JP3817836B2 - An exposure apparatus and a manufacturing method and an exposure method and device manufacturing method thereof - Google Patents

An exposure apparatus and a manufacturing method and an exposure method and device manufacturing method thereof Download PDF

Info

Publication number
JP3817836B2
JP3817836B2 JP15198597A JP15198597A JP3817836B2 JP 3817836 B2 JP3817836 B2 JP 3817836B2 JP 15198597 A JP15198597 A JP 15198597A JP 15198597 A JP15198597 A JP 15198597A JP 3817836 B2 JP3817836 B2 JP 3817836B2
Authority
JP
Japan
Prior art keywords
optical system
projection optical
refractive index
reticle
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15198597A
Other languages
Japanese (ja)
Other versions
JPH10340846A (en
Inventor
威人 工藤
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP15198597A priority Critical patent/JP3817836B2/en
Publication of JPH10340846A publication Critical patent/JPH10340846A/en
Application granted granted Critical
Publication of JP3817836B2 publication Critical patent/JP3817836B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Lifetime legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/70216Systems for imaging mask onto workpiece
    • G03F7/70341Immersion

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
本発明は、レチクル上に設けられたデバイスパターンのを感光性基板上に投影する投影光学系を備えた露光装置及び該露光装置を用いた露光方法並びにデバイス製造方法に関する。 The present invention relates to an exposure method and device manufacturing method using the exposure apparatus and exposure apparatus having a projection optical system for projecting from the device pattern provided on a reticle onto a photosensitive substrate. さらに詳しくは、本発明は投影光学系と感光性基板との間の光路に液体を充填した液浸型露光装置に関する。 More particularly, the present invention relates to an immersion type exposure apparatus filled with liquid in the optical path between the photosensitive substrate and the projection optical system. 本発明は、半導体素子、撮像素子(CCD等)、液晶表示素子、または薄膜磁気ヘッド等を製造する際に好適なものである。 The present invention relates to a semiconductor device, an imaging device (CCD etc.), is suitable for the manufacture of liquid crystal display device or a thin film magnetic head, or the like.
【0002】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION
光学系の最終面と像面との間の空間を、ワーキングディスタンスと言うが、従来の露光装置の投影光学系ではワーキングディスタンスは空気で満たされていた。 A space between the final surface and the image plane of the optical system, referred to as a working distance, but the working distance was filled with air at the projection optical system of a conventional exposure apparatus. ところで、ICやLSIを製造する過程に於いてシリコンウエハに露光するパターンは、その微細化が常に望まれていて、そのためには露光に用いる光の波長を短くするか、あるいは像側の開口数を大きくする必要がある。 Incidentally, the pattern to be exposed in the step of manufacturing an IC or LSI to a silicon wafer, the in miniaturization have always desirable, or in order that shortens the wavelength of light used for exposure, or the image-side numerical aperture the it is necessary to increase. 光の波長が短くなるにつれ、満足できる結像性能を得つつ露光に満足な光量を確保できるだけの透過率を持つガラス材料は少なくなってくる。 As the wavelength of light becomes shorter, a glass material having a transmittance of only a satisfactory amount of light exposure while obtaining satisfactory image-forming performance can be secured becomes smaller.
【0003】 [0003]
そこで像面までの最終媒質を、空気より屈折率の大きい、液体にすることで像側の開口数を大きくすることが提案されていて、そのように液体を用いた投影光学系を持つ露光装置は、液浸型露光装置と呼ばれている。 Therefore the final medium to the image plane, a large refractive index than air, by the liquid have been proposed to increase the numerical aperture on the image side, an exposure apparatus having a projection optical system using so the liquid It is called a liquid immersion type exposure apparatus.
さて、露光装置においては、投影光学系の結像性能を補正するために、投影光学系の最も物体側の光路或いは最も像側の光路中に、結像性能を調整するための結像性能補正部材を交換可能に設ける技術が知られている。 Now, in the exposure apparatus, the projection optical system the imaging performance in order to correct the, in the optical path of the optical path or the most image side of the most object side of the projection optical system, imaging performance correction for adjusting the imaging performance technology to provide a member to be replaced are known.
【0004】 [0004]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
しかしながら、液浸型露光装置では、投影光学系と感光性基板との間の光路(ワーキングディスタンス)に液体を満たす構成であるため、結像性能を補正するための部材を配置することが困難である。 However, an immersion type exposure apparatus, since the optical path between the projection optical system and the photosensitive substrate (working distance) is configured to satisfy the liquid, it is difficult to arrange the member for correcting the imaging performance is there. また、このような結像性能補正部材は、有限の数、現実的な装置の構成を考えると数個程度しか準備することができないため、離散的にしか結像性能を補正できない問題点がある。 In addition, such imaging performance correction member, the number of finite for only a few approximately Given the configuration of the practical device can not be prepared, discrete there is a problem that can not be corrected imaging performance only .
【0005】 [0005]
また、投影光学系の結像性能は所定の許容範囲に収める必要があるが、上述のように結像性能の補正が離散的にしかできなければ、この所定の許容範囲内に収めることが困難となる。 Moreover, the imaging performance of the projection optical system but it is necessary to fit a predetermined allowable range, to be able to only correction discrete imaging performance as described above, it is difficult to fall within the predetermined allowable range to become. 特に、露光パターンの微細化や露光面積の増大が求められると、この結像性能の許容範囲が狭くなり、また、レチクルと感光性基板とを走査させつつ露光を行う走査露光方法を行う場合にも結像性能特性の変動幅の許容範囲が狭くなっており、離散的な補正では対応しきれない。 In particular, the increase in miniaturization and exposure area of ​​the exposure pattern is required, the permissible range of the imaging performance becomes narrower, and when performing the scanning exposure method of performing exposure while scanning the reticle and the photosensitive substrate also narrow the allowable range of the variation width of the imaging performance characteristics, the discrete corrected not cope.
【0006】 [0006]
また、上述のような結像性能補正部材の交換時において、投影光学系自体の振動が発生するため、結像性能へ悪影響が生じる恐れもある。 Further, there is at the time of replacing the imaging performance compensation member as described above, since the vibration of the projection optical system itself occurs, a possibility that the imaging performance adversely occur.
そこで、本発明は、連続的な結像性能の補正を振動を伴うことなく可能とすることを第1の目的とする。 Accordingly, the present invention is to enable without vibration correction continuous imaging performance with the first object.
また、本発明は、投影光学系の開口数の増大と結像性能を補正することとの両立を第2の目的とする。 The present invention is directed to a compatibility between correcting the increase and imaging performance of the numerical aperture of the projection optical system and the second object.
【0007】 [0007]
【課題を解決するための手段】 In order to solve the problems]
上述の第1の目的を達成するために、本発明による露光装置は、レチクル上に設けられたパターンを照明する照明光学系と、このパターンの像を感光性基板上に形成する投影光学系とを有し、投影光学系と感光性基板との間の光路中の少なくとも一部分に位置する液体を介して露光を行う露光装置であって、 前記液体に添加剤を供給して、前記液体の屈折率を調整する屈折率調整手段を有するものである。 To achieve the first object described above, the exposure apparatus according to the present invention includes an illumination optical system for illuminating a pattern provided on the reticle, a projection optical system for forming an image of the pattern on a photosensitive substrate has, in at least the exposure apparatus which performs exposure through a liquid located in a portion of the optical path between the photosensitive substrate and the projection optical system, by supplying an additive to said liquid, refraction of said liquid and has a refractive index adjustment means for adjusting the rate.
【0008】 [0008]
ここで、上記請求項2に掲げた好ましい態様によれば、屈折率調整手段は、前記投影光学系の結像性能を補正するように液体の屈折率を調整するものである。 Here, according to a preferred embodiment listed above claim 2, refractive index adjustment means is for adjusting the refractive index of the liquid so as to correct the imaging performance of the projection optical system.
また、本発明による露光装置は、レチクル上に設けられたパターンを照明する照明光学系と、このパターンの像を感光性基板上に形成する投影光学系とを有し、投影光学系と感光性基板との間の光路中の少なくとも一部分に位置する液体を介して露光を行う露光装置であって、投影光学系の結像性能を測定する結像性能測定手段と、前記結像性能を補正するように液体の屈折率を調整する屈折率調整手段とを備えるものである。 The exposure apparatus according to the present invention includes an illumination optical system for illuminating a pattern provided on the reticle, and a projection optical system for forming an image of the pattern onto a photosensitive substrate, a photosensitive a projection optical system an exposure apparatus which performs exposure through a liquid located in at least a portion of the optical path between the substrate and the imaging performance measuring means for measuring the imaging performance of the projection optical system, for correcting the imaging performance those having a refractive index adjusting means for adjusting the refractive index of the liquid as.
【0009】 [0009]
また、本発明による露光装置は、レチクル上に設けられたパターンを照明する照明光学系と、このパターンの像を感光性基板上に形成する投影光学系とを有し、投影光学系と感光性基板との間の光路中の少なくとも一部分に位置する液体を介して露光を行う露光装置であって、投影光学系の結像性能の変動の要因の状態を検知する変動要因検知手段と、前記結像性能を補正するように液体の屈折率を調整する屈折率調整手段とを備えるものである。 The exposure apparatus according to the present invention includes an illumination optical system for illuminating a pattern provided on the reticle, and a projection optical system for forming an image of the pattern onto a photosensitive substrate, a photosensitive a projection optical system an exposure apparatus which performs exposure through a liquid located in at least a portion of the optical path between the substrate, and the variation factor detecting means for detecting the state of factors of the variation of the imaging performance of the projection optical system, said imaging those having a refractive index adjusting means for adjusting the refractive index of the liquid so as to correct the image quality.
この構成に基づいて、請求項5に掲げた好ましい態様によれば、照明光学系は、前記レチクルに対する照明条件を変更可能に構成され、変動要因検知手段は、照明条件の状態を検知し、屈折率調整手段は、照明条件の変更に応じて、結像性能を補正するように液体の屈折率を調整するものである。 Based on this arrangement, according to a preferred embodiment listed in claim 5, the illumination optical system is configured to change the illumination condition for said reticle, fluctuation factor detection means detects the state of the lighting conditions, the refractive the rate adjustment means, in response to a change in lighting conditions, and adjusts the refractive index of the liquid so as to correct the imaging performance.
【0010】 [0010]
そして、請求項6に掲げた好ましい態様によれば、変動要因検知手段は、レチクルの種類を判別するものであり、屈折率調整手段は、レチクルの種類に応じて、結像性能を補正するように液体の屈折率を調整するものである。 Then, according to a preferred embodiment listed in claim 6, variables detection means is adapted to determine the type of a reticle, a refractive index adjusting means, depending on the type of a reticle, so as to correct the imaging performance it is to adjust the refractive index of the liquid.
また、上述の第2の目的を達成するためには、投影光学系と感光性基板との間の光路の全てを液体で満たすことが好ましい。 In order to achieve the second object described above, it is preferable to satisfy all of the optical path between the photosensitive substrate and the projection optical system with a liquid. このとき、本発明による露光装置は、投影光学系と感光性基板との間の光路を前記液体で満たすための側壁と、液体を前記感光性基板ホルダーへ供給すると共に前記感光性基板ホルダーから回収するための供給・回収ユニットとを備え、感光性基板を保持する感光性基板ホルダーをさらに有することが好ましい。 In this case, the exposure apparatus according to the present invention, recovery and side walls to meet the optical path between the photosensitive substrate and the projection optical system with the liquid, the liquid from the photosensitive substrate holder is supplied to the photosensitive substrate holder and a supply and recovery unit for, may further include a photosensitive substrate holder for holding a photosensitive substrate.
【0011】 [0011]
また、屈折率調整手段は、液体に屈折率を調整するための添加剤を供給する添加剤供給ユニットと、液体から前記添加剤を回収するための添加剤回収ユニットとを有することが好ましい。 The refractive index adjustment means preferably comprises an additive supply unit for supplying additives to adjust the refractive index liquid, an additive recovery unit for recovering the additive from the liquid.
【0012】 [0012]
【発明の実施の形態】 DETAILED DESCRIPTION OF THE INVENTION
上述の構成のごとき本発明においては、投影光学系と感光性基板との間の光路中に位置する液体の屈折率を調整することができるため、この屈折率の変化により投影光学系の結像性能を補正することができる。 In such present invention of the above configuration, it is possible to adjust the refractive index of the liquid located in the optical path between the photosensitive substrate and the projection optical system, imaging of the projection optical system by a change in the refractive index it is possible to correct the performance. ここで、屈折率調整の手法としては、液体が多物質の混合液体であるとすると、この混合液体の屈折率nは、ローレンツ・ローレンス(Lorentz-Lorenz)の式に従い、 Here, as a method for refractive index adjustment, the liquid is assumed to be a mixed liquid of a multi-material, the refractive index n of the liquid mixture, in accordance with the equation of the Lorentz Lawrence (Lorentz-Lorenz),
【0013】 [0013]
【数1】 [Number 1]
【0014】 [0014]
となる。 To become.
但し、 However,
【0015】 [0015]
【数2】 [Number 2]
【0016】 [0016]
である。 It is.
例えば液体を水溶液とすると、この水溶液の屈折率が水溶液自体の濃度に応じて変化するため、水溶液へ添加する物質の濃度を増減させれば良い。 For example, the liquid aqueous solution, the refractive index of the aqueous solution changes according to the concentration of the aqueous solution itself, it is sufficient to decrease the concentration of the substance to be added to the aqueous solution.
これにより、投影光学系の結像性能を補償できる屈折率の値となるように、液体の屈折率を変化させれば、投影光学系の結像性能は良好なものとなる。 Thus, to a value of the refractive index that can compensate for the imaging performance of the projection optical system, if a change in the refractive index of the liquid, the imaging performance of the projection optical system becomes excellent.
【0017】 [0017]
ここで、屈折率の調整は、例えば投影光学系の収差などの結像性能を測定し、その結果に応じて屈折率を調整しても良く、投影光学系の結像性能の変動に対応している要因の変動を検知して、その結果に応じて屈折率を調整しても良い。 Here, adjustment of the refractive index, for example by measuring the imaging performance, such as aberration of the projection optical system may be adjusted refractive index according to the result, with the variation of the imaging performance of the projection optical system and by detecting the variation factors are, it may adjust the refractive index in accordance with the result.
