JP2007120334A - Abnormality diagnostic device of vehicle driving system - Google Patents

Abnormality diagnostic device of vehicle driving system Download PDF

Info

Publication number
JP2007120334A
JP2007120334A JP2005310344A JP2005310344A JP2007120334A JP 2007120334 A JP2007120334 A JP 2007120334A JP 2005310344 A JP2005310344 A JP 2005310344A JP 2005310344 A JP2005310344 A JP 2005310344A JP 2007120334 A JP2007120334 A JP 2007120334A
Authority
JP
Japan
Prior art keywords
energy consumption
consumption rate
vehicle
driving force
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005310344A
Other languages
Japanese (ja)
Inventor
Masaaki Shinojima
政明 篠島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005310344A priority Critical patent/JP2007120334A/en
Publication of JP2007120334A publication Critical patent/JP2007120334A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To accurately detect abnormality of driving force of a vehicle. <P>SOLUTION: A required vehicle driving energy consumption rate (energy consumption per unit time required for driving a vehicle by the driving force required by a driver) is calculated based on an accelerator operation quantity, and an actual vehicle driving energy consumption rate (energy consumption per unit time consumed for driving the vehicle) is calculated based on a fuel injection quantity, and the existence of abnormality of vehicle driving force is determined by whether or not the actual vehicle driving energy consumption rate is larger by a determined value or more than the required vehicle driving energy consumption rate. Thus, abnormality of clearly increasing the vehicle driving force more than a requirement of the driver, can be accurately detected without receiving influence of a power transmission system and an operation area. When determining that these is abnormality of the vehicle driving force, fail-safe control is performed for restraining the actual vehicle driving energy consumption rate, and the vehicle can be made to safely retreat and travel while preventing sudden acceleration against the will of the driver. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車両に搭載された内燃機関等の動力源を制御して該車両の駆動力を制御する車両駆動システムの異常の有無を判定する車両駆動システムの異常診断装置に関するものである。   The present invention relates to an abnormality diagnosing device for a vehicle drive system that determines the presence or absence of an abnormality in a vehicle drive system that controls a power source such as an internal combustion engine mounted on the vehicle to control the drive force of the vehicle.

内燃機関を搭載した車両においては、特許文献1(特許第3392787号公報)に記載されているように、アクセル操作量に基づいて内燃機関の最大許容トルクを算出すると共に、内燃機関の運転状態に基づいて内燃機関の実トルクを算出し、この実トルクが最大許容トルクを越えたか否かによって異常の有無を判定するようにしたものがある。   In a vehicle equipped with an internal combustion engine, as described in Patent Document 1 (Japanese Patent No. 3392787), the maximum allowable torque of the internal combustion engine is calculated based on the accelerator operation amount, and the operating state of the internal combustion engine is set. In some cases, the actual torque of the internal combustion engine is calculated based on this, and the presence or absence of an abnormality is determined based on whether or not the actual torque exceeds a maximum allowable torque.

また、特許文献2(米国特許第5987372号公報)に記載されているように、アクセル操作量に基づいて要求駆動力を算出すると共に、車輪速に基づいて実駆動力を算出し、要求駆動力と実駆動力との偏差が異常判定値よりも大きいか否かによって異常の有無を判定するようにしたものもある。
特許第3392787号公報 米国特許第5987372号公報
Further, as described in Patent Document 2 (US Pat. No. 5,987,372), the required driving force is calculated based on the accelerator operation amount, the actual driving force is calculated based on the wheel speed, and the required driving force is calculated. In some cases, the presence or absence of an abnormality is determined based on whether or not the deviation between the actual driving force and the actual driving force is greater than an abnormality determination value.
Japanese Patent No. 3392787 US Pat. No. 5,987,372

ところで、車両の駆動力は、内燃機関のトルクだけでは決まらず、トランスミッション等の動力伝達系の状態によって変化するため、内燃機関のトルクでは、車両の駆動力を精度良く評価することができない。このため、上記特許文献1のように内燃機関の実トルクを用いて異常の有無を判定する異常診断では、車両の駆動力の異常を精度良く検出することができないという欠点がある。   By the way, the driving force of the vehicle is not determined only by the torque of the internal combustion engine, but varies depending on the state of the power transmission system such as a transmission. Therefore, the driving force of the vehicle cannot be accurately evaluated with the torque of the internal combustion engine. For this reason, in the abnormality diagnosis which determines the presence or absence of abnormality using the actual torque of an internal combustion engine like the said patent document 1, there exists a fault that abnormality of the driving force of a vehicle cannot be detected accurately.

また、一般に、車輪速の検出装置は、車輪の回転に同期して車輪速センサから出力される車輪速パルスの間隔から車輪速を検出し、高速走行時でも車輪速パルスの間隔を精度良く検出できるように車輪速パルスの間隔を設定しているため、車輪の回転が遅くなる低速運転領域では車輪速パルスの間隔が長くなりすぎて車輪速の検出精度が低下する傾向がある。このため、上記特許文献2のように車輪速に基づいて算出した実駆動力を用いて異常の有無を判定する異常診断方法では、車両の駆動力の異常によってドライバビリティが大きく悪化する低速運転領域で、実駆動力の算出精度が低下して異常診断精度が低下するという欠点がある。   In general, the wheel speed detection device detects the wheel speed from the interval of the wheel speed pulse output from the wheel speed sensor in synchronization with the rotation of the wheel, and accurately detects the interval of the wheel speed pulse even during high speed driving. Since the interval between the wheel speed pulses is set so as to be able to be performed, in the low-speed operation region where the rotation of the wheel is slow, the interval between the wheel speed pulses becomes too long and the detection accuracy of the wheel speed tends to be lowered. For this reason, in the abnormality diagnosis method for determining the presence / absence of abnormality using the actual driving force calculated based on the wheel speed as in Patent Document 2, a low-speed driving region in which drivability is greatly deteriorated due to an abnormality in the driving force of the vehicle. Thus, there is a drawback that the accuracy of calculating the actual driving force is lowered and the accuracy of abnormality diagnosis is lowered.

本発明は、これらの事情を考慮してなされたものであり、従って本発明の目的は、車両の駆動力の異常を動力伝達系や運転領域に左右されずに精度良く検出することができる車両駆動システムの異常診断装置を提供することにある。   The present invention has been made in consideration of these circumstances. Therefore, the object of the present invention is to provide a vehicle capable of accurately detecting an abnormality in the driving force of the vehicle without being influenced by the power transmission system or the driving region. An object of the present invention is to provide a drive system abnormality diagnosis device.

上記目的を達成するために、請求項1に係る発明は、車両に搭載された動力源を制御して該車両の駆動力を制御する車両駆動システムにおいて、車両を駆動するために消費される単位時間当りのエネルギ消費量(以下「実車両駆動エネルギ消費率」という)を実車両駆動エネルギ消費率算出手段により算出すると共に、運転者が要求する駆動力で車両を駆動するのに必要な単位時間当りのエネルギ消費量(以下「要求車両駆動エネルギ消費率」という)を要求車両駆動エネルギ消費率算出手段により算出し、異常診断手段によって実車両駆動エネルギ消費率と要求車両駆動エネルギ消費率とを比較して車両の駆動力の異常の有無を判定するようにしたものである。   To achieve the above object, the invention according to claim 1 is a unit consumed for driving a vehicle in a vehicle drive system that controls a power source mounted on the vehicle to control the driving force of the vehicle. The energy consumption per hour (hereinafter referred to as “actual vehicle drive energy consumption rate”) is calculated by the actual vehicle drive energy consumption rate calculation means, and the unit time required to drive the vehicle with the driving force required by the driver The energy consumption per unit (hereinafter referred to as “required vehicle drive energy consumption rate”) is calculated by the required vehicle drive energy consumption rate calculation means, and the actual vehicle drive energy consumption rate is compared with the required vehicle drive energy consumption rate by the abnormality diagnosis means. Thus, it is determined whether or not there is an abnormality in the driving force of the vehicle.

