JP4232449B2 - Exposure method, exposure apparatus, and device manufacturing method - Google Patents

Exposure method, exposure apparatus, and device manufacturing method Download PDF

Info

Publication number
JP4232449B2
JP4232449B2 JP2002357956A JP2002357956A JP4232449B2 JP 4232449 B2 JP4232449 B2 JP 4232449B2 JP 2002357956 A JP2002357956 A JP 2002357956A JP 2002357956 A JP2002357956 A JP 2002357956A JP 4232449 B2 JP4232449 B2 JP 4232449B2
Authority
JP
Japan
Prior art keywords
substrate
liquid
optical system
projection optical
transparent plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002357956A
Other languages
Japanese (ja)
Other versions
JP2004193252A (en
Inventor
康弘 日高
壮一 大和
清 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2002357956A priority Critical patent/JP4232449B2/en
Publication of JP2004193252A publication Critical patent/JP2004193252A/en
Application granted granted Critical
Publication of JP4232449B2 publication Critical patent/JP4232449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply

Description

【0001】
【発明の属する技術分野】
本発明は、投影光学系と基板との間に液体を満たした状態で基板にパターンを露光する露光方法、露光装置、及びデバイス製造方法に関するものである。
【0002】
【従来の技術】
半導体デバイスや液晶表示デバイスは、マスク上に形成されたパターンを感光性の基板上に転写する、いわゆるフォトリソグラフィの手法により製造される。このフォトリソグラフィ工程で使用される露光装置は、マスクを支持するマスクステージと基板を支持する基板ステージとを有し、マスクステージ及び基板ステージを逐次移動しながらマスクのパターンを投影光学系を介して基板に転写するものである。近年、デバイスパターンのより一層の高集積化に対応するために投影光学系の更なる高解像度化が望まれている。投影光学系の解像度は、使用する露光波長が短くなるほど、また投影光学系の開口数が大きいほど高くなる。そのため、露光装置で使用される露光波長は年々短波長化しており、投影光学系の開口数も増大している。そして、現在主流の露光波長は、KrFエキシマレーザの248nmであるが、更に短波長のArFエキシマレーザの193nmも実用化されつつある。また、露光を行う際には、解像度と同様に焦点深度(DOF)も重要となる。解像度R、及び焦点深度δはそれぞれ以下の式で表される。
R=k・λ/NA … (1)
δ=±k・λ/NA … (2)
ここで、λは露光波長、NAは投影光学系の開口数、k、kはプロセス係数である。(1)式、(2)式より、解像度Rを高めるために、露光波長λを短くして、開口数NAを大きくすると、焦点深度δが狭くなることが分かる。
【0003】
焦点深度δが狭くなり過ぎると、投影光学系の像面に対して基板表面を合致させることが困難となり、露光動作時のマージンが不足する恐れがある。そこで、実質的に露光波長を短くして、且つ焦点深度を広くする方法として、例えば下記特許文献1に開示されている液浸法が提案されている。この液浸法は、投影光学系の下面と基板表面との間を水や有機溶媒等の液体で満たし、液体中での露光光の波長が、空気中の1/n(nは液体の屈折率で通常1.2〜1.6程度)になることを利用して解像度を向上するとともに、焦点深度を約n倍に拡大するというものである。
【0004】
【特許文献1】
国際公開第99/49504号パンフレット
【0005】
【発明が解決しようとする課題】
ところで、上記従来技術には以下に述べる問題が存在する。
上記従来技術は、図9(a)に示す模式図のように、投影光学系PLの像面側である下面と基板(ウエハ)Pとの間を局所的に液体50で満たした状態で、照明光学系ILからの露光光ELでマスクMを照明し、マスクMのパターンの像を基板ステージPSTに支持されている基板Pに露光する構成であり、基板Pの中央付近(中央領域)のショット領域を露光する場合には液体50の基板P外側への流出は生じない。しかしながら、図9(b)に示す模式図のように、基板Pの周辺領域(エッジ領域)Eに露光光ELを照射してこの基板Pのエッジ領域Eを露光しようとすると、基板Pと基板ステージPSTとの段差部分Dで表面張力を維持できなくなり液体50は基板Pの外側や周辺装置に流出してしまう。この場合、液体50なしでは、マスクMのパターンの像が基板P上で結像しないという問題が生じるばかりでなく、この流出した液体50を放置しておくと、基板Pがおかれている環境(湿度など)の変動をもたらし、各種光学的検出装置の検出光の光路上の屈折率の変化を引き起こすなど、所望のパターン転写精度を得られなくなるおそれが生じる。更に、流出した液体により、基板Pを支持する基板ステージ周辺の機械部品などに錆びを生じさせるなどの不都合も生じる。基板Pのエッジ領域Eを露光しないことで液体を流出させないようにすることも考えられるが、エッジ領域Eにも露光処理を施してパターンを形成しておかないと、後工程である例えばCMP(化学的機械的研磨)処理時において、CMP装置の研磨面に対してウエハである基板Pが片当たりして良好に研磨できないという可能性がある。
【0006】
本発明はこのような事情に鑑みてなされたものであって、投影光学系と基板との間を液体で満たした状態で露光処理する場合において、例えば基板のエッジ領域を露光する際にも基板の外側への液体の流出を防ぎつつ露光処理できる露光方法、露光装置、及びこの露光方法、露光装置を用いるデバイス製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の課題を解決するため、本発明は実施の形態に示す図1〜図8に対応付けした以下の構成を採用している。
本発明の露光方法は、投影光学系(PL)と基板(P)との間の少なくとも一部を液体(50)で満たし、液体(50)と投影光学系(PL)とを介してパターンの像を基板(P)上に投影することによって、基板(P)を露光する露光方法において、基板(P)と投影光学系(PL)との間に配置されるように基板(P)を支持する基板ステージ(PST)に支持された、基板(P)よりも大きい透明板(8)と、基板(P)との間を液体(50B)で満たすことと、基板(P)の移動方向に沿って液体(50A)が流れるように、透明板(8)と投影光学系(PL)との間の空間(56)への液体(50A)の供給と該空間(56)からの液体(50A)の回収とを行いながら、透明板(8)と投影光学系(PL)との間を液体(50A)で満たすことと、透明板(8)と投影光学系(PL)との間に満たされた液体(50A)と、透明板(8)と基板(P)との間に満たされた液体(50B)とを介して基板(P)上にパターンの像を投影することと、を含む
本発明の露光装置は、投影光学系(PL)と基板(P)との間の少なくとも一部を液体(50)で満たし、液体(50)と投影光学系(PL)とを介してパターンの像を基板(P)上に投影することによって、基板(P)を露光する露光装置において、基板(P)を支持する基板ステージ(PST)と、基板(P)と投影光学系(PL)との間に配置されるように基板ステージ(PST)に支持された、基板(P)よりも大きい透明板(8)と、透明板(8)と投影光学系(PL)との間の空間(56)へ液体(50A)を供給する第1液体供給装置(1)と、透明板(8)と投影光学系(PL)との間の空間(56)から液体(50A)を回収する第1液体回収装置(2)とを備え、第1液体供給装置(1)と第1液体回収装置(2)とにより透明板(8)と投影光学系(PL)との間に基板(P)の移動方向に沿って液体(50A)を流すとともに、透明板(8)と投影光学系(PL)との間に満たされた液体(50A)、及び透明板(8)と基板(P)との間に満たされた液体(50B)を介して基板(P)上にパターンの像を投影する。
【0008】
本発明によれば、基板と投影光学系との間に透明板を設けることにより、例えば投影光学系と透明板との間に液体を配置する際、透明板の大きさを基板より十分に大きくしておけば、液体が配置される空間において基板のエッジ領域に対応する部分に段差は形成されない。したがって、基板のエッジ領域を露光する際にも段差による基板外側への液体の流出を抑えることができる。
【0009】
本発明の露光方法は、投影光学系(PL)と基板(P)との間の少なくとも一部を液体(50)で満たし、液体(50)と投影光学系(PL)とを介してパターンの像を基板(P)上に投影することによって、基板(P)を露光する露光方法において、基板(P)と投影光学系(PL)との間に配置された、基板(P)より大きい透明板(8、14、15)と液体(50)とを介して基板(P)上にパターンの像を投影することを特徴とする。
【0010】
本発明によれば、投影光学系と基板との間に基板より大きい透明板を設けたことにより、液体が配置される空間において透明板により基板のエッジ領域に対応する部分に段差は形成されない。したがって、基板のエッジ領域を露光する際にも段差による基板外側への液体の流出を抑えることができる。
【0011】
本発明の露光方法は、投影光学系(PL)と基板(P)との間の少なくとも一部を液体(50)で満たし、液体(50)と投影光学系(PL)とを介してパターンの像を基板(P)上に投影することによって、基板(P)を露光する露光方法において、投影光学系(PL)と基板(P)の上面の一部との間を液体(50)で満たすことと、基板(P)の周囲の少なくとも一部をカバー部材(15)で覆い、基板(P)の外側への液体(50)の流出を抑える。
本発明の露光装置は、投影光学系(PL)と基板(P)との間の少なくとも一部を液体(50)で満たし、液体(50)と投影光学系(PL)とを介してパターンの像を基板(P)上に投影することによって、基板(P)を露光する露光装置において、基板(P)を支持する基板ステージ(PST)と、基板ステージ(PST)に支持された基板(P)の周囲の少なくとも一部を覆って基板(P)の外側への液体(50)の流出を抑えるカバー部材(15)と、を備え、投影光学系(PL)と基板(P)の上面の一部との間に満たされた液体(50)を介して基板ステージ(PST)に支持された基板(P)を露光する。
【0012】
本発明によれば、基板の周囲をカバー部材で覆うことにより、基板外側への液体の流出を防止することができる。したがって、周辺装置に錆びを生じさせるなどの不都合の発生を抑えることができる。
【0013】
本発明のデバイス製造方法は、上記いずれか記載の露光方法を用いることを特徴とする。本発明のデバイス製造方法は、上記いずれかの露光装置によりマスクのパターンを基板に露光する露光処理ステップを含む。本発明によれば、基板のエッジ領域を露光処理する際にも基板外側への液体の流出を抑えた状態で液浸法により露光処理できるので、基板の中央領域とエッジ領域との双方に対して良好にパターンを転写することができる。したがって、後工程の例えばCMP処理における基板とCMP装置の研磨面との片当たりといった不都合の発生を防ぐことができるので、所望の性能を有するデバイスを製造することができる。
【0014】
【発明の実施の形態】
以下、本発明の露光方法及びデバイス製造方法について図面を参照しながら説明する。図1は本発明の露光方法が適用される露光装置の一実施形態を示す概略構成図である。図1において、露光装置EXは、マスクMを支持するマスクステージMSTと、基板Pを支持する基板ステージPSTと、マスクステージMSTに支持されているマスクMを露光光ELで照明する照明光学系ILと、露光光ELで照明されたマスクMのパターンの像を基板ステージPSTに支持されている基板Pに投影露光する投影光学系PLと、露光装置EX全体の動作を統括制御する制御装置CONTとを備えている。基板Pと投影光学系PLとの間には透明板8が配置されている。透明板8は支持部材9を介して基板ステージPST上に設けられている。
【0015】
ここで、本実施形態では、露光装置EXとしてマスクMと基板Pとを走査方向における互いに異なる向き(逆方向)に同期移動しつつマスクMに形成されたパターンを基板Pに露光する走査型露光装置(所謂スキャニングステッパ)を使用する場合を例にして説明する。以下の説明において、投影光学系PLの光軸AXと一致する方向をZ軸方向、Z軸方向に垂直な平面内でマスクMと基板Pとの同期移動方向(走査方向)をX軸方向、Z軸方向及びY軸方向に垂直な方向(非走査方向)をY軸方向とする。また、X軸、Y軸、及びZ軸まわり方向をそれぞれ、θX、θY、及びθZ方向とする。なお、ここでいう「基板」は半導体ウエハ上にレジストを塗布したものを含み、「マスク」は基板上に縮小投影されるデバイスパターンを形成されたレチクルを含む。
【0016】
照明光学系ILは、マスクステージMSTに支持されているマスクMを露光光ELで照明するものであり、露光用光源、露光用光源から射出された光束の照度を均一化するオプティカルインテグレータ、オプティカルインテグレータからの露光光ELを集光するコンデンサレンズ、リレーレンズ系、露光光ELによるマスクM上の照明領域をスリット状に設定する可変視野絞り等を有している。マスクM上の所定の照明領域は照明光学系ILにより均一な照度分布の露光光ELで照明される。照明光学系ILから射出される露光光ELとしては、例えば水銀ランプから射出される紫外域の輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)や、ArFエキシマレーザ光(波長193nm)及びFレーザ光(波長157nm)等の真空紫外光(VUV光)などが用いられる。本実施形態では、ArFエキシマレーザ光を用いる。
【0017】
マスクステージMSTは、マスクMを支持するものであって、投影光学系PLの光軸AXに垂直な平面内、すなわちXY平面内で2次元移動可能及びθZ方向に微小回転可能である。マスクステージMSTはリニアモータ等のマスクステージ駆動装置MSTDにより駆動される。マスクステージ駆動装置MSTDは制御装置CONTにより制御される。マスクステージMST上のマスクMの2次元方向の位置、及び回転角はレーザ干渉計によりリアルタイムで計測され、計測結果は制御装置CONTに出力される。制御装置CONTはレーザ干渉計の計測結果に基づいてマスクステージ駆動装置MSTDを駆動することでマスクステージMSTに支持されているマスクMの位置決めを行う。
【0018】
投影光学系PLは、マスクMのパターンを所定の投影倍率βで基板Pに投影露光するものであって、複数の光学素子(レンズ)で構成されており、これら光学素子は金属部材としての鏡筒PKで支持されている。本実施形態において、投影光学系PLは、投影倍率βが例えば1/4あるいは1/5の縮小系である。なお、投影光学系PLは等倍系及び拡大系のいずれでもよい。また、投影光学系PLは光学特性(結像特性)の補正を行う結像特性調整装置PLCを有している。この結像特性調整装置PLCは、例えば投影光学系PLを構成する一部のレンズ群の間隔調整機構や一部のレンズ群のレンズ室内の気体圧力調整機構を有しており、これら調整を行うことにより、投影光学系PLの投影倍率、歪曲収差等の光学特性の補正を行う。結像特性調整装置PLCは制御装置CONTにより制御される。
【0019】
基板ステージPSTは、基板Pを支持するものであって、基板Pを基板ホルダを介して保持するZステージ51と、Zステージ51を支持するXYステージ52と、XYステージ52を支持するベース53とを備えている。基板ステージPSTはリニアモータ等の基板ステージ駆動装置PSTDにより駆動される。基板ステージ駆動装置PSTDは制御装置CONTにより制御される。Zステージ51を駆動することにより、Zステージ51に保持されている基板PのZ軸方向における位置(フォーカス位置)、及びθX、θY方向における位置が制御される。また、XYステージ52を駆動することにより、基板PのXY方向における位置(投影光学系PLの像面と実質的に平行な方向の位置)が制御される。すなわち、Zステージ51は、基板Pのフォーカス位置及び傾斜角を制御して基板Pの表面をオートフォーカス方式、及びオートレベリング方式で投影光学系PLの像面に合わせ込み、XYステージ52は基板PのX軸方向及びY軸方向における位置決めを行う。なお、ZステージとXYステージとを一体的に設けてよいことは言うまでもない。
【0020】
基板ステージPST(Zステージ51)上には移動鏡54が設けられている。また、移動鏡54に対向する位置にはレーザ干渉計55が設けられている。基板ステージPST上の基板Pの2次元方向の位置、及び回転角はレーザ干渉計55によりリアルタイムで計測され、計測結果は制御装置CONTに出力される。制御装置CONTはレーザ干渉計55の計測結果に基づいて基板ステージ駆動装置PSTDを駆動することで基板ステージPSTに支持されている基板Pの位置決めを行う。
【0021】
基板ステージPSTに支持されている基板Pと投影光学系PLの下面7との間には透明板8が設けられている。透明板8は支持部材9を介して基板ステージPSTのZステージ51に支持されている。透明板8は露光光ELを透過可能な材料により構成されており、本実施形態ではガラスプレートにより構成されている。なお、透明板8は露光光ELに対して透過性を有していればよく、透明板8としてガラスプレート以外のものを採用可能である。透明板8は平行平面板であって上下両面は平坦面である。そして、透明板8は平面視略円形状に設けられ、同じく略円形状に形成されている基板(ウエハ)Pより大きく形成されている。すなわち、透明板8の径は基板Pより大きく(基板Pの径以上に)設定されている。透明板8を支持する支持部材9は略円環状に形成されており、基板Pの周囲に配置されている。
【0022】
透明板8の上面と投影光学系PLの下面7とは離間しており、投影光学系PLと透明板8との間に空間56が形成されている。また、支持部材9に支持されている透明板8と基板Pとも離間しており、透明板8、支持部材9及びZステージ51の上面との間に空間57が形成されている。空間57は略密閉空間である。
【0023】
本実施形態では、露光波長を実質的に短くして解像度を向上するとともに、焦点深度を実質的に広くするために、液浸法を適用する。そのため、少なくともマスクMのパターンの像を基板P上に転写している間は、基板Pの表面と投影光学系PLの基板P側の光学素子の先端面(下面)7との間に所定の液体50(50A、50B)が満たされる。本実施形態において、液体50には純水が用いられる。純水は、ArFエキシマレーザ光のみならず、露光光ELを例えば水銀ランプから射出される紫外域の輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)とした場合、この露光光ELを透過可能である。また、投影光学系PLの先端面7には露光光ELを透過可能な平行平面板が設けられている。この平行平面板は投影光学系PLの一部を構成する。
【0024】
露光装置EXは、投影光学系PLの先端面7と透明板8との間の空間56に所定の液体50Aを供給する液体供給装置1と、空間56の液体50Aを回収する液体回収装置2とを備えている。液体供給装置1は、液体50Aを収容するタンク、加圧ポンプ、及び空間56に対して供給する液体50Aを所定の温度に調整する温度調整装置などを備えている。液体供給装置1には供給管3の一端部が接続され、供給管3の他端部には供給ノズル4が接続されている。液体供給装置1は供給管3及び供給ノズル4を介して空間56に液体50Aを供給する。ここで、液体供給装置1に設けられている温度調整装置は、空間56に供給する液体50Aの温度を、例えば露光装置EXが収容されているチャンバ内の温度と同程度に設定する。
【0025】
液体回収装置2は、吸引ポンプ、回収した液体50Aを収容するタンクなどを備えている。液体回収装置2には回収管6の一端部が接続され、回収管6の他端部には回収ノズル5が接続されている。液体回収装置2は回収ノズル5及び回収管6を介して空間56の液体50Aを回収する。空間56に液体50Aを満たす際、制御装置CONTは液体供給装置1を駆動し、供給管3及び供給ノズル4を介して空間56に対して単位時間当たり所定量の液体50Aを供給するとともに、液体回収装置2を駆動し、回収ノズル5及び回収管6を介して単位時間当たり所定量の液体50Aを空間56より回収する。これにより、投影光学系PLの先端面7と基板Pとの間の空間56に所定量の液体50Aが配置される。
【0026】
また、基板Pと透明板8との間、すなわち空間57にも液体50Bが満たされている。空間57に液体50Bを満たす際には、例えば、露光処理前において基板ステージPST(Zステージ51)上の円環状支持部材9の円環内部に液体50Bを投入し、次いで、支持部材9の上端を透明板8で覆うことにより空間57に液体50Bが満たされる。ここで、空間57は略密閉空間であり、空間57に満たされた液体50Bは空間外部に流出しない。
【0027】
次に、上述した露光装置EXを用いてマスクMのパターンを基板Pに露光する方法について図2を参照しながら説明する。
基板ステージPSTに対して基板Pがロードされると、制御装置CONTは、円環状部材である支持部材9の円環内部に液体50Bを投入した後、支持部材9の上端を透明板8で覆う。これにより、基板Pと透明板8との間の空間57に液体50Bが満たされた状態となる。次いで、制御装置CONTは、液体供給装置1及び液体回収装置2それぞれを駆動し、投影光学系PLと透明板8との間に液体50Aの液浸部分を形成する。そして、制御装置CONTは、照明光学系ILによりマスクMを露光光ELで照明し、マスクMのパターンの像を投影光学系PL、透明板8、及び液体50A、50Bを介して基板Pに投影する。ここで、図2(a)の模式図に示すように、基板Pの中央付近(中央領域)のショット領域を露光している間は、液体供給装置1から供給された液体50は液体回収装置2により回収されることで、基板Pの外側に流出しない。
【0028】
一方、図2(b)に示すように、基板Pのエッジ領域(基板Pの周縁近傍領域)Eを露光処理する際にも、基板Pと投影光学系PLとの間には基板Pより十分に大きい透明板8が配置されているので、基板Pのエッジの外側にも透明板8の平坦部分が十分に確保される。すなわち、基板Pの中央付近とエッジ付近とのいずれを露光する場合にも、液体50が供給される空間56を、投影光学系PLと透明板8との間に維持することができる。したがって、基板Pのエッジ領域Eを露光する際にも、液体50Aは投影光学系PLと透明板8との間から外部に流出することがなく、基板Pの中央領域に対する露光条件と同等の条件でエッジ領域Eを露光することができる。
【0029】
また、空間57は略密閉空間であり、露光処理中において空間57内部の液体50Bは大きく流動しない。したがって、液体の流動による基板P表面に対する影響を抑えることができる。
【0030】
なお、本実施形態の露光装置EXは所謂スキャニングステッパである。−X方向に基板Pを移動させて走査露光を行う場合、制御装置CONTは−X方向に液体50Aを流す。一方、+X方向に基板Pを移動させて走査露光を行う場合、制御装置CONTは+X方向に液体50を流す。このように、制御装置CONTは、液体供給装置1及び液体回収装置2を用いて、基板Pの移動方向に沿って液体50を流す。この場合、例えば液体供給装置1から供給ノズル4を介して供給される液体50は基板Pの−X方向への移動に伴って空間56に引き込まれるようにして流れるので、液体供給装置1の供給エネルギーが小さくでも液体50を空間56に容易に供給できる。そして、走査方向に応じて液体50を流す方向を切り替えることにより、+X方向、又は−X方向のどちらの方向に基板Pを走査する場合にも、レンズ60の先端面7と基板Pとの間を液体50で満たすことができ、高い解像度及び広い焦点深度を得ることができる。
【0031】
