2005-01-20 | Carl Zeiss Smt Ag | Correction device for compensation of disturbances of the polarization distribution and projection objective for microlithography |
JP2005024890A (en) | 2003-07-02 | 2005-01-27 | Renesas Technology Corp | Polarizer, projection lens system, aligner, and exposure method |
JP2005026634A (en) | 2003-07-04 | 2005-01-27 | Sony Corp | Aligner and manufacturing method of semiconductor device |
EP2264531B1 (en) | 2003-07-09 | 2013-01-16 | Nikon Corporation | Exposure apparatus and device manufacturing method |
KR101296501B1 (en) | 2003-07-09 | 2013-08-13 | 가부시키가이샤 니콘 | Exposure apparatus and method for manufacturing device |
WO2005008754A1 (en) | 2003-07-18 | 2005-01-27 | Nikon Corporation | Flare measurement method, exposure method, and flare measurement mask |
EP1662553A1 (en) | 2003-07-24 | 2006-05-31 | Nikon Corporation | Illuminating optical system, exposure system and exposure method |
JP4492600B2 (en) | 2003-07-28 | 2010-06-30 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
JP4492239B2 (en) | 2003-07-28 | 2010-06-30 | 株式会社ニコン | Exposure apparatus, device manufacturing method, and exposure apparatus control method |
JP2005050718A (en) | 2003-07-30 | 2005-02-24 | Furukawa Electric Co Ltd:The | Terminal connecting tool for flat cable |
JP2005051147A (en) | 2003-07-31 | 2005-02-24 | Nikon Corp | Exposure method and exposure device |
JP2005055811A (en) | 2003-08-07 | 2005-03-03 | Olympus Corp | Optical member, optical apparatus having the optical member incorporated therein, and method of assembling the optical apparatus |
JP2005064210A (en) | 2003-08-12 | 2005-03-10 | Nikon Corp | Method for exposure, and method of manufacturing electronic device and exposure device utilizing the method |
JP4262031B2 (en) | 2003-08-19 | 2009-05-13 | キヤノン株式会社 | Exposure apparatus and device manufacturing method |
KR101345020B1 (en) | 2003-08-29 | 2013-12-26 | 가부시키가이샤 니콘 | Liquid recovery apparatus exposure apparatus exposure method and device production method |
TWI245163B (en) | 2003-08-29 | 2005-12-11 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
JP4305095B2 (en) | 2003-08-29 | 2009-07-29 | 株式会社ニコン | Immersion projection exposure apparatus equipped with an optical component cleaning mechanism and immersion optical component cleaning method |
TWI263859B (en) | 2003-08-29 | 2006-10-11 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
JP4218475B2 (en) | 2003-09-11 | 2009-02-04 | 株式会社ニコン | Extreme ultraviolet optical system and exposure apparatus |
JP2005091023A (en) | 2003-09-12 | 2005-04-07 | Minolta Co Ltd | Optical encoder and imaging device equipped therewith |
WO2005026843A2 (en) | 2003-09-12 | 2005-03-24 | Carl Zeiss Smt Ag | Illumination system for a microlithography projection exposure installation |
DE10343333A1 (en) | 2003-09-12 | 2005-04-14 | Carl Zeiss Smt Ag | Illumination system for microlithography projection exposure system, has mirror arrangement with array of individual mirrors that is controlled individually by changing angular distribution of light incident on mirror arrangement |
JP4444920B2 (en) | 2003-09-19 | 2010-03-31 | 株式会社ニコン | Exposure apparatus and device manufacturing method |
JP2005093324A (en) | 2003-09-19 | 2005-04-07 | Toshiba Corp | Glass substrate used for image display device, manufacturing method and apparatus therefor |
JP2005093948A (en) | 2003-09-19 | 2005-04-07 | Nikon Corp | Aligner and its adjustment method, exposure method, and device manufacturing method |
JP2005123586A (en) | 2003-09-25 | 2005-05-12 | Matsushita Electric Ind Co Ltd | Apparatus and method for projection |
ATE396428T1 (en) * | 2003-09-26 | 2008-06-15 | Zeiss Carl Smt Ag | EXPOSURE PROCESS AND PROJECTION EXPOSURE SYSTEM FOR CARRYING OUT THE PROCESS |
JP4385702B2 (en) | 2003-09-29 | 2009-12-16 | 株式会社ニコン | Exposure apparatus and exposure method |
JP2005108925A (en) | 2003-09-29 | 2005-04-21 | Nikon Corp | Lighting optical device, exposure apparatus and exposure method |
JP4513299B2 (en) | 2003-10-02 | 2010-07-28 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
JP4470433B2 (en) | 2003-10-02 | 2010-06-02 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
JP2005114882A (en) | 2003-10-06 | 2005-04-28 | Hitachi High-Tech Electronics Engineering Co Ltd | Method for placing substrate on process stage, substrate exposure stage, and substrate exposure apparatus |
EP1672682A4 (en) | 2003-10-08 | 2008-10-15 | Zao Nikon Co Ltd | Substrate transporting apparatus and method, exposure apparatus and method, and device producing method |
JP2005136364A (en) | 2003-10-08 | 2005-05-26 | Zao Nikon Co Ltd | Substrate carrying device, exposure device and device manufacturing method |
JP2005116831A (en) | 2003-10-08 | 2005-04-28 | Nikon Corp | Projection aligner, exposure method, and device manufacturing method |
WO2005036619A1 (en) | 2003-10-09 | 2005-04-21 | Nikon Corporation | Illumination optical device, and exposure device and method |
WO2005036620A1 (en) | 2003-10-10 | 2005-04-21 | Nikon Corporation | Exposure method, exposure device, and device manufacturing method |
EP1524558A1 (en) | 2003-10-15 | 2005-04-20 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP2005127460A (en) | 2003-10-27 | 2005-05-19 | Mitsubishi Heavy Ind Ltd | Base isolation and quake removing floor system |
KR101121260B1 (en) | 2003-10-28 | 2012-03-23 | 가부시키가이샤 니콘 | Exposure apparatus, exposure method, and device producing method |
JP2005140999A (en) | 2003-11-06 | 2005-06-02 | Nikon Corp | Optical system, adjustment method of optical system, exposure device and exposure method |
JP4631707B2 (en) | 2003-11-13 | 2011-02-16 | 株式会社ニコン | Illumination device, an exposure device, manufacturing method for an exposure method and device |
JPWO2005048325A1 (en) | 2003-11-17 | 2007-11-29 | 株式会社ニコン | Stage driving method, stage apparatus, and exposure apparatus |
JP4976094B2 (en) | 2003-11-20 | 2012-07-18 | 株式会社ニコン | Illumination optical apparatus, exposure apparatus, exposure method, and microdevice manufacturing method |
JP4470095B2 (en) | 2003-11-20 | 2010-06-02 | 株式会社ニコン | Illumination optical apparatus, exposure apparatus, and exposure method |
JP4552428B2 (en) | 2003-12-02 | 2010-09-29 | 株式会社ニコン | Illumination optical apparatus, projection exposure apparatus, exposure method, and device manufacturing method |