前者の投影光学系の結像性能を測定する手法においては、露光装置の製造時に投影光学系の収差などを測定し、この収差を補償する屈折率の値を液体の屈折率の初期値に設定しても良い。 In the method of measuring the imaging performance of the former of the projection optical system, settings, etc. to measure the aberration of the projection optical system at the time of manufacturing of the exposure apparatus, the refractive index to compensate for this aberration in the initial value of the refractive index of the liquid it may be. このように製造時の調整の一部として屈折率を調整すれば、製造・調整が容易となる利点がある。 By adjusting the refractive index as part of the thus during production adjustment, there is an advantage that it is easy to manufacture and adjust. また、露光装置自体に収差測定機構などを設けておき、この収差測定機構による収差測定結果に応じて、液体の屈折率を変更しても良い。 The exposure apparatus itself advance and provided aberration measuring mechanism, in accordance with the aberration measurement result by the aberration measuring mechanism may change the refractive index of the liquid.
【0018】 [0018]
一方、後者の結像性能の変動に対応する要因の変動としては、レチクルの種類、照明条件の状態、投影光学系を通過する露光エネルギー量などが挙げられる。 On the other hand, the variation of the factor corresponding to the variation of the latter imaging performance, the kind of the reticle, the illumination conditions of the state, and the like the amount of exposure energy passing through the projection optical system. ここで、レチクルを照明する際の照明条件(σ値、変形照明か否かなど)は、レチクル上に設けられるパターンの種類によって最適なものが決まり、この照明条件が変わると、投影光学系の収差を初めとする結像性能が変化する。 Here, illumination condition (sigma value, such as whether the modified illumination) when illuminating the reticle, determines optimal depending on the kind of pattern provided on the reticle and the illumination conditions change, the projection optical system imaging performance, including the aberration changes. そこで、例えばレチクルの種類、照明条件などの要因ごとに、この要因の変動に伴って変化する結像性能を補償するための屈折率の値を予めメモリーなどに記憶させておき、この要因の変動を検知し、記憶された関係に基づいて液体の屈折率を調整すれば良い。 Therefore, for example, the type of a reticle, for each factor, such as lighting conditions, leave the value of the refractive index is previously memory such as store for compensating the imaging performance varies with variations of the factors, variations in this factor detects, it may be adjusted to the refractive index of the liquid on the basis of the stored relationship. また、投影光学系を通過する露光エネルギー量の大小により投影光学系の結像性能が変化する、いわゆる照射変動があるが、この場合においても、露光エネルギー量と、この露光エネルギー量の大小によって変化する結像性能を補償するための屈折率の値を予めメモリーなどに記憶させておき、この要因の変動を検知し、記憶された関係に基づいて液体の屈折率を調整すれば良い。 Also, a change in imaging performance of the projection optical system by the amount of exposure energy of magnitude passing through the projection optical system, there is a so-called irradiation variation, in this case, change the amount of exposure energy by the amount of exposure energy magnitude leave the value of the refractive index is previously memory such as store for compensating the imaging performance, detects variations in this factor may be adjusted to the refractive index of the liquid on the basis of the stored relationship. なお、この手法において、メモリーに記憶させる代わりに、所定の計算式で算出しても良い。 Note that in this approach, instead of storing in the memory, may be calculated by a predetermined formula.
【0019】 [0019]
このように、液体の屈折率を調整することで、投影光学系の結像性能のうち、特に球面収差、像面湾曲の補正に効果的である。 Thus, by adjusting the refractive index of the liquid, of the imaging performance of the projection optical system, in particular spherical aberration, effectively correct field curvature.
以下、図面を参照して、本発明にかかる実施の形態について説明する。 Hereinafter, with reference to the accompanying drawings, embodiments will be described in accordance with the present invention.
[第1の実施の形態] First Embodiment
図1は、本発明にかかる第1の実施の形態による露光装置を概略的に示す図である。 1, an exposure apparatus according to a first embodiment of the present invention is a diagram schematically illustrating. 尚、図1では、XYZ座標系を採用している。 In FIG. 1 adopts the XYZ coordinate system.
【0020】 [0020]
図1において、光源Sは、例えば波長248nmの露光光を供給し、この光源Sからの露光光は、照明光学系IL及び反射鏡Mを介してレチクルRをほぼ均一な照度分布のもとで照明する。 In Figure 1, light source S is, for example, supplies the exposure light having a wavelength of 248 nm, under the light source exposure light from S is substantially uniform illuminance distribution reticle R through the illumination optical system IL and the reflector M lighting to. ここで、本例では光源Sとして、KrFエキシマレーザ光源を用いているが、その代わりに、193nmの露光光を供給するArFエキシマレーザ光源やg線、i線等を供給する高圧水銀ランプ等を用いても良い。 Here, as the light source S in the present embodiment, although using a KrF excimer laser light source, alternatively, ArF excimer laser light source or a g-line for supplying exposure light 193 nm, a high-pressure mercury lamp or the like for supplying an i-ray, etc. it may also be used. また、図1では不図示ではあるが照明光学系ILは、面光源を形成するためのオプティカルインテグレータと、この面光源からの光を集光して被照射面を重畳的に均一照明するためのコンデンサ光学系と、オプティカルインテグレータにより形成される面光源の位置に配置されて面光源の形状を可変にするための可変開口絞りとを有するものである。 Also, there is not shown in FIG. 1 but the illumination optical system IL includes an optical integrator for forming a surface light source, for superimposing uniform illuminating an illumination target surface by condensing light from the surface light source a condenser optical system is disposed at a position of the surface light source formed by the optical integrator to form a surface light source having a variable aperture stop for the variable. ここで、面光源の形状としては、光軸から偏心した複数の面光源を持つもの、輪帯形状のもの、円形状であってその大きさがことなるものなどがある。 Here, the shape of the surface light source, which has a plurality of surface light source which is eccentric from the optical axis, that of the annular shape, and the like that differ in their size have a circular shape. このような照明光学系ILとしては、例えば米国特許第5,329,094号公報や米国特許第5,576,801号公報に開示されているものを用いることができる。 Such illumination optical system IL, for example, can be used those disclosed for example in U.S. Patent No. 5,329,094 discloses and US Patent No. 5,576,801 publication.
【0021】 [0021]
そして、レチクルRを通過・回折した露光光は、投影光学系Tを経てウエハW上に達し、ウエハ上には、レチクルRの像が形成される。 Then, the exposure light passing through and diffracted reticle R is reached on the wafer W through the projection optical system T, On wafer, the image of the reticle R is formed.
ここで、レチクルRは、レチクルローダーRLによって保持され、レチクルローダーRLは任意の時にローダーテーブルLT上を駆動装置T1により、X軸及びY軸上で任意の速度で移動できるように構成されている。 Here, the reticle R is held by a reticle loader RL, reticle loader RL is configured as a loader table LT top drive T1 at any time, it can be moved at any rate on the X-axis and Y-axis . ここで、レチクルローダーRLのローダーテーブルLT上での移動速度は、速度センサ−SSで検知され、この速度センサーSSからの出力は、第1制御部CPU1へ伝達される。 Here, the moving speed on the loader table LT of the reticle loader RL is detected by the speed sensor -SS, output from the speed sensor SS is transmitted to the first control unit CPU 1.
【0022】 [0022]
また、ウエハWは、ウエハテーブルWTにより保持されている。 Further, the wafer W is held by the wafer table WT. このウエハテーブルWTには、液体LQを溜めるための側壁が設けられている。 The wafer table WT, is provided a side wall for storing the liquid LQ. 本例では、この側壁により、ウエハWから投影光学系Tまでの光路の全てが液体LQで満たされる構成となっている。 In the present example, this sidewall has a structure in which all of the optical path from the wafer W to the projection optical system T is filled with the liquid LQ. このウエハテーブルWTは、駆動装置T2によりホルダーテーブルHT上でX軸方向及びY軸方向に任意の速度で移動できるように構成されている。 The wafer table WT is constructed to be movable at an arbitrary speed in the X-axis direction and the Y-axis direction on the holder table HT by the drive unit T2.
【0023】 [0023]
ここで、上記の第1制御部CPU1は、レチクルローダーRLのローダーテーブルLT上での移動速度と、投影光学系Tの露光倍率βとからウエハテーブルWTのホルダーテーブル上での移動速度を算出し、駆動装置T2へ伝達する。 Here, the first control unit CPU1 above, calculates the moving speed on the loader table LT of the reticle loader RL, the moving speed on the holder table of the wafer table WT from the exposure magnification β of the projection optical system T It is transmitted to the drive device T2. 駆動装置は、第1制御部CPU1から伝達された移動速度に基づいて、ウエハテーブルWTを移動させる。 Drive, based on the moving speed transmitted from the first control unit CPU 1, to move the wafer table WT.
【0024】 [0024]
図2は、このウエハテーブルWTの構成を詳細に表した図である。 Figure 2 is a diagram showing a detailed configuration of the wafer table WT. この図2において、投影光学系Tの最もウエハW側の光学部材と、投影光学系Tの金枠との間は、液体LQが浸透してこないように密着しているか、パッキングされている。 In FIG. 2, between the most wafer W side of the optical member of the projection optical system T, the metal frame of the projection optical system T is either the liquid LQ is adhered to not come penetrate, are packed. また、ウエハテーブルWTの底部には、複数の開口が設けられており、これらの開口に接続されている配管Vから減圧することにより、ウエハWはウエハテーブルWTに吸着されている。 Further, the bottom portion of the wafer table WT, a plurality of openings are provided, by reducing the pressure from the piping V that are connected to these openings, the wafer W is adsorbed to the wafer table WT. そして、ウエハテーブルWTには、電極D1,D2が設けられており、これらの電極D1、D2のそれぞれの周囲には、 Then, the wafer table WT, the electrodes D1, D2 are provided, around each of these electrodes D1, D2,
イオン交換膜I1,I2が設けられている。 Ion-exchange membrane I1, I2 are provided. これらのイオン交換膜I1,I2により、電極D1,D2の周囲と、露光光が液体LQを通過する領域とが区切られる。 These ion exchange membranes I1, I2, and surrounding the electrode D1, D2, and a region in which the exposure light passes through the liquid LQ are separated. ここで、電極D1の周囲の雰囲気はイオン交換膜I1と隔壁K1とにより密閉空間となっており、この密閉空間には排気管H1が接続されている。 Here, the atmosphere around the electrode D1 has become a closed space by an ion exchange membrane I1 and the partition wall K1, exhaust pipe H1 is connected to the enclosed space. また、電極D2の周囲の雰囲気はイオン交換膜I2と隔壁K2とにより密閉空間となっており、この密閉空間には排気管H2が接続されている。 Further, the ambient atmosphere of the electrode D2 has become a closed space by an ion exchange membrane I2 and the partition K2, exhaust pipe H2 is connected to the enclosed space. これらの排気管H1、H2は、ともに混合器Kに接続されている。 These exhaust pipes H1, H2 are connected together to the mixer K. この混合器Kには、電磁弁DVを備えた導入管LDの一端が接続されており、この導入管LDの他端は、ウエハテーブルWTの近傍に位置している。 This is the mixer K, one end of the inlet tube LD having an electromagnetic valve DV is connected, the other end of the inlet tube LD is positioned in the vicinity of the wafer table WT.
【0025】 [0025]
電極D1,D2への印可電圧は図示なき電源供給部から供給され、電源供給部が供給する印可電圧は、第2制御部CPU2により制御される。 Voltage applied to the electrode D1, D2 is supplied from the unillustrated power supply section, the power supply unit is applied voltage is supplied, it is controlled by the second control unit CPU 2. また、電磁弁DVの開閉に関してもは、第2制御部CPU2が制御する。 Also, the second control unit CPU2 controls with respect to opening and closing of the electromagnetic valve DV. 本例では、これらの電極D1,D2、イオン交換膜I1,I2、隔壁K1,K2、排気管H1,H2、混合器K、電磁弁DV、導入管LD、図示なき電源供給部、第2制御部CPU2が屈折率調整手段を構成している。 In this example, the electrodes D1, D2, ion exchange membrane I1, I2, partition walls K1, K2, exhaust pipe H1, H2, mixer K, solenoid valve DV, inlet tube LD, the power supply unit otherwise shown, the second control part CPU2 constitute the refractive index adjustment means.
【0026】 [0026]
以下、屈折率調整手段の動作について説明する。 Hereinafter, the operation of the refractive index adjustment means. 以下の説明において、液体LQは、純水に添加剤として塩化水素を加えたものであるとしている。 In the following description, the liquid LQ is directed to is obtained by adding hydrogen chloride as an additive to pure water.
まず、液体LQの屈折率を下げる場合、第2制御部CPU2は、電源供給部へ指令を送り、電極D1及び電極D2の間に所定の電圧を所定の時間だけ加印する。 First, when lowering the refractive index of the liquid LQ, the second control unit CPU2 sends a command to the power supply unit is pressurized indicia for a predetermined time a predetermined voltage between the electrodes D1 and the electrode D2. このとき、陽極となる電極からは酸素気体が発生し、陰極となる電極からは水素と塩素との混合気体が発生する。 At this time, the electrode serving as the anode oxygen gas is generated, the gas mixture of hydrogen and chlorine generated from the electrode serving as the cathode. このとき、液体LQにおける塩化水素濃度が下がるため、上記(1)式からもわかるように、液体LQの屈折率が低下する。 At this time, since the hydrogen chloride concentration decreases in the liquid LQ, the (1) As can be seen from the equation, the liquid LQ of the refractive index is decreased. ここで、各々の電極D1,D2の近傍で発生した気体は、イオン交換膜I1,I2を通過しないため、排気管H1,H2を介して回収することが可能である。 Here, the gas generated in the vicinity of each of the electrodes D1, D2, because it does not pass through the ion-exchange membrane I1, I2, it is possible to recover through the exhaust pipe H1, H2. この回収された気体は、混合器Kへ送られる。 The recovered gas is transferred to the mixer K. 混合器Kでは、回収された気体(酸素気体、水素気体、塩化水素気体)が混ぜ合わせられ、これより、液体LQよりも高濃度の添加物水溶液が生成される。 The mixer K, recovered gas (oxygen gas, hydrogen gas, hydrogen gas chloride) brought is mixed, than this, the high concentration additive aqueous is produced than the liquid LQ.
【0027】 [0027]
また、液体LQの屈折率を上げる場合、第2制御部CPU2は、電磁弁DVを開いて高濃度の添加物水溶液を液体LQへ加えるように、電磁弁DVへ指令を送る。 Further, if raising the refractive index of the liquid LQ, the second control unit CPU2 is a highly concentrated additive aqueous to add to the liquid LQ by opening the electromagnetic valve DV, sends a command to the electromagnetic valve DV. これにより、液体LQの屈折率が上昇する。 Accordingly, the refractive index of the liquid LQ increases.
この構成により、液体LQの屈折率を可変にできる。 This arrangement enables the refractive index of the liquid LQ variable.
さて、第2制御部CPU2に接続されているメモリーM1には、種々の照明条件ごとに対応して屈折率の値がテーブルの形で記憶されている。 Now, the second control unit CPU2 in the connected memory M1, the value of the refractive index in response to each different illumination conditions are stored in a table. ここで、屈折率の値は、ある照明条件下において投影光学系Tで生じる収差を補正するために必要な液体LQの屈折率の値である。 Here, the value of the refractive index is a value of the refractive index of the liquid LQ necessary for correcting the aberrations occurring in the projection optical system T in certain lighting conditions. また、このメモリーM1には、ある時点における液体LQ中の添加物濃度の値が、常に更新される形で保管されている。 Further, this memory M1, the value of the additive concentration in the liquid LQ at a certain time point, are always stored in a form that is updated.