露光処理を行うに際し、例えば空間57の液体50Bは流動(交換)していないため温度変化することが考えられ、この場合、温度変化により液体50Aの屈折率が変動する。すると、マスクMのパターンを投影光学系PL及び液体50を介して基板Pに転写する際、基板Pに転写されるパターンの像に誤差が生じる場合がある。例えば、液体50の屈折率変化に伴い、屈折率変化前に比べて基板Pに転写されるパターン像のスケーリングが変動したり、あるいは結像面位置が変動する場合が考えられる。制御装置CONTは、予め求めた液体50Bの温度変化量(屈折率変化量)と基板P上でのパターンの結像特性とに基づいて、基板Pに転写されるパターンの像に誤差が生じないように、結像特性調整装置PLCを用いてパターン像の像調整を行う。例えば、液体50の屈折率変化に伴って、投影光学系PLの像面位置がZ軸方向にシフトした場合には、結像特性調整装置PLCは、投影光学系PL内に設けられている光学素子の一部を駆動することで、投影光学系PL及び液体50を介したパターンの結像面位置と基板Pの表面とを合致させることができる。あるいは、像調整として、マスクMをZ軸方向あるいは傾斜方向へ移動したり、あるいは露光光ELの波長を調整することによっても液体50の屈折率変化によってパターンの像に誤差が生じないように像調整を行うことができる。
【0032】
以上説明したように、投影光学系PLと基板Pとの間に基板Pより大きい透明板8を設けたので、基板Pのエッジ領域Eを露光する際にも液体50Aの外部への流出を抑えることができ、液浸露光を行う際、基板Pの中央領域とエッジ領域とのそれぞれに対して液体配置に関して同一条件で露光することができる。
【0033】
上述したように、本実施形態における液体50は純水により構成されている。純水は、半導体製造工場等で容易に大量に入手できるとともに、基板P上のフォトレジストや光学素子(レンズ)等に対する悪影響がない利点がある。また、純水は環境に対する悪影響がないとともに、不純物の含有量が極めて低いため、基板Pの表面、及び投影光学系PLの先端面に設けられている光学素子の表面を洗浄する作用も期待できる。
【0034】
そして、波長が193nm程度の露光光ELに対する純水(水)の屈折率nはほぼ1.47であるため、露光光ELの光源としてArFエキシマレーザ光(波長193nm)を用いた場合、基板P上では1/n、すなわち約131nmに短波長化されて高い解像度が得られる。更に、焦点深度は空気中に比べて約n倍、すなわち約1.47倍に拡大されるため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、投影光学系PLの開口数をより増加させることができ、この点でも解像度が向上する。
【0035】
本実施形態では、投影光学系PLの先端面7には露光光ELを透過可能な平行平面板が設けられている。この平行平面板は投影光学系PLの先端面に着脱(交換)自在に取り付けられている。液体50と接触する光学素子を、レンズより安価な平行平面板とすることにより、露光装置EXの運搬、組立、調整時等において投影光学系PLの透過率、基板P上での露光光ELの照度、及び照度分布の均一性を低下させる物質(例えばシリコン系有機物等)がその平行平面板に付着しても、液体50を供給する直前にその平行平面板を交換するだけでよく、液体50と接触する光学素子をレンズとする場合に比べてその交換コストが低くなるという利点がある。すなわち、露光光ELの照射によりレジストから発生する飛散粒子、または液体50中の不純物の付着などに起因して液体50に接触する光学素子の表面が汚れるため、その光学素子を定期的に交換する必要があるが、この光学素子を安価な平行平面板とすることにより、レンズに比べて交換部品のコストが低く、且つ交換に要する時間を短くすることができ、メンテナンスコスト(ランニングコスト)の上昇やスループットの低下を抑えることができる。もちろん、投影光学系PLの先端面に取り付ける光学素子がレンズであってもよい。また、投影光学系PLの先端面に取り付ける光学素子としては、投影光学系PLの光学特性、例えば収差(球面収差、コマ収差等)の調整に用いる光学プレートであってもよい。また、投影光学系PLの先端部において、光学素子(平行平面板やレンズ)のみを液体50に接触させ、鏡筒PKを接触させない構成とすることにより、金属からなる鏡筒PKの腐蝕等が防止される。
【0036】
なお、液体50Aの流れによって生じる投影光学系PLの先端の光学素子と基板Pとの間に大きな圧力が生じる場合には、その光学素子を交換可能とするのではなく、その圧力によって光学素子が動かないように堅固に固定してもよい。
【0037】
なお、本実施形態の液体50は水であるが、水以外の液体であってもよい、例えば、露光光ELの光源がFレーザである場合、このFレーザ光は水を透過しないので、この場合、液体50としてはFレーザ光を透過可能な例えばフッ素系オイルであってもよい。また、液体50としては、その他にも、露光光ELに対する透過性があってできるだけ屈折率が高く、投影光学系PLや基板P表面に塗布されているフォトレジストに対して安定なもの(例えばセダー油)を用いることも可能である。
【0038】
また、上記実施形態において、空間56と空間57とのそれぞれには同じ種類の液体が満たされるように説明したが、投影光学系PLと透明板8との間を第1の液体で満たし、基板Pと透明板8との間を前記第1の液体とは別の第2の液体で満たすこともできる。
【0039】
なお、上記実施形態では、空間57は略密閉空間であり、空間57の液体50Bはほぼ流動しないように説明したが、図3に示すように、支持部材9の一部で第2液体供給装置の一部を構成する供給ノズル10を支持し、支持部材9の他の一部で第2液体回収装置の一部を構成する回収ノズル11を支持し、これら供給ノズル10及び回収ノズル11のそれぞれを空間57に接続し、露光処理中において、空間57に対する液体50Bの供給及び回収動作を行うようにしてもよい。これにより、空間57の液体50Bは常時交換され、温度調整された液体50Bが供給されるので、空間57における液体50Bの温度変化を抑制できる。
【0040】
なお、上記実施形態では、基板ステージPST上に基板Pを配置した後、基板Pの周囲の支持部材9の内部に液体50Bを投入してから透明板8で覆うことにより液体50Bを満たした空間57を形成するように説明したが、図4に示すように、内部空間12Aを有する容器12を用意し、この容器12の内部空間12Aに液体50B及び基板Pを予め配置しておき、露光処理する際に搬送装置Hにより基板Pを容器12ごと基板ステージPSTにロードするようにしてもよい。なお、容器12はガラスなどの透明部材により形成され、内部空間12Aは略密閉空間である。露光処理する際には投影光学系PLと容器12の上面12Bとの間に液体50Aが液体供給装置1より供給される。
【0041】
また、上記実施形態では、透明板8を支持部材9で支持しているが、支持部材9なしに、液体50Bを介して透明板8と基板Pとを密着させるようにしてもよい。すなわち、基板ステージPST上に基板Pを配置した後、1〜2mmの厚さで基板Pの全面を覆える程度の液体50Bを基板P上に供給する。そして、そこに透明板8を載せて、表面張力により透明板8と基板Pとの間に液体50Bを保持する。この場合、基板ステージPSTの移動により透明板8が動く恐れがある場合には、透明板8を載せた後に、その透明板8を固定してやればよい。
【0042】
次に、図5を参照しながら本発明の第2実施形態について説明する。以下の説明において上述した実施形態と同一又は同等の構成部分については同一の符号を付しその説明を簡略もしくは省略する。
本実施形態の特徴的な部分は、投影光学系PLと基板Pとの間に配置される透明板として、投影光学系PLの先端面に設けられた大きな光学素子である平行平面板14が用いられている点である。本実施形態において、平行平面板(透明板)14の大きさは基板Pより大きく設定されている。また、上述したように、平行平面板14は投影光学系PL(鏡筒PK)に対して着脱可能である。そして、平行平面板14は投影光学系PLの下面に密着あるいは僅かに離間しており、水平方向に移動可能(スライド可能)に設けられている。平行平面板14の一部は支持部材13を介して基板ステージPST(Zステージ51)の上面に接続されている。ここで、支持部材13は平行平面板14の複数の所定位置と基板ステージPSTとを接続する棒部材により構成されている。図5(a)に示すように、基板Pを露光する際には、制御装置CONTは、第1供給装置1に接続している供給ノズル4より平行平面板14と基板Pとの間に液体50を供給するとともに第2回収装置2に接続している回収ノズル5より液体50を回収しつつ、平行平面板14及び液体50を介してマスクMのパターンの像を基板Pに露光する。そして、図5(b)に示すように基板Pのエッジ領域Eに対してパターンの像を露光する際にも、基板Pより大きい平行平面板14が基板Pと投影光学系PLとの間に配置されているので、基板Pと平行平面板14との間に液体50を満たした状態でエッジ領域Eを露光することができる。
【0043】
次に、図6を参照しながら本発明の第3実施形態について説明する。本実施形態の特徴的部分は、基板Pの周囲に基板P外側への液体50の流出を抑えるカバー部材15を設けた点である。
図6において、基板Pの周囲には支持部材9が設けられており、支持部材9の上端にはカバー部材15が接続されている。カバー部材15は、図7に示す平面図のように所定幅15Dを有する輪帯状に形成されている。このカバー部材15の幅15Dは例えば投影光学系PLの下面7の半径以上に設定されている。カバー部材15は例えばガラス等の透明部材により形成されている。そして、図6(a)に示すように、カバー部材15の上面は基板Pの上面より高く設定されているとともに、カバー部材15と基板Pとは離間している。また、カバー部材15の内側領域15Aと基板Pのエッジ領域Eとは水平方向において重複するように設定されている。すなわち、カバー部材15の内径は基板Pの外径より小さく設定されている。一方、カバー部材15の外径は基板Pより十分大きく設定されている。
【0044】
基板Pの中央付近のショット領域を露光する際には、図6(a)に示すように投影光学系PLと基板Pとの間に液体50が満たされる。一方、基板Pのエッジ領域Eを露光する際には、図6(b)に示すように液体50はカバー部材15及びこれを支持する支持部材9により外側への流出が抑えられる。特に、カバー部材15の外径が基板Pより大きく設定されており、カバー部材15の上面は基板Pの上面より高く設定されているので、エッジ領域Eを露光する際の液体50の流出を確実に抑えることができる。
【0045】
なお、本実施形態の基板Pとしては、半導体デバイス製造用の半導体ウエハのみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)等が適用される。
【0046】
露光装置EXとしては、マスクMと基板Pとを同期移動してマスクMのパターンを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。また、本発明は基板P上で少なくとも2つのパターンを部分的に重ねて転写するステップ・アンド・スティッチ方式の露光装置にも適用できる。
【0047】
露光装置EXの種類としては、基板Pに半導体素子パターンを露光する半導体素子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の露光装置や、薄膜磁気ヘッド、撮像素子(CCD)あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。
【0048】
また、本発明は、特開平10−163099号公報、特開平10−214783号公報、特表2000−505958号公報などに開示されているツインステージ型の露光装置にも適用できる。
【0049】
基板ステージPSTやマスクステージMSTにリニアモータ(USP5,623,853またはUSP5,528,118参照)を用いる場合は、エアベアリングを用いたエア浮上型およびローレンツ力またはリアクタンス力を用いた磁気浮上型のどちらを用いてもよい。また、各ステージPST、MSTは、ガイドに沿って移動するタイプでもよく、ガイドを設けないガイドレスタイプであってもよい。
【0050】
各ステージPST、MSTの駆動機構としては、二次元に磁石を配置した磁石ユニットと、二次元にコイルを配置した電機子ユニットとを対向させ電磁力により各ステージPST、MSTを駆動する平面モータを用いてもよい。この場合、磁石ユニットと電機子ユニットとのいずれか一方をステージPST、MSTに接続し、磁石ユニットと電機子ユニットとの他方をステージPST、MSTの移動面側に設ければよい。
【0051】
基板ステージPSTの移動により発生する反力は、投影光学系PLに伝わらないように、特開平8−166475号公報(USP5,528,118)に記載されているように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。
マスクステージMSTの移動により発生する反力は、投影光学系PLに伝わらないように、特開平8−330224号公報(US S/N 08/416,558)に記載されているように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。
【0052】
以上のように、本願実施形態の露光装置EXは、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
【0053】
半導体デバイス等のマイクロデバイスは、図8に示すように、マイクロデバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板を製造するステップ203、前述した実施形態の露光装置EXによりマスクのパターンを基板に露光する露光処理ステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)205、検査ステップ206等を経て製造される。
【0054】
【発明の効果】
本発明によれば、液浸法により基板を露光する場合において、基板のエッジ領域を露光する際にも基板外側への液体の流出を抑えることができる。したがって、流出した液体による周辺装置の錆びの発生や露光処理環境の変化といった不都合の発生を抑えることができる。また、基板の中央領域とエッジ領域との双方に対して良好にパターンを転写することができるので、後工程のCMP処理において基板とCMP装置の研磨面との片当たりといった不都合の発生を防ぐことができる。したがって、所望の性能を有するデバイスを製造することができる。
【図面の簡単な説明】
【図1】本発明の露光方法に用いる露光装置の一実施形態を示す概略構成図である。
【図2】本発明の露光方法の第1実施形態を説明するための模式図である。
【図3】本発明の露光方法の変形例を説明するための模式図である。
【図4】本発明の露光方法の変形例を説明するための模式図である。
【図5】本発明の露光方法の第2実施形態を説明するための模式図である。
【図6】本発明の露光方法の第3実施形態を説明するための模式図である。
【図7】カバー部材を示す平面図である。
【図8】半導体デバイスの製造工程の一例を示すフローチャート図である。
【図9】従来の課題を説明するための模式図である。
【符号の説明】
8…透明板、14…平行平面板(透明板、光学素子)、15…カバー部材、
50(50A、50B)…液体、EX…露光装置、M…マスク、P…基板、
PL…投影光学系
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to an exposure method for exposing a pattern to a substrate in a state where a liquid is filled between the projection optical system and the substrate., Exposure equipment,And a device manufacturing method.
[0002]
[Prior art]
Semiconductor devices and liquid crystal display devices are manufactured by a so-called photolithography technique in which a pattern formed on a mask is transferred onto a photosensitive substrate. An exposure apparatus used in this photolithography process has a mask stage for supporting a mask and a substrate stage for supporting a substrate, and a mask pattern is transferred via a projection optical system while sequentially moving the mask stage and the substrate stage. It is transferred to the substrate. In recent years, in order to cope with higher integration of device patterns, higher resolution of the projection optical system is desired. The resolution of the projection optical system becomes higher as the exposure wavelength used becomes shorter and the numerical aperture of the projection optical system becomes larger. Therefore, the exposure wavelength used in the exposure apparatus is shortened year by year, and the numerical aperture of the projection optical system is also increasing. The mainstream exposure wavelength is 248 nm of the KrF excimer laser, but the 193 nm of the shorter wavelength ArF excimer laser is also being put into practical use. Also, when performing exposure, the depth of focus (DOF) is important as well as the resolution. The resolution R and the depth of focus δ are each expressed by the following equations.
R = k1・ Λ / NA (1)
δ = ± k2・ Λ / NA2     (2)
Where λ is the exposure wavelength, NA is the numerical aperture of the projection optical system, and k1, K2Is the process factor. From the equations (1) and (2), it can be seen that the depth of focus δ becomes narrower when the exposure wavelength λ is shortened and the numerical aperture NA is increased in order to increase the resolution R.
[0003]
If the depth of focus δ becomes too narrow, it becomes difficult to match the substrate surface with the image plane of the projection optical system, and the margin during the exposure operation may be insufficient. Therefore, as a method for substantially shortening the exposure wavelength and increasing the depth of focus, for example, a liquid immersion method disclosed in Patent Document 1 below has been proposed. In this immersion method, the space between the lower surface of the projection optical system and the substrate surface is filled with a liquid such as water or an organic solvent, and the wavelength of the exposure light in the liquid is 1 / n (n is the refractive index of the liquid). The resolution is improved by utilizing the fact that the ratio is usually about 1.2 to 1.6), and the depth of focus is expanded about n times.
[0004]
[Patent Document 1]
International Publication No. 99/49504 Pamphlet
[0005]
[Problems to be solved by the invention]
By the way, the above-described prior art has the following problems.
In the above prior art, as shown in the schematic diagram of FIG. 9A, the space between the lower surface on the image plane side of the projection optical system PL and the substrate (wafer) P is locally filled with the liquid 50. The mask M is illuminated with the exposure light EL from the illumination optical system IL, and an image of the pattern of the mask M is exposed on the substrate P supported by the substrate stage PST. When the shot area is exposed, the liquid 50 does not flow out to the outside of the substrate P. However, as shown in the schematic diagram of FIG. 9B, when the peripheral region (edge region) E of the substrate P is irradiated with the exposure light EL to expose the edge region E of the substrate P, the substrate P and the substrate The surface tension cannot be maintained at the step portion D with respect to the stage PST, and the liquid 50 flows out to the outside of the substrate P and peripheral devices. In this case, without the liquid 50, not only the problem that the image of the pattern of the mask M does not form on the substrate P but also the environment in which the substrate P is placed if the liquid 50 that has flowed out is left unattended. There is a possibility that desired pattern transfer accuracy cannot be obtained, for example, causing a change in humidity (such as humidity) and causing a change in refractive index on the optical path of detection light of various optical detection devices. Furthermore, the outflowed liquid also causes inconveniences such as rusting on machine parts around the substrate stage that supports the substrate P. Although it is conceivable to prevent the liquid from flowing out by not exposing the edge region E of the substrate P, if the edge region E is not subjected to exposure processing to form a pattern, a subsequent process such as CMP ( At the time of chemical mechanical polishing, there is a possibility that the substrate P, which is a wafer, hits the polishing surface of the CMP apparatus and cannot be polished well.