実車両駆動エネルギ消費率は、実際の車両駆動力の情報となり、要求車両駆動エネルギ消費率は、運転者が要求する車両駆動力の情報となるため、実車両駆動エネルギ消費率と要求車両駆動エネルギ消費率とを比較すれば、動力伝達系や運転領域の影響を受けずに、実際の車両駆動力と運転者の要求する車両駆動力との関係を評価することができ、実際の車両駆動力が運転者の要求する車両駆動力に対して適正であるか否かを判定することができる。これにより、動力伝達系や運転領域に左右されずに、車両の駆動力の異常の有無を精度良く判定して、車両の駆動力の異常を精度良く検出することができる。   The actual vehicle driving energy consumption rate is information on the actual vehicle driving force, and the required vehicle driving energy consumption rate is information on the vehicle driving force requested by the driver. Therefore, the actual vehicle driving energy consumption rate and the required vehicle driving energy are By comparing the consumption rate, it is possible to evaluate the relationship between the actual vehicle driving force and the vehicle driving force required by the driver without being affected by the power transmission system and the driving region. It is possible to determine whether or not is appropriate for the vehicle driving force requested by the driver. Accordingly, it is possible to accurately determine whether there is an abnormality in the driving force of the vehicle without depending on the power transmission system and the driving region, and to detect the abnormality in the driving force of the vehicle with high accuracy.

この場合、請求項2のように、実車両駆動エネルギ消費率が要求車両駆動エネルギ消費率よりも判定値以上大きくなったときに車両駆動力の異常有りと判定し、車両駆動力の異常有りと判定されたときに実車両駆動エネルギ消費率を抑制するフェイルセーフ制御を実行するようにすると良い。ここで、判定値は、制御誤差等を考慮して設定すれば良い。要するに、実車両駆動エネルギ消費率と要求車両駆動エネルギ消費率との偏差が制御誤差範囲を超えて大きくなったときに、車両駆動力の異常有りと判定して、実車両駆動エネルギ消費率を抑制するフェイルセーフ制御を実行するものである。このようにすれば、実際の車両駆動力が運転者の要求する車両駆動力の制御誤差範囲を超えて大きくなる異常が発生した場合に、フェイルセーフ制御により車両駆動力を車両が退避走行できる程度に抑えて、運転者の意に反した急加速を防止しながら、車両を安全に退避走行させることができる。   In this case, as in claim 2, when the actual vehicle driving energy consumption rate becomes larger than the required vehicle driving energy consumption rate by the determination value or more, it is determined that the vehicle driving force is abnormal, and the vehicle driving force is abnormal. It is preferable to execute fail-safe control that suppresses the actual vehicle driving energy consumption rate when it is determined. Here, the determination value may be set in consideration of a control error or the like. In short, when the deviation between the actual vehicle drive energy consumption rate and the required vehicle drive energy consumption rate exceeds the control error range, it is determined that there is an abnormality in the vehicle drive force and the actual vehicle drive energy consumption rate is suppressed. The fail safe control is executed. In this way, when an abnormality occurs that causes the actual vehicle driving force to exceed the vehicle driving force control error range required by the driver, the vehicle driving force can be retracted by fail-safe control. Thus, the vehicle can be safely evacuated while preventing sudden acceleration against the will of the driver.

また、請求項3のように、車両の動力源として内燃機関が搭載されている場合には、内燃機関の単位時間当りの燃料消費量に基づいて実車両駆動エネルギ消費率を算出するようにすると良い。内燃機関を動力源とする車両では、内燃機関で燃料の燃焼エネルギを機械的な回転エネルギ(車両を駆動するためのエネルギ)に変換して車両を駆動するため、内燃機関の単位時間当りの燃料消費量を用いれば、実車両駆動エネルギ消費率を精度良く算出することができる。   Further, when the internal combustion engine is mounted as a power source of the vehicle as in claim 3, the actual vehicle drive energy consumption rate is calculated based on the fuel consumption per unit time of the internal combustion engine. good. In a vehicle that uses an internal combustion engine as a power source, the fuel per unit time of the internal combustion engine is driven in order to drive the vehicle by converting the combustion energy of the fuel into mechanical rotational energy (energy for driving the vehicle) in the internal combustion engine. If the consumption amount is used, the actual vehicle driving energy consumption rate can be calculated with high accuracy.

一方、請求項4のように、車両の動力源としてモータが搭載されている場合には、モータに電気エネルギを供給するバッテリの単位時間当りの電気エネルギ消費量に基づいて実車両駆動エネルギ消費率を算出するようにすると良い。モータを動力源とする車両(いわゆる電気自動車)では、モータで電気エネルギを機械的な回転エネルギに変換して車両を駆動するため、バッテリの単位時間当りの電気エネルギ消費量を用いれば、実車両駆動エネルギ消費率を精度良く算出することができる。   On the other hand, when a motor is mounted as a power source of the vehicle as in claim 4, the actual vehicle driving energy consumption rate is based on the electric energy consumption per unit time of the battery that supplies electric energy to the motor. Should be calculated. In a vehicle (so-called electric vehicle) using a motor as a power source, electric energy is converted into mechanical rotational energy by the motor to drive the vehicle. Therefore, if the electric energy consumption per unit time of the battery is used, the actual vehicle The driving energy consumption rate can be calculated with high accuracy.

また、請求項5のように、車両の動力源として内燃機関とモータとが搭載されている場合には、内燃機関の単位時間当りの燃料消費量と、モータに電気エネルギを供給するバッテリの単位時間当りの電気エネルギ消費量とに基づいて実車両駆動エネルギ消費率を算出するようにすると良い。内燃機関とモータとを動力源とする車両(いわゆるハイブリット車)では、内燃機関で燃料の燃焼エネルギを回転エネルギに変換して車両を駆動したり、モータで電気エネルギを回転エネルギに変換して車両を駆動したりするため、単位時間当りの燃料消費量と単位時間当りの電気エネルギ消費量とを用いれば、実車両駆動エネルギ消費率を精度良く算出することができる。   Further, when the internal combustion engine and the motor are mounted as the power source of the vehicle as in claim 5, the fuel consumption per unit time of the internal combustion engine and the unit of the battery that supplies electric energy to the motor The actual vehicle driving energy consumption rate may be calculated based on the electric energy consumption per hour. In a vehicle (so-called hybrid vehicle) using an internal combustion engine and a motor as power sources, the vehicle is driven by converting combustion energy of fuel into rotational energy by the internal combustion engine, or by converting electric energy into rotational energy by the motor. If the fuel consumption per unit time and the electric energy consumption per unit time are used, the actual vehicle drive energy consumption rate can be calculated with high accuracy.

一般に、運転者のアクセル操作量(アクセルペダルの踏込量)が大きくなるほど運転者が要求する車両駆動力が大きくなるため、要求車両駆動エネルギ消費率を算出する際には、請求項6のように、運転者のアクセル操作量に基づいて要求車両駆動エネルギ消費率を算出するようにすると良い。このようにすれば、運転者が要求する車両駆動力に相当する要求車両駆動エネルギ消費率を精度良く算出することができる。   Generally, as the driver's accelerator operation amount (accelerator pedal depression amount) increases, the vehicle driving force required by the driver increases. Therefore, when calculating the required vehicle driving energy consumption rate, as in claim 6 The required vehicle drive energy consumption rate may be calculated based on the accelerator operation amount of the driver. In this way, the required vehicle driving energy consumption rate corresponding to the vehicle driving force required by the driver can be calculated with high accuracy.

以下、本発明を実施するための最良の形態を3つの実施例1〜3を用いて説明する。   Hereinafter, the best mode for carrying out the present invention will be described using three Examples 1 to 3.

本発明を内燃機関であるエンジンを動力源とする車両に適用した実施例1を図1乃至図6に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関であるエンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、モータ15によって開度調節されるスロットルバルブ16と、このスロットルバルブ16の開度(スロットル開度)を検出するスロットル開度センサ17とが設けられている。このスロットル開度センサ17は、メインセンサとサブセンサを備えた二重系のセンサで構成されている。
A first embodiment in which the present invention is applied to a vehicle that uses an internal combustion engine as a power source will be described with reference to FIGS.
First, a schematic configuration of the entire engine control system will be described with reference to FIG. An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the engine 11 that is an internal combustion engine, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. A throttle valve 16 whose opening is adjusted by a motor 15 and a throttle opening sensor 17 for detecting the opening (throttle opening) of the throttle valve 16 are provided on the downstream side of the air flow meter 14. The throttle opening sensor 17 is composed of a double sensor having a main sensor and a sub sensor.

更に、スロットルバルブ16の下流側には、エンジン11の各気筒に空気を導入する吸気マニホールド18が設けられ、各気筒の吸気マニホールド18の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁19が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ20が取り付けられ、各点火プラグ20の火花放電によって筒内の混合気に着火される。   Further, an intake manifold 18 that introduces air into each cylinder of the engine 11 is provided on the downstream side of the throttle valve 16, and a fuel injection valve 19 that injects fuel near each intake port of the intake manifold 18 of each cylinder. It is attached. Further, a spark plug 20 is attached to each cylinder of the cylinder head of the engine 11, and the air-fuel mixture in the cylinder is ignited by spark discharge of each spark plug 20.