US6970233B2 (en) | 2003-12-03 | 2005-11-29 | Texas Instruments Incorporated | System and method for custom-polarized photolithography illumination |
JP2005175177A (en) | 2003-12-11 | 2005-06-30 | Nikon Corp | Optical apparatus and aligner |
JP2005175176A (en) | 2003-12-11 | 2005-06-30 | Nikon Corp | Exposure method and method for manufacturing device |
KR101119813B1 (en) | 2003-12-15 | 2012-03-06 | 가부시키가이샤 니콘 | Stage system, exposure apparatus and exposure method |
JP3102327U (en) | 2003-12-17 | 2004-07-02 | 国統国際股▲ふん▼有限公司 | Flexible tube leakage prevention mechanism |
JP4954444B2 (en) | 2003-12-26 | 2012-06-13 | 株式会社ニコン | Channel forming member, exposure apparatus, and device manufacturing method |
DE602004027162D1 (en) | 2004-01-05 | 2010-06-24 | Nippon Kogaku Kk | EXPOSURE DEVICE, EXPOSURE METHOD AND COMPONENT MANUFACTURING METHOD |
JP4586367B2 (en) | 2004-01-14 | 2010-11-24 | 株式会社ニコン | Stage apparatus and exposure apparatus |
US8270077B2 (en) | 2004-01-16 | 2012-09-18 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
EP1709636A2 (en) | 2004-01-16 | 2006-10-11 | Koninklijke Philips Electronics N.V. | Optical system |
JP2005209705A (en) | 2004-01-20 | 2005-08-04 | Nikon Corp | Exposure device and manufacturing method for device |
JP4474927B2 (en) | 2004-01-20 | 2010-06-09 | 株式会社ニコン | Exposure method, exposure apparatus, and device manufacturing method |
JP4319189B2 (en) | 2004-01-26 | 2009-08-26 | 株式会社ニコン | Exposure apparatus and device manufacturing method |
US7580559B2 (en) | 2004-01-29 | 2009-08-25 | Asml Holding N.V. | System and method for calibrating a spatial light modulator |
JP4506674B2 (en) | 2004-02-03 | 2010-07-21 | 株式会社ニコン | Exposure apparatus and device manufacturing method |
US7557900B2 (en) | 2004-02-10 | 2009-07-07 | Nikon Corporation | Exposure apparatus, device manufacturing method, maintenance method, and exposure method |
JP4370992B2 (en) | 2004-02-18 | 2009-11-25 | 株式会社ニコン | Optical element and exposure apparatus |
WO2005081291A1 (en) | 2004-02-19 | 2005-09-01 | Nikon Corporation | Exposure apparatus and method of producing device |
WO2005081292A1 (en) | 2004-02-20 | 2005-09-01 | Nikon Corporation | Exposure apparatus, supply method and recovery method, exposure method, and device producing method |
JP2005234359A (en) | 2004-02-20 | 2005-09-02 | Ricoh Co Ltd | Optical characteristic measuring apparatus of scanning optical system, method of calibrating optical characteristic measuring apparatus of scanning optical system, scanning optical system and image forming apparatus |
JP4693088B2 (en) | 2004-02-20 | 2011-06-01 | 株式会社ニコン | Illumination optical apparatus, exposure apparatus, and exposure method |
JP4333404B2 (en) | 2004-02-25 | 2009-09-16 | 株式会社ニコン | Conveying apparatus, conveying method, exposure apparatus, exposure method, and device manufacturing method |
JP2005243904A (en) | 2004-02-26 | 2005-09-08 | Nikon Corp | Illumination optical apparatus, aligner, and exposure method |
DE102004010569A1 (en) | 2004-02-26 | 2005-09-15 | Carl Zeiss Smt Ag | Illumination system for a microlithography projection exposure apparatus |
US6977718B1 (en) | 2004-03-02 | 2005-12-20 | Advanced Micro Devices, Inc. | Lithography method and system with adjustable reflector |
JP2005251549A (en) | 2004-03-04 | 2005-09-15 | Nikon Corp | Microswitch and driving method for microswitch |
JP2005259789A (en) | 2004-03-09 | 2005-09-22 | Nikon Corp | Detection system, aligner and manufacturing method of device |
JP2005257740A (en) | 2004-03-09 | 2005-09-22 | Nikon Corp | Projection optical system, exposing device, and exposure method |
JP4778685B2 (en) | 2004-03-10 | 2011-09-21 | 株式会社日立ハイテクノロジーズ | Pattern shape evaluation method and apparatus for semiconductor device |
JP4497968B2 (en) | 2004-03-18 | 2010-07-07 | キヤノン株式会社 | Illumination apparatus, exposure apparatus, and device manufacturing method |
JP2005268700A (en) | 2004-03-22 | 2005-09-29 | Nikon Corp | Staging device and aligner |
JP2005276932A (en) | 2004-03-23 | 2005-10-06 | Nikon Corp | Aligner and device-manufacturing method |
JP2005302826A (en) | 2004-04-07 | 2005-10-27 | Nikon Corp | Lighting optical device, exposure system and method |
JP4474979B2 (en) | 2004-04-15 | 2010-06-09 | 株式会社ニコン | Stage apparatus and exposure apparatus |
KR101330370B1 (en) | 2004-04-19 | 2013-11-15 | 가부시키가이샤 니콘 | Exposure apparatus and device producing method |
JP2005311020A (en) | 2004-04-21 | 2005-11-04 | Nikon Corp | Exposure method and method of manufacturing device |
JP4776891B2 (en) * | 2004-04-23 | 2011-09-21 | キヤノン株式会社 | Illumination optical system, exposure apparatus, and device manufacturing method |
JP4569157B2 (en) | 2004-04-27 | 2010-10-27 | 株式会社ニコン | Reflective projection optical system and exposure apparatus provided with the reflective projection optical system |
US7324280B2 (en) | 2004-05-25 | 2008-01-29 | Asml Holding N.V. | Apparatus for providing a pattern of polarization |
JP2005340605A (en) | 2004-05-28 | 2005-12-08 | Nikon Corp | Aligner and its adjusting method |
JP5159027B2 (en) | 2004-06-04 | 2013-03-06 | キヤノン株式会社 | Illumination optical system and exposure apparatus |
JP2006005197A (en) | 2004-06-18 | 2006-01-05 | Canon Inc | Aligner |
JP4419701B2 (en) | 2004-06-21 | 2010-02-24 | 株式会社ニコン | Quartz glass molding equipment |
JP2006017895A (en) | 2004-06-30 | 2006-01-19 | Integrated Solutions:Kk | Aligner |
JP4444743B2 (en) | 2004-07-07 | 2010-03-31 | キヤノン株式会社 | Exposure apparatus and device manufacturing method |
JP2006024819A (en) | 2004-07-09 | 2006-01-26 | Renesas Technology Corp | Immersion exposure apparatus and manufacturing method for electronic device |
US7283209B2 (en) | 2004-07-09 | 2007-10-16 | Carl Zeiss Smt Ag | Illumination system for microlithography |
EP1788694A4 (en) | 2004-07-15 | 2014-07-02 | Nikon Corp | Planar motor equipment, stage equipment, exposure equipment and device manufacturing method |
JP2006032750A (en) | 2004-07-20 | 2006-02-02 | Canon Inc | Immersed projection aligner and device manufacturing method |
JP4411158B2 (en) | 2004-07-29 | 2010-02-10 | キヤノン株式会社 | Exposure equipment |
EP1621930A3 (en) * | 2004-07-29 | 2011-07-06 | Carl Zeiss SMT GmbH | Illumination system for a microlithographic projection exposure apparatus |
