JPH11283903A - Projection optical system inspection device and projection aligner provided with the device - Google Patents

Projection optical system inspection device and projection aligner provided with the device

Info

Publication number
JPH11283903A
JPH11283903A JP10083724A JP8372498A JPH11283903A JP H11283903 A JPH11283903 A JP H11283903A JP 10083724 A JP10083724 A JP 10083724A JP 8372498 A JP8372498 A JP 8372498A JP H11283903 A JPH11283903 A JP H11283903A
Authority
JP
Japan
Prior art keywords
light
projection
optical system
optical member
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10083724A
Other languages
Japanese (ja)
Inventor
Masayuki Murayama
正幸 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10083724A priority Critical patent/JPH11283903A/en
Priority to PCT/JP1998/005258 priority patent/WO1999027568A1/en
Priority to AU11757/99A priority patent/AU1175799A/en
Publication of JPH11283903A publication Critical patent/JPH11283903A/en
Priority to US09/577,020 priority patent/US6496257B1/en
Priority to US10/212,278 priority patent/US20030011763A1/en
Priority to US11/008,166 priority patent/US7061575B2/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece

Abstract

PROBLEM TO BE SOLVED: To accurately recognize the cleaning timing for a projection optical system and to prevent the incomplete cleaning of the projection optical system. SOLUTION: In this projection aligner, among irradiation lights irradiated from a light-emitting part 18 at a fixed interval timing, the irradiation light transmitted through a branching mirror 19 is reflected on the surface of a projection lens 9 and then received by a first light-receiving part 20, and the irradiation light branched by the branching mirror 19 is received by a second light-receiving part 21. Then, in a measurement control system 22, an arithmetic part 23 obtains a difference ΔR, between a prescribed reflectivity R0 read from a storage part 24 and the actual reflectivity Rr of the surface of the projection lens 9, based on photoelectric signals from both light receiving parts 20 and 21. Then, when the numerical value of a contamination degree based on the difference ΔR lies outside of an allowable range, the irradiation light from a light source 16 for irradiation in an optical cleaning device 17 is transmitted through a window material 11, the entire surface of the projection lens 9 is irradiated, and optical cleaning based on a Schumann-Runge absorption effect is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、半導体集
積回路等の製造過程のフォトリソグラフィ工程で露光光
の照射に基づきマスク上のパターンを基板上に投影露光
する投影光学系の検査装置、及び同検査装置を備えた投
影露光装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection apparatus for a projection optical system for projecting and exposing a pattern on a mask onto a substrate based on irradiation of exposure light in a photolithography step in a process of manufacturing a semiconductor integrated circuit and the like. The present invention relates to a projection exposure apparatus having the inspection apparatus.

【0002】[0002]

【従来の技術】半導体素子、液晶表示素子又は薄膜磁気
ヘッド等を製造するためのフォトリソグラフィ工程で使
用される投影露光装置においては、レチクル等のマスク
に形成された線幅の微細な回路パターンが高解像力の投
影光学系を介してレジスト層を塗布したウエハ等の感光
基板(以下、「ウエハ」を例にして説明する。)上に投
影露光される。即ち、ウエハステージが投影光学系の光
軸に沿って上下動され、ウエハステージ上のウエハ表面
が投影光学系の焦点位置に位置合わせされた後、ウエハ
ステージが投影光学系の光軸と直交する平面内で所定の
方向へ二次元移動される。そして、例えばステップ・ア
ンド・リピート方式の投影露光装置では、その二次元移
動に伴い投影光学系の露光フィールドの中心(光軸)と
ウエハ上の各ショット領域の中心とが一致する位置でウ
エハステージが停止させられ、その位置で前記露光動作
が行われるようになっている。
2. Description of the Related Art In a projection exposure apparatus used in a photolithography process for manufacturing a semiconductor element, a liquid crystal display element, a thin film magnetic head, or the like, a fine circuit pattern having a fine line width formed on a mask such as a reticle. Projection exposure is performed on a photosensitive substrate such as a wafer coated with a resist layer (hereinafter, described by taking a “wafer” as an example) via a high-resolution projection optical system. That is, after the wafer stage is moved up and down along the optical axis of the projection optical system and the wafer surface on the wafer stage is aligned with the focal position of the projection optical system, the wafer stage is orthogonal to the optical axis of the projection optical system. It is two-dimensionally moved in a predetermined direction in a plane. For example, in a step-and-repeat type projection exposure apparatus, the wafer stage is positioned at a position where the center (optical axis) of the exposure field of the projection optical system and the center of each shot area on the wafer coincide with the two-dimensional movement. Is stopped, and the exposure operation is performed at that position.

【0003】一方、このような投影露光工程において前
記ウエハ上に塗布されるレジスト層としては一般的に感
光性樹脂(例えば、ノボラックレジン)が用いられてい
る。そのため、前記投影露光時には、その感光性樹脂か
ら発生する揮発物質等が投影光学系の最もウエハ側に近
接して位置する光学部材の表面に付着して当該光学部材
表面を汚染してしまうことがあった。従って、従来か
ら、投影露光装置では、作業者による投影光学系の前記
光学部材表面の拭き取り作業、即ち、洗浄作業が必須の
作業となっていた。
On the other hand, a photosensitive resin (for example, novolak resin) is generally used as a resist layer applied on the wafer in the projection exposure process. Therefore, at the time of the projection exposure, volatile substances and the like generated from the photosensitive resin may adhere to the surface of the optical member located closest to the wafer side of the projection optical system and contaminate the surface of the optical member. there were. Therefore, conventionally, in the projection exposure apparatus, an operation of wiping the surface of the optical member of the projection optical system by an operator, that is, a cleaning operation has been an essential operation.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記洗
浄作業の実施タイミングについては、作業者が目視によ
り前記汚染状態を確認した時点で行われたり、又は、予
め決定された一定の周期タイミングで定期的に行われた
りしていた。
However, the cleaning operation is performed at a time when the operator visually confirms the contamination state, or periodically at a predetermined periodic timing. Was being done.

【0005】そのため、作業者個々の目視に基づく洗浄
作業の場合は、各作業者の判断基準にバラツキがある
と、洗浄作業の必要性があるにも拘わらず、その実施タ
イミングを徒過してしまうおそれがあった。従って、そ
の場合には、前記光学部材表面の汚染状態が放置される
ため、投影光学系の光学特性が変化してしまい、露光不
良を招くおそれがあった。
[0005] Therefore, in the case of a cleaning operation based on the visual inspection of each worker, if there is variation in the judgment criteria of each operator, the execution timing of the cleaning operation is overtaken despite the necessity of the cleaning operation. There was a risk. Therefore, in such a case, since the contamination state of the optical member surface is left as it is, the optical characteristics of the projection optical system are changed, and there is a possibility that exposure failure may be caused.

【0006】一方、定期的な洗浄作業の場合には、汚染
状態の確認をすることなく所定時期になると一律に洗浄
作業が行われるため、メンテナンスの上からは必要性の
ない洗浄作業が行われることもあった。従って、その場
合には、洗浄作業のためにクリーンルーム内の雰囲気が
不必要に投影光学系に触れてしまうことになり、良好な
露光条件を維持する観点からは必ずしも好ましくなかっ
た。
On the other hand, in the case of a regular cleaning operation, the cleaning operation is performed uniformly at a predetermined time without confirming the contamination state, so that unnecessary cleaning operation is performed from the viewpoint of maintenance. There were things. Therefore, in that case, the atmosphere in the clean room unnecessarily comes into contact with the projection optical system for the cleaning operation, which is not always preferable from the viewpoint of maintaining good exposure conditions.

【0007】又、前記洗浄作業による汚染状態の除去具
合は、各作業者の洗浄作業熟練度に依存するため、作業
者によっては洗浄作業を実施しても、前記光学部材表面
の汚染状態を十分に除去できない場合があった。更に、
未熟な作業者による洗浄作業の場合には、却って前記光
学部材表面の汚染状態をひどくしてしまい、作業前以上
に投影光学系の光学特性を悪化させてしまうおそれすら
あった。
Further, the degree of removal of the contaminated state by the cleaning operation depends on the skill of the cleaning operation of each operator. Therefore, even if the operator performs the cleaning operation, the contamination state of the optical member surface can be sufficiently reduced. Could not be removed. Furthermore,
In the case of a cleaning operation by an inexperienced operator, the contamination of the surface of the optical member may be worsened, and the optical characteristics of the projection optical system may be deteriorated more than before the operation.

【0008】本発明は、かかる事情に鑑みなされたもの
であり、その目的は、投影露光装置における投影光学系
の洗浄タイミングを的確に把握し得ることにある。又、
別の目的は、投影光学系の不完全洗浄を防止し得ること
にある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to be able to accurately grasp the cleaning timing of a projection optical system in a projection exposure apparatus. or,
Another object is to be able to prevent incomplete cleaning of the projection optics.

【0009】[0009]

【課題を解決するための手段】前記各目的を達成するた
めに、投影光学系検査装置に係る本願請求項1の発明
は、投影露光装置における投影光学系1の最も感光基板
W側の光学部材9表面の汚染度を測定する測定手段22
を備えたことを要旨としている。従って、請求項1の発
明においては、測定手段22によって投影光学系1の最
も感光基板W側の光学部材9表面の汚染度が測定され、
その測定結果に基づき、洗浄前にあっては、洗浄作業の
必要性有無が判断され、又、洗浄後にあっては、当該洗
浄作業による汚れ除去具合の良否が判断される。
In order to achieve each of the above objects, the present invention relates to a projection optical system inspection apparatus, wherein the optical member closest to the photosensitive substrate W of the projection optical system 1 in the projection exposure apparatus is provided. 9 Measuring means 22 for measuring the degree of surface contamination
The gist is that it is provided. Therefore, according to the first aspect of the present invention, the degree of contamination on the surface of the optical member 9 closest to the photosensitive substrate W of the projection optical system 1 is measured by the measuring means 22,
Before the cleaning, the necessity of the cleaning operation is determined based on the measurement result, and after the cleaning, the quality of the dirt removal by the cleaning operation is determined.

【0010】又、本願請求項2の発明は、前記請求項1
に記載の発明において、前記測定手段22は、前記光学
部材9表面で反射する反射光の反射率又は前記光学部材
9表面を透過した透過光の透過率を測定し、その測定結
果に基づき前記光学部材9表面の汚染度を測定すること
を要旨としている。従って、請求項2の発明において
は、前記請求項1に記載の発明の作用に加えて、前記汚
染度の測定が測定対象とされる光学部材9表面の反射率
又は透過率を求めることにより行われる。
[0010] Further, the invention of claim 2 of the present application is the above-mentioned claim 1.
In the invention described in the above, the measuring means 22 measures the reflectance of the reflected light reflected on the surface of the optical member 9 or the transmittance of the transmitted light transmitted through the surface of the optical member 9, and based on the measurement result, the optical The gist is to measure the degree of contamination on the surface of the member 9. Therefore, in the invention of claim 2, in addition to the operation of the invention of claim 1, the measurement of the degree of contamination is performed by obtaining the reflectance or transmittance of the surface of the optical member 9 to be measured. Will be

【0011】又、本願請求項3の発明は、前記請求項2
に記載の発明において、前記測定手段22は、予め設定
した所定反射率RO 又は所定透過率と実際に測定した実
反射率Rr 又は実透過率との対比結果に基づいて前記光
学部材9表面の汚染度を測定するものであることを要旨
としている。従って、請求項3に記載の発明において
は、前記請求項2に記載の発明の作用に加えて、測定対
象とされる光学部材9表面の反射率又は透過率を予め測
定しておき、その測定結果を所定反射率RO 又は所定透
過率とし、その後、実際に測定して得た実反射率Rr
は実透過率を前記所定反射率RO 又は所定透過率と対比
して得た差により汚染度が測定される。
Further, the invention of claim 3 of the present application is the above-mentioned claim 2.
In the invention described in (1), the measuring means 22 is configured to determine the surface of the optical member 9 based on a comparison result between a preset predetermined reflectance R O or predetermined transmittance and an actually measured actual reflectance R r or actual transmittance. The gist is to measure the degree of pollution of the soil. Therefore, in the invention according to claim 3, in addition to the effect of the invention according to claim 2, the reflectance or transmittance of the surface of the optical member 9 to be measured is measured in advance, and the measurement is performed. The result is defined as a predetermined reflectance R O or a predetermined transmittance, and then the actual reflectance R r or the actual transmittance obtained by actually measuring is compared with the predetermined reflectance R O or a difference obtained by comparing with the predetermined transmittance. The degree of contamination is measured.

【0012】又、本願請求項4の発明は、前記請求項3
に記載の発明において、前記測定手段22は、所定タイ
ミングで照射された照射光に基づいて、当該照射光が前
記光学部材9表面により反射された後又は当該光学部材
9表面を透過した後に受光された光電信号と、当該照射
光が前記光学部材9表面を介することなく受光された光
電信号との対比結果から前記実反射率Rr 又は実透過率
を測定するものであることを要旨としている。従って、
請求項4の発明においては、前記請求項3に記載の発明
の作用に加えて、例えば洗浄作業の実施中に照射光を複
数回にわたり照射タイミングをずらせて照射すると、そ
の洗浄具合の進行変化が各回の照射光に基づき測定され
る実反射率Rr 又は実透過率に反映される。
Further, the invention of claim 4 of the present application is the above-mentioned claim 3.
In the invention described in the above, the measuring unit 22 receives light after the irradiation light is reflected by the surface of the optical member 9 or transmitted through the surface of the optical member 9 based on the irradiation light irradiated at a predetermined timing. The gist is that the actual reflectance Rr or the actual transmittance is measured based on a comparison result between the photoelectric signal thus received and the photoelectric signal received without the irradiation light passing through the surface of the optical member 9. Therefore,
According to the fourth aspect of the invention, in addition to the operation of the third aspect of the invention, when the irradiation light is irradiated with the irradiation timing shifted a plurality of times during the execution of the cleaning operation, the change in the progress of the cleaning condition is caused. It is reflected on the actual reflectance Rr or the actual transmittance measured based on the irradiation light of each time.

【0013】一方、投影露光装置に係る本願請求項5の
発明は、前記請求項1〜請求項4のうちいずれか一項に
記載の投影光学系検査装置25と、前記光学部材9表面
に対して光洗浄効果を有する所定の照射光を照射する光
洗浄装置17とを備えたことを要旨としている。従っ
て、請求項5の発明においては、投影光学系検査装置2
5の測定結果に基づき洗浄作業の必要ありと判断される
と、光洗浄装置17から所定の照射光が照射され、その
照射に基づき光学部材9表面の汚れが光洗浄される。
According to a fifth aspect of the present invention relating to a projection exposure apparatus, the projection optical system inspection apparatus 25 according to any one of the first to fourth aspects and the surface of the optical member 9 are provided. And a light cleaning device 17 for irradiating predetermined irradiation light having a light cleaning effect. Therefore, in the invention of claim 5, the projection optical system inspection apparatus 2
If it is determined that the cleaning operation is necessary based on the measurement result of 5, the optical cleaning device 17 irradiates predetermined irradiation light, and the surface of the optical member 9 is optically cleaned based on the irradiation.

【0014】又、本願請求項6の発明は、前記請求項5
に記載の発明において、前記光洗浄装置17は、前記光
学部材9表面の近傍に酸化促進ガスを供給するガス供給
手段27を備えていることを要旨としている。従って、
請求項6の発明においては、前記請求項5に記載の発明
の作用に加えて、光洗浄装置17による洗浄作業に際し
て光学部材9表面の近傍には酸化促進ガスが供給される
ため、洗浄効果が向上する。
[0014] The invention of claim 6 of the present application is directed to claim 5
In the invention described in (1), the gist is that the optical cleaning device 17 includes a gas supply unit 27 that supplies an oxidation promoting gas near the surface of the optical member 9. Therefore,
According to the sixth aspect of the invention, in addition to the operation of the fifth aspect of the present invention, an oxidation promoting gas is supplied to the vicinity of the surface of the optical member 9 at the time of the cleaning operation by the optical cleaning device 17, so that the cleaning effect is improved. improves.

【0015】又、本願請求項7の発明は、前記請求項6
に記載の発明において、前記光洗浄装置17は、前記照
射光の光路を含んで前記光学部材9表面近傍の雰囲気を
外部から遮蔽する遮蔽手段32を備えていることを要旨
としている。従って、請求項7の発明においては、前記
請求項6に記載の発明の作用に加えて、ガス供給手段2
7から酸化促進ガスが供給されるとき、前記光学部材9
表面近傍の雰囲気は照射光の光路を含むようにして遮蔽
手段32により外部から遮蔽される。そのため、酸化促
進ガスによる洗浄促進がより一層図られる。
[0015] The invention of claim 7 of the present application is the invention of claim 6.
In the invention described in (1), the gist is that the light cleaning device 17 includes a shielding unit 32 for shielding the atmosphere near the surface of the optical member 9 from the outside, including the optical path of the irradiation light. Therefore, in the invention of claim 7, in addition to the effect of the invention of claim 6, the gas supply means 2
When the oxidation promoting gas is supplied from the optical member 9,
The atmosphere near the surface is shielded from outside by the shielding means 32 so as to include the optical path of the irradiation light. Therefore, the cleaning is further promoted by the oxidation promoting gas.

【0016】又、本願請求項8の発明は、前記請求項5
〜請求項7のうちいずれか一項に記載の発明において、
前記光洗浄装置17は、前記光学部材9に対して交換可
能な窓材11を通して前記照射光を照射するものである
ことを要旨としている。従って、請求項8の発明におい
ては、前記請求項5〜請求項7のうちいずれか一項に記
載の発明の作用に加えて、窓材11により光洗浄装置1
7の保護が図られるとともに、当該窓材11が汚れたと
きには窓材11を交換することにより、光洗浄効果が良
好に維持される。
Further, the invention of claim 8 of the present application is the invention of claim 5
The invention according to any one of claims 7 to 7,
The gist of the light cleaning device 17 is to irradiate the irradiation light to the optical member 9 through a replaceable window material 11. Therefore, in the invention of claim 8, in addition to the operation of the invention described in any one of claims 5 to 7, the light cleaning device 1 is provided by the window material 11.
7 is protected, and the window material 11 is replaced when the window material 11 becomes dirty, so that the light cleaning effect is favorably maintained.

【0017】[0017]

【発明の実施の形態】以下、本発明をステップ・アンド
・リピート方式の投影露光装置に具体化した第一実施形
態を図1,図2に基づき説明する。なお、図1に示すよ
うに、本実施形態では、投影光学系1の光軸AXに平行
な方向にZ軸を取り、光軸AXに直交する平面内で図1
の紙面に平行な方向にX軸を、また、同様に図1の紙面
に垂直な方向にY軸を取っている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment in which the present invention is embodied in a step-and-repeat type projection exposure apparatus will be described below with reference to FIGS. As shown in FIG. 1, in the present embodiment, the Z axis is set in a direction parallel to the optical axis AX of the projection optical system 1, and FIG.
The X axis is taken in a direction parallel to the paper surface of FIG. 1, and the Y axis is taken in a direction perpendicular to the paper surface of FIG.

【0018】図1は投影露光装置全体の概略構成を示し
たものであり、同図において、露光用光源2から射出さ
れる照明光ILは、コリメータレンズ、フライアイレン
ズ、レチクルブラインドなどからなる照度均一化照明系
3により照度分布がほぼ均一な光束に変換されて、ダイ
クロイックミラー4に入射されるように構成されてい
る。そして、ダイクロイックミラー4によって垂直下方
へ折り曲げられた照明光ILがレチクルRを照射するこ
とにより、前記レチクルR上に1μm単位の線幅で描画
された回路パターンの像が投影光学系1を介して感光基
板としてのウエハW上に投影露光されるようになってい
る。
FIG. 1 shows a schematic configuration of the entire projection exposure apparatus. In FIG. 1, illumination light IL emitted from an exposure light source 2 has an illuminance comprising a collimator lens, a fly-eye lens, a reticle blind, and the like. The illuminance distribution is converted into a substantially uniform light beam by the uniformized illumination system 3 and is incident on the dichroic mirror 4. The illumination light IL bent vertically downward by the dichroic mirror 4 irradiates the reticle R, so that an image of the circuit pattern drawn on the reticle R with a line width of 1 μm is transmitted through the projection optical system 1. Projection exposure is performed on a wafer W as a photosensitive substrate.

【0019】なお、本実施形態における前記光源2に
は、波長193nmのレーザ光(紫外光)を発光するA
rFエキシマレーザが使用されている。また、本実施形
態の投影露光装置は、露光時において前記X軸方向及び
Y軸方向へステッピング移動してウエハW上の各ショッ
ト領域に回路パターンを投影露光するものであるが、図
1は投影光学系1の汚染度測定時の状態を示すため、同
図においてウエハWは露光位置に位置していない。
The light source 2 according to the present embodiment has a laser beam (ultraviolet light) having a wavelength of 193 nm.
An rF excimer laser is used. Further, the projection exposure apparatus of the present embodiment performs stepping movement in the X-axis direction and the Y-axis direction at the time of exposure to project and expose a circuit pattern on each shot area on the wafer W. FIG. In this figure, the wafer W is not located at the exposure position in order to show a state at the time of measuring the degree of contamination of the optical system 1.

【0020】前記ダイクロイックミラー4の下方には、
モータ等からなる図示しない駆動系により移動可能とさ
れたレチクルステージ6が設けられている。レチクルス
テージ6上には前記レチクルRが真空吸着により固定保
持され、このレチクルR上には前述した回路パターンの
他に、その回路パターンの周辺に位置するようにして各
種のアライメント用レチクルパターンが形成されてい
る。
Below the dichroic mirror 4,
A reticle stage 6 movable by a drive system (not shown) including a motor and the like is provided. On the reticle stage 6, the reticle R is fixed and held by vacuum suction. On the reticle R, in addition to the circuit pattern described above, various alignment reticle patterns are formed so as to be located around the circuit pattern. Have been.

【0021】一方、前記レチクルステージ6の下方に
は、同ステージ6との間に投影光学系1を挟むようにし
てウエハステージ7が移動可能に設けられている。即
ち、ウエハステージ7は前記XY平面内で二次元移動及
び前記Z軸周りに微小回転が可能とされている。また、
前記ウエハステージ7上には前記Z軸方向に移動可能な
Zステージ8が設けられ、これらウエハステージ7及び
Zステージ8はモータ等からなる図示しない駆動系によ
り移動可能とされている。そして、Zステージ8上に感
光性樹脂の一種であるノボラックレジンを塗布されたウ
エハWが真空吸着保持され、このZステージ8をZ軸方
向へ移動させることにより、ウエハWの表面と投影光学
系1の結像面とを一致させることができるようになって
いる。なお、投影光学系1において最もウエハステージ
7側に位置する光学部材として本実施形態では投影レン
ズ9が設けられ、投影露光時には同レンズ9のウエハス
テージ7側表面がウエハWの表面と近接するようになっ
ている。
On the other hand, below the reticle stage 6, a wafer stage 7 is movably provided so as to sandwich the projection optical system 1 with the reticle stage 6. That is, the wafer stage 7 is capable of two-dimensional movement in the XY plane and minute rotation about the Z axis. Also,
A Z stage 8 movable in the Z-axis direction is provided on the wafer stage 7, and these wafer stage 7 and Z stage 8 can be moved by a drive system (not shown) including a motor and the like. Then, the wafer W coated with novolak resin, which is a kind of photosensitive resin, is held on the Z stage 8 by vacuum suction. By moving the Z stage 8 in the Z axis direction, the surface of the wafer W and the projection optical system are moved. 1 can be made to coincide with the imaging plane. In this embodiment, a projection lens 9 is provided as an optical member located closest to the wafer stage 7 in the projection optical system 1, and the surface of the lens 9 on the wafer stage 7 side is close to the surface of the wafer W during projection exposure. It has become.

【0022】次に、本実施形態における光洗浄装置につ
いて説明する。図1,図2に示すように、前記ウエハス
テージ7上においてZステージ8の近傍には、筐体10
がその上部を僅かに露出するようにして埋設固定されて
いる。筐体10の上部には合成石英等からなる紫外光を
効率よく透過可能な窓材11が着脱交換可能に嵌合さ
れ、筐体10内にはミラー12が斜状に配置されてい
る。また、前記筐体10の側壁にはビームエキスパンダ
ー光学系13が設けられ、同光学系13の近傍にはウエ
ハステージ7の外部から導入された光ファイバ14の射
出端が配置されている。そして、ウエハステージ7の外
部において前記光ファイバ14の射入端には集光レンズ
15が設けられ、同レンズ15に対し前記露光用光源2
とは別のArFエキシマレーザからなる照射用光源16
から紫外光が照射されるようになっている。即ち、本実
施形態では、前記ミラー12と光ファイバ14及び照射
用光源16等により光洗浄装置17が構成されている。
Next, the light cleaning apparatus according to the present embodiment will be described. As shown in FIGS. 1 and 2, a housing 10 is provided on the wafer stage 7 near the Z stage 8.
Are buried and fixed so that the upper part thereof is slightly exposed. A window material 11 made of synthetic quartz or the like, which is capable of transmitting ultraviolet light efficiently, is removably fitted to an upper portion of the housing 10, and a mirror 12 is disposed in the housing 10 at an angle. A beam expander optical system 13 is provided on the side wall of the housing 10, and an emission end of an optical fiber 14 introduced from outside the wafer stage 7 is arranged near the optical system 13. A condensing lens 15 is provided outside the wafer stage 7 at the entrance end of the optical fiber 14.
Irradiation light source 16 made of ArF excimer laser different from
Irradiates ultraviolet light. That is, in the present embodiment, the light cleaning device 17 is constituted by the mirror 12, the optical fiber 14, the irradiation light source 16, and the like.

【0023】次に、本実施形態における投影光学系検査
装置について説明する。図1,図2に示すように、前記
ウエハステージ7上における筐体10の露出部位近傍に
は発光部18が設けられている。この発光部18は前記
投影レンズ9の表面に対し斜め下方から所定の照射光を
照射するものであり、同レンズ9表面と発光部18とを
結ぶ光路上には分岐ミラー19が配置されている。ま
た、前記ウエハステージ7上には前記発光部18からの
照射に基づく前記レンズ9表面からの反射光を受光する
ための第1の受光部20が配置されるとともに、前記ウ
エハステージ7の上方位置には前記発光部18からの照
射に基づく分岐ミラー19からの分岐光を受光するため
の第2の受光部21が配置されている。そして、前記第
1及び第2の受光部20,21の出力は光電信号として
測定手段を構成する測定制御系22へ供給されるように
なっている。
Next, a projection optical system inspection apparatus according to this embodiment will be described. As shown in FIGS. 1 and 2, a light emitting unit 18 is provided on the wafer stage 7 in the vicinity of an exposed portion of the housing 10. The light emitting section 18 emits predetermined irradiation light to the surface of the projection lens 9 from obliquely below, and a branch mirror 19 is disposed on an optical path connecting the surface of the lens 9 and the light emitting section 18. . A first light receiving unit 20 for receiving reflected light from the surface of the lens 9 based on irradiation from the light emitting unit 18 is disposed on the wafer stage 7, and a first light receiving unit 20 is disposed above the wafer stage 7. A second light receiving unit 21 for receiving the split light from the split mirror 19 based on the irradiation from the light emitting unit 18 is disposed in the second light receiving unit 21. The outputs of the first and second light receiving units 20 and 21 are supplied as photoelectric signals to a measurement control system 22 constituting a measuring unit.

【0024】図2に示すように、前記測定制御系22に
は演算部23と記憶部24とが設けられている。演算部
23は、前記両受光部20,21から出力された光電信
号に基づき前記投影レンズ9表面の光反射率を実反射率
として演算し、演算した実反射率と記憶部24が記憶し
ている所定反射率との対比結果に基づき前記投影レンズ
9表面の汚染度を測定するように構成されている。ま
た、記憶部24は、前記投影レンズ9の表面が光学特性
に影響を与えるほど汚染されていないと想定される本装
置完成時に測定された投影レンズ9表面の光反射率を前
記所定反射率として予め記憶している。そして、本実施
形態では、前記発光部18と第1及び第2の受光部2
0,21並びに測定制御系22により投影光学系検査装
置25が構成されている。なお、投影光学系検査装置2
5による前記表面汚染度の測定結果は表示手段26によ
り表示され、その表示内容から前記投影光学系1におけ
る投影レンズ9表面の汚染度を客観的に把握できるよう
になっている。
As shown in FIG. 2, the measurement control system 22 is provided with a calculation unit 23 and a storage unit 24. The calculation unit 23 calculates the light reflectance of the surface of the projection lens 9 as the real reflectance based on the photoelectric signals output from the light receiving units 20 and 21, and stores the calculated real reflectance and the storage unit 24. The degree of contamination on the surface of the projection lens 9 is measured based on a result of comparison with a predetermined reflectance. In addition, the storage unit 24 sets the light reflectance of the surface of the projection lens 9 measured at the time of completion of the present apparatus, which is assumed to be not contaminated to such an extent that the surface of the projection lens 9 affects the optical characteristics, as the predetermined reflectance. It is stored in advance. In the present embodiment, the light emitting section 18 and the first and second light receiving sections 2
The projection optical system inspection device 25 is constituted by the measurement control systems 22 and 0 and 21. The projection optical system inspection device 2
The measurement result of the degree of surface contamination by 5 is displayed on display means 26, and the degree of contamination of the surface of the projection lens 9 in the projection optical system 1 can be objectively grasped from the display contents.

【0025】次に、以上のように構成された本実施形態
における投影露光装置の作用について説明する。まず、
図示しない主制御系の駆動制御によりウエハステージ7
が図1の汚染度測定位置へ移動させられる。すると、投
影光学系1において最下端に位置する前記投影レンズ9
の直下に筐体10上部の窓材20が対向して位置する。
そして、この状態において、主制御系は前記発光部18
による照射光の照射タイミングを一定間隔で制御する。
そして、この主制御系の発光制御に基づき前記発光部1
8から所定の照射光が照射されると、その照射光のうち
分岐ミラー19を透過した照射光は前記投影レンズ9の
表面に至り同表面で反射され、その反射光は第1の受光
部20により受光される。一方、前記分岐ミラー19に
より分岐された照射光(分岐光)は前記投影レンズ9の
表面に至ることなく第2の受光部21により受光され
る。そして、両受光部20,21により光電変換された
光電信号がそれぞれ測定制御系22に入力される。
Next, the operation of the projection exposure apparatus according to this embodiment configured as described above will be described. First,
The wafer stage 7 is controlled by driving control of a main control system (not shown).
Is moved to the contamination degree measurement position in FIG. Then, the projection lens 9 located at the lowermost end in the projection optical system 1
The window material 20 on the upper part of the housing 10 is located directly below.
Then, in this state, the main control system
Is controlled at regular intervals.
The light emitting unit 1 is controlled based on the light emission control of the main control system.
When a predetermined irradiation light is emitted from the light source 8, the irradiation light transmitted through the branch mirror 19 of the irradiation light reaches the surface of the projection lens 9 and is reflected by the same, and the reflected light is transmitted to the first light receiving unit 20. Is received by the On the other hand, the irradiation light (branch light) branched by the branch mirror 19 is received by the second light receiving unit 21 without reaching the surface of the projection lens 9. Then, the photoelectric signals photoelectrically converted by the two light receiving units 20 and 21 are input to the measurement control system 22, respectively.

【0026】すると、測定制御系22の演算部23で
は、第1の受光部20からの光電信号と第2の受光部2
1からの光電信号とに基づき、前記投影レンズ9表面の
反射率を演算する。即ち、一般に、2つの媒質の境界面
に対してある入射角で光が入射するとき、その反射率R
は、入射光束のエネルギーの強さをI0 とし、反射光束
のエネルギーの強さをIr としたとき、R=Ir /I0
で表される。従って、前記演算部23では、第1の受光
部20からの光電信号に基づくエネルギーの強さをIr
とし、第2の受光部21からの光電信号に基づくエネル
ギーの強さをI0として、前記投影レンズ9表面の実反
射率Rr を求める。
Then, the arithmetic unit 23 of the measurement control system 22 compares the photoelectric signal from the first light receiving unit 20 with the second light receiving unit 2
The reflectance of the surface of the projection lens 9 is calculated on the basis of the photoelectric signal from No. 1. That is, generally, when light is incident on the boundary surface between two media at a certain incident angle, its reflectance R
R = I r / I 0 where I 0 is the energy intensity of the incident light beam and I r is the energy intensity of the reflected light beam.
It is represented by Therefore, the computing unit 23 calculates the intensity of the energy based on the photoelectric signal from the first light receiving unit 20 as Ir .
Assuming that the intensity of the energy based on the photoelectric signal from the second light receiving unit 21 is I 0 , the actual reflectance R r of the surface of the projection lens 9 is obtained.

【0027】次に、前記測定制御系22では、演算部2
3が記憶部24から所定反射率R0を読出し、この所定
反射率R0 と前記実反射率Rr との差ΔR(=R0 −R
r )を演算する。そして、求められた両反射率R0 ,R
r の差ΔRに基づく表示信号を表示手段26に出力す
る。すると、表示手段26は当該表示信号に基づき前記
投影レンズ9表面の汚染度を数値表示する。
Next, in the measurement control system 22, the arithmetic unit 2
3 reads the predetermined reflectance R 0 from the storage unit 24, and calculates a difference ΔR (= R 0 −R) between the predetermined reflectance R 0 and the actual reflectance R r.
r ) is calculated. Then, the obtained two reflectances R 0 , R
A display signal based on the difference ΔR of r is output to the display means 26. Then, the display means 26 numerically displays the degree of contamination on the surface of the projection lens 9 based on the display signal.

【0028】一方、前記両反射率R0 ,Rr の差ΔRに
基づく表示信号は、主制御系にも出力され、主制御系で
は当該表示信号に基づく汚染度の数値が予め設定された
許容範囲内にあるか否かを判別する。そして、その数値
が許容範囲外であると判別した場合には、前記照射用光
源16を発光させる。すると、同光源16からの照射光
が前記集光レンズ15,光ファイバ14及びビームエキ
スパンダー光学系13を介して筐体10内に導光され
る。そして、筐体10内へ導光された前記照射光はミラ
ー12により方向を変更され、窓材11を透過して投影
レンズ9の表面全体を照射する。
On the other hand, the display signal based on the difference ΔR between the two reflectances R 0 and R r is also output to the main control system, and the main control system sets the contamination level based on the display signal to a predetermined tolerance. It is determined whether it is within the range. When it is determined that the numerical value is outside the allowable range, the irradiation light source 16 is caused to emit light. Then, irradiation light from the light source 16 is guided into the housing 10 via the condenser lens 15, the optical fiber 14, and the beam expander optical system 13. The direction of the irradiation light guided into the housing 10 is changed by the mirror 12, passes through the window material 11, and irradiates the entire surface of the projection lens 9.

【0029】すると、この照射に基づき前記投影レンズ
9の表面近傍では、空気中の酸素が前記照射光(紫外
光)を吸収して励起状態となり、酸化力を増したオゾン
に化学変化する。即ち、この酸素による照射光(紫外
光)の吸収はシューマン・ルンゲ吸収として知られ、そ
の場合には、酸素による吸収の大きい200nm以下の
波長の光を発するものが照射用光源として使用される。
本実施形態においては、この照射用光源16として波長
193nmの紫外光を発するArFエキシマレーザを使
用しているため、上記したシューマン・ルンゲ吸収が起
こる。従って、前記ウエハW上に塗布された感光性樹脂
(ノボラックレジン)からの揮発物質が付着して汚染さ
れている投影レンズ9の表面は、シューマン・ルンゲ吸
収に基づく酸化力の強化された雰囲気下で、その付着物
が前記照射光により酸化分解される。本実施形態では、
このようにして、投影光学系1における投影レンズ9の
表面が光洗浄される。
Then, based on the irradiation, near the surface of the projection lens 9, oxygen in the air absorbs the irradiation light (ultraviolet light) to be in an excited state, and chemically changes to ozone having increased oxidizing power. That is, the absorption of the irradiation light (ultraviolet light) by oxygen is known as Schumann-Runge absorption. In this case, a light source that emits light having a wavelength of 200 nm or less, which is largely absorbed by oxygen, is used as the irradiation light source.
In the present embodiment, since the ArF excimer laser emitting ultraviolet light having a wavelength of 193 nm is used as the irradiation light source 16, the above-described Schumann-Runge absorption occurs. Accordingly, the surface of the projection lens 9 which is contaminated by the attachment of the volatile substance from the photosensitive resin (novolak resin) applied on the wafer W under an atmosphere in which the oxidizing power is enhanced based on the Schumann-Runge absorption. Then, the attached matter is oxidatively decomposed by the irradiation light. In this embodiment,
Thus, the surface of the projection lens 9 in the projection optical system 1 is optically cleaned.

【0030】そして、前述したように、一定間隔をおい
て主制御系により前記発光部18が繰り返し発光制御さ
れると、前記測定制御系22は、前記と同様の手順で所
定反射率R0 と実反射率Rr との差ΔRを、その都度新
たに演算し、その演算結果に基づく新たな表示信号を表
示手段26に出力する。すると、表示手段26は当該新
たな表示信号に基づき前記投影レンズ9表面の汚染度を
数値表示する。
As described above, when the light emission of the light emitting section 18 is repeatedly controlled by the main control system at regular intervals, the measurement control system 22 sets the predetermined reflectance R 0 in the same procedure as described above. The difference ΔR from the actual reflectance R r is newly calculated each time, and a new display signal based on the calculation result is output to the display means 26. Then, the display means 26 numerically displays the degree of contamination on the surface of the projection lens 9 based on the new display signal.

【0031】また、主制御系では当該新たな表示信号に
基づく汚染度の数値が予め設定された許容範囲内にある
か否かを判別する。そして、その数値が依然として許容
範囲外であると判別した場合には、繰り返し、前記照射
用光源16を発光させる。従って、前記投影レンズ9の
表面は、前記と同様に、照射用光源16からの照射光の
照射に基づき光洗浄される。そして、このような主制御
系による発光部18の発光制御が繰り返された後、主制
御系により前記表示信号に基づく汚染度の数値が予め設
定された許容範囲内にあると判別されると、前記照射用
光源16からの照射光に基づく投影レンズ9表面の光洗
浄作業が終了する。
Further, the main control system determines whether or not the numerical value of the contamination degree based on the new display signal is within a preset allowable range. When it is determined that the numerical value is still outside the allowable range, the light source 16 for irradiation is caused to emit light repeatedly. Accordingly, the surface of the projection lens 9 is light-cleaned based on the irradiation of the irradiation light from the irradiation light source 16 as described above. Then, after the light emission control of the light emitting section 18 by the main control system is repeated, when the main control system determines that the numerical value of the contamination degree based on the display signal is within a preset allowable range, The light cleaning operation of the surface of the projection lens 9 based on the irradiation light from the irradiation light source 16 is completed.

【0032】さて、本実施形態では、上記のように投影
露光装置を構成したことにより、次のような効果を得る
ことができる。 (1)本実施形態では、投影光学系1における投影レン
ズ9の表面汚染度を測定するための投影光学系検査装置
25を備え、同装置25により前記表面汚染度が測定さ
れる。即ち、この投影光学系検査装置25の測定制御系
22から出力される測定結果に基づき前記投影レンズ9
表面の汚染度を把握し、洗浄作業の必要性有無が判断さ
れる構成となっている。
In the present embodiment, the following effects can be obtained by configuring the projection exposure apparatus as described above. (1) In the present embodiment, a projection optical system inspection device 25 for measuring the degree of surface contamination of the projection lens 9 in the projection optical system 1 is provided. That is, the projection lens 9 based on the measurement result output from the measurement control system 22 of the projection optical system inspection device 25.
The configuration is such that the degree of contamination on the surface is grasped and the necessity of cleaning work is determined.

【0033】従って、洗浄作業の必要性があるにも拘わ
らず、投影レンズ9の表面汚染状態が見過ごされ、洗浄
作業の実施タイミングが徒過されるような事態を防止で
き、前記表面汚染状態の放置に起因する露光不良の発生
を確実に防止できる。
Therefore, despite the necessity of the cleaning operation, the situation in which the surface contamination of the projection lens 9 is overlooked and the timing of performing the cleaning operation is not overlooked can be prevented. It is possible to reliably prevent the occurrence of exposure failure caused by leaving the apparatus unexposed.

【0034】また、前記測定制御系22から出力される
測定結果に基づけば、メンテナンス上において不必要な
洗浄作業が行われるおそれもない。従って、例えば、光
洗浄装置17によらない手作業での拭き取り洗浄等を実
施する場合においても、装置ケース内が一時的に開放さ
れることにより前記投影光学系1が外気に触れる機会を
必要最小限にでき、露光条件が悪化するおそれを少なく
できる。 (2)また、本実施形態では、前記投影レンズ9の表面
が光学特性に影響を与えるほど汚染されていないと想定
される本装置完成時に測定された同レンズ9表面の光反
射率を所定反射率R0 とし、この所定反射率R0 と実際
に測定した実反射率Rr との差ΔRに基づく汚染度の数
値が一定の許容範囲外の場合にのみ洗浄作業が実施され
る構成となっている。
Further, based on the measurement result output from the measurement control system 22, there is no possibility that unnecessary cleaning work is performed in maintenance. Therefore, for example, even in the case of performing manual wiping cleaning or the like without using the light cleaning device 17, the chance that the projection optical system 1 comes into contact with the outside air is minimized by temporarily opening the inside of the device case. And the possibility that the exposure conditions are deteriorated can be reduced. (2) In the present embodiment, the light reflectance of the surface of the projection lens 9 measured at the time of completion of the present apparatus, which is assumed to be not contaminated so as to affect the optical characteristics, is determined by the predetermined reflection. a rate R 0, a configuration in which numerical degree of contamination based on the difference ΔR between the actual reflectance R r that actually measured with the predetermined reflectance R 0 is cleaning work only if outside a predetermined tolerance range is carried out ing.

【0035】従って、前記洗浄作業の必要性有無を判断
する際の基準が明確かつ客観的であることから、測定さ
れた汚染度の数値に対する信頼性を向上することができ
る。また、洗浄作業の実施タイミングがばらついたりす
るおそれを回避できるので、投影レンズ9表面の洗浄作
業を必要時にのみ効果的に実施することができる。さら
に、投影レンズ9表面の光反射率に基づき汚染度を測定
しているため、投影光学系1の光学特性に変化を与える
おそれのある汚染状態の有無を容易に把握することがで
きる。 (3)また、本実施形態では、照射用光源16に波長1
93nmの紫外光を発するArFエキシマレーザを使用
し、同光源16からの照射光によりシューマン・ルンゲ
吸収作用を利用した光洗浄によって投影レンズ9の表面
汚染状態を除去する構成としている。そのため、シュー
マン・ルンゲ吸収により酸化力の強化された雰囲気下で
表面汚染状態を形成している付着物を酸化分解でき、効
率良く洗浄作業を実施できるとともに、手作業での拭き
取り洗浄の場合とは異なり、洗浄作業をしたことによっ
て却って投影光学系1の光学特性を悪化させてしまうよ
うなおそれもない。 (4)また、本実施形態では、主制御系により一定間隔
タイミングで投影光学系検査装置25の発光部18が繰
り返し発光制御され、光洗浄装置17による投影レンズ
9の表面洗浄中に、何度も繰り返して投影レンズ9の表
面汚染度が測定される構成となっている。従って、投影
レンズ9表面の表面汚染状態が未だ不完全除去のまま光
洗浄装置17による洗浄作業が終了されるようなことは
なく、洗浄作業を実施した場合には、前記投影レンズ9
表面の汚染状態を確実に除去することができる。 (5)また、本実施形態では、前記投影光学系検査装置
25による汚染度測定結果が表示手段26により表示さ
れるようになっている。そのため、洗浄作業を担当する
作業者も投影レンズ9の表面汚染度を、その都度、的確
に把握することができる。従って、主制御系により照射
用光源16の発光制御が行われる構成でなく、作業者の
手作業等により洗浄作業が実施される構成の場合にも、
表示手段26の表示内容に従って的確に洗浄作業を実施
することができる。 (6)また、本実施形態では、光洗浄装置17における
筐体10の上部に嵌合された窓材11が筐体10に対し
て着脱交換可能であるため、当該窓材11が傷付いたり
等した場合には簡単に新しい窓材に交換でき、光洗浄作
用を良好に維持できる。
Accordingly, since the criteria for judging the necessity of the cleaning operation are clear and objective, the reliability of the measured numerical value of the degree of contamination can be improved. In addition, since it is possible to avoid the possibility that the execution timing of the cleaning operation varies, the cleaning operation of the surface of the projection lens 9 can be effectively performed only when necessary. Further, since the degree of contamination is measured based on the light reflectance of the surface of the projection lens 9, the presence or absence of a contamination state that may change the optical characteristics of the projection optical system 1 can be easily grasped. (3) In the present embodiment, the irradiation light source 16 has a wavelength of 1
An ArF excimer laser that emits 93-nm ultraviolet light is used, and the surface of the projection lens 9 is removed from the surface of the projection lens 9 by light cleaning using the Schumann-Lunge absorption function by the irradiation light from the light source 16. Therefore, in the atmosphere where the oxidizing power is enhanced by the absorption of Schumann Runge, it is possible to oxidize and decompose the deposits forming the surface contamination state, and it is possible to carry out the cleaning work efficiently, and what is the case of manual wiping cleaning On the contrary, there is no possibility that the cleaning operation may deteriorate the optical characteristics of the projection optical system 1. (4) In the present embodiment, the light emission unit 18 of the projection optical system inspection device 25 is repeatedly controlled to emit light at regular intervals by the main control system. Is repeated to measure the degree of surface contamination of the projection lens 9. Therefore, the cleaning operation by the optical cleaning device 17 does not end while the surface contamination state of the surface of the projection lens 9 is still incompletely removed.
The surface contamination state can be reliably removed. (5) In the present embodiment, the result of the contamination degree measurement by the projection optical system inspection device 25 is displayed by the display means 26. Therefore, the worker in charge of the cleaning operation can also accurately grasp the degree of surface contamination of the projection lens 9 each time. Therefore, even in a configuration in which light emission of the irradiation light source 16 is controlled by the main control system, a configuration in which a cleaning operation is performed manually by an operator or the like,
The cleaning operation can be accurately performed according to the display contents of the display means 26. (6) In the present embodiment, since the window material 11 fitted to the upper part of the housing 10 in the optical cleaning device 17 is detachable and replaceable with respect to the housing 10, the window material 11 may be damaged. In the case of equality, it can be easily replaced with a new window material, and the light cleaning action can be maintained satisfactorily.

【0036】次に、本発明の第二実施形態を図3に基づ
き説明する。なお、この第二実施形態は、前記第一実施
形態において光洗浄装置17にガス供給手段27を付加
したものであり、その他の点では第一実施形態と同一の
構成になっている。即ち、図3には、発光部18等から
なる投影光学系検査装置25が図示されていないが、本
実施形態においても投影光学系検査装置25は設けられ
ている。従って、以下では前記ガス供給手段27につい
てのみ説明することとし、第一実施形態と共通する構成
部分については図面上に同一符号を付すことにして重複
した説明を省略する。
Next, a second embodiment of the present invention will be described with reference to FIG. In the second embodiment, a gas supply unit 27 is added to the optical cleaning device 17 in the first embodiment, and the other configuration is the same as that of the first embodiment. That is, FIG. 3 does not show the projection optical system inspection device 25 including the light emitting unit 18 and the like, but the projection optical system inspection device 25 is also provided in the present embodiment. Therefore, only the gas supply means 27 will be described below, and the same reference numerals will be given to the components common to the first embodiment on the drawings, and redundant description will be omitted.

【0037】さて、図3に示すように、本実施形態で
は、投影光学系1における投影レンズ9の近傍にガス供
給手段27が設けられている。このガス供給手段27
は、図示しないオゾンガス発生装置から延設されたガス
供給パイプ28と、同パイプ28に連結されて前記投影
レンズ9を包囲するように配置されたガス吹出口29と
からなり、主制御系によりオゾンガスのガス供給が制御
されるようになっている。
As shown in FIG. 3, in this embodiment, a gas supply means 27 is provided near the projection lens 9 in the projection optical system 1. This gas supply means 27
Is composed of a gas supply pipe 28 extending from an ozone gas generator (not shown), and a gas outlet 29 connected to the pipe 28 and arranged so as to surround the projection lens 9. Is controlled.

【0038】即ち、主制御系は、光洗浄装置17による
投影レンズ9表面の光洗浄に際し、照射用光源16を発
光制御するとともに前記ガス供給手段27によるガス供
給を開始させる。すると、前記ガス吹出口29からオゾ
ンガスが投影レンズ9の表面に向けて吹き出し、同レン
ズ9表面近傍の雰囲気がオゾンガスで満たされる。そし
て、その状態において、照射用光源16から照射光が投
影レンズ9の表面に向けて照射されると、シューマン・
ルンゲ吸収に基づく酸化力の強化された雰囲気下で、投
影レンズ9表面に付着した有機物等が前記照射用光源1
6からの照射光により酸化分解される。
That is, the main control system controls light emission of the irradiation light source 16 and starts gas supply by the gas supply means 27 when the light cleaning device 17 cleans the surface of the projection lens 9 with light. Then, the ozone gas is blown out from the gas outlet 29 toward the surface of the projection lens 9, and the atmosphere near the surface of the lens 9 is filled with the ozone gas. In this state, when irradiation light is irradiated from the irradiation light source 16 toward the surface of the projection lens 9, Schumann
In an atmosphere in which the oxidizing power based on Runge absorption is enhanced, organic substances and the like adhering to the surface of the projection lens 9 are irradiated with the irradiation light source 1.
It is oxidatively decomposed by the irradiation light from 6.

【0039】従って、本実施形態では、ガス供給手段2
7から供給されるオゾンガスにより投影レンズ9の表面
近傍を酸化力の増したオゾンガス雰囲気にできるので、
前記光洗浄装置17による光洗浄作用を促進することが
できる。なお、オゾンガスの発生方法には放電方式、紫
外線方式など各種の方式があるが、いずれの方式でも本
実施形態には適用可能である。また、ガス供給手段27
により供給されるガスは投影レンズ9の表面に付着した
有機物等の酸化分解促進に好適な酸化性ガスであればよ
く、特に、オゾンガスに限定されるものではない。
Therefore, in this embodiment, the gas supply means 2
Since the vicinity of the surface of the projection lens 9 can be made into an ozone gas atmosphere with increased oxidizing power by the ozone gas supplied from 7,
The light cleaning action of the light cleaning device 17 can be promoted. Note that there are various methods of generating ozone gas, such as a discharge method and an ultraviolet method, and any method can be applied to the present embodiment. Also, gas supply means 27
May be any oxidizing gas suitable for accelerating the oxidative decomposition of organic substances and the like attached to the surface of the projection lens 9, and is not particularly limited to ozone gas.

【0040】次に、本発明の第三実施形態を図4に基づ
き説明する。この第三実施形態は、前記第一実施形態に
おいて光洗浄装置17にガス供給手段27及びガス回収
手段30を付加したものであり、その他の点では第一実
施形態と同一の構成になっている。従って、以下ではガ
ス供給手段27及びガス回収手段30についてのみ説明
し、その他の共通構成部分については重複した説明を省
略する。
Next, a third embodiment of the present invention will be described with reference to FIG. In the third embodiment, a gas supply unit 27 and a gas recovery unit 30 are added to the optical cleaning device 17 in the first embodiment, and the other points are the same as those in the first embodiment. . Accordingly, hereinafter, only the gas supply unit 27 and the gas recovery unit 30 will be described, and redundant description of other common components will be omitted.

【0041】さて、図4に示すように、本実施形態にお
けるガス供給手段27においては、図示しないオゾンガ
ス発生装置から延設されたガス供給パイプ28がウエハ
ステージ7内に埋設されている。そして、このガス供給
パイプ28に連結されたガス吹出口29が前記筐体10
の近傍においてウエハステージ7上に配置され、前記投
影レンズ9の表面に向けてオゾンガスを吹き出すように
なっている。また、ウエハステージ7上において前記ガ
ス吹出口29とは筐体10を挟んで反対側となる位置に
は、図示しないガス回収パイプと共にガス回収手段30
を構成するガス吸入口31が配置されている。
As shown in FIG. 4, in the gas supply means 27 of this embodiment, a gas supply pipe 28 extending from an ozone gas generator (not shown) is embedded in the wafer stage 7. The gas outlet 29 connected to the gas supply pipe 28 is
Is disposed on the wafer stage 7 in the vicinity of, and blows out ozone gas toward the surface of the projection lens 9. A gas collecting means 30 together with a gas collecting pipe (not shown) is provided on the wafer stage 7 at a position opposite to the gas outlet 29 with the housing 10 interposed therebetween.
Is arranged.

【0042】従って、本実施形態においては、前記ガス
吹出口29からオゾンガスが吹き出すと、そのオゾンガ
スは層流となって投影レンズ9の表面全体に接触した
後、前記ガス吸込口31から吸入され、その後、ガス回
収パイプを介して回収される。そして、前記投影レンズ
9の表面近傍へオゾンガスが供給されている雰囲気下に
おいて照射用光源16からの照射光に基づく光洗浄作業
が行われる。そのため、本実施形態では、前記第二実施
形態の場合と同様のオゾンガス雰囲気下における光洗浄
促進効果に加えて、オゾンガスが層流となって投影レン
ズ9の表面全体に接触するので、同レンズ9表面のあら
ゆる箇所に付着した有機物等を万遍なく酸化分解でき
る。また、ガス供給パイプ28がウエハステージ7内に
埋設されているため、ステージ移動時等において前記パ
イプ28が他の部材に干渉したりするおそれも無くすこ
とができる。
Therefore, in this embodiment, when the ozone gas is blown out from the gas outlet 29, the ozone gas comes into contact with the entire surface of the projection lens 9 as a laminar flow, and is then sucked from the gas inlet 31. After that, it is recovered through a gas recovery pipe. Then, in an atmosphere in which ozone gas is supplied to the vicinity of the surface of the projection lens 9, a light cleaning operation based on irradiation light from the irradiation light source 16 is performed. Therefore, in the present embodiment, in addition to the effect of promoting the light cleaning under the ozone gas atmosphere similar to the case of the second embodiment, the ozone gas comes into contact with the entire surface of the projection lens 9 as a laminar flow. Organic substances and the like attached to all parts of the surface can be oxidized and decomposed uniformly. Further, since the gas supply pipe 28 is buried in the wafer stage 7, there is no possibility that the pipe 28 will interfere with other members when the stage is moved.

【0043】次に、本発明の第四実施形態を図5に基づ
き説明する。この第四実施形態は、前記第一実施形態に
おいて光洗浄装置17にガス供給手段27とガス回収手
段30及び遮蔽手段32を付加したものであり、その他
の点では第一実施形態と同一の構成になっている。従っ
て、以下では前記ガス供給手段27とガス回収手段30
及び遮蔽手段32についてのみ説明する。
Next, a fourth embodiment of the present invention will be described with reference to FIG. In the fourth embodiment, a gas supply unit 27, a gas recovery unit 30, and a shielding unit 32 are added to the optical cleaning device 17 in the first embodiment, and the other configurations are the same as those of the first embodiment. It has become. Therefore, the gas supply means 27 and the gas recovery means 30 will be described below.
Only the shielding means 32 will be described.

【0044】さて、図5に示すように、本実施形態で
は、光洗浄装置17による投影レンズ9の光洗浄に際し
て、同レンズ9表面近傍の雰囲気を外部から遮蔽する遮
蔽手段32が投影光学系1とウエハステージ7との間に
配置される。即ち、前記遮蔽手段32は半割状をなす一
対の隔壁33,34からなり、一方の隔壁33にはガス
供給パイプ28が貫通され、他方の隔壁34にはガス回
収パイプ35が貫通されている。そして、一方の隔壁3
3の内周面側に臨むガス供給パイプ28の先端開口がガ
ス吹出口29とされ、他方の隔壁34の内周面側に臨む
ガス回収パイプ35の先端開口がガス吸入口31とされ
ている。
As shown in FIG. 5, in this embodiment, when the light cleaning device 17 cleans the projection lens 9 by light, the shielding means 32 for shielding the atmosphere near the surface of the lens 9 from the outside is provided by the projection optical system 1. And the wafer stage 7. That is, the shielding means 32 is composed of a pair of partition walls 33 and 34 which form a half-split shape. The gas supply pipe 28 penetrates one partition wall 33 and the gas recovery pipe 35 penetrates the other partition wall 34. . And one partition 3
The tip opening of the gas supply pipe 28 facing the inner peripheral surface side of 3 is a gas outlet 29, and the leading opening of the gas recovery pipe 35 facing the inner peripheral surface of the other partition wall 34 is the gas inlet 31. .

【0045】従って、本実施形態においては、前記隔壁
33側のガス吹出口29からオゾンガスが吹き出される
と、そのオゾンガスは両隔壁33,34により外部と遮
蔽された内部空間36内に充満する。そして、その状態
において照射用光源16からの照射光に基づき投影レン
ズ9の表面が光洗浄される。また、光洗浄作業中は、前
記ガス吹出口29からのオゾンガス吹き出しが適宜行わ
れる一方、前記ガス吸入口31を介して内部空間36に
充満したオゾンガス回収が適宜行われる。そのため、本
実施形態では、前記第二、第三実施形態の場合と同様の
オゾンガス雰囲気下における光洗浄促進効果に加えて、
オゾンガス雰囲気を投影レンズ9の表面近傍へ確実に形
成できるので、より一層、光洗浄効果を促進することが
できる。
Therefore, in this embodiment, when the ozone gas is blown out from the gas outlet 29 on the partition wall 33 side, the ozone gas fills the interior space 36 shielded from the outside by the partition walls 33 and 34. Then, in that state, the surface of the projection lens 9 is optically cleaned based on the irradiation light from the irradiation light source 16. During the light cleaning operation, the ozone gas blowout from the gas outlet 29 is appropriately performed, while the ozone gas filling the internal space 36 via the gas suction port 31 is appropriately collected. Therefore, in the present embodiment, in addition to the effect of promoting light cleaning under an ozone gas atmosphere similar to those of the second and third embodiments,
Since the ozone gas atmosphere can be reliably formed near the surface of the projection lens 9, the light cleaning effect can be further promoted.

【0046】次に、本発明の第五実施形態を図6に基づ
き説明する。この第五実施形態も、前記第一実施形態に
おいて光洗浄装置17にガス供給手段27とガス回収手
段30及び遮蔽手段32を付加したものであり、その他
の点では第一実施形態と同一の構成になっている。従っ
て、以下では前記ガス供給手段27とガス回収手段30
及び遮蔽手段32についてのみ説明する。
Next, a fifth embodiment of the present invention will be described with reference to FIG. The fifth embodiment is also the same as the first embodiment except that a gas supply unit 27, a gas recovery unit 30, and a shielding unit 32 are added to the optical cleaning device 17, and the other configurations are the same as those of the first embodiment. It has become. Therefore, the gas supply means 27 and the gas recovery means 30 will be described below.
Only the shielding means 32 will be described.

【0047】さて、図6に示すように、本実施形態で
は、ウエハステージ7内にガス供給手段27のガス供給
パイプ28及びガス回収手段30のガス回収パイプ35
が埋設されている。そして、ガス供給パイプ28の先端
開口がガス吹出口29として筐体10の近傍においてウ
エハステージ7上に露出し、このガス吹出口29とは筐
体10を挟んで反対側となる位置にガス回収パイプ35
の先端開口がガス吸入口31として露出している。ま
た、投影光学系1とウエハステージ7との間には、前記
ガス吹出口29及びガス吸入口31よりも外側に位置し
て投影レンズ9表面近傍の雰囲気を外部から遮蔽する遮
蔽手段32が設けられている。なお、本実施形態におい
ても、遮蔽手段32は半割状をなす一対の隔壁33,3
4により構成されている。
As shown in FIG. 6, in the present embodiment, the gas supply pipe 28 of the gas supply means 27 and the gas recovery pipe 35 of the gas recovery means 30 are provided in the wafer stage 7.
Is buried. The opening at the tip of the gas supply pipe 28 is exposed on the wafer stage 7 near the housing 10 as a gas outlet 29, and the gas is recovered at a position opposite to the gas outlet 29 with the housing 10 interposed therebetween. Pipe 35
Is exposed as a gas inlet 31. Between the projection optical system 1 and the wafer stage 7, there is provided a shielding means 32 which is located outside the gas outlet 29 and the gas inlet 31 and shields the atmosphere near the surface of the projection lens 9 from the outside. Have been. Note that also in the present embodiment, the shielding means 32 is formed of a pair of partition walls 33, 3 which form a half-split shape.
4.

【0048】従って、本実施形態においても、前記第四
実施形態の場合と同様の効果を発揮できるとともに、ガ
ス供給パイプ28及びガス回収パイプ35がウエハステ
ージ7内に埋設されているため、ステージ移動時等にお
いて前記各パイプ28,35が他の部材に干渉したりす
るおそれも無くすことができる。
Therefore, also in this embodiment, the same effects as those of the fourth embodiment can be exerted, and the gas supply pipe 28 and the gas recovery pipe 35 are buried in the wafer stage 7, so that the stage can be moved. In some cases, it is possible to eliminate the possibility that the pipes 28 and 35 may interfere with other members.

【0049】なお、前記各実施形態は、以下のように変
更して具体化してもよい。 ・ 前記各実施形態では、光洗浄時における照射用光源
16からの照射光の照射領域を投影レンズ9のウエハス
テージ7側表面全体としたが、これを投影露光時におけ
る露光光の照射領域のみとしてもよい。この場合には、
ウエハステージ7上に埋設される筐体10の大きさを小
型化できるため、アライメント用マーク等が形成される
ウエハステージ7上のスペースに裕度を持たせることが
できる。
The above embodiments may be embodied with the following modifications. In the above embodiments, the irradiation area of the irradiation light from the irradiation light source 16 at the time of light cleaning is the entire surface of the projection lens 9 on the wafer stage 7 side, but this is only the irradiation area of the exposure light at the time of projection exposure. Is also good. In this case,
Since the size of the housing 10 embedded on the wafer stage 7 can be reduced, the space on the wafer stage 7 where alignment marks and the like are formed can be given a margin.

【0050】・ 前記各実施形態では、投影光学系1の
投影レンズ9直下に筐体10の窓材11が対応する位置
でウエハステージ7を停止状態とし、その停止状態にお
いて前記投影レンズ9の表面を光洗浄する構成とした
が、光洗浄装置17による光洗浄中に投影光学系1に対
してウエハステージ7を相対移動させる構成としてもよ
い。この場合には、前記光洗浄時における照射用光源1
6からの照射光の照射領域を更に狭くすることができる
ので、より一層、ウエハステージ7上のスペースに裕度
を持たせることができる。
In each of the above embodiments, the wafer stage 7 is stopped at a position corresponding to the window member 11 of the housing 10 immediately below the projection lens 9 of the projection optical system 1, and the surface of the projection lens 9 is stopped in the stopped state. Is cleaned, but the wafer stage 7 may be moved relative to the projection optical system 1 during light cleaning by the light cleaning device 17. In this case, the irradiation light source 1 at the time of the light cleaning is used.
Since the irradiation area of the irradiation light from 6 can be further narrowed, the space on the wafer stage 7 can be given more latitude.

【0051】・ 前記各実施形態では、主制御系の制御
に基づき投影光学系検査装置25は光洗浄装置17によ
る光洗浄作業中に一定間隔タイミングで繰り返し汚染度
測定を行う構成としたが、投影光学系検査装置25によ
る汚染度測定は洗浄作業実施前に一回だけ行われる構成
としてもよい。この場合には、洗浄による汚染状態の除
去具合の良否判断をできないことになるが、主制御系に
よる投影光学系検査装置25の制御内容を簡略化するこ
とができる。
In each of the above embodiments, the projection optical system inspection device 25 is configured to repeatedly measure the degree of contamination at regular intervals during the light cleaning operation by the light cleaning device 17 based on the control of the main control system. The measurement of the degree of contamination by the optical system inspection device 25 may be performed only once before performing the cleaning operation. In this case, it is impossible to judge whether or not the degree of removal of the contaminated state by the cleaning is good, but the control contents of the projection optical system inspection device 25 by the main control system can be simplified.

【0052】・ 前記各実施形態では、光洗浄装置17
の照射用光源16としてArFエキシマレーザを用いた
が、シューマン・ルンゲ吸収を引き起こす波長200n
m以下の紫外光を発するものであれば、例えば波長17
2nmの光を発するキセノン系ランプ、波長157nm
の光を発するF2レーザ、軟X線等のEUVL等でもよ
い。即ち、このようにすれば、装置設計の自由度が拡が
る。
In the above embodiments, the light cleaning device 17
An ArF excimer laser was used as the irradiation light source 16 for the irradiation, but a wavelength of 200 n causing Schumann-Runge absorption was used.
m or less, for example, a wavelength of 17
Xenon lamp emitting 2nm light, 157nm wavelength
Or an EUVL such as a soft X-ray that emits light of the following type. That is, in this way, the degree of freedom in device design is expanded.

【0053】・ 前記各実施形態では、光洗浄装置17
の照射用光源16をウエハステージ7とは別の位置に設
けたが、図7に示すように、照射用光源16をウエハス
テージ7上の筐体10内に設置してもよい。この場合に
は、光ファイバ等の導光部材が不要となるため、その
分、装置構成が簡略化でき、コスト低減を図ることがで
きる。
In the above embodiments, the light cleaning device 17
Although the irradiation light source 16 is provided at a different position from the wafer stage 7, the irradiation light source 16 may be installed in the housing 10 on the wafer stage 7, as shown in FIG. In this case, since a light guide member such as an optical fiber is not required, the apparatus configuration can be simplified accordingly, and the cost can be reduced.

【0054】・ 前記各実施形態では、実反射率Rr
対比される所定反射率R0 として、本装置完成時に測定
された投影レンズ9表面の光反射率を用いているが、装
置組立前における投影レンズ9単体の規格上の光反射率
を所定反射率R0 としてもよい。即ち、投影レンズ9の
表面が、その光学特性に影響を与えるほど汚染されてい
ないと想定される状態時での光反射率ならば、前記所定
反射率R0 として使用可能である。
In the above embodiments, the light reflectance of the surface of the projection lens 9 measured at the time of completion of the apparatus is used as the predetermined reflectance R 0 to be compared with the actual reflectance R r. The light reflectance according to the standard of the projection lens 9 alone may be set as the predetermined reflectance R0 . In other words, if the surface of the projection lens 9 is a light reflectance in a state where it is assumed that the surface is not contaminated so as to affect its optical characteristics, it can be used as the predetermined reflectance R0 .

【0055】・ 前記各実施形態では、光洗浄装置17
の照射用光源16から照射される照射光を使用して投影
光学系1の投影レンズ9表面を光洗浄しているが、作業
者が前記レンズ9表面を払拭洗浄するなど手作業により
洗浄作業を実施してもよい。また、前記第四、第五実施
形態においては、遮蔽手段32を構成する隔壁33,3
4を光洗浄作業を実施する度毎に作業者が組み付け設置
する構成としてもよく、図示しない駆動手段の駆動によ
り投影光学系1の鏡筒内又はウエハステージ7内から出
没するように構成してもよい。
In the above embodiments, the light cleaning device 17 is used.
Although the surface of the projection lens 9 of the projection optical system 1 is optically cleaned using the irradiation light emitted from the irradiation light source 16, an operator manually cleans the surface of the lens 9 by wiping and cleaning. May be implemented. Further, in the fourth and fifth embodiments, the partitions 33, 3 constituting the shielding means 32 are provided.
4 may be assembled and installed by an operator every time the optical cleaning operation is performed, and may be configured to be protruded and retracted from the inside of the lens barrel of the projection optical system 1 or the inside of the wafer stage 7 by driving a driving unit (not shown). Is also good.

【0056】・ 前記各実施形態では、露光用光源2と
は別に光洗浄装置17の照射用光源16を設けている
が、露光用光源2がシューマン・ルンゲ吸収を引き起こ
す波長200nm以下の紫外光を発するものであれば、
これを光洗浄に使用する照射用光源として兼用してもよ
い。即ち、露光用光源2からの照明光ILを光ファイバ
等の導光部材によりウエハステージ7上の筐体10内ま
で導き、前記各実施形態の場合と同様に、ミラー12に
よって前記投影レンズ9の表面に向け照射するように構
成すればよい。この場合には、投影露光装置全体として
具備する光源の数が節約できるので、その分、装置コス
トを低減することができる。
In each of the above embodiments, the irradiation light source 16 of the light cleaning device 17 is provided separately from the exposure light source 2, but the exposure light source 2 emits ultraviolet light having a wavelength of 200 nm or less which causes Schumann-Runge absorption. If it emits,
This may be used also as an irradiation light source used for light cleaning. That is, the illumination light IL from the exposure light source 2 is guided to the inside of the housing 10 on the wafer stage 7 by a light guide member such as an optical fiber, and the mirror 12 controls the projection lens 9 by the mirror 12 as in the above-described embodiments. What is necessary is just to comprise so that it may irradiate to a surface. In this case, since the number of light sources provided as the whole projection exposure apparatus can be saved, the cost of the apparatus can be reduced accordingly.

【0057】また、前記露光用光源2を光洗浄の照射用
光源として兼用する場合には、図8に示すように、ウエ
ハステージ7上に反射鏡37を載置固定し、この反射鏡
37を露光用光源2からの照射光により投影光学系1を
介して照射するようにしてもよい。即ち、前記反射鏡3
7が投影光学系1における前記投影レンズ9直下に位置
するようにウエハステージ7を移動させ、その状態にお
いて露光用光源2を発光させる。すると、前記投影レン
ズ9の表面は、投影光学系1内を透過した露光用光源2
からの照明光ILと前記反射鏡37からの反射光との双
方の光によって光洗浄されることになる。
When the exposure light source 2 is also used as an irradiation light source for light cleaning, a reflection mirror 37 is mounted and fixed on the wafer stage 7 as shown in FIG. Irradiation may be performed via the projection optical system 1 by irradiation light from the exposure light source 2. That is, the reflection mirror 3
The wafer stage 7 is moved so that 7 is located immediately below the projection lens 9 in the projection optical system 1, and the exposure light source 2 emits light in that state. Then, the surface of the projection lens 9 is exposed to the exposure light source 2 transmitted through the projection optical system 1.
The light is washed by both the illumination light IL from the light source and the light reflected from the reflection mirror 37.

【0058】従って、この場合には、直接的な照射光ば
かりでなく間接的な反射光も利用するため、光洗浄の効
率をより一層高めることができる。また、ウエハステー
ジ7上には反射鏡37を載置固定するだけでよく、筐体
10等の部材構成も不要とできるため、より一層、装置
コストを低減することができる。
Accordingly, in this case, not only the direct irradiation light but also the indirect reflection light is used, so that the efficiency of the light cleaning can be further improved. In addition, it is only necessary to mount and fix the reflecting mirror 37 on the wafer stage 7, and the member configuration such as the housing 10 can be omitted, so that the apparatus cost can be further reduced.

【0059】なお、前記露光用光源2からの照明光IL
を光ファイバ等の導光部材を用いて前記発光部18まで
導き、この照明光ILが投影レンズ9表面により反射さ
れた反射光に基づき光反射率を求めるようにしてもよ
い。このようにすれば、投影露光装置全体として具備す
る光源の数がより一層節約できるので、その分、装置コ
ストを低減することができる。
The illumination light IL from the exposure light source 2
May be guided to the light emitting portion 18 using a light guide member such as an optical fiber, and the light reflectance may be obtained based on the illumination light IL reflected by the surface of the projection lens 9. By doing so, the number of light sources provided as the whole projection exposure apparatus can be further reduced, and the cost of the apparatus can be reduced accordingly.

【0060】・ 前記各実施形態では、投影光学系検査
装置25の発光部18からの照射光を投影レンズ9の表
面に向けて照射し、その反射光に基づいて得た実反射率
rから同レンズ9表面の汚染度を測定しているが、同
レンズ9を透過する透過光に基づき汚染度を測定するよ
うにしてもよい。即ち、この場合には、前記発光部18
をその照射光が投影レンズ9を透過するように配置する
一方、同レンズ9を透過した透過光を受光する位置に前
記第1の受光部20を配置する。また、前記発光部18
と投影レンズ9との間において、発光部18からの照射
光の光路上には分岐ミラー19を配置し、このミラー1
9からの分岐光を受光する位置に前記第2の受光部21
を配置する。そして、前記両受光部20,21から出力
された光電信号に基づき前記投影レンズ9の光透過率を
測定制御系22の演算部23により実透過率として演算
し、この実透過率と予め記憶部24が記憶している所定
透過率との対比結果から汚染度を測定する。このように
しても、前記各実施形態と同様の効果を得ることができ
る。
In each of the above embodiments, the irradiation light from the light emitting unit 18 of the projection optical system inspection device 25 is irradiated toward the surface of the projection lens 9 and the actual reflectance R r obtained based on the reflected light is used. Although the degree of contamination on the surface of the lens 9 is measured, the degree of contamination may be measured based on light transmitted through the lens 9. That is, in this case, the light emitting unit 18
Is arranged such that the irradiation light thereof is transmitted through the projection lens 9, and the first light receiving unit 20 is arranged at a position where the transmitted light transmitted through the lens 9 is received. The light emitting unit 18
A split mirror 19 is disposed between the light source and the projection lens 9 on the optical path of the light emitted from the light emitting unit 18.
The second light receiving section 21 is located at a position where the branched light from the light receiving section 9 is received.
Place. Then, the light transmittance of the projection lens 9 is calculated as the actual transmittance by the arithmetic unit 23 of the measurement control system 22 based on the photoelectric signals output from the light receiving units 20 and 21, and the actual transmittance is stored in advance in the storage unit. 24, the degree of contamination is measured from the result of comparison with the predetermined transmittance stored. Even in this case, the same effects as those of the above embodiments can be obtained.

【0061】・ 前記各実施形態では、マスクと基板と
を静止した状態でマスクのパターンを露光し、基板を順
次移動させるステップアンドリピート型の投影露光装置
に具体化したが、投影露光装置としては、マスクと基板
とを同期移動してマスクのパターンを露光する走査型の
投影露光装置にも適用可能である。また、露光装置の種
類としては、半導体製造用の露光装置に限定されること
なく、例えば、角型のガラスプレートに液晶表示素子パ
ターンを露光する液晶用の露光装置や、薄膜磁気ヘッド
を製造するための露光装置にも適用可能である。なお、
本発明における投影光学系検査装置及び投影露光装置
は、既に各実施形態で説明した各構成要素から構成され
ており、これらの構成要素を、前述した各機能を達成す
るように、電気的、又は機械的、光学的に連結すること
で、組み上げられる。
In each of the above embodiments, the step and repeat type projection exposure apparatus in which the pattern of the mask is exposed while the mask and the substrate are stationary and the substrate is sequentially moved is embodied. The present invention is also applicable to a scanning projection exposure apparatus that exposes a mask pattern by synchronously moving a mask and a substrate. Further, the type of the exposure apparatus is not limited to an exposure apparatus for manufacturing a semiconductor, and for example, an exposure apparatus for a liquid crystal that exposes a liquid crystal display element pattern to a square glass plate or a thin film magnetic head is manufactured. Is also applicable to an exposure apparatus for the purpose. In addition,
The projection optical system inspection apparatus and the projection exposure apparatus according to the present invention are constituted by the respective components already described in the respective embodiments, and these components are electrically or so as to achieve the respective functions described above. It is assembled by mechanically and optically connecting.

【0062】次に、前記各実施形態から把握できる請求
項に記載した発明以外の技術的思想について、その効果
と共に以下記載する。 (1)光学部材表面の近傍に酸化促進ガスを供給するガ
ス供給手段を配置し、同ガス供給手段から供給された酸
化促進ガスが満たされた雰囲気下において光洗浄効果を
有する所定の照射光を前記光学部材表面に対して照射す
るようにした光洗浄装置。即ち、この技術的思想(1)
においては、酸化促進ガスの働きにより前記光学部材表
面近傍を酸化力の増した雰囲気にできるので、光洗浄効
果を促進することができる。
Next, technical ideas other than those described in the claims which can be grasped from the above embodiments will be described below together with their effects. (1) A gas supply means for supplying an oxidation promoting gas is disposed near the surface of the optical member, and a predetermined irradiation light having a light cleaning effect is provided in an atmosphere filled with the oxidation promotion gas supplied from the gas supply means. An optical cleaning device configured to irradiate the optical member surface. That is, this technical idea (1)
In the method, the vicinity of the surface of the optical member can be made into an atmosphere having increased oxidizing power by the action of the oxidation promoting gas, so that the light cleaning effect can be promoted.

【0063】(2)前記技術的思想(1)において、前
記照射光の光路を含んで前記光学部材表面近傍の雰囲気
を外部から遮蔽する遮蔽手段を備えた光洗浄装置。即
ち、この技術的思想(2)においては、酸化促進ガスの
働きにより酸化力の増した雰囲気を前記光学部材表面の
近傍へ確実に形成できるので、より一層、光洗浄効果を
促進することができる。
(2) An optical cleaning apparatus according to the above technical idea (1), further comprising a shielding means for shielding an atmosphere near the surface of the optical member from the outside, including an optical path of the irradiation light. That is, in the technical idea (2), an atmosphere having increased oxidizing power can be reliably formed in the vicinity of the optical member surface by the action of the oxidation promoting gas, so that the light cleaning effect can be further promoted. .

【0064】(3)請求項3に記載の投影光学系検査装
置において、前記測定手段は、前記光学部材表面の汚染
度が許容範囲内にあると想定した所定状態時における当
該光学部材表面の反射率又は透過率を前記所定反射率又
は所定透過率として予め設定するものである投影光学系
検査装置。即ち、この技術的思想(3)においては、請
求項3に記載の発明の作用に加えて、汚染度が一定の許
容範囲内にあって洗浄の必要性がない所定状態時の反射
率又は透過率が前記所定反射率RO 又は所定透過率とさ
れ、そのような所定反射率RO 又は所定透過率と実反射
率Rr 又は実透過率が対比されて洗浄の必要性等が判断
される。従って、前記請求項3の発明の効果に加えて、
測定手段の測定結果に基づく判断内容にバラツキが生じ
るおそれを回避できるので、その測定結果に基づき洗浄
作業が必要とされるときには的確に洗浄作業を実施する
ことができる。
(3) In the projection optical system inspection apparatus according to the third aspect, the measuring means reflects the reflection of the optical member surface in a predetermined state on the assumption that the degree of contamination of the optical member surface is within an allowable range. A projection optical system inspection device for setting a transmittance or a transmittance as the predetermined reflectance or the predetermined transmittance in advance. That is, in the technical idea (3), in addition to the effect of the invention described in claim 3, the reflectance or the transmission in a predetermined state where the degree of contamination is within a certain allowable range and there is no need for cleaning. The reflectance is defined as the predetermined reflectance R O or the predetermined transmittance, and such a predetermined reflectance R O or the predetermined transmittance is compared with the actual reflectance R r or the actual transmittance to determine the necessity of cleaning or the like. . Therefore, in addition to the effect of the invention of claim 3,
Since it is possible to avoid a possibility that the judgment content based on the measurement result of the measuring means varies, the cleaning operation can be accurately performed when the cleaning operation is required based on the measurement result.

【0065】[0065]

【発明の効果】請求項1の発明によれば、測定手段の測
定結果に基づき、洗浄前にあっては、投影光学系の洗浄
タイミングを把握できるとともに、洗浄後にあっては、
当該洗浄に基づく汚れ除去具合を把握して不完全洗浄を
防止することができる。
According to the first aspect of the present invention, before the cleaning, the cleaning timing of the projection optical system can be grasped based on the measurement result of the measuring means.
By grasping the degree of dirt removal based on the cleaning, incomplete cleaning can be prevented.

【0066】請求項2の発明によれば、前記請求項1の
発明の効果に加えて、光学部材表面の光反射率又は光透
過率に基づき汚染度を測定しているので、その測定結果
から投影光学系の光学特性に変化を与えるおそれのある
汚染状態の有無を容易に把握することができる。
According to the second aspect of the invention, in addition to the effect of the first aspect, the degree of contamination is measured based on the light reflectance or light transmittance of the optical member surface. The presence or absence of a contamination state that may change the optical characteristics of the projection optical system can be easily grasped.

【0067】請求項3の発明によれば、前記請求項2の
発明の効果に加えて、汚染度測定に際しての判断基準が
明確かつ客観的であるので、測定結果に対する信頼性を
向上することができる。
According to the third aspect of the present invention, in addition to the effect of the second aspect of the present invention, the criterion for measuring the degree of contamination is clear and objective, so that the reliability of the measurement result can be improved. it can.

【0068】請求項4の発明によれば、前記請求項3の
発明の効果に加えて、例えば、光学部材表面の洗浄作業
実施中に前記汚染度測定を繰り返し行うことにより、当
該洗浄作業に基づく汚れ除去具合の進行変化を把握する
ことができる。
According to the fourth aspect of the present invention, in addition to the effect of the third aspect of the present invention, for example, by repeatedly performing the contamination degree measurement while performing the cleaning operation of the optical member surface, the cleaning operation can be performed based on the cleaning operation. It is possible to grasp the progress change of the degree of dirt removal.

【0069】請求項5の発明によれば、前記請求項1〜
請求項4のうちいずれか一項に記載の発明の効果に加え
て、洗浄内容にバラツキが生じるおそれを回避できる。
請求項6の発明によれば、前記請求項5の発明の効果に
加えて、酸化促進ガスが満たされた雰囲気下で光学部材
表面の光洗浄を実施できるので、光洗浄作用を促進する
ことができる。
According to the fifth aspect of the present invention, the first to fifth aspects are described.
In addition to the effect of the invention described in any one of the fourth aspects, it is possible to avoid the possibility that the cleaning content varies.
According to the invention of claim 6, in addition to the effect of the invention of claim 5, light cleaning of the optical member surface can be performed in an atmosphere filled with an oxidation promoting gas, so that the light cleaning action can be promoted. it can.

【0070】請求項7の発明によれば、前記請求項6の
発明の効果に加えて、前記光学部材表面の近傍に酸化促
進ガスの雰囲気を確実に形成できるので、より一層、光
洗浄作用を促進することができる。
According to the seventh aspect of the present invention, in addition to the effect of the sixth aspect of the present invention, an atmosphere of an oxidation promoting gas can be reliably formed in the vicinity of the surface of the optical member. Can be promoted.

【0071】請求項8の発明によれば、前記請求項5〜
請求項7のうちいずれか一項の発明の効果に加えて、窓
材により光洗浄装置を保護することができるとともに、
窓材が不良となった場合には簡単に当該窓材を交換でき
るので、光洗浄効果を良好に維持することができる。
According to the eighth aspect of the present invention, the fifth to fifth aspects are provided.
In addition to the effect of the invention of any one of claims 7, the light cleaning device can be protected by the window material,
When the window material becomes defective, the window material can be easily replaced, so that the light cleaning effect can be maintained satisfactorily.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第一実施形態に係る投影露光装置全
体の概略図。
FIG. 1 is a schematic diagram of an entire projection exposure apparatus according to a first embodiment of the present invention.

【図2】 第一実施形態の要部概略図。FIG. 2 is a schematic diagram of a main part of the first embodiment.

【図3】 第二実施形態の要部概略図。FIG. 3 is a schematic diagram of a main part of a second embodiment.

【図4】 第三実施形態の要部概略図。FIG. 4 is a schematic diagram of a main part of a third embodiment.

【図5】 第四実施形態の要部概略図。FIG. 5 is a schematic view of a main part of a fourth embodiment.

【図6】 第五実施形態の要部概略図。FIG. 6 is a schematic diagram of a main part of a fifth embodiment.

【図7】 他の実施形態の要部概略図。FIG. 7 is a schematic view of a main part of another embodiment.

【図8】 同じく他の実施形態の要部概略図。FIG. 8 is a schematic diagram of a main part of another embodiment.

【符号の説明】[Explanation of symbols]

1…投影光学系 9…投影レンズ(光学部材 11
…窓材 17…光洗浄装置 22…測定制御系(測定手段) 2
5…投影光学系検査装置 27…ガス供給手段 32…遮蔽手段 W…ウエハ
(感光基板)
1: Projection optical system 9: Projection lens (optical member 11)
... window material 17 ... light cleaning device 22 ... measurement control system (measurement means) 2
5 Projection optical system inspection device 27 Gas supply means 32 Shielding means W Wafer (photosensitive substrate)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 投影露光装置における投影光学系の最も
感光基板側の光学部材表面の汚染度を測定する測定手段
を備えた投影光学系検査装置。
1. An apparatus for inspecting a projection optical system comprising a measuring means for measuring the degree of contamination of the surface of an optical member closest to a photosensitive substrate in a projection optical system in a projection exposure apparatus.
【請求項2】 前記測定手段は、前記光学部材表面で反
射する反射光の反射率又は前記光学部材表面を透過した
透過光の透過率を測定し、その測定結果に基づき前記光
学部材表面の汚染度を測定する請求項1に記載の投影光
学系検査装置。
2. The method according to claim 1, wherein the measuring unit measures a reflectance of the light reflected on the surface of the optical member or a transmittance of the light transmitted through the surface of the optical member, and contaminates the surface of the optical member based on the measurement result. The projection optical system inspection device according to claim 1, wherein the degree is measured.
【請求項3】 前記測定手段は、予め設定した所定反射
率又は所定透過率と実際に測定した実反射率又は実透過
率との対比結果に基づいて前記光学部材表面の汚染度を
測定するものである請求項2に記載の投影光学系検査装
置。
3. The method according to claim 1, wherein the measuring unit measures a degree of contamination of the surface of the optical member based on a result of comparison between a preset predetermined reflectance or predetermined transmittance and an actually measured actual reflectance or actual transmittance. The projection optical system inspection device according to claim 2, wherein
【請求項4】 前記測定手段は、所定タイミングで照射
された照射光に基づいて、当該照射光が前記光学部材表
面により反射された後又は当該光学部材表面を透過した
後に受光された光電信号と、当該照射光が前記光学部材
表面を介することなく受光された光電信号との対比結果
から前記実反射率又は実透過率を測定するものである請
求項3に記載の投影光学系検査装置。
4. The method according to claim 1, wherein the measuring unit is configured to determine, based on the irradiation light irradiated at a predetermined timing, a photoelectric signal received after the irradiation light is reflected by the optical member surface or transmitted through the optical member surface. 4. The projection optical system inspection device according to claim 3, wherein the actual reflectance or the actual transmittance is measured from a result of comparison with a photoelectric signal received without the irradiation light passing through the optical member surface.
【請求項5】 前記請求項1〜請求項4のうちいずれか
一項に記載の投影光学系検査装置と、前記光学部材表面
に対して光洗浄効果を有する所定の照射光を照射する光
洗浄装置とを備えた投影露光装置。
5. A projection optical system inspection apparatus according to claim 1, wherein said optical member surface is irradiated with a predetermined irradiation light having a light cleaning effect on a surface of said optical member. And a projection exposure apparatus.
【請求項6】 前記光洗浄装置は、前記光学部材表面の
近傍に酸化促進ガスを供給するガス供給手段を備えてい
る請求項5に記載の投影露光装置。
6. The projection exposure apparatus according to claim 5, wherein the optical cleaning device includes a gas supply unit that supplies an oxidation promoting gas near the optical member surface.
【請求項7】 前記光洗浄装置は、前記照射光の光路を
含んで前記光学部材表面近傍の雰囲気を外部から遮蔽す
る遮蔽手段を備えている請求項6に記載の投影露光装
置。
7. The projection exposure apparatus according to claim 6, wherein the light cleaning apparatus includes a shielding unit that shields an atmosphere near a surface of the optical member from outside including an optical path of the irradiation light.
【請求項8】 前記光洗浄装置は、前記光学部材に対し
て交換可能な窓材を通して前記照射光を照射するもので
ある請求項5〜請求項7のうちいずれか一項に記載の投
影露光装置。
8. The projection exposure according to claim 5, wherein the light cleaning device irradiates the irradiation light to the optical member through a replaceable window material. apparatus.
JP10083724A 1997-11-21 1998-03-30 Projection optical system inspection device and projection aligner provided with the device Pending JPH11283903A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10083724A JPH11283903A (en) 1998-03-30 1998-03-30 Projection optical system inspection device and projection aligner provided with the device
PCT/JP1998/005258 WO1999027568A1 (en) 1997-11-21 1998-11-20 Projection aligner and projection exposure method
AU11757/99A AU1175799A (en) 1997-11-21 1998-11-20 Projection aligner and projection exposure method
US09/577,020 US6496257B1 (en) 1997-11-21 2000-05-22 Projection exposure apparatus and method
US10/212,278 US20030011763A1 (en) 1997-11-21 2002-08-06 Projection exposure apparatus and method
US11/008,166 US7061575B2 (en) 1997-11-21 2004-12-10 Projection exposure apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10083724A JPH11283903A (en) 1998-03-30 1998-03-30 Projection optical system inspection device and projection aligner provided with the device

Publications (1)

Publication Number Publication Date
JPH11283903A true JPH11283903A (en) 1999-10-15

Family

ID=13810476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10083724A Pending JPH11283903A (en) 1997-11-21 1998-03-30 Projection optical system inspection device and projection aligner provided with the device

Country Status (1)

Country Link
JP (1) JPH11283903A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246283A (en) * 2001-02-14 2002-08-30 Canon Inc Device fabricating system
JP2002261001A (en) * 2000-12-09 2002-09-13 Carl-Zeiss-Stiftung Trading As Carl Zeiss Method and apparatus for decontaminating euv lithographic unit
JP2004289117A (en) * 2002-09-30 2004-10-14 Asml Netherlands Bv Lithograph system and process for fabricating device
WO2004105107A1 (en) * 2003-05-23 2004-12-02 Nikon Corporation Exposure device and device manufacturing method
JP2005277363A (en) * 2003-05-23 2005-10-06 Nikon Corp Exposure device and device manufacturing method
JP2006140459A (en) * 2004-10-13 2006-06-01 Nikon Corp Aligner, exposing method, and device manufacturing method
JP2006147982A (en) * 2004-11-24 2006-06-08 Oki Electric Ind Co Ltd Self-cleaning method of exposure device and exposure device
JP2006165502A (en) * 2004-06-21 2006-06-22 Nikon Corp Exposure apparatus, method of cleaning member thereof, maintenance method of exposure apparatus, maintenance device, and device manufacturing method
JP2006179909A (en) * 2004-12-20 2006-07-06 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2007059929A (en) * 2003-05-23 2007-03-08 Nikon Corp Exposure device and exposure method and device manufacturing method
JP2007173786A (en) * 2005-12-16 2007-07-05 Asml Netherlands Bv Lithographic device and method
KR100826992B1 (en) 2005-12-02 2008-05-02 에이에스엠엘 네델란즈 비.브이. A method for preventing or reducing contaminatioin of an immersion type projection appartus and an immersion type lithographic apparatus
JP2008235872A (en) * 2007-02-15 2008-10-02 Asml Holding Nv System and method for insitu lens cleaning in immersion lithography
JP2008263091A (en) * 2007-04-12 2008-10-30 Nikon Corp Optical cleaning member, maintenance method, cleaning method, exposure method, exposure device and device manufacturing method
EP2020619A1 (en) 2007-07-30 2009-02-04 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
JP2009033162A (en) * 2007-07-24 2009-02-12 Asml Netherlands Bv Lithographic apparatus, reflective member and method of irradiating underside of liquid supply system
JP2009147374A (en) * 2004-12-20 2009-07-02 Asml Netherlands Bv Lithography apparatus, and device manufacturing method
JP2009177183A (en) * 2008-01-25 2009-08-06 Asml Netherlands Bv Lithography apparatus and device manufacturing method
EP2144118A1 (en) 2008-07-07 2010-01-13 Canon Kabushiki Kaisha Exposure apparatus and method of manufacturing device
JP2010506423A (en) * 2006-10-10 2010-02-25 エーエスエムエル ネザーランズ ビー.ブイ. Cleaning method, apparatus and cleaning system
JP2011097121A (en) * 2004-08-03 2011-05-12 Nikon Corp Exposure apparatus, exposure method and device manufacturing method
JP2011151058A (en) * 2010-01-19 2011-08-04 Nikon Corp Cleaning method, exposure apparatus, and method of manufacturing device
JP2011171758A (en) * 2003-04-11 2011-09-01 Nikon Corp Method of cleaning optical element in immersion lithography
KR101245070B1 (en) * 2004-06-21 2013-03-18 가부시키가이샤 니콘 Exposure device, exposure device member cleaning method, exposure device maintenance method, maintenance device and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US9158206B2 (en) 2007-07-24 2015-10-13 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9623436B2 (en) 2004-05-18 2017-04-18 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
US9645505B2 (en) 2004-06-09 2017-05-09 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device to measure specific resistance of liquid
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10451973B2 (en) 2005-05-03 2019-10-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495980B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Cited By (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002261001A (en) * 2000-12-09 2002-09-13 Carl-Zeiss-Stiftung Trading As Carl Zeiss Method and apparatus for decontaminating euv lithographic unit
JP2002246283A (en) * 2001-02-14 2002-08-30 Canon Inc Device fabricating system
JP4585702B2 (en) * 2001-02-14 2010-11-24 キヤノン株式会社 Exposure equipment
JP2004289117A (en) * 2002-09-30 2004-10-14 Asml Netherlands Bv Lithograph system and process for fabricating device
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
JP2014225703A (en) * 2003-04-11 2014-12-04 株式会社ニコン Cleanup method for optical element in immersion lithography
JP2011171758A (en) * 2003-04-11 2011-09-01 Nikon Corp Method of cleaning optical element in immersion lithography
KR101318542B1 (en) * 2003-04-11 2013-10-16 가부시키가이샤 니콘 Cleanup method for optics in immersion lithography
KR101525335B1 (en) * 2003-04-11 2015-06-03 가부시키가이샤 니콘 Cleanup method for optics in immersion lithography
KR20140048312A (en) * 2003-04-11 2014-04-23 가부시키가이샤 니콘 Cleanup method for optics in immersion lithography
US9958786B2 (en) 2003-04-11 2018-05-01 Nikon Corporation Cleanup method for optics in immersion lithography using object on wafer holder in place of wafer
JP2012138624A (en) * 2003-04-11 2012-07-19 Nikon Corp Cleanup method for optical element in immersion lithography
JP2011139107A (en) * 2003-05-23 2011-07-14 Nikon Corp Exposure apparatus and device manufacturing method
JP2011159995A (en) * 2003-05-23 2011-08-18 Nikon Corp Exposure device and device manufacturing method
JP2012248902A (en) * 2003-05-23 2012-12-13 Nikon Corp Exposure apparatus and device manufacturing method
US9939739B2 (en) 2003-05-23 2018-04-10 Nikon Corporation Exposure apparatus and method for producing device
WO2004105107A1 (en) * 2003-05-23 2004-12-02 Nikon Corporation Exposure device and device manufacturing method
JP2005277363A (en) * 2003-05-23 2005-10-06 Nikon Corp Exposure device and device manufacturing method
TWI474380B (en) * 2003-05-23 2015-02-21 尼康股份有限公司 A method of manufacturing an exposure apparatus and an element
JP2015222451A (en) * 2003-05-23 2015-12-10 株式会社ニコン Exposure equipment and device manufacturing method
JP2010109391A (en) * 2003-05-23 2010-05-13 Nikon Corp Exposure device and device manufacturing method
JP2011139105A (en) * 2003-05-23 2011-07-14 Nikon Corp Exposure apparatus and device manufacturing method
JP2007059929A (en) * 2003-05-23 2007-03-08 Nikon Corp Exposure device and exposure method and device manufacturing method
KR101523829B1 (en) * 2003-05-23 2015-05-28 가부시키가이샤 니콘 Exposure device and device manufacturing method
JP2011139106A (en) * 2003-05-23 2011-07-14 Nikon Corp Exposure apparatus and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10761438B2 (en) 2004-05-18 2020-09-01 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
US9623436B2 (en) 2004-05-18 2017-04-18 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
US9645505B2 (en) 2004-06-09 2017-05-09 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device to measure specific resistance of liquid
JP2014027316A (en) * 2004-06-21 2014-02-06 Nikon Corp Exposure device, and method for manufacturing device
KR101245070B1 (en) * 2004-06-21 2013-03-18 가부시키가이샤 니콘 Exposure device, exposure device member cleaning method, exposure device maintenance method, maintenance device and device manufacturing method
JP2006165502A (en) * 2004-06-21 2006-06-22 Nikon Corp Exposure apparatus, method of cleaning member thereof, maintenance method of exposure apparatus, maintenance device, and device manufacturing method
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US8810767B2 (en) 2004-06-21 2014-08-19 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
JP2011097121A (en) * 2004-08-03 2011-05-12 Nikon Corp Exposure apparatus, exposure method and device manufacturing method
US9063436B2 (en) 2004-08-03 2015-06-23 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2006140459A (en) * 2004-10-13 2006-06-01 Nikon Corp Aligner, exposing method, and device manufacturing method
JP2006147982A (en) * 2004-11-24 2006-06-08 Oki Electric Ind Co Ltd Self-cleaning method of exposure device and exposure device
JP4617143B2 (en) * 2004-11-24 2011-01-19 Okiセミコンダクタ株式会社 Exposure apparatus and self-cleaning method
US9116443B2 (en) 2004-12-20 2015-08-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9835960B2 (en) 2004-12-20 2017-12-05 Asml Netherlands B.V. Lithographic apparatus
JP2006179909A (en) * 2004-12-20 2006-07-06 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US8941811B2 (en) 2004-12-20 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10509326B2 (en) 2004-12-20 2019-12-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8462312B2 (en) 2004-12-20 2013-06-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8233137B2 (en) 2004-12-20 2012-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2009147374A (en) * 2004-12-20 2009-07-02 Asml Netherlands Bv Lithography apparatus, and device manufacturing method
US9329494B2 (en) 2004-12-20 2016-05-03 Asml Netherlands B.V. Lithographic apparatus
US9703210B2 (en) 2004-12-20 2017-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9417535B2 (en) 2004-12-20 2016-08-16 Asml Netherlands B.V. Lithographic apparatus
JP2011254089A (en) * 2004-12-20 2011-12-15 Asml Netherlands Bv Lithographic apparatus
US10248035B2 (en) 2004-12-20 2019-04-02 Asml Netherlands B.V. Lithographic apparatus
US10495980B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495981B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10488759B2 (en) 2005-05-03 2019-11-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10451973B2 (en) 2005-05-03 2019-10-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
KR100826992B1 (en) 2005-12-02 2008-05-02 에이에스엠엘 네델란즈 비.브이. A method for preventing or reducing contaminatioin of an immersion type projection appartus and an immersion type lithographic apparatus
JP2007173786A (en) * 2005-12-16 2007-07-05 Asml Netherlands Bv Lithographic device and method
JP2010506423A (en) * 2006-10-10 2010-02-25 エーエスエムエル ネザーランズ ビー.ブイ. Cleaning method, apparatus and cleaning system
JP2008235872A (en) * 2007-02-15 2008-10-02 Asml Holding Nv System and method for insitu lens cleaning in immersion lithography
JP2008263091A (en) * 2007-04-12 2008-10-30 Nikon Corp Optical cleaning member, maintenance method, cleaning method, exposure method, exposure device and device manufacturing method
US9019466B2 (en) 2007-07-24 2015-04-28 Asml Netherlands B.V. Lithographic apparatus, reflective member and a method of irradiating the underside of a liquid supply system
JP2009033162A (en) * 2007-07-24 2009-02-12 Asml Netherlands Bv Lithographic apparatus, reflective member and method of irradiating underside of liquid supply system
JP2011193017A (en) * 2007-07-24 2011-09-29 Asml Netherlands Bv Lithographic apparatus
US9599908B2 (en) 2007-07-24 2017-03-21 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US9158206B2 (en) 2007-07-24 2015-10-13 Asml Netherlands B.V. Lithographic apparatus and contamination removal or prevention method
US7630058B2 (en) 2007-07-30 2009-12-08 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
EP2020619A1 (en) 2007-07-30 2009-02-04 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2009177183A (en) * 2008-01-25 2009-08-06 Asml Netherlands Bv Lithography apparatus and device manufacturing method
US8339572B2 (en) 2008-01-25 2012-12-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP2144118A1 (en) 2008-07-07 2010-01-13 Canon Kabushiki Kaisha Exposure apparatus and method of manufacturing device
JP2011151058A (en) * 2010-01-19 2011-08-04 Nikon Corp Cleaning method, exposure apparatus, and method of manufacturing device

Similar Documents

Publication Publication Date Title
JPH11283903A (en) Projection optical system inspection device and projection aligner provided with the device
US6496257B1 (en) Projection exposure apparatus and method
JP5055310B2 (en) Lithographic apparatus, radiation system, contaminant trap, device manufacturing method, and method of capturing contaminant in a contaminant trap
US6411368B1 (en) Projection exposure method, projection exposure apparatus, and methods of manufacturing and optically cleaning the exposure apparatus
JP4509094B2 (en) Lithographic apparatus having a monitoring device for detecting contamination
TWI550357B (en) A inspection method, an inspection apparatus, an exposure management method, an exposure system, and a semiconductor element
JP5081247B2 (en) Lithographic apparatus and lithography method
TWI485532B (en) Radiation system and lithographic apparatus comprising the same
US6897456B2 (en) Differential pumping system and exposure apparatus
KR102257903B1 (en) radiation source
JPH10223512A (en) Electron beam projection aligner
JP2004519868A (en) Transparent boundary structure for EUV
KR20110069083A (en) Euv lithography device and method for processing an optical element
KR20040076218A (en) Method and device for measuring contamination of a surface of a component of a lithographic apparatus
JP2003234287A (en) Lithographic projection apparatus, device manufacturing method and device manufacturing thereby
JPH11288870A (en) Aligner
CN109814338A (en) EUV light source cleaning equipment
JP4931124B2 (en) Defect correction apparatus, defect correction method, and pattern substrate manufacturing method
JP4066083B2 (en) Optical element light cleaning method and projection exposure apparatus
JP2011023403A (en) Light-shielding device, exposure device and method for manufacturing device
JP4510433B2 (en) Exposure apparatus and cleaning method
JP4029200B2 (en) Projection exposure apparatus, projection exposure method, optical cleaning method, and semiconductor device manufacturing method
JPH10335235A (en) Aligner, optical cleaning method thereof and manufacture of semiconductor device
TW200837504A (en) Exposure apparatus, exposure method, and device fabrication method
JPH0312542A (en) Mask surface inspection device