また、エンジン11のシリンダブロックには、クランク軸21が所定クランク角回転する毎にクランク角信号(パルス信号)を出力するクランク角センサ22が取り付けられている。このクランク角センサ22のクランク角信号に基づいてクランク角やエンジン回転速度が検出される。更に、アクセルセンサ23によってアクセル操作量(アクセルペダル24の踏込量)が検出される。このアクセルセンサ23は、メインセンサとサブセンサを備えた二重系のセンサで構成されている。   A crank angle sensor 22 that outputs a crank angle signal (pulse signal) every time the crankshaft 21 rotates a predetermined crank angle is attached to the cylinder block of the engine 11. Based on the crank angle signal of the crank angle sensor 22, the crank angle and the engine speed are detected. Further, the accelerator operation amount (depressed amount of the accelerator pedal 24) is detected by the accelerator sensor 23. The accelerator sensor 23 is composed of a double sensor having a main sensor and a sub sensor.

これら各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)25に入力される。このECU25は、CPU26、ROM27、RAM28等を備えたマイクロコンピュータを主体として構成され、ROM27に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁19の燃料噴射量や点火プラグ20の点火時期を制御する。   Outputs of these various sensors are input to an engine control circuit (hereinafter referred to as “ECU”) 25. The ECU 25 is mainly composed of a microcomputer including a CPU 26, a ROM 27, a RAM 28, and the like, and executes various engine control programs stored in the ROM 27, so that the fuel injection of the fuel injection valve 19 is performed in accordance with the engine operating state. The amount and ignition timing of the spark plug 20 are controlled.

その際、ECU25は、アクセルセンサ23で検出したアクセル操作量に基づいて目標スロットル開度を算出し、スロットル開度センサ17で検出した実スロットル開度を目標スロットル開度に一致させるようにスロットルバルブ16のモータ15を制御することで、エンジン11の出力を制御する。このエンジン11の出力は、自動変速機(図示せず)等を介して車両の駆動輪に伝達される。これにより、運転者のアクセル操作量に応じてエンジン11の出力が制御されて車両の駆動力が制御される。   At that time, the ECU 25 calculates the target throttle opening based on the accelerator operation amount detected by the accelerator sensor 23, and adjusts the throttle valve so that the actual throttle opening detected by the throttle opening sensor 17 coincides with the target throttle opening. The output of the engine 11 is controlled by controlling the 16 motors 15. The output of the engine 11 is transmitted to the drive wheels of the vehicle via an automatic transmission (not shown) or the like. Thereby, the output of the engine 11 is controlled according to the accelerator operation amount of the driver, and the driving force of the vehicle is controlled.

この車両駆動システムの異常診断は、ECU25によって後述する図6の異常診断プログラムに従って次のように実行される。図2に示すように、アクセル操作量等に基づいて要求車両駆動エネルギ消費率を算出し、燃料噴射量等に基づいて実車両駆動エネルギ消費率を算出する。ここで、実車両駆動エネルギ消費率は、実際に車両を駆動するために消費される単位時間当りのエネルギ消費量であり、要求車両駆動エネルギ消費率は、運転者が要求する駆動力で車両を駆動するのに必要な単位時間当りのエネルギ消費量である。この後、実車両駆動エネルギ消費率と要求車両駆動エネルギ消費率とを比較して、実車両駆動エネルギ消費率が要求車両駆動エネルギ消費率を越えているか否かを判定する。   This abnormality diagnosis of the vehicle drive system is executed by the ECU 25 as follows according to the abnormality diagnosis program of FIG. As shown in FIG. 2, the required vehicle drive energy consumption rate is calculated based on the accelerator operation amount and the like, and the actual vehicle drive energy consumption rate is calculated based on the fuel injection amount and the like. Here, the actual vehicle driving energy consumption rate is the energy consumption per unit time consumed to actually drive the vehicle, and the required vehicle driving energy consumption rate is the driving force requested by the driver. This is the energy consumption per unit time required for driving. Thereafter, the actual vehicle drive energy consumption rate is compared with the required vehicle drive energy consumption rate to determine whether or not the actual vehicle drive energy consumption rate exceeds the required vehicle drive energy consumption rate.

実車両駆動エネルギ消費率は、実際の車両駆動力の情報となり、要求車両駆動エネルギ消費率は、運転者が要求する車両駆動力の情報となるため、実車両駆動エネルギ消費率が要求車両駆動エネルギ消費率を越えているか否かを判定することで、動力伝達系や運転領域の影響を受けずに、実際の車両駆動力が運転者の要求する車両駆動力よりも大きくなる異常状態であるか否かを判定することができる。   The actual vehicle driving energy consumption rate becomes information on the actual vehicle driving force, and the required vehicle driving energy consumption rate becomes information on the vehicle driving force requested by the driver. Therefore, the actual vehicle driving energy consumption rate becomes the required vehicle driving energy. Whether the actual vehicle driving force is greater than the vehicle driving force requested by the driver without being affected by the power transmission system or driving region by determining whether or not the consumption rate has been exceeded. It can be determined whether or not.

その結果、実車両駆動エネルギ消費率が要求車両駆動エネルギ消費率を越えていると判定された場合には、実際の車両駆動力が運転者の要求する車両駆動力よりも大きくなる異常状態であると判断して、車両駆動力の異常有りと判定する。更に、車両駆動力の異常有りと判定された場合には、実車両駆動エネルギ消費率を抑制するフェイルセーフ制御を実行する。このフェイルセーフ制御では、燃料噴射量を制限したり、スロットル開度を制限して吸入空気量を制限して、エンジン11の出力を抑制ことで、実車両駆動エネルギ消費率を抑制して、車両の駆動力を車両が退避走行できる程度に抑える。   As a result, when it is determined that the actual vehicle driving energy consumption rate exceeds the required vehicle driving energy consumption rate, the actual vehicle driving force is an abnormal state that is greater than the vehicle driving force requested by the driver. It is determined that there is an abnormality in the vehicle driving force. Furthermore, when it is determined that there is an abnormality in the vehicle driving force, fail-safe control for suppressing the actual vehicle driving energy consumption rate is executed. In this fail-safe control, the fuel injection amount is limited, the throttle opening is limited to limit the intake air amount, and the output of the engine 11 is suppressed. The driving force is suppressed to such an extent that the vehicle can evacuate.

次に、要求車両駆動エネルギ消費率と実車両駆動エネルギ消費率の具体的な算出方法について説明する。要求車両駆動エネルギ消費率を算出する場合には、図3に示す要求車両駆動エネルギ消費率のマップを参照して、現在のアクセル操作量と車速(又はエンジン回転速度)とに応じた要求車両駆動エネルギ消費率を算出する。一般に、運転者のアクセル操作量が大きくなるほど運転者が要求する車両駆動力が大きくなって要求車両駆動エネルギ消費率が大きくなるため、要求車両駆動エネルギ消費率のマップは、アクセル操作量が大きくなるほど要求車両駆動エネルギ消費率が大きくなるように設定されている。この要求車両駆動エネルギ消費率のマップは、予め試験データや設計データ等に基づいて設定され、ECU25のROM27に記憶されている。   Next, a specific calculation method of the required vehicle driving energy consumption rate and the actual vehicle driving energy consumption rate will be described. When calculating the required vehicle drive energy consumption rate, referring to the map of the required vehicle drive energy consumption rate shown in FIG. 3, the required vehicle drive according to the current accelerator operation amount and the vehicle speed (or engine speed). Calculate the energy consumption rate. In general, as the driver's accelerator operation amount increases, the vehicle driving force required by the driver increases and the required vehicle driving energy consumption rate increases, so the map of the required vehicle driving energy consumption rate increases as the accelerator operation amount increases. The required vehicle drive energy consumption rate is set to be large. The required vehicle drive energy consumption rate map is set in advance based on test data, design data, and the like, and is stored in the ROM 27 of the ECU 25.

一方、実車両駆動エネルギ消費率を算出する際には、図2に示すように、まず、総エネルギ消費率と、熱・機械損失エネルギ消費率と、補機駆動エネルギ消費率を算出する。ここで、総エネルギ消費率は、車両で消費される単位時間当りの総エネルギ消費量である。また、熱・機械損失エネルギ消費率は、熱や機械損失として消費される単位時間当りのエネルギ消費量であり、補機駆動エネルギ消費率は、エアコン、パワーステアリング、オルタネータ等の補機類を駆動するために消費される単位時間当りのエネルギ消費量である。この後、総エネルギ消費率から熱・機械損失エネルギ消費率及び補機駆動エネルギ消費率を差し引いて実車両駆動エネルギ消費率を求める。   On the other hand, when calculating the actual vehicle drive energy consumption rate, as shown in FIG. 2, first, the total energy consumption rate, the heat / mechanical loss energy consumption rate, and the accessory drive energy consumption rate are calculated. Here, the total energy consumption rate is the total energy consumption per unit time consumed by the vehicle. The heat / mechanical loss energy consumption rate is the energy consumption per unit time consumed as heat and mechanical loss, and the auxiliary drive energy consumption rate drives auxiliary equipment such as air conditioners, power steering and alternators. It is the energy consumption per unit time consumed to do. Thereafter, the actual vehicle drive energy consumption rate is obtained by subtracting the heat / mechanical loss energy consumption rate and the accessory drive energy consumption rate from the total energy consumption rate.

エンジン11を動力源とする車両では、単位時間当りの燃焼エネルギ消費量(燃焼エネルギ消費率)が、総エネルギ消費率とほぼ等しくなるため、総エネルギ消費率を算出する場合には、エンジン11の1回転(360℃A)当りの燃料噴射量にエンジン回転速度を乗算して単位時間当りの燃料消費量を求め、この単位時間当りの燃料消費量に所定の係数を乗算して燃焼エネルギ消費率を求め、それを総エネルギ消費率とする。
総エネルギ消費率=(燃料噴射量/1回転)×エンジン回転速度×係数
In a vehicle using the engine 11 as a power source, the amount of combustion energy consumed per unit time (combustion energy consumption rate) is substantially equal to the total energy consumption rate. Therefore, when calculating the total energy consumption rate, The fuel consumption per unit time is obtained by multiplying the fuel injection amount per revolution (360 ° C. A) by the engine rotation speed, and the fuel consumption amount per unit time is multiplied by a predetermined coefficient. Is determined as the total energy consumption rate.
Total energy consumption rate = (fuel injection amount / 1 rotation) x engine rotation speed x coefficient

また、熱・機械損失エネルギ消費率を算出する場合には、図4に示す熱・機械損失エネルギ消費率のマップを参照して、現在の冷却水温に応じた熱・機械損失エネルギ消費率を算出する。一般に、エンジン温度が高くなるほど冷却水温が高くなる。また、エンジン温度が高くなるほどエンジン11及びその周辺部品等の暖機によって消費される熱エネルギが少なくなると共に、エンジン温度が高くなるほど潤滑油の粘度が低下して摩擦力が小さくなって機械損失によって消費されるエネルギが少なくなる。そこで、熱・機械損失エネルギ消費率のマップは、冷却水温が高くなる(つまりエンジン温度が高くなる)ほど熱・機械損失エネルギ消費率が小さくなるように設定されている。この熱・機械損失エネルギ消費率のマップは、予め試験データや設計データ等に基づいて設定され、ECU25のROM27に記憶されている。尚、冷却水温に代えて、エンジン温度や油温等の他の温度情報を用いるようにしても良い。   When calculating the heat / mechanical loss energy consumption rate, refer to the heat / mechanical loss energy consumption rate map shown in FIG. 4 and calculate the heat / mechanical loss energy consumption rate according to the current cooling water temperature. To do. Generally, the coolant temperature increases as the engine temperature increases. Further, as the engine temperature increases, the heat energy consumed by warming up the engine 11 and its peripheral parts decreases, and as the engine temperature increases, the viscosity of the lubricating oil decreases and the frictional force decreases, resulting in mechanical loss. Less energy is consumed. Therefore, the heat / mechanical loss energy consumption rate map is set such that the heat / mechanical loss energy consumption rate decreases as the coolant temperature increases (that is, the engine temperature increases). This heat / mechanical loss energy consumption rate map is set in advance based on test data, design data, and the like, and is stored in the ROM 27 of the ECU 25. Instead of the cooling water temperature, other temperature information such as engine temperature and oil temperature may be used.

更に、補機駆動エネルギ消費率を算出する場合には、図5に示すように、エアコン駆動エネルギ消費率(エアコンを駆動するために消費する単位時間当りのエネルギ消費量)と、パワステ駆動エネルギ消費率(パワーステアリングを駆動するために消費する単位時間当りのエネルギ消費量)と、オルタネータ駆動エネルギ消費率(オルタネータを駆動するために消費する単位時間当りのエネルギ消費量)とを算出し、これらのエアコン駆動エネルギ消費率とパワステ駆動エネルギ消費率とオルタネータ駆動エネルギ消費率とを加算して補機駆動エネルギ消費率を求める。   Further, when calculating the auxiliary machine drive energy consumption rate, as shown in FIG. 5, the air conditioner drive energy consumption rate (energy consumption per unit time consumed to drive the air conditioner) and the power steering drive energy consumption are calculated. Rate (energy consumption per unit time consumed to drive the power steering) and alternator drive energy consumption rate (energy consumption per unit time consumed to drive the alternator) are calculated. The auxiliary machine drive energy consumption rate is obtained by adding the air conditioner drive energy consumption rate, the power steering drive energy consumption rate, and the alternator drive energy consumption rate.

エンジン11を動力源とする車両では、エンジン11で燃料の燃焼エネルギを機械的な回転エネルギ(車両を駆動するためのエネルギ)に変換して車両を駆動する。その際、燃焼エネルギが全て車両を駆動するためのエネルギとして消費されるのではなく、燃焼エネルギの一部は、熱エネルギや機械損失エネルギや補機駆動エネルギとして消費される。従って、単位時間当りの燃料消費量に基づいて算出した総エネルギ消費率(つまり燃焼エネルギ消費率)から熱・機械損失エネルギ消費率及び補機駆動エネルギ消費率を差し引くことで実車両駆動エネルギ消費率を求めることができる。   In a vehicle using the engine 11 as a power source, the engine 11 converts the combustion energy of fuel into mechanical rotational energy (energy for driving the vehicle) to drive the vehicle. At this time, not all of the combustion energy is consumed as energy for driving the vehicle, but a part of the combustion energy is consumed as heat energy, mechanical loss energy, and auxiliary machine drive energy. Therefore, the actual vehicle drive energy consumption rate is calculated by subtracting the heat / mechanical loss energy consumption rate and the auxiliary drive energy consumption rate from the total energy consumption rate calculated based on the fuel consumption per unit time (that is, the combustion energy consumption rate). Can be requested.

以上説明した車両駆動システムの異常診断は、ECU25によって図6の異常診断プログラムに従って実行される。以下、この異常診断プログラムの処理内容を説明する。
図6に示す異常診断プログラムは、ECU25の電源オン中に所定周期で実行される。本プログラムが起動されると、まず、ステップ101で、図3に示す要求車両駆動エネルギ消費率のマップを参照して、現在のアクセル操作量と車速(又はエンジン回転速度)とに応じた要求車両駆動エネルギ消費率を算出する。このステップ101の処理が特許請求の範囲でいう要求車両駆動エネルギ消費率算出手段としての役割を果たす。
The vehicle drive system abnormality diagnosis described above is executed by the ECU 25 according to the abnormality diagnosis program of FIG. The processing contents of this abnormality diagnosis program will be described below.
The abnormality diagnosis program shown in FIG. 6 is executed at a predetermined cycle while the ECU 25 is powered on. When this program is started, first, in step 101, the requested vehicle corresponding to the current accelerator operation amount and vehicle speed (or engine speed) is referred to with reference to the map of the requested vehicle driving energy consumption rate shown in FIG. The drive energy consumption rate is calculated. The processing in step 101 serves as a required vehicle driving energy consumption rate calculating means in the claims.

この後、ステップ102に進み、エンジン11の1回転当りの燃料噴射量にエンジン回転速度を乗算して単位時間当りの燃料消費量を求め、この単位時間当りの燃料消費量に所定の係数を乗算して総エネルギ消費率(つまり燃焼エネルギ消費率)を求めた後、ステップ103に進み、図4に示す熱・機械損失エネルギ消費率のマップを参照して、現在の冷却水温に応じた熱・機械損失エネルギ消費率を算出する。   Thereafter, the process proceeds to step 102, where the fuel injection amount per rotation of the engine 11 is multiplied by the engine rotation speed to obtain the fuel consumption amount per unit time, and the fuel consumption amount per unit time is multiplied by a predetermined coefficient. Then, after obtaining the total energy consumption rate (that is, the combustion energy consumption rate), the process proceeds to step 103, and the heat / mechanical loss energy consumption rate map shown in FIG. Calculate the mechanical loss energy consumption rate.

この後、ステップ104に進み、エアコン駆動エネルギ消費率とパワステ駆動エネルギ消費率とオルタネータ駆動エネルギ消費率をそれぞれ算出し、これらのエアコン駆動エネルギ消費率とパワステ駆動エネルギ消費率とオルタネータ駆動エネルギ消費率とを加算して補機駆動エネルギ消費率を求める。   Thereafter, the process proceeds to step 104, where the air conditioner drive energy consumption rate, the power steering drive energy consumption rate, and the alternator drive energy consumption rate are calculated, respectively, and the air conditioner drive energy consumption rate, the power steering drive energy consumption rate, and the alternator drive energy consumption rate are calculated. Is added to obtain the auxiliary machine drive energy consumption rate.

この後、ステップ105に進み、総エネルギ消費率から熱・機械損失エネルギ消費率及び補機駆動エネルギ消費率を差し引いて実車両駆動エネルギ消費率を求める。これらのステップ102〜105の処理が特許請求の範囲でいう実車両駆動エネルギ消費率算出手段としての役割を果たす。   Thereafter, the process proceeds to step 105, where the actual vehicle drive energy consumption rate is obtained by subtracting the heat / mechanical loss energy consumption rate and the accessory drive energy consumption rate from the total energy consumption rate. The processing of these steps 102 to 105 serves as an actual vehicle driving energy consumption rate calculating means in the claims.

この後、ステップ106に進み、実車両駆動エネルギ消費率が要求車両駆動エネルギ消費率よりも判定値α以上大きいか否かを判定し、「No」と判定されれば、ステップ107に進み、車両駆動力の異常無し(正常)と判定する。ここで、判定値αは、制御誤差等を考慮して設定される。要するに、要求車両駆動エネルギ消費率と実車両駆動エネルギ消費率との偏差が制御誤差範囲を超えて大きくなったか否かで、車両駆動力の異常の有無を判定するものである。   Thereafter, the process proceeds to step 106, where it is determined whether or not the actual vehicle drive energy consumption rate is larger than the required vehicle drive energy consumption rate by the determination value α. If “No” is determined, the process proceeds to step 107. It is determined that there is no abnormality (normal) in the driving force. Here, the determination value α is set in consideration of a control error or the like. In short, the presence / absence of an abnormality in the vehicle driving force is determined based on whether or not the deviation between the required vehicle driving energy consumption rate and the actual vehicle driving energy consumption rate exceeds the control error range.

これに対して、上記ステップ106で、実車両駆動エネルギ消費率が要求車両駆動エネルギ消費率よりも判定値α以上大きいと判定されれば、運転者の要求する車両駆動力に対して実際の車両駆動力が制御誤差範囲を超えて大きくなる異常状態であると判断して、ステップ108に進み、車両駆動力の異常有りと判定して異常フラグをONにセットする。更に、運転席のインストルメントパネルに設けられた警告ランプ(図示せず)を点灯したり、或は運転席のインストルメントパネルの警告表示部(図示せず)に警告表示して運転者に警告すると共に、その異常情報(異常コード等)をECU25のバックアップRAM(図示せず)等の書き換え可能な不揮発性メモリに記憶する。これらのステップ106〜108の処理が特許請求の範囲でいう異常診断手段としての役割を果たす。   On the other hand, if it is determined in step 106 that the actual vehicle driving energy consumption rate is larger than the required vehicle driving energy consumption rate by the determination value α or more, the actual vehicle driving force requested by the driver is determined. It is determined that the driving force is in an abnormal state that exceeds the control error range, and the process proceeds to step 108 where it is determined that the vehicle driving force is abnormal and the abnormality flag is set to ON. Further, a warning lamp (not shown) provided on the instrument panel of the driver's seat is turned on, or a warning is displayed on a warning display section (not shown) of the instrument panel of the driver's seat to warn the driver. At the same time, the abnormality information (abnormality code or the like) is stored in a rewritable nonvolatile memory such as a backup RAM (not shown) of the ECU 25. The processing of these steps 106 to 108 plays a role as abnormality diagnosis means in the claims.

この後、ステップ109に進み、実車両駆動エネルギ消費率を抑制するフェイルセーフ制御を実行する。このフェイルセーフ制御では、燃料噴射量を減量補正したり、スロットル開度を小さくして吸入空気量を減量補正して、エンジン11の出力を抑制することで、実車両駆動エネルギ消費率を抑制して、車両の駆動力を車両が退避走行できる程度に抑える。このステップ109の処理が特許請求の範囲でいうフェイルセーフ制御手段としての役割を果たす。   Thereafter, the process proceeds to step 109, and fail-safe control for suppressing the actual vehicle driving energy consumption rate is executed. In this fail-safe control, the actual vehicle drive energy consumption rate is suppressed by correcting the decrease in the fuel injection amount, or decreasing the throttle opening to reduce the intake air amount and suppressing the output of the engine 11. Thus, the driving force of the vehicle is suppressed to such an extent that the vehicle can evacuate. The processing in step 109 serves as fail-safe control means in the claims.

以上説明した本実施例1では、アクセル操作量等に基づいて要求車両駆動エネルギ消費率を算出すると共に、燃料噴射量等に基づいて実車両駆動エネルギ消費率を算出し、実車両駆動エネルギ消費率が要求車両駆動エネルギ消費率よりも判定値α以上大きいか否かによって車両の駆動力の異常の有無を判定するようにしたので、動力伝達系や運転領域の影響を受けずに、リアルタイムで実際の車両駆動力が運転者の要求する車両駆動力の制御誤差範囲を超えて大きくなる異常状態であるか否かを判定することができる。これにより、動力伝達系や運転領域に左右されずに、車両の駆動力の異常の有無を精度良く判定して、車両の駆動力の異常を精度良く検出することができる。   In the first embodiment described above, the required vehicle drive energy consumption rate is calculated based on the accelerator operation amount and the like, and the actual vehicle drive energy consumption rate is calculated based on the fuel injection amount and the like. Is determined to be greater than the required vehicle drive energy consumption rate by a determination value α or more, so that the presence or absence of an abnormality in the driving force of the vehicle is determined. It is possible to determine whether or not the vehicle driving force is in an abnormal state where the vehicle driving force increases beyond the control error range of the vehicle driving force requested by the driver. Accordingly, it is possible to accurately determine whether there is an abnormality in the driving force of the vehicle without depending on the power transmission system and the driving region, and to detect the abnormality in the driving force of the vehicle with high accuracy.

更に、本実施例1では、実車両駆動エネルギ消費率が要求車両駆動エネルギ消費率よりも判定値α以上大きくなったときに、車両駆動力の異常有りと判断して、実車両駆動エネルギ消費率を抑制するフェイルセーフ制御を実行するようにしたので、実際の車両駆動力の異常が発生したときに、フェイルセーフ制御により車両駆動力を車両が退避走行できる程度に抑えて、運転者の意に反した急加速を防止しながら、車両を安全に退避走行させることができる。   Further, in the first embodiment, when the actual vehicle driving energy consumption rate becomes larger than the required vehicle driving energy consumption rate by the determination value α or more, it is determined that the vehicle driving force is abnormal, and the actual vehicle driving energy consumption rate is determined. Therefore, when the actual vehicle driving force abnormality occurs, the driver's intention is to suppress the vehicle driving force to such an extent that the vehicle can evacuate. The vehicle can be safely evacuated while preventing sudden acceleration.

エンジン11を動力源とする車両では、エンジン11で燃料の燃焼エネルギを機械的な回転エネルギ(車両を駆動するためのエネルギ)に変換して車両を駆動する。その際、燃焼エネルギが全て車両を駆動するためのエネルギとして消費されるのではなく、燃焼エネルギの一部は、熱エネルギや機械損失エネルギや補機駆動エネルギとして消費される。   In a vehicle using the engine 11 as a power source, the engine 11 converts the combustion energy of the fuel into mechanical rotational energy (energy for driving the vehicle) to drive the vehicle. At this time, not all of the combustion energy is consumed as energy for driving the vehicle, but a part of the combustion energy is consumed as heat energy, mechanical loss energy, and auxiliary machine drive energy.

このような事情を考慮して、本実施例1では、単位時間当りの燃料消費量に基づいて算出した総エネルギ消費率(燃焼エネルギ消費率)から熱・機械損失エネルギ消費率及び補機駆動エネルギ消費率を差し引いて実車両駆動エネルギ消費率を求めるようにしたので、エンジン11を動力源とする車両における実車両駆動エネルギ消費率を精度良く算出することができる。   In consideration of such circumstances, in the first embodiment, the heat / mechanical loss energy consumption rate and the auxiliary machine drive energy are calculated from the total energy consumption rate (combustion energy consumption rate) calculated based on the fuel consumption per unit time. Since the actual vehicle drive energy consumption rate is obtained by subtracting the consumption rate, the actual vehicle drive energy consumption rate in a vehicle using the engine 11 as a power source can be calculated with high accuracy.

次に、図7を用いて本発明をモータを動力源とする車両(いわゆる電気自動車)に適用した実施例2を説明する。
図7に示すように、本実施例2では、要求車両駆動エネルギ消費率を算出する場合には、現在のアクセル操作量と車速(又はモータ回転速度)とに応じた要求車両駆動エネルギ消費率をマップ等により算出する。
Next, a second embodiment in which the present invention is applied to a vehicle (so-called electric vehicle) using a motor as a power source will be described with reference to FIG.
As shown in FIG. 7, in the second embodiment, when the required vehicle drive energy consumption rate is calculated, the required vehicle drive energy consumption rate corresponding to the current accelerator operation amount and the vehicle speed (or motor rotation speed) is calculated. Calculate with maps.

一方、実車両駆動エネルギ消費率を算出する際には、総エネルギ消費率と熱・機械損失エネルギ消費率と補機駆動エネルギ消費率を算出するが、モータを動力源とする車両では、モータに電力を供給するバッテリの単位時間当りの電気エネルギ消費量(電気エネルギ消費率)が、総エネルギ消費率はとほぼ等しくなるため、総エネルギ消費率を算出する場合には、バッテリの電圧と電流とに基づいて電気エネルギ消費率を算出し、それを総エネルギ消費率とする。   On the other hand, when calculating the actual vehicle drive energy consumption rate, the total energy consumption rate, heat / mechanical loss energy consumption rate, and auxiliary machine drive energy consumption rate are calculated. The electric energy consumption (electric energy consumption rate) per unit time of the battery supplying power is almost equal to the total energy consumption rate. Therefore, when calculating the total energy consumption rate, the battery voltage and current The electric energy consumption rate is calculated based on the above, and is set as the total energy consumption rate.

また、熱・機械損失エネルギ消費率を算出する場合には、現在のモータ温度(又はそれに相関する情報)に応じた熱・機械損失エネルギ消費率をマップ等により算出する。
そして、総エネルギ消費率から熱・機械損失エネルギ消費率及び補機駆動エネルギ消費率を差し引いて実車両駆動エネルギ消費率を求める。
When calculating the heat / mechanical loss energy consumption rate, the heat / mechanical loss energy consumption rate corresponding to the current motor temperature (or information correlated therewith) is calculated using a map or the like.
Then, the actual vehicle drive energy consumption rate is obtained by subtracting the heat / mechanical loss energy consumption rate and the accessory drive energy consumption rate from the total energy consumption rate.

この後、実車両駆動エネルギ消費率が要求車両駆動エネルギ消費率よりも判定値以上大きいか否かを判定し、実車両駆動エネルギ消費率が要求車両駆動エネルギ消費率よりも判定値以上大きければ、実際の車両駆動力が運転者の要求する車両駆動力の制御誤差範囲を超えて大きくなる異常状態であると判断して、フェイルセーフ制御を実行する。このフェイルセーフ制御では、モータの駆動電圧や駆動電流を制限してモータの出力を抑制することで、実車両駆動エネルギ消費率を抑制して、車両の駆動力を車両が退避走行できる程度に抑える。   Thereafter, it is determined whether or not the actual vehicle drive energy consumption rate is larger than the determination value by the requested vehicle drive energy consumption rate, and if the actual vehicle drive energy consumption rate is greater than the determination value by the requested vehicle drive energy consumption rate, Fail safe control is executed by determining that the actual vehicle driving force is in an abnormal state in which the actual vehicle driving force increases beyond the control error range of the vehicle driving force requested by the driver. In this fail-safe control, the drive voltage and drive current of the motor are limited to suppress the output of the motor, so that the actual vehicle drive energy consumption rate is suppressed and the drive force of the vehicle is suppressed to such an extent that the vehicle can evacuate. .

モータを動力源とする車両では、モータで電気エネルギを機械的な回転エネルギ(車両を駆動するためのエネルギ)に変換して車両を駆動する。その際、バッテリで消費される電気エネルギが全て車両を駆動するためのエネルギとして消費されるのではなく、バッテリで消費される電気エネルギの一部は、熱エネルギや機械損失エネルギや補機駆動エネルギとして消費される。   In a vehicle using a motor as a power source, electric energy is converted into mechanical rotational energy (energy for driving the vehicle) by the motor to drive the vehicle. At that time, not all the electric energy consumed by the battery is consumed as energy for driving the vehicle, but a part of the electric energy consumed by the battery is heat energy, mechanical loss energy, auxiliary drive energy, or the like. As consumed.

このような事情を考慮して、本実施例2では、バッテリの単位時間当りの電気エネルギ消費量に基づいて算出した総エネルギ消費率(電気エネルギ消費率)から熱・機械損失エネルギ消費率及び補機駆動エネルギ消費率を差し引いて実車両駆動エネルギ消費率を求めるようにしたので、モータを動力源とする車両における実車両駆動エネルギ消費率を精度良く算出することができる。   In consideration of such circumstances, in the second embodiment, the heat / mechanical loss energy consumption rate and the compensation are calculated from the total energy consumption rate (electric energy consumption rate) calculated based on the electric energy consumption per unit time of the battery. Since the actual vehicle drive energy consumption rate is determined by subtracting the machine drive energy consumption rate, the actual vehicle drive energy consumption rate in a vehicle using a motor as a power source can be calculated with high accuracy.

次に、図8を用いて本発明をエンジンとモータとを動力源とする車両(いわゆるハイブリット車)に適用した実施例3を説明する。
図8に示すように、本実施例3では、要求車両駆動エネルギ消費率を算出する場合には、現在のアクセル操作量と車速(又はエンジン回転速度とモータ回転速度の少なくとも一方)とに応じた要求車両駆動エネルギ消費率をマップ等により算出する。
Next, a third embodiment in which the present invention is applied to a vehicle (so-called hybrid vehicle) using an engine and a motor as power sources will be described with reference to FIG.
As shown in FIG. 8, in the third embodiment, when the required vehicle drive energy consumption rate is calculated, it depends on the current accelerator operation amount and the vehicle speed (or at least one of the engine rotation speed and the motor rotation speed). The required vehicle drive energy consumption rate is calculated using a map or the like.

また、エンジンとモータとを動力源とする車両では、燃焼エネルギ消費率と電気エネルギ消費率との和が総エネルギ消費率とほぼ等しくなるため、実車両駆動エネルギ消費率を算出する際には、燃焼エネルギ消費率と電気エネルギ消費率を算出すると共に、熱・機械損失エネルギ消費率と補機駆動エネルギ消費率を算出する。   In addition, in a vehicle using an engine and a motor as a power source, the sum of the combustion energy consumption rate and the electric energy consumption rate is substantially equal to the total energy consumption rate, so when calculating the actual vehicle drive energy consumption rate, The combustion energy consumption rate and the electric energy consumption rate are calculated, and the heat / mechanical loss energy consumption rate and the accessory driving energy consumption rate are calculated.

燃焼エネルギ消費率は、エンジン11の1回転当りの燃料噴射量にエンジン回転速度を乗算して単位時間当りの燃料消費量を求め、この単位時間当りの燃料消費量に所定の係数を乗算して燃焼エネルギ消費率を求める。一方、電気エネルギ消費率は、バッテリの電圧と電流とに基づいて電気エネルギ消費率を算出する。   The combustion energy consumption rate is obtained by multiplying the fuel injection amount per rotation of the engine 11 by the engine rotation speed to obtain the fuel consumption amount per unit time, and multiplying the fuel consumption amount per unit time by a predetermined coefficient. Obtain the combustion energy consumption rate. On the other hand, the electric energy consumption rate is calculated based on the voltage and current of the battery.

また、熱・機械損失エネルギ消費率を算出する場合には、現在の冷却水温又はモータ温度に応じた熱・機械損失エネルギ消費率をマップ等により算出する。
そして、燃焼エネルギ消費率と電気エネルギ消費率との和(つまり総エネルギ消費率)から熱・機械損失エネルギ消費率及び補機駆動エネルギ消費率を差し引いて実車両駆動エネルギ消費率を求める。
When calculating the heat / mechanical loss energy consumption rate, the heat / mechanical loss energy consumption rate corresponding to the current cooling water temperature or motor temperature is calculated using a map or the like.
Then, the actual vehicle drive energy consumption rate is obtained by subtracting the heat / mechanical loss energy consumption rate and the accessory drive energy consumption rate from the sum of the combustion energy consumption rate and the electric energy consumption rate (that is, the total energy consumption rate).

この後、実車両駆動エネルギ消費率が要求車両駆動エネルギ消費率よりも判定値以上大きいか否かを判定し、実車両駆動エネルギ消費率が要求車両駆動エネルギ消費率よりも判定値以上大きければ、実際の車両駆動力が運転者の要求する車両駆動力の制御誤差範囲を超えて大きくなる異常状態であると判断して、フェイルセーフ制御を実行する。このフェイルセーフ制御では、エンジン11の燃料噴射量や吸入空気量を制限してエンジンの出力を抑制すると共に、モータの駆動電圧や駆動電流を制限してモータの出力を抑制することで、実車両駆動エネルギ消費率を抑制して、車両の駆動力を車両が退避走行できる程度に抑える。   Thereafter, it is determined whether or not the actual vehicle drive energy consumption rate is larger than the determination value by the requested vehicle drive energy consumption rate, and if the actual vehicle drive energy consumption rate is greater than the determination value by the requested vehicle drive energy consumption rate, Fail safe control is executed by determining that the actual vehicle driving force is in an abnormal state in which the actual vehicle driving force increases beyond the control error range of the vehicle driving force requested by the driver. In this fail-safe control, the fuel injection amount and intake air amount of the engine 11 are limited to suppress the output of the engine, and the motor driving voltage and driving current are limited to suppress the motor output. The driving energy consumption rate is suppressed, and the driving force of the vehicle is suppressed to such an extent that the vehicle can evacuate.

以上説明した本実施例3では、エンジンとモータとを動力源とする車両では、燃焼エネルギ消費率と電気エネルギ消費率との和が総エネルギ消費率となること考慮して、燃焼エネルギ消費率と電気エネルギ消費率との和から熱・機械損失エネルギ消費率及び補機駆動エネルギ消費率を差し引いて実車両駆動エネルギ消費率を求めるようにしたので、エンジン11とモータとを動力源とする車両における実車両駆動エネルギ消費率を精度良く算出することができる。   In the third embodiment described above, in a vehicle using an engine and a motor as a power source, considering that the sum of the combustion energy consumption rate and the electrical energy consumption rate is the total energy consumption rate, Since the actual vehicle driving energy consumption rate is obtained by subtracting the heat / mechanical loss energy consumption rate and the accessory driving energy consumption rate from the sum of the electric energy consumption rate, the vehicle in which the engine 11 and the motor are used as power sources is used. The actual vehicle driving energy consumption rate can be calculated with high accuracy.

尚、上記各実施例1〜3では、実車両駆動エネルギ消費率が要求車両駆動エネルギ消費率よりも判定値以上大きくなったときのみ、車両駆動力の異常有りと判定するようにしたが、実車両駆動エネルギ消費率が要求車両駆動エネルギ消費よりも判定値以上小さくなったときにも、車両駆動力の異常有りと判定するようにしても良い。   In each of the first to third embodiments, it is determined that there is an abnormality in the vehicle driving force only when the actual vehicle driving energy consumption rate is greater than the required vehicle driving energy consumption rate by a determination value or more. Even when the vehicle drive energy consumption rate becomes smaller than the required vehicle drive energy consumption by a determination value or more, it may be determined that the vehicle drive force is abnormal.

また、エンジンを動力源とする車両やエンジンとモータを動力源とする車両に本発明を適用する場合、その適用範囲は、ガソリンエンジンを搭載した車両に限定されず、ディーゼルエンジンを搭載した車両にも本発明を適用することができる。また、本発明は、マスフロー方式(エンジンの吸入空気量をエアフローメータで検出する方式)とスピードデンシティ方式(エンジンの吸入空気量をエンジン回転速度と吸気管圧力から算出する方式)のいずれのエンジン制御システムにも適用して実施できる。   In addition, when the present invention is applied to a vehicle using an engine as a power source or a vehicle using an engine and a motor as a power source, the applicable range is not limited to a vehicle equipped with a gasoline engine, but to a vehicle equipped with a diesel engine. The present invention can also be applied. In addition, the present invention relates to any engine control of a mass flow method (a method of detecting the intake air amount of the engine with an air flow meter) and a speed density method (a method of calculating the intake air amount of the engine from the engine rotational speed and the intake pipe pressure). It can also be applied to the system.

また、モータのエネルギー源として用いるバッテリに対しては、蓄電池を用いても良いし、燃料電池を用いても良い。また、バッテリの代わりに発電機能を有する装置を用いても良い。   For the battery used as the energy source of the motor, a storage battery or a fuel cell may be used. Moreover, you may use the apparatus which has an electric power generation function instead of a battery.

本発明の実施例1におけるエンジン制御システム全体の概略構成図である。It is a schematic block diagram of the whole engine control system in Example 1 of this invention. 実施例1のECUの異常診断機能を概略的に示す機能ブロック図である。FIG. 2 is a functional block diagram schematically showing an abnormality diagnosis function of the ECU according to the first embodiment. 要求車両駆動エネルギ消費率のマップの一例を概念的に示す図である。It is a figure which shows notionally an example of the map of a request | requirement vehicle drive energy consumption rate. 熱・機械損失エネルギ消費率のマップの一例を概念的に示す図である。It is a figure which shows notionally an example of the map of a heat / mechanical loss energy consumption rate. 補機駆動エネルギ消費率の算出方法を説明するためのブロック図である。It is a block diagram for demonstrating the calculation method of an auxiliary machinery drive energy consumption rate. 異常診断プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of an abnormality diagnosis program. 実施例2のECUの異常診断機能を概略的に示す機能ブロック図である。It is a functional block diagram which shows roughly the abnormality diagnosis function of ECU of Example 2. FIG. 実施例3のECUの異常診断機能を概略的に示す機能ブロック図である。FIG. 6 is a functional block diagram schematically illustrating an abnormality diagnosis function of an ECU according to a third embodiment.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…吸気管、16…スロットルバルブ、19…燃料噴射弁、20…点火プラグ、23…アクセルセンサ、25…ECU(実車両駆動エネルギ消費率算出手段,要求車両駆動エネルギ消費率算出手段,異常診断手段,フェイルセーフ制御手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 16 ... Throttle valve, 19 ... Fuel injection valve, 20 ... Spark plug, 23 ... Accelerator sensor, 25 ... ECU (actual vehicle drive energy consumption rate calculation means, demand vehicle drive) Energy consumption rate calculation means, abnormality diagnosis means, fail safe control means)

Claims (6)