JP2006049758A (en) | 2004-08-09 | 2006-02-16 | Nikon Corp | Control method of exposure device, and method and device for exposure using the same |
JP2006054364A (en) | 2004-08-13 | 2006-02-23 | Nikon Corp | Substrate-chucking device and exposure device |
JP4983257B2 (en) | 2004-08-18 | 2012-07-25 | 株式会社ニコン | Exposure apparatus, device manufacturing method, measuring member, and measuring method |
JP2006073584A (en) | 2004-08-31 | 2006-03-16 | Nikon Corp | Exposure apparatus and exposure method, and device manufacturing method |
JP4779973B2 (en) | 2004-09-01 | 2011-09-28 | 株式会社ニコン | Substrate holder, stage apparatus, and exposure apparatus |
US7433046B2 (en) | 2004-09-03 | 2008-10-07 | Carl Ziess Meditec, Inc. | Patterned spinning disk based optical phase shifter for spectral domain optical coherence tomography |
JP4772306B2 (en) | 2004-09-06 | 2011-09-14 | 株式会社東芝 | Immersion optical device and cleaning method |
JP2006080281A (en) | 2004-09-09 | 2006-03-23 | Nikon Corp | Stage device, gas bearing device, exposure device, and device manufacturing method |
KR20070048722A (en) | 2004-09-10 | 2007-05-09 | 가부시키가이샤 니콘 | Stage apparatus and exposure apparatus |
EP1804278A4 (en) | 2004-09-14 | 2011-03-02 | Nikon Corp | Correction method and exposure device |
JP2006086141A (en) | 2004-09-14 | 2006-03-30 | Nikon Corp | Projection optical system, aligner, and method of exposure |
CN101015039B (en) | 2004-09-17 | 2010-09-01 | 尼康股份有限公司 | Substrate for exposure, exposure method and device manufacturing method |
JP2006086442A (en) | 2004-09-17 | 2006-03-30 | Nikon Corp | Stage device and exposure device |
JP4804358B2 (en) | 2004-09-27 | 2011-11-02 | 浜松ホトニクス株式会社 | Spatial light modulation device, optical processing device, and method of using coupling prism |
JP2006100363A (en) | 2004-09-28 | 2006-04-13 | Canon Inc | Aligner, exposure method, and device manufacturing method |
JP4747545B2 (en) | 2004-09-30 | 2011-08-17 | 株式会社ニコン | Stage apparatus, exposure apparatus, and device manufacturing method |
JP4335114B2 (en) | 2004-10-18 | 2009-09-30 | 日本碍子株式会社 | Micromirror device |
GB2419208A (en) | 2004-10-18 | 2006-04-19 | Qinetiq Ltd | Optical correlation employing an optical bit delay |
JP2006120985A (en) | 2004-10-25 | 2006-05-11 | Nikon Corp | Illumination optical device, and exposure apparatus and method |
JP2006128192A (en) | 2004-10-26 | 2006-05-18 | Nikon Corp | Holding apparatus, barrel, exposure apparatus, and device manufacturing method |
US8330939B2 (en) | 2004-11-01 | 2012-12-11 | Nikon Corporation | Immersion exposure apparatus and device manufacturing method with a liquid recovery port provided on at least one of a first stage and second stage |
JP4517354B2 (en) | 2004-11-08 | 2010-08-04 | 株式会社ニコン | Exposure apparatus and device manufacturing method |
WO2006051909A1 (en) | 2004-11-11 | 2006-05-18 | Nikon Corporation | Exposure method, device manufacturing method, and substrate |
JP2006140366A (en) | 2004-11-15 | 2006-06-01 | Nikon Corp | Projection optical system and exposure device |
EP3428724A1 (en) | 2004-12-15 | 2019-01-16 | Nikon Corporation | Exposure apparatus and device fabricating method |
JP2005150759A (en) | 2004-12-15 | 2005-06-09 | Nikon Corp | Scanning exposure device |
JP2006170811A (en) | 2004-12-16 | 2006-06-29 | Nikon Corp | Multilayer film reflecting mirror, euv exposure device, and soft x-ray optical apparatus |
JP2006170899A (en) | 2004-12-17 | 2006-06-29 | Sendai Nikon:Kk | Photoelectric encoder |
EP1830456A1 (en) | 2004-12-24 | 2007-09-05 | Nikon Corporation | Magnetic guiding apparatus, stage apparatus, exposure apparatus and device manufacturing method |
JP2006177865A (en) | 2004-12-24 | 2006-07-06 | Ntn Corp | Magnetic encoder and bearing for wheel equipped with it |
US20060138349A1 (en) | 2004-12-27 | 2006-06-29 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP4402582B2 (en) | 2004-12-27 | 2010-01-20 | 大日本印刷株式会社 | Case for large photomask and case changer |
JP4632793B2 (en) | 2005-01-12 | 2011-02-16 | 京セラ株式会社 | Portable terminal with navigation function |
US8053937B2 (en) | 2005-01-21 | 2011-11-08 | Nikon Corporation | Linear motor, stage apparatus and exposure apparatus |
JP4858439B2 (en) | 2005-01-25 | 2012-01-18 | 株式会社ニコン | Exposure apparatus, exposure method, and microdevice manufacturing method |
WO2006085524A1 (en) | 2005-02-14 | 2006-08-17 | Nikon Corporation | Exposure equipment |
JP4650619B2 (en) | 2005-03-09 | 2011-03-16 | 株式会社ニコン | Drive unit, optical unit, optical apparatus, and exposure apparatus |
JP2006253572A (en) | 2005-03-14 | 2006-09-21 | Nikon Corp | Stage apparatus, exposure apparatus, and device manufacturing method |
JP2006269462A (en) * | 2005-03-22 | 2006-10-05 | Sony Corp | Exposure apparatus and illuminating apparatus |
JP5125503B2 (en) | 2005-03-23 | 2013-01-23 | コニカミノルタホールディングス株式会社 | Manufacturing method of organic EL element |
JP4858744B2 (en) | 2005-03-24 | 2012-01-18 | 株式会社ニコン | Exposure equipment |
JP4561425B2 (en) | 2005-03-24 | 2010-10-13 | ソニー株式会社 | Hologram recording / reproducing apparatus and hologram recording / reproducing method |
JP2006278820A (en) | 2005-03-30 | 2006-10-12 | Nikon Corp | Exposure method and exposure device |
JP4546315B2 (en) | 2005-04-07 | 2010-09-15 | 株式会社神戸製鋼所 | Manufacturing method of mold for microfabrication |
WO2006118108A1 (en) | 2005-04-27 | 2006-11-09 | Nikon Corporation | Exposure method, exposure apparatus, method for manufacturing device, and film evaluation method |
JP4676815B2 (en) | 2005-05-26 | 2011-04-27 | ルネサスエレクトロニクス株式会社 | Exposure apparatus and exposure method |
JP2006351586A (en) | 2005-06-13 | 2006-12-28 | Nikon Corp | Lighting device, projection aligner, and method of manufacturing microdevice |
JP4710427B2 (en) | 2005-06-15 | 2011-06-29 | 株式会社ニコン | Optical element holding apparatus, lens barrel, exposure apparatus, and device manufacturing method |
DE102005030839A1 (en) | 2005-07-01 | 2007-01-11 | Carl Zeiss Smt Ag | Projection exposure system with a plurality of projection lenses |
JP5309565B2 (en) | 2005-08-05 | 2013-10-09 | 株式会社ニコン | Stage apparatus, exposure apparatus, method, exposure method, and device manufacturing method |