【0028】 [0028]
また、上記の照明光学系ILは、この照明光学系ILが形成する面光源の形状に関する情報を第2制御部CPU2へ伝達するために、第2制御部CPU2と接続されている。 The illumination optical system IL above, in order to convey information about the shape of the surface light source the illumination optical system IL is formed to the second control unit CPU 2, is connected to the second control unit CPU 2. ここで、照明条件−本例では面光源の形状−が変化すると、この情報は第2制御部CPU2へ伝達される。 Here, illumination conditions - the shape of the surface light source in this example - the changes, this information is transmitted to the second control unit CPU 2. このとき、第2制御部CPU2は、伝達された照明条件に対応する屈折率の値をメモリーM1から検索し、その屈折率を実現するための添加物の濃度を上記(1)式から計算する。 At this time, the second control unit CPU2 retrieves the value of the refractive index corresponding to the transmitted illumination conditions from the memory M1, to calculate the concentration of additive to achieve the refractive index from the formula (1) . 次に第2制御部CPU2は、メモリーM1に保管されている現在の添加物濃度と、計算された添加物濃度とに従って、現在の添加物濃度を計算された添加物濃度とするように、電極D1,D2あるいは電磁弁DVを制御する。 Next, the second control unit CPU2 includes a current additive concentration that is stored in memory M1, in accordance with the calculated additive concentration, so that the additive concentration calculated the current additive concentration, electrode D1, D2 or controls the electromagnetic valve DV.
【0029】 [0029]
これにより、液体LQの屈折率の値は、液体LQを含めたときの投影光学系Tの収差が補正されるものとなる。 Thus, the value of the refractive index of the liquid LQ becomes that aberration of the projection optical system T when including the liquid LQ is corrected.
[第2の実施の形態] Second Embodiment
第2の実施の形態は、第1の実施の形態における添加物をエチルアルコールとした点が大きく異なる。 The second embodiment is the point that the additive in the first embodiment and ethyl alcohol are significantly different. このエチルアルコールは、感光性基板としてのレジストが塗布されたウエハWのレジスト層を溶解せず、投影光学系Tにおける最もウエハW側の光学部材(液体LQと接する光学部材)及びこの光学部材に施された光学コートへの影響が少ない利点がある。 The ethyl alcohol does not dissolve the resist layer of the wafer W on which the resist is applied as a photosensitive substrate, the most wafer W side of the optical member (optical member in contact with the liquid LQ) and the optical member in the projection optical system T impact on the decorated with optical coating and there is a little advantage.
【0030】 [0030]
また、第2の実施の形態においては、屈折率調整手段の構成が第1の実施の形態のものとは異なる。 In the second embodiment, the configuration of the refractive index adjusting unit is different from that of the first embodiment. 以下、図3を参照して屈折率調整手段の構成につき説明する。 Hereinafter, with reference to FIG. 3 will be described configuration of the refractive index adjustment means. なお、図3において、図2に示したものと同じ機能を有する部材には、同じ符号を付してある。 In FIG. 3, members having the same functions as those shown in FIG. 2 are denoted by the same reference numerals.
第2の実施の形態によるウエハテーブルWTを示す図3において、第1の実施の形態のものとは異なる点は、添加物を液体LQへ供給するための添加物供給管LSと、純水を液体LQへ供給するための純水供給管WSと、液体LQがウエハテーブルWTから溢れないように液体LQを排出する排出管Lとを有する点である。 3 showing the wafer table WT according to the second embodiment, differs from that of the first embodiment, an additive and an additive feed pipe LS for supplying the liquid LQ, the pure water a pure water supply pipe WS to be supplied to the liquid LQ, the liquid LQ is the point and a discharge pipe L for discharging the liquid LQ so as not to overflow from the wafer table WT.
【0031】 [0031]
ここで、添加物供給管LS、純水供給管WS及び排出管Lには、添加物及び純水の供給量を調整するための電磁弁DVLS,DVWS及び液体LQの排出量を調整するための電磁弁DVLがそれぞれ設けられており、これらの電磁弁DVLS,DVWS,DVLの開閉は、第2制御部CPU2により制御されている。 Here, the additive feed pipe LS, the pure water supply pipe WS and the discharge pipe L, additive and purified water solenoid valve DVLS for adjusting the supply amount of, for adjusting the discharge amount of DVWS and the liquid LQ provided solenoid valves DVL, respectively, these solenoid valves DVLS, DVWS, opening and closing of DVL is controlled by the second control unit CPU 2.
第2の実施の形態における屈折率調整時の動作について説明する。 The operation at the time of the refractive index adjustment in the second embodiment will be described.
【0032】 [0032]
まず、液体LQの屈折率を上げる場合、第2制御部CPU2は電磁弁DVLSを制御して、所定の量だけ添加物を液体LQへ加える。 First, when to increase the refractive index of the liquid LQ, the second control unit CPU2 controls the solenoid valve DVLS, by a predetermined amount additive is added to the liquid LQ. このとき、排出管Lから液体LQを所定の量だけ排出する。 At this time, it discharges the liquid LQ by a predetermined amount from the discharge pipe L. この排出する液体LQの量は、加えられた添加物の量と同じであることが好ましい。 The amount of the liquid LQ to the discharge is preferably the same as the amount of the added additive. これにより、液体LQ中の添加物濃度が高まり、その屈折率が上昇する。 This increases the additive concentration in the liquid LQ, the refractive index is increased.
【0033】 [0033]
また、液体LQの屈折率を下げる場合、第2制御部CPU2は電磁弁DVWSを制御して、所定の量だけ純水を液体LQへ加える。 Further, if lowering the refractive index of the liquid LQ, the second control unit CPU2 controls the solenoid valve DVWS, by a predetermined amount is added pure water to the liquid LQ. このとき、排出管Lから液体LQを所定の量だけ排出する。 At this time, it discharges the liquid LQ by a predetermined amount from the discharge pipe L. この排出する液体LQの量は、加えられた純水の量と同じであることが好ましい。 The amount of the liquid LQ to the discharge is preferably the same as the amount of pure water added. これにより、液体LQ中の添加物濃度が低くなり、その屈折率が低下する。 Thus, the additive concentration in the liquid LQ decreases, the refractive index decreases.
【0034】 [0034]
ここで、加えられる添加物及び純水の量、排出する液体LQの量は、第2制御部CPU2により制御される。 Here, the additive and the amount of pure water is added, the amount of the liquid LQ to be discharged is controlled by the second control unit CPU 2. なお、メモリーM1内に照明条件の種類に対応して屈折率の値が記憶される点、ある時点における液体LQの添加物濃度の値が保管される点は、上述の第1の実施の形態と同様であり、これらの情報に基づいて、投影光学系Tの収差を補正できる屈折率を実現するための添加物濃度を計算する点も第1の実施の形態と同様である。 Incidentally, that the value of the refractive index corresponding to the type of lighting conditions in memory M1 is stored, is that the value of the additive concentration in the liquid LQ at a certain point in time is stored, the above-described first embodiment and similar, based on the information, is the same as the additive also points to calculate the concentration of the first embodiment for realizing a refractive index that can correct the aberration of the projection optical system T.
【0035】 [0035]
このようにして、第2の実施の形態における第2制御部CPU2は、メモリーM1に保管されている現在の添加物濃度と、計算された添加物濃度とに従って、現在の添加物濃度を計算された添加物濃度とするように、電磁弁DVLS,DVWS,DVLの開閉を制御する。 In this way, the second control unit in the second embodiment CPU2 has a current additive concentration that is stored in memory M1, in accordance with the calculated additive concentrations are calculated the current additive concentration additives to the concentration, and controls the solenoid valve DVLS, DVWS, the opening and closing of DVL.
これにより、液体LQの屈折率の値は、液体LQを含めたときの投影光学系Tの収差が補正されるものとなる。 Thus, the value of the refractive index of the liquid LQ becomes that aberration of the projection optical system T when including the liquid LQ is corrected.
[第3の実施の形態] Third Embodiment
次に、図4を参照して第3の実施の形態について説明する。 Next, a third embodiment is described with reference to FIG. 第3の実施の形態による露光装置は、収差測定装置を備えている点で上述の第1及び第2の実施の形態とは異なる。 An exposure device according to the third embodiment is different from the first and second embodiments described above in that it includes an aberration measurement device. なお、図4において、上述の図1〜図3の例と同じ機能を有する部材には同じ符号を付してあり、図1と同様のXYZ座標系を採用している。 In FIG. 4, members having the same functions as the example of FIG. 1 to FIG. 3 described above are denoted by the same reference numerals, adopts the same XYZ coordinate system as in FIG.
【0036】 [0036]
図4において、光源Sは、波長248nmの露光光を供給し、この光源Sからの露光光は、ビーム整形光学系11により所定形状の断面に整えられた後、第1フライアイレンズ12に入射する。 4, the light source S supplies the exposure light having a wavelength of 248 nm, the exposure light from the light source S is, after being adjusted to a cross section of a predetermined shape by the beam shaping optical system 11, incident on the first fly-eye lens 12 to. 第1フライアイレンズ12の射出側には、複数の光源像からなる2次光源が形成される。 On the exit side of the first fly-eye lens 12, a secondary light source comprising a plurality of light source images are formed. この2次光源からの露光光は、リレーレンズ系13F,13Rを経て第2フライアイレンズ15へ入射する。 Exposure light from the secondary light source is incident to the second fly-eye lens 15 passes through the relay lens system 13F, the 13R. このリレーレンズ系は前群13F及び後群13Rから構成され、これらの前群13F及び後群13Rの間には、被照射面上でのスペックルを防止するための振動ミラー14が配置されている。 The relay lens system is composed of the front group 13F and the rear group 13R, between these front group 13F and the rear group 13R, it is disposed oscillating mirror 14 for preventing speckle on the surface to be illuminated there.
【0037】 [0037]
さて、第2フライアイレンズ15の射出面側には、第1フライアイレンズによる2次光源の像が複数形成され、これが3次光源となる。 Now, on the exit surface side of the second fly-eye lens 15, the image of the secondary light sources of the first fly-eye lens is formed with a plurality, which is the tertiary light sources. この3次光源が形成される位置には、所定の形状あるいは所定の大きさを持つ複数の開口絞りを設定できる可変開口絞り16が配置されている。 The position where the tertiary light sources are formed, the variable aperture stop 16 can have multiple aperture stop having a predetermined shape or a predetermined size are arranged. この可変開口絞り16は、例えば図5に示すように、石英などで構成された透明基板上にパターニングされた6つの開口絞り16a〜16eをターレット状に設けたものである。 The variable aperture stop 16, for example, as shown in FIG. 5, in which the six aperture stop 16a~16e patterned like on a transparent substrate that is configured with a quartz provided in a turret-like. ここで、円形開口を持つ2つの開口絞り16a,16bは、σ値(投影光学系の開口数に対する照明光学系の開口数)を変更するための絞りであり、輪帯形状を持つ2つの開口絞り16c,16dは、互いに輪帯比の異なる絞りである。 Here, two aperture stops 16a with a circular aperture, 16b is a diaphragm for changing the σ value (numerical aperture of the illumination optical system to the numerical aperture of the projection optical system), two openings with annular shape aperture 16c, 16d are different diaphragm of annular ratio to each other. そして、残りの2つの開口絞り16e,16fは、4つの偏心した開口を有する絞りである。 The remaining two aperture stops 16e, 16f are squeezed with four eccentric opening. この可変開口絞り16は、可変開口絞り駆動ユニット17により、複数の開口絞り16a〜16fのうち何れか一つが光路内に位置するように駆動される。 The variable aperture stop 16, a variable aperture stop drive unit 17, any one of the plurality of aperture stop 16a~16f is driven so as to be positioned in the optical path.
【0038】 [0038]
図4に戻って、可変開口絞り16からの露光光は、コンデンサレンズ系18により集光されてレチクルブラインド19上を重畳的に照明する。 Returning to FIG. 4, the exposure light from the variable aperture stop 16 is condensed by the condenser lens system 18 to superposedly illuminate the reticle blind 19. レチクルブラインド19は、リレー光学系20F,20Rに関してレチクルRのパターン形成面と共役に配置されており、レチクルブラインド19の開口形状によりレチクルR上での照明領域の形状が決定される。 The reticle blind 19, a relay optical system 20F, are arranged on the pattern formation surface is conjugate of the reticle R with respect to 20R, the shape of the illumination area on the reticle R in the shape of the opening of the reticle blind 19 is determined. レチクルブラインド19からの露光光は、リレー光学系の前群20F、反射鏡M及びリレー光学系の後群20Rを介してレチクルR上の所定の位置に実質的に均一な照度分布の照明領域を形成する。 Exposure light from the reticle blind 19, the front group 20F of the relay optical system, an illumination region of substantially uniform illuminance distribution on a predetermined position on the reticle R via the group 20R after reflection mirror M and the relay optical system Form.
【0039】 [0039]
なお、前述の第1及び第2の実施の形態における照明光学系ILは、この実施の形態に示したビーム整形光学系11〜リレー光学系20F,20Rを適用することもできる。 The illumination optical system IL in the first and second embodiments described above can also be applied to the beam shaping optics 11 to relay optics 20F, 20R shown in this embodiment.
さて、レチクルRは、レチクルローダ−RL上に載置されており、このレチクルローダ−RLは、ホルダーテーブルLT上で図中XY方向及びZ軸を中心とした回転方向(θ方向)に移動可能となっている。 Now, the reticle R is mounted on reticle loader -RL, the reticle loader -RL is movable in the direction of rotation (theta direction) around the XY direction and the Z-axis in the figure on the holder table LT It has become. このレチクルローダ−RLには、移動鏡RIMが設けられており、レチクル干渉計RIは、レチクルローダ−RLのXY方向及びθ方向の位置を検出する。 This reticle loader -RL, movable mirrors and RIM are provided, the reticle interferometer RI detects the XY direction and θ-direction position of the reticle loader -RL. また、レチクルローダ−RLは、レチクルローダ−駆動ユニットRLDによりXY方向及びθ方向へ駆動される。 Further, the reticle loader -RL is a reticle loader - driven in the XY direction and the θ direction by a drive unit RLD. ここで、レチクル干渉計RIからの出力は、第1制御部CPU1へ伝達され、第1制御部CPU1は、レチクルローダ−駆動ユニットRLDを制御する構成となっている。 Here, the output from the reticle interferometer RI, is transmitted to the first control unit CPU1, the first control unit CPU1 is reticle loader - has a configuration for controlling the drive unit RLD.
【0040】 [0040]
また、図示なきレチクルストッカーからの搬送路の途中には、レチクルRに設けられたバーコードを読みとるためのバーコードリーダーBRが設けられている。 Further, in the middle of the conveying path from the defunct reticle stocker shown, the bar code reader BR for reading a bar code provided on the reticle R is provided. このバーコードリーダーBRが読みとったレチクルRの種類に関する情報は、第2制御部CPU2へ伝達される。 Information about the type of a reticle R that the bar code reader BR is read is transmitted to the second control unit CPU 2. ここで、第2制御部CPU2に接続されているメモリーM1には、レチクルRの種類ごとに最適な照明条件に関する情報と、レチクルRの種類ごとに最適な液体LQの屈折率の値とが記憶されている。 Here, the memory M1 connected to the second control unit CPU 2, and the information about the optimal illumination conditions for each type of reticle R, and the value of the refractive index of the optimal liquid LQ for each type of reticle R is stored It is.
【0041】 [0041]
レチクルRの下側には、所定の縮小倍率|β|を有する投影光学系Tが設けられており、この投影光学系Tの最もウエハ面側の光学部材とウエハWとの間には、液体LQが介在している。 Below the reticle R, a predetermined reduction magnification | beta | projection optical system T is provided with, between the most wafer surface side of the optical member and the wafer W of the projection optical system T, Liquid LQ is interposed. 投影光学系Tは、この液体LQを介してウエハ面上にレチクルRの縮小像を形成する。 The projection optical system T forms a reduced image of the reticle R onto a wafer surface via the liquid LQ.