[0006]
  The present invention has been made in view of such circumstances, and in the case of performing exposure processing in a state where the space between the projection optical system and the substrate is filled with a liquid, for example, when exposing the edge region of the substrate, An exposure method capable of performing an exposure process while preventing the outflow of liquid to the outside,Exposure equipment,And this exposure method, Exposure equipmentAn object of the present invention is to provide a device manufacturing method using the device.
[0007]
[Means for Solving the Problems]
  In order to solve the above-described problems, the present invention adopts the following configuration corresponding to FIGS. 1 to 8 shown in the embodiment.
  In the exposure method of the present invention, at least a part between the projection optical system (PL) and the substrate (P) is filled with the liquid (50), and the pattern is formed via the liquid (50) and the projection optical system (PL). In an exposure method for exposing a substrate (P) by projecting an image onto the substrate (P), the substrate (P) is supported so as to be disposed between the substrate (P) and the projection optical system (PL). Supported by a substrate stage (PST)Larger than the substrate (P)With transparent plate (8)The transparent plate (8), the projection optical system (PL), and the substrate (P) are filled with the liquid (50B), and the liquid (50A) flows along the moving direction of the substrate (P). Between the transparent plate (8) and the projection optical system (PL) while supplying the liquid (50A) to the space (56) between and the liquid (50A) from the space (56). Filling with liquid (50A);A liquid (50A) filled between the transparent plate (8) and the projection optical system (PL);A liquid (50B) filled between the transparent plate (8) and the substrate (P);A pattern image onto the substrate (P) viaAnd including.
  The exposure apparatus of the present invention fills at least a part between the projection optical system (PL) and the substrate (P) with the liquid (50), and forms a pattern via the liquid (50) and the projection optical system (PL). In an exposure apparatus that exposes a substrate (P) by projecting an image onto the substrate (P), a substrate stage (PST) that supports the substrate (P), a substrate (P), and a projection optical system (PL) A transparent plate (8) larger than the substrate (P) supported by the substrate stage (PST) so as to be disposed between the transparent plate (8) and the space between the transparent plate (8) and the projection optical system (PL) ( The first liquid supply device (1) for supplying the liquid (50A) to 56) and the first liquid for recovering the liquid (50A) from the space (56) between the transparent plate (8) and the projection optical system (PL). A liquid recovery device (2), and a first liquid supply device (1) and a first liquid recovery device (2). The liquid (50A) is allowed to flow along the moving direction of the substrate (P) between the transparent plate (8) and the projection optical system (PL), and between the transparent plate (8) and the projection optical system (PL). The image of the pattern is projected onto the substrate (P) through the liquid (50A) filled with the liquid (50A) and the liquid (50B) filled between the transparent plate (8) and the substrate (P).
[0008]
According to the present invention, by providing a transparent plate between the substrate and the projection optical system, for example, when the liquid is disposed between the projection optical system and the transparent plate, the size of the transparent plate is sufficiently larger than the substrate. In this case, no step is formed in the portion corresponding to the edge region of the substrate in the space where the liquid is arranged. Therefore, the liquid can be prevented from flowing out of the substrate due to the step even when the edge region of the substrate is exposed.
[0009]
In the exposure method of the present invention, at least a part between the projection optical system (PL) and the substrate (P) is filled with the liquid (50), and the pattern is formed via the liquid (50) and the projection optical system (PL). In an exposure method for exposing a substrate (P) by projecting an image onto the substrate (P), the substrate is more transparent than the substrate (P) disposed between the substrate (P) and the projection optical system (PL). A pattern image is projected onto the substrate (P) through the plates (8, 14, 15) and the liquid (50).
[0010]
According to the present invention, by providing a transparent plate larger than the substrate between the projection optical system and the substrate, no step is formed in the space corresponding to the edge region of the substrate by the transparent plate in the space where the liquid is disposed. Therefore, the liquid can be prevented from flowing out of the substrate due to the step even when the edge region of the substrate is exposed.
[0011]
  In the exposure method of the present invention, at least a part between the projection optical system (PL) and the substrate (P) is filled with the liquid (50), and the pattern is formed via the liquid (50) and the projection optical system (PL). In the exposure method for exposing the substrate (P) by projecting an image onto the substrate (P), the space between the projection optical system (PL) and a part of the upper surface of the substrate (P) is filled with the liquid (50). In addition, at least a part of the periphery of the substrate (P) is covered with the cover member (15), and the outflow of the liquid (50) to the outside of the substrate (P) is suppressed.
  The exposure apparatus of the present invention fills at least a part between the projection optical system (PL) and the substrate (P) with the liquid (50), and forms a pattern via the liquid (50) and the projection optical system (PL). In an exposure apparatus that exposes a substrate (P) by projecting an image onto the substrate (P), a substrate stage (PST) that supports the substrate (P) and a substrate (PST) that is supported by the substrate stage (PST) Cover at least part of the circumference ofTo suppress the outflow of the liquid (50) to the outside of the substrate (P).And a substrate supported by the substrate stage (PST) via a liquid (50) filled between the projection optical system (PL) and a part of the upper surface of the substrate (P). (P) is exposed.
[0012]
According to the present invention, it is possible to prevent the liquid from flowing out to the outside of the substrate by covering the periphery of the substrate with the cover member. Therefore, it is possible to suppress the occurrence of inconvenience such as causing rusting in the peripheral device.
[0013]
  The device manufacturing method of the present invention is characterized by using any of the exposure methods described above.The device manufacturing method of the present invention includes an exposure processing step of exposing the pattern of the mask onto the substrate by any one of the exposure apparatuses described above.According to the present invention, even when the edge region of the substrate is subjected to the exposure process, the exposure process can be performed by the immersion method while suppressing the outflow of the liquid to the outside of the substrate. The pattern can be transferred satisfactorily. Therefore, it is possible to prevent the occurrence of inconvenience such as contact between the substrate and the polishing surface of the CMP apparatus in a subsequent process such as CMP processing, and thus a device having desired performance can be manufactured.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The exposure method and device manufacturing method of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic block diagram showing an embodiment of an exposure apparatus to which the exposure method of the present invention is applied. In FIG. 1, an exposure apparatus EX includes a mask stage MST that supports a mask M, a substrate stage PST that supports a substrate P, and an illumination optical system IL that illuminates the mask M supported by the mask stage MST with exposure light EL. A projection optical system PL that projects and exposes an image of the pattern of the mask M illuminated by the exposure light EL onto the substrate P supported by the substrate stage PST, and a control device CONT that controls the overall operation of the exposure apparatus EX. It has. A transparent plate 8 is disposed between the substrate P and the projection optical system PL. The transparent plate 8 is provided on the substrate stage PST via the support member 9.
[0015]
Here, in the present embodiment, as the exposure apparatus EX, scanning exposure is performed in which the pattern formed on the mask M is exposed to the substrate P while the mask M and the substrate P are synchronously moved in different directions (reverse directions) in the scanning direction. A case where an apparatus (so-called scanning stepper) is used will be described as an example. In the following description, the direction that coincides with the optical axis AX of the projection optical system PL is the Z-axis direction, the synchronous movement direction (scanning direction) between the mask M and the substrate P in the plane perpendicular to the Z-axis direction is the X-axis direction, A direction (non-scanning direction) perpendicular to the Z-axis direction and the Y-axis direction is defined as a Y-axis direction. Further, the directions around the X axis, the Y axis, and the Z axis are defined as θX, θY, and θZ directions, respectively. Here, the “substrate” includes a semiconductor wafer coated with a resist, and the “mask” includes a reticle on which a device pattern to be reduced and projected on the substrate is formed.
[0016]
The illumination optical system IL illuminates the mask M supported by the mask stage MST with the exposure light EL, and the exposure light source, and an optical integrator and an optical integrator for uniformizing the illuminance of the light beam emitted from the exposure light source A condenser lens that collects the exposure light EL from the light source, a relay lens system, a variable field stop that sets the illumination area on the mask M by the exposure light EL in a slit shape, and the like. A predetermined illumination area on the mask M is illuminated with the exposure light EL having a uniform illuminance distribution by the illumination optical system IL. As the exposure light EL emitted from the illumination optical system IL, for example, far ultraviolet light (g-line, h-line, i-line) and KrF excimer laser light (wavelength 248 nm) emitted from a mercury lamp, DUV light), ArF excimer laser light (wavelength 193 nm) and F2Vacuum ultraviolet light (VUV light) such as laser light (wavelength 157 nm) is used. In this embodiment, ArF excimer laser light is used.