JP2007048819A (en) | 2005-08-08 | 2007-02-22 | Nikon Corp | Surface position detector, aligner and process for fabricating microdevice |
JP2007043980A (en) | 2005-08-11 | 2007-02-22 | Sanei Gen Ffi Inc | Quality improver for japanese/western baked confectionery |
JP2007087306A (en) | 2005-09-26 | 2007-04-05 | Yokohama National Univ | Target image designating and generating system |
JP2007093546A (en) | 2005-09-30 | 2007-04-12 | Nikon Corp | Encoder system, stage device, and exposure apparatus |
JP4640090B2 (en) | 2005-10-04 | 2011-03-02 | ウシオ電機株式会社 | Discharge lamp holder and discharge lamp holding mechanism |
JP2007113939A (en) | 2005-10-18 | 2007-05-10 | Nikon Corp | Measuring device and method therefor, stage device, and exposure device and method therefor |
JP2007120334A (en) | 2005-10-25 | 2007-05-17 | Denso Corp | Abnormality diagnostic device of vehicle driving system |
JP2007120333A (en) | 2005-10-25 | 2007-05-17 | Mitsubishi Heavy Ind Ltd | Injection pipe of combustor for rocket and combustor for rocket |
JP4809037B2 (en) | 2005-10-27 | 2011-11-02 | 日本カニゼン株式会社 | Black plating film, method for forming the same, and article having plating film |
WO2007055237A1 (en) | 2005-11-09 | 2007-05-18 | Nikon Corporation | Exposure apparatus, exposure method and device manufacturing method |
US20090115989A1 (en) | 2005-11-10 | 2009-05-07 | Hirohisa Tanaka | Lighting optical system, exposure system, and exposure method |
KR20080068013A (en) | 2005-11-14 | 2008-07-22 | 가부시키가이샤 니콘 | Liquid recovery member, exposure apparatus, exposure method, and device production method |
JP2007142313A (en) | 2005-11-22 | 2007-06-07 | Nikon Corp | Measuring instrument and adjusting method |
JP2007144864A (en) | 2005-11-29 | 2007-06-14 | Sanyo Electric Co Ltd | Laminated structure and refrigeration unit using the same |
TW200725195A (en) | 2005-12-06 | 2007-07-01 | Nikon Corp | Exposure method, exposure apparatus, and unit manufacturing method |
EP3327759A1 (en) | 2005-12-08 | 2018-05-30 | Nikon Corporation | Substrate holding apparatus, exposure apparatus, exposing method, and device fabricating method |
JP4800901B2 (en) | 2005-12-12 | 2011-10-26 | 矢崎総業株式会社 | Voltage detection device and insulation interface |
US20070166134A1 (en) | 2005-12-20 | 2007-07-19 | Motoko Suzuki | Substrate transfer method, substrate transfer apparatus and exposure apparatus |
JP2007170938A (en) | 2005-12-21 | 2007-07-05 | Sendai Nikon:Kk | Encoder |
JP2007207821A (en) | 2006-01-31 | 2007-08-16 | Nikon Corp | Variable slit device, lighting device, aligner, exposure method, and method of manufacturing device |
JP2007220767A (en) | 2006-02-15 | 2007-08-30 | Canon Inc | Exposure apparatus and method of manufacturing device |
JP2007227637A (en) | 2006-02-23 | 2007-09-06 | Canon Inc | Immersion aligner |
US20090002830A1 (en) | 2006-02-27 | 2009-01-01 | Nikon Corporation | Dichroic Filter |
JP2007234110A (en) | 2006-02-28 | 2007-09-13 | Toshiba Corp | Optical information recording apparatus and control method of optical information recording apparatus |
JP4929762B2 (en) | 2006-03-03 | 2012-05-09 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
DE102006015213A1 (en) | 2006-03-30 | 2007-10-11 | Carl Zeiss Smt Ag | Polarization influencing optical arrangement for e.g. projection lens system, has optical unit changing distribution in central area of beam cross section, where beam has approximate tangential polarization distribution in central area |
JP2007280623A (en) | 2006-04-03 | 2007-10-25 | Seiko Epson Corp | Heat treatment device, thin-film forming device, and heat treatment method |
JP2007295702A (en) | 2006-04-24 | 2007-11-08 | Toshiba Mach Co Ltd | Linear motor, and stage drive device |
JPWO2007132862A1 (en) | 2006-05-16 | 2009-09-24 | 株式会社ニコン | Projection optical system, exposure method, exposure apparatus, and device manufacturing method |
JP4893112B2 (en) | 2006-06-03 | 2012-03-07 | 株式会社ニコン | High frequency circuit components |
JP4873138B2 (en) | 2006-06-21 | 2012-02-08 | 富士ゼロックス株式会社 | Information processing apparatus and program |
JP2008058580A (en) | 2006-08-31 | 2008-03-13 | Canon Inc | Image forming apparatus, monitoring device, control method and program |
JP2008064924A (en) | 2006-09-06 | 2008-03-21 | Seiko Epson Corp | Fixing device and image forming apparatus |
EP2068349A4 (en) | 2006-09-29 | 2011-03-30 | Nikon Corp | Stage device and exposure device |
JP2007051300A (en) | 2006-10-10 | 2007-03-01 | Teijin Chem Ltd | Flame-retardant resin composition |
JP4924879B2 (en) | 2006-11-14 | 2012-04-25 | 株式会社ニコン | Encoder |
WO2008061681A2 (en) | 2006-11-21 | 2008-05-29 | Carl Zeiss Smt Ag | Illumination lens system for projection microlithography, and measuring and monitoring method for such an illumination lens system |
TWI452437B (en) | 2006-11-27 | 2014-09-11 | 尼康股份有限公司 | An exposure method, a pattern forming method, and an exposure apparatus, and an element manufacturing method |
JP2007274881A (en) | 2006-12-01 | 2007-10-18 | Nikon Corp | Moving object apparatus, fine-motion object, and exposure apparatus |
JPWO2008075742A1 (en) | 2006-12-20 | 2010-04-15 | 株式会社ニコン | Maintenance method, exposure method, exposure apparatus, and device manufacturing method |
JP4910679B2 (en) | 2006-12-21 | 2012-04-04 | 株式会社ニコン | Variable capacitor, variable capacitor device, high frequency circuit filter and high frequency circuit |
DE102007027985A1 (en) | 2006-12-21 | 2008-06-26 | Carl Zeiss Smt Ag | Optical system, in particular illumination device or projection objective of a microlithographic projection exposure apparatus |
WO2008078668A1 (en) | 2006-12-26 | 2008-07-03 | Miura Co., Ltd. | Method of feeding makeup water for boiler water supply |
JP5146323B2 (en) | 2006-12-27 | 2013-02-20 | 株式会社ニコン | Stage apparatus, exposure apparatus, and device manufacturing method |
MY155009A (en) | 2006-12-27 | 2015-08-28 | Sanofi Aventis | Cycloalkylamine substituted isoquinolone derivatives |
WO2008090975A1 (en) | 2007-01-26 | 2008-07-31 | Nikon Corporation | Support structure and exposure apparatus |
CN101681092B (en) | 2007-05-09 | 2012-07-25 | 株式会社尼康 | Photomask substrate, photomask substrate forming member, photomask substrate manufacturing method, photomask, and exposure method using photomask |