車両に搭載された動力源を制御して該車両の駆動力を制御する車両駆動システムにおいて、
前記車両を駆動するために消費される単位時間当りのエネルギ消費量(以下「実車両駆動エネルギ消費率」という)を算出する実車両駆動エネルギ消費率算出手段と、
運転者が要求する駆動力で前記車両を駆動するのに必要な単位時間当りのエネルギ消費量(以下「要求車両駆動エネルギ消費率」という)を算出する要求車両駆動エネルギ消費率算出手段と、
前記実車両駆動エネルギ消費率と前記要求車両駆動エネルギ消費率とを比較して前記車両の駆動力の異常の有無を判定する異常診断手段と
を備えていることを特徴とする車両駆動システムの異常診断装置。
In a vehicle drive system for controlling a driving force of a vehicle by controlling a power source mounted on the vehicle,
An actual vehicle driving energy consumption rate calculating means for calculating an energy consumption amount per unit time consumed for driving the vehicle (hereinafter referred to as “actual vehicle driving energy consumption rate”);
Requested vehicle drive energy consumption rate calculating means for calculating an energy consumption per unit time (hereinafter referred to as “required vehicle drive energy consumption rate”) required to drive the vehicle with the drive force requested by the driver;
An abnormality diagnosing means for comparing the actual vehicle driving energy consumption rate with the required vehicle driving energy consumption rate to determine whether there is an abnormality in the driving force of the vehicle. Diagnostic device.
前記異常診断手段は、前記実車両駆動エネルギ消費率が前記要求車両駆動エネルギ消費率よりも判定値以上大きくなったときに前記車両の駆動力の異常有りと判定し、
前記異常診断手段により前記車両の駆動力の異常有りと判定されたときに前記実車両駆動エネルギ消費率を抑制するフェイルセーフ制御を実行するフェイルセーフ制御手段を備えていることを特徴とする請求項1に記載の車両駆動システムの異常診断装置。
The abnormality diagnosing means determines that there is an abnormality in the driving force of the vehicle when the actual vehicle driving energy consumption rate is greater than a determination value more than the required vehicle driving energy consumption rate,
2. The apparatus according to claim 1, further comprising fail-safe control means for executing fail-safe control for suppressing the actual vehicle driving energy consumption rate when the abnormality diagnosis means determines that the driving force of the vehicle is abnormal. The abnormality diagnosis device for a vehicle drive system according to claim 1.
前記車両の動力源として内燃機関が搭載され、
前記実車両駆動エネルギ消費率算出手段は、前記内燃機関の単位時間当りの燃料消費量に基づいて前記実車両駆動エネルギ消費率を算出することを特徴とする請求項1又は2に記載の車両駆動システムの異常診断装置。
An internal combustion engine is mounted as a power source of the vehicle,
3. The vehicle drive according to claim 1, wherein the actual vehicle drive energy consumption rate calculating means calculates the actual vehicle drive energy consumption rate based on a fuel consumption amount per unit time of the internal combustion engine. System abnormality diagnosis device.
前記車両の動力源としてモータが搭載され、
前記実車両駆動エネルギ消費率算出手段は、前記モータに電気エネルギを供給するバッテリの単位時間当りの電気エネルギ消費量に基づいて前記実車両駆動エネルギ消費率を算出することを特徴とする請求項1又は2に記載の車両駆動システムの異常診断装置。
A motor is mounted as a power source of the vehicle,
2. The actual vehicle driving energy consumption rate calculating means calculates the actual vehicle driving energy consumption rate based on an electric energy consumption amount per unit time of a battery that supplies electric energy to the motor. Or the abnormality diagnosis apparatus of the vehicle drive system of 2.
前記車両の動力源として内燃機関とモータとが搭載され、
前記実車両駆動エネルギ消費率算出手段は、前記内燃機関の単位時間当りの燃料消費量と、前記モータに電気エネルギを供給するバッテリの単位時間当りの電気エネルギ消費量とに基づいて前記実車両駆動エネルギ消費率を算出することを特徴とする請求項1又は2に記載の車両駆動システムの異常診断装置。
An internal combustion engine and a motor are mounted as power sources for the vehicle,
The actual vehicle drive energy consumption rate calculating means is configured to drive the actual vehicle based on a fuel consumption amount per unit time of the internal combustion engine and an electric energy consumption amount per unit time of a battery supplying electric energy to the motor. The abnormality diagnosis device for a vehicle drive system according to claim 1, wherein an energy consumption rate is calculated.
前記要求車両駆動エネルギ消費率算出手段は、運転者のアクセル操作量に基づいて前記要求車両駆動エネルギ消費率を算出することを特徴とする請求項1乃至5のいずれかに記載の車両駆動システムの異常診断装置。   6. The vehicle drive system according to claim 1, wherein the required vehicle drive energy consumption rate calculating means calculates the required vehicle drive energy consumption rate based on a driver's accelerator operation amount. Abnormality diagnosis device.
JP2005310344A 2005-10-25 2005-10-25 Abnormality diagnostic device of vehicle driving system Pending JP2007120334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005310344A JP2007120334A (en) 2005-10-25 2005-10-25 Abnormality diagnostic device of vehicle driving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005310344A JP2007120334A (en) 2005-10-25 2005-10-25 Abnormality diagnostic device of vehicle driving system

Publications (1)

Publication Number Publication Date
JP2007120334A true JP2007120334A (en) 2007-05-17

Family

ID=38144442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005310344A Pending JP2007120334A (en) 2005-10-25 2005-10-25 Abnormality diagnostic device of vehicle driving system

Country Status (1)

Country Link
JP (1) JP2007120334A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152096A (en) * 2010-12-27 2012-08-09 Honda Motor Co Ltd Kinetic efficiency determination device
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
CN111591282A (en) * 2019-02-20 2020-08-28 丰田自动车株式会社 Driving force control device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03235032A (en) * 1990-02-13 1991-10-21 Mitsubishi Heavy Ind Ltd Breakdown predicting-diagnosing apparatus of diesel engine
JPH10164702A (en) * 1996-12-02 1998-06-19 Nissan Motor Co Ltd Motor driving controller for electric vehicle
JPH10304501A (en) * 1997-04-23 1998-11-13 Honda Motor Co Ltd Controlling device for electric vehicle
JP2000050416A (en) * 1998-07-31 2000-02-18 Honda Motor Co Ltd Speed control equipment
JP2003155943A (en) * 2001-08-27 2003-05-30 Robert Bosch Gmbh Driving method for internal combustion engine, computer program and control and/or adjustment device
JP2003333701A (en) * 2002-05-14 2003-11-21 Nissan Motor Co Ltd Motor controller
JP2004332661A (en) * 2003-05-09 2004-11-25 Nissan Motor Co Ltd Drive control device for hybrid vehicle
JP2005146888A (en) * 2003-11-11 2005-06-09 Denso Corp Control device for vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03235032A (en) * 1990-02-13 1991-10-21 Mitsubishi Heavy Ind Ltd Breakdown predicting-diagnosing apparatus of diesel engine
JPH10164702A (en) * 1996-12-02 1998-06-19 Nissan Motor Co Ltd Motor driving controller for electric vehicle
JPH10304501A (en) * 1997-04-23 1998-11-13 Honda Motor Co Ltd Controlling device for electric vehicle
JP2000050416A (en) * 1998-07-31 2000-02-18 Honda Motor Co Ltd Speed control equipment
JP2003155943A (en) * 2001-08-27 2003-05-30 Robert Bosch Gmbh Driving method for internal combustion engine, computer program and control and/or adjustment device
JP2003333701A (en) * 2002-05-14 2003-11-21 Nissan Motor Co Ltd Motor controller
JP2004332661A (en) * 2003-05-09 2004-11-25 Nissan Motor Co Ltd Drive control device for hybrid vehicle
JP2005146888A (en) * 2003-11-11 2005-06-09 Denso Corp Control device for vehicle

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2012152096A (en) * 2010-12-27 2012-08-09 Honda Motor Co Ltd Kinetic efficiency determination device
CN111591282A (en) * 2019-02-20 2020-08-28 丰田自动车株式会社 Driving force control device

Similar Documents

Publication Publication Date Title
JP2007120334A (en) Abnormality diagnostic device of vehicle driving system
JP4641838B2 (en) Idle operation stop control method for internal combustion engine
KR100261956B1 (en) Control system for hybrid vehicles
JP4825118B2 (en) Vehicle energy transmission diagnostic device
US6173569B1 (en) Catalyst deterioration detecting apparatus for internal combustion engine
JP3915335B2 (en) Control device for hybrid vehicle
JP6548759B2 (en) In-vehicle controller
JP4873378B2 (en) Abnormality diagnosis device for intake air volume sensor
JP2008013041A (en) Stop controller for internal combustion engine
US6397585B2 (en) Catalyst temperature estimating apparatus
JP4635938B2 (en) Fuel injection amount control device for internal combustion engine
JP2000283273A (en) Motor drive controller for vehicle
JP2006118519A (en) Fuel leakage detector for gas engine
US7286915B2 (en) Apparatus and method for controlling command torques in hybrid electric vehicle
JP2012126194A (en) Control device of electric vehicle
JP4911364B2 (en) Control device for internal combustion engine
JP2008014146A (en) Stop control device for internal combustion engine
JP2006029084A (en) Control device of internal combustion engine
JP2005188309A (en) Abnormality determination device of throttle system
US8205595B2 (en) Control device for internal combustion engine
JP4664249B2 (en) Engine rotation angle sensor diagnostic device
JP2011021567A (en) Atmosphere learning system for oxygen concentration sensor
JP5273547B2 (en) Engine control device
JP2009183064A (en) Alternator control diagnosing device
JP6423759B2 (en) In-vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100330