[0017]
The mask stage MST supports the mask M, and can move two-dimensionally in a plane perpendicular to the optical axis AX of the projection optical system PL, that is, in the XY plane, and can be slightly rotated in the θZ direction. The mask stage MST is driven by a mask stage driving device MSTD such as a linear motor. The mask stage driving device MSTD is controlled by the control device CONT. The two-dimensional position and rotation angle of the mask M on the mask stage MST are measured in real time by the laser interferometer, and the measurement result is output to the control device CONT. The control device CONT drives the mask stage driving device MSTD based on the measurement result of the laser interferometer, thereby positioning the mask M supported on the mask stage MST.
[0018]
The projection optical system PL projects and exposes the pattern of the mask M onto the substrate P at a predetermined projection magnification β, and is composed of a plurality of optical elements (lenses). These optical elements are mirrors as metal members. It is supported by the cylinder PK. In the present embodiment, the projection optical system PL is a reduction system having a projection magnification β of, for example, 1/4 or 1/5. Note that the projection optical system PL may be either an equal magnification system or an enlargement system. Further, the projection optical system PL has an imaging characteristic adjusting device PLC that corrects optical characteristics (imaging characteristics). The imaging characteristic adjusting device PLC has, for example, a gap adjusting mechanism for some lens groups constituting the projection optical system PL and a gas pressure adjusting mechanism in the lens chamber of some lens groups, and performs these adjustments. Thus, optical characteristics such as the projection magnification and distortion of the projection optical system PL are corrected. The imaging characteristic adjusting device PLC is controlled by the control device CONT.
[0019]
The substrate stage PST supports the substrate P, and includes a Z stage 51 that holds the substrate P via a substrate holder, an XY stage 52 that supports the Z stage 51, and a base 53 that supports the XY stage 52. It has. The substrate stage PST is driven by a substrate stage driving device PSTD such as a linear motor. The substrate stage driving device PSTD is controlled by the control device CONT. By driving the Z stage 51, the position (focus position) of the substrate P held by the Z stage 51 in the Z-axis direction and the positions in the θX and θY directions are controlled. Further, by driving the XY stage 52, the position of the substrate P in the XY direction (position in a direction substantially parallel to the image plane of the projection optical system PL) is controlled. That is, the Z stage 51 controls the focus position and the tilt angle of the substrate P to adjust the surface of the substrate P to the image plane of the projection optical system PL by the autofocus method and the auto leveling method. Is positioned in the X-axis direction and the Y-axis direction. Needless to say, the Z stage and the XY stage may be provided integrally.
[0020]
A movable mirror 54 is provided on the substrate stage PST (Z stage 51). A laser interferometer 55 is provided at a position facing the movable mirror 54. The two-dimensional position and rotation angle of the substrate P on the substrate stage PST are measured in real time by the laser interferometer 55, and the measurement result is output to the control device CONT. The control device CONT drives the substrate stage driving device PSTD based on the measurement result of the laser interferometer 55 to position the substrate P supported by the substrate stage PST.
[0021]
A transparent plate 8 is provided between the substrate P supported by the substrate stage PST and the lower surface 7 of the projection optical system PL. The transparent plate 8 is supported by the Z stage 51 of the substrate stage PST via the support member 9. The transparent plate 8 is made of a material that can transmit the exposure light EL, and in this embodiment is made of a glass plate. In addition, the transparent plate 8 should just have transparency with respect to exposure light EL, and things other than a glass plate are employable as the transparent plate 8. FIG. The transparent plate 8 is a plane parallel plate, and the upper and lower surfaces are flat surfaces. The transparent plate 8 is provided in a substantially circular shape in plan view and is larger than the substrate (wafer) P that is also formed in a substantially circular shape. That is, the diameter of the transparent plate 8 is set larger than the substrate P (more than the diameter of the substrate P). The support member 9 that supports the transparent plate 8 is formed in a substantially annular shape, and is disposed around the substrate P.
[0022]
The upper surface of the transparent plate 8 and the lower surface 7 of the projection optical system PL are separated from each other, and a space 56 is formed between the projection optical system PL and the transparent plate 8. The transparent plate 8 supported by the support member 9 and the substrate P are also separated from each other, and a space 57 is formed between the transparent plate 8, the support member 9, and the upper surface of the Z stage 51. The space 57 is a substantially sealed space.
[0023]
In the present embodiment, the immersion method is applied to improve the resolution by substantially shortening the exposure wavelength and to substantially increase the depth of focus. For this reason, at least during the transfer of the pattern image of the mask M onto the substrate P, there is a predetermined gap between the surface of the substrate P and the tip surface (lower surface) 7 of the optical element on the substrate P side of the projection optical system PL. The liquid 50 (50A, 50B) is filled. In the present embodiment, pure water is used for the liquid 50. Pure water is not only ArF excimer laser light but also far ultraviolet light such as ultraviolet emission lines (g-line, h-line, i-line) and KrF excimer laser light (wavelength 248 nm) emitted from the mercury lamp as exposure light EL. In the case of light (DUV light), the exposure light EL can be transmitted. In addition, a parallel plane plate capable of transmitting the exposure light EL is provided on the tip surface 7 of the projection optical system PL. This plane parallel plate constitutes a part of the projection optical system PL.
[0024]
The exposure apparatus EX includes a liquid supply apparatus 1 that supplies a predetermined liquid 50A to the space 56 between the front end surface 7 of the projection optical system PL and the transparent plate 8, and a liquid recovery apparatus 2 that recovers the liquid 50A in the space 56. It has. The liquid supply device 1 includes a tank that stores the liquid 50A, a pressure pump, and a temperature adjustment device that adjusts the liquid 50A supplied to the space 56 to a predetermined temperature. One end of a supply pipe 3 is connected to the liquid supply apparatus 1, and a supply nozzle 4 is connected to the other end of the supply pipe 3. The liquid supply apparatus 1 supplies the liquid 50 </ b> A to the space 56 through the supply pipe 3 and the supply nozzle 4. Here, the temperature adjusting device provided in the liquid supply device 1 sets the temperature of the liquid 50A supplied to the space 56 to, for example, the same temperature as the temperature in the chamber in which the exposure apparatus EX is accommodated.
[0025]
The liquid recovery apparatus 2 includes a suction pump, a tank for storing the recovered liquid 50A, and the like. One end of a recovery pipe 6 is connected to the liquid recovery apparatus 2, and a recovery nozzle 5 is connected to the other end of the recovery pipe 6. The liquid recovery apparatus 2 recovers the liquid 50 </ b> A in the space 56 via the recovery nozzle 5 and the recovery pipe 6. When the space 56 is filled with the liquid 50A, the control device CONT drives the liquid supply device 1 to supply a predetermined amount of liquid 50A per unit time to the space 56 through the supply pipe 3 and the supply nozzle 4, and the liquid The recovery device 2 is driven, and a predetermined amount of liquid 50A per unit time is recovered from the space 56 via the recovery nozzle 5 and the recovery pipe 6. As a result, a predetermined amount of the liquid 50A is disposed in the space 56 between the front end surface 7 of the projection optical system PL and the substrate P.
[0026]
Further, the liquid 50 </ b> B is also filled between the substrate P and the transparent plate 8, that is, the space 57. When the space 57 is filled with the liquid 50B, for example, the liquid 50B is poured into the annular support member 9 on the substrate stage PST (Z stage 51) before the exposure process, and then the upper end of the support member 9 is placed. Is covered with the transparent plate 8 so that the space 57 is filled with the liquid 50B. Here, the space 57 is a substantially sealed space, and the liquid 50B filled in the space 57 does not flow out of the space.
[0027]
Next, a method for exposing the pattern of the mask M onto the substrate P using the above-described exposure apparatus EX will be described with reference to FIG.
When the substrate P is loaded on the substrate stage PST, the control device CONT puts the liquid 50B into the ring of the support member 9 that is an annular member, and then covers the upper end of the support member 9 with the transparent plate 8. . Thus, the space 57 between the substrate P and the transparent plate 8 is filled with the liquid 50B. Next, the control device CONT drives the liquid supply device 1 and the liquid recovery device 2 to form a liquid immersion portion of the liquid 50A between the projection optical system PL and the transparent plate 8. Then, the control device CONT illuminates the mask M with the exposure light EL by the illumination optical system IL, and projects the pattern image of the mask M onto the substrate P through the projection optical system PL, the transparent plate 8, and the liquids 50A and 50B. To do. Here, as shown in the schematic diagram of FIG. 2A, while the shot region in the vicinity of the center (the central region) of the substrate P is being exposed, the liquid 50 supplied from the liquid supply device 1 is a liquid recovery device. By being collected by 2, it does not flow out of the substrate P.
[0028]
On the other hand, as shown in FIG. 2B, when exposing the edge region (region near the periphery of the substrate P) E of the substrate P, the space between the substrate P and the projection optical system PL is more sufficient than the substrate P. Therefore, the flat portion of the transparent plate 8 is sufficiently secured outside the edge of the substrate P. That is, the space 56 to which the liquid 50 is supplied can be maintained between the projection optical system PL and the transparent plate 8 in the case of exposing both near the center and near the edge of the substrate P. Accordingly, even when the edge region E of the substrate P is exposed, the liquid 50A does not flow out from between the projection optical system PL and the transparent plate 8, and is equivalent to the exposure condition for the central region of the substrate P. The edge region E can be exposed.
[0029]
The space 57 is a substantially sealed space, and the liquid 50B inside the space 57 does not flow greatly during the exposure process. Therefore, the influence on the surface of the substrate P due to the flow of the liquid can be suppressed.
[0030]
Note that the exposure apparatus EX of the present embodiment is a so-called scanning stepper. When scanning exposure is performed by moving the substrate P in the −X direction, the control device CONT flows the liquid 50A in the −X direction. On the other hand, when scanning exposure is performed by moving the substrate P in the + X direction, the controller CONT causes the liquid 50 to flow in the + X direction. Thus, the control device CONT uses the liquid supply device 1 and the liquid recovery device 2 to flow the liquid 50 along the moving direction of the substrate P. In this case, for example, the liquid 50 supplied from the liquid supply apparatus 1 via the supply nozzle 4 flows so as to be drawn into the space 56 as the substrate P moves in the −X direction. Even if the energy is small, the liquid 50 can be easily supplied to the space 56. Then, by switching the flow direction of the liquid 50 according to the scanning direction, the substrate P is scanned between the front end surface 7 of the lens 60 and the substrate P in either the + X direction or the −X direction. Can be filled with the liquid 50, and high resolution and a wide depth of focus can be obtained.
[0031]
When performing the exposure process, for example, it is conceivable that the temperature of the liquid 50B in the space 57 does not flow (exchange), so that the temperature changes. In this case, the refractive index of the liquid 50A varies due to the temperature change. Then, when the pattern of the mask M is transferred to the substrate P via the projection optical system PL and the liquid 50, an error may occur in the image of the pattern transferred to the substrate P. For example, with the change in the refractive index of the liquid 50, the scaling of the pattern image transferred to the substrate P may change or the position of the image plane may change compared to before the change in the refractive index. The control device CONT does not cause an error in the pattern image transferred to the substrate P based on the temperature change amount (refractive index change amount) of the liquid 50B obtained in advance and the imaging characteristics of the pattern on the substrate P. As described above, the image adjustment of the pattern image is performed using the imaging characteristic adjusting device PLC. For example, when the image plane position of the projection optical system PL is shifted in the Z-axis direction with the change in the refractive index of the liquid 50, the imaging characteristic adjustment device PLC is an optical provided in the projection optical system PL. By driving a part of the element, the position of the image formation plane of the pattern via the projection optical system PL and the liquid 50 can be matched with the surface of the substrate P. Alternatively, as an image adjustment, the mask M is moved in the Z-axis direction or the tilt direction, or the wavelength of the exposure light EL is adjusted so that an error is not caused in the pattern image due to the change in the refractive index of the liquid 50. Adjustments can be made.
[0032]
As described above, since the transparent plate 8 larger than the substrate P is provided between the projection optical system PL and the substrate P, the outflow of the liquid 50A to the outside is suppressed even when the edge region E of the substrate P is exposed. In the immersion exposure, the central region and the edge region of the substrate P can be exposed under the same conditions regarding the liquid arrangement.
[0033]
As described above, the liquid 50 in the present embodiment is composed of pure water. Pure water has an advantage that it can be easily obtained in large quantities at a semiconductor manufacturing factory or the like, and has no adverse effect on the photoresist, optical element (lens), etc. on the substrate P. In addition, pure water has no adverse effects on the environment, and since the impurity content is extremely low, it can be expected to clean the surface of the substrate P and the surface of the optical element provided on the front end surface of the projection optical system PL. .
[0034]
Since the refractive index n of pure water (water) with respect to the exposure light EL having a wavelength of about 193 nm is approximately 1.47, when ArF excimer laser light (wavelength 193 nm) is used as the light source of the exposure light EL, In the above, the wavelength is shortened to 1 / n, that is, about 131 nm, and high resolution is obtained. Furthermore, since the depth of focus is expanded by about n times, that is, about 1.47 times compared with that in the air, the projection optical system PL can be used when it is sufficient to ensure the same depth of focus as that used in the air. The numerical aperture can be further increased, and the resolution is improved in this respect as well.
[0035]
In the present embodiment, a parallel plane plate capable of transmitting the exposure light EL is provided on the tip surface 7 of the projection optical system PL. This plane-parallel plate is detachably attached to the front end surface of the projection optical system PL. By making the optical element in contact with the liquid 50 into a plane parallel plate that is cheaper than the lens, the transmittance of the projection optical system PL and the exposure light EL on the substrate P during transportation, assembly, adjustment, etc. of the exposure apparatus EX. Even if a substance that reduces the illuminance and the uniformity of the illuminance distribution (for example, silicon-based organic matter) adheres to the plane-parallel plate, the plane-parallel plate may be replaced just before the liquid 50 is supplied. There is an advantage that the replacement cost is lower than in the case where the optical element in contact with the lens is a lens. That is, the surface of the optical element that comes into contact with the liquid 50 is contaminated due to scattering particles generated from the resist by exposure to the exposure light EL, or adhesion of impurities in the liquid 50, and the optical element is periodically replaced. Although it is necessary, by making this optical element an inexpensive parallel flat plate, the cost of replacement parts is lower than that of lenses and the time required for replacement can be shortened, resulting in an increase in maintenance costs (running costs). And a decrease in throughput. Of course, the optical element attached to the front end surface of the projection optical system PL may be a lens. The optical element attached to the front end surface of the projection optical system PL may be an optical plate used for adjusting optical characteristics of the projection optical system PL, for example, aberration (spherical aberration, coma aberration, etc.). Further, at the tip of the projection optical system PL, only the optical element (parallel plane plate or lens) is brought into contact with the liquid 50 and the lens barrel PK is not brought into contact, so that the lens barrel PK made of metal is corroded. Is prevented.
[0036]
In the case where a large pressure is generated between the optical element at the tip of the projection optical system PL and the substrate P generated by the flow of the liquid 50A, the optical element is not exchangeable, but the optical element is caused by the pressure. It may be fixed firmly so as not to move.
[0037]
In addition, although the liquid 50 of this embodiment is water, liquids other than water may be sufficient, for example, the light source of exposure light EL is F.2If it is a laser, this F2Since the laser beam does not transmit water, the liquid 50 is F in this case.2For example, fluorine oil that can transmit laser light may be used. In addition, as the liquid 50, the liquid 50 is transmissive to the exposure light EL, has a refractive index as high as possible, and is stable with respect to the photoresist applied to the projection optical system PL and the surface of the substrate P (for example, Cedar). Oil) can also be used.
[0038]
Further, in the above-described embodiment, it has been described that the space 56 and the space 57 are filled with the same type of liquid, but the space between the projection optical system PL and the transparent plate 8 is filled with the first liquid, and the substrate The space between P and the transparent plate 8 can be filled with a second liquid different from the first liquid.
[0039]
In the above embodiment, the space 57 is a substantially sealed space, and the liquid 50B in the space 57 has been described so as not to substantially flow. However, as shown in FIG. The supply nozzle 10 that constitutes a part of the second liquid recovery apparatus is supported by the other part of the support member 9, and the recovery nozzle 11 that constitutes a part of the second liquid recovery apparatus is supported. May be connected to the space 57 to perform the supply and recovery operations of the liquid 50B to the space 57 during the exposure process. Thereby, the liquid 50B in the space 57 is always exchanged and the temperature-adjusted liquid 50B is supplied, so that the temperature change of the liquid 50B in the space 57 can be suppressed.
[0040]
In the above-described embodiment, after the substrate P is arranged on the substrate stage PST, the liquid 50B is filled into the support member 9 around the substrate P and then covered with the transparent plate 8 to fill the liquid 50B. However, as shown in FIG. 4, a container 12 having an internal space 12A is prepared, and a liquid 50B and a substrate P are arranged in advance in the internal space 12A of the container 12, and exposure processing is performed. In doing so, the substrate P may be loaded together with the container 12 onto the substrate stage PST by the transfer device H. The container 12 is formed of a transparent member such as glass, and the internal space 12A is a substantially sealed space. During the exposure process, the liquid 50A is supplied from the liquid supply apparatus 1 between the projection optical system PL and the upper surface 12B of the container 12.
[0041]
Moreover, in the said embodiment, although the transparent plate 8 is supported by the support member 9, you may make it make the transparent plate 8 and the board | substrate P contact | adhere through the liquid 50B without the support member 9. FIG. That is, after the substrate P is disposed on the substrate stage PST, a liquid 50B having a thickness of 1 to 2 mm and covering the entire surface of the substrate P is supplied onto the substrate P. Then, the transparent plate 8 is placed thereon, and the liquid 50B is held between the transparent plate 8 and the substrate P by surface tension. In this case, if the transparent plate 8 may move due to the movement of the substrate stage PST, the transparent plate 8 may be fixed after the transparent plate 8 is placed.
[0042]
Next, a second embodiment of the present invention will be described with reference to FIG. In the following description, the same or equivalent components as those of the above-described embodiment are denoted by the same reference numerals, and the description thereof is simplified or omitted.
A characteristic part of this embodiment is that a parallel flat plate 14 which is a large optical element provided on the front end surface of the projection optical system PL is used as a transparent plate disposed between the projection optical system PL and the substrate P. This is the point. In the present embodiment, the size of the plane parallel plate (transparent plate) 14 is set larger than that of the substrate P. Further, as described above, the plane-parallel plate 14 is detachable from the projection optical system PL (lens barrel PK). The plane parallel plate 14 is in close contact with or slightly separated from the lower surface of the projection optical system PL, and is provided so as to be movable (slidable) in the horizontal direction. A part of the plane parallel plate 14 is connected to the upper surface of the substrate stage PST (Z stage 51) via the support member 13. Here, the support member 13 is composed of a bar member that connects a plurality of predetermined positions of the plane parallel plate 14 and the substrate stage PST. As shown in FIG. 5A, when exposing the substrate P, the control device CONT uses a liquid between the plane-parallel plate 14 and the substrate P from the supply nozzle 4 connected to the first supply device 1. While supplying 50 and recovering the liquid 50 from the recovery nozzle 5 connected to the second recovery device 2, the image of the pattern of the mask M is exposed to the substrate P through the parallel flat plate 14 and the liquid 50. When the pattern image is exposed to the edge region E of the substrate P as shown in FIG. 5B, the plane parallel plate 14 larger than the substrate P is interposed between the substrate P and the projection optical system PL. Therefore, the edge region E can be exposed in a state where the liquid 50 is filled between the substrate P and the plane parallel plate 14.
[0043]
Next, a third embodiment of the present invention will be described with reference to FIG. A characteristic part of this embodiment is that a cover member 15 that suppresses the outflow of the liquid 50 to the outside of the substrate P is provided around the substrate P.
In FIG. 6, a support member 9 is provided around the substrate P, and a cover member 15 is connected to the upper end of the support member 9. The cover member 15 is formed in an annular shape having a predetermined width 15D as shown in the plan view of FIG. The width 15D of the cover member 15 is set to be equal to or greater than the radius of the lower surface 7 of the projection optical system PL, for example. The cover member 15 is formed of a transparent member such as glass. As shown in FIG. 6A, the upper surface of the cover member 15 is set higher than the upper surface of the substrate P, and the cover member 15 and the substrate P are separated from each other. Further, the inner region 15A of the cover member 15 and the edge region E of the substrate P are set so as to overlap in the horizontal direction. That is, the inner diameter of the cover member 15 is set smaller than the outer diameter of the substrate P. On the other hand, the outer diameter of the cover member 15 is set sufficiently larger than the substrate P.
[0044]
When exposing the shot region near the center of the substrate P, the liquid 50 is filled between the projection optical system PL and the substrate P as shown in FIG. On the other hand, when the edge region E of the substrate P is exposed, the liquid 50 is prevented from flowing out to the outside by the cover member 15 and the support member 9 that supports the cover member 50 as shown in FIG. In particular, since the outer diameter of the cover member 15 is set larger than the substrate P, and the upper surface of the cover member 15 is set higher than the upper surface of the substrate P, the liquid 50 is surely discharged when the edge region E is exposed. Can be suppressed.
[0045]
The substrate P of the present embodiment is not limited to a semiconductor wafer for manufacturing a semiconductor device, but also a glass substrate for a display device, a ceramic wafer for a thin film magnetic head, or an original mask or reticle used in an exposure apparatus ( Synthetic quartz, silicon wafer) or the like is applied.
[0046]
As the exposure apparatus EX, in addition to the step-and-scan type scanning exposure apparatus (scanning stepper) that scans and exposes the pattern of the mask M by moving the mask M and the substrate P synchronously, the mask M and the substrate P Can be applied to a step-and-repeat type projection exposure apparatus (stepper) in which the pattern of the mask M is collectively exposed while the substrate P is stationary and the substrate P is sequentially moved stepwise. The present invention can also be applied to a step-and-stitch type exposure apparatus that partially transfers at least two patterns on the substrate P.
[0047]
The type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on the substrate P, but an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, an image sensor (CCD). ) Or an exposure apparatus for manufacturing reticles or masks.
[0048]
The present invention can also be applied to a twin stage type exposure apparatus disclosed in Japanese Patent Application Laid-Open No. 10-163099, Japanese Patent Application Laid-Open No. 10-214783, and Japanese Translation of PCT International Publication No. 2000-505958.
[0049]
When using a linear motor (see USP5,623,853 or USP5,528,118) for the substrate stage PST and mask stage MST, use either an air levitation type using air bearings or a magnetic levitation type using Lorentz force or reactance force. Also good. Each stage PST, MST may be a type that moves along a guide, or may be a guideless type that does not have a guide.
[0050]
As a driving mechanism for each stage PST, MST, a planar motor that drives each stage PST, MST by electromagnetic force with a magnet unit having a two-dimensionally arranged magnet and an armature unit having a two-dimensionally arranged coil facing each other is provided. It may be used. In this case, either one of the magnet unit and the armature unit may be connected to the stages PST and MST, and the other of the magnet unit and the armature unit may be provided on the moving surface side of the stages PST and MST.
[0051]
As described in JP-A-8-166475 (USP 5,528,118), the reaction force generated by the movement of the substrate stage PST is not transmitted to the projection optical system PL, but mechanically using a frame member. You may escape to the floor (ground).
As described in JP-A-8-330224 (US S / N 08 / 416,558), a frame member is used so that the reaction force generated by the movement of the mask stage MST is not transmitted to the projection optical system PL. May be mechanically released to the floor (ground).
[0052]
As described above, the exposure apparatus EX according to the present embodiment maintains various mechanical subsystems including the respective constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling. In order to ensure these various accuracies, before and after assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, and various electrical systems are Adjustments are made to achieve electrical accuracy. The assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus. The exposure apparatus is preferably manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
[0053]
As shown in FIG. 8, a microdevice such as a semiconductor device includes a step 201 for performing a function / performance design of the microdevice, a step 202 for manufacturing a mask (reticle) based on the design step, and a substrate as a base material of the device. Manufacturing step 203, exposure processing step 204 for exposing the mask pattern onto the substrate by the exposure apparatus EX of the above-described embodiment, device assembly step (including dicing process, bonding process, packaging process) 205, inspection step 206, etc. It is manufactured after.
[0054]
【The invention's effect】
According to the present invention, when the substrate is exposed by the liquid immersion method, the outflow of the liquid to the outside of the substrate can be suppressed even when the edge region of the substrate is exposed. Accordingly, it is possible to suppress the occurrence of inconveniences such as the occurrence of rusting of peripheral devices due to the spilled liquid and changes in the exposure processing environment. In addition, since the pattern can be satisfactorily transferred to both the central region and the edge region of the substrate, it is possible to prevent the occurrence of inconvenience such as contact between the substrate and the polishing surface of the CMP apparatus in the subsequent CMP process. Can do. Therefore, a device having a desired performance can be manufactured.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram showing an embodiment of an exposure apparatus used in an exposure method of the present invention.
FIG. 2 is a schematic diagram for explaining a first embodiment of an exposure method of the present invention.
FIG. 3 is a schematic diagram for explaining a modification of the exposure method of the present invention.
FIG. 4 is a schematic diagram for explaining a modification of the exposure method of the present invention.
FIG. 5 is a schematic view for explaining a second embodiment of the exposure method of the present invention.
FIG. 6 is a schematic diagram for explaining a third embodiment of the exposure method of the present invention.
FIG. 7 is a plan view showing a cover member.
FIG. 8 is a flowchart showing an example of a semiconductor device manufacturing process.
FIG. 9 is a schematic diagram for explaining a conventional problem.
[Explanation of symbols]
8 ... Transparent plate, 14 ... Parallel plane plate (transparent plate, optical element), 15 ... Cover member,
50 (50A, 50B) ... liquid, EX ... exposure apparatus, M ... mask, P ... substrate,
PL ... Projection optical system