ウエハWは、ウエハテーブルWTに吸着固定されており、このウエハテーブルWTは、ウエハテーブルWT自体のZ軸方向への移動やティルト(Z軸に対する傾き)を行わせるためのZアクチュエータZD1,ZD2,ZD3を介して、定盤に対してXY方向に移動可能なウエハステージWTSに取り付けられている。 Wafer W is sucked and secured on the wafer table WT, the wafer table WT, Z actuator for causing (inclination with respect to the Z-axis) movement or tilt of the Z-axis direction of wafer table WT itself ZD1, ZD2, via ZD3, is mounted on the wafer stage WTS movable in XY direction relative to the surface plate. このウエハステージWTSは、ウエハステージ駆動ユニットWDにより駆動される。 The wafer stage WTS is driven by the wafer stage driving unit WD. また、ウエハテーブルの側壁は鏡面加工が施されており、この部分がウエハ干渉計WIの移動鏡となっている。 Further, the side wall of the wafer table are subjected to mirror finish, this portion serves as a movable mirror of wafer interferometer WI. ここで、ウエハステージ駆動ユニットWDの駆動は上述の第1制御部CPU1で制御され、ウエハ干渉計WIからの出力は第1制御部CPU1へ伝達される構成となっている。 Here, the driving of the wafer stage driving unit WD are controlled by the first control unit CPU1 described above, the output from the wafer interferometer WI has a configuration which is transmitted to the first control unit CPU1.
【0042】 [0042]
また、投影光学系Tには、投影光学系TとウエハWとの間のZ方向の距離を測定するためのフォーカスセンサAFが設けられている。 Further, the projection optical system T, the focus sensor AF for measuring the distance in the Z direction between the projection optical system T and the wafer W is provided. このフォーカスセンサAFは、投影光学系TにおけるウエハW側に近い光学素子を介してウエハ面上に光を照射し、かつウエハで反射された光を上記光学素子を介して受光し、その受光位置により投影光学系TとウエハWとの間のZ方向の距離を測定するものである。 The focus sensor AF irradiates light onto the wafer surface through an optical element closer to the wafer W side of the projection optical system T, and the light reflected by the wafer received through the optical element, the light receiving position and it measures the distance in the Z direction between the projection optical system T and the wafer W by. このようなフォーカスセンサAFの構成は、例えば特開平6-66543号公報に開示されている。 Such a configuration of the focus sensor AF is disclosed, for example, in JP-A-6-66543 JP.
【0043】 [0043]
さて、第3の実施の形態においても、添加物保管部LSTに貯蔵される高濃度の添加物水溶液を液体LQへ供給するための添加物供給管LSと、純水保管部WSTに貯蔵される純水を液体LQへ供給するための純水供給管WSとを備えており、添加物供給管LS及び純水供給管WSには、添加物水溶液及び純水の供給量を調整するための電磁弁DVLS,DVWSが設けられている。 Well, also in the third embodiment, the storage of highly concentrated additive solution that are stored in the additive storage unit LST and additive feed pipe LS for supplying the liquid LQ, the pure water storage unit WST pure water has a pure water supply pipe WS to be supplied to the liquid LQ, the additive feed pipe LS and the pure water supply pipe WS, electromagnetic for adjusting the supply amount of the additive solution and pure water valve DVLS, DVWS is provided. また、ウエハテーブルWTには、液体LQがウエハテーブルから溢れないように液体LQを排出するための排出管Lが設けられており、この排出管Lには、液体LQの排出量を調整するための電磁弁が設けられている。 Further, the wafer table WT, the liquid LQ has discharge pipe L for discharging the liquid LQ is provided so as not to overflow from the wafer table, this discharge pipe L, for adjusting the discharge amount of the liquid LQ solenoid valve is provided for. これらの電磁弁DVLS,DVWS,DVLの開閉は、上述の第2の実施の形態と同様に、第2制御部CPU2により制御されている。 These solenoid valves DVLS, DVWS, opening and closing of the DVL, like the second embodiment described above, are controlled by the second control unit CPU 2.
【0044】 [0044]
また、ウエハテーブルWT上には、投影光学系の収差を測定するための収差測定部ASと、液体LQの添加物濃度を検出するための添加物濃度検出部DSとが設けられている。 Further, on wafer table WT, and the aberration measurement part AS for measuring the aberration of the projection optical system, and the additive concentration detection section DS for detecting the additive concentration in the liquid LQ is provided. ここで、収差測定部ASとしては、例えば特開平6-84757号公報に開示されているものを用いることができる。 Here, the aberration measurement unit AS, may be used those disclosed in Japanese Unexamined Patent Publication No. 6-84757. ここで、収差測定部AS及び添加物濃度検出部DSからの出力は、第2制御部CPU2へ伝達される。 Here, the output from the aberration measurement unit AS and additives concentration detection unit DS is transmitted to the second control unit CPU 2. また、添加物濃度検出部DSからの出力は、第2制御部CPU2を介してメモリーM1へある時点における液体LQの添加物濃度の値として保管される。 Further, the output from the addition concentration detector DS is stored as the value of the additive concentration in the liquid LQ at the time through a second control unit CPU2 is to the memory M1.
【0045】 [0045]
次に、第3の実施の形態の動作について説明する。 Next, the operation of the third embodiment.
まず、図示なきレチクルストッカーからレチクルRが取り出されてレチクルローダ−RL上に載置される途中に、バーコードリーダーBRは、レチクルRに設けられているバーコードを読み取り、その情報を第2制御部CPU2へ伝達する。 First, in the middle, which is placed on the reticle R is taken from the defunct reticle stocker shown on the reticle loader -RL, bar code reader BR reads the bar code provided on the reticle R, the information second control It is transmitted to the Department CPU2. 第2制御部CPU2は、メモリーM1に記憶されているレチクルRの種類に対応した照明条件に関する情報を読み出し、その情報に従って、可変開口絞り駆動ユニット17を制御して開口絞り16a〜16fのうちの所定の一つを光路内に位置させる。 The second control unit CPU2 reads information about the illumination conditions corresponding to the type of the reticle R which is stored in the memory M1, in accordance with the information, of the aperture stop 16a~16f controls the variable aperture stop drive unit 17 positioning a predetermined one of the optical path. また、第2制御部CPU2は、メモリーM1に記憶されている液体LQの屈折率の値に基づいて、その屈折率を実現するための添加物の濃度を上記(1)式から計算する。 The second control unit CPU2, based on the value of the refractive index of the liquid LQ stored in the memory M1, to calculate the concentration of additive to achieve the refractive index from the equation (1). その後、添加物濃度検出部DSにより検出されてメモリーM1に保管されている現在の添加物濃度と、計算された添加物濃度とに従って、現在の添加物濃度を計算された添加物濃度とするように、電磁弁DVLS,DVWS,DVLの開閉を制御する。 Thereafter, the current additive concentration that is stored in memory M1 is detected by the additive concentration detection unit DS, in accordance with the calculated additive concentration, so that the additive concentration calculated the current additive concentration the controls solenoid valve DVLS, DVWS, the opening and closing of DVL.
【0046】 [0046]
これにより、液体LQの屈折率の値は、液体LQを含めたときの投影光学系Tの収差が補正されるものとなる。 Thus, the value of the refractive index of the liquid LQ becomes that aberration of the projection optical system T when including the liquid LQ is corrected. この後、フォーカスセンサAFによりウエハWのZ方向の位置及びティルトを検出して、ウエハWが所要の位置になるようにZアクチュエータZD1,ZD2,ZD3を駆動する。 Thereafter, by detecting the position and tilt of the wafer W in the Z direction by the focus sensor AF, Z actuator to the wafer W is required position ZD1, ZD2, drives the ZD3. この状態において、光源Sからの露光光を照明光学系を介してレチクルRへ導き、第1制御部CPU1は、レチクル干渉計RI及びウエハ干渉計WIによりレチクルR及びウエハWの位置を検出しつつ、レチクルローダ−駆動ユニットRLD及びウエハステージ駆動ユニットWDを駆動させ、レチクルR及びウエハWを投影光学系Tの投影倍率|β|の速度比の元で移動させる。 In this state, the exposure light from the light source S through the illumination optical system leads to the reticle R, the first control unit CPU1, while detecting the position of the reticle R and the wafer W by a reticle interferometer RI and wafer interferometer WI , reticle loader - drive unit RLD and drives the wafer stage driving unit WD, the reticle R and the wafer W projection magnification of the projection optical system T | move under the speed ratio of | beta. これにより、レチクルR上のパターンは、良好な結像状態のもとでウエハW上へ転写される。 Thus, the pattern on the reticle R is transferred onto the wafer W under good imaging state.
【0047】 [0047]
さて、投影光学系Tの結像性能(収差など)は、常に一定ではなく、温度変化や大気圧変化、投影光学系Tが露光光を吸収することによる温度上昇などにより変化する場合がある。 Now, the imaging performance of the projection optical system T (including aberration) is not always constant, temperature change or change in atmospheric pressure, the projection optical system T is sometimes changes due temperature rise due to absorption of exposure light. そこで、第3の実施の形態では、収差測定部ASにより実際の投影光学系Tの収差(結像性能)を測定し、この測定結果に基づいて液体LQの屈折率の値を調整する構成としている。 Therefore, in the third embodiment, a configuration in which it measures the actual aberrations of the projection optical system T (imaging performance) by the aberration measuring unit AS, to adjust the value of the refractive index of the liquid LQ on the basis of the measurement result there.
【0048】 [0048]
具体的には、第3の実施の形態では、メモリーM1内に投影光学系の収差値に対応させた形で、その収差を補正できる液体LQの屈折率の値が記憶されている。 Specifically, in the third embodiment, in a manner that associates the aberration value of the projection optical system in the memory M1, the value of the refractive index of the liquid LQ that can correct the aberration is stored. そして、収差測定部ASにより検出された投影光学系Tの収差は、第2制御部CPU2へ伝達される。 Then, the aberration of the projection optical system T detected by the aberration measuring unit AS is transmitted to the second control unit CPU 2. 第2制御部CPU2は、メモリーM1内に記憶されている液体LQの屈折率の値を読み出し、この屈折率の値になるように添加物濃度を上記(1)式より求め、液体LQがその添加物濃度となるように電磁弁DVLS,DVWS,DVLの開閉を制御する。 The second control unit CPU2 reads the value of the refractive index of the liquid LQ stored in memory M1, the additive concentration such that the value of the refractive index calculated from the equation (1), the liquid LQ is the solenoid valve DVLS so that the additive concentration, DVWS, controls the opening and closing of the DVL.
【0049】 [0049]
この構成により、投影光学系Tの環境変化(温度変化、大気圧変動、露光光吸収による変動)があってもその結像性能を良好に維持することができる。 With this configuration, environmental change of the projection optical system T (temperature changes, variations atmospheric pressure variation due to absorption of exposure light) even if it is possible to satisfactorily maintain its imaging performance. なお、この収差測定部ASによる測定は、常時行う必要はなく、所定の周期ごとに行えば良い。 The measurement by the aberration measuring unit AS does not need to be performed at all times, may be performed every predetermined period.
[第4の実施の形態] Fourth Embodiment
次に図6を参照して、第4の実施の形態について説明する。 Referring now to FIG. 6, a description will be given of a fourth embodiment. 第4の実施の形態は、投影光学系とウエハとの間の光路の全てを液体で満たす構成ではなく、この光路の一部を液体で満たす構成としたものである。 Fourth embodiment, instead of the arrangement that satisfies all of the optical path between the projection optical system and the wafer with a liquid, in which a configuration satisfying a part of the optical path in the liquid.
【0050】 [0050]
図6(a),(b)において、図1〜3に示した第1及び第2の実施の形態と同じ機能を有する部材には同じ符号を伏してある。 FIG. 6 (a), the (b), the members having the same functions as the first and second embodiments shown in Figures 1-3 are lay the same reference numerals. 図6(a),(b)に示す第4の実施の形態では、ウエハホルダ−WTの側壁により液体LQを溜める代わりに、露光光を透過させる材料(例えば石英など)で構成された容器C1,C2中に液体LQを満たす構成が前述の第1及び第2の実施の形態とは異なる。 FIG 6 (a), in the fourth embodiment shown in (b), the wafer holder by the sidewall of -WT instead of storing the liquid LQ, the container C1 made of a material that transmits the exposing light (for example, quartz, etc.), structure filled with liquid LQ in C2 is different from the first and second embodiments described above. この構成により、前述の第1及び第2の実施の形態が有していた効果のうち、開口数増大または実効的焦点深度拡大の効果はないものの、連続的に投影光学系Tの収差(結像性能)調整が可能となる効果は有している。 This configuration of the effect had the first and second embodiments described above, although not effect the numerical aperture increases or effective focal depth expansion, the aberration of the continuous projection optical system T (binding image performance) adjustment is possible effect has.
【0051】 [0051]
なお、この第4の実施の形態において、液体LQが入れられている容器C1,C2を投影光学系Tと一体に設けても良い。 Incidentally, in the fourth embodiment, the container C1, C2 of the liquid LQ is placed may be provided integrally with the projection optical system T.
以上の第1〜第4の実施の形態では、液体LQとして純水を用いたが純水に限られることはない。 In the above first to fourth embodiments, never but using pure water as the liquid LQ limited to pure water.
【0052】 [0052]
【発明の効果】 【Effect of the invention】
以上に示したように本発明によれば、投影光学系の結像性能を振動なく連続的に調整をすることができる。 According to the present invention as shown above, it is possible to continuously adjusted without vibrating the imaging performance of the projection optical system. また、開口数の増大(或いは実効的な焦点深度の拡大)と結像性能の調整とを両立させることが可能となる。 Further, it is possible to achieve both coordination with imaging performance increase of the numerical aperture (or expansion of the effective depth of focus).
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】本発明の第1及び第2の実施の形態にかかる露光装置を全体的に示す概略図である。 1 is a schematic diagram illustrating generally an exposure apparatus according to the first and second embodiments of the present invention.
【図2】本発明の第1の実施の形態にかかる露光装置の要部を示す断面図である。 2 is a sectional view showing a main part of an exposure apparatus according to a first embodiment of the present invention.
【図3】本発明の第2の実施の形態にかかる露光装置の要部を示す断面図である。 3 is a sectional view showing a main part of an exposure apparatus according to a second embodiment of the present invention.
【図4】本発明の第3の実施の形態にかかる露光装置を示す概略図である。 Is a schematic diagram showing an exposure apparatus according to a third embodiment of the present invention; FIG.
【図5】本発明の第3の実施の形態にかかる露光装置の一部を示す概略図である。 5 is a schematic view showing a part of a third according to the embodiment of the exposure apparatus of the present invention.
【図6】本発明の第4の実施の形態にかかる露光装置の要部を示す断面図である。 6 is a sectional view showing a main part of an exposure apparatus according to a fourth embodiment of the present invention.
【符号の説明】 DESCRIPTION OF SYMBOLS
S…光源 T2…駆動装置IL…照明光学系 M1…メモリーM…反射板 V…減圧管T…投影光学系 D1、D2…電極W…ウエハ I1,I2…イオン交換膜LQ…液体 K1,K2…隔壁R…レチクル H1,H2…配管RL…レチクルローダー L…排出管LT…ローダーテーブル LD…導入管SS…センサー WS…純水供給管WT…ウエハテーブル LS…添加物供給管T1…駆動装置 S ... source T2 ... drive IL ... illumination optical system M1 ... Memory M ... reflector V ... vacuum tube T ... projection optical system D1, D2 ... electrode W ... wafer I1, I2 ... ion exchange membrane LQ ... Liquid K1, K2 ... bulkhead R ... reticle H1, H2 ... piping RL ... reticle loader L ... exhaust pipe LT ... loader table LD ... inlet SS ... sensor WS ... pure water supply pipe WT ... wafer table LS ... additive supply pipe T1 ... driving device

