JP2002071513A - Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective - Google Patents

Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective

Info

Publication number
JP2002071513A
JP2002071513A JP2000256897A JP2000256897A JP2002071513A JP 2002071513 A JP2002071513 A JP 2002071513A JP 2000256897 A JP2000256897 A JP 2000256897A JP 2000256897 A JP2000256897 A JP 2000256897A JP 2002071513 A JP2002071513 A JP 2002071513A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
objective lens
wave
immersion microscope
lens
immersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000256897A
Other languages
Japanese (ja)
Inventor
Hitoshi Kaizu
Tomohiko Yamahiro
知彦 山広
均 海津
Original Assignee
Nikon Corp
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PROBLEM TO BE SOLVED: To provide an interferometer for immersion microscope objective capable of quantitatively and accurately evaluating the immersion microscope objective. SOLUTION: A hemispherical plane and convex lens 12 having a plane 12 and a return spherical surface 12b is arranged facing the objective 10. In this case, an immersion liquid 15 is filled in the gap between the plane 12a and the objective lens 10, focus positions of the plane 12a and the objective 10 coincide and the center of the sphere of the return spherical surface 12b and the focus position also coincide in the arrangement. Detected wave 8 formed with a reference plane plate 4 after passing through the objective 10 is reflected vertically by the return spherical surface 12b to proceed in the reverse direction in the light path. The detected wave 8 having proceeded in the light path interferes with a reference wave 7 and its interference fringe is photographed with a CCD imaging device 6. From the interference pattern state, the performance of the objective 10 can be evaluated.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、液浸系顕微鏡対物レンズを評価するための干渉計、および液浸系顕微鏡対物レンズの評価方法に関する。 The present invention relates to the interferometer for evaluating the immersion microscope objective lens, and a method for evaluation of the immersion microscope objective.

【0002】 [0002]

【従来の技術】液浸系ではない乾燥系の顕微鏡対物レンズを評価する方法としては、干渉計を用いる方法がある。 As a method of evaluating the microscope objective lens of the drying system not BACKGROUND ART immersion, a method using an interferometer. 図5は評価方法を説明する図であり、評価装置の概略構成を示す。 Figure 5 is a diagram for explaining an evaluation method, a schematic configuration of an evaluation device. 光源からの平面波2はビームスプリッタ5により光路が曲げられて平面プレート51に入射する。 Plane wave 2 from the light source is a light path is bent by the beam splitter 5 is incident on the plane plate 51. 平面波2の一部は平面プレート51により反射されて参照波とされ、他は透過して被検波として対物レンズ50に入射する。 Some of the plane wave 2 is the reference wave is reflected by the plane plate 51, the other is incident on the objective lens 50 as to be detected transmission. この被検波8は対物レンズ50の焦点52に集められた後に凹面(球面の一部)53により垂直反射されて光路を逆行する。 The detection wave 8 (part of a spherical surface) concave after collected in the focal point 52 of the objective lens 50 by 53 is vertically reflected to reverse the optical path. その結果、平面プレート51で反射された参照波と、対物レンズ50から図示下方に出射される被検波8との干渉により干渉縞が生じる。 As a result, the reference wave is reflected by the plane plate 51, interference fringes due to the interference between the object to be detected 8 emitted downward in the drawing from the objective lens 50 occurs. この干渉縞をCCD撮像装置6で撮像して観察することにより、すなわち波面収差を測定することにより対物レンズ50の評価を行うことができる。 By observing by imaging the interference fringes with a CCD imaging device 6, that is, to evaluate the objective lens 50 by measuring the wavefront aberration.

【0003】 [0003]

【発明が解決しようとする課題】ところで、液浸系対物レンズを用いる顕微鏡では、対物レンズと標本との間に油や水などの浸液を充填して観察が行われる。 [SUMMARY OF THE INVENTION Incidentally, in the microscope using the immersion objective lens, observation by filling immersion liquid such as oil or water between the objective lens and the sample is performed. しかしながら、図5のような構成の場合には対物レンズ50と凹面53との間には浸液を充填することができないので、 However, it is impossible to fill the immersion liquid between the objective lens 50 and the concave 53 in the case of the configuration shown in FIG. 5,
液浸系対物レンズはこのような装置では評価できなかった。 Immersion objective could not be evaluated in such a device. そのため、液浸系対物レンズに関しては、検査員がピンホール等の理論分解能に近いサンプルを顕微鏡で観察し、観察状況(ボケなど)から対物レンズを評価していた。 Therefore, with respect to the immersion objective lens, inspector observes the sample close to the theoretical resolution of such pinholes with a microscope, were evaluated objective lens from the observation conditions (such as blurring).

【0004】本発明の目的は、液浸系顕微鏡対物レンズを人間の判断によらず定量的にかつ精度良く評価することができる液浸系顕微鏡対物レンズ用干渉計、および液浸系顕微鏡対物レンズの評価方法を提供することにある。 An object of the present invention, an immersion microscope objective lens interferometer can be quantitatively and accurately evaluated regardless the immersion microscope objective on human judgment, and immersion microscope objective It is to provide a method of evaluation.

【0005】 [0005]

【課題を解決するための手段】発明の実施の形態を示す図1および図4に対応付けて説明する。 Means for Solving the Problems] will be described in association with FIGS. 1 and 4 shows an embodiment of the invention. (1)図1に対応付けて説明すると、請求項1の発明による液浸系顕微鏡対物レンズ用干渉計は、参照波7および被検波8を形成して、被検波8を液浸系顕微鏡対物レンズ10に入射させる第1の光学系4と、折返し球面1 (1) When association will be described in FIG. 1, the immersion microscope objective lens interferometer according a first aspect of the present invention, to form a reference beam 7 and the detection 8, an immersion microscope objective to be detected 8 a first optical system 4 to be incident on the lens 10, folding spherical 1
2bを有するとともに、対物レンズ10との間に浸液1 And having a 2b, immersion liquid 1 between the objective lens 10
5を充填して対向配置され、対物レンズ10を透過して折返し球面12bで反射された被検波8を出射する第2 5 filled with the opposed, second that emits the detection 8 reflected by the folding spherical 12b passes through the objective lens 10
の光学系12と、折返し球面12bで反射された被検波8と参照波7との干渉波を検出する検出器6とを備え、 Includes the optical system 12, and a detector 6 for detecting an interference wave between the reference beam 7 and the detection 8 reflected by the folding spherical 12b,
検出器6で検出された干渉波に基づいて対物レンズ10 The objective lens 10 based on the detected by the detector 6 Interference
を評価することにより上述の目的を達成する。 To achieve the object described above by evaluating. (2)請求項2の発明は、請求項1に記載の液浸系顕微鏡対物レンズ用干渉計において、第2の光学系12を、 (2) according to claim 2 invention, in the immersion microscope objective lens interferometer of claim 1, the second optical system 12,
対物レンズ10の焦点位置に配設される平面12aと、 A plane 12a that is disposed at the focal position of the objective lens 10,
球心が焦点位置と一致する凸球面12bとを有するとともに、レンズ厚さが凸球面12bの曲率半径と等しい半球平凸面レンズとしたものである。 Spherical center with having a convex spherical surface 12b that matches the focal position, the lens thickness is obtained by a radius of curvature equal to the hemispherical plano convex lens convex spherical surface 12b. (3)図4に対応付けて説明すると、請求項3の発明は、請求項1に記載の液浸系顕微鏡対物レンズ用干渉計において、第2の光学系30を、平面30aと球心が焦点位置と一致する凸球面30bを有するとともに、レンズ厚さが液浸系顕微鏡に使用されるカバーガラスの厚さdと凸球面30bの曲率半径との和に等しく、かつ、カバーガラスと等しい屈折率を有する半球平凸面レンズ3 (3) association will be described in FIG. 4, the invention of claim 3, in an immersion microscope objective lens interferometer of claim 1, the second optical system 30, a plane 30a and the spherical center which has a convex spherical surface 30b that matches the focal position, equally lens thickness to the sum of the radius of curvature of the thickness d and the convex spherical surface 30b of the cover glass to be used in the immersion microscope, and equal to the cover glass refraction hemisphere having a rate flat convex lens 3
0としたものである。 It is obtained by a 0. (4)図1に対応付けて説明すると、請求項4の発明による評価方法では、液浸系顕微鏡対物レンズ10との間に浸液15を介して配設された折返し球面12bで対物レンズ10を透過した被検波8を反射し、参照波7と折返し球面12bで反射された被検波8との干渉波に基づいて対物レンズ10を評価する。 (4) association will be described in FIG. 1, in the evaluation method according to the invention of claim 4, the objective lens 10 in the folded spherical 12b disposed through the immersion liquid 15 between the immersion microscope objective lens 10 reflects the detection 8 transmitted through, to evaluate the objective lens 10 on the basis of which is reflected by the reference wave 7 folded spherical 12b to interference between the object to be detected 8.

【0006】なお、本発明の構成を説明する上記課題を解決するための手段の項では、本発明を分かり易くするために発明の実施の形態の図を用いたが、これにより本発明が発明の実施の形態に限定されるものではない。 [0006] In the section of means for solving the above problems for explaining the structure of the present invention has reference to FIG embodiment of the invention for ease of the present invention, the present invention invention thereby It is not limited to the embodiment.

【0007】 [0007]

【発明の実施の形態】以下、図1〜図4を参照して本発明の実施の形態を説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, with reference to FIGS describing the embodiments of the present invention. 図1は本発明による干渉計の一実施の形態を示す図であり、干渉計の概略構成図である。 Figure 1 is a diagram showing an embodiment of an interferometer according to the present invention, it is a schematic diagram of the interferometer. 干渉計部1には平面波2を発生する光源3、光源3からの平面波2を参照平面板4に導くビームスプリッタ5、干渉縞を撮影するためのCCD撮像装置6が設けられている。 The interferometer unit 1 light source 3 for generating a plane wave 2, the beam splitter 5 guides the plane wave 2 from the light source 3 to the reference plane plate 4, the CCD image pickup device 6 for taking interference fringes are provided. 参照平面板4は参照平面(フィゾー面)4 Reference plane plate 4 reference plane (Fizeau surface) 4
aを有しており、ビームスプリッタ5からの平面波2の一部を参照平面4aで反射し、残りは参照平面4aを透過する。 Has a, reflects a part of the plane wave 2 from the beam splitter 5 by the reference plane 4a, the remainder is transmitted through the reference plane 4a. 参照平面4aで反射された平面波7は参照波と呼ばれ、参照平面4aを透過した平面波8は被検波と呼ばれる。 The plane wave 7 reflected by the reference plane 4a called reference wave, plane wave 8 transmitted through the reference plane 4a is referred to as the detection. なお、ビームスプリッタ5に代えて、偏光ビームスプリッタと1/4波長板とを用いると、光源3にもどる光がなくなり、戻りビームによる光源3への悪影響を防止できる。 Instead of the beam splitter 5, the use of a polarization beam splitter and a quarter-wave plate, there is no light returns to the light source 3, thereby preventing the adverse effect on the light source 3 by the return beam.

【0008】9は被検レンズである液浸系顕微鏡対物レンズ10が固定される被検レンズ取付用アダプタであり、アダプタ9に形成されたネジ部9aに対物レンズ1 [0008] 9 is a test lens mounting adapter immersion microscope objective lens 10 is subject lens is fixed, the objective lens 1 to the screw portion 9a formed in the adapter 9
0を固定する。 0 are fixed. このアダプタ9は支柱11に取り付けられており、対物レンズ10をネジ部9aに固定すると対物レンズ10の軸と干渉計部1の光軸とが一致するように調整されている。 The adapter 9 is attached to the strut 11, it is adjusted so as when fixing the objective lens 10 to the screw portion 9a and the optical axis of the shaft and the interferometer unit 1 of the objective lens 10 coincide.

【0009】12は半球形状の半球平凸面レンズであり、ステージ13のxステージ13x上に装着されている。 [0009] 12 is a hemispherical plano convex lens of hemispherical shape and is mounted on the x stage 13x stage 13. 半球平凸面レンズ12は平面12aと折返し球面1 Hemispherical plano convex lens 12 is a plan 12a and folded spherical 1
2bとを有しており、折返し球面12bの球心は平面1 Has a 2b, spherical center of the folding spherical 12b are plan 1
2a上にある。 It is on the 2a. すなわち、半球平凸面レンズ12のレンズ厚さは、折返し球面12bの曲率半径に等しい。 That is, the lens thickness of the hemispherical plano convex lens 12 is equal to the radius of curvature of the folded spherical 12b. 半球平凸面レンズ12は平面12aが対物レンズ10と対向するように配設され、平面12aと対物レンズ10との隙間には浸液15が充填される。 Hemispherical plano convex lens 12 is disposed such plane 12a is opposed to the objective lens 10, the gap between the plane 12a and the objective lens 10 immersion liquid 15 is filled. この浸液15には、液浸系顕微鏡で使用するものと同様の油や水が用いられる。 This immersion liquid 15, the same oil and water to those used in the immersion microscope is used.

【0010】ステージ13はxステージ13x、yステージ13yおよびzステージ13zで構成され、支柱1 [0010] Stage 13 is constituted by x stage 13x, y stage 13y and z stages 13z, post 1
1に取り付けられたzステージ13zは、つまみ14z z stage 13z attached to 1 knob 14z
を回転することにより支柱11に沿って上下方向に移動させることができる。 It can be moved along the column 11 in the vertical direction by rotating the. zステージ13z上に設けられたyステージ13yは、つまみ14yを回転することによりy方向に移動させることができる。 y stage 13y provided on z stage 13z can be moved in the y-direction by rotating the 14y knob. さらに、yステージ13yに設けられたxステージ13xは、つまみ14 Furthermore, x stage 13x provided on the y stage 13y is knob 14
xを回転することによりx方向に移動させることができる。 It can be moved in the x-direction by rotating the x.

【0011】次に、対物レンズ評価の手順について説明する。 [0011] Next, a description is given of the procedure of the objective lens evaluation. まず、対物レンズ10をアダプタ9に固定するとともに、平面12aが下側となるように半球平凸面レンズ12をxステージ13xに載置する。 First, to fix the objective lens 10 to the adapter 9 is placed a hemispherical plano convex lens 12 as plane 12a is lower in x stage 13x. 次いで、zステージ13zを上下させて、対物レンズ10の焦点16の位置と半球平凸面レンズ12の平面12aとが一致するようにステージ13のz位置を調整する。 Then, up and down the z stage 13z, adjusting the z position of the stage 13 so that the plane 12a of the position and the hemispherical plano convex lenses 12 focus 16 of the objective lens 10 is coincident.

【0012】z位置調整が済んだならば、対物レンズ1 [0012] After completion of the z-position adjustment, the objective lens 1
0と平面12aとの隙間に浸液15を充填した後に、光源3からビーム径の細い光を出射させて半球平凸面レンズ12の位置調整を行う。 After filling a 0 and immersion liquid 15 in the gap between the plane 12a, it adjusts the position of the hemispherical plano convex lens 12 from the light source 3 by emitting a narrow light of the beam diameter. CCD撮像装置6の撮像面には、参照平面板4の参照平面4aで反射されたビームと、参照平面板4を透過して対物レンズ10を透過した後に半球平凸面レンズ12の折返し球面12bで反射されたビームとが結像される。 The imaging surface of the CCD image pickup device 6, and is reflected by the reference plane 4a of the reference plane plate 4 beams, after passing through the objective lens 10 passes through the reference plane plate 4 at the turning sphere 12b of hemispherical plano convex lens 12 and the reflected beam is focused. そして、この2つのビームが一致するように、ステージ13により半球平凸面レンズ12のx,y位置の調整を行う。 As the two beams are matched, x hemispherical plano convex lens 12, the adjustment of the y position performed by the stage 13. この際に、ステージ13のz位置を微調整してフォーカス合わせも行う。 At this time, also performs focusing by finely adjusting the z position of the stage 13.

【0013】半球平凸面レンズ12の位置調整が済んだならば、光源3から所定のビーム径を有する平面波を出射させて対物レンズ10の評価を行う。 [0013] After completion position adjustment of the hemispherical plano convex lens 12, the evaluation of the objective lens 10 by emitting a plane wave from the light source 3 having a predetermined beam diameter. 平面波2がビームスプリッタ5により光路を曲げられて参照平面板4に入射すると、上述したように平面波2は参照波7と被検波8とに分割される。 When a plane wave 2 is incident on the reference plane plate 4 is bent a light path by the beam splitter 5, a plane wave 2 as described above is divided and a reference wave 7 and the detection 8. 参照波7はビームスプリッタ5を介してCCD撮像装置6に入射する。 Reference wave 7 is incident to the CCD image pickup device 6 through the beam splitter 5. 一方、被検波8は参照平面板4を屈折・透過した後に対物レンズ10に入射し、対物レンズ10の焦点16を通過した後に半球平凸面レンズ12内に入る。 On the other hand, the detection 8 is incident on the objective lens 10 after refracted and transmitted through the reference plane plate 4, enters the hemispherical plano convex lens 12 after passing through the focal point 16 of the objective lens 10. 焦点16は半球平凸面レンズ12の球心と一致しているため、被検波8は半球平凸面レンズ12の折返し球面12bにより垂直反射され、光路を逆行してCCD撮像装置6に入射する。 Since the focus 16 which coincides with the spherical center of the hemispherical plano convex lens 12, the detection 8 is vertically reflected by the folding spherical 12b of hemispherical plano convex lens 12, and enters the CCD imaging device 6 to reverse the optical path.

【0014】参照波7と被検波8とを重ね合わせると干渉により干渉縞が生じ、この干渉縞がCCD撮像装置6 [0014] interference fringes caused by interference with the reference beam 7 and overlapping the detection wave 8, the interference fringes CCD imager 6
により撮像される。 It is taken by the. 図2は干渉縞の観察例を示す図であり、(a)は対物レンズ10に収差がある場合の干渉縞を示しており、(b)は収差が無い場合の干渉縞を示す。 Figure 2 is a diagram showing an example of observation of the interference fringes show the (a) shows the interference fringes when there is aberration in the objective lens 10, (b) the interference pattern when there is no aberration. 対物レンズ10が無収差であれば図2(b)に示すように干渉縞は平行となるが、収差があると図2(a) Although the objective lens 10 interference fringes as shown in FIG. 2 (b) if no aberration is parallel, when there is aberration FIGS. 2 (a)
の符号19で示す部分のように干渉縞に歪みが生じる。 Distortion interference pattern as a portion indicated by the reference numeral 19 occurs.

【0015】対物レンズ10を評価する際には基準となる対物レンズと比較して性能評価を行うが、図2(a) [0015] When evaluating the objective lens 10 is compared with the objective lens as a reference the performance evaluation, but FIGS. 2 (a)
に示す干渉縞は、ピンホール観察による目視検査では基準のものと差異が無いと判断された対物レンズ10に関するものである。 Interference fringes shown in, the visual inspection due to pinholes observed relate objective lens 10 where it is determined that there is no one with the difference in the reference. このように、目視検査では確認できなかったような収差も、本発明による干渉計を用いることにより確認することができ、液浸系対物レンズ10の性能を定量的に高精度に評価することができる。 Thus, even aberrations which could not be confirmed by visual inspection, can be confirmed by using an interferometer according to the present invention, the performance of the immersion objective lens 10 can be evaluated quantitatively accurate it can.

【0016】《変形例1》図3は、被検レンズである液浸系対物レンズ20が有限系(図1の対物レンズは無限系と呼ばれる)である場合の構成を示す図であり、要部のみを示した。 [0016] "Modified Example 1" Figure 3 is a diagram showing the configuration when the immersion objective lens 20 is a lens under test is that a finite system (objective lens of FIG. 1 is referred to as infinite system), main part showed only. 有限系の対物レンズ20では被検波21 In the objective lens 20 of the finite detection wave 21
として球面波を入射させる必要があり、球面波形成用フィゾー面22aを有するフィゾーレンズ22が図1の参照平面板4の代わりに用いられる。 Must be incident spherical wave there, Fizeau lens 22 having a spherical wave forming Fizeau surface 22a is used in place of the reference plane plate 4 Figure 1 as. フィゾーレンズ22 Fizeau lens 22
は、フィゾー面22aの曲率中心が被検波(球面波)2 The center of curvature of the Fizeau surface 22a is to be detected (spherical wave) 2
1の発散中心(被検波21の光束をビームスプリッタ5 1 of diverging central (beam splitter 5 a light beam to be detected 21
方向に延長したときに一点に交わる点)と一致するように配置される。 It is arranged to coincide with the intersecting point) to a point when extended in the direction. 光源3(図1参照)からの平面波2がビームスプリッタ5を介してフィゾーレンズ22に入射すると、フィゾー面22aにより球面波の被検波21および参照波22が形成される。 When the light source 3 a plane wave 2 (see FIG. 1) is incident on the Fizeau lens 22 through a beam splitter 5, the detection 21 and the reference wave 22 of the spherical waves is formed by the Fizeau surface 22a. その他の構成については図1に示した干渉計と同様である。 The other configuration is similar to the interferometer shown in FIG.

【0017】対物レンズ20に入射した被検波21は焦点16、すなわち半球平凸面レンズ12の球心に集められ、半球平凸面レンズ12に入射した後に折返し球面1 The detection wave 21 incident on the objective lens 20 is collected in the spherical center of the focal point 16, i.e. a hemispherical plano convex lens 12, folded after entering the hemispherical plano convex lens 12 spherical 1
2bで垂直反射され光路を逆行する。 2b is vertically reflected by the retrograde optical path. この逆行した被検波21とフィゾー面22aで形成された参照波は、平面波とされてフィゾーレンズ22の図示下方にあるビームスプリッタ5へと出射され、CCD撮像装置6の撮像面に干渉縞が形成される。 Reference wave formed by the wave 21 and the Fizeau surface 22a that this retrograde is emitted to the beam splitter 5 that is a plane wave in the drawing below the Fizeau lens 22, the interference fringes formed on the imaging surface of the CCD image pickup device 6 It is.

【0018】《変形例2》図4は図1に示す干渉計の第2の変形例を示す図であり、半球平凸面レンズ部分の拡大図である。 [0018] "Modification 2" Figure 4 shows a second modification of the interferometer shown in FIG. 1 is an enlarged view of a hemispherical plano convex lens portion. 図4に示す半球平凸面レンズ30では、図1に示した半球平凸面レンズ12よりもレンズ厚さをカバーレンズの厚さdだけ厚くするとともに、カバーガラスと等しい屈折率を有する光学材料で形成した。 In hemispherical plano convex lens 30 shown in FIG. 4, with thicker lens thickness only thickness d of the cover lens than hemispherical plano convex lens 12 shown in FIG. 1, formed of an optical material having a refractive index equal to a cover glass did. すなわち、折返し球面30bの曲率半径をRとすれば、レンズ厚さは(R+d)に設定されている。 That is, if the radius of curvature of the folded spherical 30b and R, the lens thickness is set to (R + d).

【0019】通常、顕微鏡観察をする際には、標本上をカバーガラスで覆い、そのカバーガラスと対物レンズとの間に浸液が充填される。 [0019] Normally, when the microscopic observation covers the upper specimen with a coverslip, immersion liquid is filled between the cover glass and the objective lens. 図1に示したような半球平凸面レンズ12を用いて対物レンズ評価をする際には、半球平凸面レンズ12と対物レンズ10との間にカバーガラスを挿入して波面干渉測定をする。 When the objective lens evaluated using a hemispherical plano convex lens 12 as shown in Figure 1, the wavefront interference measurements by inserting a cover glass between the hemispherical plano convex lens 12 and the objective lens 10. そのため、作業性が悪く、カバーガラス表面での反射が評価に影響を及ぼすおそれもある。 Therefore, poor workability, reflection at the cover glass surface also may affect the evaluation.

【0020】一方、図4に示す半球平凸面レンズ30では、カバーガラスを一体に有するような形状とした。 Meanwhile, in the hemispherical plano convex lens 30 shown in FIG. 4, and shaped to have a cover glass together. 対物レンズ10からの被検波8は浸液15を通過した後に平面30aから半球平凸面レンズ30に入射して、平面30aから距離dの位置16に焦点を結ぶ。 Detection wave 8 from the objective lens 10 is incident on the hemispherical plano convex lens 30 from the plane 30a after passing through the immersion liquid 15, focused from the plane 30a to the position 16 of the distance d. 半球平凸面レンズ30は球心が対物レンズ10の焦点位置16と一致するように配設されるので、半球平凸面レンズ30に入った被検波8は折返し球面30bで垂直反射され、光路を逆行してCCD撮像装置6(図1参照)に入射する。 Since hemispherical plano convex lens 30 is disposed so as spherical center coincides with the focal position 16 of the objective lens 10, the detection 8 entering the hemispherical plano convex lens 30 is vertically reflected by the folding spherical 30b, reversing the optical path It enters the CCD imaging device 6 (see FIG. 1).

【0021】半球平凸面レンズ30はカバーガラスと等しい屈折率を有しているため、浸液15の屈折率とほぼ等しく、被検波8は平面30aでほとんど反射されることが無い。 [0021] For hemispheric plano convex lens 30 has a refractive index equal to the cover glass, substantially equal to the refractive index of the immersion liquid 15, the detection 8 is it is not almost reflected by the plane 30a. そのため、上述したような反射光の影響を防止することができるとともに、別体のカバーガラスを配設する必要が無いので作業性の向上を図ることができる。 Therefore, it is possible to it is possible to prevent the influence of the reflected light as described above, the improvement in workability since it is not necessary to provide a cover glass separately.

【0022】以上説明した実施の形態と特許請求の範囲の要素との対応において、参照平面板4およびフィゾーレンズ22は第1の光学系を、半球平凸面レンズ12, The above-described embodiment and the correspondence between the elements of the claims, the reference plane plates 4 and Fizeau lens 22 of the first optical system, a hemispherical plano convex lens 12,
30は第2の光学系を、折返し球面12b,30bは凸球面を、CCD撮像装置6は検出器をそれぞれ構成する。 30 a second optical system, the folding spherical 12b, 30b is a convex spherical surface, CCD imaging device 6 constitute the detector, respectively.

【0023】 [0023]

【発明の効果】以上説明したように、本発明によれば、 As described in the foregoing, according to the present invention,
折返し球面を有する第2の光学系を液浸系対物レンズとの間に浸液を充填して対向配置することにより、対物レンズを透過した被検波を第2の光学系の折返し球面で反射して参照波と干渉させる。 By opposed by filling immersion liquid between a second optical system having a folded spherical and immersion objective lens, it reflects the detection wave that has passed through the objective lens in the folded spherical second optical system to interfere with the reference wave Te. この干渉により生じる干渉縞を検出器で検出することにより、液浸系対物レンズの性能を定量的にかつ高精度に評価をすることができる。 By detecting the interference fringes generated by the interference detector, it is possible to evaluate the performance of the immersion objective lens to quantitatively and precisely.
特に、請求項3の発明では、第2の光学系のレンズ厚さが、カバーガラスの厚さと凸球面の曲率半径との和に等しく設定されているので、評価の際に第2の光学系と対物レンズとの間にカバーガラスを挿入する必要が無く、 In particular, in the invention of claim 3, the lens thickness of the second optical system, since it is set equal to the sum of the radius of curvature of the thickness of the convex spherical surface of the cover glass, a second optical system in the evaluation and it is not necessary to insert the cover glass between the objective lens,
作業性の向上を図ることができる。 It is possible to improve the workability.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明による干渉計の一実施の形態を示す図であり、干渉計の概略構成図である。 Figure 1 is a view showing an embodiment of an interferometer according to the present invention, is a schematic diagram of the interferometer.

【図2】干渉縞の観察例を示す図であり、(a)は対物レンズ10に収差がある場合の干渉縞を示しており、 [Figure 2] is a diagram showing an example of observation of the interference fringes, (a) shows the shows the interference fringes when there is aberration in the objective lens 10,
(b)は収差が無い場合の干渉縞を示す。 (B) shows the interference fringes when no aberration.

【図3】第1の変形例を説明する図であり、有限系の液浸系対物レンズ20に対する干渉計の構成を示す。 [Figure 3] is a diagram for explaining a first modification, showing the configuration of the interferometer with respect to the immersion objective lens 20 of the finite system.

【図4】第2の変形例を説明する図であり、半球平凸面レンズ部分の拡大図である。 [Figure 4] is a view for explaining a second modification, an enlarged view of a hemispherical plano convex lens portion.

【図5】乾燥系顕微鏡対物レンズの波面評価方法を説明する図である。 5 is a diagram illustrating a wavefront evaluation method of dry microscope objective lens.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 干渉計部 2 平面波 3 光源 4 参照平面板 4a 参照平面 6 CCD撮像装置 7 参照波 8,21 被検波 9 アダプタ 10 対物レンズ 12,30 半球平凸面レンズ 12a,30a 平面 12b、30b 折返し球面 13 ステージ 15 浸液 22 フィゾーレンズ 1 interferometer unit 2 plane wave 3 source 4 reference plane plate 4a reference plane 6 CCD imaging device 7 reference wave 8 and 21 to be detected 9 adapter 10 objective lens 12, 30 hemispherical plano convex lenses 12a, 30a planes 12b, 30b folded spherical 13 Stage 15 immersion 22 Fizeau lens

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F064 AA09 BB04 FF00 GG12 GG22 GG38 GG47 HH03 JJ01 KK01 2G086 HH06 2H087 KA12 LA21 NA00 PA01 PA17 PB01 ────────────────────────────────────────────────── ─── front page of continued F-term (reference) 2F064 AA09 BB04 FF00 GG12 GG22 GG38 GG47 HH03 JJ01 KK01 2G086 HH06 2H087 KA12 LA21 NA00 PA01 PA17 PB01

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 参照波および被検波を形成して、前記被検波を液浸系顕微鏡対物レンズに入射させる第1の光学系と、 折返し球面を有するとともに、前記対物レンズとの間に浸液を充填して対向配置され、前記対物レンズを透過して前記折返し球面で反射された被検波を出射する第2の光学系と、 前記折返し球面で反射された被検波と前記参照波との干渉波を検出する検出器とを備え、前記検出器で検出された干渉波に基づいて前記対物レンズを評価することを特徴とする液浸系顕微鏡対物レンズ用干渉計。 1. A forms a reference wave and the detection, a first optical system for entering the object to be detected in the immersion microscope objective lens, which has a folded spherical, immersion liquid between the objective lens the filled is opposed, interference between the second optical system that emits the detection reflected by the folding spherical surface passes through the objective lens, the wave and the reference wave reflected by the folded spherical and a detector for detecting a wave, immersion microscope objective lens interferometer, characterized in that evaluating the objective lens based on the interference wave detected by the detector.
  2. 【請求項2】 請求項1に記載の液浸系顕微鏡対物レンズ用干渉計において、 前記第2の光学系は、前記対物レンズの焦点位置に配設される平面と、球心が前記焦点位置と一致する凸球面とを有するとともに、レンズ厚さが前記凸球面の曲率半径と等しい半球平凸面レンズであることを特徴とする液浸系顕微鏡対物レンズ用干渉計。 2. A liquid immersion microscope objective lens interferometer of claim 1, wherein the second optical system includes a plane which is arranged at the focal position of the objective lens, the spherical center is the focal point position matching together and a convex spherical surface, the immersion microscope objective lens interferometer, wherein the lens thickness of the radius of curvature equal to the hemispherical plano convex lenses of the convex spherical surface and.
  3. 【請求項3】 請求項1に記載の液浸系顕微鏡対物レンズ用干渉計において、 前記第2の光学系は、平面と球心が前記焦点位置と一致する凸球面とを有するとともに、レンズ厚さが液浸系顕微鏡に使用されるカバーガラスの厚さと前記凸球面の曲率半径との和に等しく、かつ、前記カバーガラスと等しい屈折率を有する半球平凸面レンズであることを特徴とする液浸系顕微鏡対物レンズ用干渉計。 3. The immersion microscope objective lens interferometer of claim 1, wherein the second optical system, which has a convex spherical surface plane and spherical center coincides with the focal position, lens thickness Saga equal to the sum of the radius of curvature of the thickness and the convex spherical surface of the cover glass to be used in the immersion microscope, and a liquid which is a hemispherical plano convex lens having a refractive index equal to the cover glass interferometer for immersion microscope objective.
  4. 【請求項4】 液浸系顕微鏡対物レンズとの間に浸液を介して配設された折返し球面で前記対物レンズを透過した被検波を反射し、参照波と前記折返し球面で反射された前記被検波との干渉波に基づいて前記対物レンズを評価することを特徴とする液浸系顕微鏡対物レンズの評価方法。 4. A reflects the detection transmitted through the objective lens disposed a folding sphere through the immersion liquid between the immersion microscope objective, it is reflected by the reference wave the folded spherical wherein evaluation of the immersion microscope objective lens and evaluating the objective lens based on the interference wave of the detection wave.
JP2000256897A 2000-08-28 2000-08-28 Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective Pending JP2002071513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000256897A JP2002071513A (en) 2000-08-28 2000-08-28 Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000256897A JP2002071513A (en) 2000-08-28 2000-08-28 Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective

Publications (1)

Publication Number Publication Date
JP2002071513A true true JP2002071513A (en) 2002-03-08

Family

ID=18745438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000256897A Pending JP2002071513A (en) 2000-08-28 2000-08-28 Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective

Country Status (1)

Country Link
JP (1) JP2002071513A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250678A (en) * 2001-02-27 2002-09-06 Olympus Optical Co Ltd Wave front measuring instrument and wave front measuring method
WO2005010960A1 (en) * 2003-07-25 2005-02-03 Nikon Corporation Inspection method and inspection device for projection optical system, and production method for projection optical system
JP2006112903A (en) * 2004-10-14 2006-04-27 Olympus Corp Ultraviolet light source unit, interferometer using it, and adjusting method of interferometer
WO2005119368A3 (en) * 2004-06-04 2006-05-11 Zeiss Carl Smt Ag System for measuring the image quality of an optical imaging system
US7276717B2 (en) 2004-11-05 2007-10-02 Canon Kabushiki Kaisha Measuring apparatus, exposure apparatus and device manufacturing method
JP2008147702A (en) * 2008-02-25 2008-06-26 Seiko Epson Corp Liquid volume-determining apparatus and method, and aligner
US7408652B2 (en) * 2002-12-20 2008-08-05 Carl Zeiss Smt Ag Device and method for the optical measurement of an optical system by using an immersion fluid
US7623218B2 (en) 2004-11-24 2009-11-24 Carl Zeiss Smt Ag Method of manufacturing a miniaturized device
US8941810B2 (en) 2005-12-30 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9740107B2 (en) 2002-11-12 2017-08-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250678A (en) * 2001-02-27 2002-09-06 Olympus Optical Co Ltd Wave front measuring instrument and wave front measuring method
US9740107B2 (en) 2002-11-12 2017-08-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8836929B2 (en) 2002-12-20 2014-09-16 Carl Zeiss Smt Gmbh Device and method for the optical measurement of an optical system by using an immersion fluid
US7408652B2 (en) * 2002-12-20 2008-08-05 Carl Zeiss Smt Ag Device and method for the optical measurement of an optical system by using an immersion fluid
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
EP1650787A1 (en) * 2003-07-25 2006-04-26 Nikon Corporation Inspection method and inspection device for projection optical system, and production method for projection optical system
JP4524669B2 (en) * 2003-07-25 2010-08-18 株式会社ニコン The projection optical system of the inspection method and inspection apparatus
WO2005010960A1 (en) * 2003-07-25 2005-02-03 Nikon Corporation Inspection method and inspection device for projection optical system, and production method for projection optical system
JP2009152619A (en) * 2003-07-25 2009-07-09 Nikon Corp Inspection method and inspecting device for projection optical system
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US7796274B2 (en) 2004-06-04 2010-09-14 Carl Zeiss Smt Ag System for measuring the image quality of an optical imaging system
US7760366B2 (en) 2004-06-04 2010-07-20 Carl Zeiss Smt Ag System for measuring the image quality of an optical imaging system
US8823948B2 (en) 2004-06-04 2014-09-02 Carl Zeiss Smt Gmbh System for measuring the image quality of an optical imaging system
WO2005119368A3 (en) * 2004-06-04 2006-05-11 Zeiss Carl Smt Ag System for measuring the image quality of an optical imaging system
US9429495B2 (en) 2004-06-04 2016-08-30 Carl Zeiss Smt Gmbh System for measuring the image quality of an optical imaging system
US8488127B2 (en) 2004-06-04 2013-07-16 Carl Zeiss Smt Gmbh System for measuring the image quality of an optical imaging system
JP2006112903A (en) * 2004-10-14 2006-04-27 Olympus Corp Ultraviolet light source unit, interferometer using it, and adjusting method of interferometer
US7276717B2 (en) 2004-11-05 2007-10-02 Canon Kabushiki Kaisha Measuring apparatus, exposure apparatus and device manufacturing method
US7623218B2 (en) 2004-11-24 2009-11-24 Carl Zeiss Smt Ag Method of manufacturing a miniaturized device
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9436096B2 (en) 2005-12-30 2016-09-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8947631B2 (en) 2005-12-30 2015-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9851644B2 (en) 2005-12-30 2017-12-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8941810B2 (en) 2005-12-30 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2008147702A (en) * 2008-02-25 2008-06-26 Seiko Epson Corp Liquid volume-determining apparatus and method, and aligner

Similar Documents

Publication Publication Date Title
US5257092A (en) Apparatus for measuring polarization and birefringence
US5933236A (en) Phase shifting interferometer
US5497234A (en) Inspection apparatus
US6791696B1 (en) Automated optical measurement apparatus and method
US20050168808A1 (en) Methods for implement microscopy and microscopic measurement as well as microscope and apparatus for implementing them
US4850693A (en) Compact portable diffraction moire interferometer
US5493398A (en) Device for observing test-piece surfaces by the speckle-shearing-method for the measurement of deformations
US20020001088A1 (en) Apparatus for wavefront detection
US6288382B1 (en) Micro-scanning multislit confocal image acquisition apparatus
US6909509B2 (en) Optical surface profiling systems
US7477401B2 (en) Trench measurement system employing a chromatic confocal height sensor and a microscope
US6124924A (en) Focus error correction method and apparatus
US5991034A (en) Interferometer which varies a position to be detected based on inclination of surface to be measured
US6693704B1 (en) Wave surface aberration measurement device, wave surface aberration measurement method, and projection lens fabricated by the device and the method
US5309214A (en) Method for measuring distributed dispersion of gradient-index optical elements and optical system to be used for carrying out the method
GB2144537A (en) Profile measuring instrument
JP2004061515A (en) Method and device for determining influence onto polarization state by optical system, and analyzer
US4812042A (en) Holographic interferometer
WO1997044633A1 (en) Optical measurement
EP0094835A1 (en) Apparatus for investigation of a surface
US4281926A (en) Method and means for analyzing sphero-cylindrical optical systems
US20020176092A1 (en) Wavefront and intensity analyzer for collimated beams
JP2000275027A (en) Slit confocal microscope and surface shape measuring apparatus using it
CN101526341A (en) Differential confocal curvature radius measurement method and device
CN102147240A (en) Method and device for measuring multiple element parameters in differential con-focus interference manner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027