Claims (11)

投影光学系と基板との間の少なくとも一部を液体で満たし、前記液体と前記投影光学系とを介してパターンの像を前記基板上に投影することによって、前記基板を露光する露光方法において、
前記基板と前記投影光学系との間に配置されるように前記基板を支持する基板ステージに支持された、前記基板よりも大きい透明板と、前記基板との間を液体で満たすことと、
前記透明板と前記投影光学系との間で前記基板の移動方向に沿って液体が流れるように、前記透明板と前記投影光学系との間の空間への液体の供給と該空間からの液体の回収とを行いながら、前記透明板と前記投影光学系との間を液体で満たすことと、
前記透明板と前記投影光学系との間に満たされた液体と、前記透明板と前記基板との間に満たされた液体とを介して前記基板上にパターンの像を投影することと、を含む露光方法。
In an exposure method for exposing the substrate by filling at least a part between the projection optical system and the substrate with a liquid and projecting an image of a pattern onto the substrate via the liquid and the projection optical system.
Filling a space between the substrate and a transparent plate larger than the substrate supported by a substrate stage that supports the substrate so as to be disposed between the substrate and the projection optical system; and
Supply of liquid to the space between the transparent plate and the projection optical system and liquid from the space so that the liquid flows along the moving direction of the substrate between the transparent plate and the projection optical system. Filling the space between the transparent plate and the projection optical system with a liquid,
Projecting an image of a pattern onto the substrate via a liquid filled between the transparent plate and the projection optical system and a liquid filled between the transparent plate and the substrate; Including an exposure method.
前記基板の露光処理中に、前記透明板と前記基板との間の空間へ液体を供給するとともに、該空間から液体を回収することによって、前記基板と前記透明板との間に液体が満たされている請求項1記載の露光方法。  During the exposure processing of the substrate, the liquid is filled between the transparent plate and the transparent plate by supplying the liquid to the space between the transparent plate and the substrate and recovering the liquid from the space. The exposure method according to claim 1. 投影光学系と基板との間の少なくとも一部を液体で満たし、前記液体と前記投影光学系とを介してパターンの像を前記基板上に投影することによって、前記基板を露光する露光方法において、
前記投影光学系と前記基板の上面の一部との間を液体で満たすことと、
前記基板の周囲の少なくとも一部をカバー部材で覆い、前記基板の外側への前記液体の流出を抑える露光方法。
In an exposure method for exposing the substrate by filling at least a part between the projection optical system and the substrate with a liquid and projecting an image of a pattern onto the substrate via the liquid and the projection optical system.
Filling a space between the projection optical system and a part of the upper surface of the substrate;
An exposure method in which at least a part of the periphery of the substrate is covered with a cover member, and the outflow of the liquid to the outside of the substrate is suppressed.
前記カバー部材は、前記基板の外径より内径が小さく、かつ前記基板より外径が大きい請求項3記載の露光方法。  The exposure method according to claim 3, wherein the cover member has an inner diameter smaller than an outer diameter of the substrate and larger than the outer diameter of the substrate. 前記カバー部材は所定幅の輪帯状に形成されている請求項3記載の露光方法。  The exposure method according to claim 3, wherein the cover member is formed in a ring shape having a predetermined width. 請求項1〜請求項5のいずれか一項記載の露光方法を用いるデバイス製造方法。  The device manufacturing method using the exposure method as described in any one of Claims 1-5. 投影光学系と基板との間の少なくとも一部を液体で満たし、前記液体と前記投影光学系とを介してパターンの像を前記基板上に投影することによって、前記基板を露光する露光装置において、
前記基板を支持する基板ステージと、
前記基板と前記投影光学系との間に配置されるように前記基板ステージに支持された、前記基板よりも大きい透明板と、
前記透明板と前記投影光学系との間の空間へ液体を供給する第1液体供給装置と、
前記透明板と前記投影光学系との間の空間から液体を回収する第1液体回収装置とを備え、
前記第1液体供給装置と前記第1液体回収装置とにより前記透明板と前記投影光学系との間に前記基板の移動方向に沿って液体を流すとともに、前記透明板と前記投影光学系との間に満たされた液体、及び前記透明板と前記基板との間に満たされた液体を介して前記基板上にパターンの像を投影する露光装置。
In an exposure apparatus that exposes the substrate by filling at least a portion between the projection optical system and the substrate with a liquid and projecting an image of a pattern onto the substrate through the liquid and the projection optical system.
A substrate stage for supporting the substrate;
A transparent plate larger than the substrate, supported by the substrate stage so as to be disposed between the substrate and the projection optical system;
A first liquid supply device for supplying a liquid to a space between the transparent plate and the projection optical system;
A first liquid recovery device for recovering a liquid from a space between the transparent plate and the projection optical system;
The first liquid supply device and the first liquid recovery device allow a liquid to flow between the transparent plate and the projection optical system along the moving direction of the substrate, and between the transparent plate and the projection optical system. An exposure apparatus that projects an image of a pattern onto the substrate via a liquid filled in between and a liquid filled between the transparent plate and the substrate.
前記透明板と前記基板との間の空間へ液体を供給する第2液体供給装置と、
前記透明板と前記基板との間の空間から液体を回収する第2液体回収装置とをさらに備える請求項7記載の露光装置。
A second liquid supply device for supplying a liquid to the space between the transparent plate and the substrate;
The exposure apparatus according to claim 7, further comprising a second liquid recovery apparatus that recovers a liquid from a space between the transparent plate and the substrate.
投影光学系と基板との間の少なくとも一部を液体で満たし、前記液体と前記投影光学系とを介してパターンの像を前記基板上に投影することによって、前記基板を露光する露光装置において、
前記基板を支持する基板ステージと、
前記基板ステージに支持された前記基板の周囲の少なくとも一部を覆って前記基板の外側への前記液体の流出を抑えるカバー部材と、を備え、
前記投影光学系と前記基板の上面の一部との間に満たされた液体を介して前記基板ステージに支持された前記基板を露光する露光装置。
In an exposure apparatus that exposes the substrate by filling at least a portion between the projection optical system and the substrate with a liquid and projecting an image of a pattern onto the substrate through the liquid and the projection optical system.
A substrate stage for supporting the substrate;
And a cover member to suppress the outflow of the liquid to the outside of the substrate I covering at least a part of the periphery of the substrate supported by the substrate stage,
An exposure apparatus that exposes the substrate supported by the substrate stage via a liquid filled between the projection optical system and a part of the upper surface of the substrate.
前記カバー部材は、前記基板の外径より内径が小さく、かつ前記基板より外径が大きい請求項9記載の露光装置。  The exposure apparatus according to claim 9, wherein the cover member has an inner diameter smaller than an outer diameter of the substrate and larger than the outer diameter of the substrate. 請求項7〜10のいずれか一項記載の露光装置によりマスクのパターンを基板に露光する露光処理ステップを含むデバイス製造方法。  A device manufacturing method including an exposure processing step of exposing a pattern of a mask onto a substrate by the exposure apparatus according to claim 7.
JP2002357956A 2002-12-10 2002-12-10 Exposure method, exposure apparatus, and device manufacturing method Expired - Fee Related JP4232449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002357956A JP4232449B2 (en) 2002-12-10 2002-12-10 Exposure method, exposure apparatus, and device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002357956A JP4232449B2 (en) 2002-12-10 2002-12-10 Exposure method, exposure apparatus, and device manufacturing method