BRPI0812782B1 (en) | 2007-05-31 | 2019-01-22 | Panasonic Corp | image capture apparatus, additional information provision apparatus and method for use in an additional information provision apparatus |
JP5194650B2 (en) | 2007-08-31 | 2013-05-08 | 株式会社ニコン | Electronic camera |
JP4499774B2 (en) | 2007-10-24 | 2010-07-07 | 株式会社半導体エネルギー研究所 | Insulated gate type semiconductor device |
JPWO2009153925A1 (en) | 2008-06-17 | 2011-11-24 | 株式会社ニコン | Nanoimprint method and apparatus |
KR101504388B1 (en) | 2008-06-26 | 2015-03-19 | 가부시키가이샤 니콘 | Method and apparatus for manufacturing display element |
KR20110028473A (en) | 2008-06-30 | 2011-03-18 | 가부시키가이샤 니콘 | Method and apparatus for manufacturing display element, method and apparatus for manufacturing thin film transistor, and circuit forming apparatus |
US20110037962A1 (en) | 2009-08-17 | 2011-02-17 | Nikon Corporation | Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method |
US20110205519A1 (en) | 2010-02-25 | 2011-08-25 | Nikon Corporation | Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method |
-
2004
- 2004-10-20 TW TW106141075A patent/TW201809801A/en unknown
- 2004-10-20 TW TW93131767A patent/TWI385414B/en not_active IP Right Cessation
- 2004-10-20 TW TW104133625A patent/TWI612338B/en not_active IP Right Cessation
- 2004-10-20 TW TW101103772A patent/TWI512335B/en not_active IP Right Cessation
- 2004-10-20 TW TW101133189A patent/TWI519819B/en not_active IP Right Cessation
- 2004-11-02 EP EP16167687.9A patent/EP3118890A3/en not_active Ceased
- 2004-11-02 KR KR20067012265A patent/KR101220636B1/en active IP Right Grant
- 2004-11-02 CN CN200910173716.0A patent/CN101685265B/en not_active Expired - Fee Related
- 2004-11-02 EP EP09167707.0A patent/EP2117034B1/en not_active Not-in-force
- 2004-11-02 CN CN2008102114976A patent/CN101369054B/en not_active Expired - Fee Related
- 2004-11-02 KR KR1020147003780A patent/KR101578310B1/en active IP Right Grant
- 2004-11-02 CN CN200910173718.XA patent/CN101685267B/en not_active Expired - Fee Related
- 2004-11-02 KR KR1020147036570A patent/KR101737682B1/en active IP Right Grant
- 2004-11-02 JP JP2005515570A patent/JP4976015B2/en active Active
- 2004-11-02 EP EP20080002882 patent/EP1926129B1/en not_active Not-in-force
- 2004-11-02 CN CN2008102114957A patent/CN101369056B/en not_active Expired - Fee Related
- 2004-11-02 KR KR1020177030471A patent/KR20170120724A/en not_active Application Discontinuation
- 2004-11-02 KR KR1020157022796A patent/KR20150103759A/en active Application Filing
- 2004-11-02 CN CN200910173717.5A patent/CN101685266B/en not_active Expired - Fee Related
- 2004-11-02 KR KR1020107001907A patent/KR101220616B1/en active IP Right Grant
- 2004-11-02 KR KR1020097023904A patent/KR101578226B1/en active IP Right Grant
- 2004-11-02 KR KR1020107001898A patent/KR101220667B1/en active IP Right Grant
- 2004-11-02 WO PCT/JP2004/016247 patent/WO2005050718A1/en active Application Filing
- 2004-11-02 EP EP04799453.8A patent/EP1693885B1/en not_active Not-in-force
- 2004-11-02 CN CN200910173714.1A patent/CN101685264B/en active Active
- 2004-11-02 CN CN200910173715A patent/CN101685204A/en active Pending
- 2004-11-02 AT AT08002882T patent/ATE540424T1/en active
- 2004-11-02 EP EP10174843.2A patent/EP2251896B1/en not_active Not-in-force
- 2004-11-02 CN CNB2004800341246A patent/CN100555566C/en not_active Expired - Fee Related
-
2005
- 2005-12-28 US US11/319,057 patent/US20060158624A1/en not_active Abandoned
-
2007
- 2007-01-19 HK HK07100711.1A patent/HK1094093A1/en not_active IP Right Cessation
- 2007-03-22 HK HK07103073A patent/HK1096197A1/en not_active IP Right Cessation
-
2009
- 2009-01-27 US US12/320,468 patent/US20090147234A1/en not_active Abandoned
- 2009-01-27 US US12/320,465 patent/US20090147233A1/en not_active Abandoned
- 2009-01-27 US US12/320,480 patent/US20090147235A1/en not_active Abandoned
- 2009-06-19 HK HK09105543A patent/HK1128096A1/en not_active IP Right Cessation
- 2009-06-19 HK HK09105542A patent/HK1128048A1/en not_active IP Right Cessation
- 2009-08-26 US US12/461,852 patent/US20090323041A1/en not_active Abandoned
-
2010
- 2010-04-15 JP JP2010094216A patent/JP2010226117A/en active Pending
- 2010-07-26 HK HK10107129A patent/HK1140830A1/en not_active IP Right Cessation
- 2010-07-26 HK HK10107132.2A patent/HK1140833A1/en not_active IP Right Cessation
- 2010-07-26 HK HK10107131.3A patent/HK1140832A1/en not_active IP Right Cessation
- 2010-07-26 HK HK10107130.4A patent/HK1140831A1/en not_active IP Right Cessation
-
2011
- 2011-06-29 JP JP2011144669A patent/JP2011233911A/en active Pending
- 2011-07-14 US US13/137,002 patent/US20110273692A1/en active Granted
- 2011-07-14 US US13/137,004 patent/US20110273698A1/en not_active Abandoned
- 2011-07-14 US US13/137,003 patent/US9164209B2/en not_active Expired - Fee Related
- 2011-08-08 US US13/137,342 patent/US10281632B2/en active Active
-
2013
- 2013-05-08 US US13/889,965 patent/US9885872B2/en active Active
- 2013-07-29 JP JP2013157042A patent/JP5696746B2/en not_active Expired - Fee Related
- 2013-07-29 JP JP2013157044A patent/JP5731591B2/en active Active
-
2014
- 2014-05-07 JP JP2014096136A patent/JP5967132B2/en not_active Expired - Fee Related
- 2014-08-04 JP JP2014158994A patent/JP5983689B2/en not_active Expired - Fee Related
-
2015
- 2015-08-05 US US14/818,788 patent/US20150338663A1/en not_active Abandoned
- 2015-08-24 JP JP2015165058A patent/JP6160666B2/en not_active Expired - Fee Related
-
2016
- 2016-07-25 JP JP2016145649A patent/JP6493325B2/en not_active Expired - Fee Related
-
2017
- 2017-07-28 US US15/662,948 patent/US20170351100A1/en not_active Abandoned
- 2017-08-23 JP JP2017160467A patent/JP2017227906A/en active Pending
-
2018
- 2018-11-08 JP JP2018210862A patent/JP2019032558A/en active Pending
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5627626A (en) * | 1902-01-20 | 1997-05-06 | Kabushiki Kaisha Toshiba | Projectin exposure apparatus |
US3892470A (en) * | 1974-02-01 | 1975-07-01 | Hughes Aircraft Co | Optical device for transforming monochromatic linearly polarized light to ring polarized light |
US4755027A (en) * | 1985-07-02 | 1988-07-05 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. | Method and device for polarizing light radiation |