Claims (17)

  1. レチクル上に設けられたパターンを照明する照明光学系と、該パターンの像を感光性基板上に形成する投影光学系とを有し、前記投影光学系と前記感光性基板との間の光路中の少なくとも一部分に位置する液体を介して露光を行う露光装置において、 An illumination optical system for illuminating a pattern provided on the reticle, and a projection optical system for forming an image of the pattern onto a photosensitive substrate, the optical path between the projection optical system and the photosensitive substrate in the exposure apparatus which performs exposure through a liquid located in at least a portion of,
    前記液体に添加剤を供給して、前記液体の屈折率を調整する屈折率調整手段を有することを特徴とする露光装置。 Supplying an additive to the liquid, the exposure apparatus characterized by having a refractive index adjusting means for adjusting the refractive index of the liquid.
  2. 前記屈折率調整手段は、前記投影光学系の結像性能を補正するように前記液体の屈折率を調整することを特徴とする請求項1記載の露光装置。 The refractive index adjustment means, an exposure apparatus according to claim 1, wherein the adjusting the refractive index of the liquid so as to correct the imaging performance of the projection optical system.
  3. レチクル上に設けられたパターンを照明する照明光学系と、該パターンの像を感光性基板上に形成する投影光学系とを有し、前記投影光学系と前記感光性基板との間の光路中の少なくとも一部分に位置する液体を介して露光を行う露光装置において、 An illumination optical system for illuminating a pattern provided on the reticle, and a projection optical system for forming an image of the pattern onto a photosensitive substrate, the optical path between the projection optical system and the photosensitive substrate in the exposure apparatus which performs exposure through a liquid located in at least a portion of,
    前記投影光学系の結像性能を測定する結像性能測定手段と、 And the imaging performance measuring means for measuring the imaging performance of the projection optical system,
    前記投影光学系の結像性能を補正するように前記液体の屈折率を調整する屈折率調整手段とを有することを特徴とする露光装置。 Exposure apparatus characterized by having a refractive index adjusting means for adjusting the refractive index of the liquid so as to correct the imaging performance of the projection optical system.
  4. レチクル上に設けられたパターンを照明する照明光学系と、該パターンの像を感光性基板上に形成する投影光学系とを有し、前記投影光学系と前記感光性基板との間の光路中の少なくとも一部分に位置する液体を介して露光を行う露光装置において、 An illumination optical system for illuminating a pattern provided on the reticle, and a projection optical system for forming an image of the pattern onto a photosensitive substrate, the optical path between the projection optical system and the photosensitive substrate in the exposure apparatus which performs exposure through a liquid located in at least a portion of,
    前記投影光学系の結像性能の変動の要因の状態を検知する変動要因検知手段と、 A variation factor detecting means for detecting the state of factors of the variation of the imaging performance of the projection optical system,
    前記投影光学系の結像性能を補正するように前記液体の屈折率を調整する屈折率調整手段とを有することを特徴とする露光装置。 Exposure apparatus characterized by having a refractive index adjusting means for adjusting the refractive index of the liquid so as to correct the imaging performance of the projection optical system.
  5. 前記照明光学系は、前記レチクルに対する照明条件を変更可能に構成され、 The illumination optical system is configured to change the illumination condition for said reticle,
    前記変動要因検知手段は、前記照明条件の状態を検知し、 It said fluctuation factor detection means detects the state of the lighting conditions,
    前記屈折率調整手段は、前記照明条件の変更に応じて、前記結像性能を補正するように前記液体の屈折率を調整することを特徴とする請求項4記載の露光装置。 The refractive index adjustment means, according to the change of the illumination condition, an exposure apparatus according to claim 4, wherein the adjusting the refractive index of the liquid so as to correct the imaging performance.
  6. 前記変動要因検知手段は、前記レチクルの種類を判別するものであり、 It said fluctuation factor detection means is adapted to determine the type of the reticle,
    前記屈折率調整手段は、前記レチクルの種類に応じて、前記結像性能を補正するように前記液体の屈折率を調整することを特徴とする請求項4記載の露光装置。 The refractive index adjusting means, depending on the type of the reticle, the exposure apparatus according to claim 4, wherein the adjusting the refractive index of the liquid so as to correct the imaging performance.
  7. 前記屈折率調整手段は、前記液体に屈折率を調整するための添加剤を供給する添加剤供給ユニットと、前記液体から前記添加剤を回収するための添加剤回収ユニットとを有することを特徴とする請求項3乃至6の何れか一項記載の露光装置。 The refractive index adjustment means comprises a comprising: the additive supply unit for supplying additives to adjust the refractive index in the liquid, an additive recovery unit for recovering the additive from the liquid the exposure apparatus according to any one of claims 3 to 6.
  8. 前記感光性基板を保持する感光性基板ホルダーをさらに備え、 Further comprising a photosensitive substrate holder for holding the photosensitive substrate,
    該感光性基板ホルダーは、前記投影光学系と前記感光性基板との間の光路を前記液体で満たすための側壁と、前記液体を前記感光性基板ホルダーへ供給すると共に前記感光性基板ホルダーから回収するための供給・回収ユニットとを備えることを特徴とする請求項1乃至7の何れか一項記載の露光装置。 Photosensitive substrate holder, and side walls for filling the optical path in the liquid between the photosensitive substrate and the projection optical system, recovered from the photosensitive substrate holder supplies the liquid to the photosensitive substrate holder it exposure apparatus according to any one of claims 1 to 7, characterized in comprising a feed-recovery unit for.
  9. 所定の照明条件のもとでレチクルを照明する工程と、前記レチクル上に設けられたパターンを投影光学系を用いて感光性基板に転写する工程とを含み、前記投影光学系からの光を所定の液体を介して前記感光性基板へ導く露光方法において、 Wherein the step of illuminating the reticle under a predetermined illumination condition, and a step of transferring a pattern provided on the reticle onto a photosensitive substrate using a projection optical system, given the light from the projection optical system the exposure method that leads to the photosensitive substrate through the liquid,
    前記投影光学系の結像性能を補正するために、 前記液体に添加剤を供給して、前記液体の屈折率を調整する工程を含むことを特徴とする露光方法。 In order to correct the imaging performance of the projection optical system, by supplying the additive to the liquid, the exposure method characterized by comprising the step of adjusting the refractive index of the liquid.
  10. 所定の照明条件のもとでレチクルを照明する工程と、前記レチクル上に設けられたデバイスパターンを投影光学系を用いて感光性基板に転写する工程とを含み、前記投影光学系からの光を所定の液体を介して前記感光性基板へ導くデバイス製造方法において、 A step of illuminating the reticle under a predetermined illumination condition, and a step of transferring onto a photosensitive substrate using a projection optical system device pattern provided on the reticle, the light from the projection optical system in the device manufacturing method that leads to the photosensitive substrate through a predetermined liquid,
    前記レチクル及び前記照明条件のうち少なくとも一方が変更されたときに、前記液体の屈折率を変更することを特徴とするデバイス製造方法。 Wherein when the reticle and at least one of the illumination conditions are changed, a device manufacturing method characterized by changing the refractive index of the liquid.
  11. レチクル上に設けられたパターンを照明する照明光学系と、該パターンの像を感光性基板上に形成する投影光学系とを有し、前記投影光学系と前記感光性基板との間の光路中の少なくとも一部分に位置する液体を介して露光を行う露光装置の製造方法において、 An illumination optical system for illuminating a pattern provided on the reticle, and a projection optical system for forming an image of the pattern onto a photosensitive substrate, the optical path between the projection optical system and the photosensitive substrate in the manufacturing method for an exposure apparatus which performs exposure through a liquid located in at least a portion of,
    前記投影光学系の結像性能を測定する工程と、 And measuring the imaging performance of the projection optical system,
    該測定された結像性能に基づいて、前記液体の屈折率の初期値を定める工程とを含むことを特徴とする露光装置の製造方法。 Based on the imaging performance is the measuring method for an exposure apparatus which comprises the step of determining the initial value of the refractive index of the liquid.
  12. 所定の照明条件のもとでレチクルを照明する工程と、前記レチクル上に設けられたデバイスパターンを投影光学系を用いて感光性基板に転写する工程とを含み、前記投影光学系からの光を所定の液体を介して前記感光性基板へ導くデバイス製造方法において、 A step of illuminating the reticle under a predetermined illumination condition, and a step of transferring onto a photosensitive substrate using a projection optical system device pattern provided on the reticle, the light from the projection optical system in the device manufacturing method that leads to the photosensitive substrate through a predetermined liquid,
    前記液体に添加剤を加えて、前記液体の屈折率を変更することを特徴とするデバイス製造方法。 Adding additives to the liquid, a device manufacturing method characterized by changing the refractive index of the liquid.
  13. 前記添加剤は、塩化水素を含む請求項12記載のデバイス製造方法。 The additive, device manufacturing method according to claim 12 including hydrogen chloride.
  14. 前記添加剤は、エチルアルコールを含む請求項12記載のデバイス製造方法。 The additive, device manufacturing method of claim 12 further comprising ethyl alcohol.
  15. 前記液体は純水である請求項12乃至14の何れか一項記載のデバイス製造方法。 The liquid device manufacturing method of any one of claims 12 to 14 is pure water.
  16. 前記投影光学系の結像性能を測定する工程をさらに含み、 Further comprising the step of measuring the imaging performance of the projection optical system,
    前記液体の屈折率の調整は、前記投影光学系の結像性能を補正するように行われる請求項12乃至15の何れか一項記載のデバイス製造方法。 The adjustment of the refractive index of the liquid, the device manufacturing method of any one of claims 12 to 15 is performed so as to correct the imaging performance of the projection optical system.
  17. 前記投影光学系の結像性能の変動要因の状態を検知する工程をさらに含み、 Further comprising a step of detecting a state of the variation factors of the imaging performance of the projection optical system,
    前記液体の屈折率の調整は、前記投影光学系の結像性能を補正するように行われる請求項12乃至15の何れか一項記載のデバイス製造方法。 The adjustment of the refractive index of the liquid, the device manufacturing method of any one of claims 12 to 15 is performed so as to correct the imaging performance of the projection optical system.
JP15198597A 1997-06-10 1997-06-10 An exposure apparatus and a manufacturing method and an exposure method and device manufacturing method thereof Expired - Lifetime JP3817836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15198597A JP3817836B2 (en) 1997-06-10 1997-06-10 An exposure apparatus and a manufacturing method and an exposure method and device manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15198597A JP3817836B2 (en) 1997-06-10 1997-06-10 An exposure apparatus and a manufacturing method and an exposure method and device manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10340846A JPH10340846A (en) 1998-12-22
JP3817836B2 true JP3817836B2 (en) 2006-09-06

Family

ID=15530548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15198597A Expired - Lifetime JP3817836B2 (en) 1997-06-10 1997-06-10 An exposure apparatus and a manufacturing method and an exposure method and device manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3817836B2 (en)

Families Citing this family (311)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2747999A (en) * 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
US6816235B2 (en) 2000-02-18 2004-11-09 Nikon Corporation Optical glass and projection exposure apparatus using the same
WO2001097146A1 (en) 2000-06-16 2001-12-20 Verisae Enterprise asset management system and method
US7474218B2 (en) 2000-06-16 2009-01-06 Verisae, Inc. Method and system of asset identification and tracking for enterprise asset management
US7440871B2 (en) 2002-12-09 2008-10-21 Verisae, Inc. Method and system for tracking and reporting emissions
US7369968B2 (en) 2000-06-16 2008-05-06 Verisae, Inc. Enterprise energy management system
US7512523B2 (en) 2000-06-16 2009-03-31 Verisae, Inc. Refrigerant loss tracking and repair
US7877235B2 (en) 2003-01-31 2011-01-25 Verisae, Inc. Method and system for tracking and managing various operating parameters of enterprise assets
DE60335595D1 (en) 2002-11-12 2011-02-17 Asml Netherlands Bv Lithographic apparatus with immersion and method for manufacturing a device
KR100585476B1 (en) 2002-11-12 2006-06-07 에이에스엠엘 네델란즈 비.브이. Lithographic Apparatus and Device Manufacturing Method
US7213963B2 (en) 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG121822A1 (en) 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP1420300B1 (en) * 2002-11-12 2015-07-29 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
CN100568101C (en) 2002-11-12 2009-12-09 Asml荷兰有限公司 Lithographic apparatus and device manufacturing method
CN101349876B (en) 2002-11-12 2010-12-01 Asml荷兰有限公司 Immersion lithographic apparatus and device manufacturing method
US7110081B2 (en) 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9482966B2 (en) 2002-11-12 2016-11-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG131766A1 (en) 2002-11-18 2007-05-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
SG121829A1 (en) 2002-11-29 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US6992750B2 (en) 2002-12-10 2006-01-31 Canon Kabushiki Kaisha Exposure apparatus and method
DE10257766A1 (en) 2002-12-10 2004-07-15 Carl Zeiss Smt Ag A method for setting a desired optical characteristic of a projection lens and microlithographic projection exposure apparatus
JP4595320B2 (en) * 2002-12-10 2010-12-08 株式会社ニコン Exposure apparatus, and device manufacturing method
JP4525062B2 (en) * 2002-12-10 2010-08-18 株式会社ニコン Exposure apparatus and device manufacturing method, an exposure system
JP4529433B2 (en) * 2002-12-10 2010-08-25 株式会社ニコン Exposure apparatus and an exposure method, a device manufacturing method
JP4352874B2 (en) * 2002-12-10 2009-10-28 株式会社ニコン Exposure apparatus and device manufacturing method
SG152063A1 (en) * 2002-12-10 2009-05-29 Nikon Corp Exposure apparatus and method for producing device
KR101036114B1 (en) * 2002-12-10 2011-05-23 가부시키가이샤 니콘 Exposure apparatus, exposure method and method for manufacturing device
KR101085372B1 (en) * 2002-12-10 2011-11-21 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
WO2004053955A1 (en) 2002-12-10 2004-06-24 Nikon Corporation Exposure system and device producing method
US7948604B2 (en) 2002-12-10 2011-05-24 Nikon Corporation Exposure apparatus and method for producing device
SG158745A1 (en) * 2002-12-10 2010-02-26 Nikon Corp Exposure apparatus and method for producing device
AU2003289007A1 (en) 2002-12-10 2004-06-30 Nikon Corporation Optical device and projection exposure apparatus using such optical device
AU2003289237A1 (en) * 2002-12-10 2004-06-30 Nikon Corporation Exposure apparatus and method for manufacturing device
EP2466625B1 (en) * 2003-02-26 2015-04-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
WO2005029180A2 (en) * 2003-03-04 2005-03-31 Pixelligent Technologies Llc Applications of semiconductor nano-sized particles for photolithography
JP2005101498A (en) * 2003-03-04 2005-04-14 Tokyo Ohka Kogyo Co Ltd Immersion liquid for liquid immersion lithography process, and resist-pattern forming method using immersion liquid
KR101181688B1 (en) * 2003-03-25 2012-09-19 가부시키가이샤 니콘 Exposure system and device production method
EP1612850B1 (en) * 2003-04-07 2009-03-25 Nikon Corporation Exposure apparatus and method for manufacturing a device
JP4488004B2 (en) 2003-04-09 2010-06-23 株式会社ニコン Immersion lithography fluid control system
KR101532824B1 (en) 2003-04-09 2015-07-01 가부시키가이샤 니콘 Exposure method and apparatus, and device manufacturing method
KR20170064003A (en) 2003-04-10 2017-06-08 가부시키가이샤 니콘 Environmental system including a transport region for an immersion lithography apparatus
EP3352010A1 (en) * 2003-04-10 2018-07-25 Nikon Corporation Run-off path to collect liquid for an immersion lithography apparatus
EP3232271A1 (en) * 2003-04-10 2017-10-18 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
JP4582089B2 (en) 2003-04-11 2010-11-17 株式会社ニコン Liquid injection and recovery system for immersion lithography
KR101597475B1 (en) 2003-04-11 2016-02-24 가부시키가이샤 니콘 Cleanup method for optics in immersion lithography
EP1616220B1 (en) * 2003-04-11 2013-05-01 Nikon Corporation Apparatus and method for maintaining immersion fluid under a lithographic projection lens
TWI237307B (en) * 2003-05-01 2005-08-01 Nikon Corp Optical projection system, light exposing apparatus and light exposing method
JP4146755B2 (en) 2003-05-09 2008-09-10 松下電器産業株式会社 The pattern forming method
EP2282233A1 (en) * 2003-05-13 2011-02-09 ASML Netherlands BV Lithographic apparatus
TWI295414B (en) 2003-05-13 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
WO2004102646A1 (en) * 2003-05-15 2004-11-25 Nikon Corporation Exposure apparatus and method for manufacturing device
TWI474380B (en) 2003-05-23 2015-02-21 尼康股份有限公司
TWI511181B (en) * 2003-05-23 2015-12-01 尼康股份有限公司
JP4770129B2 (en) * 2003-05-23 2011-09-14 株式会社ニコン Exposure apparatus, and device manufacturing method
EP1628330A4 (en) 2003-05-28 2009-09-16 Nikon Corp Exposure method, exposure device, and device manufacturing method
TWI347741B (en) * 2003-05-30 2011-08-21 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7684008B2 (en) 2003-06-11 2010-03-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101528016B1 (en) * 2003-06-13 2015-06-12 가부시키가이샤 니콘 Exposure method, substrate stage, exposure apparatus and method for manufacturing device
US6867844B2 (en) * 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
KR101146962B1 (en) 2003-06-19 2012-05-22 가부시키가이샤 니콘 Exposure device and device producing method
DE60308161T2 (en) 2003-06-27 2007-08-09 Asml Netherlands B.V. A lithographic apparatus and method for producing an article
EP1498778A1 (en) * 2003-06-27 2005-01-19 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1494079B1 (en) * 2003-06-27 2008-01-02 ASML Netherlands B.V. Lithographic Apparatus
EP1494074A1 (en) 2003-06-30 2005-01-05 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1975721A1 (en) 2003-06-30 2008-10-01 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP2264532B1 (en) 2003-07-09 2012-10-31 Nikon Corporation Exposure apparatus and device manufacturing method
CN102854755A (en) * 2003-07-09 2013-01-02 株式会社尼康 Exposure apparatus
CN102944981A (en) * 2003-07-09 2013-02-27 株式会社尼康 Exposure apparatus, and device fabricating method
SG109000A1 (en) 2003-07-16 2005-02-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP1500982A1 (en) 2003-07-24 2005-01-26 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005015315A2 (en) * 2003-07-24 2005-02-17 Carl Zeiss Smt Ag Microlithographic projection exposure system, and method for introducing an immersion liquid into an immersion chamber
EP1503244A1 (en) 2003-07-28 2005-02-02 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US7175968B2 (en) 2003-07-28 2007-02-13 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a substrate
EP2264533B1 (en) 2003-07-28 2012-09-19 Nikon Corporation Exposure apparatus, method for producing device, and exposure method
US7779781B2 (en) 2003-07-31 2010-08-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TWI244683B (en) 2003-08-11 2005-12-01 Taiwan Semiconductor Mfg Immersion fluid for immersion lithography, and method of performing immersion lithography
KR101475995B1 (en) 2003-08-21 2014-12-23 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device producing method
KR101094114B1 (en) 2003-08-26 2011-12-15 가부시키가이샤 니콘 Optical element and exposure device
KR101477850B1 (en) 2003-08-29 2014-12-30 가부시키가이샤 니콘 Liquid recovery apparatus, exposure apparatus, exposure method, and device production method
US7113259B2 (en) 2003-10-31 2006-09-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TWI263859B (en) 2003-08-29 2006-10-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TWI245163B (en) 2003-08-29 2005-12-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP1510870A1 (en) * 2003-08-29 2005-03-02 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP2261740B1 (en) 2003-08-29 2014-07-09 ASML Netherlands BV Lithographic apparatus
US6954256B2 (en) 2003-08-29 2005-10-11 Asml Netherlands B.V. Gradient immersion lithography
KR101238114B1 (en) 2003-09-03 2013-02-27 가부시키가이샤 니콘 Apparatus and method for providing fluid for immersion lithography
TWI385707B (en) 2003-09-03 2013-02-11 尼康股份有限公司
EP3007207B1 (en) 2003-09-26 2017-03-08 Nikon Corporation A projection exposure apparatus, cleaning and maintenance methods of a projection exposure apparatus, and device manufacturing method
US7158211B2 (en) 2003-09-29 2007-01-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1519230A1 (en) 2003-09-29 2005-03-30 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP2312395B1 (en) 2003-09-29 2015-05-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
DE60302897T2 (en) 2003-09-29 2006-08-03 Asml Netherlands B.V. A lithographic apparatus and method for manufacturing a device
KR101443001B1 (en) 2003-09-29 2014-09-22 가부시키가이샤 니콘 Projection exposure device, projection exposure method, and device manufacturing method
JP2005136374A (en) * 2003-10-06 2005-05-26 Matsushita Electric Ind Co Ltd Semiconductor manufacturing apparatus and pattern formation method using the same
JP4524601B2 (en) * 2003-10-09 2010-08-18 株式会社ニコン Exposure apparatus and an exposure method, a device manufacturing method
TWI376724B (en) * 2003-10-09 2012-11-11 Nikon Corp
EP1524557A1 (en) * 2003-10-15 2005-04-20 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1524558A1 (en) 2003-10-15 2005-04-20 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
TWI569308B (en) 2003-10-28 2017-02-01 尼康股份有限公司 Optical illumination device, exposure device, exposure method and device manufacturing method
WO2005041276A1 (en) 2003-10-28 2005-05-06 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US7411653B2 (en) 2003-10-28 2008-08-12 Asml Netherlands B.V. Lithographic apparatus
EP1528432B1 (en) * 2003-10-28 2010-03-10 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7352433B2 (en) 2003-10-28 2008-04-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101117429B1 (en) 2003-10-31 2012-04-16 가부시키가이샤 니콘 Exposure apparatus and devce producing method
EP1530086A1 (en) * 2003-11-05 2005-05-11 DSM IP Assets B.V. A method and an apparatus for producing micro-chips
EP1685446A2 (en) * 2003-11-05 2006-08-02 DSM IP Assets B.V. A method and apparatus for producing microchips
US7528929B2 (en) 2003-11-14 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TWI519819B (en) 2003-11-20 2016-02-01 尼康股份有限公司 Light beam converter, optical illuminating apparatus, exposure device, and exposure method
US7545481B2 (en) 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP3139214B1 (en) 2003-12-03 2019-01-30 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JP2005175016A (en) 2003-12-08 2005-06-30 Canon Inc Substrate holding device, exposure device using the same, and method of manufacturing device
KR101499405B1 (en) 2003-12-15 2015-03-05 가부시키가이샤 니콘 Stage system, exposure apparatus and exposure method
JP4323946B2 (en) * 2003-12-19 2009-09-02 キヤノン株式会社 Exposure apparatus
US7394521B2 (en) * 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589818B2 (en) * 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
KR101911681B1 (en) 2004-01-05 2018-10-25 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device producing method
KR101135232B1 (en) 2004-01-20 2012-04-12 칼 짜이스 에스엠테 게엠베하 Microlithographic projection exposure apparatus
US20050161644A1 (en) * 2004-01-23 2005-07-28 Peng Zhang Immersion lithography fluids
TWI259319B (en) * 2004-01-23 2006-08-01 Air Prod & Chem Immersion lithography fluids
WO2005071717A1 (en) 2004-01-26 2005-08-04 Nikon Corporation Exposure apparatus and device producing method
US7589822B2 (en) 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
EP1723467A2 (en) * 2004-02-03 2006-11-22 Rochester Institute of Technology Method of photolithography using a fluid and a system thereof
US7990516B2 (en) 2004-02-03 2011-08-02 Nikon Corporation Immersion exposure apparatus and device manufacturing method with liquid detection apparatus
KR101554772B1 (en) 2004-02-04 2015-09-22 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device producing method
JP5167572B2 (en) * 2004-02-04 2013-03-21 株式会社ニコン Exposure apparatus, exposure method and device manufacturing method
TWI505329B (en) 2004-02-06 2015-10-21 尼康股份有限公司 Optical illumination apparatus, light-exposure apparatus, light-exposure method and device manufacturing method
US7050146B2 (en) 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101118787B1 (en) * 2004-02-09 2012-03-20 요시히코 오카모토 Aligner and semiconductor device manufacturing method using the aligner
WO2005076323A1 (en) 2004-02-10 2005-08-18 Nikon Corporation Aligner, device manufacturing method, maintenance method and aligning method
JP4797984B2 (en) * 2004-02-19 2011-10-19 株式会社ニコン Exposure apparatus and device manufacturing method
JP5076497B2 (en) 2004-02-20 2012-11-21 株式会社ニコン Exposure apparatus, supply method and the method of recovering the liquid, the exposure method, and device manufacturing method
WO2005081295A1 (en) * 2004-02-20 2005-09-01 Nikon Corporation Exposure method, exposure apparatus, exposure system and method for manufacturing device
JP2005259870A (en) * 2004-03-10 2005-09-22 Nikon Corp Substrate retainer, stage device, exposing device and exposing method
WO2005093791A1 (en) 2004-03-25 2005-10-06 Nikon Corporation Exposure apparatus and method for manufacturing device
US7227619B2 (en) 2004-04-01 2007-06-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7034917B2 (en) 2004-04-01 2006-04-25 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
US7295283B2 (en) 2004-04-02 2007-11-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7898642B2 (en) 2004-04-14 2011-03-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101330370B1 (en) 2004-04-19 2013-11-15 가부시키가이샤 니콘 Exposure apparatus and device producing method
US7379159B2 (en) 2004-05-03 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7616383B2 (en) 2004-05-18 2009-11-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7486381B2 (en) 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1774405B1 (en) 2004-06-04 2014-08-06 Carl Zeiss SMT GmbH System for measuring the image quality of an optical imaging system
EP1780786A4 (en) 2004-06-07 2009-11-25 Nikon Corp Stage apparatus, exposure apparatus, and exposure method
JP2005353762A (en) 2004-06-09 2005-12-22 Matsushita Electric Ind Co Ltd Semiconductor manufacturing device and pattern forming method
EP3203498A1 (en) 2004-06-09 2017-08-09 Nikon Corporation Exposure apparatus and device manufacturing method
SG10201710046XA (en) 2004-06-09 2018-01-30 Nippon Kogaku Kk Substrate holding device, exposure apparatus having same, exposure method, method for producing device, and liquid repellent plate
US8373843B2 (en) 2004-06-10 2013-02-12 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8508713B2 (en) 2004-06-10 2013-08-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
KR101556454B1 (en) 2004-06-10 2015-10-13 가부시키가이샤 니콘 Exposure equipment, exposure method and device manufacturing method
US8717533B2 (en) 2004-06-10 2014-05-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
KR101577515B1 (en) 2004-06-10 2015-12-14 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device producing method
US7481867B2 (en) 2004-06-16 2009-01-27 Edwards Limited Vacuum system for immersion photolithography
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
KR101330922B1 (en) 2004-06-21 2013-11-18 가부시키가이샤 니콘 Exposure equipment and device manufacturing method
US20060001851A1 (en) * 2004-07-01 2006-01-05 Grant Robert B Immersion photolithography system
JP2006024692A (en) 2004-07-07 2006-01-26 Toshiba Corp Forming method of resist pattern
JP2006024715A (en) 2004-07-07 2006-01-26 Toshiba Corp Lithography apparatus and pattern forming method
US7463330B2 (en) 2004-07-07 2008-12-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8654308B2 (en) 2004-07-12 2014-02-18 Nikon Corporation Method for determining exposure condition, exposure method, exposure apparatus, and method for manufacturing device
WO2006006565A1 (en) * 2004-07-12 2006-01-19 Nikon Corporation Exposure equipment and device manufacturing method
US7161663B2 (en) 2004-07-22 2007-01-09 Asml Netherlands B.V. Lithographic apparatus
US7224427B2 (en) * 2004-08-03 2007-05-29 Taiwan Semiconductor Manufacturing Company, Ltd. Megasonic immersion lithography exposure apparatus and method
US8169591B2 (en) 2004-08-03 2012-05-01 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7304715B2 (en) 2004-08-13 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1801853A4 (en) * 2004-08-18 2008-06-04 Nikon Corp Exposure apparatus and device manufacturing method
US7701550B2 (en) 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TWI610340B (en) 2004-09-17 2018-01-01 Nikon Corp
US8102512B2 (en) 2004-09-17 2012-01-24 Nikon Corporation Substrate holding device, exposure apparatus, and device manufacturing method
US7133114B2 (en) 2004-09-20 2006-11-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7522261B2 (en) 2004-09-24 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7355674B2 (en) 2004-09-28 2008-04-08 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program product
US7894040B2 (en) 2004-10-05 2011-02-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7209213B2 (en) 2004-10-07 2007-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2006190971A (en) * 2004-10-13 2006-07-20 Nikon Corp Exposure apparatus, exposure method, and device manufacturing method
JP4961709B2 (en) * 2004-10-13 2012-06-27 株式会社ニコン Exposure apparatus, exposure method and device manufacturing method
KR20070068340A (en) * 2004-10-13 2007-06-29 가부시키가이샤 니콘 Exposure device, exposure method, and device manufacturing method
WO2006041083A1 (en) 2004-10-13 2006-04-20 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP1806772B1 (en) 2004-10-15 2014-08-06 Nikon Corporation Exposure apparatus and device manufacturing method
US7379155B2 (en) 2004-10-18 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7119876B2 (en) 2004-10-18 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101285951B1 (en) 2004-10-26 2013-07-12 가부시키가이샤 니콘 Substrate processing method, exposure apparatus and method for manufacturing device
TWI416265B (en) 2004-11-01 2013-11-21 尼康股份有限公司
EP1816671A4 (en) 2004-11-11 2010-01-13 Nikon Corp Exposure method, device manufacturing method, and substrate
US7251013B2 (en) 2004-11-12 2007-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7583357B2 (en) 2004-11-12 2009-09-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7414699B2 (en) 2004-11-12 2008-08-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7423720B2 (en) 2004-11-12 2008-09-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411657B2 (en) 2004-11-17 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TW201837984A (en) 2004-11-18 2018-10-16 日商尼康股份有限公司 Exposure apparatus, exposure method and device manufacturing method
WO2006053751A2 (en) 2004-11-18 2006-05-26 Carl Zeiss Smt Ag Projection lens system of a microlithographic projection exposure installation
US7145630B2 (en) 2004-11-23 2006-12-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7161654B2 (en) 2004-12-02 2007-01-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7446850B2 (en) 2004-12-03 2008-11-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7804576B2 (en) 2004-12-06 2010-09-28 Nikon Corporation Maintenance method, maintenance device, exposure apparatus, and device manufacturing method
US7248334B2 (en) 2004-12-07 2007-07-24 Asml Netherlands B.V. Sensor shield
US7196770B2 (en) 2004-12-07 2007-03-27 Asml Netherlands B.V. Prewetting of substrate before immersion exposure
US7365827B2 (en) 2004-12-08 2008-04-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4752473B2 (en) 2004-12-09 2011-08-17 株式会社ニコン Exposure apparatus, exposure method and device manufacturing method
US7352440B2 (en) 2004-12-10 2008-04-01 Asml Netherlands B.V. Substrate placement in immersion lithography
KR101771334B1 (en) 2004-12-15 2017-08-24 가부시키가이샤 니콘 Substrate holding apparatus, exposure apparatus and device manufacturing method
US7403261B2 (en) 2004-12-15 2008-07-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7880860B2 (en) 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7528931B2 (en) 2004-12-20 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7491661B2 (en) 2004-12-28 2009-02-17 Asml Netherlands B.V. Device manufacturing method, top coat material and substrate
US7405805B2 (en) 2004-12-28 2008-07-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060147821A1 (en) 2004-12-30 2006-07-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7450217B2 (en) 2005-01-12 2008-11-11 Asml Netherlands B.V. Exposure apparatus, coatings for exposure apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby
CN1804724A (en) * 2005-01-14 2006-07-19 朱晓 Oil-immersed exposure method for chip photolithography process
EP1681597B1 (en) 2005-01-14 2010-03-10 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101942138B1 (en) 2005-01-31 2019-01-24 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
CN101128775B (en) * 2005-02-10 2012-07-25 Asml荷兰有限公司 Immersion liquid, exposure apparatus, and exposure process
US7378025B2 (en) 2005-02-22 2008-05-27 Asml Netherlands B.V. Fluid filtration method, fluid filtered thereby, lithographic apparatus and device manufacturing method
US7224431B2 (en) 2005-02-22 2007-05-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8018573B2 (en) 2005-02-22 2011-09-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7428038B2 (en) 2005-02-28 2008-09-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and apparatus for de-gassing a liquid
US7324185B2 (en) 2005-03-04 2008-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7684010B2 (en) 2005-03-09 2010-03-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, seal structure, method of removing an object and a method of sealing
TWI424260B (en) 2005-03-18 2014-01-21 尼康股份有限公司
WO2006101024A1 (en) 2005-03-18 2006-09-28 Nikon Corporation Exposure method, exposure apparatus, device manufacturing method and exposure apparatus evaluating method
US7330238B2 (en) 2005-03-28 2008-02-12 Asml Netherlands, B.V. Lithographic apparatus, immersion projection apparatus and device manufacturing method
JP4605219B2 (en) 2005-03-30 2011-01-05 株式会社ニコン Method of determining the exposure conditions, exposure method and an exposure apparatus, and device manufacturing method
US7411654B2 (en) 2005-04-05 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7291850B2 (en) 2005-04-08 2007-11-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
USRE43576E1 (en) 2005-04-08 2012-08-14 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
KR101555707B1 (en) 2005-04-18 2015-09-25 가부시키가이샤 니콘 The exposure apparatus and exposure methods, and device manufacturing method
US20060232753A1 (en) * 2005-04-19 2006-10-19 Asml Holding N.V. Liquid immersion lithography system with tilted liquid flow
JP5125505B2 (en) 2005-04-25 2013-01-23 株式会社ニコン Exposure method and an exposure apparatus, and device manufacturing method
CN100555568C (en) 2005-04-28 2009-10-28 株式会社尼康 Exposure method, exposure apparatus and device manufacturing method
US7433016B2 (en) 2005-05-03 2008-10-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8248577B2 (en) 2005-05-03 2012-08-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7317507B2 (en) 2005-05-03 2008-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2006319064A (en) 2005-05-11 2006-11-24 Canon Inc Measuring device, exposure method and aligner
EP2660853B1 (en) 2005-05-12 2017-07-05 Nikon Corporation Projection optical system, exposure apparatus and exposure method
WO2006122578A1 (en) * 2005-05-17 2006-11-23 Freescale Semiconductor, Inc. Contaminant removal apparatus and method therefor
KR20080007383A (en) * 2005-05-24 2008-01-18 가부시키가이샤 니콘 Exposure method, exposure apparatus and device manufacturing method
WO2006133800A1 (en) 2005-06-14 2006-12-21 Carl Zeiss Smt Ag Lithography projection objective, and a method for correcting image defects of the same
US7751027B2 (en) 2005-06-21 2010-07-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7652746B2 (en) 2005-06-21 2010-01-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7924416B2 (en) 2005-06-22 2011-04-12 Nikon Corporation Measurement apparatus, exposure apparatus, and device manufacturing method
US7468779B2 (en) 2005-06-28 2008-12-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7474379B2 (en) 2005-06-28 2009-01-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7834974B2 (en) 2005-06-28 2010-11-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7291569B2 (en) * 2005-06-29 2007-11-06 Infineon Technologies Ag Fluids for immersion lithography systems
US7522258B2 (en) 2005-06-29 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing movement of clean air to reduce contamination
KR20080026082A (en) 2005-06-30 2008-03-24 가부시키가이샤 니콘 Exposure apparatus and method, exposure apparatus maintenance method, and device manufacturing method
US7535644B2 (en) 2005-08-12 2009-05-19 Asml Netherlands B.V. Lens element, lithographic apparatus, device manufacturing method, and device manufactured thereby
US8054445B2 (en) 2005-08-16 2011-11-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8070145B2 (en) 2005-08-26 2011-12-06 Nikon Corporation Holding unit, assembly system, sputtering unit, and processing method and processing unit
US7812926B2 (en) 2005-08-31 2010-10-12 Nikon Corporation Optical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice
JP2007073587A (en) * 2005-09-05 2007-03-22 Nikon Corp Exposure method, aligner, and method of manufacturing device
US8111374B2 (en) 2005-09-09 2012-02-07 Nikon Corporation Analysis method, exposure method, and device manufacturing method
EP1933371A1 (en) 2005-09-09 2008-06-18 Nikon Corporation Exposure apparatus, exposure method, and device production method
US7411658B2 (en) 2005-10-06 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2007103841A (en) * 2005-10-07 2007-04-19 Toshiba Corp Manufacture of semiconductor device
US7864292B2 (en) 2005-11-16 2011-01-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7656501B2 (en) 2005-11-16 2010-02-02 Asml Netherlands B.V. Lithographic apparatus
US7804577B2 (en) 2005-11-16 2010-09-28 Asml Netherlands B.V. Lithographic apparatus
US7803516B2 (en) 2005-11-21 2010-09-28 Nikon Corporation Exposure method, device manufacturing method using the same, exposure apparatus, and substrate processing method and apparatus
US7633073B2 (en) * 2005-11-23 2009-12-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7773195B2 (en) 2005-11-29 2010-08-10 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
US8125610B2 (en) 2005-12-02 2012-02-28 ASML Metherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
US7420194B2 (en) * 2005-12-27 2008-09-02 Asml Netherlands B.V. Lithographic apparatus and substrate edge seal
US7839483B2 (en) 2005-12-28 2010-11-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a control system
US8411271B2 (en) 2005-12-28 2013-04-02 Nikon Corporation Pattern forming method, pattern forming apparatus, and device manufacturing method
US7649611B2 (en) 2005-12-30 2010-01-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4667252B2 (en) 2006-01-16 2011-04-06 株式会社Sokudo The substrate processing apparatus
KR101431405B1 (en) 2006-01-19 2014-08-18 가부시키가이샤 니콘 Moving body drive method, moving body drive system, pattern formation method, pattern formation device, exposure method, exposure device, and device fabrication method
US8134681B2 (en) 2006-02-17 2012-03-13 Nikon Corporation Adjustment method, substrate processing method, substrate processing apparatus, exposure apparatus, inspection apparatus, measurement and/or inspection system, processing apparatus, computer system, program and information recording medium
CN101980085B (en) 2006-02-21 2012-11-07 株式会社尼康 Exposure apparatus, exposure method, and device manufacturing method
JP5177674B2 (en) 2006-02-21 2013-04-03 株式会社ニコン Measuring apparatus and method, a pattern forming apparatus and method, and device manufacturing method
JP5115859B2 (en) 2006-02-21 2013-01-09 株式会社ニコン Patterning apparatus, an exposure apparatus and an exposure method, and device manufacturing method
KR20080114691A (en) 2006-03-13 2008-12-31 가부시키가이샤 니콘 Exposure apparatus, maintenance method, exposure method and device manufacturing method
US8045134B2 (en) 2006-03-13 2011-10-25 Asml Netherlands B.V. Lithographic apparatus, control system and device manufacturing method
JP4826755B2 (en) * 2006-03-28 2011-11-30 株式会社ニコン Adjustment method for an exposure apparatus, an exposure apparatus, and device manufacturing method
US9477158B2 (en) 2006-04-14 2016-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
DE102006021797A1 (en) 2006-05-09 2007-11-15 Carl Zeiss Smt Ag Optical imaging device with thermal attenuation
TWI439813B (en) 2006-05-10 2014-06-01 尼康股份有限公司
US8570484B2 (en) 2006-08-30 2013-10-29 Nikon Corporation Immersion exposure apparatus, device manufacturing method, cleaning method, and cleaning member to remove foreign substance using liquid
EP3312676A1 (en) 2006-08-31 2018-04-25 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
KR101565277B1 (en) 2006-08-31 2015-11-02 가부시키가이샤 니콘 Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
TWI547771B (en) 2006-08-31 2016-09-01 尼康股份有限公司
WO2008029757A1 (en) 2006-09-01 2008-03-13 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method
KR101442449B1 (en) 2006-09-01 2014-09-22 가부시키가이샤 니콘 Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
US7872730B2 (en) 2006-09-15 2011-01-18 Nikon Corporation Immersion exposure apparatus and immersion exposure method, and device manufacturing method
US7973910B2 (en) 2006-11-17 2011-07-05 Nikon Corporation Stage apparatus and exposure apparatus
US8045135B2 (en) 2006-11-22 2011-10-25 Asml Netherlands B.V. Lithographic apparatus with a fluid combining unit and related device manufacturing method
US8040490B2 (en) 2006-12-01 2011-10-18 Nikon Corporation Liquid immersion exposure apparatus, exposure method, and method for producing device
US8013975B2 (en) 2006-12-01 2011-09-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US20080156356A1 (en) 2006-12-05 2008-07-03 Nikon Corporation Cleaning liquid, cleaning method, liquid generating apparatus, exposure apparatus, and device fabricating method
US8634053B2 (en) 2006-12-07 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9632425B2 (en) 2006-12-07 2017-04-25 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface
US7791709B2 (en) 2006-12-08 2010-09-07 Asml Netherlands B.V. Substrate support and lithographic process
JP2010519722A (en) * 2007-02-23 2010-06-03 株式会社ニコン Exposure method, an exposure apparatus, device manufacturing method, and immersion exposure substrate
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US7900641B2 (en) 2007-05-04 2011-03-08 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
US8164736B2 (en) 2007-05-29 2012-04-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
JP5267029B2 (en) 2007-10-12 2013-08-21 株式会社ニコン Illumination optical apparatus, exposure apparatus and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2009152497A (en) * 2007-12-21 2009-07-09 Nikon Corp Liquid immersion system, exposure apparatus, exposure method, and device manufacturing method
NL2003363A (en) 2008-09-10 2010-03-15 Asml Netherlands Bv Lithographic apparatus, method of manufacturing an article for a lithographic apparatus and device manufacturing method.
JP5127742B2 (en) * 2009-02-18 2013-01-23 パナソニック株式会社 The pattern forming method
US8159065B2 (en) 2009-03-06 2012-04-17 Hynix Semiconductor Inc. Semiconductor package having an internal cooling system
KR101712219B1 (en) 2009-03-10 2017-03-03 가부시키가이샤 니콘 Exposure apparatus, exposure method and device manufacturing method
JP5246174B2 (en) * 2010-01-25 2013-07-24 株式会社ニコン The flow path forming member, an exposure apparatus and device manufacturing method
EP2381310B1 (en) 2010-04-22 2015-05-06 ASML Netherlands BV Fluid handling structure and lithographic apparatus
US8703368B2 (en) * 2012-07-16 2014-04-22 Taiwan Semiconductor Manufacturing Company, Ltd. Lithography process
CN104216233B (en) * 2013-06-05 2016-08-10 中芯国际集成电路制造(上海)有限公司 Exposure method
CN103439869B (en) * 2013-09-02 2016-01-27 上海华力微电子有限公司 The method of measuring the pattern density
CN104570615B (en) * 2013-10-29 2017-01-18 上海微电子装备有限公司 A scanning exposure apparatus

Also Published As

Publication number Publication date
JPH10340846A (en) 1998-12-22

Similar Documents

Publication Publication Date Title
US7468780B2 (en) Exposure apparatus and method
US6304317B1 (en) Projection apparatus and method
US7402378B2 (en) Exposure method and apparatus
US7319508B2 (en) Projection exposure apparatus and method, catadioptric optical system and manufacturing method of devices
US7345741B2 (en) Illumination optical system and exposure apparatus
CN1309017C (en) Exposure method and device
US5677757A (en) Projection exposure apparatus
JP4505989B2 (en) Device manufacturing method using the projection exposure apparatus and method comprising an aberration measuring apparatus and method and the apparatus, exposure method
US6614535B1 (en) Exposure apparatus with interferometer
US20030025890A1 (en) Exposure apparatus and exposure method capable of controlling illumination distribution
US7102731B2 (en) Projection optical system adjustment method, prediction method, evaluation method, adjustment method, exposure method and exposure apparatus, program, and device manufacturing method
US20020054282A1 (en) Projection exposure apparatus
US20020061469A1 (en) Projection apparatus, method of manufacturing the apparatus,method of exposure using the apparatus, and method of manufacturing circuit devices by using the apparatus
US6914665B2 (en) Exposure apparatus, exposure method, and device manufacturing method
US7095481B2 (en) Exposure method and apparatus
EP1956431A1 (en) Exposure apparatus, exposure method and device manufacturing method
US6104472A (en) Projection exposure apparatus and device manufacturing method
JP4683232B2 (en) The image plane measuring method, exposure method and device manufacturing method, and an exposure apparatus
US6975387B2 (en) Wavefront aberration measuring instrument, wavefront aberration measuring method, exposure apparatus, and method for manufacturing micro device
US7215410B2 (en) Exposure apparatus
US7068350B2 (en) Exposure apparatus and stage device, and device manufacturing method
JP4923370B2 (en) An illumination optical system, exposure apparatus, and a micro-device manufacturing method
US6788389B2 (en) Production method of projection optical system
US5838426A (en) Exposure apparatus and method which changes wavelength of illumination light in accordance with pressure changes occurring around projection optical system
US7771065B2 (en) Optical unit and exposure apparatus having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170623

Year of fee payment: 11

EXPY Cancellation because of completion of term