Publications (2)

Publication Number Publication Date
JP2004193252A JP2004193252A (en) 2004-07-08
JP4232449B2 true JP4232449B2 (en) 2009-03-04

Family

ID=32757815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002357956A Expired - Fee Related JP4232449B2 (en) 2002-12-10 2002-12-10 Exposure method, exposure apparatus, and device manufacturing method

Country Status (1)

Country Link
JP (1) JP4232449B2 (en)

Families Citing this family (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG121822A1 (en) 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US10503084B2 (en) 2002-11-12 2019-12-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9482966B2 (en) 2002-11-12 2016-11-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN101382738B (en) 2002-11-12 2011-01-12 Asml荷兰有限公司 Lithographic projection apparatus
JP3977324B2 (en) 2002-11-12 2007-09-19 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus
DE60335595D1 (en) 2002-11-12 2011-02-17 Asml Netherlands Bv Immersion lithographic apparatus and method of making a device
KR100588124B1 (en) 2002-11-12 2006-06-09 에이에스엠엘 네델란즈 비.브이. Lithographic Apparatus and Device Manufacturing Method
US7110081B2 (en) 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG131766A1 (en) 2002-11-18 2007-05-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
SG121829A1 (en) 2002-11-29 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7242455B2 (en) 2002-12-10 2007-07-10 Nikon Corporation Exposure apparatus and method for producing device
EP3226073A3 (en) 2003-04-09 2017-10-11 Nikon Corporation Exposure method and apparatus, and method for fabricating device
KR101225884B1 (en) 2003-04-11 2013-01-28 가부시키가이샤 니콘 Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
TWI295414B (en) 2003-05-13 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TWI347741B (en) 2003-05-30 2011-08-21 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7213963B2 (en) 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP2261741A3 (en) 2003-06-11 2011-05-25 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US6867844B2 (en) 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
KR101289979B1 (en) 2003-06-19 2013-07-26 가부시키가이샤 니콘 Exposure device and device producing method
EP1498778A1 (en) 2003-06-27 2005-01-19 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US6809794B1 (en) 2003-06-27 2004-10-26 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
EP1491956B1 (en) 2003-06-27 2006-09-06 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1975721A1 (en) 2003-06-30 2008-10-01 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1494074A1 (en) 2003-06-30 2005-01-05 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
SG109000A1 (en) 2003-07-16 2005-02-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP1500982A1 (en) 2003-07-24 2005-01-26 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1503244A1 (en) 2003-07-28 2005-02-02 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method
EP2264534B1 (en) 2003-07-28 2013-07-17 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
US7175968B2 (en) 2003-07-28 2007-02-13 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a substrate
US7779781B2 (en) 2003-07-31 2010-08-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TW200513805A (en) 2003-08-26 2005-04-16 Nippon Kogaku Kk Optical device and exposure apparatus
TWI263859B (en) 2003-08-29 2006-10-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP2261740B1 (en) 2003-08-29 2014-07-09 ASML Netherlands BV Lithographic apparatus
TWI245163B (en) 2003-08-29 2005-12-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US6954256B2 (en) * 2003-08-29 2005-10-11 Asml Netherlands B.V. Gradient immersion lithography
EP1519230A1 (en) 2003-09-29 2005-03-30 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1519231B1 (en) 2003-09-29 2005-12-21 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7158211B2 (en) 2003-09-29 2007-01-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1524558A1 (en) 2003-10-15 2005-04-20 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1524557A1 (en) 2003-10-15 2005-04-20 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411653B2 (en) 2003-10-28 2008-08-12 Asml Netherlands B.V. Lithographic apparatus
US7352433B2 (en) 2003-10-28 2008-04-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TWI609409B (en) 2003-10-28 2017-12-21 尼康股份有限公司 Optical illumination device, exposure device, exposure method and device manufacturing method
JP4295712B2 (en) 2003-11-14 2009-07-15 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and apparatus manufacturing method
TWI512335B (en) 2003-11-20 2015-12-11 尼康股份有限公司 Light beam converter, optical illuminating apparatus, exposure device, and exposure method
US7545481B2 (en) 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589818B2 (en) 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
US7394521B2 (en) 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589822B2 (en) 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
TWI614795B (en) 2004-02-06 2018-02-11 Nikon Corporation Optical illumination apparatus, light-exposure apparatus, light-exposure method and device manufacturing method
US7050146B2 (en) 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7227619B2 (en) 2004-04-01 2007-06-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7034917B2 (en) 2004-04-01 2006-04-25 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
US7295283B2 (en) 2004-04-02 2007-11-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7898642B2 (en) 2004-04-14 2011-03-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7379159B2 (en) 2004-05-03 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7616383B2 (en) 2004-05-18 2009-11-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7486381B2 (en) 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1768169B9 (en) * 2004-06-04 2013-03-06 Nikon Corporation Exposure apparatus, exposure method, and device producing method
JP4655763B2 (en) * 2004-06-04 2011-03-23 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
US7481867B2 (en) 2004-06-16 2009-01-27 Edwards Limited Vacuum system for immersion photolithography
US7463330B2 (en) 2004-07-07 2008-12-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4894515B2 (en) * 2004-07-12 2012-03-14 株式会社ニコン Exposure apparatus, device manufacturing method, and liquid detection method
JPWO2006009064A1 (en) * 2004-07-16 2008-05-01 株式会社ニコン Support method and support structure for optical member, optical apparatus, exposure apparatus, and device manufacturing method
US7161663B2 (en) 2004-07-22 2007-01-09 Asml Netherlands B.V. Lithographic apparatus
KR101230712B1 (en) * 2004-08-03 2013-02-07 가부시키가이샤 니콘 Exposure equipment, exposure method and device manufacturing method
US7304715B2 (en) 2004-08-13 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7701550B2 (en) 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7133114B2 (en) 2004-09-20 2006-11-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7522261B2 (en) 2004-09-24 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7355674B2 (en) 2004-09-28 2008-04-08 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program product
US7894040B2 (en) 2004-10-05 2011-02-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7209213B2 (en) 2004-10-07 2007-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7119876B2 (en) 2004-10-18 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7379155B2 (en) 2004-10-18 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4665712B2 (en) 2004-10-26 2011-04-06 株式会社ニコン Substrate processing method, exposure apparatus and device manufacturing method
US7414699B2 (en) 2004-11-12 2008-08-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7423720B2 (en) 2004-11-12 2008-09-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7583357B2 (en) 2004-11-12 2009-09-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7251013B2 (en) 2004-11-12 2007-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411657B2 (en) 2004-11-17 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7145630B2 (en) 2004-11-23 2006-12-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7161654B2 (en) 2004-12-02 2007-01-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7446850B2 (en) 2004-12-03 2008-11-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7397533B2 (en) 2004-12-07 2008-07-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7248334B2 (en) 2004-12-07 2007-07-24 Asml Netherlands B.V. Sensor shield
US7196770B2 (en) 2004-12-07 2007-03-27 Asml Netherlands B.V. Prewetting of substrate before immersion exposure
US7365827B2 (en) 2004-12-08 2008-04-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7352440B2 (en) 2004-12-10 2008-04-01 Asml Netherlands B.V. Substrate placement in immersion lithography
US7403261B2 (en) 2004-12-15 2008-07-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7880860B2 (en) 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7528931B2 (en) 2004-12-20 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7491661B2 (en) 2004-12-28 2009-02-17 Asml Netherlands B.V. Device manufacturing method, top coat material and substrate
US7405805B2 (en) 2004-12-28 2008-07-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060147821A1 (en) 2004-12-30 2006-07-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG124359A1 (en) 2005-01-14 2006-08-30 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP4565271B2 (en) * 2005-01-31 2010-10-20 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
KR101440617B1 (en) 2005-01-31 2014-09-15 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
CN102360170B (en) 2005-02-10 2014-03-12 Asml荷兰有限公司 Immersion liquid, exposure apparatus, and exposure process
US7224431B2 (en) 2005-02-22 2007-05-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8018573B2 (en) 2005-02-22 2011-09-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7378025B2 (en) 2005-02-22 2008-05-27 Asml Netherlands B.V. Fluid filtration method, fluid filtered thereby, lithographic apparatus and device manufacturing method
US7428038B2 (en) 2005-02-28 2008-09-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and apparatus for de-gassing a liquid
US7324185B2 (en) 2005-03-04 2008-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7684010B2 (en) 2005-03-09 2010-03-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, seal structure, method of removing an object and a method of sealing
US7330238B2 (en) 2005-03-28 2008-02-12 Asml Netherlands, B.V. Lithographic apparatus, immersion projection apparatus and device manufacturing method
KR20070115863A (en) * 2005-03-31 2007-12-06 가부시키가이샤 니콘 Exposure method, exposure apparatus and device manufacturing method
US7411654B2 (en) 2005-04-05 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7291850B2 (en) 2005-04-08 2007-11-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060232753A1 (en) 2005-04-19 2006-10-19 Asml Holding N.V. Liquid immersion lithography system with tilted liquid flow
US7317507B2 (en) 2005-05-03 2008-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7433016B2 (en) 2005-05-03 2008-10-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8248577B2 (en) 2005-05-03 2012-08-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP3232270A3 (en) 2005-05-12 2017-12-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP4596191B2 (en) * 2005-05-24 2010-12-08 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
US7751027B2 (en) 2005-06-21 2010-07-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7652746B2 (en) 2005-06-21 2010-01-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7834974B2 (en) 2005-06-28 2010-11-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7468779B2 (en) 2005-06-28 2008-12-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7474379B2 (en) 2005-06-28 2009-01-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7535644B2 (en) 2005-08-12 2009-05-19 Asml Netherlands B.V. Lens element, lithographic apparatus, device manufacturing method, and device manufactured thereby
US8054445B2 (en) 2005-08-16 2011-11-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411658B2 (en) 2005-10-06 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7804577B2 (en) 2005-11-16 2010-09-28 Asml Netherlands B.V. Lithographic apparatus
US7656501B2 (en) 2005-11-16 2010-02-02 Asml Netherlands B.V. Lithographic apparatus
US7864292B2 (en) 2005-11-16 2011-01-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7633073B2 (en) * 2005-11-23 2009-12-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7773195B2 (en) 2005-11-29 2010-08-10 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
US7420194B2 (en) 2005-12-27 2008-09-02 Asml Netherlands B.V. Lithographic apparatus and substrate edge seal
US7839483B2 (en) 2005-12-28 2010-11-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a control system
US7649611B2 (en) 2005-12-30 2010-01-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8045134B2 (en) 2006-03-13 2011-10-25 Asml Netherlands B.V. Lithographic apparatus, control system and device manufacturing method
US9477158B2 (en) 2006-04-14 2016-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7969548B2 (en) 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
US8045135B2 (en) 2006-11-22 2011-10-25 Asml Netherlands B.V. Lithographic apparatus with a fluid combining unit and related device manufacturing method
US8634053B2 (en) 2006-12-07 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9632425B2 (en) 2006-12-07 2017-04-25 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface
US7791709B2 (en) 2006-12-08 2010-09-07 Asml Netherlands B.V. Substrate support and lithographic process
US8654305B2 (en) 2007-02-15 2014-02-18 Asml Holding N.V. Systems and methods for insitu lens cleaning in immersion lithography
US8817226B2 (en) 2007-02-15 2014-08-26 Asml Holding N.V. Systems and methods for insitu lens cleaning using ozone in immersion lithography
US8237911B2 (en) * 2007-03-15 2012-08-07 Nikon Corporation Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine
US8011377B2 (en) 2007-05-04 2011-09-06 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US7900641B2 (en) 2007-05-04 2011-03-08 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
JPWO2008139913A1 (en) * 2007-05-10 2010-08-05 株式会社ニコン Exposure method and exposure flat plate
JP5267029B2 (en) 2007-10-12 2013-08-21 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
NL1036579A1 (en) * 2008-02-19 2009-08-20 Asml Netherlands Bv Lithographic apparatus and methods.
NL2005207A (en) 2009-09-28 2011-03-29 Asml Netherlands Bv Heat pipe, lithographic apparatus and device manufacturing method.
EP2381310B1 (en) 2010-04-22 2015-05-06 ASML Netherlands BV Fluid handling structure and lithographic apparatus

Also Published As

Publication number Publication date
JP2004193252A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
JP4232449B2 (en) Exposure method, exposure apparatus, and device manufacturing method
KR101636632B1 (en) Exposure apparatus, exposure method, and device producing method
US8797506B2 (en) Exposure apparatus, exposure method, and device fabrication method
US7855777B2 (en) Exposure apparatus and method for manufacturing device
JP5541308B2 (en) Exposure apparatus, exposure apparatus control method, and device manufacturing method
KR101472249B1 (en) Exposure method, exposure device, and device manufacturing method
JP4529433B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP4655763B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP4720747B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2010118714A (en) Exposure apparatus, exposure method, and method for manufacturing device
JP4729876B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP4701606B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP2005072132A (en) Aligner and device manufacturing method
JP2005005507A (en) Aligner and method of manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees