JPH11283903A - Projection optical system inspection device and projection aligner provided with the device - Google Patents

Projection optical system inspection device and projection aligner provided with the device

Info

Publication number
JPH11283903A
JPH11283903A JP8372498A JP8372498A JPH11283903A JP H11283903 A JPH11283903 A JP H11283903A JP 8372498 A JP8372498 A JP 8372498A JP 8372498 A JP8372498 A JP 8372498A JP H11283903 A JPH11283903 A JP H11283903A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
light
projection
optical
surface
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8372498A
Other languages
Japanese (ja)
Inventor
Masayuki Murayama
正幸 村山
Original Assignee
Nikon Corp
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/708Construction of apparatus, e.g. environment, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution, removing pollutants from apparatus; electromagnetic and electrostatic-charge pollution
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/708Construction of apparatus, e.g. environment, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece

Abstract

PROBLEM TO BE SOLVED: To accurately recognize the cleaning timing for a projection optical system and to prevent the incomplete cleaning of the projection optical system. SOLUTION: In this projection aligner, among irradiation lights irradiated from a light-emitting part 18 at a fixed interval timing, the irradiation light transmitted through a branching mirror 19 is reflected on the surface of a projection lens 9 and then received by a first light-receiving part 20, and the irradiation light branched by the branching mirror 19 is received by a second light-receiving part 21. Then, in a measurement control system 22, an arithmetic part 23 obtains a difference ΔR, between a prescribed reflectivity R0 read from a storage part 24 and the actual reflectivity Rr of the surface of the projection lens 9, based on photoelectric signals from both light receiving parts 20 and 21. Then, when the numerical value of a contamination degree based on the difference ΔR lies outside of an allowable range, the irradiation light from a light source 16 for irradiation in an optical cleaning device 17 is transmitted through a window material 11, the entire surface of the projection lens 9 is irradiated, and optical cleaning based on a Schumann-Runge absorption effect is performed.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、例えば、半導体集積回路等の製造過程のフォトリソグラフィ工程で露光光の照射に基づきマスク上のパターンを基板上に投影露光する投影光学系の検査装置、及び同検査装置を備えた投影露光装置に関するものである。 The present invention relates to, for example, a semiconductor integrated circuit testing apparatus of a projection optical system for projecting exposed on the substrate a pattern on the mask based on the irradiation of the exposure light in a photolithographic step of the manufacturing process, such as, and it relates projection exposure apparatus equipped with the inspection system.

【0002】 [0002]

【従来の技術】半導体素子、液晶表示素子又は薄膜磁気ヘッド等を製造するためのフォトリソグラフィ工程で使用される投影露光装置においては、レチクル等のマスクに形成された線幅の微細な回路パターンが高解像力の投影光学系を介してレジスト層を塗布したウエハ等の感光基板(以下、「ウエハ」を例にして説明する。)上に投影露光される。 BACKGROUND OF THE INVENTION Semiconductor devices, a projection exposure apparatus is used in a photolithography process for manufacturing a liquid crystal display device or a thin film magnetic head or the like, a fine circuit pattern of a mask formed in a line width of a reticle or the like photosensitive substrate such as a high resolution wafer coated with a resist layer via a projection optical system (hereinafter, the "wafer" will be described as an example.) onto exposed on. 即ち、ウエハステージが投影光学系の光軸に沿って上下動され、ウエハステージ上のウエハ表面が投影光学系の焦点位置に位置合わせされた後、ウエハステージが投影光学系の光軸と直交する平面内で所定の方向へ二次元移動される。 That is, the wafer stage is moved up and down along the optical axis of the projection optical system, after the wafer surface on the wafer stage are aligned to the focal position of the projection optical system, the wafer stage is orthogonal to the optical axis of the projection optical system in the plane in a predetermined direction it is moved two-dimensionally. そして、例えばステップ・アンド・リピート方式の投影露光装置では、その二次元移動に伴い投影光学系の露光フィールドの中心(光軸)とウエハ上の各ショット領域の中心とが一致する位置でウエハステージが停止させられ、その位置で前記露光動作が行われるようになっている。 Then, for example, in the projection exposure apparatus of step-and-repeat method, the wafer stage at a position where the center of each shot area on the two-dimensional movement to involve the center of the exposure field of the projection optical system (optical axis) wafer coincides There has so been stopped, it said exposure operation at the position is performed.

【0003】一方、このような投影露光工程において前記ウエハ上に塗布されるレジスト層としては一般的に感光性樹脂(例えば、ノボラックレジン)が用いられている。 On the other hand, such a projection as the resist layer applied on the wafer in the exposure step generally a photosensitive resin (e.g., novolak resin) is used. そのため、前記投影露光時には、その感光性樹脂から発生する揮発物質等が投影光学系の最もウエハ側に近接して位置する光学部材の表面に付着して当該光学部材表面を汚染してしまうことがあった。 Therefore, the at the time of the projection exposure, that the volatile substances generated from the photosensitive resin contaminate the closest to the wafer side positioned adhering to the surface of the optical member the optical member surface of the projection optical system there were. 従って、従来から、投影露光装置では、作業者による投影光学系の前記光学部材表面の拭き取り作業、即ち、洗浄作業が必須の作業となっていた。 Therefore, conventionally, in the projection exposure apparatus, the wiping operation of the optical member surface of the projection optical system by the operator, i.e., the cleaning operation has been a required task.

【0004】 [0004]

【発明が解決しようとする課題】しかしながら、前記洗浄作業の実施タイミングについては、作業者が目視により前記汚染状態を確認した時点で行われたり、又は、予め決定された一定の周期タイミングで定期的に行われたりしていた。 [SUMMARY OF THE INVENTION However, the execution timing of the washing operation, or is performed when the operator confirms the contaminated state by visually or periodically at a fixed cycle timing which is previously determined It had been or done in.

【0005】そのため、作業者個々の目視に基づく洗浄作業の場合は、各作業者の判断基準にバラツキがあると、洗浄作業の必要性があるにも拘わらず、その実施タイミングを徒過してしまうおそれがあった。 [0005] Therefore, in the case of the cleaning operation based on operator individual visual, if there are variations in the criteria for each worker, despite the need for a cleaning operation, and spent adversary the execution timing there is a possibility that put away. 従って、その場合には、前記光学部材表面の汚染状態が放置されるため、投影光学系の光学特性が変化してしまい、露光不良を招くおそれがあった。 Therefore, in that case, since the contamination state of the optical member surface is left, end up with different optical characteristics of the projection optical system, there may result in exposure failure.

【0006】一方、定期的な洗浄作業の場合には、汚染状態の確認をすることなく所定時期になると一律に洗浄作業が行われるため、メンテナンスの上からは必要性のない洗浄作業が行われることもあった。 [0006] On the other hand, in the case of regular cleaning work, since the cleaning work uniformly when a predetermined time is carried out, the cleaning work without need is from the top of the maintenance is carried out without the confirmation of the contamination state there was also that. 従って、その場合には、洗浄作業のためにクリーンルーム内の雰囲気が不必要に投影光学系に触れてしまうことになり、良好な露光条件を維持する観点からは必ずしも好ましくなかった。 Therefore, in this case, will be the atmosphere in the clean room for cleaning work will touch the unnecessary projection optical system, it was not always preferable from the viewpoint of maintaining good exposure conditions.

【0007】又、前記洗浄作業による汚染状態の除去具合は、各作業者の洗浄作業熟練度に依存するため、作業者によっては洗浄作業を実施しても、前記光学部材表面の汚染状態を十分に除去できない場合があった。 [0007] Further, removal degree of contaminated by the cleaning operation is dependent on the cleaning operation skill of each worker, even if a cleaning operation by the operator, sufficient contamination state of the optical member surface there is a case that can not be removed. 更に、 In addition,
未熟な作業者による洗浄作業の場合には、却って前記光学部材表面の汚染状態をひどくしてしまい、作業前以上に投影光学系の光学特性を悪化させてしまうおそれすらあった。 When the cleaning operation by unskilled workers, rather would severely contaminated state of the optical member surface was even fear that worsen the optical properties of the projection optical system than prior work.

【0008】本発明は、かかる事情に鑑みなされたものであり、その目的は、投影露光装置における投影光学系の洗浄タイミングを的確に把握し得ることにある。 [0008] The present invention has been made in view of such circumstances, and its object is to be grasped accurately cleaned timing of the projection optical system in the projection exposure apparatus. 又、 or,
別の目的は、投影光学系の不完全洗浄を防止し得ることにある。 Another object is to be prevented incomplete cleaning of the projection optical system.

【0009】 [0009]

【課題を解決するための手段】前記各目的を達成するために、投影光学系検査装置に係る本願請求項1の発明は、投影露光装置における投影光学系1の最も感光基板W側の光学部材9表面の汚染度を測定する測定手段22 SUMMARY OF THE INVENTION The To achieve the object, the invention provides the claims 1 according to the projection optical system inspection device, most photosensitive substrate W side of the optical member of the projection optical system 1 in a projection exposure apparatus measuring means 22 for measuring the degree of contamination of 9 surface
を備えたことを要旨としている。 It is summarized as further comprising a. 従って、請求項1の発明においては、測定手段22によって投影光学系1の最も感光基板W側の光学部材9表面の汚染度が測定され、 Thus, in the invention of claim 1, the most sensitive degree of contamination of the substrate W side of the optical member 9 surface of the projection optical system 1 is measured by the measuring means 22,
その測定結果に基づき、洗浄前にあっては、洗浄作業の必要性有無が判断され、又、洗浄後にあっては、当該洗浄作業による汚れ除去具合の良否が判断される。 Based on the measurement result, in the pre-wash is necessary the presence of the cleaning operation is determined, and, or, after cleaning, the quality of soil removal degree by the cleaning operation is determined.

【0010】又、本願請求項2の発明は、前記請求項1 [0010] Also, the present second aspect of the present invention, the claim 1
に記載の発明において、前記測定手段22は、前記光学部材9表面で反射する反射光の反射率又は前記光学部材9表面を透過した透過光の透過率を測定し、その測定結果に基づき前記光学部材9表面の汚染度を測定することを要旨としている。 In the invention, the measuring means according to 22, wherein measuring the transmittance of the transmitted light transmitted through the reflectivity or the optical member 9 surface of the light reflected by the optical member 9 surface, the optical based on the measurement result It is summarized in that to measure the degree of contamination of the member 9 surface. 従って、請求項2の発明においては、前記請求項1に記載の発明の作用に加えて、前記汚染度の測定が測定対象とされる光学部材9表面の反射率又は透過率を求めることにより行われる。 Thus, in the invention of claim 2, wherein in addition to the operation of the invention as set forth in claim 1, row by calculating the reflectance or transmittance of the optical member 9 surface measurement of the degree of contamination is the measurement object divide.

【0011】又、本願請求項3の発明は、前記請求項2 [0011] Further, the invention of claim 3 is the claim 2
に記載の発明において、前記測定手段22は、予め設定した所定反射率R O又は所定透過率と実際に測定した実反射率R r又は実透過率との対比結果に基づいて前記光学部材9表面の汚染度を測定するものであることを要旨としている。 Invention in the measuring device according to 22, wherein the optical member 9 surface on the basis of the comparison result between the preset predetermined reflectance R O or predetermined transmittance and actual reflectance actually measured R r or actual transmittance it is summarized in that it measures the degree of contamination. 従って、請求項3に記載の発明においては、前記請求項2に記載の発明の作用に加えて、測定対象とされる光学部材9表面の反射率又は透過率を予め測定しておき、その測定結果を所定反射率R O又は所定透過率とし、その後、実際に測定して得た実反射率R r又は実透過率を前記所定反射率R O又は所定透過率と対比して得た差により汚染度が測定される。 Thus, in the invention described in claim 3, in addition to the effects of the invention described in claim 2, measured in advance the reflectance or transmittance of the optical member 9 surface to be measured, the measurement the results and predetermined reflectance R O or predetermined transmittance, then, by actually measuring the actual reflectance R r or the actual transmittance obtained was obtained by comparison with the predetermined reflectance R O or predetermined transmittance difference the degree of pollution is measured.

【0012】又、本願請求項4の発明は、前記請求項3 [0012] Further, the invention of claim 4 is the claim 3
に記載の発明において、前記測定手段22は、所定タイミングで照射された照射光に基づいて、当該照射光が前記光学部材9表面により反射された後又は当該光学部材9表面を透過した後に受光された光電信号と、当該照射光が前記光学部材9表面を介することなく受光された光電信号との対比結果から前記実反射率R r又は実透過率を測定するものであることを要旨としている。 In the invention according to the measurement means 22 based on the irradiation light irradiated at a predetermined timing, is received after the irradiation light is transmitted through or the optical member 9 surface after being reflected by the optical member 9 surface a photoelectric signal, and summarized in that the illumination light is to measure the actual reflectance R r or the actual transmission from the comparison result between the received light electric signals without the intervention of the optical member 9 surface. 従って、 Therefore,
請求項4の発明においては、前記請求項3に記載の発明の作用に加えて、例えば洗浄作業の実施中に照射光を複数回にわたり照射タイミングをずらせて照射すると、その洗浄具合の進行変化が各回の照射光に基づき測定される実反射率R r又は実透過率に反映される。 In the invention of claim 4, in addition to the effect of the invention defined in Claim 3, for example, irradiated by shifting the irradiation timing irradiation light multiple times during the performance of the cleaning operation, progression change in the washing condition is It is reflected in the actual reflectance R r or the actual permeability is measured according to each time of the irradiation light.

【0013】一方、投影露光装置に係る本願請求項5の発明は、前記請求項1〜請求項4のうちいずれか一項に記載の投影光学系検査装置25と、前記光学部材9表面に対して光洗浄効果を有する所定の照射光を照射する光洗浄装置17とを備えたことを要旨としている。 Meanwhile, the invention of claim 5 according to the projection exposure apparatus, a projection optical system inspection apparatus 25 according to any one of the claims 1 to 4, with respect to the optical member 9 surface It is summarized in that with a light cleaning device 17 for irradiating a predetermined irradiation light having an optical cleaning effect Te. 従って、請求項5の発明においては、投影光学系検査装置2 Thus, in the invention of claim 5, the projection optical system inspection apparatus 2
5の測定結果に基づき洗浄作業の必要ありと判断されると、光洗浄装置17から所定の照射光が照射され、その照射に基づき光学部材9表面の汚れが光洗浄される。 5 measurements in need of cleaning operation based and it is determined, predetermined irradiation light is irradiated from the light cleaning device 17, contamination of the optical element 9 surface on the basis of the radiation is optical cleaning.

【0014】又、本願請求項6の発明は、前記請求項5 [0014] Further, the invention of claim 6, claim 5
に記載の発明において、前記光洗浄装置17は、前記光学部材9表面の近傍に酸化促進ガスを供給するガス供給手段27を備えていることを要旨としている。 In the invention described in the optical cleaning device 17 is directed to subject matter that comprises a gas supply means 27 for supplying an oxidizing promoting gas to the vicinity of the optical member 9 surface. 従って、 Therefore,
請求項6の発明においては、前記請求項5に記載の発明の作用に加えて、光洗浄装置17による洗浄作業に際して光学部材9表面の近傍には酸化促進ガスが供給されるため、洗浄効果が向上する。 In the invention of claim 6, wherein in addition to the effect of the invention as set forth in claim 5, since when the cleaning operation by the optical cleaning device 17 in the vicinity of the optical member 9 surface promotes oxidation gas is supplied, the cleaning effect improves.

【0015】又、本願請求項7の発明は、前記請求項6 [0015] Further, the invention of claim 7, claim 6
に記載の発明において、前記光洗浄装置17は、前記照射光の光路を含んで前記光学部材9表面近傍の雰囲気を外部から遮蔽する遮蔽手段32を備えていることを要旨としている。 In the invention described in the optical cleaning device 17 is directed to subject matter in that it comprises shielding means 32 for shielding the atmosphere of the optical member 9 near the surface including the optical path of the irradiation light from the outside. 従って、請求項7の発明においては、前記請求項6に記載の発明の作用に加えて、ガス供給手段2 Thus, in the invention of claim 7, in addition to the effects of the invention described in claim 6, the gas supply means 2
7から酸化促進ガスが供給されるとき、前記光学部材9 When 7 oxidation promoting gas is supplied from the optical member 9
表面近傍の雰囲気は照射光の光路を含むようにして遮蔽手段32により外部から遮蔽される。 Atmosphere in the vicinity of the surface is shielded from the outside by the shielding means 32 so as to include an optical path of the irradiation light. そのため、酸化促進ガスによる洗浄促進がより一層図られる。 Therefore, cleaning promotion by oxidation-promoting gas is further reduced.

【0016】又、本願請求項8の発明は、前記請求項5 [0016] Further, the invention of claim 8 is the claim 5
〜請求項7のうちいずれか一項に記載の発明において、 In the invention described in any one of the ~ claim 7,
前記光洗浄装置17は、前記光学部材9に対して交換可能な窓材11を通して前記照射光を照射するものであることを要旨としている。 The light cleaning device 17 is directed to subject matter that is intended to irradiate the illumination light through replaceable window material 11 with respect to the optical member 9. 従って、請求項8の発明においては、前記請求項5〜請求項7のうちいずれか一項に記載の発明の作用に加えて、窓材11により光洗浄装置1 Thus, in the invention of claim 8, claim 5 in addition to the effects of the invention described in any one of claims 7, optical cleaning device by the window material 11 1
7の保護が図られるとともに、当該窓材11が汚れたときには窓材11を交換することにより、光洗浄効果が良好に維持される。 With 7 protection is achieved, when the window material 11 is dirty by exchanging the window material 11, the optical cleaning effect can be maintained.

【0017】 [0017]

【発明の実施の形態】以下、本発明をステップ・アンド・リピート方式の投影露光装置に具体化した第一実施形態を図1,図2に基づき説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of the present invention is embodied in a projection exposure apparatus by a step-and-repeat system 1, with reference to FIG. 2 will be described. なお、図1に示すように、本実施形態では、投影光学系1の光軸AXに平行な方向にZ軸を取り、光軸AXに直交する平面内で図1 Incidentally, as shown in FIG. 1, in this embodiment, takes the Z-axis in a direction parallel to the optical axis AX of the projection optical system 1, FIG. 1 in a plane perpendicular to the optical axis AX
の紙面に平行な方向にX軸を、また、同様に図1の紙面に垂直な方向にY軸を取っている。 Of the X-axis in a direction parallel to the paper surface, also taking the Y-axis as well in a direction perpendicular to the plane of FIG.

【0018】図1は投影露光装置全体の概略構成を示したものであり、同図において、露光用光源2から射出される照明光ILは、コリメータレンズ、フライアイレンズ、レチクルブラインドなどからなる照度均一化照明系3により照度分布がほぼ均一な光束に変換されて、ダイクロイックミラー4に入射されるように構成されている。 [0018] FIG. 1 shows a schematic configuration of the entire projection exposure apparatus, in the figure, the illumination light IL emitted from the exposure light source 2, a collimator lens, a fly-eye lens, illuminance made of a reticle blind illuminance distribution by the uniform illumination system 3 is converted into substantially uniform light beam, and is configured to be incident on the dichroic mirror 4. そして、ダイクロイックミラー4によって垂直下方へ折り曲げられた照明光ILがレチクルRを照射することにより、前記レチクルR上に1μm単位の線幅で描画された回路パターンの像が投影光学系1を介して感光基板としてのウエハW上に投影露光されるようになっている。 The dichroic by the illumination light IL is bent vertically downward illuminating the reticle R by dichroic mirror 4, the image of a circuit pattern drawn with the line width of 1μm unit on the reticle R via the projection optical system 1 It is adapted to be projected and exposed onto a wafer W as a photosensitive substrate.

【0019】なお、本実施形態における前記光源2には、波長193nmのレーザ光(紫外光)を発光するA [0019] Incidentally, the light source 2 in this embodiment emits the laser beam having a wavelength of 193nm (the ultraviolet light) A
rFエキシマレーザが使用されている。 rF excimer laser is used. また、本実施形態の投影露光装置は、露光時において前記X軸方向及びY軸方向へステッピング移動してウエハW上の各ショット領域に回路パターンを投影露光するものであるが、図1は投影光学系1の汚染度測定時の状態を示すため、同図においてウエハWは露光位置に位置していない。 The projection exposure apparatus of this embodiment is to the X-axis direction and the Y-axis direction at the time of exposure to the stepping movement is to projection exposure of a circuit pattern onto each shot area on the wafer W, Fig. 1 is the projection to indicate the status at the time of contamination measurement of the optical system 1, the wafer W in the figure are not located in the exposure position.

【0020】前記ダイクロイックミラー4の下方には、 [0020] below the dichroic mirror 4,
モータ等からなる図示しない駆動系により移動可能とされたレチクルステージ6が設けられている。 The reticle stage 6 which can be moved by a drive system (not shown) such as a motor is provided. レチクルステージ6上には前記レチクルRが真空吸着により固定保持され、このレチクルR上には前述した回路パターンの他に、その回路パターンの周辺に位置するようにして各種のアライメント用レチクルパターンが形成されている。 The on the reticle stage 6 the reticle R is held stationary by vacuum suction, in addition to the circuit pattern described above on the reticle R, various alignment reticle pattern so as to be positioned at the periphery of the circuit pattern is formed It is.

【0021】一方、前記レチクルステージ6の下方には、同ステージ6との間に投影光学系1を挟むようにしてウエハステージ7が移動可能に設けられている。 Meanwhile, below the reticle stage 6, the wafer stage 7 so as to sandwich the projection optical system 1 between the stage 6 is movable. 即ち、ウエハステージ7は前記XY平面内で二次元移動及び前記Z軸周りに微小回転が可能とされている。 That is, the wafer stage 7 microspheroidal is possible around the two-dimensional movement and the Z-axis within the XY plane. また、 Also,
前記ウエハステージ7上には前記Z軸方向に移動可能なZステージ8が設けられ、これらウエハステージ7及びZステージ8はモータ等からなる図示しない駆動系により移動可能とされている。 Wherein on the wafer stage 7 is a Z-stage 8 movable is provided in the Z axis direction, these wafer stage 7 and the Z stage 8 can be moved by a drive system (not shown) such as a motor. そして、Zステージ8上に感光性樹脂の一種であるノボラックレジンを塗布されたウエハWが真空吸着保持され、このZステージ8をZ軸方向へ移動させることにより、ウエハWの表面と投影光学系1の結像面とを一致させることができるようになっている。 Then, one type is novolak resin coated wafers W of the photosensitive resin on the Z stage 8 is held vacuum suction, by moving the Z stage 8 in the Z axis direction, the surface and the projection optical system of the wafer W and it is capable to match the first image plane. なお、投影光学系1において最もウエハステージ7側に位置する光学部材として本実施形態では投影レンズ9が設けられ、投影露光時には同レンズ9のウエハステージ7側表面がウエハWの表面と近接するようになっている。 Incidentally, most as in the present embodiment is an optical member positioned on the wafer stage 7 side projection lens 9 is provided in the projection optical system 1, at the time of projection exposure so that the wafer stage 7 side surface of the lens 9 is close to the surface of the wafer W It has become.

【0022】次に、本実施形態における光洗浄装置について説明する。 Next, a description of an optical cleaning device in this embodiment. 図1,図2に示すように、前記ウエハステージ7上においてZステージ8の近傍には、筐体10 As shown in FIGS. 1 and 2, in the vicinity of the Z stage 8 on the wafer stage 7 includes a housing 10
がその上部を僅かに露出するようにして埋設固定されている。 There has been embedded and fixed so as to slightly expose the top. 筐体10の上部には合成石英等からなる紫外光を効率よく透過可能な窓材11が着脱交換可能に嵌合され、筐体10内にはミラー12が斜状に配置されている。 The upper portion of the casing 10 of the ultraviolet light made of synthetic quartz efficiently permeable window material 11 is fitted detachably exchanged, the mirror 12 is arranged to slant in the housing 10. また、前記筐体10の側壁にはビームエキスパンダー光学系13が設けられ、同光学系13の近傍にはウエハステージ7の外部から導入された光ファイバ14の射出端が配置されている。 Further, the side wall of the housing 10 is provided with a beam expander optical system 13, the exit end of the optical fiber 14 introduced from the outside of the wafer stage 7 in the vicinity of the optical system 13 is disposed. そして、ウエハステージ7の外部において前記光ファイバ14の射入端には集光レンズ15が設けられ、同レンズ15に対し前記露光用光源2 Then, the morphism Nyutan of the optical fiber 14 outside the wafer stage 7 is provided a condenser lens 15, a light source for the exposure to the lens 15 2
とは別のArFエキシマレーザからなる照射用光源16 Irradiation light source 16 composed of a different ArF excimer laser and
から紫外光が照射されるようになっている。 Ultraviolet light are irradiated from. 即ち、本実施形態では、前記ミラー12と光ファイバ14及び照射用光源16等により光洗浄装置17が構成されている。 That is, in this embodiment, the optical cleaning device 17 is constituted by the mirror 12 and the optical fiber 14 and the like irradiating light source 16.

【0023】次に、本実施形態における投影光学系検査装置について説明する。 Next, a description will be given projection optical system inspection apparatus in this embodiment. 図1,図2に示すように、前記ウエハステージ7上における筐体10の露出部位近傍には発光部18が設けられている。 As shown in FIGS. 1 and 2, the exposed portion near the casing 10 on the wafer stage 7 emitting portion 18 is provided. この発光部18は前記投影レンズ9の表面に対し斜め下方から所定の照射光を照射するものであり、同レンズ9表面と発光部18とを結ぶ光路上には分岐ミラー19が配置されている。 The light emitting portion 18 is intended to irradiate the predetermined irradiation light obliquely from below to the surface of the projection lens 9, on the optical path connecting the light emitting portion 18 and the lens 9 surface are arranged branching mirror 19 . また、前記ウエハステージ7上には前記発光部18からの照射に基づく前記レンズ9表面からの反射光を受光するための第1の受光部20が配置されるとともに、前記ウエハステージ7の上方位置には前記発光部18からの照射に基づく分岐ミラー19からの分岐光を受光するための第2の受光部21が配置されている。 The first with the light receiving portion 20 is disposed, the upper position of the wafer stage 7 for receiving the reflected light from the lens 9 surface based on radiation from the wafer stage 7 the light emitting portion 18 on the second light receiving portion 21 for receiving the branched light from the branching mirror 19 based on the radiation from the light emitting portion 18 is disposed on. そして、前記第1及び第2の受光部20,21の出力は光電信号として測定手段を構成する測定制御系22へ供給されるようになっている。 The output of the first and second light receiving portions 20 and 21 are supplied to the measurement control system 22 constituting the measuring unit as a photoelectric signal.

【0024】図2に示すように、前記測定制御系22には演算部23と記憶部24とが設けられている。 As shown in FIG. 2, the in the measurement control system 22 has an operation unit 23 and the storage unit 24 is provided. 演算部23は、前記両受光部20,21から出力された光電信号に基づき前記投影レンズ9表面の光反射率を実反射率として演算し、演算した実反射率と記憶部24が記憶している所定反射率との対比結果に基づき前記投影レンズ9表面の汚染度を測定するように構成されている。 Calculation unit 23, the calculating the reflectivity of the projection lens 9 surface based on the photoelectric signals output from the two light receiving portions 20 and 21 as the actual reflectance, storage unit 24 and the actual reflectance computed is stored It is configured to measure the degree of contamination of the projection lens 9 surface based on the comparison result between a predetermined reflectivity are. また、記憶部24は、前記投影レンズ9の表面が光学特性に影響を与えるほど汚染されていないと想定される本装置完成時に測定された投影レンズ9表面の光反射率を前記所定反射率として予め記憶している。 The storage unit 24, the light reflectance of the projection lens 9 surface whose surface is measured in this system when completed is assumed not contaminated enough to affect the optical properties of the projection lens 9 as the predetermined reflection factor stored in advance. そして、本実施形態では、前記発光部18と第1及び第2の受光部2 In the present embodiment, the light emitting portion 18 and the first and second light receiving portions 2
0,21並びに測定制御系22により投影光学系検査装置25が構成されている。 A projection optical system inspection apparatus 25 is constituted by 0,21 and the measurement control system 22. なお、投影光学系検査装置2 The projection optical system inspection apparatus 2
5による前記表面汚染度の測定結果は表示手段26により表示され、その表示内容から前記投影光学系1における投影レンズ9表面の汚染度を客観的に把握できるようになっている。 The surface contamination of the measurement result by 5 is displayed by the display unit 26, so that the objectively grasp the degree of contamination of the projection lens 9 surface in the projection optical system 1 from the display.

【0025】次に、以上のように構成された本実施形態における投影露光装置の作用について説明する。 Next, a description will be given of the operation of the projection exposure apparatus in the present embodiment configured as described above. まず、 First of all,
図示しない主制御系の駆動制御によりウエハステージ7 Wafer stage 7 by the drive control of the unillustrated main control system
が図1の汚染度測定位置へ移動させられる。 There is moved to contamination measurement position of FIG. すると、投影光学系1において最下端に位置する前記投影レンズ9 Then, the projection lens is positioned at the lowermost end in the projection optical system 1 9
の直下に筐体10上部の窓材20が対向して位置する。 Housing 10 upper portion of the window member 20 is located opposite the right under the.
そして、この状態において、主制御系は前記発光部18 In this state, the main control system is the light emitting portion 18
による照射光の照射タイミングを一定間隔で制御する。 Controlling the irradiation timing of the irradiation light by at regular intervals.
そして、この主制御系の発光制御に基づき前記発光部1 Then, the light-emitting portion 1 based on the light emission control of the main control system
8から所定の照射光が照射されると、その照射光のうち分岐ミラー19を透過した照射光は前記投影レンズ9の表面に至り同表面で反射され、その反射光は第1の受光部20により受光される。 When 8 from a predetermined irradiation light is irradiated, the irradiation light transmitted through the splitting mirror 19 of the illumination light is reflected by the surface to reach the surface of the projection lens 9, the reflected light first light receiving portion 20 It is received by the. 一方、前記分岐ミラー19により分岐された照射光(分岐光)は前記投影レンズ9の表面に至ることなく第2の受光部21により受光される。 On the other hand, illumination light (branched light) split by the splitting mirror 19 is received by the second light receiving section 21 without reaching the surface of the projection lens 9. そして、両受光部20,21により光電変換された光電信号がそれぞれ測定制御系22に入力される。 The photoelectric signal photoelectrically converted by both light receiving portions 20 and 21 are input to the measurement control system 22, respectively.

【0026】すると、測定制御系22の演算部23では、第1の受光部20からの光電信号と第2の受光部2 [0026] Then, the arithmetic unit 23 of the measurement control system 22, the photoelectric signal and the second light receiving portion of the first light receiving portion 20 2
1からの光電信号とに基づき、前記投影レンズ9表面の反射率を演算する。 Based on the photoelectric signals from the 1 calculates the reflectivity of the projection lens 9 surface. 即ち、一般に、2つの媒質の境界面に対してある入射角で光が入射するとき、その反射率R That is, in general, when light is incident at an incident angle with respect to the boundary surface of two media, the reflectance R
は、入射光束のエネルギーの強さをI 0とし、反射光束のエネルギーの強さをI rとしたとき、R=I r /I 0 , When the intensity of the energy of the incident light beam and I 0, the intensity of the energy of the reflected light beam was I r, R = I r / I 0
で表される。 In represented. 従って、前記演算部23では、第1の受光部20からの光電信号に基づくエネルギーの強さをI r Therefore, the the arithmetic unit 23, the intensity of energy based on the photoelectric signals from the first light receiving portion 20 I r
とし、第2の受光部21からの光電信号に基づくエネルギーの強さをI 0として、前記投影レンズ9表面の実反射率R rを求める。 And then, the intensity of energy based on the photoelectric signals from the second light receiving section 21 as I 0, determining an actual reflectance R r of the projection lens 9 surface.

【0027】次に、前記測定制御系22では、演算部2 Next, the above measurement control system 22, operation unit 2
3が記憶部24から所定反射率R 0を読出し、この所定反射率R 0と前記実反射率R rとの差ΔR(=R 0 −R 3 reads the predetermined reflectance R 0 from the storage unit 24, the difference between the predetermined reflectance R 0 wherein the actual reflectance R r ΔR (= R 0 -R
r )を演算する。 r) to calculate the. そして、求められた両反射率R 0 ,R Then, both the reflectance obtained R 0, R
rの差ΔRに基づく表示信号を表示手段26に出力する。 and it outputs a display signal based on the difference ΔR of r on the display unit 26. すると、表示手段26は当該表示信号に基づき前記投影レンズ9表面の汚染度を数値表示する。 Then, the display unit 26 numerically displays the degree of contamination of the projection lens 9 surface based on the display signal.

【0028】一方、前記両反射率R 0 ,R rの差ΔRに基づく表示信号は、主制御系にも出力され、主制御系では当該表示信号に基づく汚染度の数値が予め設定された許容範囲内にあるか否かを判別する。 On the other hand, the display signal based on the difference ΔR of both reflectance R 0, R r is also output to the main control system, the numerical value of the degree of contamination based on the display signal is set in advance in the main control system acceptable determines whether or not the within range. そして、その数値が許容範囲外であると判別した場合には、前記照射用光源16を発光させる。 Then, if the numerical value is determined to be outside the allowable range, thereby emitting the illumination light source 16. すると、同光源16からの照射光が前記集光レンズ15,光ファイバ14及びビームエキスパンダー光学系13を介して筐体10内に導光される。 Then, the irradiation light from the light source 16 is guided in the housing 10 through the condenser lens 15, optical fiber 14 and the beam expander optical system 13. そして、筐体10内へ導光された前記照射光はミラー12により方向を変更され、窓材11を透過して投影レンズ9の表面全体を照射する。 Then, the irradiation light guided into the housing 10 is altered in direction by the mirror 12, passes through the window material 11 to illuminate the entire surface of the projection lens 9.

【0029】すると、この照射に基づき前記投影レンズ9の表面近傍では、空気中の酸素が前記照射光(紫外光)を吸収して励起状態となり、酸化力を増したオゾンに化学変化する。 [0029] Then, in the vicinity of the surface of the projection lens 9 on the basis of the irradiation, the oxygen in the air absorbs the irradiation light (UV light) becomes excited and chemical changes in ozone increased oxidizing power. 即ち、この酸素による照射光(紫外光)の吸収はシューマン・ルンゲ吸収として知られ、その場合には、酸素による吸収の大きい200nm以下の波長の光を発するものが照射用光源として使用される。 That is, the absorption of the irradiation light (UV light) by the oxygen is known as Schumann Runge absorption, in which case, it emits light of high 200nm or less of the wavelength of the absorption by oxygen is used as the irradiation light source.
本実施形態においては、この照射用光源16として波長193nmの紫外光を発するArFエキシマレーザを使用しているため、上記したシューマン・ルンゲ吸収が起こる。 In the present embodiment, this due to the use of ArF excimer laser which emits ultraviolet light having a wavelength of 193nm as an irradiation light source 16, Schumann Runge absorption described above occurs. 従って、前記ウエハW上に塗布された感光性樹脂(ノボラックレジン)からの揮発物質が付着して汚染されている投影レンズ9の表面は、シューマン・ルンゲ吸収に基づく酸化力の強化された雰囲気下で、その付着物が前記照射光により酸化分解される。 Thus, the surface of the wafer W photosensitive coated on the resin (novolak resin) projection volatiles are contaminated by deposition from the lens 9, enhanced under an atmosphere of oxidizing power based on Schumann Runge absorption in its deposits it is oxidized and decomposed by the irradiation light. 本実施形態では、 In this embodiment,
このようにして、投影光学系1における投影レンズ9の表面が光洗浄される。 In this way, the surface of the projection lens 9 in the projection optical system 1 is optically cleaned.

【0030】そして、前述したように、一定間隔をおいて主制御系により前記発光部18が繰り返し発光制御されると、前記測定制御系22は、前記と同様の手順で所定反射率R 0と実反射率R rとの差ΔRを、その都度新たに演算し、その演算結果に基づく新たな表示信号を表示手段26に出力する。 [0030] Then, as described above, when the light emitting portion 18 is repeatedly emission control by the main control system at regular intervals, the measurement control system 22, a predetermined reflectance R 0 using the same procedure described the difference ΔR between the actual reflectance R r, each time new operation, and outputs a new display signal based on the calculation result on the display unit 26. すると、表示手段26は当該新たな表示信号に基づき前記投影レンズ9表面の汚染度を数値表示する。 Then, the display unit 26 numerically displays the degree of contamination of the projection lens 9 surface based on the new display signals.

【0031】また、主制御系では当該新たな表示信号に基づく汚染度の数値が予め設定された許容範囲内にあるか否かを判別する。 Further, the main control system determines whether it is within the allowable range value of the degree of contamination based on the new display signal is set in advance. そして、その数値が依然として許容範囲外であると判別した場合には、繰り返し、前記照射用光源16を発光させる。 When it is determined that the number is still out of tolerance is repeated, thereby emitting the illumination light source 16. 従って、前記投影レンズ9の表面は、前記と同様に、照射用光源16からの照射光の照射に基づき光洗浄される。 Thus, the surface of the projection lens 9, similar to the above, washed light based on the irradiation of the irradiation light from the irradiation light source 16. そして、このような主制御系による発光部18の発光制御が繰り返された後、主制御系により前記表示信号に基づく汚染度の数値が予め設定された許容範囲内にあると判別されると、前記照射用光源16からの照射光に基づく投影レンズ9表面の光洗浄作業が終了する。 After the light emission control of the light emission unit 18 according to this main control system is repeated, the value of the degree of contamination based on the display signal by the main control system is determined to be within a preset allowable range, light cleaning operation of the projection lens 9 surface on the basis of the irradiating light from the irradiation light source 16 is ended.

【0032】さて、本実施形態では、上記のように投影露光装置を構成したことにより、次のような効果を得ることができる。 [0032] Now, in the present embodiment, by constructing the projection exposure apparatus as described above, it is possible to obtain the following effects. (1)本実施形態では、投影光学系1における投影レンズ9の表面汚染度を測定するための投影光学系検査装置25を備え、同装置25により前記表面汚染度が測定される。 (1) In the present embodiment includes a projection optical system inspection device 25 for measuring the surface contamination of the projection lens 9 in the projection optical system 1, the surface contamination of the same device 25 is measured. 即ち、この投影光学系検査装置25の測定制御系22から出力される測定結果に基づき前記投影レンズ9 That is, the projection lens on the basis of the measurement result output from the measurement control system 22 of the projection optical system inspection apparatus 25 9
表面の汚染度を把握し、洗浄作業の必要性有無が判断される構成となっている。 To grasp the degree of contamination of the surface, we need the presence of the cleaning operation are configured to be determined.

【0033】従って、洗浄作業の必要性があるにも拘わらず、投影レンズ9の表面汚染状態が見過ごされ、洗浄作業の実施タイミングが徒過されるような事態を防止でき、前記表面汚染状態の放置に起因する露光不良の発生を確実に防止できる。 [0033] Thus, despite the need for a cleaning operation, overlooked surface contamination state of the projection lens 9, a situation such as the timing of performing the cleaning operation is bulk doers prevents, the surface contamination state the occurrence of an exposure defect due to standing can be reliably prevented.

【0034】また、前記測定制御系22から出力される測定結果に基づけば、メンテナンス上において不必要な洗浄作業が行われるおそれもない。 Further, based on the measurement result output from the measurement control system 22, our it nor performed unnecessary cleaning operations on maintenance. 従って、例えば、光洗浄装置17によらない手作業での拭き取り洗浄等を実施する場合においても、装置ケース内が一時的に開放されることにより前記投影光学系1が外気に触れる機会を必要最小限にでき、露光条件が悪化するおそれを少なくできる。 Thus, for example, in the case of performing the wiping cleaning or the like by hand that does not depend on the optical cleaning device 17 also requires minimum the chance of the projection optical system 1 is exposed to the outside air by the apparatus case is temporarily opened can to limit, exposure conditions can reduce the risk of deterioration. (2)また、本実施形態では、前記投影レンズ9の表面が光学特性に影響を与えるほど汚染されていないと想定される本装置完成時に測定された同レンズ9表面の光反射率を所定反射率R 0とし、この所定反射率R 0と実際に測定した実反射率R rとの差ΔRに基づく汚染度の数値が一定の許容範囲外の場合にのみ洗浄作業が実施される構成となっている。 (2) Further, in the present embodiment, predetermined reflecting light reflectance measured the lens 9 surface during the device completed the surface of the projection lens 9 is assumed to not contaminated enough to affect the optical characteristics a rate R 0, a configuration in which numerical degree of contamination based on the difference ΔR between the actual reflectance R r that actually measured with the predetermined reflectance R 0 is cleaning work only if outside a predetermined tolerance range is carried out ing.

【0035】従って、前記洗浄作業の必要性有無を判断する際の基準が明確かつ客観的であることから、測定された汚染度の数値に対する信頼性を向上することができる。 [0035] Thus, since the criterion for determining the need whether the cleaning work is clear and objective, it is possible to improve the reliability of the value of the measured degree of contamination. また、洗浄作業の実施タイミングがばらついたりするおそれを回避できるので、投影レンズ9表面の洗浄作業を必要時にのみ効果的に実施することができる。 Since it avoids the risk that execution timing of the cleaning operation or varies, it can be effectively implemented only when necessary scrubbing the projection lens 9 surface. さらに、投影レンズ9表面の光反射率に基づき汚染度を測定しているため、投影光学系1の光学特性に変化を与えるおそれのある汚染状態の有無を容易に把握することができる。 Furthermore, since the measured degree of contamination based on the light reflectance of the projection lens 9 surface, the presence or absence of contamination conditions that may give a change in optical characteristic of the projection optical system 1 can easily grasp. (3)また、本実施形態では、照射用光源16に波長1 (3) Further, in the present embodiment, the wavelength 1 to the irradiation light source 16
93nmの紫外光を発するArFエキシマレーザを使用し、同光源16からの照射光によりシューマン・ルンゲ吸収作用を利用した光洗浄によって投影レンズ9の表面汚染状態を除去する構成としている。 Using an ArF excimer laser emitting ultraviolet light of 93 nm, it has a configuration to remove surface contamination state of the projection lens 9 by the light washed using Schumann Runge absorption by light emitted from the light source 16. そのため、シューマン・ルンゲ吸収により酸化力の強化された雰囲気下で表面汚染状態を形成している付着物を酸化分解でき、効率良く洗浄作業を実施できるとともに、手作業での拭き取り洗浄の場合とは異なり、洗浄作業をしたことによって却って投影光学系1の光学特性を悪化させてしまうようなおそれもない。 Therefore, Schumann by Runge absorption can oxidative decomposition deposits which form a surface contaminated atmosphere reinforced oxidizing power, it is possible to implement efficient washing operation, in the case of the wiping cleaning by hand different, there is no risk that would rather worsen the optical properties of the projection optical system 1 by the cleaning work. (4)また、本実施形態では、主制御系により一定間隔タイミングで投影光学系検査装置25の発光部18が繰り返し発光制御され、光洗浄装置17による投影レンズ9の表面洗浄中に、何度も繰り返して投影レンズ9の表面汚染度が測定される構成となっている。 (4) Further, in the present embodiment, the main by the control system light emitting unit 18 of the projection optical system inspection apparatus 25 at regular intervals timing is repeatedly emission control, in the surface cleaning of the projection lens 9 by the optical cleaning device 17, again It has a structure in which the surface contamination of the projection lens 9 is also measured repeatedly. 従って、投影レンズ9表面の表面汚染状態が未だ不完全除去のまま光洗浄装置17による洗浄作業が終了されるようなことはなく、洗浄作業を実施した場合には、前記投影レンズ9 Therefore, when the cleaning operation by the projection lens 9 surface of the surface contamination state is still incomplete removal of remains light cleaning device 17 is not possible as terminated, carrying out the washing operation, the projection lens 9
表面の汚染状態を確実に除去することができる。 Contamination state of the surface can be surely removed. (5)また、本実施形態では、前記投影光学系検査装置25による汚染度測定結果が表示手段26により表示されるようになっている。 (5) Further, in the present embodiment, the contamination measurement result by the projection optical system inspection apparatus 25 is adapted to be displayed by the display means 26. そのため、洗浄作業を担当する作業者も投影レンズ9の表面汚染度を、その都度、的確に把握することができる。 Therefore, the operator also surface contamination of the projection lens 9 in charge of the cleaning operation, each time, it is possible to accurately grasp. 従って、主制御系により照射用光源16の発光制御が行われる構成でなく、作業者の手作業等により洗浄作業が実施される構成の場合にも、 Therefore, instead of constituting the emission control of the illumination light source 16 is performed by the main control system, also in the case of a configuration in which the cleaning operation is carried out manually or the like of the operator,
表示手段26の表示内容に従って的確に洗浄作業を実施することができる。 Can be carried out accurately cleaning operation according to the display contents of the display means 26. (6)また、本実施形態では、光洗浄装置17における筐体10の上部に嵌合された窓材11が筐体10に対して着脱交換可能であるため、当該窓材11が傷付いたり等した場合には簡単に新しい窓材に交換でき、光洗浄作用を良好に維持できる。 (6) Further, in the present embodiment, since the window material 11 is fitted to the upper part of the housing 10 in the optical cleaning device 17 is detachable replacement to the housing 10, or with the window material 11 is wound It can be replaced easily new window material when equal, can be preferably maintained light cleaning action.

【0036】次に、本発明の第二実施形態を図3に基づき説明する。 Next, an explanation based on the second embodiment of the present invention in FIG. なお、この第二実施形態は、前記第一実施形態において光洗浄装置17にガス供給手段27を付加したものであり、その他の点では第一実施形態と同一の構成になっている。 In this second embodiment, the is obtained by adding a gas supply means 27 to the optical cleaning device 17 in the first embodiment, but otherwise has the same structure as the first embodiment. 即ち、図3には、発光部18等からなる投影光学系検査装置25が図示されていないが、本実施形態においても投影光学系検査装置25は設けられている。 That is, in FIG. 3, but the projection optical system inspection apparatus 25 comprising a light emitting unit 18 and the like are not shown, also in this embodiment the projection optical system inspection apparatus 25 is provided. 従って、以下では前記ガス供給手段27についてのみ説明することとし、第一実施形態と共通する構成部分については図面上に同一符号を付すことにして重複した説明を省略する。 Accordingly, and to only describes the gas supply means 27 in the following, the configuration parts common to the first embodiment will be omitted duplicate in the giving the same reference numerals on the drawings.

【0037】さて、図3に示すように、本実施形態では、投影光学系1における投影レンズ9の近傍にガス供給手段27が設けられている。 [0037] Now, as shown in FIG. 3, in this embodiment, the gas supply means 27 is provided in the vicinity of the projection lens 9 in the projection optical system 1. このガス供給手段27 The gas supply means 27
は、図示しないオゾンガス発生装置から延設されたガス供給パイプ28と、同パイプ28に連結されて前記投影レンズ9を包囲するように配置されたガス吹出口29とからなり、主制御系によりオゾンガスのガス供給が制御されるようになっている。 It includes a gas supply pipe 28 extending from the ozone gas generator (not shown), consists disposed gas outlet 29. so as to surround the projection lens 9 is connected to the pipe 28, ozone gas by the main control system gas supply are controlled.

【0038】即ち、主制御系は、光洗浄装置17による投影レンズ9表面の光洗浄に際し、照射用光源16を発光制御するとともに前記ガス供給手段27によるガス供給を開始させる。 [0038] That is, the main control system, upon the optical cleaning of the projection lens 9 surface by the optical cleaning device 17 to start the gas supply by the gas supply means 27 as well as emission control illumination light source 16. すると、前記ガス吹出口29からオゾンガスが投影レンズ9の表面に向けて吹き出し、同レンズ9表面近傍の雰囲気がオゾンガスで満たされる。 Then, ozone gas from the gas outlet 29 is balloon toward the surface of the projection lens 9, the atmosphere of the lens 9 near the surface are filled with ozone gas. そして、その状態において、照射用光源16から照射光が投影レンズ9の表面に向けて照射されると、シューマン・ Then, in this state, when the irradiation light from the irradiation light source 16 is radiated toward the surface of the projection lens 9, Schuman
ルンゲ吸収に基づく酸化力の強化された雰囲気下で、投影レンズ9表面に付着した有機物等が前記照射用光源1 Under enhanced atmosphere of oxidizing power based on Runge absorption, projection lens 9 organic substances adhering to the surface of the irradiation light source 1
6からの照射光により酸化分解される。 It is oxidized and decomposed by the irradiation light from 6.

【0039】従って、本実施形態では、ガス供給手段2 [0039] Thus, in this embodiment, the gas supply means 2
7から供給されるオゾンガスにより投影レンズ9の表面近傍を酸化力の増したオゾンガス雰囲気にできるので、 Since the vicinity of the surface of the projection lens 9 by the ozone gas supplied from the 7 possible ozone gas atmosphere of increased oxidative,
前記光洗浄装置17による光洗浄作用を促進することができる。 It can be promoted optical cleaning effect by the optical cleaning device 17. なお、オゾンガスの発生方法には放電方式、紫外線方式など各種の方式があるが、いずれの方式でも本実施形態には適用可能である。 The discharge system is the method of generating ozone gas, there are various methods such as ultraviolet method, the present embodiment in any manner can be applied. また、ガス供給手段27 The gas supply means 27
により供給されるガスは投影レンズ9の表面に付着した有機物等の酸化分解促進に好適な酸化性ガスであればよく、特に、オゾンガスに限定されるものではない。 Gas supplied by may be any suitable oxidizing gas to the oxidation decomposition accelerator such as organic substances adhering to the surface of the projection lens 9, in particular, but not limited to ozone gas.

【0040】次に、本発明の第三実施形態を図4に基づき説明する。 Next, description will be given on the basis of the third embodiment of the present invention in FIG. この第三実施形態は、前記第一実施形態において光洗浄装置17にガス供給手段27及びガス回収手段30を付加したものであり、その他の点では第一実施形態と同一の構成になっている。 This third embodiment is the is obtained by adding a gas supply means 27 and the gas recovery unit 30 in the optical cleaning device 17 in the first embodiment, but otherwise has the same structure as the first embodiment . 従って、以下ではガス供給手段27及びガス回収手段30についてのみ説明し、その他の共通構成部分については重複した説明を省略する。 Therefore, in the following omitted describes only the gas supply means 27 and the gas recovery unit 30, which overlap the other common components.

【0041】さて、図4に示すように、本実施形態におけるガス供給手段27においては、図示しないオゾンガス発生装置から延設されたガス供給パイプ28がウエハステージ7内に埋設されている。 [0041] Now, as shown in FIG. 4, the gas supply means 27 in this embodiment, the gas supply pipe 28 extending from the ozone gas generator (not shown) is embedded in the wafer stage 7. そして、このガス供給パイプ28に連結されたガス吹出口29が前記筐体10 Then, the gas outlet 29 which is connected to the gas supply pipe 28 is the housing 10
の近傍においてウエハステージ7上に配置され、前記投影レンズ9の表面に向けてオゾンガスを吹き出すようになっている。 It is placed on the wafer stage 7 in the vicinity of, so that the blown ozone gas toward the surface of the projection lens 9. また、ウエハステージ7上において前記ガス吹出口29とは筐体10を挟んで反対側となる位置には、図示しないガス回収パイプと共にガス回収手段30 At a position on the opposite side across the housing 10 and the gas outlet 29 on the wafer stage 7, the gas recovery means with the gas collecting pipe (not shown) 30
を構成するガス吸入口31が配置されている。 Gas inlet 31 is located which constitutes the.

【0042】従って、本実施形態においては、前記ガス吹出口29からオゾンガスが吹き出すと、そのオゾンガスは層流となって投影レンズ9の表面全体に接触した後、前記ガス吸込口31から吸入され、その後、ガス回収パイプを介して回収される。 [0042] Thus, in the present embodiment, the ozone gas blown from the gas outlet 29, the ozone gas after contacting the whole surface of the projection lens 9 becomes a laminar flow is sucked from the gas inlet 31, subsequently recovered via the gas collection pipe. そして、前記投影レンズ9の表面近傍へオゾンガスが供給されている雰囲気下において照射用光源16からの照射光に基づく光洗浄作業が行われる。 Then, the light cleaning operation on the basis of the irradiating light from the irradiation light source 16 in an atmosphere ozone gas to near the surface of the projection lens 9 is supplied is performed. そのため、本実施形態では、前記第二実施形態の場合と同様のオゾンガス雰囲気下における光洗浄促進効果に加えて、オゾンガスが層流となって投影レンズ9の表面全体に接触するので、同レンズ9表面のあらゆる箇所に付着した有機物等を万遍なく酸化分解できる。 Therefore, in the present embodiment, in addition to the optical cleaning promoting effect under the same ozone gas atmosphere in the case of the second embodiment, since ozone gas contacts the entire surface of the projection lens 9 becomes a laminar flow, the lens 9 the organic substances adhered to any part of the surface evenly can oxidative decomposition without. また、ガス供給パイプ28がウエハステージ7内に埋設されているため、ステージ移動時等において前記パイプ28が他の部材に干渉したりするおそれも無くすことができる。 Further, since the gas supply pipe 28 is embedded in the wafer stage 7, it is possible to eliminate a possibility that the pipe 28 at the time of stage movement or the like or interfere with other members.

【0043】次に、本発明の第四実施形態を図5に基づき説明する。 Next, a description based on a fourth embodiment of the present invention in FIG. この第四実施形態は、前記第一実施形態において光洗浄装置17にガス供給手段27とガス回収手段30及び遮蔽手段32を付加したものであり、その他の点では第一実施形態と同一の構成になっている。 The fourth embodiment, which has the optical cleaning device 17 adds the gas supply means 27 and gas recovery unit 30 and the shielding means 32 in the first embodiment, the same configuration as the first embodiment in other respects It has become. 従って、以下では前記ガス供給手段27とガス回収手段30 Therefore, the gas supply means in the following 27 and gas recovery unit 30
及び遮蔽手段32についてのみ説明する。 And only described shielding means 32.

【0044】さて、図5に示すように、本実施形態では、光洗浄装置17による投影レンズ9の光洗浄に際して、同レンズ9表面近傍の雰囲気を外部から遮蔽する遮蔽手段32が投影光学系1とウエハステージ7との間に配置される。 [0044] Now, as shown in FIG. 5, in the present embodiment, when the optical cleaning of the projection lens 9 by the optical cleaning device 17, the shielding means 32 for shielding the atmosphere of the lens 9 near the surface from outside the projection optical system 1 and it is disposed between the wafer stage 7. 即ち、前記遮蔽手段32は半割状をなす一対の隔壁33,34からなり、一方の隔壁33にはガス供給パイプ28が貫通され、他方の隔壁34にはガス回収パイプ35が貫通されている。 That is, the shielding means 32 comprises a pair of partition walls 33 and 34 form a halved, on one of the partition wall 33 is penetrated gas supply pipe 28, and the other partition wall 34 extends through the gas recovery pipe 35 . そして、一方の隔壁3 Then, one of the partition walls 3
3の内周面側に臨むガス供給パイプ28の先端開口がガス吹出口29とされ、他方の隔壁34の内周面側に臨むガス回収パイプ35の先端開口がガス吸入口31とされている。 End opening of the gas supply pipe 28 facing the inner peripheral surface side of the 3 is the gas outlet 29, the distal end opening of the gas recovery pipe 35 which faces the inner circumferential surface of the other partition wall 34 is a gas inlet 31 .

【0045】従って、本実施形態においては、前記隔壁33側のガス吹出口29からオゾンガスが吹き出されると、そのオゾンガスは両隔壁33,34により外部と遮蔽された内部空間36内に充満する。 [0045] Thus, in the present embodiment, the ozone gas is blown from the partition wall 33 side of the gas outlet 29, the ozone gas is filled in the internal space 36 which is shielded with the outside by both partition walls 33, 34. そして、その状態において照射用光源16からの照射光に基づき投影レンズ9の表面が光洗浄される。 Then, the surface of the projection lens 9 on the basis of the irradiation light from the irradiation light source 16 in this state is optically cleaned. また、光洗浄作業中は、前記ガス吹出口29からのオゾンガス吹き出しが適宜行われる一方、前記ガス吸入口31を介して内部空間36に充満したオゾンガス回収が適宜行われる。 Further, in the optical cleaning operation, balloon ozone gas from the gas outlet 29 while appropriately performed, ozone gas recovered filling the inner space 36 through the gas inlet port 31 is carried out appropriately. そのため、本実施形態では、前記第二、第三実施形態の場合と同様のオゾンガス雰囲気下における光洗浄促進効果に加えて、 Therefore, in this embodiment, in addition to the second, when the optical cleaning promoting effect under the same ozone gas atmosphere and in the third embodiment,
オゾンガス雰囲気を投影レンズ9の表面近傍へ確実に形成できるので、より一層、光洗浄効果を促進することができる。 Since the ozone gas atmosphere can be reliably formed to the vicinity of the surface of the projection lens 9, it is possible to further, facilitate optical cleaning effect.

【0046】次に、本発明の第五実施形態を図6に基づき説明する。 Next, description on the basis of a fifth embodiment of the present invention in FIG. 6. この第五実施形態も、前記第一実施形態において光洗浄装置17にガス供給手段27とガス回収手段30及び遮蔽手段32を付加したものであり、その他の点では第一実施形態と同一の構成になっている。 The fifth embodiment also, which has the optical cleaning device 17 adds the gas supply means 27 and gas recovery unit 30 and the shielding means 32 in the first embodiment, the same configuration as the first embodiment in other respects It has become. 従って、以下では前記ガス供給手段27とガス回収手段30 Therefore, the gas supply means in the following 27 and gas recovery unit 30
及び遮蔽手段32についてのみ説明する。 And only described shielding means 32.

【0047】さて、図6に示すように、本実施形態では、ウエハステージ7内にガス供給手段27のガス供給パイプ28及びガス回収手段30のガス回収パイプ35 [0047] Now, as shown in FIG. 6, in this embodiment, the gas collecting pipe 35 of the gas supply pipe 28 and the gas recovery means 30 of the gas supply means 27 into the wafer stage 7
が埋設されている。 There has been buried. そして、ガス供給パイプ28の先端開口がガス吹出口29として筐体10の近傍においてウエハステージ7上に露出し、このガス吹出口29とは筐体10を挟んで反対側となる位置にガス回収パイプ35 The distal opening of the gas supply pipe 28 is exposed on the wafer stage 7 in the vicinity of the housing 10 as a gas outlet 29, this is a gas outlet 29 gas recovery in a position on the opposite side across the housing 10 pipe 35
の先端開口がガス吸入口31として露出している。 Tip opening of is exposed as a gas inlet 31. また、投影光学系1とウエハステージ7との間には、前記ガス吹出口29及びガス吸入口31よりも外側に位置して投影レンズ9表面近傍の雰囲気を外部から遮蔽する遮蔽手段32が設けられている。 Between the projection optical system 1 and the wafer stage 7, the shielding means 32 for shielding the atmosphere of the projection lens 9 near the surface externally positioned outward from the gas outlet 29 and the gas inlet 31 is provided It is. なお、本実施形態においても、遮蔽手段32は半割状をなす一対の隔壁33,3 Also in this embodiment, the shielding means 32 is a pair of partition walls forming a halved 33,3
4により構成されている。 It is constituted by 4.

【0048】従って、本実施形態においても、前記第四実施形態の場合と同様の効果を発揮できるとともに、ガス供給パイプ28及びガス回収パイプ35がウエハステージ7内に埋設されているため、ステージ移動時等において前記各パイプ28,35が他の部材に干渉したりするおそれも無くすことができる。 [0048] Thus, also in this embodiment, it is possible to exhibit the same effects as the fourth embodiment, since the gas supply pipe 28 and the gas collection pipe 35 is embedded in the wafer stage 7, the stage moving possibility that the in time and the like each pipe 28, 35 is or interfere with other members can be eliminated.

【0049】なお、前記各実施形態は、以下のように変更して具体化してもよい。 [0049] Incidentally, the above embodiments may be embodied in the following forms. ・ 前記各実施形態では、光洗浄時における照射用光源16からの照射光の照射領域を投影レンズ9のウエハステージ7側表面全体としたが、これを投影露光時における露光光の照射領域のみとしてもよい。 · In each of the embodiments described above, although the irradiation area of ​​the irradiation light from the irradiation light source 16 in the optical cleaning was entire wafer stage 7 side surface of the projection lens 9, which was only irradiated region of the exposure light during the projection exposure it may be. この場合には、 In this case,
ウエハステージ7上に埋設される筐体10の大きさを小型化できるため、アライメント用マーク等が形成されるウエハステージ7上のスペースに裕度を持たせることができる。 Since the size of the housing 10 to be embedded on a wafer stage 7 can be downsized, it is possible to have a tolerance to the space on the wafer stage 7 the alignment mark or the like is formed.

【0050】・ 前記各実施形態では、投影光学系1の投影レンズ9直下に筐体10の窓材11が対応する位置でウエハステージ7を停止状態とし、その停止状態において前記投影レンズ9の表面を光洗浄する構成としたが、光洗浄装置17による光洗浄中に投影光学系1に対してウエハステージ7を相対移動させる構成としてもよい。 [0050] - In each of the embodiments described above, the wafer stage 7 and stopped at the position where the window member 11 corresponding housing 10 just below the projection lens 9 of the projection optical system 1, the surface of the projection lens 9 in its stopped state the it is configured to light washing, or the wafer stage 7 to the projection optical system 1 by the optical cleaning device 17 in the optical cleaning a structure for relatively moving. この場合には、前記光洗浄時における照射用光源1 In this case, the irradiation light source 1 when the optical cleaning
6からの照射光の照射領域を更に狭くすることができるので、より一層、ウエハステージ7上のスペースに裕度を持たせることができる。 Since the irradiation region of the irradiation light from 6 can be further narrowed, further, it is possible to have a tolerance to the space on the wafer stage 7.

【0051】・ 前記各実施形態では、主制御系の制御に基づき投影光学系検査装置25は光洗浄装置17による光洗浄作業中に一定間隔タイミングで繰り返し汚染度測定を行う構成としたが、投影光学系検査装置25による汚染度測定は洗浄作業実施前に一回だけ行われる構成としてもよい。 [0051] - In each of the embodiments described above, based on the control of the main control system projection optical system inspection apparatus 25 has been configured to perform repetitive contamination measurements at regular intervals timing during optical cleaning operation by the optical cleaning device 17, a projection pollution measurement by the optical system inspection apparatus 25 may be configured to be performed only once before washing operation implementation. この場合には、洗浄による汚染状態の除去具合の良否判断をできないことになるが、主制御系による投影光学系検査装置25の制御内容を簡略化することができる。 In this case, although would not be the quality determination of the removal degree of contamination state by washing, it is possible to simplify the control content of the projection optical system inspection apparatus 25 by the main control system.

【0052】・ 前記各実施形態では、光洗浄装置17 [0052] - In each of the embodiments described above, the optical cleaning device 17
の照射用光源16としてArFエキシマレーザを用いたが、シューマン・ルンゲ吸収を引き起こす波長200n The ArF excimer laser is used as the irradiation light source 16, a wavelength causing Schumann Runge absorption 200n
m以下の紫外光を発するものであれば、例えば波長17 As long as it emits in the ultraviolet light m, a wavelength 17
2nmの光を発するキセノン系ランプ、波長157nm Xenon-based lamp that emits light of 2nm, wavelength 157nm
の光を発するF2レーザ、軟X線等のEUVL等でもよい。 F2 laser that emits light, may be EUVL like and soft X-rays. 即ち、このようにすれば、装置設計の自由度が拡がる。 That, in this manner, spread freedom of device design.

【0053】・ 前記各実施形態では、光洗浄装置17 [0053] - In each of the embodiments described above, the optical cleaning device 17
の照射用光源16をウエハステージ7とは別の位置に設けたが、図7に示すように、照射用光源16をウエハステージ7上の筐体10内に設置してもよい。 The illumination light source 16 although the wafer stage 7 is provided in a different position, as shown in FIG. 7, may be provided an illumination light source 16 into the housing 10 on the wafer stage 7. この場合には、光ファイバ等の導光部材が不要となるため、その分、装置構成が簡略化でき、コスト低減を図ることができる。 In this case, since the light guide member such as an optical fiber is unnecessary, that amount can simplified apparatus configuration, the cost can be reduced.

【0054】・ 前記各実施形態では、実反射率R rと対比される所定反射率R 0として、本装置完成時に測定された投影レンズ9表面の光反射率を用いているが、装置組立前における投影レンズ9単体の規格上の光反射率を所定反射率R 0としてもよい。 [0054] - In each of the embodiments described above, as a predetermined reflectance R 0 to be compared with the actual reflectance R r, it is used the light reflectance of the measured projection lens 9 surface during the device complete, device prior to assembly it may be predetermined reflectivity R 0 of light reflectance on the projection lens 9 single standard in. 即ち、投影レンズ9の表面が、その光学特性に影響を与えるほど汚染されていないと想定される状態時での光反射率ならば、前記所定反射率R 0として使用可能である。 That is, the surface of the projection lens 9 is, if the light reflection factor in the time state that is assumed to have not been contaminated as affecting its optical properties, can be used as the predetermined reflection factor R 0.

【0055】・ 前記各実施形態では、光洗浄装置17 [0055] - In each of the embodiments described above, the optical cleaning device 17
の照射用光源16から照射される照射光を使用して投影光学系1の投影レンズ9表面を光洗浄しているが、作業者が前記レンズ9表面を払拭洗浄するなど手作業により洗浄作業を実施してもよい。 Although in the optical cleaning the projection lens 9 surface of the projection optical system 1 by using the irradiation light irradiated from the irradiation light source 16, a cleaning operation manually like worker cleaning wipe the lens 9 surface it may be carried out. また、前記第四、第五実施形態においては、遮蔽手段32を構成する隔壁33,3 Further, the fourth, the fifth embodiment, the partition walls constituting the shielding means 32 33,3
4を光洗浄作業を実施する度毎に作業者が組み付け設置する構成としてもよく、図示しない駆動手段の駆動により投影光学系1の鏡筒内又はウエハステージ7内から出没するように構成してもよい。 4 may be a worker placed assembled configuration each time the implement optical cleaning work, configured to rise from, within the lens barrel or the wafer stage 7 of the projection optical system 1 by the drive means (not shown) it may be.

【0056】・ 前記各実施形態では、露光用光源2とは別に光洗浄装置17の照射用光源16を設けているが、露光用光源2がシューマン・ルンゲ吸収を引き起こす波長200nm以下の紫外光を発するものであれば、 [0056] - In each of the embodiments described above, although the exposure light source 2 is provided separately from the irradiation light source 16 of the optical cleaning device 17, an exposure light source 2 is the following ultraviolet light wavelengths 200nm causing Schumann Runge absorption long as it emits,
これを光洗浄に使用する照射用光源として兼用してもよい。 This may also serve as the irradiation light source used for light cleaning. 即ち、露光用光源2からの照明光ILを光ファイバ等の導光部材によりウエハステージ7上の筐体10内まで導き、前記各実施形態の場合と同様に、ミラー12によって前記投影レンズ9の表面に向け照射するように構成すればよい。 That is, the light guide member such as an optical fiber illumination light IL from the exposure light source 2 on the wafer stage 7 of the lead to the housing 10, the similar to the case of the embodiments, the mirror 12 of the projection lens 9 it may be configured to irradiate toward the surface. この場合には、投影露光装置全体として具備する光源の数が節約できるので、その分、装置コストを低減することができる。 In this case, since the save the number of light sources comprising the entire projection exposure apparatus which makes it possible to reduce the apparatus cost.

【0057】また、前記露光用光源2を光洗浄の照射用光源として兼用する場合には、図8に示すように、ウエハステージ7上に反射鏡37を載置固定し、この反射鏡37を露光用光源2からの照射光により投影光学系1を介して照射するようにしてもよい。 [0057] Also, when combined with the exposure light source 2 as an irradiation light source for optical cleaning, as shown in FIG. 8, a reflecting mirror 37 is mounted and fixed on the wafer stage 7, the reflecting mirror 37 by light emitted from the exposure light source 2 may be irradiated via the projection optical system 1. 即ち、前記反射鏡3 That is, the reflecting mirror 3
7が投影光学系1における前記投影レンズ9直下に位置するようにウエハステージ7を移動させ、その状態において露光用光源2を発光させる。 7 moves the wafer stage 7 so as to be located to the right under the projection lens 9 in the projection optical system 1, thereby emitting the exposure light source 2 in this state. すると、前記投影レンズ9の表面は、投影光学系1内を透過した露光用光源2 Then, the surface of the projection lens 9, the projection optical system 1 exposure light source was transmitted through the 2
からの照明光ILと前記反射鏡37からの反射光との双方の光によって光洗浄されることになる。 It will be optically cleaned by both light and reflected light from the reflecting mirror 37 and the illumination light IL from.

【0058】従って、この場合には、直接的な照射光ばかりでなく間接的な反射光も利用するため、光洗浄の効率をより一層高めることができる。 [0058] Therefore, in this case, to use also indirect reflected light as well as direct illumination light, it is possible to increase the efficiency of the optical cleaning more. また、ウエハステージ7上には反射鏡37を載置固定するだけでよく、筐体10等の部材構成も不要とできるため、より一層、装置コストを低減することができる。 Further, on the wafer stage 7 need only mounting and fixing the reflecting mirror 37, since the members constituting such housing 10 may not needed, further, it is possible to reduce the apparatus cost.

【0059】なお、前記露光用光源2からの照明光IL [0059] The illumination light IL from the exposure light source 2
を光ファイバ等の導光部材を用いて前記発光部18まで導き、この照明光ILが投影レンズ9表面により反射された反射光に基づき光反射率を求めるようにしてもよい。 Guidance to the light emitting unit 18 using the light guide member such as an optical fiber, the illumination light IL may be obtained light reflectance based on the reflected light reflected by the projection lens 9 surface. このようにすれば、投影露光装置全体として具備する光源の数がより一層節約できるので、その分、装置コストを低減することができる。 Thus, the number of light sources comprising the entire projection exposure apparatus can be further saved, which makes it possible to reduce the apparatus cost.

【0060】・ 前記各実施形態では、投影光学系検査装置25の発光部18からの照射光を投影レンズ9の表面に向けて照射し、その反射光に基づいて得た実反射率R rから同レンズ9表面の汚染度を測定しているが、同レンズ9を透過する透過光に基づき汚染度を測定するようにしてもよい。 [0060] - In each of the embodiments described above, the light emitted from the light emitting portion 18 of the projection optical system inspection apparatus 25 and irradiated toward the surface of the projection lens 9, from the real reflectance R r obtained on the basis of the reflected light While measuring the degree of contamination of the lens 9 surface, it may be measured contamination degree on the basis of the transmitted light transmitted through the same lens 9. 即ち、この場合には、前記発光部18 That is, in this case, the light emitting portion 18
をその照射光が投影レンズ9を透過するように配置する一方、同レンズ9を透過した透過光を受光する位置に前記第1の受光部20を配置する。 The While irradiation light is arranged so as to transmit a projection lens 9, placing the first light receiving portion 20 positioned to receive the light transmitted through the same lens 9. また、前記発光部18 The light emitting portion 18
と投影レンズ9との間において、発光部18からの照射光の光路上には分岐ミラー19を配置し、このミラー1 In between the projection lens 9 and, on the optical path of the irradiation light from the light emitting portion 18 disposed splitting mirror 19, the mirror 1
9からの分岐光を受光する位置に前記第2の受光部21 Wherein a position for receiving the branched light from the 9 second light-receiving section 21
を配置する。 To place. そして、前記両受光部20,21から出力された光電信号に基づき前記投影レンズ9の光透過率を測定制御系22の演算部23により実透過率として演算し、この実透過率と予め記憶部24が記憶している所定透過率との対比結果から汚染度を測定する。 Then, the calculated light transmittance of the projection lens 9 on the basis of the photoelectric signal output from both the light receiving portions 20 and 21 as the actual transmission rate by calculating unit 23 of the measurement control system 22, pre-storing unit and the actual transmittance 24 measures the degree of contamination from the comparison result between a predetermined transmittance stored. このようにしても、前記各実施形態と同様の効果を得ることができる。 Also in this manner, it is possible to obtain the same effect as the embodiments.

【0061】・ 前記各実施形態では、マスクと基板とを静止した状態でマスクのパターンを露光し、基板を順次移動させるステップアンドリピート型の投影露光装置に具体化したが、投影露光装置としては、マスクと基板とを同期移動してマスクのパターンを露光する走査型の投影露光装置にも適用可能である。 [0061] - In each of the embodiments described above, and the mask pattern is exposed in a state of rest the mask and substrate, has been embodied in a projection exposure apparatus by a step-and-repeat type for moving the substrate sequentially, as a projection exposure apparatus is also applicable to a scanning type projection exposure apparatus by synchronously moving the mask and the substrate to expose a pattern of the mask. また、露光装置の種類としては、半導体製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに液晶表示素子パターンを露光する液晶用の露光装置や、薄膜磁気ヘッドを製造するための露光装置にも適用可能である。 As the type of the exposure apparatus is not limited to the exposure apparatus for manufacturing semiconductor, for example, exposure apparatus for liquid crystal which exposes a liquid crystal display device pattern onto a rectangular glass plate, to produce a thin film magnetic head it is also applicable to an exposure apparatus for. なお、 It should be noted that,
本発明における投影光学系検査装置及び投影露光装置は、既に各実施形態で説明した各構成要素から構成されており、これらの構成要素を、前述した各機能を達成するように、電気的、又は機械的、光学的に連結することで、組み上げられる。 A projection optical system inspection apparatus and the projection exposure apparatus in the present invention have already been constructed from the components described in the embodiments, these components, so as to achieve the functions described above, electrical, or mechanical, by optically coupling is assembled.

【0062】次に、前記各実施形態から把握できる請求項に記載した発明以外の技術的思想について、その効果と共に以下記載する。 Next, technical concepts other than the invention described in the claims can be understood from the respective embodiments, described below, along with their effects. (1)光学部材表面の近傍に酸化促進ガスを供給するガス供給手段を配置し、同ガス供給手段から供給された酸化促進ガスが満たされた雰囲気下において光洗浄効果を有する所定の照射光を前記光学部材表面に対して照射するようにした光洗浄装置。 (1) a gas supply means for supplying a pro-oxidant gas in the vicinity of the optical element surface is disposed, a predetermined irradiation light having an optical cleaning effect in an atmosphere oxidizing promoting gas supplied from the gas supply means is satisfied light cleaning apparatus so as to irradiate to the optical member surface. 即ち、この技術的思想(1) That is, the technical concept (1)
においては、酸化促進ガスの働きにより前記光学部材表面近傍を酸化力の増した雰囲気にできるので、光洗浄効果を促進することができる。 In, because it to an atmosphere of the optical member near the surface of increased oxidizing power by the action of oxidation-promoting gas, it can facilitate optical cleaning effect.

【0063】(2)前記技術的思想(1)において、前記照射光の光路を含んで前記光学部材表面近傍の雰囲気を外部から遮蔽する遮蔽手段を備えた光洗浄装置。 [0063] (2) In the technical idea (1), the optical cleaning device provided with a shielding means for shielding the atmosphere of the optical member near the surface from the outside includes an optical path of the irradiation light. 即ち、この技術的思想(2)においては、酸化促進ガスの働きにより酸化力の増した雰囲気を前記光学部材表面の近傍へ確実に形成できるので、より一層、光洗浄効果を促進することができる。 That is, in this technical idea (2), since the atmosphere of increased oxidizing power by the action of oxidation-promoting gas can be reliably formed to the vicinity of the optical member surface, it is possible to further, facilitate optical cleaning effect .

【0064】(3)請求項3に記載の投影光学系検査装置において、前記測定手段は、前記光学部材表面の汚染度が許容範囲内にあると想定した所定状態時における当該光学部材表面の反射率又は透過率を前記所定反射率又は所定透過率として予め設定するものである投影光学系検査装置。 [0064] (3) in the projection optical system inspection apparatus according to claim 3, wherein the measuring means is reflective of the optical member surface at a predetermined state pollution degree is assumed to be within the allowable range of the optical member surface wherein the rate or transmittance predetermined reflectance or intended to preset a projection optical system inspection apparatus as a predetermined transmittance. 即ち、この技術的思想(3)においては、請求項3に記載の発明の作用に加えて、汚染度が一定の許容範囲内にあって洗浄の必要性がない所定状態時の反射率又は透過率が前記所定反射率R O又は所定透過率とされ、そのような所定反射率R O又は所定透過率と実反射率R r又は実透過率が対比されて洗浄の必要性等が判断される。 That is, in this technical idea (3), wherein in addition to the operation of the invention described in claim 3, the contamination degree is a certain tolerance in the matching reflectance or transmittance at the predetermined condition is no need for washing rate is the predetermined reflectance R O or predetermined transmittance, necessity of cleaning is determined such predetermined reflectivity R O or predetermined transmittance and actual reflectance R r or the actual permeability is contrasted . 従って、前記請求項3の発明の効果に加えて、 Therefore, in addition to the effect of the invention of claim 3,
測定手段の測定結果に基づく判断内容にバラツキが生じるおそれを回避できるので、その測定結果に基づき洗浄作業が必要とされるときには的確に洗浄作業を実施することができる。 Since the risk of variation in the determination content is generated based on the measurement results of the measuring means can be avoided, it can be carried out accurately washing operation when it is required a cleaning operation based on the measurement result.

【0065】 [0065]

【発明の効果】請求項1の発明によれば、測定手段の測定結果に基づき、洗浄前にあっては、投影光学系の洗浄タイミングを把握できるとともに、洗浄後にあっては、 According to the invention of claim 1 according to the present invention, based on the measurement result of the measuring means, in the pre-cleaning, as well as it can grasp the cleaning timing of the projection optical system, or, after cleaning,
当該洗浄に基づく汚れ除去具合を把握して不完全洗浄を防止することができる。 It is possible to prevent incomplete washing grasping soil removal degree based on the wash.

【0066】請求項2の発明によれば、前記請求項1の発明の効果に加えて、光学部材表面の光反射率又は光透過率に基づき汚染度を測定しているので、その測定結果から投影光学系の光学特性に変化を与えるおそれのある汚染状態の有無を容易に把握することができる。 [0066] According to the second aspect of the invention, in addition to the effects of the claims 1 invention, since the measured degree of contamination based on light reflectance or light transmittance of the optical member surface, from the measurement result the presence or absence of contamination conditions that may give a change in optical characteristic of the projection optical system can be easily grasped.

【0067】請求項3の発明によれば、前記請求項2の発明の効果に加えて、汚染度測定に際しての判断基準が明確かつ客観的であるので、測定結果に対する信頼性を向上することができる。 [0067] According to the invention of claim 3, in addition to the effect of the invention of claim 2, since the criteria for when contamination measurement is clear and objective, is possible to improve the reliability of the measurement results it can.

【0068】請求項4の発明によれば、前記請求項3の発明の効果に加えて、例えば、光学部材表面の洗浄作業実施中に前記汚染度測定を繰り返し行うことにより、当該洗浄作業に基づく汚れ除去具合の進行変化を把握することができる。 [0068] According to the invention of claim 4, in addition to the effect of the invention of claim 3, for example, by repeating the pollution level measured during the cleaning operation performed in the optical member surface, based on the cleaning operation it is possible to grasp the progress change of soil removal condition.

【0069】請求項5の発明によれば、前記請求項1〜 [0069] According to the invention of claim 5, wherein the claim 1
請求項4のうちいずれか一項に記載の発明の効果に加えて、洗浄内容にバラツキが生じるおそれを回避できる。 In addition to the effect of the invention according to any one of claims 4, it can be avoided the risk of variation in the washing contents.
請求項6の発明によれば、前記請求項5の発明の効果に加えて、酸化促進ガスが満たされた雰囲気下で光学部材表面の光洗浄を実施できるので、光洗浄作用を促進することができる。 According to the invention of claim 6, in addition to the effect of the invention of claim 5, it is possible to implement the optical cleaning of the optical element surface in an atmosphere oxidizing promoting gas are met, to promote light cleaning action it can.

【0070】請求項7の発明によれば、前記請求項6の発明の効果に加えて、前記光学部材表面の近傍に酸化促進ガスの雰囲気を確実に形成できるので、より一層、光洗浄作用を促進することができる。 [0070] According to the invention of claim 7, in addition to the effect of the invention of claim 6, since the reliably form the atmosphere of oxidation-promoting gas to the vicinity of the optical element surface, further, the optical cleaning effect it can be promoted.

【0071】請求項8の発明によれば、前記請求項5〜 [0071] According to the invention of claim 8, claim 5
請求項7のうちいずれか一項の発明の効果に加えて、窓材により光洗浄装置を保護することができるとともに、 In addition to the effect of the invention of any one of claims 7, it is possible to protect the light cleaning device by the window material,
窓材が不良となった場合には簡単に当該窓材を交換できるので、光洗浄効果を良好に維持することができる。 Because if the window material becomes defective can be replaced easily the window material, it is possible to maintain good optical cleaning effect.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 本発明の第一実施形態に係る投影露光装置全体の概略図。 1 is a schematic diagram of the entire projection exposure apparatus according to a first embodiment of the present invention.

【図2】 第一実施形態の要部概略図。 [2] a main part schematic view of a first embodiment.

【図3】 第二実施形態の要部概略図。 [Figure 3] a main part schematic view of a second embodiment.

【図4】 第三実施形態の要部概略図。 [4] a main part schematic view of a third embodiment.

【図5】 第四実施形態の要部概略図。 [5] a main part schematic diagram of a fourth embodiment.

【図6】 第五実施形態の要部概略図。 6 schematic view of a main portion of a fifth embodiment.

【図7】 他の実施形態の要部概略図。 [7] a main part schematic diagram of other embodiments.

【図8】 同じく他の実施形態の要部概略図。 [8] Also schematic view of the essential portions of other embodiments.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…投影光学系 9…投影レンズ(光学部材 11 1 ... projection optical system 9 ... projection lens (optical member 11
…窓材 17…光洗浄装置 22…測定制御系(測定手段) 2 ... window material 17 ... optical cleaning device 22 ... measurement control system (measurement unit) 2
5…投影光学系検査装置 27…ガス供給手段 32…遮蔽手段 W…ウエハ(感光基板) 5 ... projection optical system inspection apparatus 27 ... Gas supply means 32 ... shielding means W ... wafer (photosensitive substrate)

Claims (8)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 投影露光装置における投影光学系の最も感光基板側の光学部材表面の汚染度を測定する測定手段を備えた投影光学系検査装置。 1. A most photosensitive substrate side projection optical system inspection apparatus having a measuring means for measuring the contamination level of the optical member surface of the projection optical system in the projection exposure apparatus.
  2. 【請求項2】 前記測定手段は、前記光学部材表面で反射する反射光の反射率又は前記光学部材表面を透過した透過光の透過率を測定し、その測定結果に基づき前記光学部材表面の汚染度を測定する請求項1に記載の投影光学系検査装置。 Wherein said measuring means, contamination of the transmittance of the transmitted light transmitted through the reflectivity or the optical member surface of the light reflected by the optical member surface was measured, the optical member surface on the basis of the measurement result a projection optical system inspection apparatus according to claim 1 for measuring the degree.
  3. 【請求項3】 前記測定手段は、予め設定した所定反射率又は所定透過率と実際に測定した実反射率又は実透過率との対比結果に基づいて前記光学部材表面の汚染度を測定するものである請求項2に記載の投影光学系検査装置。 Wherein said measuring means measures the degree of contamination of the optical member surface on the basis of a comparison result between preset predetermined reflectance or predetermined transmittance actually measured actual reflectance or actual transmittance a projection optical system inspection apparatus according to claim 2 is.
  4. 【請求項4】 前記測定手段は、所定タイミングで照射された照射光に基づいて、当該照射光が前記光学部材表面により反射された後又は当該光学部材表面を透過した後に受光された光電信号と、当該照射光が前記光学部材表面を介することなく受光された光電信号との対比結果から前記実反射率又は実透過率を測定するものである請求項3に記載の投影光学系検査装置。 Wherein said measuring means, based on the irradiation light irradiated at a predetermined timing, and a photoelectric signal received after the irradiation light is transmitted through or the optical member surface after being reflected by the optical member surface , the projection optical system inspection apparatus according to claim 3 in which the irradiation light is measured the actual reflectance or actual transmission from the comparison result between the received light electric signals without the intervention of the optical member surface.
  5. 【請求項5】 前記請求項1〜請求項4のうちいずれか一項に記載の投影光学系検査装置と、前記光学部材表面に対して光洗浄効果を有する所定の照射光を照射する光洗浄装置とを備えた投影露光装置。 Wherein said claim 1 and a projection optical system inspection apparatus according to any one of claims 4, optical cleaning for irradiating a predetermined irradiation light having an optical cleaning effect on the optical member surface projection exposure apparatus and a device.
  6. 【請求項6】 前記光洗浄装置は、前記光学部材表面の近傍に酸化促進ガスを供給するガス供給手段を備えている請求項5に記載の投影露光装置。 Wherein said light cleaning apparatus, a projection exposure apparatus according to claim 5, and a gas supply means for supplying a pro-oxidant gas in the vicinity of the optical member surface.
  7. 【請求項7】 前記光洗浄装置は、前記照射光の光路を含んで前記光学部材表面近傍の雰囲気を外部から遮蔽する遮蔽手段を備えている請求項6に記載の投影露光装置。 Wherein said light cleaning apparatus, a projection exposure apparatus according to claim 6, and a shielding means for shielding the atmosphere of the optical member near the surface from the outside includes an optical path of the irradiation light.
  8. 【請求項8】 前記光洗浄装置は、前記光学部材に対して交換可能な窓材を通して前記照射光を照射するものである請求項5〜請求項7のうちいずれか一項に記載の投影露光装置。 Wherein said light cleaning apparatus, a projection exposure according to any one of claims 5 to 7 in which irradiates the illumination light through replaceable window material to the optical member apparatus.
JP8372498A 1998-03-30 1998-03-30 Projection optical system inspection device and projection aligner provided with the device Pending JPH11283903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8372498A JPH11283903A (en) 1998-03-30 1998-03-30 Projection optical system inspection device and projection aligner provided with the device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP8372498A JPH11283903A (en) 1998-03-30 1998-03-30 Projection optical system inspection device and projection aligner provided with the device
PCT/JP1998/005258 WO1999027568A1 (en) 1997-11-21 1998-11-20 Projection aligner and projection exposure method
US09577020 US6496257B1 (en) 1997-11-21 2000-05-22 Projection exposure apparatus and method
US10212278 US20030011763A1 (en) 1997-11-21 2002-08-06 Projection exposure apparatus and method
US11008166 US7061575B2 (en) 1997-11-21 2004-12-10 Projection exposure apparatus and method

Publications (1)

Publication Number Publication Date
JPH11283903A true true JPH11283903A (en) 1999-10-15

Family

ID=13810476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8372498A Pending JPH11283903A (en) 1998-03-30 1998-03-30 Projection optical system inspection device and projection aligner provided with the device

Country Status (1)

Country Link
JP (1) JPH11283903A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246283A (en) * 2001-02-14 2002-08-30 Canon Inc Device fabricating system
WO2004105107A1 (en) * 2003-05-23 2004-12-02 Nikon Corporation Exposure device and device manufacturing method
JP2005277363A (en) * 2003-05-23 2005-10-06 Nikon Corp Exposure device and device manufacturing method
JP2006140459A (en) * 2004-10-13 2006-06-01 Nikon Corp Aligner, exposing method, and device manufacturing method
JP2006147982A (en) * 2004-11-24 2006-06-08 Oki Electric Ind Co Ltd Self-cleaning method of exposure device and exposure device
JP2006165502A (en) * 2004-06-21 2006-06-22 Nikon Corp Exposure apparatus, method of cleaning member thereof, maintenance method of exposure apparatus, maintenance device, and device manufacturing method
JP2007059929A (en) * 2003-05-23 2007-03-08 Nikon Corp Exposure device and exposure method and device manufacturing method
JP2007173786A (en) * 2005-12-16 2007-07-05 Asml Netherlands Bv Lithographic device and method
KR100826992B1 (en) 2005-12-02 2008-05-02 에이에스엠엘 네델란즈 비.브이. A method for preventing or reducing contaminatioin of an immersion type projection appartus and an immersion type lithographic apparatus
JP2008235872A (en) * 2007-02-15 2008-10-02 Asml Holding Nv System and method for insitu lens cleaning in immersion lithography
JP2008263091A (en) * 2007-04-12 2008-10-30 Nikon Corp Optical cleaning member, maintenance method, cleaning method, exposure method, exposure device and device manufacturing method
EP2020619A1 (en) 2007-07-30 2009-02-04 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
JP2009033162A (en) * 2007-07-24 2009-02-12 Asml Netherlands Bv Lithographic apparatus, reflective member and method of irradiating underside of liquid supply system
JP2009147374A (en) * 2004-12-20 2009-07-02 Asml Netherlands Bv Lithography apparatus, and device manufacturing method
JP2009177183A (en) * 2008-01-25 2009-08-06 Asml Netherlands Bv Lithography apparatus and device manufacturing method
EP2144118A1 (en) 2008-07-07 2010-01-13 Canon Kabushiki Kaisha Exposure apparatus and method of manufacturing device
JP2010506423A (en) * 2006-10-10 2010-02-25 エーエスエムエル ネザーランズ ビー.ブイ. Cleaning method, apparatus and cleaning system
JP2011097121A (en) * 2004-08-03 2011-05-12 Nikon Corp Exposure apparatus, exposure method and device manufacturing method
JP2011151058A (en) * 2010-01-19 2011-08-04 Nikon Corp Cleaning method, exposure apparatus, and method of manufacturing device
JP2011171758A (en) * 2003-04-11 2011-09-01 Nikon Corp Method of cleaning optical element in immersion lithography
KR101245070B1 (en) 2004-06-21 2013-03-18 가부시키가이샤 니콘 Exposure device, exposure device member cleaning method, exposure device maintenance method, maintenance device and device manufacturing method
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US8941811B2 (en) 2004-12-20 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9158206B2 (en) 2007-07-24 2015-10-13 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9623436B2 (en) 2004-05-18 2017-04-18 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
US9645505B2 (en) 2004-06-09 2017-05-09 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device to measure specific resistance of liquid
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4585702B2 (en) * 2001-02-14 2010-11-24 キヤノン株式会社 Exposure apparatus
JP2002246283A (en) * 2001-02-14 2002-08-30 Canon Inc Device fabricating system
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9958786B2 (en) 2003-04-11 2018-05-01 Nikon Corporation Cleanup method for optics in immersion lithography using object on wafer holder in place of wafer
KR101525335B1 (en) * 2003-04-11 2015-06-03 가부시키가이샤 니콘 Cleanup method for optics in immersion lithography
KR101318542B1 (en) * 2003-04-11 2013-10-16 가부시키가이샤 니콘 Cleanup method for optics in immersion lithography
KR20140048312A (en) * 2003-04-11 2014-04-23 가부시키가이샤 니콘 Cleanup method for optics in immersion lithography
JP2014225703A (en) * 2003-04-11 2014-12-04 株式会社ニコン Cleanup method for optical element in immersion lithography
JP2012138624A (en) * 2003-04-11 2012-07-19 Nikon Corp Cleanup method for optical element in immersion lithography
JP2011171758A (en) * 2003-04-11 2011-09-01 Nikon Corp Method of cleaning optical element in immersion lithography
JP2011139107A (en) * 2003-05-23 2011-07-14 Nikon Corp Exposure apparatus and device manufacturing method
JP2011159995A (en) * 2003-05-23 2011-08-18 Nikon Corp Exposure device and device manufacturing method
JP2007059929A (en) * 2003-05-23 2007-03-08 Nikon Corp Exposure device and exposure method and device manufacturing method
JP2011139105A (en) * 2003-05-23 2011-07-14 Nikon Corp Exposure apparatus and device manufacturing method
JP2015222451A (en) * 2003-05-23 2015-12-10 株式会社ニコン Exposure equipment and device manufacturing method
US9939739B2 (en) 2003-05-23 2018-04-10 Nikon Corporation Exposure apparatus and method for producing device
KR101523829B1 (en) * 2003-05-23 2015-05-28 가부시키가이샤 니콘 Exposure device and device manufacturing method
JP2010109391A (en) * 2003-05-23 2010-05-13 Nikon Corp Exposure device and device manufacturing method
JP2005277363A (en) * 2003-05-23 2005-10-06 Nikon Corp Exposure device and device manufacturing method
WO2004105107A1 (en) * 2003-05-23 2004-12-02 Nikon Corporation Exposure device and device manufacturing method
JP2011139106A (en) * 2003-05-23 2011-07-14 Nikon Corp Exposure apparatus and device manufacturing method
JP2012248902A (en) * 2003-05-23 2012-12-13 Nikon Corp Exposure apparatus and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9623436B2 (en) 2004-05-18 2017-04-18 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
US9645505B2 (en) 2004-06-09 2017-05-09 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device to measure specific resistance of liquid
US8810767B2 (en) 2004-06-21 2014-08-19 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
JP2014027316A (en) * 2004-06-21 2014-02-06 Nikon Corp Exposure device, and method for manufacturing device
JP2006165502A (en) * 2004-06-21 2006-06-22 Nikon Corp Exposure apparatus, method of cleaning member thereof, maintenance method of exposure apparatus, maintenance device, and device manufacturing method
KR101245070B1 (en) 2004-06-21 2013-03-18 가부시키가이샤 니콘 Exposure device, exposure device member cleaning method, exposure device maintenance method, maintenance device and device manufacturing method
US9063436B2 (en) 2004-08-03 2015-06-23 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2011097121A (en) * 2004-08-03 2011-05-12 Nikon Corp Exposure apparatus, exposure method and device manufacturing method
JP2006140459A (en) * 2004-10-13 2006-06-01 Nikon Corp Aligner, exposing method, and device manufacturing method
JP2006147982A (en) * 2004-11-24 2006-06-08 Oki Electric Ind Co Ltd Self-cleaning method of exposure device and exposure device
JP4617143B2 (en) * 2004-11-24 2011-01-19 Okiセミコンダクタ株式会社 Exposure apparatus and self-cleaning method
US9329494B2 (en) 2004-12-20 2016-05-03 Asml Netherlands B.V. Lithographic apparatus
US9703210B2 (en) 2004-12-20 2017-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2011254089A (en) * 2004-12-20 2011-12-15 Asml Netherlands Bv Lithographic apparatus
US8941811B2 (en) 2004-12-20 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9417535B2 (en) 2004-12-20 2016-08-16 Asml Netherlands B.V. Lithographic apparatus
JP2009147374A (en) * 2004-12-20 2009-07-02 Asml Netherlands Bv Lithography apparatus, and device manufacturing method
US8233137B2 (en) 2004-12-20 2012-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8462312B2 (en) 2004-12-20 2013-06-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9116443B2 (en) 2004-12-20 2015-08-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9835960B2 (en) 2004-12-20 2017-12-05 Asml Netherlands B.V. Lithographic apparatus
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
KR100826992B1 (en) 2005-12-02 2008-05-02 에이에스엠엘 네델란즈 비.브이. A method for preventing or reducing contaminatioin of an immersion type projection appartus and an immersion type lithographic apparatus
JP2007173786A (en) * 2005-12-16 2007-07-05 Asml Netherlands Bv Lithographic device and method
JP2010506423A (en) * 2006-10-10 2010-02-25 エーエスエムエル ネザーランズ ビー.ブイ. Cleaning method, apparatus and cleaning system
JP2008235872A (en) * 2007-02-15 2008-10-02 Asml Holding Nv System and method for insitu lens cleaning in immersion lithography
JP2008263091A (en) * 2007-04-12 2008-10-30 Nikon Corp Optical cleaning member, maintenance method, cleaning method, exposure method, exposure device and device manufacturing method
US9158206B2 (en) 2007-07-24 2015-10-13 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
JP2009033162A (en) * 2007-07-24 2009-02-12 Asml Netherlands Bv Lithographic apparatus, reflective member and method of irradiating underside of liquid supply system
US9599908B2 (en) 2007-07-24 2017-03-21 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US9019466B2 (en) 2007-07-24 2015-04-28 Asml Netherlands B.V. Lithographic apparatus, reflective member and a method of irradiating the underside of a liquid supply system
JP2011193017A (en) * 2007-07-24 2011-09-29 Asml Netherlands Bv Lithographic apparatus
EP2020619A1 (en) 2007-07-30 2009-02-04 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
US7630058B2 (en) 2007-07-30 2009-12-08 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2009177183A (en) * 2008-01-25 2009-08-06 Asml Netherlands Bv Lithography apparatus and device manufacturing method
US8339572B2 (en) 2008-01-25 2012-12-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP2144118A1 (en) 2008-07-07 2010-01-13 Canon Kabushiki Kaisha Exposure apparatus and method of manufacturing device
JP2011151058A (en) * 2010-01-19 2011-08-04 Nikon Corp Cleaning method, exposure apparatus, and method of manufacturing device

Similar Documents

Publication Publication Date Title
US5602683A (en) Lens system with lens elements arranged in a gas-filled holder and photolithographic apparatus including such a system
US6721039B2 (en) Exposure method, exposure apparatus and device producing method
US6184976B1 (en) Apparatus and method for measuring an aerial image using transmitted light and reflected light
US20010043320A1 (en) Illuminator, exposure apparatus, and method for fabricating device using the same
US4711568A (en) Exposure apparatus
US6897456B2 (en) Differential pumping system and exposure apparatus
US6268906B1 (en) Exposure apparatus and exposure method
US7315346B2 (en) Lithographic apparatus and device manufacturing method
US6411368B1 (en) Projection exposure method, projection exposure apparatus, and methods of manufacturing and optically cleaning the exposure apparatus
JPH06124873A (en) Liquid-soaking type projection exposure apparatus
US7091507B2 (en) Light generator and exposure apparatus
US7061575B2 (en) Projection exposure apparatus and method
EP1452851A1 (en) Method and device for measuring contamination of a surface of a component of a lithographic apparatus
US7405417B2 (en) Lithographic apparatus having a monitoring device for detecting contamination
US6268904B1 (en) Optical exposure apparatus and photo-cleaning method
JPH08115868A (en) Cleaning device for aligner
JP2005268744A (en) Exposing device and exposing method, and device manufacturing method
US20010026402A1 (en) Process for the decontamination of microlithographic projection exposure devices
US6734443B2 (en) Apparatus and method for removing photomask contamination and controlling electrostatic discharge
US7362416B2 (en) Exposure apparatus, evaluation method and device fabrication method
US20050041226A1 (en) Method and device for exposure control, method and device for exposure, and method of manufacture of device
US20080083885A1 (en) Lithographic apparatus, and device manufacturing method
US20040227102A1 (en) Method and device for measuring contamination of a surface of a component of a lithographic apparatus
US6509960B2 (en) Method and apparatus employing external light source for endpoint detection
US6833903B2 (en) Inert gas purge method and apparatus, exposure apparatus, reticle stocker, reticle inspection apparatus, reticle transfer box, and device manufacturing method