US4744615A (en) * | 1986-01-29 | 1988-05-17 | International Business Machines Corporation | Laser beam homogenizer |
US6211944B1 (en) * | 1990-08-21 | 2001-04-03 | Nikon Corporation | Projection exposure method and apparatus |
US6233041B1 (en) * | 1990-08-21 | 2001-05-15 | Nikon Corporation | Exposure method utilizing diffracted light having different orders of diffraction |
US20030043356A1 (en) * | 1990-11-15 | 2003-03-06 | Nikon Corporation | Projection exposure apparatus and method |
US6710855B2 (en) * | 1990-11-15 | 2004-03-23 | Nikon Corporation | Projection exposure apparatus and method |
US5541026A (en) * | 1991-06-13 | 1996-07-30 | Nikon Corporation | Exposure apparatus and photo mask |
US5621498A (en) * | 1991-10-15 | 1997-04-15 | Kabushiki Kaisha Toshiba | Projection exposure apparatus |
US5707501A (en) * | 1991-10-15 | 1998-01-13 | Kabushiki Kaisha Toshiba | Filter manufacturing apparatus |
US5312513A (en) * | 1992-04-03 | 1994-05-17 | Texas Instruments Incorporated | Methods of forming multiple phase light modulators |
US6404482B1 (en) * | 1992-10-01 | 2002-06-11 | Nikon Corporation | Projection exposure method and apparatus |
US6229647B1 (en) * | 1992-12-14 | 2001-05-08 | Canon Kabushiki Kaisha | Reflection and refraction optical system and projection exposure apparatus using the same |
US5739898A (en) * | 1993-02-03 | 1998-04-14 | Nikon Corporation | Exposure method and apparatus |
US5933219A (en) * | 1994-04-22 | 1999-08-03 | Canon Kabushiki Kaisha | Projection exposure apparatus and device manufacturing method capable of controlling polarization direction |
US5631721A (en) * | 1995-05-24 | 1997-05-20 | Svg Lithography Systems, Inc. | Hybrid illumination system for use in photolithography |
US6191880B1 (en) * | 1995-09-23 | 2001-02-20 | Carl-Zeiss-Stiftung | Radial polarization-rotating optical arrangement and microlithographic projection exposure system incorporating said arrangement |
US6392800B2 (en) * | 1995-09-23 | 2002-05-21 | Carl-Zeiss-Stiftung | Radial polarization-rotating optical arrangement and microlithographic projection exposure system incorporating said arrangement |
US6341007B1 (en) * | 1996-11-28 | 2002-01-22 | Nikon Corporation | Exposure apparatus and method |
US6400441B1 (en) * | 1996-11-28 | 2002-06-04 | Nikon Corporation | Projection exposure apparatus and method |
US6590634B1 (en) * | 1996-11-28 | 2003-07-08 | Nikon Corporation | Exposure apparatus and method |
US6549269B1 (en) * | 1996-11-28 | 2003-04-15 | Nikon Corporation | Exposure apparatus and an exposure method |
US6259512B1 (en) * | 1997-08-04 | 2001-07-10 | Canon Kabushiki Kaisha | Illumination system and exposure apparatus having the same |
US6208407B1 (en) * | 1997-12-22 | 2001-03-27 | Asm Lithography B.V. | Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement |
US6252712B1 (en) * | 1998-02-20 | 2001-06-26 | Carl-Zeiss-Stiftung | Optical system with polarization compensator |
US6597430B1 (en) * | 1998-05-18 | 2003-07-22 | Nikon Corporation | Exposure method, illuminating device, and exposure system |
US6535273B1 (en) * | 1998-07-02 | 2003-03-18 | Carl-Zeiss-Stiftung | Microlithographic illumination system with depolarizer |
US6031658A (en) * | 1998-09-25 | 2000-02-29 | University Of Central Florida | Digital control polarization based optical scanner |
US20020085176A1 (en) * | 1999-01-06 | 2002-07-04 | Nikon Corporation | Projection optical system, production method thereof, and projection exposure apparatus using it |
US6583931B2 (en) * | 1999-01-06 | 2003-06-24 | Nikon Corporation | Projection optical system, production method thereof, and projection exposure apparatus using it |
US6361909B1 (en) * | 1999-12-06 | 2002-03-26 | Industrial Technology Research Institute | Illumination aperture filter design using superposition |
US6674514B2 (en) * | 2000-03-16 | 2004-01-06 | Canon Kabushiki Kaisha | Illumination optical system in exposure apparatus |
US7239446B2 (en) * | 2000-04-25 | 2007-07-03 | Asml Holding N.V. | Optical reduction system with control of illumination polarization |
US20020027719A1 (en) * | 2000-04-25 | 2002-03-07 | Silicon Valley Group, Inc. | Optical reduction system with control of illumination polarization |
US6680798B2 (en) * | 2000-04-25 | 2004-01-20 | Asml Holding N.V. | Optical reduction system with control of illumination polarization |
US20040120044A1 (en) * | 2000-04-25 | 2004-06-24 | Asml Holding N.V. | Optical reduction system with control of illumination polarization |
US6538247B2 (en) * | 2000-08-24 | 2003-03-25 | Pentax Corporation | Method of detecting arrangement of beam spots |
US20020024008A1 (en) * | 2000-08-24 | 2002-02-28 | Asahi Kogaku Kogyo Kabushiki Kaisha | Method of detecting arrangement of beam spots |
US6870668B2 (en) * | 2000-10-10 | 2005-03-22 | Nikon Corporation | Method for evaluating image formation performance |
US20020085276A1 (en) * | 2000-11-29 | 2002-07-04 | Nikon Corporation | Illumination optical apparatus and exposure apparatus provided with illumination optical apparatus |
US6885493B2 (en) * | 2001-02-05 | 2005-04-26 | Micronic Lasersystems Ab | Method and a device for reducing hysteresis or imprinting in a movable micro-element |
US6856379B2 (en) * | 2001-05-22 | 2005-02-15 | Carl Zeiss Smt Ag | Polarizer and microlithography projection system with a polarizer |
US20030038225A1 (en) * | 2001-06-01 | 2003-02-27 | Mulder Heine Melle | Lithographic apparatus, device manufacturing method, device manufactured thereby, control system, computer program, and computer program product |
US20030007158A1 (en) * | 2001-07-06 | 2003-01-09 | Hill Henry A. | Method and apparatus to reduce effects of sheared wavefronts on interferometric phase measurements |
US20030053036A1 (en) * | 2001-07-10 | 2003-03-20 | Nikon Corporation | Production method of projection optical system |
US6900915B2 (en) * | 2001-11-14 | 2005-05-31 | Ricoh Company, Ltd. | Light deflecting method and apparatus efficiently using a floating mirror |
US20050094268A1 (en) * | 2002-03-14 | 2005-05-05 | Carl Zeiss Smt Ag | Optical system with birefringent optical elements |
US6999157B2 (en) * | 2002-04-23 | 2006-02-14 | Canon Kabushiki Kaisha | Illumination optical system and method, and exposure apparatus |
US20040004771A1 (en) * | 2002-04-26 | 2004-01-08 | Nikon Corporation | Projection optical system, exposure system provided with the projection optical system, and exposure method using the projection optical system |
US20050095749A1 (en) * | 2002-04-29 | 2005-05-05 | Mathias Krellmann | Device for protecting a chip and method for operating a chip |
US6913373B2 (en) * | 2002-05-27 | 2005-07-05 | Nikon Corporation | Optical illumination device, exposure device and exposure method |
US7038763B2 (en) * | 2002-05-31 | 2006-05-02 | Asml Netherlands B.V. | Kit of parts for assembling an optical element, method of assembling an optical element, optical element, lithographic apparatus, and device manufacturing method |
US20040012764A1 (en) * | 2002-05-31 | 2004-01-22 | Mulder Heine Melle | Kit of parts for assembling an optical element, method of assembling an optical element, optical element, lithographic apparatus, and device manufacturing method |
US20040104654A1 (en) * | 2002-08-31 | 2004-06-03 | Samsung Electronics Co., Ltd. | Cabinet for recessed refrigerators |
US20040057036A1 (en) * | 2002-09-19 | 2004-03-25 | Miyoko Kawashima | Exposure method |
US20060055834A1 (en) * | 2002-12-03 | 2006-03-16 | Nikon Corporation | Illumination optical system, exposure apparatus, and exposure method |
US20040119954A1 (en) * | 2002-12-10 | 2004-06-24 | Miyoko Kawashima | Exposure apparatus and method |
US6891655B2 (en) * | 2003-01-02 | 2005-05-10 | Micronic Laser Systems Ab | High energy, low energy density, radiation-resistant optics used with micro-electromechanical devices |
US20060072095A1 (en) * | 2003-04-09 | 2006-04-06 | Nikon Corporation | Exposure method and apparatus, and method for fabricating device |
US20090185156A1 (en) * | 2003-04-09 | 2009-07-23 | Nikon Corporation | Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas |
US20080024747A1 (en) * | 2003-04-09 | 2008-01-31 | Nikon Corporation | Exposure method and apparatus, and method for fabricating device |
US20080068572A1 (en) * | 2003-04-09 | 2008-03-20 | Nikon Corporation | Exposure method and apparatus, and method for fabricating device |
US6842223B2 (en) * | 2003-04-11 | 2005-01-11 | Nikon Precision Inc. | Enhanced illuminator for use in photolithographic systems |
US20060146384A1 (en) * | 2003-05-13 | 2006-07-06 | Carl Zeiss Smt Ag | Optical beam transformation system and illumination system comprising an optical beam transformation system |
US20060012769A1 (en) * | 2003-09-12 | 2006-01-19 | Canon Kabushiki Kaisha | Illumination optical system and exposure apparatus using the same |
US20050146704A1 (en) * | 2003-09-26 | 2005-07-07 | Carl Zeiss Smt Ag | Microlithographic exposure method as well as a projection exposure system for carrying out the method |
US20090122292A1 (en) * | 2003-10-28 | 2009-05-14 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US20060158624A1 (en) * | 2003-11-20 | 2006-07-20 | Nikon Corporation | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method |
US20090147233A1 (en) * | 2003-11-20 | 2009-06-11 | Nikon Corporation | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US20090147234A1 (en) * | 2003-11-20 | 2009-06-11 | Nikon Corporation | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US20070081114A1 (en) * | 2004-01-16 | 2007-04-12 | Damian Fiolka | Polarization-modulating optical element |
US20090002675A1 (en) * | 2004-01-16 | 2009-01-01 | Carl Zeiss Smt Ag | Polarization-modulating optical element |
US20070019179A1 (en) * | 2004-01-16 | 2007-01-25 | Damian Fiolka | Polarization-modulating optical element |
US20100142051A1 (en) * | 2004-01-27 | 2010-06-10 | Nikon Corporation | Optical system, exposure system, and exposure method |
US20100141921A1 (en) * | 2004-01-27 | 2010-06-10 | Nikon Corporation | Optical system, exposure system, and exposure method |
US20100141926A1 (en) * | 2004-01-27 | 2010-06-10 | Nikon Corporation | Optical system,exposure system, and exposure method |
US20090073414A1 (en) * | 2004-02-06 | 2009-03-19 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US20090073441A1 (en) * | 2004-02-06 | 2009-03-19 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US20080030707A1 (en) * | 2004-08-17 | 2008-02-07 | Nikon Corporation | Lighting Optical Device, Regulation Method for Lighting Optical Device, Exposure System, and Exposure Method |
US7245355B2 (en) * | 2004-10-12 | 2007-07-17 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method |
US20060077370A1 (en) * | 2004-10-12 | 2006-04-13 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method |
US7245353B2 (en) * | 2004-10-12 | 2007-07-17 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method |
US20060092398A1 (en) * | 2004-11-02 | 2006-05-04 | Asml Holding N.V. | Method and apparatus for variable polarization control in a lithography system |
US20060132748A1 (en) * | 2004-12-20 | 2006-06-22 | Kazuya Fukuhara | Exposure system, exposure method and method for manufacturing a semiconductor device |
US20060139611A1 (en) * | 2004-12-28 | 2006-06-29 | Asml Netherlands B.V. | Polarized radiation in lithographic apparatus and device manufacturing method |
US7345740B2 (en) * | 2004-12-28 | 2008-03-18 | Asml Netherlands B.V. | Polarized radiation in lithographic apparatus and device manufacturing method |
US20070146676A1 (en) * | 2005-01-21 | 2007-06-28 | Nikon Corporation | Method of adjusting lighting optical device, lighting optical device, exposure system, and exposure method |
US20060164711A1 (en) * | 2005-01-24 | 2006-07-27 | Asml Holding N.V. | System and method utilizing an electrooptic modulator |
US20070008511A1 (en) * | 2005-07-11 | 2007-01-11 | Asml Netherlands B.V. | Polarized radiation in lithographic apparatus and device manufacturing method |
US20070058151A1 (en) * | 2005-09-13 | 2007-03-15 | Asml Netherlands B.V. | Optical element for use in lithography apparatus and method of conditioning radiation beam |
US20080030706A1 (en) * | 2006-08-01 | 2008-02-07 | Fujitsu Limited | Illumination optical system, exposure method and designing method |
US20090073411A1 (en) * | 2007-09-14 | 2009-03-19 | Nikon Corporation | Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method |
US20090091730A1 (en) * | 2007-10-03 | 2009-04-09 | Nikon Corporation | Spatial light modulation unit, illumination apparatus, exposure apparatus, and device manufacturing method |
US20090128886A1 (en) * | 2007-10-12 | 2009-05-21 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
US20090097007A1 (en) * | 2007-10-16 | 2009-04-16 | Hirohisa Tanaka | Illumination optical system, exposure apparatus, and device manufacturing method |
US20090109417A1 (en) * | 2007-10-24 | 2009-04-30 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US20090185154A1 (en) * | 2007-10-31 | 2009-07-23 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure appartus, exposure method, and device manufacturing method |
US20090116093A1 (en) * | 2007-11-06 | 2009-05-07 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9678437B2 (en) | 2003-04-09 | 2017-06-13 | Nikon Corporation | Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction |
US9146474B2 (en) | 2003-04-09 | 2015-09-29 | Nikon Corporation | Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas |
US9164393B2 (en) | 2003-04-09 | 2015-10-20 | Nikon Corporation | Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas |
US9885959B2 (en) | 2003-04-09 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator |
US8675177B2 (en) | 2003-04-09 | 2014-03-18 | Nikon Corporation | Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas |
US9760014B2 (en) | 2003-10-28 | 2017-09-12 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9423698B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9423697B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9244359B2 (en) | 2003-10-28 | 2016-01-26 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9146476B2 (en) | 2003-10-28 | 2015-09-29 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9140993B2 (en) | 2003-10-28 | 2015-09-22 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9140992B2 (en) | 2003-10-28 | 2015-09-22 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US20090147234A1 (en) * | 2003-11-20 | 2009-06-11 | Nikon Corporation | Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method with two optical elements having different thicknesses |
US9885872B2 (en) | 2003-11-20 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US9164209B2 (en) | 2003-11-20 | 2015-10-20 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction |
US10281632B2 (en) | 2003-11-20 | 2019-05-07 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction |
US8711479B2 (en) | 2004-01-16 | 2014-04-29 | Carl Zeiss Smt Gmbh | Illumination apparatus for microlithography projection system including polarization-modulating optical element |
US8279524B2 (en) | 2004-01-16 | 2012-10-02 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
US9581911B2 (en) | 2004-01-16 | 2017-02-28 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
US9316772B2 (en) | 2004-01-16 | 2016-04-19 | Carl Zeiss Smt Gmbh | Producing polarization-modulating optical element for microlithography system |
US20100177293A1 (en) * | 2004-01-16 | 2010-07-15 | Carl Zeiss Smt Ag | Polarization-modulating optical element |
US8482717B2 (en) | 2004-01-16 | 2013-07-09 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
US20070081114A1 (en) * | 2004-01-16 | 2007-04-12 | Damian Fiolka | Polarization-modulating optical element |
US8289623B2 (en) | 2004-01-16 | 2012-10-16 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
US20060291057A1 (en) * | 2004-01-16 | 2006-12-28 | Damian Fiolka | Polarization-modulating optical element |
US8861084B2 (en) | 2004-01-16 | 2014-10-14 | Carl Zeiss Smt Ag | Polarization-modulating optical element |
US20080316598A1 (en) * | 2004-01-16 | 2008-12-25 | Carl Zeiss Smt Ag | Polarization-modulating optical element |
US8320043B2 (en) | 2004-01-16 | 2012-11-27 | Carl Zeiss Smt Gmbh | Illumination apparatus for microlithographyprojection system including polarization-modulating optical element |
US8270077B2 (en) | 2004-01-16 | 2012-09-18 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
US8259393B2 (en) | 2004-01-16 | 2012-09-04 | Carl Zeiss Smt Gmbh | Polarization-modulating optical element |
US20080316459A1 (en) * | 2004-01-16 | 2008-12-25 | Carl Zeiss Smt Ag | Polarization-modulating optical element |
US20090002675A1 (en) * | 2004-01-16 | 2009-01-01 | Carl Zeiss Smt Ag | Polarization-modulating optical element |
US20100045957A1 (en) * | 2004-01-16 | 2010-02-25 | Carl Zeiss Smt Ag | Polarization-modulating optical element |
US8436983B2 (en) | 2004-01-27 | 2013-05-07 | Nikon Corporation | Optical system, exposure system, and exposure method |
US8351021B2 (en) | 2004-01-27 | 2013-01-08 | Nikon Corporation | Optical system, exposure system, and exposure method |
US20100141926A1 (en) * | 2004-01-27 | 2010-06-10 | Nikon Corporation | Optical system,exposure system, and exposure method |
US20100142051A1 (en) * | 2004-01-27 | 2010-06-10 | Nikon Corporation | Optical system, exposure system, and exposure method |
US8339578B2 (en) | 2004-01-27 | 2012-12-25 | Nikon Corporation | Optical system, exposure system, and exposure method |
US9429848B2 (en) | 2004-02-06 | 2016-08-30 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US9423694B2 (en) | 2004-02-06 | 2016-08-23 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US9140990B2 (en) | 2004-02-06 | 2015-09-22 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10007194B2 (en) | 2004-02-06 | 2018-06-26 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10234770B2 (en) | 2004-02-06 | 2019-03-19 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10241417B2 (en) | 2004-02-06 | 2019-03-26 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US20130271945A1 (en) | 2004-02-06 | 2013-10-17 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US7916391B2 (en) | 2004-05-25 | 2011-03-29 | Carl Zeiss Smt Gmbh | Apparatus for providing a pattern of polarization |
US20110037962A1 (en) * | 2009-08-17 | 2011-02-17 | Nikon Corporation | Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method |
US20110205519A1 (en) * | 2010-02-25 | 2011-08-25 | Nikon Corporation | Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20170351100A1 (en) | Beam transforming optical system, illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thickness to rotate linear polarization direction | |
US20180341185A1 (en) | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |