WO2006025408A1 - Exposure apparatus and device manufacturing method - Google Patents

Exposure apparatus and device manufacturing method Download PDF

Info

Publication number
WO2006025408A1
WO2006025408A1 PCT/JP2005/015800 JP2005015800W WO2006025408A1 WO 2006025408 A1 WO2006025408 A1 WO 2006025408A1 JP 2005015800 W JP2005015800 W JP 2005015800W WO 2006025408 A1 WO2006025408 A1 WO 2006025408A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
projection optical
exposure light
exposure apparatus
illumination
Prior art date
Application number
PCT/JP2005/015800
Other languages
French (fr)
Japanese (ja)
Inventor
Yusaku Uehara
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2006532735A priority Critical patent/JP5266641B2/en
Publication of WO2006025408A1 publication Critical patent/WO2006025408A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70258Projection system adjustments, e.g. adjustments during exposure or alignment during assembly of projection system
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0068Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration having means for controlling the degree of correction, e.g. using phase modulators, movable elements

Definitions

  • the present invention relates to an exposure apparatus that transfers a mask pattern onto a substrate via a projection optical system, and a device manufacturing method for manufacturing a device using the exposure apparatus.
  • a reticle pattern as a mask is coated with a photoresist as a substrate.
  • a projection exposure apparatus such as a stepper is used to transfer to each shot area on the wafer (or glass plate or the like).
  • the imaging characteristics of the projection optical system change depending on the exposure light irradiation amount and the ambient pressure change. For this reason, in order to maintain the imaging characteristics in a desired state, the projection exposure apparatus controls the position or posture (tilt) of some optical members constituting the projection optical system, for example.
  • An imaging characteristic correction mechanism for correcting the imaging characteristics is provided.
  • the imaging characteristics that can be corrected by the conventional imaging characteristics correction mechanism are low-order and low-order components such as distortion and magnification.
  • annular illumination in order to increase the resolution for a specific pattern, so-called annular illumination, quadrupole illumination (2 regions on the pupil plane of the illumination optical system are divided into 2 regions).
  • illumination conditions are used in which the exposure light does not pass through a region including the optical axis on the pupil plane of the illumination optical system, such as an illumination method as a next light source.
  • the exposure light is illuminated with the optical member near the pupil plane in the projection optical system being substantially hollow.
  • a scanning exposure type projection exposure apparatus such as a scanning stepper has recently been widely used.
  • the reticle is illuminated in a rectangular illumination area whose scanning direction is the short side direction, for example, so that the reticle is optically close to the reticle and wafer in the projection optical system.
  • a non-rotationally symmetric region is mainly illuminated by the exposure light.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-64790
  • Patent Document 2 Japanese Patent Laid-Open No. 10-50585
  • Dipole illumination (bipolar illumination) may be used as a secondary light source. Since this dipole illumination has a large light amount distribution and non-rotation symmetry compared to quadrupole illumination, astigmatism on the optical axis, which is a non-rotationally symmetric aberration component in the projected image (hereinafter referred to as “center-astigma”). "Taism”) occurs. Dipole illumination also causes non-rotationally symmetric aberration fluctuations other than center astigmatism.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide an exposure apparatus that can maintain the optical characteristics of a projection optical system in a desired state, and a device manufacturing method using the exposure apparatus. To do.
  • an exposure apparatus of the present invention includes an illumination optical system (ILS) that irradiates illumination light (IL) onto a mask (R), and an image of the mask pattern on a substrate (W).
  • an exposure apparatus comprising a projection optical system (PL) for projection, an adjustment device (14, 22, 40) for adjusting the optical characteristics of the projection optical system and a conjugate plane of the image plane of the projection optical system
  • a setting device (9) for setting at least one of the cross-sectional shape and size of the illumination light, and the projection by the adjusting device according to the cross-sectional shape and size of the illumination light set by the setting device
  • a control device (20) for controlling the adjustment of the optical characteristics of the optical system.
  • the optical characteristics of the projection optical system are adjusted according to the cross-sectional shape and size of the illumination light in the conjugate plane with the image plane of the projection optical system.
  • the exposure apparatus of the present invention includes an illumination optical system (ILS) that irradiates the mask (R) with illumination light (IL), and an image of the mask pattern on the substrate (W).
  • ILS illumination optical system
  • the first adjustment mechanism adjusts the non-rotationally symmetric static optical characteristic in the projection optical system
  • the second adjustment mechanism adjusts the non-rotationally symmetric dynamic optical characteristic in the projection optical system. Is done.
  • the device manufacturing method of the present invention is characterized by including a step (S46) of transferring a device pattern onto the object (W) using the above exposure apparatus.
  • the optical characteristics of the projection optical system can be maintained in a desired state. Further, by using an exposure apparatus that can maintain the optical characteristics of the projection optical system in a desired state, it is possible to manufacture a device with a high yield.
  • FIG. 1 is a view showing the schematic arrangement of an exposure apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of an imaging characteristic correction mechanism.
  • FIG. 3A is a cross-sectional view showing a configuration example of an adjustment mechanism.
  • FIG. 3B is a top view showing a configuration example of an adjustment mechanism.
  • FIG. 4 is a diagram showing another configuration example of the temperature regulator.
  • FIG. 5 is a diagram showing a configuration example of a temperature regulator using a heat transport mechanism.
  • FIG. 6A is a front view with a section of a part of the projection optical system.
  • FIG. 6B is a front view showing a cross section of a part of the projection optical system.
  • FIG. 7A is a diagram for explaining a lens shape change that occurs when dipole illumination is performed.
  • FIG. 7B is a diagram for explaining a lens shape change that occurs when dipole illumination is performed.
  • FIG. 7C is a diagram for explaining the lens shape change that occurs when dipole illumination is performed.
  • FIG. 7D is a diagram for explaining a lens shape change that occurs when dipole illumination is performed.
  • FIG. 8A is a diagram for explaining a change in the shape of a lens that occurs when dipole illumination is performed.
  • FIG. 8B is a diagram for explaining the lens shape change that occurs when dipole illumination is performed.
  • FIG. 9 is a diagram showing center astigmatism caused by dipole illumination.
  • FIG. 10A is a diagram for explaining an example of a method for correcting non-rotationally symmetric aberration of a projection optical system using a non-exposure light irradiation mechanism.
  • FIG. 10B is a diagram for explaining an example of a method for correcting non-rotationally symmetric aberration of the projection optical system using the non-exposure light irradiation mechanism.
  • FIG. 11 is a block diagram showing an internal configuration of the main control system and an apparatus for exchanging various signals with the main control system.
  • FIG. 12 is a diagram showing a typical transfer function with respect to the focus fluctuation amount.
  • FIG. 13 is a diagram for explaining an example of a table stored in a memory.
  • FIG. 14 is a flowchart showing a part of a manufacturing process for manufacturing a semiconductor element as a micro device.
  • FIG. 15 is a diagram showing an example of a detailed flow of step S 13 in FIG.
  • FIG. 1 is a view showing the schematic arrangement of an exposure apparatus according to an embodiment of the present invention.
  • the exposure apparatus shown in FIG. 1 sequentially moves the pattern formed on the reticle R onto the wafer W while moving the reticle R as a mask and the wafer W as a substrate relative to the projection optical system PL.
  • This is a scanning exposure type exposure apparatus of the next “and” scanning method for transferring.
  • an XYZ orthogonal coordinate system is set in the drawing, and the positional relationship of each member will be described with reference to this XYZ orthogonal coordinate system.
  • the XYZ Cartesian coordinate system shown in Fig. 1 is set so that the X-axis and Y-axis are almost parallel to the wafer W surface, and the Z-axis is set in a direction almost perpendicular to the wafer W surface. Yes.
  • the XYZ coordinate system in the figure the XY plane is actually set parallel to the horizontal plane, and the Z axis is set vertically.
  • the direction in which the reticle R and the wafer W are moved synchronously is set to the Y direction.
  • the exposure apparatus shown in FIG. 1 includes an exposure light source 1, an illumination optical system ILS, a reticle stage RST, a projection optical system PL, a wafer stage WST, and a main control system 20.
  • the exposure light source 1 is, for example, a KrF excimer laser light source (wavelength 247 nm).
  • ArF excimer laser light source (wavelength 193 nm), F laser light source (wavelength 157 nm), Kr laser light source (
  • UV laser light source such as Ar laser light source (wavelength 126nm), YAG laser
  • Harmonic generator solid-state laser (semiconductor laser, etc.) harmonic generator, or mercury run (I-line etc.) can also be used.
  • the exposure light IL pulsed from the exposure light source 1 at the time of exposure is shaped into a predetermined shape through a beam shaping optical system (not shown) and the like as an optical integrator (a homogenizer or a homogenizer).
  • the light is incident on the first fly-eye lens 2 and the illuminance distribution is made uniform.
  • the exposure light IL emitted from the first fly-eye lens 2 is incident on the second fly-eye 4 as an optical integrator through a relay lens (not shown) and the vibrating mirror 3, and the illuminance distribution is further uniformized.
  • the vibrating mirror 3 is used for reducing speckles of the exposure light IL that is laser light and reducing interference fringes by a fly-eye lens.
  • a diffractive optical element DOE: Dilfractive Optical Element
  • an internal reflection type integrator rod lens or the like
  • the exposure light intensity distribution (secondary light source) has a small circle (small ⁇ illumination), a normal circle, Illumination system aperture stop member 5 for determining illumination conditions by setting to any one of multiple eccentric regions (dipole and quadrupole illumination) and ring-shaped zones, etc., is rotatably arranged by drive motor 5c Has been.
  • the main control system 20 composed of a computer that controls the overall operation of the apparatus controls the rotation angle of the illumination system aperture stop member 5 via the drive motor 5c to set the illumination conditions. In the state shown in FIG.
  • the first dipole illumination two-pole illumination
  • a second dipole illumination aperture stop 5b obtained by rotating the aperture stop 5a by 90 °.
  • an aperture stop 5a for the first dipole illumination is installed.
  • the light distribution on the pupil plane of the illumination optical system ILS is adjusted using the illumination system aperture stop member 5, but as disclosed in US Pat. No. 6,563,567.
  • the light amount distribution on the pupil plane of the illumination optical system ILS may be adjusted using another optical member.
  • the exposure light IL that has passed through the aperture stop 5a in the illumination system aperture stop member 5 is incident on the beam splitter 6 having a low reflectance.
  • the exposure light reflected by the beam splitter 6 is received by the integrator sensor 7 via a condenser lens (not shown).
  • the detection signal of the integrator sensor 7 is supplied to the main control system 20. Based on this detection signal, the main control system 20
  • the output of the light source 1 is controlled, and the pulse energy of the exposure light IL is controlled step by step using a dimming mechanism (not shown) as necessary.
  • the exposure light IL that has passed through the beam splitter 6 is incident on the aperture of the field stop 9 via a relay lens (not shown).
  • the field stop 9 is actually composed of a fixed field stop (fixed blind) and a movable field stop (movable blind) force.
  • the latter movable field stop is arranged on a plane almost conjugate with the pattern surface (reticle surface) of the reticle R, and the former fixed field stop is arranged on a plane defocused slightly with a conjugate surface force with the reticle plane.
  • the fixed field stop is used to define the shape of the illumination area on the reticle R.
  • the fixed field stop is defocused slightly with respect to the reticle surface will be described as an example, but it may be arranged on the conjugate surface.
  • the movable field stop moves in synchronization with reticle R (or wafer W) so that unnecessary portions are not exposed at the start and end of scanning exposure to each shot area to be exposed. Used to block the lighting area.
  • the fixed field stop does not move in synchronization with the reticle R (or wafer W), it is also used to define the center and width of the illumination area in the scanning direction and non-scanning direction as required.
  • the main control system 20 controls the operations of the fixed field stop and the movable field stop.
  • the exposure light IL that has passed through the aperture of the field stop 9 passes through a condenser lens (not shown), a mirror 10 for bending the optical path, and a condenser lens 11, so that the illumination area of the reticle surface of the reticle R is made uniform. Illuminate with illumination distribution.
  • the normal shape of the aperture of the field stop 9 (fixed field stop) is a rectangle with an aspect ratio of about 1: 3 to 1: 4. Therefore, the normal shape of the illumination area on the reticle R that is almost conjugate with the aperture of the field stop 9 is also rectangular.
  • the main control system 20 changes the shape of the aperture of the field stop 9 so that the distribution of the exposure light IL irradiated onto the reticle R, that is, the cross-sectional shape and size of the exposure light IL (the image plane of the projection optical system).
  • the cross-sectional shape and size of the illumination light at the conjugate plane changes.
  • the distribution (density) of apertures and patterns defined by the light shielding area around the reticle R area formed to shield unnecessary light
  • the shape and size of the illumination light on the conjugate plane with the image plane of the projection optical system change.
  • the pattern in the illumination area of the reticle R is coated with a photoresist with a projection magnification of
  • 8 is 1Z4, 1Z5, etc.
  • the exposure area is a rectangular area conjugate with the illumination area on the reticle R with respect to the projection optical system PL.
  • the wafer W is a disk-shaped substrate having a diameter of about 200 to 300 mm, such as a semiconductor (silicon etc.) or SOI (silicon on insulator).
  • a part of the exposure light IL is reflected by the wafer W, and the reflected light passes through the projection optical system PL, the reticle R, the condenser lens 11, the mirror 10, and the field stop 9 in this order and returns to the beam splitter 6 to return to the beam splitter.
  • the light further reflected by 6 is received by a reflection amount sensor (reflectance monitor) 8 through a condenser lens (not shown).
  • the detection signal of the reflection amount sensor 8 is supplied to the main control system 20.
  • environmental sensors 12 for measuring atmospheric pressure and temperature are arranged outside the projection optical system PL (for example, a total of four locations on the ⁇ X side and the Y side of the projection optical system PL). Measurement data measured by the environmental sensor 12 is also supplied to the main control system 20.
  • An illumination optical system ILS is composed of the exposure light source 1, fly-eye lenses 2 and 4, mirrors 3 and 10, illumination system aperture stop member 5, field stop 9, condenser lens 11, and the like.
  • the illumination optical system IL S is further covered with a sub-chamber (not shown) as an airtight chamber.
  • a sub-chamber (not shown) as an airtight chamber.
  • dry air from which impurities are highly removed is placed in the subchamber and in the lens barrel of the projection optical system PL. Nitrogen gas, helium gas, etc. are also used.
  • the projection optical system PL of the present embodiment is a refractive system, and the plurality of optical members constituting the projection optical system PL are quartz that is rotationally symmetric about the optical axis AX (exposure light is ArF excimer).
  • exposure light is ArF excimer
  • ZA it includes a plurality of lenses made of fluorite, etc., and a flat aberration correction plate made of quartz.
  • An aperture stop 13 is disposed on the pupil plane PP of the projection optical system PL (a plane conjugate with the pupil plane of the illumination optical system ILS), and lenses L1 and L2 are disposed near the pupil plane PP.
  • the lens L1 in order to adjust dynamic optical characteristics (particularly non-rotationally symmetric aberration) of the projection optical system PL, illumination light having a wavelength region different from that of the exposure light IL is applied. It is irradiated by.
  • the lens L2 is subjected to a predetermined adjustment by the adjusting mechanism 22 in order to adjust the static optical characteristics (particularly non-rotationally symmetric aberration) of the projection optical system PL.
  • Adjustment of the optical characteristics of the projection optical system PL by the adjustment mechanism 22 and the non-exposure light irradiation mechanism 40 is controlled by the main control system 20. To do. Details of the adjustment mechanism 22 and the non-exposure light irradiation mechanism 40 will be described later.
  • the main control system 20 controls the operation of the imaging characteristic correction mechanism 14 for adjusting the optical characteristics (particularly rotationally symmetric aberration) of the projection optical system PL via the control unit 15.
  • the static optical characteristics of the projection optical system PL are the optical characteristics when the projection optical system PL is in the initial state, that is, when the projection optical system PL is not affected by the irradiation of the exposure light IL.
  • the dynamic optical characteristics of the system PL are optical characteristics that change when the projection optical system PL is irradiated with the exposure light IL.
  • Reticle R is attracted and held on reticle stage RST.
  • Reticle stage RST moves at a constant speed in the Y direction on a reticle base (not shown), and X direction, Y direction,
  • the reticle R is scanned by slightly moving in the rotation direction.
  • the position and rotation angle of reticle stage RST in the X and Y directions are measured by a movable mirror (not shown) and a laser interferometer (not shown) provided on reticle stage RST. It is supplied to the control system 20.
  • a slit image is projected obliquely onto the pattern surface (reticle surface) of the reticle R, the reflected light of the reticle surface force is received, and the slit image is re-imaged.
  • An oblique-incidence focus sensor (hereinafter referred to as “reticle-side AF sensor”) 16 that detects the displacement of the reticle surface in the Z direction from the amount of lateral displacement of the slit image is disposed. Information detected by the reticle side AF sensor 16 is supplied to the main control system 20.
  • a reticle alignment microscope (not shown) for reticle alignment is disposed above the periphery of the reticle R.
  • the wafer W is sucked and held on the Z tilt stage 17 via a wafer holder (not shown).
  • the Z tilt stage 17 is fixed on the wafer stage WST, and the wafer stage WST can be moved at a constant speed in the Y direction on a wafer base (not shown) and can be moved stepwise in the X direction and the Y direction.
  • the Z tilt stage 17 controls the position of the wafer W in the Z direction and the tilt angles around the X and Y axes.
  • the position and rotation angle in the X and Y directions of wafer stage WST are measured by a laser interferometer (not shown), and the measured values are supplied to main control system 20.
  • the main control system 20 controls the position and speed of the wafer stage WST based on the measurement values and various control information.
  • a plurality of slit images are projected obliquely onto the surface of the wafer W (wafer surface), and reflected light from the wafer surface is received to reconstruct the slit images.
  • An oblique-incidence focus sensor (hereinafter referred to as the "wafer-side AF sensor") that forms an image and detects the displacement (defocus amount) and tilt angle of the wafer surface in the Z direction from the lateral displacement of the slit images. 18 is arranged. Information detected by the wafer side AF sensor 18 is supplied to the main control system 20.
  • the main control system 20 constantly projects the wafer surface based on the detection information of the reticle side AF sensor 16 and the wafer side AF sensor 18.
  • the Z tilt stage 17 is driven so as to be focused on the image plane of the optical system PL.
  • a dose sensor 19 including a photoelectric sensor having a light receiving surface covering the entire exposure area of the exposure light IL is fixed, and the dose sensor 19 The detection signal is supplied to the main control system 20.
  • the exposure light IL is irradiated with the light receiving surface of the irradiation sensor 19 moved to the exposure area of the projection optical system PL, and the detection signal of the irradiation sensor 19 is detected as the detection signal of the integrator sensor 7.
  • the main control system 20 calculates and stores the transmittance of the optical system from the beam splitter 6 to the dose sensor 19 (wafer W).
  • an aberration measuring device 21 for measuring the aberration of the projection optical system PL is provided on the Z tilt stage 17.
  • the measurement result of the aberration measuring device 21 is supplied to the main control system 20.
  • an aerial image sensor as disclosed in Japanese Patent Application Laid-Open No. 2002-14005 (corresponding US Patent Publication 2002Z0041377) can be used.
  • an off-axis alignment sensor (not shown) for wafer alignment is arranged above wafer stage WST, and the above-mentioned reticle alignment microscope and the detection result of the alignment sensor are arranged.
  • the main control system 20 performs the reticle R alignment and the wafer W alignment.
  • the reticle stage RST and wafer stage WST are driven while the illumination area on the reticle R is irradiated with the exposure light IL, and the reticle R and one shot area on the wafer W are synchronously scanned in the Y direction. And the operation of stepping the wafer W in the X and Y directions by driving the wafer stage WST are repeated.
  • the pattern image of the reticle R is exposed to each shot area on the wafer W by the step “and” scanning method.
  • the overall configuration of the exposure apparatus according to the embodiment of the present invention has been described above.
  • the imaging characteristic correction mechanism 14 and the adjustment mechanism 22 provided for adjusting the optical characteristics of the projection optical system PL are described.
  • the non-exposure light irradiation mechanism 40 will be described in order.
  • FIG. 2 is a diagram illustrating an example of the imaging characteristic correction mechanism 14.
  • five lenses Ll l, L12, L13, L14, and L15 selected from a plurality of optical members are independently expanded and contracted in the direction of the three optical axes in the lens barrel of the projection optical system PL. It is held via free drive elements 14a, 14b, 14c, 14d, 14e. Fixed lenses (not shown) and aberration correction plates are also arranged before and after the lenses L11 to L15.
  • the three drive elements 14a (only two are shown in FIG. 2) are arranged in a positional relationship that is approximately the apex of a regular triangle, and each of the other three drive elements is similarly driven.
  • the elements 14b to 14e are also arranged in a positional relationship that is almost the vertex of an equilateral triangle.
  • the extendable drive elements 14a to 14e for example, piezoelectric elements such as piezoelectric elements, magnetostrictive elements, or electric micrometers can be used.
  • the control unit 15 independently controls the expansion / contraction amounts of the drive elements 14a to 14e based on the control information from the main control system 20, whereby the position of each of the five lenses L11 to L15 in the optical axis direction and the light The tilt angle around two perpendicular axes perpendicular to the axis can be controlled independently. As a result, a predetermined rotationally symmetric aberration in the imaging characteristics of the projection optical system PL can be corrected.
  • the rotationally symmetric optical characteristics (aberration) of the projection optical system PL adjusted by the imaging characteristic correction mechanism 14 are: focus error, projection magnification error, curvature of field aberration, distortion (distortion), coma aberration, spherical Including at least one of the aberrations.
  • distortion aberration including magnification error
  • spherical aberration or the like can be corrected by controlling the position in the optical axis direction of the lens L13 at a position close to the pupil plane of the projection optical system PL. 2 may be the same as the lens L1 irradiated with the illumination light for aberration correction in the projection optical system PL of FIG.
  • the mechanism for driving the lens or the like in the projection optical system PL as described above for example, It is also disclosed in Japanese Patent Laid-Open No. 4-134813. Further, instead of or together with the optical member in the projection optical system PL, the position in the optical axis direction of the reticle R in FIG. 1 may be controlled to correct a predetermined rotationally symmetric aberration. . Further, as the imaging characteristic correction mechanism 14 in FIG. 1, as disclosed in, for example, Japanese Patent Laid-Open No. 60-78454, a sealed space between two predetermined lenses in the projection optical system PL is used. A mechanism for controlling the pressure of the gas may be used.
  • FIG. 3A is a cross-sectional view illustrating a configuration example of the adjustment mechanism 22, and FIG. 3B is a top view illustrating a configuration example of the adjustment mechanism 22.
  • FIG. 3A and 3B only the configuration of the adjustment mechanism 22 is shown for the sake of simplicity, and the configuration other than the adjustment mechanism 22 (for example, a lens barrel or the like) is not shown.
  • the adjustment mechanism 22 includes a holding member 22a, a temperature adjuster 22b, an adjustment screw 22c, and the like.
  • the holding member 22a is formed of a material having a high thermal conductivity such as aluminum, and holds the lens L2 in contact with one end around the lens L2.
  • the temperature adjuster 22b includes a heating element such as a heater or a heating and cooling element such as a Peltier element, and heats or cools the lens L2 in order to adjust the optical characteristics of the projection optical system PL.
  • the temperature adjuster 22b is mounted on the holding member 22a, and heats or cools the lens L2 via the holding member 22a having high thermal conductivity.
  • the temperature adjustment of the lens L2 performed through the holding member 22a is controlled by the control unit 23 under the control of the main control system 20.
  • the temperature adjuster 22b may be directly attached to the lens L2 to adjust the temperature of the lens L2.
  • the holding member 22a is formed with a screw hole penetrating from the contact surface to the lens L2 to one side surface (a surface facing the contact surface), and the adjustment screw 22c is fitted into the screw hole.
  • the adjusting screw 22c is arranged so that its axis is substantially parallel to a plane perpendicular to the optical axis of the lens L2.
  • the adjustment screw 22c is used to pressurize or depressurize the lens L2 in order to adjust the optical characteristics of the projection optical system PL.
  • the lens L2 By rotating the adjustment screw 22c in the direction of the directional force toward the center of the lens L2, the lens L2 can be pressurized (increasing the force to press the lens L2), and conversely in the direction of the directional force from the center of the lens L2 Rotate the adjustment screw 22c to move the lens L2 Reduce the pressure (reduce or eliminate the force pushing the lens L2). Since this adjusting screw 22c is a member for pressing the lens L2, it is desirable to form it with a highly rigid material. Further, the temperature adjuster 22b is capable of heating or cooling the lens L2 efficiently. It is highly conductive and is preferably made of a material.
  • a lens barrel (not shown) provided in the projection optical system PL is provided with an operation hole (not shown) for operating the adjustment screw 22c.
  • the operator is formed in the lens barrel from the outside of the lens barrel.
  • the adjusting screw 22c can be adjusted through the operation hole. Note that the inside of the projection optical system PL is temperature-controlled to suppress fluctuations in optical characteristics. For this reason, for example, it is usually desirable to remove the lid so that the operation hole appears only when the adjustment screw 22c is operated.
  • a plurality of adjustment mechanisms 22 are provided around the lens L2.
  • eight adjustment mechanisms 22 are provided so as to form an angle of 45 ° with respect to the center of the lens L2.
  • the temperature regulator 22b provided in the adjustment mechanism 22 is connected to the control unit 23, and which temperature regulator 22b is to be temperature-adjusted and how many times are to be adjusted? It is controlled by the controller 2 3.
  • the static optical characteristics (non-rotationally symmetric aberration) of the projection optical system PL can be adjusted by either the temperature regulator 22b or the adjustment screw 22c. .
  • the adjustment by the temperature adjuster 22b can be controlled by the control unit 23, but the response is relatively slow.
  • adjustment with the adjusting screw 22c is relatively responsive, but requires manual operation by the operator. Therefore, in this embodiment, the adjustment with the adjustment screw 22c is performed at the time of manufacturing the projection optical system or the exposure apparatus, and the adjustment by the temperature adjuster 22b is projected at the time of regular or irregular maintenance of the exposure apparatus. This is done to correct for changes in the static optical characteristics of the optical system PL over time.
  • the adjusting mechanism 22 adjusts the static non-rotationally symmetric aberration of the projection optical system PL, but may be used to adjust the rotationally symmetric aberration of the projection optical system PL. .
  • the lens L2 The periphery of the lens is sandwiched in the vertical direction (Z direction), and the lens is You may use the mechanism which produces the stress which acts in the surface of L2.
  • an actuator for rotating the adjustment screw 22c is provided to control the rotation angle of the adjustment screw 22c. It may be configured to control via the
  • FIG. 4 is a diagram showing a configuration example of the temperature regulator 22b using the heat transport mechanism. As shown in FIG. 4, a plurality of heating / cooling sources 24 controlled by the control unit 23 are provided outside the projection optical system PL, and heat pipes from the heating / cooling sources 24 toward the end of the lens L2 are provided. 25 is arranged!
  • FIG. 4 there are eight power heating / cooling sources 24 and heat pipes 25 that are simplified in illustration, and each end of the heat pipe 25 is 8 around the lens L2 as in FIG. 3B. Placed in place.
  • the control unit 23 controls the heating / cooling source 24, so that the optical characteristics of the projection optical system PL can be adjusted in the same manner as the temperature adjuster 22b.
  • the configuration including the plurality of heating / cooling sources 24 is described as an example, but the configuration including one heating / cooling source in which eight heat pipes are connected to the outside of the projection optical system PL. It is also good.
  • the heating or cooling part of the lens L2 is changed by controlling the opening and closing of the flow path of each heat pipe.
  • the temperature regulator 22b and the adjusting screw 22c are arranged at the same position around the lens L2, and they may be arranged at different positions around the lens L2. The number of may be different. Furthermore, one of the temperature adjuster 22b and the adjustment screw 22c may be arranged around another lens different from the lens L2 in the vicinity of the pupil plane of the projection optical system PL. In addition, in order to adjust the static optical characteristics of the projection optical system PL, the adjusting mechanism 22 can include only one of the forces including both the temperature adjuster 22b and the adjusting screw 22c. [0047] [Non-exposure light irradiation mechanism 40]
  • the non-exposure light irradiation mechanism 40 for adjusting the dynamic optical characteristics (non-rotationally symmetric aberration) of the projection optical system PL will be described.
  • the non-exposure light irradiation mechanism 40 shown in FIG. 1 corrects non-rotationally symmetric aberration such as center astigmatism that occurs in the projection optical system PL when dipole illumination is performed, for example.
  • the non-exposure light irradiation mechanism 40 is used for correcting aberrations in a wavelength region different from the exposure light IL on the lens L1 near the pupil plane PP of the projection optical system PL.
  • Illumination light hereinafter referred to as “non-exposure light”) LB is irradiated.
  • the non-exposure light LB for example, infrared light having a wavelength of 10. emitted from a carbon dioxide laser (CO laser) is used as an example.
  • CO laser carbon dioxide laser
  • continuous light may be used as the CO laser.
  • This infrared light with a wavelength of 10.6 / z m
  • Projection optical system with high absorptivity in the UK Since almost all (preferably 90% or more) is absorbed by one lens in the PL, aberration is controlled without affecting other lenses. Therefore, there is an advantage that it is easy to use.
  • the non-exposure light LB irradiated to the lens L1 of the present embodiment is set so that 90% or more is absorbed.
  • the non-exposure light LB in addition to the above-mentioned infrared light, near-infrared light having a wavelength of about 1 ⁇ m emitted from a solid-state laser light such as a YAG laser, or a wavelength emitted from a semiconductor laser Infrared light of several meters can also be used. That is, as the light source that generates the non-exposure light LB, an optimum light source can be employed according to the material of the optical member (lens or the like) irradiated with the non-exposure light LB. In FIG. 1 and the like, the lens L1 may be a force-concave lens drawn like a convex lens.
  • the non-exposure light LB emitted from the light source system 41 is directed to a plurality (eight in this embodiment) of optical paths and photoelectric sensors 43 by the mirror optical system 42. It is branched into another optical path. A detection signal corresponding to the light amount of the non-exposure light LB detected by the photoelectric sensor 43 is fed back to the light source system 41.
  • the non-exposure light LB force of the two optical paths out of the plurality of optical paths LB force as the non-exposure light LBa and LBb via the two irradiation mechanisms 44a and 44b arranged so as to sandwich the projection optical system PL in the X direction.
  • FIG. 5 is a top view showing a detailed configuration example of the non-exposure light irradiation mechanism 40.
  • the light source system 41 of FIG. 1 includes a light source 41a and a control unit 41b.
  • the non-exposure light LB emitted from the light source 41a is either in a state in which the optical path of the non-exposure light LB is bent by 90 ° (closed state) or in a state in which the non-exposure light LB passes through as it is (open state).
  • Galvano mirrors 45g, 45c, 45e, 45a, 45h, 45d, 45f, and 45b as movable mirrors that can be switched at high speed to the photoelectric sensor 43, and the detection signal of the photoelectric sensor 43 is supplied to the control unit 41b ing.
  • Galvano mirrors 45a to 45h correspond to the mirror optical system 42 in FIG.
  • the control unit 41b controls the light emission timing and output of the light source 41a and the opening and closing of the galvano mirrors 45a to 45h according to control information from the main control system 20.
  • the non-exposure light LB whose optical path is sequentially bent by the eight galvanometer mirrors 45a to 45h is irradiated through the bundle of optical fibers 46a to 46h (or a metal tube or the like can be used). It is guided to ⁇ 44h.
  • Eight irradiation mechanisms 44a to 44h have the same configuration.
  • the irradiation mechanisms 44a and 44b are a condensing lens 47, a beam splitter 48 having a predetermined low reflectance, and a bundle of optical fibers or a relay lens system.
  • a light guide unit 49 having equal force, a condensing lens 51, and a holding frame 50 for fixing the condensing lens 47 and the light guide unit 49 to the beam splitter 48 are provided.
  • the non-exposure light LB is irradiated to the lens L1 in the projection optical system PL as non-exposure light LBa and LBb from the irradiation mechanisms 44a and 44b, respectively.
  • the first pair of irradiation mechanisms 44a and 44b and the second pair of irradiation mechanisms 44c and 44d are arranged to face each other so as to sandwich the projection optical system PL in the X direction and the Y direction, respectively. .
  • the third pair of irradiation mechanisms 44e and 44f and the fourth pair of irradiation mechanisms 44g and 44h are respectively arranged such that the irradiation mechanisms 44a and 44b and the irradiation mechanisms 44c and 44d are centered on the optical axis of the projection optical system PL. It is arranged at an angle rotated 45 ° clockwise. Then, the non-exposure light LB is irradiated from the irradiation mechanisms 44c to 44h to the lens L1 in the projection optical system PL as non-exposure light LBc to LBh, respectively.
  • the position, shape and size of the optical member irradiated with the non-exposure light LBa to L Bh and the irradiation area of the non-exposure light LBa to LBh on the optical member are as non-rotationally symmetric as possible through experiments and simulations. Aberrations (center astigmatism, etc.) are determined to be reduced.
  • photoelectric sensors 52a to 52h that respectively receive part of the non-exposure light reflected by the beam splitters 48 of the irradiation mechanisms 44a to 44h are provided, and detection of the eight photoelectric sensors 52a to 52h is provided. The signal is also supplied to the control unit 41b.
  • the control unit 41b can accurately monitor the light amounts of the non-exposure light LBa to LBh immediately before being irradiated from the irradiation mechanisms 44a to 44h to the lens L1 in the projection optical system PL by the detection signals of the photoelectric sensors 52a to 52h. Based on the monitoring result, each of the irradiation amounts of the non-exposure light LBa to LBh is controlled to a value instructed by the main control system 20, for example.
  • the length (optical path length) of the bundle of optical fibers 46a to 46h varies by measuring the irradiation amount of the non-exposure light LB by the photoelectric sensors 52a to 52h immediately before the projection optical system PL, The amount of non-exposure light LBa to LBh irradiated to the lens L1 can be accurately monitored without being affected by changes over time of the optical system or the like.
  • FIG. 6A and 6B are front views in which a part of the projection optical system PL is taken as a cross section.
  • the irradiation mechanisms 44a and 44b are inclined slightly diagonally downward in the openings Fa and Fb provided in the flange portion F of the lens barrel of the projection optical system PL, respectively, by directing the lens L1. It is arranged to do.
  • the non-exposure lights LBa and LBb emitted from the irradiation mechanisms 44a and 44b enter the lens L1 in a direction obliquely intersecting the optical path of the exposure light IL.
  • FIG. 6B is a modification of FIG. 6A.
  • the irradiation mechanisms 44a and 44b (the same applies to the other irradiation mechanisms 44c to 44h) are respectively provided for the lens barrels of the projection optical system PL.
  • the openings Fc and Fd provided in the flange part F tilt slightly upward toward the lens L1.
  • the bottom surface of the lens L1 may be illuminated with non-exposure light LBa, LBb. In this case, it is possible to further reduce the amount of leakage of the non-exposure light LBa to LBh from the wafer W side force of the projection optical system PL.
  • the non-exposure light irradiation mechanism 40 includes the light source 41a, the control unit 41b, the galvanometer mirrors 45a to 45h, the bundle of optical fibers 46a to 46h, the irradiation mechanisms 44a to 44h, the photoelectric sensors 52a to 52h, and the like. Is configured. For example, when the lens L1 is irradiated with only two non-exposure lights LBa and LBb in the X direction, the galvano mirrors 45a to 45h are all opened and opened (the state where the non-exposure light LB is allowed to pass).
  • the operation of closing the mirror 45a for a predetermined time (non-exposure light reflecting LB) and the operation of closing the galvano mirror 45b for a predetermined time may be repeated alternately! /. There is no effect on the aberration !, it is short enough! By switching the galvano mirror in time (for example, lmsec), the effect on the aberration can be eliminated. Further, since the non-exposure light LB is pulse light, the opening / closing operation of the galvanometer mirrors 45a to 45h may be performed in units of a predetermined number of pulses.
  • eight regions on the lens L1 can be illuminated with the non-exposure light LB.
  • four regions on the lens L1 in the X direction and the Y direction are used. Even if only this area can be illuminated with non-exposure light LB, most of the aberrations that occur in normal applications can be corrected.
  • a fixed mirror and a beam splitter are combined to divide the non-exposure light LB into 8 light beams, and the optical path of these light bundles is opened and closed using a shatter. Also good. In this configuration, a plurality of locations can be irradiated with non-exposure light LB simultaneously.
  • the non-exposure light irradiation mechanism 40 is a non-rotating pair of the projection optical system PL generated when the exposure light IL is irradiated onto the projection optical system PL. It is possible to adjust the characteristic aberration (dynamic optical characteristics).
  • the image formation characteristic correction mechanism 14, the adjustment mechanism 22, and the non-exposure light irradiation mechanism 40 provided for adjusting the optical characteristics of the projection optical system PL have been described above. Next, projection is performed using these. A method for adjusting the optical characteristics of the optical system PL will be described. Note that a method for adjusting the optical characteristics of the projection optical system PL using the imaging characteristic correction mechanism 14 is also disclosed in, for example, the above-mentioned Japanese Patent Laid-Open No. 4-134813. A method for adjusting the optical characteristics of the projection optical system PL by the non-exposure light irradiation mechanism 40 will be described.
  • FIGS. 7A, 7B, 7C, 8A, and 8B are diagrams for explaining the change in the shape of the lens that occurs when dipole illumination is performed.
  • the aperture stop 5a having two apertures separated in the direction corresponding to the X direction is disposed on the focal plane on the exit side of the second fly-eye lens 4, the main aperture formed on the reticle R
  • the pattern for transfer is shown in an enlarged view in Fig. 7A.
  • Line patterns that are elongated in the Y direction are arranged in the X direction (non-scanning direction) at a pitch that is approximately the resolution limit of the projection optical system PL.
  • Directional line 'and' space pattern hereinafter referred to as “L & S pattern”) PV.
  • a plurality of L & S patterns or the like which are usually larger than the L & S pattern PV and whose arrangement direction is the X direction and the Y direction (scanning direction) at the arrangement pitch are also formed.
  • the pupil plane PP of the projection optical system PL is symmetrical with respect to the X direction across the optical axis AX.
  • Illumination light IL illuminates two circular areas IRx.
  • the exposure light IL is usually low because the 0th-order light intensity is larger than the diffracted light intensity and the diffraction angle is small. Most of the (imaging beam) passes through the circular area IRx or its vicinity.
  • the temperature distribution of the lens LI is the highest in the two circular regions IRx that sandwich the optical axis in the X direction, and gradually decreases toward the surrounding region, and the lens L1 has a thermal expansion ( Heat deformation).
  • FIGS. 7C and 7D side views exaggerating the change of the lens L1 when viewed in the Y direction and the X direction are as shown in FIGS. 7C and 7D, respectively.
  • the surface shape of the lens L1 before the exposure light absorption is plane A
  • the thermally expanded surface B after the exposure light absorption is in a wide range in the direction along the X axis (Fig. 7C). Since two convex parts sandwiching the optical axis are formed, the refractive power decreases. In the direction along the Y axis (Fig. 7D), one refractive part is locally formed in the central part, and the refractive power increases.
  • Figure 9 shows the center astigmatism caused by dipole illumination.
  • the image plane of the projection optical system PL becomes a lower (one Z direction) image plane IV because the refractive power decreases with respect to the light beam opened in the X direction, and the light beam opened in the Y direction. Since the refractive power increases, the upper (+ Z) image plane is IH. Accordingly, center astigmatism ⁇ ⁇ that is astigmatism on the optical axis is generated.
  • the pupil plane ⁇ of the projection optical system PL is symmetrical in the Y direction across the optical axis AX.
  • the exposure light IL illuminates two circular areas IRy. At this time, even if various reticle patterns are arranged in the optical path of the exposure light IL, usually most of the exposure light IL (imaging light beam) passes through the circular region IRy and the vicinity thereof.
  • ⁇ 1st-order diffracted light from the L & S pattern PH having a pitch close to the resolution limit also passes through the circular region IRy or the vicinity thereof.
  • the image of the L & S pattern PH is projected onto the wafer W with high resolution.
  • the light amount distribution of the exposure light IL incident on the lens L1 in the vicinity of the pupil plane PP of the projection optical system PL of FIG. 1 is also substantially the light amount distribution of FIG. 8B. Therefore, when the exposure is continued, the temperature distribution of the lens L1 near the pupil plane PP becomes the highest in the two circular areas IRy that sandwich the optical axis in the Y direction, and gradually decreases toward the surrounding area. Depending on the distribution, the lens L1 expands thermally. Therefore, the image plane of the projection optical system PL is almost opposite to the case of FIGS. 7A, 7B, and 7C, and is close to the upper image plane IH because the refractive power increases for the light beam opened in the X direction.
  • center astigmatisms are non-rotationally symmetric aberrations, and other non-rotationally symmetric aberrations by dipole illumination (for example, orthogonal in a plane perpendicular to the optical axis of the projection optical system PL).
  • these non-rotationally symmetric aberrations cannot be substantially corrected by the imaging characteristic correction mechanism 14 in FIG.
  • the dynamic non-rotation symmetry of the projection optical system PL generated by the exposure light IL irradiation In order to correct various aberrations, a non-exposure light irradiation mechanism 40 is provided.
  • FIGS. 10A and 10B are diagrams for explaining an example of a method for correcting non-rotationally symmetric aberration of the projection optical system using the non-exposure light irradiation mechanism.
  • the optical axis AX on the pupil plane PP of the projection optical system PL is sandwiched symmetrically in the X direction.
  • the exposure light IL is irradiated to the two circular areas IRx, this is the optical axis on the lens L1.
  • the exposure light IL is irradiated to the region IRx that sandwiches the AX symmetrically in the X direction and the adjacent region.
  • FIG. 7B the optical axis AX on the pupil plane PP of the projection optical system PL is sandwiched symmetrically in the X direction.
  • the region IRx is a region obtained by rotating the region IRx by 90 ° around the optical axis AX.
  • Circular regions LRc and LRd that sandwich the optical axis AX symmetrically in the Y direction on the lens L1.
  • the shape and size of the irradiation region of the non-exposure light LBc, LBd (and other non-exposure light as well) is, for example, the position of the condensing lens 51 in the irradiation mechanisms 44c, 44d in FIG. It is also possible to change by making it movable in the axial direction.
  • the temperature distribution of the lens L1 becomes higher in the area IRx and the areas LRc and LRd, and gradually increases as the distance from the temperature distribution increases.
  • the distribution becomes lower.
  • 10A and 10B where the origin of the X and Y axes is the optical axis AX, a cross-sectional view along the non-scanning direction in the plane including the optical axes AX and X of the lens L1, and the optical axes AX and Y axes.
  • the cross-sectional view along the scanning direction in the plane including is shown exaggeratedly in FIG. 10B.
  • the thermal expansion of the lens L1 is almost the same as the cross-sectional shape in the non-scanning direction and the scanning direction, and the shape in which the refractive index distribution is in the central part and its left and right. It changes much more than other areas.
  • the deformation state of the lens L1 irradiated with the exposure light IL and the non-exposure light LBc, LBd is different in the non-scanning direction and the scanning direction compared to the deformation in FIGS. 7C and 7D when only the exposure light IL is illuminated.
  • the imaging characteristic correction mechanism 14 shown in FIG. 2 the imaging characteristic of the projection optical system PL can be strictly controlled.
  • the lens that irradiates the non-exposure light is a lens in the vicinity of the pupil plane of the projection optical system PL that is conjugate with the pupil plane of the illumination optical system ILS, such as the lens L1, the compensation of center astigmatism is achieved. The positive effect is increased. At this time, a plurality of lenses near the pupil plane may be irradiated with non-exposure light. Further, it is effective that the irradiation region including the exposure light IL and the non-exposure light LB on the optical member (L1) to be irradiated is as close to rotational symmetry as possible.
  • the position, shape, and size of the illumination area on the reticle R are changed by the field stop 9 to perform exposure on a plane conjugate with the image plane of the projection optical system PL.
  • Non-rotationally symmetric aberration may also occur when the position, cross-sectional shape, and size of the light IL are changed.
  • the distribution (density) of the reticle R pattern changes, and the distribution of the exposure light IL changes on the plane conjugate with the image plane of the projection optical system PL.
  • Non-rotationally symmetric aberrations may occur.
  • Such aberration can also be corrected by the non-exposure light irradiation mechanism 40 described above. That is, in the present embodiment, the static optical characteristics (non-rotationally symmetric optical characteristics) in the initial state of the projection optical system PL are adjusted using the adjusting mechanism 22, and the projection caused by the irradiation of the exposure light IL is performed.
  • the dynamic optical characteristics (non-rotationally symmetric aberration) of the optical system PL are applied to the illumination conditions specified by the illumination system aperture stop member 5 and the distribution of the exposure light IL on the plane conjugate with the image plane of the projection optical system PL. Adjust using the non-exposure light irradiation mechanism 40 accordingly.
  • FIG. 11 is a block diagram showing an internal configuration of the main control system 20 and a device that exchanges various signals with the main control system 20.
  • the main control system 20 includes an imaging characteristic calculation unit 31, an imaging characteristic control unit 32, an exposure amount control unit 33, a stage control unit 34, a Z tilt stage control unit 35, a controller 36, and a memory. Consists of 37.
  • the imaging characteristic calculation unit 31 uses the detection signals of the integrator sensor 7 and the reflection amount sensor 8 to detect from the reticle scale.
  • the integrated energy of the exposure light IL incident on the projection optical system PL and the integrated energy of the exposure light IL reflected by the wafer W and returning to the projection optical system PL are calculated.
  • This imaging characteristic calculation unit 31 receives information about the illumination conditions during exposure, information indicating the shape and size of the aperture of the field stop 9 from the controller 36, and characteristics of the reticle R (the size of the aperture and Information indicating the pattern distribution is also supplied. In addition, the imaging characteristic calculation unit 31 uses information such as illumination conditions, accumulated energy of the exposure light IL, and ambient atmospheric pressure and temperature supplied from the environmental sensor 12 in the imaging characteristics of the projection optical system PL. The amount of fluctuation of the rotationally symmetric aberration component and the non-rotationally symmetric aberration component is calculated. Here, when the imaging characteristic calculation unit 31 calculates the fluctuation amount of the non-rotationally symmetric aberration component in the imaging characteristic of the projection optical system PL, the transfer function read from the memory 37 by the controller 36. (Details will be described later).
  • the imaging characteristic control unit 32 Based on the dynamic aberration component variation amount of the projection optical system PL calculated by the imaging characteristic calculation unit 31, the imaging characteristic control unit 32 performs the imaging characteristic correction mechanism 14 via the control unit 15. Further, by controlling the operation of the non-exposure light irradiation mechanism 40, the optical characteristics of the projection optical system PL are adjusted to a desired state.
  • the control unit 15 3 is controlled based on the control information from the imaging characteristic control unit 32 in the main control system 20.
  • the position of each of the five lenses L11 to L15 in the direction of the optical axis and about two orthogonal axes perpendicular to the optical axis Independently control the inclination angle. This corrects a predetermined rotationally symmetric aberration in the imaging characteristics of the projection optical system PL.
  • the non-exposure light irradiation mechanism 40 when adjusting the optical characteristics of the projection optical system PL by the non-exposure light irradiation mechanism 40, the irradiation or non-irradiation of the non-exposure light LBa to LBh to the lens L1 is controlled. By controlling the non-exposure light irradiation mechanism 40, a predetermined non-rotationally symmetric aberration in the imaging characteristics of the projection optical system PL is corrected.
  • the exposure amount control unit 33 indirectly controls the exposure energy on the wafer W by using the detection signal of the integrator sensor 7 and the optical transmittance of the optical system from the beam splitter 6 to the wafer W measured in advance. Calculate automatically.
  • the transmittance of the optical system from the beam splitter 6 to the wafer W is calculated by projecting the light receiving surface of the dose sensor 19 before the exposure is started or periodically. It is obtained by irradiating the exposure light IL while moving to the exposure area of L, and dividing the detection signal of the dose sensor 19 by the detection signal of the integrator sensor 7.
  • the exposure control unit 33 controls the output of the exposure light source 1 so that the integrated exposure energy on the wafer W falls within the target range, and uses a dimming mechanism (not shown) as necessary.
  • the pulse energy of exposure light IL is controlled stepwise. Further, the rotation angle of the drive motor 5c that rotates the illumination system aperture stop member 5 is controlled by the control signal from the controller 36, and the size of the aperture of the field stop 9 is further controlled.
  • the stage control unit 34 controls the position and speed of the reticle stage RST based on measurement values of a laser interferometer (not shown) provided on the reticle stage RST and various control information.
  • the position and speed of wafer stage WST are controlled based on the measurement values of a laser interferometer (not shown) provided on wafer stage WST and various control information.
  • the Z tilt stage control unit 35 is configured so that the wafer surface is always focused on the image plane of the projection optical system PL based on the detection information of the reticle side AF sensor 16 and the wafer side AF sensor 18. Drive 17
  • the controller 36 controls all of the exposure apparatus by controlling the imaging characteristic calculation unit 31, the imaging characteristic control unit 32, the exposure amount control unit 33, the stage control unit 34, and the Z tilt stage control unit 35. Control physical movements.
  • the memory 37 stores a transfer function indicating the relationship between the energy of light incident on the projection optical system PL and the amount of variation in the optical characteristics of the projection optical system PL.
  • the transfer function shown in (1) above is a transfer function indicating the amount of force fluctuation when the projection optical system PL is irradiated with the exposure light IL. Change the variable Q in the above equation (1) according to the illumination conditions defined by the illumination system aperture stop member 5 and the cross-sectional shape and size of the exposure light IL in the conjugate plane of the image plane of the projection optical system PL. Thus, the focus fluctuation amount of the projection optical system PL can be obtained.
  • FIG. 12 is a diagram showing a typical transfer function with respect to the focus fluctuation amount. As shown in FIG.
  • the focus fluctuation amount greatly fluctuates with the start of exposure light IL irradiation, but as the exposure light IL irradiation time becomes longer, the change rate of the fluctuation amount gradually becomes closer to the fluctuation amount. Change.
  • the transfer function for the focus fluctuation amount the same transfer function is used to calculate the amount of fluctuation for the rotationally symmetric aberration such as force magnification and the non-rotationally symmetric aberration such as center astigmatism. Can be sought.
  • the static optical characteristics (non-rotationally symmetric aberration) of the projection optical system PL are already adjusted within a predetermined allowable range using at least one of the temperature adjuster 22b and the adjusting screw 22c of the adjusting mechanism 22.
  • the static optical characteristics of the projection optical system PL can be measured using the aberration measuring device 21 and the like, and adjustment by the adjusting mechanism 22 can be performed based on the result.
  • the controller 36 outputs information on the illumination conditions set for the imaging characteristic calculation unit 31, information on the shape and size of the aperture of the field stop 9, and information on the characteristics of the reticle R. .
  • the exposure amount control unit 33 outputs a control signal to the exposure light source 1 to generate the exposure light IL.
  • the detection signal of the dose sensor 19 and the detection signal of the integrator sensor 7 are obtained, and the transmittance of the optical system from the beam splitter 6 to the wafer W is obtained from these detection signals.
  • the controller 36 outputs a control signal to a reticle loader (not shown) to convey a predetermined reticle R and hold it on the reticle stage RST, and outputs a control signal to a wafer loader (not shown) to convey the wafer W. And hold it on the wafer stage WST.
  • stage control unit 34 outputs a control signal to each of reticle stage RST and wafer stage WST, for example, starts acceleration of reticle stage RST in the + Y direction, and at the same time, wafer stage Start accelerating WST in the Y direction.
  • the controller 36 controls the exposure control 33 to expose from the exposure light source 1. Light IL is emitted.
  • the exposure light emitted from the exposure light source 1 passes through the first fly-eye lens 2, the vibrating mirror 3, the second fly-eye lens 4 and the like in order, and then the opening formed in the illumination system aperture stop member 5 It passes through the aperture 5a.
  • the exposure light IL transmitted through the aperture stop 5a is shaped into a slit by the field stop 9 through the beam splitter 6, deflected in the Z direction by the mirror 10, and then irradiated onto the reticle R through the condenser lens 11. Is done.
  • the exposure light IL is shaped by the aperture stop 5a, and the irradiation area on the reticle R is long in the X direction and has a slit shape.
  • the exposure light transmitted through the reticle R is irradiated onto the shot area to be exposed on the wafer W via the projection optical system PL, whereby a part of the pattern formed on the reticle R is wafered. W is transferred to a part of the shot area to be exposed. In this way, each shot area on the wafer W is sequentially exposed.
  • detection signals are output from the integrator sensor 7 and the reflection amount sensor 8, and the imaging characteristic calculation unit 31 uses the detection signals of the integrator sensor 7 and the reflection amount sensor 8 to Calculate the integrated energy of the exposure light IL that is incident on the projection optical system PL from the reticle scale, and the integrated energy of the exposure light IL that is reflected by the wafer W and returns to the projection optical system PL.
  • the imaging characteristic calculation unit 31 receives the illumination condition under exposure from the controller 36. Information, information indicating the state of the field stop 9, and information indicating the characteristics of the reticle R are supplied, and a transfer function stored in the memory 37 is read and supplied.
  • the image characteristic calculation unit 31 includes information on the above illumination conditions, information indicating the state of the field stop 9, information indicating the characteristics of the reticle R, accumulated energy of the exposure light IL, and surroundings supplied from the environment sensor 12. Using information such as atmospheric pressure and temperature and the transfer function, the amount of fluctuation of the rotationally symmetric aberration component and the non-rotationally symmetric aberration component in the imaging characteristics of the projection optical system PL is calculated. The variation amount of the aberration component of the projection optical system PL is calculated using the above-described equation (1). This calculation result is output from the imaging characteristic calculation unit 31 to the controller 36.
  • the controller 36 outputs the calculation result of the imaging characteristic calculation unit 31 to the imaging characteristic control unit 32.
  • the imaging characteristic control unit 32 controls the operation of the imaging characteristic correction mechanism 14 via the control unit 15 based on the calculation result output from the controller 36 so that a desired imaging characteristic is always obtained.
  • the fluctuation of the rotationally symmetric aberration of the projection optical system PL is suppressed.
  • the correction of the non-rotationally symmetric aberration of the projection optical system PL by the irradiation of the exposure light IL is performed by the non-exposure light irradiation mechanism 40.
  • the rotational symmetric aberration and the non-rotation symmetric aberration of the projection optical system PL are applied to the illumination condition and the exposure on the conjugate plane of the image plane of the projection optical system PL. It can be precisely controlled according to the distribution of light IL.
  • FIG. 13 is a diagram for explaining an example of a table stored in the memory 37.
  • the adjustment amount of the optical characteristics of the projection optical system PL changes according to the size (area) of the aperture of the field stop 9 provided in the illumination optical system ILS.
  • the relationship between the aperture size of the field stop 9 and the adjustment amount of the optical characteristics of the projection optical system PL is shown as a curve AJ in FIG.
  • the relationship between the size of the aperture of the field stop 9 shown in FIG. 13 and the adjustment amount of the optical characteristics of the projection optical system PL is merely an example, and may be a straight line!
  • the size of the aperture of the field stop 9 is divided into a plurality of areas, a representative adjustment amount in each section is set, and information indicating the size of the aperture of the field stop 9 and a representative Adjustment The quantity is stored in association with the table.
  • the size of the aperture of the field stop 9 is divided into five sections R1 to R5, and typical adjustments g [l to J5 are set for each of the sections R1 to R5. Therefore, for example, the maximum value and the minimum value of each of the sections R1 to R5 and the adjustments 1 to J5 are stored in the table in association with each other.
  • an average value of the curve AJ included in each of the sections R1 to R5 is used.
  • the average value when the curve AJ included in each section R1 to R5 is close to a straight line, or the intermediate value between the maximum and minimum values of the curve AJ included in each section R1 to R5 may be used. it can.
  • the size of the aperture size of the field stop 9 is not limited to five, and can be appropriately determined in consideration of a change in the size of the aperture of the field stop 9.
  • the controller 36 reads the table from the memory 37, reads the adjustment amount of the optical characteristic of the projection optical system PL corresponding to the setting, and controls the adjustment amount to the imaging characteristic control. Output to part 32.
  • the imaging characteristic control unit 32 outputs a control signal for adjusting the optical characteristics of the projection optical system PL according to the adjustment amount output from the controller 36 to the control unit 15 and the non-exposure light irradiation mechanism 40 to output the projection optical system. Adjust the optical characteristics of the PL.
  • the optical characteristics (rotationally symmetric aberration and non-rotationally symmetric aberration) with respect to the projection optical system PL are adjusted according to the cross-sectional shape and size of the exposure light IL.
  • the force described in the table of the adjustment amount of the optical characteristics of the projection optical system PL corresponding to the size (area) of the aperture of the field stop 9 is only the size of the aperture of the field stop 9
  • a table corresponding to the position and shape of the aperture of the field stop 9 may be provided.
  • a table corresponding to the length of the aperture of the field stop 9 in the longitudinal direction or the length of the aperture in the direction corresponding to the X direction and the length in the direction corresponding to the Y direction may be provided.
  • the adjustment amount table stored in the memory 37 can be prepared for each of various conditions determined by the setting of the field stop 9, the setting of the illumination system aperture stop member 5, the characteristics of the reticle R, etc. wear.
  • the adjustment mechanism 22 for adjusting the static optical characteristics (non-rotationally symmetric aberration) of the projection optical system PL, and the dynamics of the projection optical system PL The non-exposure light irradiation mechanism 40 that adjusts the optical characteristics (rotationally symmetric aberration) is provided, so that the amount of dynamic non-rotationally symmetric aberration adjustment by the non-exposure light irradiation mechanism 40 can be reduced. Therefore, the dynamic non-rotation aberration of the projection optical system PL can be adjusted more precisely.
  • the exposure apparatus of the present embodiment in consideration of the distribution of the exposure light IL (the position, the cross-sectional shape, and the size of the exposure light IL) in the plane conjugate with the image plane of the projection optical system PL, that is, Since the optical characteristics of the projection optical system PL are adjusted in consideration of at least one of the setting state of the aperture of the field stop 9 and the characteristics of the reticle, the optical characteristics of the projection optical system PL are controlled to a desired state.
  • the pattern of reticle R can be accurately projected.
  • the exposure apparatus and method according to the embodiment of the present invention have been described above.
  • the present invention is not limited to the above embodiment, and can be freely changed within the scope of the present invention.
  • the exposure apparatus of the above-described embodiment includes an adjustment mechanism that adjusts the static non-rotation symmetric aberration of the projection optical system PL and an adjustment mechanism that adjusts the dynamic non-rotation symmetric aberration, and a projection optical system.
  • the aberration to be rotated of the projection optical system PL is not rotationally symmetric. You can adjust the difference, but you can also adjust either one.
  • the case where the optical characteristic of the projection optical system PL is adjusted using a transfer function or a table has been described.
  • the non-rotation of the PL of the projection optical system is performed using the aberration measuring device 21 shown in FIG. It is also possible to measure the symmetric aberration and adjust the optical characteristics of the projection optical system PL using the measurement result.
  • the adjustment mechanism 22 and the non-exposure light irradiation mechanism 40 perform the predetermined adjustment on different lenses, but the same adjustment may be performed on the same lens. .
  • the force non-rotationally symmetric difference described above is mainly used for correcting the center astigmatism as the non-rotationally symmetric aberration of the projection optical system.
  • other non-rotationally symmetric aberrations such as orthogonal projection magnification difference (XY magnification difference) and image shift may occur. Therefore, the optical member to be adjusted by the adjusting mechanism 22 can be determined to have an optimum experiment or simulation power according to the type of non-rotationally symmetric aberration.
  • non-exposure light irradiation mechanism The optical member to be adjusted 40 and the irradiation position, shape, and size of the non-exposure light LB on the optical member can be set as appropriate according to the type of aberration that is not rotated. For example, in the case of adjusting the non-rotationally symmetric XY magnification difference described above, the optical element relatively close to the reticle R among the plurality of optical members of the projection optical system PL, or an optical element close to Weno or W Is preferably selected.
  • the non-exposure light irradiation mechanism 40 may be used for adjusting the rotationally symmetric aberration of the projection optical system PL.
  • a higher-order that is likely to occur when using a small ⁇ illumination method that reduces the ⁇ value that represents the ratio between the numerical aperture of the projection optical system PL and the numerical aperture of the illumination optical system ILS for example, less than 0.4.
  • the rotationally symmetric aberration can be corrected satisfactorily using the non-exposure light irradiation mechanism 40.
  • the adjustment mechanism 22 adjusts the static optical characteristics of the projection optical system PL
  • the non-exposure light irradiation mechanism 40 adjusts the dynamic optical characteristics of the projection optical system PL.
  • the adjustment mechanism 22 may adjust the dynamic optical characteristics of the projection optical system PL
  • the non-exposure light irradiation mechanism 40 may adjust the static optical characteristics of the projection optical system PL. You may do it. That is, the adjustment mechanism for adjusting the static non-rotation symmetric aberration of the projection optical system PL and the adjustment mechanism for adjusting the dynamic non-rotation symmetric aberration are not limited to the above-described embodiments, and the heating action, the cooling action, Various methods using an external force action or the like can be appropriately selected or combined.
  • the step “and” repeat that collectively transfers the pattern of the force reticle described as an example in which the present invention is applied to the exposure apparatus of the step “and” scan method.
  • the present invention can also be applied to an exposure apparatus of a type (so-called stepper).
  • the present invention is applied to the projection optical system including the force refraction system and the reflection system described using the projection optical system PL of the refraction system, and the projection optical system having only the power of the reflection system. Can do.
  • the shape of the illumination area (exposure area) of the exposure light IL is not limited to a rectangle, and may be, for example, an arc.
  • the exposure apparatus of the present invention is an exposure apparatus that is used for manufacturing a semiconductor element to transfer a device pattern onto a semiconductor substrate, and is used for manufacturing a liquid crystal display element to transfer a circuit pattern onto a glass plate.
  • Exposure apparatus used to manufacture thin film magnetic heads, exposure apparatuses that transfer device patterns onto ceramic wafers, and image sensors such as CCDs The present invention can also be applied to an exposure apparatus or the like used for manufacturing the above.
  • FIG. 14 is a flow chart showing a part of a manufacturing process for manufacturing a semiconductor device as a micro device.
  • step S10 design step
  • step S 11 mask manufacturing step
  • step S 12 wafer manufacturing step
  • a wafer is manufactured using a material such as silicon.
  • step S13 wafer processing step
  • step S 14 device assembly step
  • step S 14 device assembly step
  • step S14 includes a dicing process, a bonding process, a packaging process (chip encapsulation), and the like as necessary.
  • step S 15 inspection step
  • inspections such as an operation confirmation test and a durability test of the microdevice fabricated in step S 14 are performed. After these steps, the microdevice is completed and shipped.
  • FIG. 15 is a diagram showing an example of a detailed flow of step S13 in FIG.
  • step S21 oxidation step
  • step S2 2 CVD step
  • step S23 electrode formation step
  • step S 24 ion implantation step
  • ions are implanted into the wafer.
  • step S25 resist formation step
  • step S26 Exposure In step (2)
  • step S26 Exposure In step (2)
  • step S27 development process
  • step S28 etching step
  • step S29 resist removal step
  • step S26 the optical characteristics of the projection optical system PL provided in the exposure apparatus are adjusted, and formed on the reticle R.
  • the pattern is transferred onto Ueno, W. Therefore, the optical characteristics of the projection optical system PL are adjusted according to the cross-sectional shape and size of the exposure light IL incident on the plane conjugate with the image plane of the projection optical system PL. As a result, manufacturing defects can be reduced and devices can be manufactured with high yield.
  • the present invention relates to an immersion exposure apparatus that locally fills a space between the projection optical system PL and the wafer W as disclosed in, for example, International Publication (WO) No. 99Z49504.
  • An immersion exposure apparatus for moving a stage holding a substrate to be exposed as disclosed in Japanese Patent Laid-Open No. 6-124873 in a liquid tank, a stage as disclosed in Japanese Patent Laid-Open No. 10-303114 The present invention can be applied to any exposure apparatus of a liquid immersion optical apparatus in which a liquid tank having a predetermined depth is formed thereon and a substrate is held therein.

Abstract

An exposure apparatus or the like which efficiently corrects a rotation asymmetrical aberration component generated in a projection optical system. The exposure apparatus is provided with adjusting mechanisms (40, etc.) for adjusting dynamic rotation asymmetrical optical characteristics of the projection optical system (PL) and adjusting mechanisms (22, etc.) for adjusting static rotation asymmetrical optical characteristics of the projection optical system (PL). A main control system (20) changes an adjusting quantity of the adjusting mechanisms (40, etc.) which adjust the optical characteristics of the projection optical system (PL) in accordance with the cross section shape and sizes of exposure light (IL) on a plane coupled to an image plane of the projection optical system (PL).

Description

明 細 書  Specification
露光装置及びデバイス製造方法  Exposure apparatus and device manufacturing method
技術分野  Technical field
[0001] 本発明は、マスクのパターンを投影光学系を介して基板上に転写する露光装置、 及び当該露光装置を用いてデバイスを製造するデバイス製造方法に関する。  The present invention relates to an exposure apparatus that transfers a mask pattern onto a substrate via a projection optical system, and a device manufacturing method for manufacturing a device using the exposure apparatus.
本願は、 2004年 8月 31日に出願された特願 2004— 251877号に基づき優先権 を主張し、その内容をここに援用する。  This application claims priority based on Japanese Patent Application No. 2004-251877 filed on August 31, 2004, the contents of which are incorporated herein by reference.
背景技術  Background art
[0002] 半導体素子、液晶表示素子、撮像装置 (CCD (Charge Coupled Device)等)、薄膜 磁気ヘッド等のデバイスを製造する際に、マスクとしてのレチクルのパターンを基板と してのフォトレジストが塗布されたウェハ(又はガラスプレート等)上の各ショット領域に 転写するために、ステツパ等の投影露光装置が使用されている。投影露光装置にお いては、露光光の照射量や周囲の気圧変化等によって、投影光学系の結像特性が 変化する。このため、結像特性を所望の状態に維持するために、投影露光装置には 、例えば投影光学系を構成する一部の光学部材の位置又は姿勢 (傾き)を制御する こと〖こよって、その結像特性を補正する結像特性補正機構が設けられている。従来 の結像特性補正機構によって補正することができる結像特性は、歪曲収差や倍率等 の回転対称の低!、次数の成分である。  [0002] When manufacturing devices such as semiconductor elements, liquid crystal display elements, imaging devices (CCD (Charge Coupled Device), etc.), thin film magnetic heads, etc., a reticle pattern as a mask is coated with a photoresist as a substrate. A projection exposure apparatus such as a stepper is used to transfer to each shot area on the wafer (or glass plate or the like). In the projection exposure apparatus, the imaging characteristics of the projection optical system change depending on the exposure light irradiation amount and the ambient pressure change. For this reason, in order to maintain the imaging characteristics in a desired state, the projection exposure apparatus controls the position or posture (tilt) of some optical members constituting the projection optical system, for example. An imaging characteristic correction mechanism for correcting the imaging characteristics is provided. The imaging characteristics that can be corrected by the conventional imaging characteristics correction mechanism are low-order and low-order components such as distortion and magnification.
[0003] ところで、近年の露光装置にお!、ては、特定のパターンに対する解像度を高めるた めに、所謂輪帯照明、 4極照明(照明光学系の瞳面上の 4箇所の領域を 2次光源と する照明法)などの、照明光学系の瞳面上の光軸を含む領域を露光光が通過しない 照明条件が用いられる機会が多くなつている。力かる照明条件を用いるときには、投 影光学系中の瞳面付近の光学部材は、ほぼ中抜けの状態で露光光が照明されるこ とになる。また、投影光学系を大型化することなぐ転写できるパターンの面積を大き くするため、最近ではスキャニングステツパ等の走査露光型の投影露光装置も多用さ れている。走査露光型の場合、レチクルは走査方向を短辺方向とする、例えば長方 形状の照明領域で照明されるため、投影光学系中のレチクル及びウェハに近い光学 部材は、主に非回転対称な領域が露光光に照明されることになる。 [0003] By the way, in recent exposure apparatuses, in order to increase the resolution for a specific pattern, so-called annular illumination, quadrupole illumination (2 regions on the pupil plane of the illumination optical system are divided into 2 regions). There are many occasions where illumination conditions are used in which the exposure light does not pass through a region including the optical axis on the pupil plane of the illumination optical system, such as an illumination method as a next light source. When using powerful illumination conditions, the exposure light is illuminated with the optical member near the pupil plane in the projection optical system being substantially hollow. In addition, in order to increase the area of a pattern that can be transferred without increasing the size of the projection optical system, a scanning exposure type projection exposure apparatus such as a scanning stepper has recently been widely used. In the case of the scanning exposure type, the reticle is illuminated in a rectangular illumination area whose scanning direction is the short side direction, for example, so that the reticle is optically close to the reticle and wafer in the projection optical system. In the member, a non-rotationally symmetric region is mainly illuminated by the exposure light.
[0004] このような露光装置においては、投影光学系の結像特性中の高次の球面収差等の 高次成分の変動や非回転対称な収差の変動が生じる虞があるため、このような収差 変動を抑えるようにした投影露光装置が以下の特許文献 1,特許文献 2で提案され ている。  In such an exposure apparatus, there is a possibility that fluctuations in higher-order components such as higher-order spherical aberration and non-rotationally symmetric aberrations in the imaging characteristics of the projection optical system may occur. A projection exposure apparatus that suppresses aberration fluctuations has been proposed in Patent Document 1 and Patent Document 2 below.
特許文献 1:特開平 10— 64790号公報  Patent Document 1: Japanese Patent Laid-Open No. 10-64790
特許文献 2:特開平 10— 50585号公報  Patent Document 2: Japanese Patent Laid-Open No. 10-50585
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] ところで、最近においては、例えば所定のライン 'アンド'スペースパターンを主に含 むレチクルパターンを転写するような場合に、照明光学系の瞳面上の光軸を挟む 2 つの領域のみを 2次光源とするダイポール照明(2極照明)が用いられることがある。 このダイポール照明は 4極照明に比べて光量分布が大きく非回転対称になっている ため、投影像に非回転対称な収差成分である光軸上での非点収差 (以下、「センタ 一アスティグマテイズム」という)が発生する。また、ダイポール照明によってセンター アスティグマテイズム以外の非回転対称な収差変動も生じる。  Recently, for example, when transferring a reticle pattern mainly including a predetermined line 'and' space pattern, only two regions sandwiching the optical axis on the pupil plane of the illumination optical system are used. Dipole illumination (bipolar illumination) may be used as a secondary light source. Since this dipole illumination has a large light amount distribution and non-rotation symmetry compared to quadrupole illumination, astigmatism on the optical axis, which is a non-rotationally symmetric aberration component in the projected image (hereinafter referred to as “center-astigma”). "Taism") occurs. Dipole illumination also causes non-rotationally symmetric aberration fluctuations other than center astigmatism.
[0006] 更に、近年においては、 1台の露光装置で形状及び大きさが異なるデバイスが製造 されることが多くなつてきており、レチクル上の照明領域の大きさ及び形状を大幅に 変化させて露光処理が行われる機会が増大しており、レチクル上における照明領域 の大きさ及び形状によっては投影光学系の光学特性が所定の許容範囲を超えてし まう事態が発生する。  [0006] Furthermore, in recent years, devices with different shapes and sizes have been often produced with a single exposure apparatus, and the size and shape of the illumination area on the reticle have been significantly changed. Opportunities for performing exposure processing are increasing, and depending on the size and shape of the illumination area on the reticle, a situation may occur in which the optical characteristics of the projection optical system exceed a predetermined allowable range.
[0007] 本発明は上記事情に鑑みてなされたものであり、投影光学系の光学特性を所望の 状態に維持できる露光装置、及び当該露光装置を用いたデバイス製造方法を提供 することを目的とする。特に、投影光学系で生ずる非回転対称な収差成分を効率的 に補正することができる露光装置、及び当該露光装置を用いてデバイスを製造する デバイス製造方法を提供することを目的とする。  [0007] The present invention has been made in view of the above circumstances, and an object thereof is to provide an exposure apparatus that can maintain the optical characteristics of a projection optical system in a desired state, and a device manufacturing method using the exposure apparatus. To do. In particular, it is an object of the present invention to provide an exposure apparatus capable of efficiently correcting non-rotationally symmetric aberration components generated in a projection optical system, and a device manufacturing method for manufacturing a device using the exposure apparatus.
課題を解決するための手段  Means for solving the problem
[0008] 本発明は、実施の形態に示す各図に対応付けした以下の構成を採用している。伹 し、各要素に付した括弧付き符号はその要素の例示に過ぎず、各要素を限定するも のではない。 [0008] The present invention employs the following configurations associated with the respective drawings shown in the embodiments.伹 The parenthesized symbols attached to each element are merely examples of the element and do not limit each element.
上記課題を解決するために、本発明の露光装置は、照明光 (IL)をマスク (R)に照 射する照明光学系 (ILS)と、前記マスクのパターンの像を基板 (W)上に投影する投 影光学系 (PL)とを備える露光装置において、前記投影光学系の光学特性を調整す る調整装置(14、 22、 40)と、前記投影光学系の像面との共役面における前記照明 光の断面形状及び大きさの少なくとも一方を設定する設定装置 (9)と、前記設定装 置によって設定された前記照明光の断面形状及び大きさに応じて、前記調整装置に よる前記投影光学系の光学特性の調整を制御する制御装置 (20)とを備えることを特 徴としている。  In order to solve the above problems, an exposure apparatus of the present invention includes an illumination optical system (ILS) that irradiates illumination light (IL) onto a mask (R), and an image of the mask pattern on a substrate (W). In an exposure apparatus comprising a projection optical system (PL) for projection, an adjustment device (14, 22, 40) for adjusting the optical characteristics of the projection optical system and a conjugate plane of the image plane of the projection optical system A setting device (9) for setting at least one of the cross-sectional shape and size of the illumination light, and the projection by the adjusting device according to the cross-sectional shape and size of the illumination light set by the setting device And a control device (20) for controlling the adjustment of the optical characteristics of the optical system.
この発明によると、投影光学系の像面との共役面における前記照明光の断面形状 及び大きさに応じて投影光学系の光学特性の調整が行われる。  According to the present invention, the optical characteristics of the projection optical system are adjusted according to the cross-sectional shape and size of the illumination light in the conjugate plane with the image plane of the projection optical system.
また、上記課題を解決するために、本発明の露光装置は、照明光 (IL)をマスク (R) に照射する照明光学系 (ILS)と、前記マスクのパターンの像を基板 (W)上に投影す る投影光学系 (PL)とを備える露光装置において、前記投影光学系における非回転 対称の静的な光学特性を調整する第 1調整機構 (22)と、前記投影光学系における 非回転対称の動的な光学特性を調整する第 2調整機構 (40)とを備えることを特徴と している。  In order to solve the above problems, the exposure apparatus of the present invention includes an illumination optical system (ILS) that irradiates the mask (R) with illumination light (IL), and an image of the mask pattern on the substrate (W). A first optical adjustment mechanism (22) for adjusting non-rotationally symmetric static optical characteristics in the projection optical system, and a non-rotation in the projection optical system. And a second adjustment mechanism (40) for adjusting symmetric dynamic optical characteristics.
この発明によると、第 1調整機構により投影光学系における非回転対称の静的な光 学特性が調整されるとともに、第 2調整機構により投影光学系における非回転対称の 動的な光学特性が調整される。  According to the present invention, the first adjustment mechanism adjusts the non-rotationally symmetric static optical characteristic in the projection optical system, and the second adjustment mechanism adjusts the non-rotationally symmetric dynamic optical characteristic in the projection optical system. Is done.
本発明のデバイス製造方法は、上記の露光装置を用いてデバイスのパターンを物 体 (W)上に転写する工程 (S46)を含むことを特徴として ヽる。  The device manufacturing method of the present invention is characterized by including a step (S46) of transferring a device pattern onto the object (W) using the above exposure apparatus.
発明の効果 The invention's effect
本発明によれば、投影光学系の光学特性を所望状態に維持することができる。また 、投影光学系の光学特性を所望状態に維持できる露光装置を使うことによって歩留 まりの高いデバイス製造を行うことができる。  According to the present invention, the optical characteristics of the projection optical system can be maintained in a desired state. Further, by using an exposure apparatus that can maintain the optical characteristics of the projection optical system in a desired state, it is possible to manufacture a device with a high yield.
図面の簡単な説明 [図 1]本発明の一実施形態による露光装置の概略構成を示す図である。 Brief Description of Drawings FIG. 1 is a view showing the schematic arrangement of an exposure apparatus according to an embodiment of the present invention.
[図 2]結像特性補正機構の一例を示す図である。 FIG. 2 is a diagram illustrating an example of an imaging characteristic correction mechanism.
[図 3A]調整機構の構成例を示す断面図である。 FIG. 3A is a cross-sectional view showing a configuration example of an adjustment mechanism.
[図 3B]調整機構の構成例を示す上面図である。 FIG. 3B is a top view showing a configuration example of an adjustment mechanism.
[図 4]温度調整器の他の構成例を示す図である。 FIG. 4 is a diagram showing another configuration example of the temperature regulator.
[図 5]熱輸送機構を用いた温度調整器の構成例を示す図である。 FIG. 5 is a diagram showing a configuration example of a temperature regulator using a heat transport mechanism.
[図 6A]投影光学系の一部を断面とした正面図である。 FIG. 6A is a front view with a section of a part of the projection optical system.
[図 6B]投影光学系の一部を断面とした正面図である。 FIG. 6B is a front view showing a cross section of a part of the projection optical system.
[図 7A]ダイポール照明を行った際に生ずるレンズの形状変化を説明するための図で ある。  FIG. 7A is a diagram for explaining a lens shape change that occurs when dipole illumination is performed.
[図 7B]ダイポール照明を行った際に生ずるレンズの形状変化を説明するための図で ある。  FIG. 7B is a diagram for explaining a lens shape change that occurs when dipole illumination is performed.
[図 7C]ダイポール照明を行った際に生ずるレンズの形状変化を説明するための図で ある。  FIG. 7C is a diagram for explaining the lens shape change that occurs when dipole illumination is performed.
[図 7D]ダイポール照明を行った際に生ずるレンズの形状変化を説明するための図で ある。  FIG. 7D is a diagram for explaining a lens shape change that occurs when dipole illumination is performed.
[図 8A]ダイポール照明を行った際に生ずるレンズの形状変化を説明するための図で ある。  FIG. 8A is a diagram for explaining a change in the shape of a lens that occurs when dipole illumination is performed.
[図 8B]ダイポール照明を行った際に生ずるレンズの形状変化を説明するための図で ある。  FIG. 8B is a diagram for explaining the lens shape change that occurs when dipole illumination is performed.
[図 9]ダイポール照明により生ずるセンターアスティグマテイズムを示す図である。  FIG. 9 is a diagram showing center astigmatism caused by dipole illumination.
[図 10A]非露光光照射機構を用いた投影光学系の非回転対称な収差の補正方法の 一例を説明するための図である。 FIG. 10A is a diagram for explaining an example of a method for correcting non-rotationally symmetric aberration of a projection optical system using a non-exposure light irradiation mechanism.
[図 10B]非露光光照射機構を用いた投影光学系の非回転対称な収差の補正方法の 一例を説明するための図である。  FIG. 10B is a diagram for explaining an example of a method for correcting non-rotationally symmetric aberration of the projection optical system using the non-exposure light irradiation mechanism.
[図 11]主制御系の内部構成、及び主制御系と各種信号の授受を行う装置を示すブ ロック図である。  FIG. 11 is a block diagram showing an internal configuration of the main control system and an apparatus for exchanging various signals with the main control system.
[図 12]フォーカス変動量についての代表的な伝達関数を示す図である。 [図 13]メモリに記憶されたテーブルの一例を説明するための図である。 FIG. 12 is a diagram showing a typical transfer function with respect to the focus fluctuation amount. FIG. 13 is a diagram for explaining an example of a table stored in a memory.
[図 14]マイクロデバイスとしての半導体素子を製造する製造工程の一部を示すフロー チャートである。  FIG. 14 is a flowchart showing a part of a manufacturing process for manufacturing a semiconductor element as a micro device.
[図 15]図 14のステップ S 13の詳細なフローの一例を示す図である。  FIG. 15 is a diagram showing an example of a detailed flow of step S 13 in FIG.
符号の説明  Explanation of symbols
[0011] 9 視野絞り 14 結像特性補正機構 20 主制御系 22 調整機構 37 メモリ 40 非露光光照射機構 IL 露光光 (照明光) ILS照明光学系 PL 投影光学系 R レチクル(マスク) W ウェハ(基板、物体)  [0011] 9 Field stop 14 Imaging characteristic correction mechanism 20 Main control system 22 Adjustment mechanism 37 Memory 40 Non-exposure light irradiation mechanism IL Exposure light (illumination light) ILS illumination optical system PL Projection optical system R Reticle (mask) W Wafer ( Substrate, object)
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、図面を参照して本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0013] 〔露光装置〕 [Exposure apparatus]
図 1は、本発明の一実施形態に係る露光装置の概略構成を示す図である。図 1〖こ 示す露光装置は、投影光学系 PLに対してマスクとしてのレチクル Rと基板としてのゥ ェハ Wとを相対的に移動させつつ、レチクル Rに形成されたパターンをウェハ Wに逐 次転写するステップ 'アンド'スキャン方式の走査露光型の露光装置である。  FIG. 1 is a view showing the schematic arrangement of an exposure apparatus according to an embodiment of the present invention. The exposure apparatus shown in FIG. 1 sequentially moves the pattern formed on the reticle R onto the wafer W while moving the reticle R as a mask and the wafer W as a substrate relative to the projection optical system PL. This is a scanning exposure type exposure apparatus of the next “and” scanning method for transferring.
[0014] 尚、以下の説明においては、必要であれば図中に XYZ直交座標系を設定し、この XYZ直交座標系を参照しつつ各部材の位置関係について説明する。図 1に示す X YZ直交座標系は、 X軸及び Y軸がウェハ W表面に対してほぼ平行となるよう設定さ れ、 Z軸がゥ ハ W表面に対してほぼ直交する方向に設定されている。図中の XYZ 座標系は、実際には XY平面が水平面に平行な面に設定され、 Z軸が鉛直方向に設 定される。また、本実施形態ではレチクル R及びウェハ Wを同期移動させる方向(走 查方向)を Y方向に設定して ヽる。  In the following description, if necessary, an XYZ orthogonal coordinate system is set in the drawing, and the positional relationship of each member will be described with reference to this XYZ orthogonal coordinate system. The XYZ Cartesian coordinate system shown in Fig. 1 is set so that the X-axis and Y-axis are almost parallel to the wafer W surface, and the Z-axis is set in a direction almost perpendicular to the wafer W surface. Yes. In the XYZ coordinate system in the figure, the XY plane is actually set parallel to the horizontal plane, and the Z axis is set vertically. In this embodiment, the direction in which the reticle R and the wafer W are moved synchronously (scanning direction) is set to the Y direction.
[0015] 図 1に示す露光装置は、露光光源 1、照明光学系 ILS、レチクルステージ RST、投 影光学系 PL、ウェハステージ WST、及び主制御系 20を含む。露光光源 1は、例え ば KrFエキシマレーザ光源(波長 247nm)である。尚、露光光源 1としては、 ArFェ キシマレーザ光源(波長 193nm)、 Fレーザ光源(波長 157nm)、 Krレーザ光源(  The exposure apparatus shown in FIG. 1 includes an exposure light source 1, an illumination optical system ILS, a reticle stage RST, a projection optical system PL, a wafer stage WST, and a main control system 20. The exposure light source 1 is, for example, a KrF excimer laser light source (wavelength 247 nm). As the exposure light source 1, ArF excimer laser light source (wavelength 193 nm), F laser light source (wavelength 157 nm), Kr laser light source (
2 2  twenty two
波長 146nm)、 Arレーザ光源(波長 126nm)等の紫外レーザ光源、 YAGレーザの  UV laser light source such as Ar laser light source (wavelength 126nm), YAG laser
2  2
高調波発生光源、固体レーザ (半導体レーザ等)の高調波発生装置、又は水銀ラン プ (i線等)等も使用することができる。 Harmonic generator, solid-state laser (semiconductor laser, etc.) harmonic generator, or mercury run (I-line etc.) can also be used.
[0016] 露光時に露光光源 1からパルス発光された露光光 ILは、不図示のビーム整形光学 系等を経て断面形状が所定形状に整形されて、オプティカル 'インテグレータ (ュ- フォマイザ又はホモジナイザ)としての第 1フライアイレンズ 2に入射して、照度分布が 均一化される。第 1フライアイレンズ 2から射出された露光光 ILは、不図示のリレーレ ンズ及び振動ミラー 3を経てオプティカル 'インテグレータとしての第 2フライアイレン ズ 4に入射して、照度分布が更に均一化される。振動ミラー 3は、レーザ光である露光 光 ILのスペックルの低減、及びフライアイレンズによる干渉縞の低減のために使用さ れる。尚、フライアイレンズ 2, 4の代わりに、回折光学素子 (DOE : Dilfractive Optical Element)又は内面反射型インテグレータ(ロッドレンズ等)等を使用することもできる。  [0016] The exposure light IL pulsed from the exposure light source 1 at the time of exposure is shaped into a predetermined shape through a beam shaping optical system (not shown) and the like as an optical integrator (a homogenizer or a homogenizer). The light is incident on the first fly-eye lens 2 and the illuminance distribution is made uniform. The exposure light IL emitted from the first fly-eye lens 2 is incident on the second fly-eye 4 as an optical integrator through a relay lens (not shown) and the vibrating mirror 3, and the illuminance distribution is further uniformized. . The vibrating mirror 3 is used for reducing speckles of the exposure light IL that is laser light and reducing interference fringes by a fly-eye lens. Instead of the fly-eye lenses 2 and 4, a diffractive optical element (DOE: Dilfractive Optical Element) or an internal reflection type integrator (rod lens or the like) can be used.
[0017] 第 2フライアイレンズ 4の射出側の焦点面(照明光学系 ILSの瞳面)には、露光光の 光量分布 (2次光源)を小さい円形 (小 σ照明)、通常の円形、複数の偏心領域 (2極 及び 4極照明)、並びに輪帯状等のうちの何れかに設定して照明条件を決定するた めの照明系開口絞り部材 5が、駆動モータ 5cによって回転自在に配置されている。 装置全体の動作を統轄制御するコンピュータよりなる主制御系 20が、駆動モータ 5c を介して照明系開口絞り部材 5の回転角を制御することによって照明条件を設定す る。図 1に示す状態では、照明系開口絞り部材 5の複数の開口絞り(σ絞り)のうちの 、光軸を中心として対称に 2つの円形開口が形成された第 1のダイポール照明(2極 照明)用の開口絞り 5a、及びこの開口絞り 5aを 90° 回転した第 2のダイポール照明 用の開口絞り 5bが図示されている。そして、第 2フライアイレンズ 4の射出側の焦点面 には、第 1のダイポール照明用の開口絞り 5aが設置されている。尚、本例においては 、照明系開口絞り部材 5を用いて照明光学系 ILSの瞳面での光量分布の調整を行つ ているが、米国特許 6, 563, 567に開示されているような他の光学部材を用いて照 明光学系 ILSの瞳面での光量分布の調整を行ってもよい。  [0017] On the focal plane on the exit side of the second fly-eye lens 4 (the pupil plane of the illumination optical system ILS), the exposure light intensity distribution (secondary light source) has a small circle (small σ illumination), a normal circle, Illumination system aperture stop member 5 for determining illumination conditions by setting to any one of multiple eccentric regions (dipole and quadrupole illumination) and ring-shaped zones, etc., is rotatably arranged by drive motor 5c Has been. The main control system 20 composed of a computer that controls the overall operation of the apparatus controls the rotation angle of the illumination system aperture stop member 5 via the drive motor 5c to set the illumination conditions. In the state shown in FIG. 1, of the plurality of aperture stops (σ stops) of the illumination system aperture stop member 5, the first dipole illumination (two-pole illumination) in which two circular apertures are formed symmetrically about the optical axis. ), And a second dipole illumination aperture stop 5b obtained by rotating the aperture stop 5a by 90 °. On the focal plane on the exit side of the second fly's eye lens 4, an aperture stop 5a for the first dipole illumination is installed. In this example, the light distribution on the pupil plane of the illumination optical system ILS is adjusted using the illumination system aperture stop member 5, but as disclosed in US Pat. No. 6,563,567. The light amount distribution on the pupil plane of the illumination optical system ILS may be adjusted using another optical member.
[0018] 照明系開口絞り部材 5中の開口絞り 5aを通過した露光光 ILは、反射率の小さいビ 一ムスプリッタ 6に入射する。ビームスプリッタ 6で反射された露光光は、集光レンズ( 不図示)を介してインテグレータセンサ 7に受光される。インテグレータセンサ 7の検出 信号は主制御系 20に供給されおり、この検出信号に基づいて主制御系 20は、露光 光源 1の出力を制御すると共に、必要に応じて不図示の減光機構を用いて露光光 IL のパルスエネルギーを段階的に制御する。 The exposure light IL that has passed through the aperture stop 5a in the illumination system aperture stop member 5 is incident on the beam splitter 6 having a low reflectance. The exposure light reflected by the beam splitter 6 is received by the integrator sensor 7 via a condenser lens (not shown). The detection signal of the integrator sensor 7 is supplied to the main control system 20. Based on this detection signal, the main control system 20 The output of the light source 1 is controlled, and the pulse energy of the exposure light IL is controlled step by step using a dimming mechanism (not shown) as necessary.
[0019] ビームスプリッタ 6を透過した露光光 ILは、不図示のリレーレンズを経て視野絞り 9 の開口上に入射する。視野絞り 9は、実際には固定視野絞り(固定ブラインド)及び可 動視野絞り(可動ブラインド)力 構成されている。後者の可動視野絞りは、レチクル R のパターン面(レチクル面)とほぼ共役な面に配置され、前者の固定視野絞りは、そ のレチクル面との共役面力も僅か〖こデフォーカスした面に配置されている。固定視野 絞りは、レチクル R上の照明領域の形状を規定するために使用される。尚、ここでは 固定視野絞りがレチクル面との共役面力も僅か〖こデフォーカスしている場合を例に挙 げて説明するが、共役面に配置されていても良い。可動視野絞りは、露光対象の各 ショット領域への走査露光の開始時及び終了時に不要な部分への露光が行われな いように、レチクル R (又は、ウェハ W)と同期して動き、その照明領域を遮るために使 用される。固定視野絞りは、レチクル R (又は、ウェハ W)に同期して動かないけれども 、必要に応じて照明領域の走査方向及び非走査方向の中心及び幅を規定するため にも使用される。主制御系 20が固定視野絞り及び可動視野絞りの動作を制御する。  The exposure light IL that has passed through the beam splitter 6 is incident on the aperture of the field stop 9 via a relay lens (not shown). The field stop 9 is actually composed of a fixed field stop (fixed blind) and a movable field stop (movable blind) force. The latter movable field stop is arranged on a plane almost conjugate with the pattern surface (reticle surface) of the reticle R, and the former fixed field stop is arranged on a plane defocused slightly with a conjugate surface force with the reticle plane. Has been. The fixed field stop is used to define the shape of the illumination area on the reticle R. Here, the case where the fixed field stop is defocused slightly with respect to the reticle surface will be described as an example, but it may be arranged on the conjugate surface. The movable field stop moves in synchronization with reticle R (or wafer W) so that unnecessary portions are not exposed at the start and end of scanning exposure to each shot area to be exposed. Used to block the lighting area. Although the fixed field stop does not move in synchronization with the reticle R (or wafer W), it is also used to define the center and width of the illumination area in the scanning direction and non-scanning direction as required. The main control system 20 controls the operations of the fixed field stop and the movable field stop.
[0020] 視野絞り 9の開口を通過した露光光 ILは、不図示のコンデンサレンズ、光路折り曲 げ用のミラー 10、及びコンデンサレンズ 11を経て、レチクル Rのレチクル面の照明領 域を均一な照度分布で照明する。視野絞り 9 (固定視野絞り)の開口の通常の形状は 、縦横比が 1 : 3から 1 :4程度の長方形である。従って、視野絞り 9の開口とほぼ共役 なレチクル R上の照明領域の通常の形状も長方形である。尚、主制御系 20が視野絞 り 9の開口の形状を変えることにより、レチクル Rに照射される露光光 ILの分布、即ち 露光光 ILの断面形状及び大きさ (投影光学系の像面との共役面における照明光の 断面形状及び大きさ)が変わる。また、レチクルステージ RST上のレチクル Rを交換し てレチクル Rの周辺部の遮光領域 (不要な光を遮光するために形成された領域)によ り規定される開口やパターンの分布 (密度)が変わる場合にも投影光学系の像面との 共役面における照明光の形状及び大きさが変わる。  [0020] The exposure light IL that has passed through the aperture of the field stop 9 passes through a condenser lens (not shown), a mirror 10 for bending the optical path, and a condenser lens 11, so that the illumination area of the reticle surface of the reticle R is made uniform. Illuminate with illumination distribution. The normal shape of the aperture of the field stop 9 (fixed field stop) is a rectangle with an aspect ratio of about 1: 3 to 1: 4. Therefore, the normal shape of the illumination area on the reticle R that is almost conjugate with the aperture of the field stop 9 is also rectangular. The main control system 20 changes the shape of the aperture of the field stop 9 so that the distribution of the exposure light IL irradiated onto the reticle R, that is, the cross-sectional shape and size of the exposure light IL (the image plane of the projection optical system). The cross-sectional shape and size of the illumination light at the conjugate plane changes. In addition, if the reticle R on the reticle stage RST is replaced, the distribution (density) of apertures and patterns defined by the light shielding area around the reticle R (area formed to shield unnecessary light) is increased. Even when it changes, the shape and size of the illumination light on the conjugate plane with the image plane of the projection optical system change.
[0021] 露光光 ILのもとで、レチクル Rの照明領域内のパターンは、両側テレセントリックの 投影光学系 PLを介して投影倍率 |8 ( j8は 1Z4, 1Z5等)で、フォトレジストが塗布さ れたウェハ w上の一つのショット領域上の露光領域に投影される。その露光領域は、 投影光学系 PLに関してレチクル R上の照明領域と共役な長方形の領域である。ゥェ ハ Wは、例えば半導体(シリコン等)又は SOI(silicon on insulator)等の直径が 200〜 300mm程度の円板状の基板である。 [0021] Under the exposure light IL, the pattern in the illumination area of the reticle R is coated with a photoresist with a projection magnification of | 8 (j8 is 1Z4, 1Z5, etc.) via the telecentric projection optical system PL. Is projected onto an exposure area on one shot area on the wafer w. The exposure area is a rectangular area conjugate with the illumination area on the reticle R with respect to the projection optical system PL. The wafer W is a disk-shaped substrate having a diameter of about 200 to 300 mm, such as a semiconductor (silicon etc.) or SOI (silicon on insulator).
[0022] 露光光 ILの一部はウェハ Wで反射され、その反射光は投影光学系 PL、レチクル R 、コンデンサレンズ 11、ミラー 10、及び視野絞り 9を順次経てビームスプリッタ 6に戻り 、ビームスプリッタ 6で更に反射された光が集光レンズ (不図示)を介して反射量セン サ (反射率モニタ) 8で受光される。反射量センサ 8の検出信号は主制御系 20に供給 されている。また、投影光学系 PLの外部(例えば、投影光学系 PLの ±X側及び士 Y 側の計 4箇所)には、気圧及び温度を計測するための環境センサ 12が配置されてお り、各環境センサ 12で計測された計測データも主制御系 20に供給されて 、る。  [0022] A part of the exposure light IL is reflected by the wafer W, and the reflected light passes through the projection optical system PL, the reticle R, the condenser lens 11, the mirror 10, and the field stop 9 in this order and returns to the beam splitter 6 to return to the beam splitter. The light further reflected by 6 is received by a reflection amount sensor (reflectance monitor) 8 through a condenser lens (not shown). The detection signal of the reflection amount sensor 8 is supplied to the main control system 20. In addition, environmental sensors 12 for measuring atmospheric pressure and temperature are arranged outside the projection optical system PL (for example, a total of four locations on the ± X side and the Y side of the projection optical system PL). Measurement data measured by the environmental sensor 12 is also supplied to the main control system 20.
[0023] 露光光源 1、フライアイレンズ 2, 4、ミラー 3, 10、照明系開口絞り部材 5、視野絞り 9 、及びコンデンサレンズ 11等から照明光学系 ILSが構成されている。照明光学系 IL Sは更に気密室としての不図示のサブチャンバに覆われている。露光光 ILに対する 光路空間の透過率を高く維持するために、そのサブチャンバ内及び投影光学系 PL の鏡筒内には、不純物を高度に除去したドライエアー(露光光が ArFエキシマレーザ の場合には窒素ガス、ヘリウムガス等も使用される)が供給されている。  An illumination optical system ILS is composed of the exposure light source 1, fly-eye lenses 2 and 4, mirrors 3 and 10, illumination system aperture stop member 5, field stop 9, condenser lens 11, and the like. The illumination optical system IL S is further covered with a sub-chamber (not shown) as an airtight chamber. In order to maintain a high transmittance in the optical path space for the exposure light IL, dry air from which impurities are highly removed (in the case where the exposure light is an ArF excimer laser) is placed in the subchamber and in the lens barrel of the projection optical system PL. Nitrogen gas, helium gas, etc. are also used.
[0024] また、本実施形態の投影光学系 PLは屈折系であり、投影光学系 PLを構成する複 数の光学部材は、光軸 AXを中心として回転対称な石英 (露光光が ArFエキシマレ 一ザの場合には蛍石等も使用される)よりなる複数のレンズ、及び石英よりなる平板 状の収差補正板等を含んでいる。そして、投影光学系 PLの瞳面 PP (照明光学系 IL Sの瞳面と共役な面)には開口絞り 13が配置され、その瞳面 PPの近傍にレンズ L1, L2が配置されている。  In addition, the projection optical system PL of the present embodiment is a refractive system, and the plurality of optical members constituting the projection optical system PL are quartz that is rotationally symmetric about the optical axis AX (exposure light is ArF excimer). In the case of ZA, it includes a plurality of lenses made of fluorite, etc., and a flat aberration correction plate made of quartz. An aperture stop 13 is disposed on the pupil plane PP of the projection optical system PL (a plane conjugate with the pupil plane of the illumination optical system ILS), and lenses L1 and L2 are disposed near the pupil plane PP.
[0025] レンズ L1には、投影光学系 PLの動的な光学特性 (特に、非回転対称収差)を調整 するために、露光光 ILとは異なる波長域の照明光が非露光光照射機構 40により照 射される。レンズ L2は、投影光学系 PLの静的な光学特性 (特に、非回転対称な収差 )を調整するために、調整機構 22により所定の調整が施される。調整機構 22及び非 露光光照射機構 40による投影光学系 PLの光学特性の調整は、主制御系 20が制御 する。調整機構 22及び非露光光照射機構 40の詳細については後述する。また、主 制御系 20は制御部 15を介して投影光学系 PLの光学特性 (特に、回転対称な収差) を調整するための結像特性補正機構 14の動作を制御する。尚、投影光学系 PLの静 的な光学特性とは、投影光学系 PLが初期状態、即ち投影光学系 PLが露光光 ILの 照射による影響を受けていない状態での光学特性であり、投影光学系 PLの動的な 光学特性とは、投影光学系 PLに露光光 ILが照射されたことによって変化する光学 特性である。 In the lens L1, in order to adjust dynamic optical characteristics (particularly non-rotationally symmetric aberration) of the projection optical system PL, illumination light having a wavelength region different from that of the exposure light IL is applied. It is irradiated by. The lens L2 is subjected to a predetermined adjustment by the adjusting mechanism 22 in order to adjust the static optical characteristics (particularly non-rotationally symmetric aberration) of the projection optical system PL. Adjustment of the optical characteristics of the projection optical system PL by the adjustment mechanism 22 and the non-exposure light irradiation mechanism 40 is controlled by the main control system 20. To do. Details of the adjustment mechanism 22 and the non-exposure light irradiation mechanism 40 will be described later. The main control system 20 controls the operation of the imaging characteristic correction mechanism 14 for adjusting the optical characteristics (particularly rotationally symmetric aberration) of the projection optical system PL via the control unit 15. The static optical characteristics of the projection optical system PL are the optical characteristics when the projection optical system PL is in the initial state, that is, when the projection optical system PL is not affected by the irradiation of the exposure light IL. The dynamic optical characteristics of the system PL are optical characteristics that change when the projection optical system PL is irradiated with the exposure light IL.
[0026] レチクル Rはレチクルステージ RST上に吸着保持され、レチクルステージ RSTは不 図示のレチクルベース上で Y方向に一定速度で移動すると共に、同期誤差を補正す るように X方向、 Y方向、回転方向に微動して、レチクル Rの走査を行う。レチクルステ ージ RSTの X方向、 Y方向の位置及び回転角は、このレチクルステージ RST上に設 けられた移動鏡 (不図示)及びレーザ干渉計 (不図示)によって計測され、この計測値 が主制御系 20に供給されている。  [0026] Reticle R is attracted and held on reticle stage RST. Reticle stage RST moves at a constant speed in the Y direction on a reticle base (not shown), and X direction, Y direction, The reticle R is scanned by slightly moving in the rotation direction. The position and rotation angle of reticle stage RST in the X and Y directions are measured by a movable mirror (not shown) and a laser interferometer (not shown) provided on reticle stage RST. It is supplied to the control system 20.
[0027] 投影光学系 PLの上部側面には、レチクル Rのパターン面(レチクル面)に斜めにス リット像を投影し、そのレチクル面力 の反射光を受光してそのスリット像を再結像し、 そのスリット像の横ずれ量からレチクル面の Z方向への変位を検出する斜入射方式の フォーカスセンサ(以下、 「レチクル側 AFセンサ」と言う) 16が配置されている。レチク ル側 AFセンサ 16による検出情報は、主制御系 20に供給されている。また、レチクル Rの周辺部の上方には、レチクルァライメント用のレチクルァライメント顕微鏡 (不図示 )が配置されている。  [0027] On the upper side surface of the projection optical system PL, a slit image is projected obliquely onto the pattern surface (reticle surface) of the reticle R, the reflected light of the reticle surface force is received, and the slit image is re-imaged. An oblique-incidence focus sensor (hereinafter referred to as “reticle-side AF sensor”) 16 that detects the displacement of the reticle surface in the Z direction from the amount of lateral displacement of the slit image is disposed. Information detected by the reticle side AF sensor 16 is supplied to the main control system 20. A reticle alignment microscope (not shown) for reticle alignment is disposed above the periphery of the reticle R.
[0028] 一方、ウェハ Wは、ウェハホルダ(不図示)を介して Zチルトステージ 17上に吸着保 持されている。 Zチルトステージ 17はウェハステージ WST上に固定され、ウェハステ ージ WSTは不図示のウェハベース上で Y方向に一定速度で移動可能であると共に 、 X方向、 Y方向にステップ移動可能である。また、 Zチルトステージ 17は、ウェハ W の Z方向の位置、及び X軸、 Y軸の回りの傾斜角を制御する。ウェハステージ WSTの X方向、 Y方向の位置及び回転角は、レーザ干渉計 (不図示)によって計測され、こ の計測値が主制御系 20に供給されている。主制御系 20は、その計測値及び各種制 御情報に基づ 、てウェハステージ WSTの位置、速度などを制御する。 [0029] 投影光学系 PLの下部側面には、ウェハ Wの表面(ウェハ面)に斜めに複数のスリツ ト像を投影し、そのウェハ面からの反射光を受光してそれらのスリット像を再結像し、 それらのスリット像の横ずれ量からウェハ面の Z方向への変位(デフォーカス量)及び 傾斜角を検出する斜入射方式のフォーカスセンサ(以下、「ウェハ側 AFセンサ」と言 う) 18が配置されている。ウェハ側 AFセンサ 18による検出情報は、主制御系 20に供 給されており、主制御系 20は、レチクル側 AFセンサ 16及びウェハ側 AFセンサ 18の 検出情報に基づいて、常時ウェハ面が投影光学系 PLの像面に合焦されるように、 Z チルトステージ 17を駆動する。 On the other hand, the wafer W is sucked and held on the Z tilt stage 17 via a wafer holder (not shown). The Z tilt stage 17 is fixed on the wafer stage WST, and the wafer stage WST can be moved at a constant speed in the Y direction on a wafer base (not shown) and can be moved stepwise in the X direction and the Y direction. The Z tilt stage 17 controls the position of the wafer W in the Z direction and the tilt angles around the X and Y axes. The position and rotation angle in the X and Y directions of wafer stage WST are measured by a laser interferometer (not shown), and the measured values are supplied to main control system 20. The main control system 20 controls the position and speed of the wafer stage WST based on the measurement values and various control information. [0029] On the lower side surface of the projection optical system PL, a plurality of slit images are projected obliquely onto the surface of the wafer W (wafer surface), and reflected light from the wafer surface is received to reconstruct the slit images. An oblique-incidence focus sensor (hereinafter referred to as the "wafer-side AF sensor") that forms an image and detects the displacement (defocus amount) and tilt angle of the wafer surface in the Z direction from the lateral displacement of the slit images. 18 is arranged. Information detected by the wafer side AF sensor 18 is supplied to the main control system 20. The main control system 20 constantly projects the wafer surface based on the detection information of the reticle side AF sensor 16 and the wafer side AF sensor 18. The Z tilt stage 17 is driven so as to be focused on the image plane of the optical system PL.
[0030] また、 Zチルトステージ 17上のウェハ Wの近くには、露光光 ILの露光領域の全体を 覆う受光面を備えた光電センサよりなる照射量センサ 19が固定され、照射量センサ 1 9の検出信号が主制御系 20に供給されている。露光開始前又は定期的に、照射量 センサ 19の受光面を投影光学系 PLの露光領域に移動した状態で露光光 ILを照射 して、照射量センサ 19の検出信号をインテグレータセンサ 7の検出信号で除算する ことによって、主制御系 20は、ビームスプリッタ 6から照射量センサ 19 (ウェハ W)まで の光学系の透過率を算出して記憶する。また、 Zチルトステージ 17上には、投影光学 系 PLの収差を測定する収差測定装置 21が設けられている。この収差測定装置 21 の測定結果は、主制御系 20に供給されている。収差測定装置 21は、例えば特開 20 02— 14005号公報(対応米国特許公開 2002Z0041377号)に開示されているよう な空間像センサを用いることができる。  [0030] Further, near the wafer W on the Z tilt stage 17, a dose sensor 19 including a photoelectric sensor having a light receiving surface covering the entire exposure area of the exposure light IL is fixed, and the dose sensor 19 The detection signal is supplied to the main control system 20. Before the exposure starts or periodically, the exposure light IL is irradiated with the light receiving surface of the irradiation sensor 19 moved to the exposure area of the projection optical system PL, and the detection signal of the irradiation sensor 19 is detected as the detection signal of the integrator sensor 7. By dividing by, the main control system 20 calculates and stores the transmittance of the optical system from the beam splitter 6 to the dose sensor 19 (wafer W). On the Z tilt stage 17, an aberration measuring device 21 for measuring the aberration of the projection optical system PL is provided. The measurement result of the aberration measuring device 21 is supplied to the main control system 20. As the aberration measuring device 21, for example, an aerial image sensor as disclosed in Japanese Patent Application Laid-Open No. 2002-14005 (corresponding US Patent Publication 2002Z0041377) can be used.
[0031] 更に、ウェハステージ WSTの上方には、ウェハァライメント用のオフ'ァクシス方式 のァライメントセンサ (不図示)が配置されており、上記のレチクルァライメント顕微鏡 及びそのァライメントセンサの検出結果に基づいて、主制御系 20はレチクル Rのァラ ィメント及びウェハ Wのァライメントを行う。露光時には、レチクル R上の照明領域に露 光光 ILを照射した状態で、レチクルステージ RST及びウェハステージ WSTを駆動し て、レチクル Rとウェハ W上の一つのショット領域とを Y方向に同期走査する動作と、 ウェハステージ WSTを駆動してウェハ Wを X方向、 Y方向にステップ移動する動作と が繰り返される。この動作によって、ステップ'アンド'スキャン方式でウェハ W上の各 ショット領域にレチクル Rのパターン像が露光される。 [0032] 以上、本発明の一実施形態に係る露光装置の全体構成について説明したが、次 に投影光学系 PLの光学特性を調整するために設けられた結像特性補正機構 14、 調整機構 22、及び非露光光照射機構 40について順に説明する。 [0031] Further, an off-axis alignment sensor (not shown) for wafer alignment is arranged above wafer stage WST, and the above-mentioned reticle alignment microscope and the detection result of the alignment sensor are arranged. Based on the above, the main control system 20 performs the reticle R alignment and the wafer W alignment. During exposure, the reticle stage RST and wafer stage WST are driven while the illumination area on the reticle R is irradiated with the exposure light IL, and the reticle R and one shot area on the wafer W are synchronously scanned in the Y direction. And the operation of stepping the wafer W in the X and Y directions by driving the wafer stage WST are repeated. By this operation, the pattern image of the reticle R is exposed to each shot area on the wafer W by the step “and” scanning method. The overall configuration of the exposure apparatus according to the embodiment of the present invention has been described above. Next, the imaging characteristic correction mechanism 14 and the adjustment mechanism 22 provided for adjusting the optical characteristics of the projection optical system PL are described. The non-exposure light irradiation mechanism 40 will be described in order.
[0033] [結像特性補正機構 14]  [0033] [Image formation characteristic correction mechanism 14]
図 2は、結像特性補正機構 14の一例を示す図である。図 2において、投影光学系 PLの鏡筒内で、複数の光学部材中から選択された例えば 5枚のレンズ Ll l, L12, L13, L14, L15がそれぞれ 3個の光軸方向に独立に伸縮自在の駆動素子 14a, 1 4b, 14c, 14d, 14eを介して保持されている。レンズ L11〜L15の前後には固定さ れた不図示のレンズや収差補正板も配置されている。この場合、 3個の駆動素子 14a (図 2では 2個のみを図示している)は、ほぼ正 3角形の頂点となる位置関係で配置さ れており、同様に他の 3個ずつの駆動素子 14b〜14eもそれぞれほぼ正三角形の頂 点となる位置関係で配置されて 、る。  FIG. 2 is a diagram illustrating an example of the imaging characteristic correction mechanism 14. In FIG. 2, for example, five lenses Ll l, L12, L13, L14, and L15 selected from a plurality of optical members are independently expanded and contracted in the direction of the three optical axes in the lens barrel of the projection optical system PL. It is held via free drive elements 14a, 14b, 14c, 14d, 14e. Fixed lenses (not shown) and aberration correction plates are also arranged before and after the lenses L11 to L15. In this case, the three drive elements 14a (only two are shown in FIG. 2) are arranged in a positional relationship that is approximately the apex of a regular triangle, and each of the other three drive elements is similarly driven. The elements 14b to 14e are also arranged in a positional relationship that is almost the vertex of an equilateral triangle.
[0034] 伸縮自在の駆動素子 14a〜14eとしては、例えばピエゾ素子のような圧電素子、磁 歪素子、又は電動マイクロメータ等を使用することができる。制御部 15が、主制御系 20からの制御情報に基づいて駆動素子 14a〜14eの伸縮量を独立に制御すること によって、 5枚のレンズ L11〜L15のそれぞれの光軸方向の位置、及び光軸に垂直 な直交する 2軸の回りの傾斜角を独立に制御することができる。これによつて、投影光 学系 PLの結像特性中の所定の回転対称な収差を補正することができる。尚、結像 特性補正機構 14で調整する投影光学系 PLの回転対称な光学特性 (収差)は、フォ 一カス誤差、投影倍率誤差、像面湾曲収差、歪曲収差 (ディストーション)、コマ収差 、球面収差のうちの少なくとも一つを含む。  [0034] As the extendable drive elements 14a to 14e, for example, piezoelectric elements such as piezoelectric elements, magnetostrictive elements, or electric micrometers can be used. The control unit 15 independently controls the expansion / contraction amounts of the drive elements 14a to 14e based on the control information from the main control system 20, whereby the position of each of the five lenses L11 to L15 in the optical axis direction and the light The tilt angle around two perpendicular axes perpendicular to the axis can be controlled independently. As a result, a predetermined rotationally symmetric aberration in the imaging characteristics of the projection optical system PL can be corrected. Note that the rotationally symmetric optical characteristics (aberration) of the projection optical system PL adjusted by the imaging characteristic correction mechanism 14 are: focus error, projection magnification error, curvature of field aberration, distortion (distortion), coma aberration, spherical Including at least one of the aberrations.
[0035] 例えば、レチクル又はウェハに近い位置のレンズ Ll l, L15の光軸方向の位置や 傾斜角を制御することによって、例えば歪曲収差 (倍率誤差を含む)等を補正するこ とができる。また、例えば投影光学系 PLの瞳面に近い位置のレンズ L13の光軸方向 の位置を制御することによって、球面収差等を補正することができる。尚、図 2の駆動 対象のレンズ L13は、図 1の投影光学系 PL内の収差補正用の照明光が照射される レンズ L1と同一であってもよい。  For example, distortion aberration (including magnification error) and the like can be corrected by controlling the position in the optical axis direction and the tilt angle of the lenses Ll l and L15 located near the reticle or wafer. Further, for example, spherical aberration or the like can be corrected by controlling the position in the optical axis direction of the lens L13 at a position close to the pupil plane of the projection optical system PL. 2 may be the same as the lens L1 irradiated with the illumination light for aberration correction in the projection optical system PL of FIG.
[0036] このように投影光学系 PL内のレンズ等を駆動する機構については、例えば特開平 4— 134813号公報にも開示されている。また、投影光学系 PL内の光学部材の代わ りに、又はその光学部材と共に、図 1のレチクル Rの光軸方向の位置を制御して、所 定の回転対称な収差を補正してもよい。更に、図 1の結像特性補正機構 14としては 、例えば特開昭 60— 78454号公報に開示されているように、投影光学系 PL内の所 定の 2つのレンズ間の密閉された空間内の気体の圧力を制御する機構を用いてもよ い。 As for the mechanism for driving the lens or the like in the projection optical system PL as described above, for example, It is also disclosed in Japanese Patent Laid-Open No. 4-134813. Further, instead of or together with the optical member in the projection optical system PL, the position in the optical axis direction of the reticle R in FIG. 1 may be controlled to correct a predetermined rotationally symmetric aberration. . Further, as the imaging characteristic correction mechanism 14 in FIG. 1, as disclosed in, for example, Japanese Patent Laid-Open No. 60-78454, a sealed space between two predetermined lenses in the projection optical system PL is used. A mechanism for controlling the pressure of the gas may be used.
[0037] [調整機構 22]  [0037] [Adjustment mechanism 22]
図 3Aは、調整機構 22の構成例を示す断面図であり、図 3Bは、調整機構 22の構 成例を示す上面図である。尚、図 3A及び 3Bにおいては、図示を簡略化するために 調整機構 22の構成のみを図示しており、調整機構 22以外の構成 (例えば、鏡筒等) の図示は省略している。図 3Aに示す通り、調整機構 22は、保持部材 22a、温度調 整器 22b、及び調整ネジ 22c等を含む。  3A is a cross-sectional view illustrating a configuration example of the adjustment mechanism 22, and FIG. 3B is a top view illustrating a configuration example of the adjustment mechanism 22. 3A and 3B, only the configuration of the adjustment mechanism 22 is shown for the sake of simplicity, and the configuration other than the adjustment mechanism 22 (for example, a lens barrel or the like) is not shown. As shown in FIG. 3A, the adjustment mechanism 22 includes a holding member 22a, a temperature adjuster 22b, an adjustment screw 22c, and the like.
[0038] 保持部材 22aは、例えばアルミニウム等の熱伝導性が高い材質力 形成されており 、レンズ L2周辺の一端に当接してレンズ L2を保持するものである。温度調整器 22b は、例えばヒータ等の加熱素子又はペルチェ素子等の加熱冷却素子を備えており、 投影光学系 PLの光学特性を調整するためにレンズ L2を加熱又は冷却する。この温 度調整器 22bは、保持部材 22a上に取り付けられており、熱伝導性の高い保持部材 22aを介してレンズ L2の加熱又は冷却を行う。保持部材 22aを介して行われるレンズ L2の温度調整は、主制御系 20の制御の下で制御部 23によって制御される。尚、温 度調整器 22bの素子をレンズ L2に直接取り付けて、レンズ L2の温度調整を行うよう にしてもよい。  [0038] The holding member 22a is formed of a material having a high thermal conductivity such as aluminum, and holds the lens L2 in contact with one end around the lens L2. The temperature adjuster 22b includes a heating element such as a heater or a heating and cooling element such as a Peltier element, and heats or cools the lens L2 in order to adjust the optical characteristics of the projection optical system PL. The temperature adjuster 22b is mounted on the holding member 22a, and heats or cools the lens L2 via the holding member 22a having high thermal conductivity. The temperature adjustment of the lens L2 performed through the holding member 22a is controlled by the control unit 23 under the control of the main control system 20. The temperature adjuster 22b may be directly attached to the lens L2 to adjust the temperature of the lens L2.
[0039] また、保持部材 22aには、レンズ L2に対する当接面から一側面(当接面に対向す る面)に貫通するネジ穴が形成されており、このネジ穴に調整ネジ 22cが嵌合される。 調整ネジ 22cはその軸がレンズ L2の光軸に直交する面とほぼ平行となるように配置 される。この調整ネジ 22cは、投影光学系 PLの光学特性を調整するためにレンズ L2 を加圧又は減圧するものである。レンズ L2の中心に向力 方向に調整ネジ 22cを回 転させることでレンズ L2を加圧する(レンズ L2を押す力を高める)ことができ、逆にレ ンズ L2の中心から周辺に向力 方向に調整ネジ 22cを回転させることでレンズ L2を 減圧する(レンズ L2を押す力を弱める若しくは無くす)ことができる。この調整ネジ 22 cはレンズ L2を加圧するための部材であるため剛性の高い材質で形成することが望 ましぐ更には温度調整器 22bが効率的にレンズ L2を加熱又は冷却できるように、熱 伝導性が高!、材質で形成することが好ま 、。 [0039] Further, the holding member 22a is formed with a screw hole penetrating from the contact surface to the lens L2 to one side surface (a surface facing the contact surface), and the adjustment screw 22c is fitted into the screw hole. Combined. The adjusting screw 22c is arranged so that its axis is substantially parallel to a plane perpendicular to the optical axis of the lens L2. The adjustment screw 22c is used to pressurize or depressurize the lens L2 in order to adjust the optical characteristics of the projection optical system PL. By rotating the adjustment screw 22c in the direction of the directional force toward the center of the lens L2, the lens L2 can be pressurized (increasing the force to press the lens L2), and conversely in the direction of the directional force from the center of the lens L2 Rotate the adjustment screw 22c to move the lens L2 Reduce the pressure (reduce or eliminate the force pushing the lens L2). Since this adjusting screw 22c is a member for pressing the lens L2, it is desirable to form it with a highly rigid material. Further, the temperature adjuster 22b is capable of heating or cooling the lens L2 efficiently. It is highly conductive and is preferably made of a material.
[0040] 投影光学系 PLに設けられる不図示の鏡筒には調整ネジ 22cを操作するための操 作穴(図示省略)が設けられており、オペレータは鏡筒の外部から鏡筒に形成された 操作穴を介して調整ネジ 22cを調整することができる。尚、投影光学系 PLの内部は 、光学特性の変動を抑えるために温調されている。このため、例えば通常は蓋等によ つて操作穴が塞がれており、調整ネジ 22cを操作するときのみ、蓋を取り外して操作 穴が現れるようにすることが望ま U、。  [0040] A lens barrel (not shown) provided in the projection optical system PL is provided with an operation hole (not shown) for operating the adjustment screw 22c. The operator is formed in the lens barrel from the outside of the lens barrel. The adjusting screw 22c can be adjusted through the operation hole. Note that the inside of the projection optical system PL is temperature-controlled to suppress fluctuations in optical characteristics. For this reason, for example, it is usually desirable to remove the lid so that the operation hole appears only when the adjustment screw 22c is operated.
[0041] 調整機構 22はレンズ L2の周囲に複数設けられており、図 3Bに示す例では各々が レンズ L2の中心に関して 45° の角度をなすように 8個設けられている。図 3A及び 3 Bに示す通り、調整機構 22に設けられた温度調整器 22bは制御部 23に接続されて おり、何れの温度調整器 22bを温度調整するか、及び何度に調整するかは制御部 2 3によって制御される。  [0041] A plurality of adjustment mechanisms 22 are provided around the lens L2. In the example shown in FIG. 3B, eight adjustment mechanisms 22 are provided so as to form an angle of 45 ° with respect to the center of the lens L2. As shown in FIGS. 3A and 3B, the temperature regulator 22b provided in the adjustment mechanism 22 is connected to the control unit 23, and which temperature regulator 22b is to be temperature-adjusted and how many times are to be adjusted? It is controlled by the controller 2 3.
[0042] 本実施形態にお!、ては、投影光学系 PLの静的な光学特性 (非回転対称な収差) の調整は、温度調整器 22b及び調整ネジ 22cの何れによっても行うことができる。温 度調整器 22bによる調整は、制御部 23により制御できるけれども応答性が比較的遅 い。これに対し、調整ネジ 22cによる調整は応答性が比較的速いけれどもオペレータ による手作業が必要になる。従って、本実施形態においては調整ネジ 22cによる調 整は、投影光学系の製造時、又は露光装置の製造時に行われ、温度調整器 22bに よる調整は露光装置の定期又は不定期のメンテナンス時に投影光学系 PLの静的な 光学特性の経時変化を補正するために行われる。尚、本実施形態において、調整機 構 22は投影光学系 PLの静的な非回転対称な収差を調整するものであるが、投影光 学系 PLの回転対称な収差の調整に用いても良い。  In the present embodiment, the static optical characteristics (non-rotationally symmetric aberration) of the projection optical system PL can be adjusted by either the temperature regulator 22b or the adjustment screw 22c. . The adjustment by the temperature adjuster 22b can be controlled by the control unit 23, but the response is relatively slow. In contrast, adjustment with the adjusting screw 22c is relatively responsive, but requires manual operation by the operator. Therefore, in this embodiment, the adjustment with the adjustment screw 22c is performed at the time of manufacturing the projection optical system or the exposure apparatus, and the adjustment by the temperature adjuster 22b is projected at the time of regular or irregular maintenance of the exposure apparatus. This is done to correct for changes in the static optical characteristics of the optical system PL over time. In the present embodiment, the adjusting mechanism 22 adjusts the static non-rotationally symmetric aberration of the projection optical system PL, but may be used to adjust the rotationally symmetric aberration of the projection optical system PL. .
[0043] 尚、以上の例では、調整ネジ 22cによりレンズ L2の周辺から中心に向力う方向に力 をカ卩えてレンズ L2を加圧減圧する構成について説明した力 この構成以外に例えば レンズ L2の周辺を上下方向(士 Z方向)に挟み込み、この挟み込む力によってレンズ L2の面内に働く応力を生じさせる機構を用いても良い。また、上記の例ではォペレ 一タが手作業で調整ネジ 22cを調整する場合を例に挙げて説明したが、調整ネジ 2 2cを回転させるァクチユエータを設けて調整ネジ 22cの回転角を制御部 23を介して 制御する構成にしても良い。 [0043] In the above example, the force described in the configuration in which the adjustment screw 22c applies pressure in the direction from the periphery to the center of the lens L2 to pressurize and depressurize the lens L2. In addition to this configuration, for example, the lens L2 The periphery of the lens is sandwiched in the vertical direction (Z direction), and the lens is You may use the mechanism which produces the stress which acts in the surface of L2. Further, in the above example, the case where the operator manually adjusts the adjustment screw 22c has been described as an example. However, an actuator for rotating the adjustment screw 22c is provided to control the rotation angle of the adjustment screw 22c. It may be configured to control via the
[0044] 更に、上記の例では温度調整器 22bがヒータ等の加熱素子又はペルチェ素子等の 加熱冷却素子を備える場合を例に挙げたが、投影光学系 PLの外部に加熱冷却源を 設けるとともに、この加熱冷却源と保持部材 22a又はレンズ L2の端部近傍とをヒート ノイブ等の熱輸送機構で接続した構成としてもよい。図 4は、熱輸送機構を用いた温 度調整器 22bの構成例を示す図である。図 4に示す通り、投影光学系 PLの外部に は制御部 23に制御される複数の加熱冷却源 24が設けられており、各々の加熱冷却 源 24からレンズ L2の端部に向けてヒートパイプ 25が配設されて!/、る。  Furthermore, in the above example, the case where the temperature regulator 22b includes a heating element such as a heater or a heating and cooling element such as a Peltier element has been described as an example, but a heating and cooling source is provided outside the projection optical system PL. The heating / cooling source and the holding member 22a or the vicinity of the end of the lens L2 may be connected by a heat transport mechanism such as a heat nove. FIG. 4 is a diagram showing a configuration example of the temperature regulator 22b using the heat transport mechanism. As shown in FIG. 4, a plurality of heating / cooling sources 24 controlled by the control unit 23 are provided outside the projection optical system PL, and heat pipes from the heating / cooling sources 24 toward the end of the lens L2 are provided. 25 is arranged!
[0045] 尚、図 4においては図示を簡略化している力 加熱冷却源 24及びヒートパイプ 25を 8個設け、ヒートパイプ 25の各々の端部が図 3Bと同様に、レンズ L2の周囲における 8箇所に配置される。以上の構成により、制御部 23が加熱冷却源 24を制御すること で、投影光学系 PLの光学特性の調整を温度調整器 22bと同様に行うことができる。 尚、図 4においては、複数の加熱冷却源 24を備える構成を例に挙げて説明したが、 投影光学系 PLの外部に 8個のヒートパイプが接続された 1つの加熱冷却源を備えた 構成としても良い。力かる構成の場合には、例えば個々のヒートパイプの流路の開閉 を制御してレンズ L2の加熱又は冷却部位を変えるようにする。  Note that in FIG. 4, there are eight power heating / cooling sources 24 and heat pipes 25 that are simplified in illustration, and each end of the heat pipe 25 is 8 around the lens L2 as in FIG. 3B. Placed in place. With the above configuration, the control unit 23 controls the heating / cooling source 24, so that the optical characteristics of the projection optical system PL can be adjusted in the same manner as the temperature adjuster 22b. In FIG. 4, the configuration including the plurality of heating / cooling sources 24 is described as an example, but the configuration including one heating / cooling source in which eight heat pipes are connected to the outside of the projection optical system PL. It is also good. In the case of a powerful configuration, for example, the heating or cooling part of the lens L2 is changed by controlling the opening and closing of the flow path of each heat pipe.
[0046] また、本実施形態においては、レンズ L2の周囲に 8個の調整機構 22を等間隔に設 けているが、調整機構 22の数や位置は任意に設定することができる。また、本実施 形態においては、レンズ L2の周囲の同じ位置に温度調整器 22bと調整ネジ 22cとを 配置している力 レンズ L2の周囲の異なる位置にそれぞれを配置してもよぐそれぞ れの数が異なっていてもよい。更に、温度調整器 22bと調整ネジ 22cの一方を、投影 光学系 PLの瞳面近傍のレンズ L2とは異なる他のレンズの周囲に配置してもよい。ま た、投影光学系 PLの静的な光学特徴を調整するために、調整機構 22は、温度調整 器 22bと調整ネジ 22cの両方を備えている力 どちらか一方のみを備えることもできる [0047] [非露光光照射機構 40] In the present embodiment, eight adjustment mechanisms 22 are provided at equal intervals around the lens L2, but the number and positions of the adjustment mechanisms 22 can be arbitrarily set. In the present embodiment, the temperature regulator 22b and the adjusting screw 22c are arranged at the same position around the lens L2, and they may be arranged at different positions around the lens L2. The number of may be different. Furthermore, one of the temperature adjuster 22b and the adjustment screw 22c may be arranged around another lens different from the lens L2 in the vicinity of the pupil plane of the projection optical system PL. In addition, in order to adjust the static optical characteristics of the projection optical system PL, the adjusting mechanism 22 can include only one of the forces including both the temperature adjuster 22b and the adjusting screw 22c. [0047] [Non-exposure light irradiation mechanism 40]
次に、投影光学系 PLの動的な光学特性 (非回転対称収差)を調整するための非露 光光照射機構 40について説明する。図 1に示す非露光光照射機構 40は、例えばダ ィポール照明を行った際に投影光学系 PLで生ずるセンターアスティグマテイズム等 の非回転対称な収差を補正するものである。投影光学系 PLの非回転対称な収差を 補正するために、非露光光照射機構 40は、投影光学系 PLの瞳面 PP付近のレンズ L1に露光光 ILとは異なる波長域の収差補正用の照明光 (以下、「非露光光」と言う) LBを照射する。  Next, the non-exposure light irradiation mechanism 40 for adjusting the dynamic optical characteristics (non-rotationally symmetric aberration) of the projection optical system PL will be described. The non-exposure light irradiation mechanism 40 shown in FIG. 1 corrects non-rotationally symmetric aberration such as center astigmatism that occurs in the projection optical system PL when dipole illumination is performed, for example. In order to correct the non-rotationally symmetric aberration of the projection optical system PL, the non-exposure light irradiation mechanism 40 is used for correcting aberrations in a wavelength region different from the exposure light IL on the lens L1 near the pupil plane PP of the projection optical system PL. Illumination light (hereinafter referred to as “non-exposure light”) LB is irradiated.
[0048] 本実施形態では、非露光光 LBとして、ゥヱハ Wに塗布されたフォトレジストを殆ど感 光しない波長域の光を使用する。このため、非露光光 LBとして、一例として炭酸ガス レーザ (COレーザ)からパルス発光される例えば波長 10. の赤外光を使用す  In the present embodiment, light in a wavelength region that hardly senses the photoresist applied to the wafer W is used as the non-exposure light LB. Therefore, as the non-exposure light LB, for example, infrared light having a wavelength of 10. emitted from a carbon dioxide laser (CO laser) is used as an example.
2  2
る。尚、 COレーザとして連続光を用いてもよい。この波長 10. 6 /z mの赤外光は、石  The Note that continuous light may be used as the CO laser. This infrared light with a wavelength of 10.6 / z m
2  2
英に対する吸収性が高ぐ投影光学系 PL中の 1枚のレンズによってほぼ全て(望まし くは 90%以上)吸収されるため、他のレンズに対して影響を与えることなく収差を制 御するために使用し易いという利点がある。また、本実施形態のレンズ L1に照射され た非露光光 LBは、 90%以上が吸収されるように設定されて!、る。  Projection optical system with high absorptivity in the UK Since almost all (preferably 90% or more) is absorbed by one lens in the PL, aberration is controlled without affecting other lenses. Therefore, there is an advantage that it is easy to use. In addition, the non-exposure light LB irradiated to the lens L1 of the present embodiment is set so that 90% or more is absorbed.
[0049] 尚、非露光光 LBとしては、上記の赤外光以外に YAGレーザ等の固体レーザ光か ら射出される波長 1 μ m程度の近赤外光、又は半導体レーザから射出される波長数 m程度の赤外光等も使用することができる。即ち、非露光光 LBを発生する光源は 、非露光光 LBが照射される光学部材 (レンズ等)の材料等に応じて最適なものを採 用することができる。尚、図 1等において、レンズ L1は凸レンズのように描かれている 力 凹レンズであってもよい。  [0049] As the non-exposure light LB, in addition to the above-mentioned infrared light, near-infrared light having a wavelength of about 1 μm emitted from a solid-state laser light such as a YAG laser, or a wavelength emitted from a semiconductor laser Infrared light of several meters can also be used. That is, as the light source that generates the non-exposure light LB, an optimum light source can be employed according to the material of the optical member (lens or the like) irradiated with the non-exposure light LB. In FIG. 1 and the like, the lens L1 may be a force-concave lens drawn like a convex lens.
[0050] 図 1の非露光光照射機構 40において、光源系 41から射出された非露光光 LBは、 ミラー光学系 42によって複数 (本実施形態では 8個)の光路及び光電センサ 43に向 力う一つの光路に分岐される。光電センサ 43で検出される非露光光 LBの光量に対 応する検出信号は、光源系 41にフィードバックされている。また、その複数の光路の 内の 2つの光路の非露光光 LB力 投影光学系 PLを X方向に挟むように配置された 2つの照射機構 44a, 44bを介してそれぞれ非露光光 LBa, LBbとしてレンズ L1に 照射される。 In the non-exposure light irradiation mechanism 40 of FIG. 1, the non-exposure light LB emitted from the light source system 41 is directed to a plurality (eight in this embodiment) of optical paths and photoelectric sensors 43 by the mirror optical system 42. It is branched into another optical path. A detection signal corresponding to the light amount of the non-exposure light LB detected by the photoelectric sensor 43 is fed back to the light source system 41. In addition, the non-exposure light LB force of the two optical paths out of the plurality of optical paths LB force as the non-exposure light LBa and LBb via the two irradiation mechanisms 44a and 44b arranged so as to sandwich the projection optical system PL in the X direction. Lens L1 Irradiated.
[0051] 図 5は、非露光光照射機構 40の詳細な構成例を示す上面図である。図 5において 、図 1の光源系 41は、光源 41a及び制御部 41bから構成されている。光源 41aから射 出された非露光光 LBは、それぞれ非露光光 LBの光路を 90° 折り曲げる状態(閉じ た状態)と非露光光 LBをそのまま通過させる状態(開 、た状態)との何れかに高速に 切り換えることができる可動ミラーとしてのガルバノミラー 45g, 45c, 45e, 45a, 45h , 45d, 45f, 45bを経て光電センサ 43に入射し、光電センサ 43の検出信号が制御 部 41bに供給されている。ガルバノミラー 45a〜45hが図 1のミラー光学系 42に対応 する。制御部 41bは、主制御系 20からの制御情報に応じて光源 41aの発光のタイミ ング、出力、及びガルバノミラー 45a〜45hの開閉を制御する。  FIG. 5 is a top view showing a detailed configuration example of the non-exposure light irradiation mechanism 40. In FIG. 5, the light source system 41 of FIG. 1 includes a light source 41a and a control unit 41b. The non-exposure light LB emitted from the light source 41a is either in a state in which the optical path of the non-exposure light LB is bent by 90 ° (closed state) or in a state in which the non-exposure light LB passes through as it is (open state). Galvano mirrors 45g, 45c, 45e, 45a, 45h, 45d, 45f, and 45b as movable mirrors that can be switched at high speed to the photoelectric sensor 43, and the detection signal of the photoelectric sensor 43 is supplied to the control unit 41b ing. Galvano mirrors 45a to 45h correspond to the mirror optical system 42 in FIG. The control unit 41b controls the light emission timing and output of the light source 41a and the opening and closing of the galvano mirrors 45a to 45h according to control information from the main control system 20.
[0052] また、 8個のガルバノミラー 45a〜45hで順次光路が折り曲げられた非露光光 LBは 、それぞれ光ファイバ一束 46a〜46h (又は金属管等も使用できる)を介して照射機 構 44a〜44hに導力れている。 8個の照射機構 44a〜44hは同一構成であり、その 内の照射機構 44a, 44bは、集光レンズ 47と、所定の低い反射率を有するビームス プリッタ 48と、光ファイバ一束又はリレーレンズ系等力もなる光ガイド部 49と、集光レ ンズ 51と、集光レンズ 47及び光ガイド部 49をビームスプリッタ 48に固定する保持枠 5 0とを備えている。  [0052] In addition, the non-exposure light LB whose optical path is sequentially bent by the eight galvanometer mirrors 45a to 45h is irradiated through the bundle of optical fibers 46a to 46h (or a metal tube or the like can be used). It is guided to ~ 44h. Eight irradiation mechanisms 44a to 44h have the same configuration. Among them, the irradiation mechanisms 44a and 44b are a condensing lens 47, a beam splitter 48 having a predetermined low reflectance, and a bundle of optical fibers or a relay lens system. A light guide unit 49 having equal force, a condensing lens 51, and a holding frame 50 for fixing the condensing lens 47 and the light guide unit 49 to the beam splitter 48 are provided.
[0053] 非露光光 LBは、照射機構 44a, 44bからそれぞれ非露光光 LBa, LBbとして投影 光学系 PL内のレンズ L1に照射される。この場合、第 1の一対の照射機構 44a, 44b と、第 2の一対の照射機構 44c, 44dとは、それぞれ投影光学系 PLを X方向及び Y 方向に挟むように対向して配置されている。そして、第 3の一対の照射機構 44e, 44f と、第 4の一対の照射機構 44g, 44hとは、それぞれ照射機構 44a, 44bと照射機構 44c, 44dとを投影光学系 PLの光軸を中心として時計回りに 45° 回転した角度で配 置されている。そして、非露光光 LBは、照射機構 44c〜44hからそれぞれ非露光光 LBc〜LBhとして投影光学系 PL内のレンズ L1に照射される。尚、非露光光 LBa〜L Bhが照射される光学部材、並びにその光学部材上での非露光光 LBa〜LBhの照 射領域の位置、形状及びサイズは、実験やシミュレーションによりできるだけ非回転 対称な収差 (センターアスティグマテイズムなど)が低減されるように決定される。 [0054] また、照射機構 44a〜44hの各ビームスプリッタ 48で反射された一部の非露光光を それぞれ受光する光電センサ 52a〜52hが設けられており、 8個の光電センサ 52a〜 52hの検出信号も制御部 41bに供給されている。制御部 41bは、光電センサ 52a〜 52hの検出信号によって、照射機構 44a〜44hから投影光学系 PL内のレンズ L1に 照射される直前の非露光光 LBa〜LBhの光量を正確にモニタすることができ、この モニタ結果に基づいて非露光光 LBa〜LBhの照射量の各々が例えば主制御系 20 によって指示された値に制御される。投影光学系 PLの直前で、光電センサ 52a〜52 hによって非露光光 LBの照射量を計測することによって、光ファイバ一束 46a〜46h の長さ (光路長)が様々であっても、更に光学系等の経時変化の影響を受けることな く、レンズ L1に照射される非露光光 LBa〜LBhの照射量を正確にモニタできる。 The non-exposure light LB is irradiated to the lens L1 in the projection optical system PL as non-exposure light LBa and LBb from the irradiation mechanisms 44a and 44b, respectively. In this case, the first pair of irradiation mechanisms 44a and 44b and the second pair of irradiation mechanisms 44c and 44d are arranged to face each other so as to sandwich the projection optical system PL in the X direction and the Y direction, respectively. . The third pair of irradiation mechanisms 44e and 44f and the fourth pair of irradiation mechanisms 44g and 44h are respectively arranged such that the irradiation mechanisms 44a and 44b and the irradiation mechanisms 44c and 44d are centered on the optical axis of the projection optical system PL. It is arranged at an angle rotated 45 ° clockwise. Then, the non-exposure light LB is irradiated from the irradiation mechanisms 44c to 44h to the lens L1 in the projection optical system PL as non-exposure light LBc to LBh, respectively. Note that the position, shape and size of the optical member irradiated with the non-exposure light LBa to L Bh and the irradiation area of the non-exposure light LBa to LBh on the optical member are as non-rotationally symmetric as possible through experiments and simulations. Aberrations (center astigmatism, etc.) are determined to be reduced. [0054] In addition, photoelectric sensors 52a to 52h that respectively receive part of the non-exposure light reflected by the beam splitters 48 of the irradiation mechanisms 44a to 44h are provided, and detection of the eight photoelectric sensors 52a to 52h is provided. The signal is also supplied to the control unit 41b. The control unit 41b can accurately monitor the light amounts of the non-exposure light LBa to LBh immediately before being irradiated from the irradiation mechanisms 44a to 44h to the lens L1 in the projection optical system PL by the detection signals of the photoelectric sensors 52a to 52h. Based on the monitoring result, each of the irradiation amounts of the non-exposure light LBa to LBh is controlled to a value instructed by the main control system 20, for example. Even if the length (optical path length) of the bundle of optical fibers 46a to 46h varies by measuring the irradiation amount of the non-exposure light LB by the photoelectric sensors 52a to 52h immediately before the projection optical system PL, The amount of non-exposure light LBa to LBh irradiated to the lens L1 can be accurately monitored without being affected by changes over time of the optical system or the like.
[0055] 図 6A及び 6Bは、投影光学系 PLの一部を断面とした正面図である。図 6Aに示す 通り、照射機構 44a, 44bは、それぞれ投影光学系 PLの鏡筒のフランジ部 F内に設 けられた開口 Fa, Fb内に、レンズ L1に向力つて僅かに斜め下方に傾斜するように配 置されている。そして、照射機構 44a, 44bから射出される非露光光 LBa, LBbは、 露光光 ILの光路に斜めに交差する方向にレンズ L1に入射する。図 5の他の照射機 構 44c〜44hも同様に、図 6Aのフランジ部 F内の開口に同じ傾斜角で配置されてお り、それらからの非露光光 LBc〜LBhも露光光 ILの光路に斜めに交差する方向にレ ンズ L1に入射する。  6A and 6B are front views in which a part of the projection optical system PL is taken as a cross section. As shown in FIG. 6A, the irradiation mechanisms 44a and 44b are inclined slightly diagonally downward in the openings Fa and Fb provided in the flange portion F of the lens barrel of the projection optical system PL, respectively, by directing the lens L1. It is arranged to do. Then, the non-exposure lights LBa and LBb emitted from the irradiation mechanisms 44a and 44b enter the lens L1 in a direction obliquely intersecting the optical path of the exposure light IL. Similarly, the other irradiation mechanisms 44c to 44h in FIG. 5 are arranged at the same inclination angle in the opening in the flange portion F in FIG. 6A, and the non-exposure light LBc to LBh from these is also the optical path of the exposure light IL. Incident to lens L1 in a direction that crosses diagonally.
[0056] これによつて、非露光光 LBa〜LBhのレンズ L1内での光路が長くなり、非露光光 L Ba〜LBhはレンズ L1内で殆どが吸収されると共に、投影光学系 PL力も殆ど射出さ れなくなる。また、投影光学系 PLの一部の光学部材 (レンズ L1)のレンズ面、即ち露 光光 ILが入射 (あるいは射出)し得る領域に、投影光学系 PLの他の光学部材を介さ ずに非露光光 LBを照射しているので、レンズ L1の温度分布を効率的に調整するこ とができ、その結果、投影光学系 PLの非回転対称な収差を短時間で精度良く調整 できる。  [0056] This increases the optical path of the non-exposure light LBa to LBh in the lens L1, and most of the non-exposure light L Ba to LBh is absorbed in the lens L1, and the projection optical system PL force is also almost all. No longer injected. Further, the lens surface of a part of the optical member (lens L1) of the projection optical system PL, that is, the region where the exposure light IL can enter (or exit) is not inserted without passing through other optical members of the projection optical system PL. Since the exposure light LB is irradiated, the temperature distribution of the lens L1 can be adjusted efficiently, and as a result, the non-rotationally symmetric aberration of the projection optical system PL can be adjusted accurately in a short time.
[0057] 尚、図 6Bは図 6Aの変形例であり、この図 6Bに示す通り、照射機構 44a, 44b (他 の照射機構 44c〜44hも同様)を、それぞれ投影光学系 PLの鏡筒のフランジ部 F内 に設けられた開口 Fc, Fd内に、レンズ L1に向かって僅かに斜め上方に傾斜するよう に配置して、非露光光 LBa, LBbでレンズ L1の底面を照明してもよい。この場合には 、非露光光 LBa〜LBhの投影光学系 PLのウェハ W側力 漏れ出る量を更に低減す ることがでさる。 FIG. 6B is a modification of FIG. 6A. As shown in FIG. 6B, the irradiation mechanisms 44a and 44b (the same applies to the other irradiation mechanisms 44c to 44h) are respectively provided for the lens barrels of the projection optical system PL. In the openings Fc and Fd provided in the flange part F, tilt slightly upward toward the lens L1. The bottom surface of the lens L1 may be illuminated with non-exposure light LBa, LBb. In this case, it is possible to further reduce the amount of leakage of the non-exposure light LBa to LBh from the wafer W side force of the projection optical system PL.
[0058] 図 5に戻り、光源 41a、制御部 41b、ガルバノミラー 45a〜45h、光ファイバ一束 46a 〜46h、照射機構 44a〜44h、及び光電センサ 52a〜52hなどから非露光光照射機 構 40が構成されている。そして、例えば 2つの X方向の非露光光 LBa, LBbのみをレ ンズ L1に照射する場合には、ガルバノミラー 45a〜45hを全部開 、た状態 (非露光 光 LBを通過させる状態)から、ガルバノミラー 45aを所定時間だけ閉じる動作 (非露 光光 LBを反射する状態)とガルバノミラー 45bを所定時間だけ閉じる動作とを交互に 繰り返せばよ!/、。収差への影響が無!、十分短!、時間(例えば lmsec)でガルバノミラ 一を切り換えることにより、収差への影響を無くすことができる。また、非露光光 LBは パルス光であるため、ガルバノミラー 45a〜45hの開閉動作は所定パルス数を単位と して行ってもよい。同様に、 2つの Y方向の非露光光 LBc, LBdのみをレンズ L1に照 射する場合には、ガルバノミラー 45cを所定時間だけ閉じる動作とガルバノミラー 45d を所定時間だけ閉じる動作とを交互に繰り返せばよい。このようにガルバノミラー 45a 〜45hを用いることによって、非露光光 LBの光量損失が殆ど無 、状態でレンズ L1に 効率的に照射することができる。  Returning to FIG. 5, the non-exposure light irradiation mechanism 40 includes the light source 41a, the control unit 41b, the galvanometer mirrors 45a to 45h, the bundle of optical fibers 46a to 46h, the irradiation mechanisms 44a to 44h, the photoelectric sensors 52a to 52h, and the like. Is configured. For example, when the lens L1 is irradiated with only two non-exposure lights LBa and LBb in the X direction, the galvano mirrors 45a to 45h are all opened and opened (the state where the non-exposure light LB is allowed to pass). The operation of closing the mirror 45a for a predetermined time (non-exposure light reflecting LB) and the operation of closing the galvano mirror 45b for a predetermined time may be repeated alternately! /. There is no effect on the aberration !, it is short enough! By switching the galvano mirror in time (for example, lmsec), the effect on the aberration can be eliminated. Further, since the non-exposure light LB is pulse light, the opening / closing operation of the galvanometer mirrors 45a to 45h may be performed in units of a predetermined number of pulses. Similarly, when only the two non-exposure light beams LBc and LBd in the Y direction are irradiated onto the lens L1, the operation of closing the galvano mirror 45c for a predetermined time and the operation of closing the galvano mirror 45d for a predetermined time are alternately repeated. That's fine. Thus, by using the galvanometer mirrors 45a to 45h, the lens L1 can be efficiently irradiated with almost no light loss of the non-exposure light LB.
[0059] 尚、図 5の構成例では、レンズ L1上の 8箇所の領域を非露光光 LBで照明できるよ うにして 、るが、例えばレンズ L 1上の X方向及び Y方向の 4箇所の領域のみを非露 光光 LBで照明できるようにしても、通常の用途で発生する殆どの収差を補正すること ができる。また、ガルバノミラー 45a〜45hを用いる代わりに、例えば固定のミラー及 びビームスプリッタを組み合わせて非露光光 LBを 8個の光束に分岐し、これらの光 束の光路をシャツタを用いて開閉してもよい。この構成では、複数箇所を同時に非露 光光 LBで照射することができる。更に、光源として例えば炭酸ガスレーザ又は半導 体レーザを用いる場合には、レンズ L1上で必要な照射領域の個数(図 5では 8個)だ けその光源を用意し、それらの光源の発光のオン'オフ若しくはシャツタによってレン ズ L1上の照射領域を直接制御してもよい。以上説明した通り、非露光光照射機構 4 0は露光光 ILを投影光学系 PLに照射したときに生ずる投影光学系 PLの非回転対 称な収差 (動的な光学特性)を調整することができる。 In the configuration example of FIG. 5, eight regions on the lens L1 can be illuminated with the non-exposure light LB. For example, four regions on the lens L1 in the X direction and the Y direction are used. Even if only this area can be illuminated with non-exposure light LB, most of the aberrations that occur in normal applications can be corrected. Also, instead of using the galvanometer mirrors 45a to 45h, for example, a fixed mirror and a beam splitter are combined to divide the non-exposure light LB into 8 light beams, and the optical path of these light bundles is opened and closed using a shatter. Also good. In this configuration, a plurality of locations can be irradiated with non-exposure light LB simultaneously. In addition, when a carbon dioxide laser or a semiconductor laser is used as a light source, for example, only the number of necessary irradiation areas on the lens L1 (eight in FIG. 5) is prepared, and light emission of these light sources is turned on. 'The irradiation area on the lens L1 may be directly controlled by turning off or using a shirt. As described above, the non-exposure light irradiation mechanism 40 is a non-rotating pair of the projection optical system PL generated when the exposure light IL is irradiated onto the projection optical system PL. It is possible to adjust the characteristic aberration (dynamic optical characteristics).
[0060] 以上、投影光学系 PLの光学特性を調整するために設けられた結像特性補正機構 14、調整機構 22、及び非露光光照射機構 40について説明したが、次にこれらを用 いて投影光学系 PLの光学特性を調整する方法について説明する。尚、結像特性補 正機構 14を用いて投影光学系 PLの光学特性を調整する方法については、例えば 前述した特開平 4— 134813号公報にも開示されているため、ここでは調整機構 22 及び非露光光照射機構 40により投影光学系 PLの光学特性が調整される方法につ いて説明する。  [0060] The image formation characteristic correction mechanism 14, the adjustment mechanism 22, and the non-exposure light irradiation mechanism 40 provided for adjusting the optical characteristics of the projection optical system PL have been described above. Next, projection is performed using these. A method for adjusting the optical characteristics of the optical system PL will be described. Note that a method for adjusting the optical characteristics of the projection optical system PL using the imaging characteristic correction mechanism 14 is also disclosed in, for example, the above-mentioned Japanese Patent Laid-Open No. 4-134813. A method for adjusting the optical characteristics of the projection optical system PL by the non-exposure light irradiation mechanism 40 will be described.
[0061] 〔非回転対称な収差成分の補正方法〕  [Method for correcting non-rotationally symmetric aberration component]
照明系開口絞り部材 5による照明条件の変更や、視野絞り 9によるレチクル R上の 照明領域の形状及び大きさの変更等が行われると、投影光学系 PLに非回転対称な 収差成分が発生する可能性がある。ここでは、ダイポール照明を行った際に投影光 学系で生ずる非回転対称な収差成分の調整について説明する。  If the illumination condition is changed by the illumination system aperture stop member 5 or the shape and size of the illumination area on the reticle R is changed by the field stop 9, a non-rotationally symmetric aberration component is generated in the projection optical system PL. there is a possibility. Here, adjustment of non-rotationally symmetric aberration components that occur in the projection optical system when dipole illumination is performed will be described.
[0062] 図 7A、 7B、 7C、 8A、及び 8Bは、ダイポール照明を行った際に生ずるレンズの形 状変化を説明するための図である。まず、 X方向に対応する方向に離れた 2つの開 口を持つ開口絞り 5aが第 2フライアイレンズ 4の射出側の焦点面に配置される場合に は、レチクル Rに形成されている主な転写用のパターンは、一例として図 7Aに拡大し て示す通り、 Y方向に細長いラインパターンを X方向(非走査方向)にほぼ投影光学 系 PLの解像限界に近いピッチで配列してなる X方向のライン 'アンド'スペースパタ ーン(以下、「L&Sパターン」と言う) PVである。この際に、レチクル R上には通常、 L & Sパターン PVよりも大き 、配列ピッチで配列方向が X方向及び Y方向(走査方向) の別の複数の L&Sパターン等も形成されて 、る。  [0062] FIGS. 7A, 7B, 7C, 8A, and 8B are diagrams for explaining the change in the shape of the lens that occurs when dipole illumination is performed. First, when the aperture stop 5a having two apertures separated in the direction corresponding to the X direction is disposed on the focal plane on the exit side of the second fly-eye lens 4, the main aperture formed on the reticle R As an example, the pattern for transfer is shown in an enlarged view in Fig. 7A. Line patterns that are elongated in the Y direction are arranged in the X direction (non-scanning direction) at a pitch that is approximately the resolution limit of the projection optical system PL. Directional line 'and' space pattern (hereinafter referred to as “L & S pattern”) PV. At this time, on the reticle R, a plurality of L & S patterns or the like which are usually larger than the L & S pattern PV and whose arrangement direction is the X direction and the Y direction (scanning direction) at the arrangement pitch are also formed.
[0063] 開口絞り 5aを用いる X方向のダイポール照明では、レチクルが無いものとすると、図 7Bに示す通り、投影光学系 PLの瞳面 PPにおいて、光軸 AXを挟んで X方向に対称 な 2つの円形領域 IRxを露光光 ILが照明する。また、露光光 ILの光路に種々のレチ クルパターンが配置された場合にも、通常は 0次光の光量が回折光の光量に比べて 力なり大きいと共に、回折角も小さいため、露光光 IL (結像光束)の大部分は円形領 域 IRx又はその近傍を通過する。従って、露光を継続すると、その瞳面 PP近傍のレ ンズ LIの温度分布は、光軸を X方向に挟む 2つの円形領域 IRxで最も高くなり、その 周辺の領域に向力つて次第に低くなる分布となり、この温度分布に応じてレンズ L1 は熱膨張 (熱変形)する。 [0063] In the dipole illumination in the X direction using the aperture stop 5a, assuming that there is no reticle, as shown in FIG. 7B, the pupil plane PP of the projection optical system PL is symmetrical with respect to the X direction across the optical axis AX. Illumination light IL illuminates two circular areas IRx. In addition, when various reticle patterns are arranged in the optical path of the exposure light IL, the exposure light IL is usually low because the 0th-order light intensity is larger than the diffracted light intensity and the diffraction angle is small. Most of the (imaging beam) passes through the circular area IRx or its vicinity. Therefore, if the exposure is continued, the record near the pupil plane PP The temperature distribution of the lens LI is the highest in the two circular regions IRx that sandwich the optical axis in the X direction, and gradually decreases toward the surrounding region, and the lens L1 has a thermal expansion ( Heat deformation).
[0064] この場合、レンズ L1を Y方向及び X方向に見て変化を誇張した側面図はそれぞれ 図 7C及び 7Dのようになる。これらの図において、露光光吸収前のレンズ L1の面形 状を面 Aとすると、露光光吸収後の熱膨張した面 Bは、 X軸に沿った方向(図 7C)で は、広い範囲に亘つて光軸を挟む 2つの凸部ができるために屈折力が低下し、 Y軸 に沿った方向(図 7D)では局所的に中央部に 1つの凸部ができるため屈折力が増加 する。このように、 X方向と Y方向との屈折力に差が生ずるとセンターアスティグマティ ズムなどの非回転対称な収差が生ずる。図 9は、ダイポール照明により生ずるセンタ 一アスティグマテイズムを示す図である。図 9に示す通り、投影光学系 PLの像面は、 X方向に開いた光束に対しては屈折力が低下するために下方(一 Z方向)の像面 IV となり、 Y方向に開いた光束に対しては屈折力が増加するために上方(+Z方向)の 像面 IHとなる。従って、光軸上での非点収差であるセンターアスティグマテイズム Δ Ζ が発生する。 [0064] In this case, side views exaggerating the change of the lens L1 when viewed in the Y direction and the X direction are as shown in FIGS. 7C and 7D, respectively. In these figures, if the surface shape of the lens L1 before the exposure light absorption is plane A, the thermally expanded surface B after the exposure light absorption is in a wide range in the direction along the X axis (Fig. 7C). Since two convex parts sandwiching the optical axis are formed, the refractive power decreases. In the direction along the Y axis (Fig. 7D), one refractive part is locally formed in the central part, and the refractive power increases. Thus, if there is a difference in the refractive power between the X direction and the Y direction, non-rotationally symmetric aberrations such as center astigmatism occur. Figure 9 shows the center astigmatism caused by dipole illumination. As shown in Fig. 9, the image plane of the projection optical system PL becomes a lower (one Z direction) image plane IV because the refractive power decreases with respect to the light beam opened in the X direction, and the light beam opened in the Y direction. Since the refractive power increases, the upper (+ Z) image plane is IH. Accordingly, center astigmatism Δ で that is astigmatism on the optical axis is generated.
[0065] センターアスティグマテイズムが生じている状態で、仮にレチクル R上に X方向の L &Sパターン PVの他に、 Y方向に所定ピッチ(このピッチは通常は L&Sパターン PV のピッチよりも大きい)で配列された Y方向の L&Sパターン(図示省略)が形成されて いるものとすると、 X方向の L&Sパターン PVを通過した露光光は X方向に拡がり、 Y 方向の L&Sパターンを通過した露光光は Y方向に拡がる。従って、 X方向の L&S パターン PVの像は図 9の下方の像面 IVに形成され、 Y方向の L&Sパターンの像は 図 9の上方の像面 IHに形成されるため、仮にウェハ面を像面 IVに合わせ込むと、 X 方向の L&Sパターン PVの像は高解像度で転写される力 Y方向の L&Sパターン の像にはデフォーカスによるぼけが発生してしまう。  [0065] With center astigmatism occurring, in addition to the L & S pattern PV in the X direction on the reticle R, a predetermined pitch in the Y direction (this pitch is usually larger than the pitch of the L & S pattern PV) ), The exposure light that has passed through the X-direction L & S pattern PV spreads in the X-direction, and the exposure light that has passed through the Y-direction L & S pattern. Expands in the Y direction. Therefore, the image of the L & S pattern PV in the X direction is formed on the lower image plane IV in FIG. 9, and the image of the L & S pattern in the Y direction is formed on the upper image plane IH in FIG. When aligned with surface IV, the image of the L and S pattern PV in the X direction is transferred with high resolution. The image of the L and S pattern in the Y direction will be blurred due to defocus.
[0066] 一方、図 8Aに拡大して示す通り、レチクル R上に主に X方向に細長いラインパター ンを Y方向(走査方向)にほぼ投影光学系 PLの解像限界に近いピッチで配列してな る Y方向の L&Sパターン PHが形成されているものとする。この場合には、図 1の照 明光学系 ILSの瞳面には開口絞り 5aを 90° 回転した形状の開口絞り 5bが設定され る。この開口絞り 5bを用いる Y方向のダイポール照明では、レチクルが無いものとす ると、図 8Βに示す通り、投影光学系 PLの瞳面 ΡΡにおいて、光軸 AXを挟んで Y方向 に対称な 2つの円形領域 IRyを露光光 ILが照明する。この際に、露光光 ILの光路に 種々のレチクルパターンが配置されても、通常は大部分の露光光 IL (結像光束)は 円形領域 IRy及びその近傍を通過する。そして、露光光 ILの光路中に図 8Aのレチク ル Rが配置されると、解像限界に近いピッチの L&Sパターン PHからの ± 1次回折光 もほぼ円形領域 IRy又はその近傍を通過するため、その L & Sパターン PHの像は高 解像度でウェハ W上に投影される。 [0066] On the other hand, as shown in an enlarged view in FIG. 8A, line patterns elongated mainly in the X direction are arranged on the reticle R in the Y direction (scanning direction) at a pitch substantially close to the resolution limit of the projection optical system PL. The Y direction L & S pattern PH is assumed to be formed. In this case, the aperture stop 5b having a shape obtained by rotating the aperture stop 5a by 90 ° is set on the pupil plane of the illumination optical system ILS in FIG. The In dipole illumination in the Y direction using this aperture stop 5b, assuming that there is no reticle, as shown in Fig. 8 (b), the pupil plane ΡΡ of the projection optical system PL is symmetrical in the Y direction across the optical axis AX. The exposure light IL illuminates two circular areas IRy. At this time, even if various reticle patterns are arranged in the optical path of the exposure light IL, usually most of the exposure light IL (imaging light beam) passes through the circular region IRy and the vicinity thereof. When the reticle R in FIG. 8A is arranged in the optical path of the exposure light IL, ± 1st-order diffracted light from the L & S pattern PH having a pitch close to the resolution limit also passes through the circular region IRy or the vicinity thereof. The image of the L & S pattern PH is projected onto the wafer W with high resolution.
[0067] この場合、図 1の投影光学系 PLの瞳面 PPの近傍のレンズ L1に入射する露光光 IL の光量分布もほぼ図 8Bの光量分布になる。従って、露光を継続すると、その瞳面 PP 近傍のレンズ L1の温度分布は、光軸を Y方向に挟む 2つの円形領域 IRyで最も高く なり、その周辺の領域に向力つて次第に低くなる分布となり、その分布に応じてレン ズ L1は熱膨張する。そのため、投影光学系 PLの像面は、図 7A、 7B及び 7Cの場合 とはほぼ逆に、 X方向に開いた光束に対しては屈折力が増加するために上方の像面 IHの近傍となり、 Y方向に開!、た光束に対しては屈折力が低下するために下方の像 面 IVの近傍となり、図 9の場合と逆符号でほぼ同じ大きさのセンターアスティグマティ ズムが発生する。尚、レチクル Rが X方向(非走査方向)を長手方向とする長方形の 照明領域で照明されているため、その照明領域に起因するセンターアスティグマティ ズムも図 9のセンターアスティグマテイズムと同じ符号で常に僅かに発生している。こ れに対して、図 8Bのダイポール照明で発生するセンターアスティグマテイズムは、そ の長方形の照明領域に起因するセンターアスティグマテイズムとは符号が逆になり、 全体としてのセンターアスティグマテイズムは図 7Bのダイポール照明を用 、る場合よ りも僅かに小さくなる。 In this case, the light amount distribution of the exposure light IL incident on the lens L1 in the vicinity of the pupil plane PP of the projection optical system PL of FIG. 1 is also substantially the light amount distribution of FIG. 8B. Therefore, when the exposure is continued, the temperature distribution of the lens L1 near the pupil plane PP becomes the highest in the two circular areas IRy that sandwich the optical axis in the Y direction, and gradually decreases toward the surrounding area. Depending on the distribution, the lens L1 expands thermally. Therefore, the image plane of the projection optical system PL is almost opposite to the case of FIGS. 7A, 7B, and 7C, and is close to the upper image plane IH because the refractive power increases for the light beam opened in the X direction. Since the refractive power of the light beam that opens in the Y direction decreases, it is near the lower image plane IV, and a center astigmatism with the same sign as in the case of Fig. 9 is generated. . Since reticle R is illuminated by a rectangular illumination area whose longitudinal direction is the X direction (non-scanning direction), the center astigmatism resulting from the illumination area is the same as the center astigmatism of FIG. It always occurs slightly in the code. On the other hand, the center astigmatism generated by the dipole illumination in FIG. 8B is opposite in sign to the center astigmatism caused by the rectangular illumination area, and the center astigmatism as a whole is The ism is slightly smaller than with the dipole illumination in Figure 7B.
[0068] これらのセンターアスティグマテイズムは、非回転対称な収差であると共に、ダイポ ール照明によって他の非回転対称な収差 (例えば、投影光学系 PLの光軸に垂直な 面内で直交する二方向の投影倍率差 (XY倍率差))も発生するが、これらの非回転 対称な収差は、図 1の結像特性補正機構 14では実質的に補正できない。本実施形 態においては、露光光 ILの照射によって生じる投影光学系 PLの動的な非回転対称 な収差を補正するために、非露光光照射機構 40が設けられて ヽる。 [0068] These center astigmatisms are non-rotationally symmetric aberrations, and other non-rotationally symmetric aberrations by dipole illumination (for example, orthogonal in a plane perpendicular to the optical axis of the projection optical system PL). However, these non-rotationally symmetric aberrations cannot be substantially corrected by the imaging characteristic correction mechanism 14 in FIG. In this embodiment, the dynamic non-rotation symmetry of the projection optical system PL generated by the exposure light IL irradiation. In order to correct various aberrations, a non-exposure light irradiation mechanism 40 is provided.
[0069] 図 10A及び 10Bは、非露光光照射機構を用いた投影光学系の非回転対称な収差 の補正方法の一例を説明するための図である。図 7Bに示す通り、投影光学系 PLの 瞳面 PP上で光軸 AXを X方向に対称に挟む 2つの円形領域 IRxに露光光 ILが照射 される場合〖こは、レンズ L1上の光軸 AXを X方向に対称に挟む領域 IRx及びその近 傍の領域に露光光 ILが照射される。図 10Aに示す通り、本実施形態では、ほぼその 領域 IRxを光軸 AXの回りに 90° 回転した領域である、レンズ L1上でほぼ光軸 AXを Y方向に対称に挟む円形領域 LRc, LRdにそれぞれ図 5に示した非露光光 LBc, L Bdをそれぞれ照射する。尚、その非露光光 LBc, LBd (他の非露光光も同様)の照 射領域の形状やサイズは、例えば、図 5において照射機構 44c, 44d内での集光レ ンズ 51の位置を光軸方向に可動とすることによって変えることも可能である。 FIGS. 10A and 10B are diagrams for explaining an example of a method for correcting non-rotationally symmetric aberration of the projection optical system using the non-exposure light irradiation mechanism. As shown in Fig. 7B, the optical axis AX on the pupil plane PP of the projection optical system PL is sandwiched symmetrically in the X direction. When the exposure light IL is irradiated to the two circular areas IRx, this is the optical axis on the lens L1. The exposure light IL is irradiated to the region IRx that sandwiches the AX symmetrically in the X direction and the adjacent region. As shown in FIG. 10A, in this embodiment, the region IRx is a region obtained by rotating the region IRx by 90 ° around the optical axis AX. Circular regions LRc and LRd that sandwich the optical axis AX symmetrically in the Y direction on the lens L1. Are respectively irradiated with the non-exposure light LBc and LBd shown in FIG. Note that the shape and size of the irradiation region of the non-exposure light LBc, LBd (and other non-exposure light as well) is, for example, the position of the condensing lens 51 in the irradiation mechanisms 44c, 44d in FIG. It is also possible to change by making it movable in the axial direction.
[0070] 露光光 ILの照射領域を 90° 回転した領域を非露光光 LBc, LBdで照射すること により、レンズ L1の温度分布は領域 IRx及び領域 LRc, LRdで高くなり、それから離 れるに従って次第に低くなる分布となる。図 10A及び 10Bにおいて、 X軸及び Y軸の 原点を光軸 AXとすると、レンズ L1の光軸 AX及び X軸を含む面内の非走査方向に 沿った断面図、及び光軸 AX及び Y軸を含む面内の走査方向に沿った断面図は共 に図 10Bに誇張して示す通りになる。図 10Bに示す通り、レンズ L1の熱膨張の様子 は、非走査方向及び走査方向共にその断面形状がほぼ中央部及びその左右で膨 張した形状に近くなり、屈折率分布も中央部及びその左右でそれ以外の領域よりも 大きく変化する。この結果、露光光 ILのみを照明した場合の図 7C及び 7Dの変形と 比べて、露光光 IL及び非露光光 LBc, LBdを照射したレンズ L1の変形の状態は、 非走査方向及び走査方向で似た状態となるため、 X方向及び Y方向に開!、た光束 に対するフォーカス位置は互いにほぼ等しくなり、センターアスティグマテイズムは殆 ど発生しなくなる。つまり、非回転対称な収差が回転対称な収差に変更されることに なる。回転対称な収差は、図 2に示す結像特性補正機構 14で補正することができる ため、投影光学系 PLの結像特性を厳密に制御することができる。 [0070] By irradiating the exposure light IL irradiation area by 90 ° with the non-exposure light LBc and LBd, the temperature distribution of the lens L1 becomes higher in the area IRx and the areas LRc and LRd, and gradually increases as the distance from the temperature distribution increases. The distribution becomes lower. 10A and 10B, where the origin of the X and Y axes is the optical axis AX, a cross-sectional view along the non-scanning direction in the plane including the optical axes AX and X of the lens L1, and the optical axes AX and Y axes. The cross-sectional view along the scanning direction in the plane including is shown exaggeratedly in FIG. 10B. As shown in FIG. 10B, the thermal expansion of the lens L1 is almost the same as the cross-sectional shape in the non-scanning direction and the scanning direction, and the shape in which the refractive index distribution is in the central part and its left and right. It changes much more than other areas. As a result, the deformation state of the lens L1 irradiated with the exposure light IL and the non-exposure light LBc, LBd is different in the non-scanning direction and the scanning direction compared to the deformation in FIGS. 7C and 7D when only the exposure light IL is illuminated. Since they are in a similar state, they are opened in the X and Y directions, and the focus positions for the luminous flux are almost equal to each other, so that center astigmatism hardly occurs. That is, non-rotationally symmetric aberration is changed to rotation-symmetric aberration. Since the rotationally symmetric aberration can be corrected by the imaging characteristic correction mechanism 14 shown in FIG. 2, the imaging characteristic of the projection optical system PL can be strictly controlled.
[0071] 尚、非露光光を照射するレンズは、レンズ L1のように照明光学系 ILSの瞳面と共役 な投影光学系 PLの瞳面の近傍のレンズとすると、センターアスティグマテイズムの補 正効果が大きくなる。このとき、瞳面近傍の複数のレンズに非露光光を照射してもよ い。更に、照射対象の光学部材 (L1)上で、露光光 IL及び非露光光 LBを合わせた 照射領域ができるだけ回転対称に近い方が効果的である。但し、投影光学系 PL中 のどの位置の光学部材 (レンズ等)に非露光光を照射しても、その照射量を制御する ことによって、ほぼ所望の範囲でセンターアスティグマテイズムの補正効果を得ること ができる。また、露光光と共に非露光光 LBをレンズ L1に照射することによって、セン ターアスティグマテイズム以外の非回転対称な収差も減少する。以上、ダイポール照 明を行ったときに生じる非回転対称な収差を補正する方法について述べたが、ダイ ポール照明に限らず、照明系開口絞り部材 5の設定を変更して、他の照明条件でレ チクル Rを照明する場合にも非回転対称な収差が生じ得る。 [0071] If the lens that irradiates the non-exposure light is a lens in the vicinity of the pupil plane of the projection optical system PL that is conjugate with the pupil plane of the illumination optical system ILS, such as the lens L1, the compensation of center astigmatism is achieved. The positive effect is increased. At this time, a plurality of lenses near the pupil plane may be irradiated with non-exposure light. Further, it is effective that the irradiation region including the exposure light IL and the non-exposure light LB on the optical member (L1) to be irradiated is as close to rotational symmetry as possible. However, regardless of the position of the optical member (lens, etc.) in the projection optical system PL that is irradiated with non-exposure light, by controlling the amount of irradiation, the effect of correcting center astigmatism can be achieved within a desired range. Obtainable. Further, by irradiating the lens L1 with the exposure light and the non-exposure light LB, non-rotationally symmetric aberrations other than the center astigmatism are also reduced. As described above, the method for correcting the non-rotationally symmetric aberration that occurs when dipole illumination is performed has been described.However, not only dipole illumination but also the setting of the illumination system aperture stop member 5 can be changed to achieve other illumination conditions. Non-rotationally symmetric aberrations can also occur when illuminating reticle R.
[0072] また、照明系開口絞り 5aの変更以外に、視野絞り 9によりレチクル R上の照明領域 の位置、形状、及び大きさを変更して投影光学系 PLの像面と共役な面における露光 光 ILの位置、断面形状、及び大きさが変更された場合にも非回転対称な収差が生 ずることがある。また、レチクル Rの開口の位置、形状、大きさゃレチクル Rのパターン の分布 (密度)が変わった場合にも、投影光学系 PLの像面と共役な面において露光 光 ILの分布が変わり、非回転対称な収差が生ずることがある。かかる収差も上記の 非露光光照射機構 40で補正することができる。即ち、本実施形態においては、投影 光学系 PLの初期状態における静的な光学特性 (非回転対称な光学特性)を調整機 構 22を使って調整するとともに、露光光 ILの照射に起因する投影光学系 PLの動的 な光学特性 (非回転対称な収差)を、照明系開口絞り部材 5で規定される照明条件 や投影光学系 PLの像面と共役な面における露光光 ILの分布等に応じて、非露光光 照射機構 40を使って調整する。  [0072] In addition to the change of the illumination system aperture stop 5a, the position, shape, and size of the illumination area on the reticle R are changed by the field stop 9 to perform exposure on a plane conjugate with the image plane of the projection optical system PL. Non-rotationally symmetric aberration may also occur when the position, cross-sectional shape, and size of the light IL are changed. In addition, even if the position, shape, and size of the reticle R aperture change, the distribution (density) of the reticle R pattern changes, and the distribution of the exposure light IL changes on the plane conjugate with the image plane of the projection optical system PL. Non-rotationally symmetric aberrations may occur. Such aberration can also be corrected by the non-exposure light irradiation mechanism 40 described above. That is, in the present embodiment, the static optical characteristics (non-rotationally symmetric optical characteristics) in the initial state of the projection optical system PL are adjusted using the adjusting mechanism 22, and the projection caused by the irradiation of the exposure light IL is performed. The dynamic optical characteristics (non-rotationally symmetric aberration) of the optical system PL are applied to the illumination conditions specified by the illumination system aperture stop member 5 and the distribution of the exposure light IL on the plane conjugate with the image plane of the projection optical system PL. Adjust using the non-exposure light irradiation mechanism 40 accordingly.
[0073] 〔主制御系の内部構成〕  [Internal configuration of main control system]
図 11は、主制御系 20の内部構成、及び主制御系 20と各種信号の授受を行う装置 を示すブロック図である。図 3A及び 3Bに示す通り主制御系 20は、結像特性演算部 31、結像特性制御部 32、露光量制御部 33、ステージ制御部 34、 Zチルトステージ 制御部 35、コントローラ 36、及びメモリ 37を含んで構成される。結像特性演算部 31 は、インテグレータセンサ 7及び反射量センサ 8の検出信号を用いて、レチクル尺から 投影光学系 PLに入射する露光光 ILの積算エネルギー、及びウェハ Wで反射されて 投影光学系 PLに戻る露光光 ILの積算エネルギーを算出する。 FIG. 11 is a block diagram showing an internal configuration of the main control system 20 and a device that exchanges various signals with the main control system 20. As shown in FIGS. 3A and 3B, the main control system 20 includes an imaging characteristic calculation unit 31, an imaging characteristic control unit 32, an exposure amount control unit 33, a stage control unit 34, a Z tilt stage control unit 35, a controller 36, and a memory. Consists of 37. The imaging characteristic calculation unit 31 uses the detection signals of the integrator sensor 7 and the reflection amount sensor 8 to detect from the reticle scale. The integrated energy of the exposure light IL incident on the projection optical system PL and the integrated energy of the exposure light IL reflected by the wafer W and returning to the projection optical system PL are calculated.
[0074] この結像特性演算部 31には、コントローラ 36から露光中の照明条件の情報、視野 絞り 9の開口の形状及び大きさを示す情報、更にはレチクル Rの特性(開口の大きさ やパターン分布)を示す情報も供給されている。また、結像特性演算部 31は、照明 条件、露光光 ILの積算エネルギー、及び環境センサ 12から供給される周囲の気圧、 温度等の情報を用いて、投影光学系 PLの結像特性中の回転対称な収差成分及び 非回転対称な収差成分の変動量を算出する。ここで、結像特性演算部 31が投影光 学系 PLの結像特性中の非回転対称な収差成分の変動量を算出する場合には、コ ントローラ 36によってメモリ 37から読み出された伝達関数 (詳細は後述する)を用い て算出する。 [0074] This imaging characteristic calculation unit 31 receives information about the illumination conditions during exposure, information indicating the shape and size of the aperture of the field stop 9 from the controller 36, and characteristics of the reticle R (the size of the aperture and Information indicating the pattern distribution is also supplied. In addition, the imaging characteristic calculation unit 31 uses information such as illumination conditions, accumulated energy of the exposure light IL, and ambient atmospheric pressure and temperature supplied from the environmental sensor 12 in the imaging characteristics of the projection optical system PL. The amount of fluctuation of the rotationally symmetric aberration component and the non-rotationally symmetric aberration component is calculated. Here, when the imaging characteristic calculation unit 31 calculates the fluctuation amount of the non-rotationally symmetric aberration component in the imaging characteristic of the projection optical system PL, the transfer function read from the memory 37 by the controller 36. (Details will be described later).
[0075] 結像特性制御部 32は、結像特性演算部 31で算出された投影光学系 PLの動的な 収差成分の変動量に基づいて、制御部 15を介して結像特性補正機構 14及び非露 光光照射機構 40の動作を制御することにより、投影光学系 PLの光学特性を所望の 状態に調整する。ここで、結像特性補正機構 14により投影光学系 PLの結像特性を 補正する場合には、主制御系 20内の結像特性制御部 32からの制御情報に基づい て、制御部 15が 3個ずつの駆動素子 14a〜14eの伸縮量を独立に制御することによ つて、 5枚のレンズ L11〜L15のそれぞれの光軸方向の位置、及び光軸に垂直な直 交する 2軸の回りの傾斜角を独立に制御する。これによつて、投影光学系 PLの結像 特性中の所定の回転対称な収差が補正される。  Based on the dynamic aberration component variation amount of the projection optical system PL calculated by the imaging characteristic calculation unit 31, the imaging characteristic control unit 32 performs the imaging characteristic correction mechanism 14 via the control unit 15. Further, by controlling the operation of the non-exposure light irradiation mechanism 40, the optical characteristics of the projection optical system PL are adjusted to a desired state. Here, when the imaging characteristic of the projection optical system PL is corrected by the imaging characteristic correction mechanism 14, the control unit 15 3 is controlled based on the control information from the imaging characteristic control unit 32 in the main control system 20. By independently controlling the amount of expansion / contraction of each of the drive elements 14a to 14e, the position of each of the five lenses L11 to L15 in the direction of the optical axis and about two orthogonal axes perpendicular to the optical axis Independently control the inclination angle. This corrects a predetermined rotationally symmetric aberration in the imaging characteristics of the projection optical system PL.
[0076] また、非露光光照射機構 40により投影光学系 PLの光学特性を調整する場合には 、レンズ L1に対する非露光光 LBa〜LBhの照射又は非照射を制御する。非露光光 照射機構 40の制御によって、投影光学系 PLの結像特性中の所定の非回転対称な 収差が補正される。  In addition, when adjusting the optical characteristics of the projection optical system PL by the non-exposure light irradiation mechanism 40, the irradiation or non-irradiation of the non-exposure light LBa to LBh to the lens L1 is controlled. By controlling the non-exposure light irradiation mechanism 40, a predetermined non-rotationally symmetric aberration in the imaging characteristics of the projection optical system PL is corrected.
[0077] 露光量制御部 33は、インテグレータセンサ 7の検出信号と予め計測されているビー ムスプリッタ 6からウェハ Wまでの光学系の透過率とを用いてウェハ W上での露光ェ ネルギーを間接的に算出する。ここで、ビームスプリッタ 6からウェハ Wまでの光学系 の透過率は、露光開始前又は定期的に、照射量センサ 19の受光面を投影光学系 P Lの露光領域に移動した状態で露光光 ILを照射して、照射量センサ 19の検出信号 をインテグレータセンサ 7の検出信号で除算することによって求める。また、露光量制 御部 33は、ウェハ W上での積算露光エネルギーが目標範囲内に収まるように、露光 光源 1の出力を制御すると共に、必要に応じて不図示の減光機構を用いて露光光 IL のパルスエネルギーを段階的に制御する。また、コントローラ 36からの制御信号によ り照明系開口絞り部材 5を回転駆動する駆動モータ 5cの回転角度を制御し、更に視 野絞り 9の開口の大きさを制御する。 [0077] The exposure amount control unit 33 indirectly controls the exposure energy on the wafer W by using the detection signal of the integrator sensor 7 and the optical transmittance of the optical system from the beam splitter 6 to the wafer W measured in advance. Calculate automatically. Here, the transmittance of the optical system from the beam splitter 6 to the wafer W is calculated by projecting the light receiving surface of the dose sensor 19 before the exposure is started or periodically. It is obtained by irradiating the exposure light IL while moving to the exposure area of L, and dividing the detection signal of the dose sensor 19 by the detection signal of the integrator sensor 7. The exposure control unit 33 controls the output of the exposure light source 1 so that the integrated exposure energy on the wafer W falls within the target range, and uses a dimming mechanism (not shown) as necessary. The pulse energy of exposure light IL is controlled stepwise. Further, the rotation angle of the drive motor 5c that rotates the illumination system aperture stop member 5 is controlled by the control signal from the controller 36, and the size of the aperture of the field stop 9 is further controlled.
[0078] ステージ制御部 34は、レチクルステージ RST上に設けられた不図示のレーザ干渉 計の計測値と各種制御情報とに基づ 、て、レチクルステージ RSTの位置及び速度を 制御する。また、ウェハステージ WST上に設けられた不図示のレーザ干渉計の計測 値と各種制御情報とに基づ!/、て、ウェハステージ WSTの位置及び速度を制御する。 また、 Zチルトステージ制御部 35は、レチクル側 AFセンサ 16及びウェハ側 AFセンサ 18の検出情報に基づいて、常時ウェハ面が投影光学系 PLの像面に合焦されるよう に、 Zチルトステージ 17を駆動する。  The stage control unit 34 controls the position and speed of the reticle stage RST based on measurement values of a laser interferometer (not shown) provided on the reticle stage RST and various control information. In addition, the position and speed of wafer stage WST are controlled based on the measurement values of a laser interferometer (not shown) provided on wafer stage WST and various control information. Also, the Z tilt stage control unit 35 is configured so that the wafer surface is always focused on the image plane of the projection optical system PL based on the detection information of the reticle side AF sensor 16 and the wafer side AF sensor 18. Drive 17
[0079] コントローラ 36は、結像特性演算部 31、結像特性制御部 32、露光量制御部 33、ス テージ制御部 34、及び Zチルトステージ制御部 35を制御することで、露光装置の全 体的な動作を制御する。メモリ 37は、投影光学系 PLに入射する光のエネルギーと投 影光学系 PLの光学特性の変動量との関係を示す伝達関数を記憶している。  [0079] The controller 36 controls all of the exposure apparatus by controlling the imaging characteristic calculation unit 31, the imaging characteristic control unit 32, the exposure amount control unit 33, the stage control unit 34, and the Z tilt stage control unit 35. Control physical movements. The memory 37 stores a transfer function indicating the relationship between the energy of light incident on the projection optical system PL and the amount of variation in the optical characteristics of the projection optical system PL.
[0080] メモリ 37に記憶される伝達関数の一般式は、例えば以下の(1)式で表される。
Figure imgf000027_0001
[0080] The general expression of the transfer function stored in the memory 37 is expressed by, for example, the following expression (1).
Figure imgf000027_0001
但し、 However,
F :露光光吸収によるフォーカス変化量  F: Focus change amount due to exposure light absorption
A t:露光光吸収によるフォーカス変化量の計算間隔  At: Calculation interval of focus change due to exposure light absorption
T :露光光吸収によるフォーカス変化時定数  T: Focus change time constant due to exposure light absorption
K  K
F :露光光吸収による時刻 A t前のフォーカス変化時定数 C :露光光吸収に対するフォーカス変化率の時定数 F: Focus change time constant before time A t due to exposure light absorption C: Time constant of focus change rate with respect to exposure light absorption
K K
R R
W:ゥ ハ反射率  W: Uha reflectance
:ウェハ反射率依存性  : Wafer reflectivity dependence
Q :露光光の入射エネルギー  Q: Incident energy of exposure light
[0081] 上記(1)に示す伝達関数は、投影光学系 PLに露光光 ILを照射したときのフォー力 ス変動量を示す伝達関数である。照明系開口絞り部材 5で規定される照明条件、投 影光学系 PLの像面の共役面における露光光 ILの断面形状及び大きさ等に応じて 上記(1)式中の変数 Qを変えることにより、投影光学系 PLのフォーカス変動量を求め ることができる。図 12は、フォーカス変動量についての代表的な伝達関数を示す図 である。図 12に示す通り、フォーカス変動量は、露光光 ILの照射開始とともに大きく 変動するが、露光光 ILの照射時間が長くなるにつれて徐々に変動量の変化率が小 さくなつてある変動量に漸近する変化を示す。ここでは、フォーカス変動量について の伝達関数につ 、て説明した力 倍率等の回転対称な収差及びセンターアスティグ マテイズム等の非回転対称な収差についても同様の伝達関数を使ってそれぞれの 変動量を求めることができる。 [0081] The transfer function shown in (1) above is a transfer function indicating the amount of force fluctuation when the projection optical system PL is irradiated with the exposure light IL. Change the variable Q in the above equation (1) according to the illumination conditions defined by the illumination system aperture stop member 5 and the cross-sectional shape and size of the exposure light IL in the conjugate plane of the image plane of the projection optical system PL. Thus, the focus fluctuation amount of the projection optical system PL can be obtained. FIG. 12 is a diagram showing a typical transfer function with respect to the focus fluctuation amount. As shown in FIG. 12, the focus fluctuation amount greatly fluctuates with the start of exposure light IL irradiation, but as the exposure light IL irradiation time becomes longer, the change rate of the fluctuation amount gradually becomes closer to the fluctuation amount. Change. Here, regarding the transfer function for the focus fluctuation amount, the same transfer function is used to calculate the amount of fluctuation for the rotationally symmetric aberration such as force magnification and the non-rotationally symmetric aberration such as center astigmatism. Can be sought.
[0082] 次に、以上説明した露光装置によりウェハ Wを露光する際の動作の一例について 説明する。尚、投影光学系 PLの静的な光学特性 (非回転対称な収差)は、調整機構 22の温度調整器 22bと調整ネジ 22cの少なくとも一方を用いて所定の許容範囲内に 既に調整されている。この場合、収差測定装置 21等を用いて投影光学系 PLの静的 な光学特性を測定し、その結果に基づいて調整機構 22による調整を行うことができ る。露光動作が開始されると、まず主制御系 20内のコントローラ 36は露光量制御部 3 3に制御信号を出力し、モータ 5cを駆動させて照明系開口絞り部材 5に形成された 開口絞りの何れかを第 2フライアイレンズ 4の射出側の焦点面に配置させるとともに、 視野絞り 9を駆動して開口の形状及び大きさを設定する。ここでは、第 2フライアイレ ンズ 4の射出側の焦点面に開口絞り 5aが配置されるとする。これにより、照明条件と レチクル R上における照明領域の形状及び大きさとが設定される。これと同時に、コン トローラ 36は、結像特性演算部 31に対して設定した照明条件の情報、視野絞り 9の 開口の形状及び大きさを示す情報、及びレチクル Rの特性を示す情報を出力する。 [0083] 次に、照射量センサ 19の受光面が投影光学系 PLの露光領域に配置されている状 態で、露光量制御部 33が露光光源 1に制御信号を出力して露光光 ILを射出させ、 照射量センサ 19の検出信号とインテグレータセンサ 7の検出信号を得て、これらの検 出信号からビームスプリッタ 6からウェハ Wまでの光学系の透過率を求める。次いで、 コントローラ 36は不図示のレチクルローダに制御信号を出力して所定のレチクル Rを 搬送させてレチクルステージ RST上に保持させるとともに、不図示のウェハローダに 制御信号を出力してウェハ Wを搬送させてウェハステージ WST上に保持させる。 Next, an example of an operation when the wafer W is exposed by the exposure apparatus described above will be described. Note that the static optical characteristics (non-rotationally symmetric aberration) of the projection optical system PL are already adjusted within a predetermined allowable range using at least one of the temperature adjuster 22b and the adjusting screw 22c of the adjusting mechanism 22. . In this case, the static optical characteristics of the projection optical system PL can be measured using the aberration measuring device 21 and the like, and adjustment by the adjusting mechanism 22 can be performed based on the result. When the exposure operation is started, first, the controller 36 in the main control system 20 outputs a control signal to the exposure amount control unit 33, drives the motor 5c, and controls the aperture stop formed in the illumination system aperture stop member 5. Either one is placed on the focal plane on the exit side of the second fly-eye lens 4 and the field stop 9 is driven to set the shape and size of the aperture. Here, it is assumed that the aperture stop 5a is arranged on the focal plane on the exit side of the second fly eye 4. Thereby, the illumination condition and the shape and size of the illumination area on the reticle R are set. At the same time, the controller 36 outputs information on the illumination conditions set for the imaging characteristic calculation unit 31, information on the shape and size of the aperture of the field stop 9, and information on the characteristics of the reticle R. . [0083] Next, in a state where the light receiving surface of the irradiation amount sensor 19 is disposed in the exposure region of the projection optical system PL, the exposure amount control unit 33 outputs a control signal to the exposure light source 1 to generate the exposure light IL. The detection signal of the dose sensor 19 and the detection signal of the integrator sensor 7 are obtained, and the transmittance of the optical system from the beam splitter 6 to the wafer W is obtained from these detection signals. Next, the controller 36 outputs a control signal to a reticle loader (not shown) to convey a predetermined reticle R and hold it on the reticle stage RST, and outputs a control signal to a wafer loader (not shown) to convey the wafer W. And hold it on the wafer stage WST.
[0084] 以上の初期処理が終了すると、ステージ制御部 34がレチクルステージ RST及びゥ ェハステージ WSTの各々に制御信号を出力し、例えばレチクルステージ RSTの +Y 方向への加速を開始するとともに、ウェハステージ WSTの Y方向への加速を開始 する。レチクルステージ RST及びウエノ、ステージ WSTの加速を開始して力も所定時 間経過し、これらのステージの各々が一定速度になると、コントローラ 36が露光量制 御部 33を制御して露光光源 1から露光光 ILを射出させる。  [0084] When the above initial processing is completed, stage control unit 34 outputs a control signal to each of reticle stage RST and wafer stage WST, for example, starts acceleration of reticle stage RST in the + Y direction, and at the same time, wafer stage Start accelerating WST in the Y direction. When the reticle stage RST, Ueno, and stage WST start accelerating and the force has also passed for a predetermined time, and each of these stages reaches a constant speed, the controller 36 controls the exposure control 33 to expose from the exposure light source 1. Light IL is emitted.
[0085] 露光光源 1から射出された露光光は、第 1フライアイレンズ 2、振動ミラー 3、及び第 2フライアイレンズ 4等を順次介した後で照明系開口絞り部材 5に形成された開口絞り 5aを透過する。開口絞り 5aを透過した露光光 ILは、ビームスプリッタ 6を介して視野 絞り 9でスリット状に整形され、ミラー 10によって— Z方向に偏向された後、コンデンサ レンズ 11を介してレチクル R上に照射される。露光光 ILは開口絞り 5aによって整形さ れており、レチクル R上の照射領域は X方向に長 、スリット状になる。  [0085] The exposure light emitted from the exposure light source 1 passes through the first fly-eye lens 2, the vibrating mirror 3, the second fly-eye lens 4 and the like in order, and then the opening formed in the illumination system aperture stop member 5 It passes through the aperture 5a. The exposure light IL transmitted through the aperture stop 5a is shaped into a slit by the field stop 9 through the beam splitter 6, deflected in the Z direction by the mirror 10, and then irradiated onto the reticle R through the condenser lens 11. Is done. The exposure light IL is shaped by the aperture stop 5a, and the irradiation area on the reticle R is long in the X direction and has a slit shape.
[0086] レチクル Rを透過した露光光は、投影光学系 PLを介してウェハ W上の露光すべき ショット領域に照射され、これによつてレチクル Rに形成されたパターンの一部がゥェ ハ Wの露光処理すべきショット領域内の一部に転写される。このようにして、ウェハ W 上の各ショット領域が順次露光される。露光光 ILが照射されている間、インテグレー タセンサ 7及び反射量センサ 8から検出信号が出力されており、結像特性演算部 31 は、インテグレータセンサ 7及び反射量センサ 8の検出信号を用いて、レチクル尺から 投影光学系 PLに入射する露光光 ILの積算エネルギー、及びウェハ Wで反射されて 投影光学系 PLに戻る露光光 ILの積算エネルギーを算出する。  [0086] The exposure light transmitted through the reticle R is irradiated onto the shot area to be exposed on the wafer W via the projection optical system PL, whereby a part of the pattern formed on the reticle R is wafered. W is transferred to a part of the shot area to be exposed. In this way, each shot area on the wafer W is sequentially exposed. While the exposure light IL is irradiated, detection signals are output from the integrator sensor 7 and the reflection amount sensor 8, and the imaging characteristic calculation unit 31 uses the detection signals of the integrator sensor 7 and the reflection amount sensor 8 to Calculate the integrated energy of the exposure light IL that is incident on the projection optical system PL from the reticle scale, and the integrated energy of the exposure light IL that is reflected by the wafer W and returns to the projection optical system PL.
[0087] 前述した通り、結像特性演算部 31には、コントローラ 36から露光中の照明条件の 情報、視野絞り 9の状態を示す情報、及びレチクル Rの特性を示す情報が供給され ているとともに、メモリ 37に記憶された伝達関数が読み出されて供給されている。結 像特性演算部 31は、上記の照明条件の情報、視野絞り 9の状態を示す情報、及び レチクル Rの特性を示す情報、露光光 ILの積算エネルギー、並びに環境センサ 12 から供給される周囲の気圧、温度等の情報と伝達関数とを用いて、投影光学系 PLの 結像特性中の回転対称な収差成分及び非回転対称な収差成分の変動量を算出す る。尚、投影光学系 PLの収差成分の変動量は、前述した (1)式を用いて算出する。 この算出結果は、結像特性演算部 31からコントローラ 36へ出力される。 [0087] As described above, the imaging characteristic calculation unit 31 receives the illumination condition under exposure from the controller 36. Information, information indicating the state of the field stop 9, and information indicating the characteristics of the reticle R are supplied, and a transfer function stored in the memory 37 is read and supplied. The image characteristic calculation unit 31 includes information on the above illumination conditions, information indicating the state of the field stop 9, information indicating the characteristics of the reticle R, accumulated energy of the exposure light IL, and surroundings supplied from the environment sensor 12. Using information such as atmospheric pressure and temperature and the transfer function, the amount of fluctuation of the rotationally symmetric aberration component and the non-rotationally symmetric aberration component in the imaging characteristics of the projection optical system PL is calculated. The variation amount of the aberration component of the projection optical system PL is calculated using the above-described equation (1). This calculation result is output from the imaging characteristic calculation unit 31 to the controller 36.
[0088] コントローラ 36は、結像特性演算部 31の算出結果を結像特性制御部 32に出力す る。結像特性制御部 32は、コントローラ 36から出力された算出結果に基づいて、制 御部 15を介して結像特性補正機構 14の動作を制御して、常に所望の結像特性が 得られるように投影光学系 PLの回転対称な収差の変動を抑制する。また、露光光 IL の照射による投影光学系 PLの非回転対称収差の補正は、非露光光照射機構 40に よって行われる。以上の制御は露光動作が行われている間は繰り返し実行されるた め、投影光学系 PLの回転対称収差及び非回転対称収差を、照明条件、投影光学 系 PLの像面の共役面における露光光 ILの分布等に応じて精確に制御することがで きる。 The controller 36 outputs the calculation result of the imaging characteristic calculation unit 31 to the imaging characteristic control unit 32. The imaging characteristic control unit 32 controls the operation of the imaging characteristic correction mechanism 14 via the control unit 15 based on the calculation result output from the controller 36 so that a desired imaging characteristic is always obtained. In addition, the fluctuation of the rotationally symmetric aberration of the projection optical system PL is suppressed. Further, the correction of the non-rotationally symmetric aberration of the projection optical system PL by the irradiation of the exposure light IL is performed by the non-exposure light irradiation mechanism 40. Since the above control is repeatedly executed while the exposure operation is performed, the rotational symmetric aberration and the non-rotation symmetric aberration of the projection optical system PL are applied to the illumination condition and the exposure on the conjugate plane of the image plane of the projection optical system PL. It can be precisely controlled according to the distribution of light IL.
[0089] 以上の説明にお 、ては、伝達関数を用いて投影光学系 PLの光学特性を調整する 場合を例に挙げて説明したが、投影光学系 PLの光学特性を調整する際にメモリ 37 に記憶されて ヽるテーブルに設定された調整量を用いて投影光学系 PLの光学特性 を調整しても良い。図 13は、メモリ 37に記憶されたテーブルの一例を説明するため の図である。ある照明条件の下で、投影光学系 PLの光学特性の調整量は照明光学 系 ILSに設けられた視野絞り 9の開口の大きさ(面積)に応じて変化する。このため、 視野絞り 9の開口の大きさと投影光学系 PLの光学特性の調整量との関係を図示する と図 13中の曲線 AJとなる。尚、図 13に示した視野絞り 9の開口の大きさと投影光学 系 PLの光学特性の調整量との関係は一例にすぎず、直線であっても良!、。  In the above description, the case where the optical characteristic of the projection optical system PL is adjusted using the transfer function has been described as an example. However, when adjusting the optical characteristic of the projection optical system PL, a memory is used. The optical characteristics of the projection optical system PL may be adjusted using the adjustment amount set in the table stored in 37. FIG. 13 is a diagram for explaining an example of a table stored in the memory 37. Under certain illumination conditions, the adjustment amount of the optical characteristics of the projection optical system PL changes according to the size (area) of the aperture of the field stop 9 provided in the illumination optical system ILS. For this reason, the relationship between the aperture size of the field stop 9 and the adjustment amount of the optical characteristics of the projection optical system PL is shown as a curve AJ in FIG. The relationship between the size of the aperture of the field stop 9 shown in FIG. 13 and the adjustment amount of the optical characteristics of the projection optical system PL is merely an example, and may be a straight line!
[0090] 本実施形態においては、視野絞り 9の開口の大きさを複数に区分し、各区分におけ る代表的な調整量を設定し、視野絞り 9の開口の大きさを示す情報と代表的な調整 量とを対応付けてテーブルに記憶している。図 13に示す例では視野絞り 9の開口の 大きさが区分 R1〜R5の 5つに区分されており、区分 R1〜R5の各々について代表 的な調整 g[l〜J5が設定されている。従って、上記のテーブルには、例えば区分 R1 〜R5の各々の最大値及び最小値と調整 1〜J5とが対応付けて記憶されることに なる。各区分 R1〜R5における代表的な調整量は、例えば、各区分 R1〜R5に含ま れる曲線 AJの平均値を用いる。これ以外に、各区分 R1〜R5に含まれる曲線 AJを直 線近時したときの平均値、又は各区分 R1〜R5に含まれる曲線 AJの最大値と最小値 との中間値を用いることができる。また、視野絞り 9の開口の大きさの区分は 5つに限 らず、視野絞り 9の開口の大きさの変化を考慮して、適宜定めることができる。 [0090] In the present embodiment, the size of the aperture of the field stop 9 is divided into a plurality of areas, a representative adjustment amount in each section is set, and information indicating the size of the aperture of the field stop 9 and a representative Adjustment The quantity is stored in association with the table. In the example shown in FIG. 13, the size of the aperture of the field stop 9 is divided into five sections R1 to R5, and typical adjustments g [l to J5 are set for each of the sections R1 to R5. Therefore, for example, the maximum value and the minimum value of each of the sections R1 to R5 and the adjustments 1 to J5 are stored in the table in association with each other. As a typical adjustment amount in each of the sections R1 to R5, for example, an average value of the curve AJ included in each of the sections R1 to R5 is used. In addition, the average value when the curve AJ included in each section R1 to R5 is close to a straight line, or the intermediate value between the maximum and minimum values of the curve AJ included in each section R1 to R5 may be used. it can. Further, the size of the aperture size of the field stop 9 is not limited to five, and can be appropriately determined in consideration of a change in the size of the aperture of the field stop 9.
[0091] 以上のテーブルを用いる場合には、コントローラ 36がメモリ 37からテーブルを読み 出し、その設定に対応した投影光学系 PLの光学特性の調整量を読み出し、その調 整量を結像特性制御部 32に出力する。結像特性制御部 32はコントローラ 36から出 力された調整量に応じて投影光学系 PLの光学特性を調整する制御信号を制御部 1 5及び非露光光照射機構 40に出力して投影光学系 PLの光学特性を調整する。以 上の処理により、露光光 ILの断面形状及び大きさに応じて投影光学系 PLに対する 光学特性 (回転対称収差及び非回転対称収差)が調整される。  [0091] When the above table is used, the controller 36 reads the table from the memory 37, reads the adjustment amount of the optical characteristic of the projection optical system PL corresponding to the setting, and controls the adjustment amount to the imaging characteristic control. Output to part 32. The imaging characteristic control unit 32 outputs a control signal for adjusting the optical characteristics of the projection optical system PL according to the adjustment amount output from the controller 36 to the control unit 15 and the non-exposure light irradiation mechanism 40 to output the projection optical system. Adjust the optical characteristics of the PL. With the above processing, the optical characteristics (rotationally symmetric aberration and non-rotationally symmetric aberration) with respect to the projection optical system PL are adjusted according to the cross-sectional shape and size of the exposure light IL.
[0092] 尚、以上の説明では、視野絞り 9の開口の大きさ(面積)に応じた投影光学系 PLの 光学特性の調整量のテーブルについて説明した力 視野絞り 9の開口の大きさのみ ならず、視野絞り 9の開口の位置や形状に応じたテーブルを持つようにしても良い。 例えば、視野絞り 9の開口の長手方向の長さ、又は開口の X方向に対応する方向の 長さと Y方向に対応する方向の長さとに応じたテーブルを持つようにしても良 ヽ。即 ち、メモリ 37に記憶する調整量のテーブルは、視野絞り 9の設定、照明系開口絞り部 材 5の設定、及びレチクル Rの特性等で決定される各種の条件毎に用意することがで きる。  [0092] In the above description, the force described in the table of the adjustment amount of the optical characteristics of the projection optical system PL corresponding to the size (area) of the aperture of the field stop 9 is only the size of the aperture of the field stop 9 Instead, a table corresponding to the position and shape of the aperture of the field stop 9 may be provided. For example, a table corresponding to the length of the aperture of the field stop 9 in the longitudinal direction or the length of the aperture in the direction corresponding to the X direction and the length in the direction corresponding to the Y direction may be provided. In other words, the adjustment amount table stored in the memory 37 can be prepared for each of various conditions determined by the setting of the field stop 9, the setting of the illumination system aperture stop member 5, the characteristics of the reticle R, etc. wear.
[0093] 以上のように、本実施形態に係る露光装置においては、投影光学系 PLの静的な 光学特性 (非回転対称な収差)を調整する調整機構 22と、投影光学系 PLの動的な 光学特性 (回転対称な収差)を調整する非露光光照射機構 40とを備えて ヽるため、 非露光光照射機構 40による動的な非回転対称な収差の調整量を小さくすることがで き、投影光学系 PLの動的な非回転収差の調整をより精密に行うことができる。更に、 本実施形態の露光装置においては、投影光学系 PLの像面と共役な面内における露 光光 ILの分布 (露光光 ILの位置、断面形状、及び大きさ)を考慮して、すなわち、視 野絞り 9の開口の設定状態とレチクルの特性の少なくとも一方を考慮して投影光学系 PLの光学特性を調整して ヽるので、投影光学系 PLの光学特性を所望状態に制御 して、レチクル Rのパターンを精度よく投影することができる。 As described above, in the exposure apparatus according to the present embodiment, the adjustment mechanism 22 for adjusting the static optical characteristics (non-rotationally symmetric aberration) of the projection optical system PL, and the dynamics of the projection optical system PL The non-exposure light irradiation mechanism 40 that adjusts the optical characteristics (rotationally symmetric aberration) is provided, so that the amount of dynamic non-rotationally symmetric aberration adjustment by the non-exposure light irradiation mechanism 40 can be reduced. Therefore, the dynamic non-rotation aberration of the projection optical system PL can be adjusted more precisely. Furthermore, in the exposure apparatus of the present embodiment, in consideration of the distribution of the exposure light IL (the position, the cross-sectional shape, and the size of the exposure light IL) in the plane conjugate with the image plane of the projection optical system PL, that is, Since the optical characteristics of the projection optical system PL are adjusted in consideration of at least one of the setting state of the aperture of the field stop 9 and the characteristics of the reticle, the optical characteristics of the projection optical system PL are controlled to a desired state. The pattern of reticle R can be accurately projected.
[0094] 以上、本発明の実施形態による露光装置及び方法について説明したが、本発明は 上記実施形態に制限されず、本発明の範囲内で自由に変更が可能である。例えば 、上述の実施形態の露光装置は、投影光学系 PLの静的な非回転対称収差を調整 する調整機構と動的な非回転対称収差を調整する調整機構とを用いた調整と、投影 光学系 PLの像面と共役な面内における露光光 ILの分布を考慮した投影光学系 PL の光学特性の調整との両方を行うようにしている力 どちらか一方の調整を行う露光 装置とすることちでさる。  The exposure apparatus and method according to the embodiment of the present invention have been described above. However, the present invention is not limited to the above embodiment, and can be freely changed within the scope of the present invention. For example, the exposure apparatus of the above-described embodiment includes an adjustment mechanism that adjusts the static non-rotation symmetric aberration of the projection optical system PL and an adjustment mechanism that adjusts the dynamic non-rotation symmetric aberration, and a projection optical system. The power that is used to adjust both the optical characteristics of the projection optical system PL in consideration of the distribution of the exposure light IL in the plane conjugate with the image plane of the system PL. Chisaru
[0095] また、上述の実施形態においては、投影光学系 PLの像面と共役な面内における 露光光 ILの分布を考慮して、投影光学系 PLの回転対象な収差と非回転対称な収 差を調整するようにして ヽるが、どちらか一方を調整するよう〖こするようにしてもょ ヽ。 また、上記実施形態では、伝達関数又はテーブルを用いて投影光学系 PLの光学特 性を調整する場合について説明したが、図 1に示す収差測定装置 21を用いて投影 光学系の PLの非回転対称収差を実測し、その測定結果を用いて投影光学系 PLの 光学特性を調整しても良い。また、上述の実施形態においては、調整機構 22と非露 光光照射機構 40とでそれぞれ異なるレンズに所定の調整を行っているが、同一のレ ンズに所定の調整を行うようにしてもよい。  In the above-described embodiment, in consideration of the distribution of the exposure light IL in the plane conjugate with the image plane of the projection optical system PL, the aberration to be rotated of the projection optical system PL is not rotationally symmetric. You can adjust the difference, but you can also adjust either one. In the above-described embodiment, the case where the optical characteristic of the projection optical system PL is adjusted using a transfer function or a table has been described. However, the non-rotation of the PL of the projection optical system is performed using the aberration measuring device 21 shown in FIG. It is also possible to measure the symmetric aberration and adjust the optical characteristics of the projection optical system PL using the measurement result. Further, in the above-described embodiment, the adjustment mechanism 22 and the non-exposure light irradiation mechanism 40 perform the predetermined adjustment on different lenses, but the same adjustment may be performed on the same lens. .
[0096] また、上述の実施形態においては、投影光学系の非回転対称な収差として、主に センターアスティグマテイズムを補正する場合にっ 、て説明した力 非回転対称な収 差として、センターアスティグマテイズムに限らず、直交する二方向の投影倍率差 (X Y倍率差)や像シフト等の他の非回転対称な収差が発生する可能性もある。従って、 調整機構 22の調整対象となる光学部材は、非回転対称な収差の種類に応じて実験 やシミュレーション力 最適なものを決めることができる。同様に、非露光光照射機構 40の調整対象となる光学部材、及びその光学部材上における非露光光 LBの照射 位置、形状、及びサイズは、非回転対処な収差の種類等に応じて適宜設定すること ができる。例えば、上述の非回転対称な XY倍率差を調整する場合には、投影光学 系 PLの複数の光学部材のうちの比較的レチクル Rに近 、光学素子、ある 、はウエノ、 Wに近い光学素子を選択するのが好ましい。尚、非露光光照射機構 40を投影光学 系 PLの回転対称な収差の調整に用いてもよい。例えば、投影光学系 PLの開口数と 照明光学系 ILSの開口数との比を表す σ値を小さく(例えば 0. 4以下に)する小 σ 照明法を採用する場合に発生しやすい高次の回転対称収差は非露光光照射機構 4 0を使って良好に補正することができる。 Further, in the above-described embodiment, the force non-rotationally symmetric difference described above is mainly used for correcting the center astigmatism as the non-rotationally symmetric aberration of the projection optical system. In addition to astigmatism, other non-rotationally symmetric aberrations such as orthogonal projection magnification difference (XY magnification difference) and image shift may occur. Therefore, the optical member to be adjusted by the adjusting mechanism 22 can be determined to have an optimum experiment or simulation power according to the type of non-rotationally symmetric aberration. Similarly, non-exposure light irradiation mechanism The optical member to be adjusted 40 and the irradiation position, shape, and size of the non-exposure light LB on the optical member can be set as appropriate according to the type of aberration that is not rotated. For example, in the case of adjusting the non-rotationally symmetric XY magnification difference described above, the optical element relatively close to the reticle R among the plurality of optical members of the projection optical system PL, or an optical element close to Weno or W Is preferably selected. The non-exposure light irradiation mechanism 40 may be used for adjusting the rotationally symmetric aberration of the projection optical system PL. For example, a higher-order that is likely to occur when using a small σ illumination method that reduces the σ value that represents the ratio between the numerical aperture of the projection optical system PL and the numerical aperture of the illumination optical system ILS (for example, less than 0.4). The rotationally symmetric aberration can be corrected satisfactorily using the non-exposure light irradiation mechanism 40.
[0097] また、上記実施形態では、調整機構 22が投影光学系 PLの静的な光学特性を調整 し、非露光光照射機構 40が投影光学系 PLの動的な光学特性を調整する場合につ いて説明したが、調整機構 22で投影光学系 PLの動的な光学特性を調整するように してもよぐ非露光光照射機構 40で投影光学系 PLの静的な光学特性を調整するよ うにしても良い。即ち、投影光学系 PLの静的な非回転対称収差を調整する調整機 構、及び動的な非回転対称収差を調整する調整機構は上述の実施形態に限定され ず、加熱作用、冷却作用、外力作用等を用いる各種の手法を適宜選択又は組み合 わせて採用することができる。  In the above embodiment, the adjustment mechanism 22 adjusts the static optical characteristics of the projection optical system PL, and the non-exposure light irradiation mechanism 40 adjusts the dynamic optical characteristics of the projection optical system PL. Although the adjustment mechanism 22 may adjust the dynamic optical characteristics of the projection optical system PL, the non-exposure light irradiation mechanism 40 may adjust the static optical characteristics of the projection optical system PL. You may do it. That is, the adjustment mechanism for adjusting the static non-rotation symmetric aberration of the projection optical system PL and the adjustment mechanism for adjusting the dynamic non-rotation symmetric aberration are not limited to the above-described embodiments, and the heating action, the cooling action, Various methods using an external force action or the like can be appropriately selected or combined.
[0098] また、上記実施形態では、本発明をステップ'アンド'スキャン方式の露光装置に適 用した場合を例に挙げて説明した力 レチクルのパターンを一括して転写するステツ プ'アンド'リピート方式の露光装置 (所謂、ステツパ)にも本発明を適用することがで きる。また、上述の実施形態においては屈折系の投影光学系 PLを用いて説明した 力 屈折系と反射系とを含む投影光学系や、反射系のみ力もなる投影光学系にも本 発明を適用することができる。また、露光光 ILの照明領域 (露光領域)の形状は矩形 に限られず、例えば円弧状であってもよい。  Further, in the above-described embodiment, the step “and” repeat that collectively transfers the pattern of the force reticle described as an example in which the present invention is applied to the exposure apparatus of the step “and” scan method. The present invention can also be applied to an exposure apparatus of a type (so-called stepper). Further, in the above-described embodiment, the present invention is applied to the projection optical system including the force refraction system and the reflection system described using the projection optical system PL of the refraction system, and the projection optical system having only the power of the reflection system. Can do. Further, the shape of the illumination area (exposure area) of the exposure light IL is not limited to a rectangle, and may be, for example, an arc.
[0099] また、本発明の露光装置は、半導体素子の製造に用いられてデバイスパターンを 半導体基板上へ転写する露光装置、液晶表示素子の製造に用いられて回路パター ンをガラスプレート上へ転写する露光装置、薄膜磁気ヘッドの製造に用いられてデ バイスパターンをセラミックウェハ上へ転写する露光装置、及び CCD等の撮像素子 の製造に用いられる露光装置等にも適用することができる。 In addition, the exposure apparatus of the present invention is an exposure apparatus that is used for manufacturing a semiconductor element to transfer a device pattern onto a semiconductor substrate, and is used for manufacturing a liquid crystal display element to transfer a circuit pattern onto a glass plate. Exposure apparatus used to manufacture thin film magnetic heads, exposure apparatuses that transfer device patterns onto ceramic wafers, and image sensors such as CCDs The present invention can also be applied to an exposure apparatus or the like used for manufacturing the above.
[0100] 〔デバイス製造方法〕  [Device manufacturing method]
次に、本発明の実施形態による露光装置を半導体素子を製造する露光装置に適 用し、この露光装置を用いて半導体素子を製造する方法について説明する。図 14 は、マイクロデバイスとしての半導体素子を製造する製造工程の一部を示すフローチ ヤートである。図 14に示す通り、まず、ステップ S 10 (設計ステップ)において、半導体 素子の機能'性能設計を行い、その機能を実現するためのパターン設計を行う。引き 続き、ステップ S 11 (マスク製作ステップ)において、設計したパターンを形成したマス ク(レチクル)を製作する。一方、ステップ S 12 (ウェハ製造ステップ)において、シリコ ン等の材料を用いてウェハを製造する。  Next, a method for manufacturing a semiconductor element using the exposure apparatus will be described in which the exposure apparatus according to the embodiment of the present invention is applied to an exposure apparatus for manufacturing a semiconductor element. FIG. 14 is a flow chart showing a part of a manufacturing process for manufacturing a semiconductor device as a micro device. As shown in Fig. 14, first, in step S10 (design step), the function design of the function of the semiconductor element is performed, and the pattern design for realizing the function is performed. Subsequently, in step S 11 (mask manufacturing step), a mask (reticle) having the designed pattern is manufactured. On the other hand, in step S 12 (wafer manufacturing step), a wafer is manufactured using a material such as silicon.
[0101] 次に、ステップ S 13 (ウェハ処理ステップ)において、ステップ S 10〜ステップ S 12で 用意したマスクとウェハを使用して、後述するように、リソグラフィ技術等によってゥェ ハ上に実際の回路等を形成する。次いで、ステップ S 14 (デバイス組立ステップ)に おいて、ステップ S 13で処理されたウェハを用いてデバイス組立を行う。このステップ S14〖こは、ダイシング工程、ボンティング工程、及びパッケージング工程 (チップ封入 )等の工程が必要に応じて含まれる。最後に、ステップ S 15 (検査ステップ)において 、ステップ S 14で作製されたマイクロデバイスの動作確認テスト、耐久性テスト等の検 查を行う。こうした工程を経た後にマイクロデバイスが完成し、これが出荷される。  [0101] Next, in step S13 (wafer processing step), using the mask and wafer prepared in steps S10 to S12, as will be described later, the wafer is actually processed on the wafer by lithography technology or the like. A circuit or the like is formed. Next, in step S 14 (device assembly step), device assembly is performed using the wafer processed in step S 13. This step S14 includes a dicing process, a bonding process, a packaging process (chip encapsulation), and the like as necessary. Finally, in step S 15 (inspection step), inspections such as an operation confirmation test and a durability test of the microdevice fabricated in step S 14 are performed. After these steps, the microdevice is completed and shipped.
[0102] 図 15は、図 14のステップ S13の詳細なフローの一例を示す図である。図 15におい て、ステップ S21 (酸化ステップ)においてはウェハの表面を酸化させる。ステップ S2 2 (CVDステップ)においてはウェハ表面に絶縁膜を形成する。ステップ S23 (電極形 成ステップ)においてはウェハ上に電極を蒸着によって形成する。ステップ S 24 (ィォ ン打込みステップ)においてはウェハにイオンを打ち込む。以上のステップ S21〜ス テツプ S24のそれぞれは、ウェハ処理の各段階の前処理工程を構成しており、各段 階において必要な処理に応じて選択されて実行される。  FIG. 15 is a diagram showing an example of a detailed flow of step S13 in FIG. In FIG. 15, in step S21 (oxidation step), the wafer surface is oxidized. In step S2 2 (CVD step), an insulating film is formed on the wafer surface. In step S23 (electrode formation step), an electrode is formed on the wafer by vapor deposition. In step S 24 (ion implantation step), ions are implanted into the wafer. Each of the above steps S21 to S24 constitutes a pre-processing step in each stage of wafer processing, and is selected and executed in accordance with necessary processing in each stage.
[0103] ウェハプロセスの各段階にお 、て、上述の前処理工程が終了すると、以下のように して後処理工程が実行される。この後処理工程では、まず、ステップ S25 (レジスト形 成ステップ)において、ウェハに感光剤を塗布する。引き続き、ステップ S26 (露光ェ 程)において、上で説明したリソグラフィシステム (露光装置)及び露光方法によって マスクのパターンをウェハに転写する。次に、ステップ S27 (現像工程)においては露 光されたウェハを現像し、ステップ S28 (エッチングステップ)において、レジストが残 存している部分以外の部分の露出部材をエッチングにより取り去る。そして、ステップ S29 (レジスト除去ステップ)において、エッチングが済んで不要となったレジストを取 り除く。これらの前処理工程と後処理工程とを繰り返し行うことによって、ウェハ上に多 重にパターンが形成される。 [0103] At each stage of the wafer process, when the above-described pre-processing step is completed, the post-processing step is executed as follows. In this post-processing process, first, in step S25 (resist formation step), a photosensitive agent is applied to the wafer. Continue with step S26 (Exposure In step (2), the mask pattern is transferred to the wafer by the lithography system (exposure apparatus) and exposure method described above. Next, in step S27 (development process), the exposed wafer is developed, and in step S28 (etching step), the exposed members other than the part where the resist remains are removed by etching. In step S29 (resist removal step), the resist that has become unnecessary after the etching is removed. By repeatedly performing these pre-processing and post-processing steps, multiple patterns are formed on the wafer.
[0104] 以上説明した本実施形態のデバイス製造方法を用いれば、露光工程 (ステップ S2 6)にお 、て上記の露光装置が備える投影光学系 PLの光学特性が調整されつつ、 レチクル Rに形成されたパターンがウエノ、 W上に転写される。このため、投影光学系 PLの像面と共役な面に入射する露光光 ILの断面形状及び大きさに応じて投影光学 系 PLの光学特性が調整される、微細なパターンを忠実にウェハ上に転写することが でき、その結果として製造不良が低減されて高い歩留まりでデバイスを製造すること ができる。 When the device manufacturing method of the present embodiment described above is used, in the exposure step (step S26), the optical characteristics of the projection optical system PL provided in the exposure apparatus are adjusted, and formed on the reticle R. The pattern is transferred onto Ueno, W. Therefore, the optical characteristics of the projection optical system PL are adjusted according to the cross-sectional shape and size of the exposure light IL incident on the plane conjugate with the image plane of the projection optical system PL. As a result, manufacturing defects can be reduced and devices can be manufactured with high yield.
[0105] 尚、本発明は、国際公開 (WO)第 99Z49504号パンフレット等に開示されている ような投影光学系 PLとウェハ Wとの間を局所的に液体で満たす液浸露光装置、特開 平 6— 124873号公報に開示されているような露光対象の基板を保持したステージを 液槽の中で移動させる液浸露光装置、特開平 10— 303114号公報に開示されて 、 るようなステージ上に所定深さの液体槽を形成し、その中に基板を保持する液浸露 光装置の何れの露光装置にも適用可能である。  Note that the present invention relates to an immersion exposure apparatus that locally fills a space between the projection optical system PL and the wafer W as disclosed in, for example, International Publication (WO) No. 99Z49504. An immersion exposure apparatus for moving a stage holding a substrate to be exposed as disclosed in Japanese Patent Laid-Open No. 6-124873 in a liquid tank, a stage as disclosed in Japanese Patent Laid-Open No. 10-303114 The present invention can be applied to any exposure apparatus of a liquid immersion optical apparatus in which a liquid tank having a predetermined depth is formed thereon and a substrate is held therein.

Claims

請求の範囲 The scope of the claims
[1] 照明光をマスクに照射する照明光学系と、前記マスクのパターンの像を基板上に投 影する投影光学系とを備える露光装置において、  [1] An exposure apparatus comprising: an illumination optical system that irradiates a mask with illumination light; and a projection optical system that projects an image of the mask pattern onto a substrate.
前記投影光学系の光学特性を調整する調整装置と、  An adjusting device for adjusting the optical characteristics of the projection optical system;
前記投影光学系の像面との共役面における前記照明光の断面形状及び大きさの 少なくとも一方を設定する設定装置と、  A setting device for setting at least one of a cross-sectional shape and a size of the illumination light in a conjugate plane with the image plane of the projection optical system;
前記設定装置によって設定された前記照明光の断面形状及び大きさに応じて、前 記調整装置による前記投影光学系の光学特性の調整を制御する制御装置と を備えることを特徴とする露光装置。  An exposure apparatus comprising: a control device that controls adjustment of optical characteristics of the projection optical system by the adjusting device according to a cross-sectional shape and size of the illumination light set by the setting device.
[2] 前記制御装置は、前記照明光の断面形状及び大きさに応じて前記投影光学系に 入射する光のエネルギーと前記投影光学系の光学特性の変動量との関係を示す伝 達関数を記憶する記憶部を備えており、当該記憶部に記憶された伝達関数を用いて 前記調整装置による前記投影光学系の光学特性の調整を制御することを特徴とする 請求項 1記載の露光装置。  [2] The control device generates a transfer function indicating a relationship between energy of light incident on the projection optical system and a variation amount of optical characteristics of the projection optical system according to a cross-sectional shape and size of the illumination light. 2. The exposure apparatus according to claim 1, further comprising a storage unit that stores data, wherein the adjustment of the optical characteristics of the projection optical system by the adjustment device is controlled using a transfer function stored in the storage unit.
[3] 前記制御装置は、前記照明光の断面形状及び大きさに応じて前記投影光学系に 対する光学特性の調整量を複数設定したテーブルを記憶する記憶部を備えており、 当該記憶部に記憶されたテーブルを用 V、て前記調整装置による前記投影光学系の 光学特性の調整を制御することを特徴とする請求項 1記載の露光装置。  [3] The control device includes a storage unit that stores a table in which a plurality of adjustment amounts of optical characteristics with respect to the projection optical system are set according to a cross-sectional shape and a size of the illumination light. 2. The exposure apparatus according to claim 1, wherein the adjustment of the optical characteristics of the projection optical system by the adjustment device is controlled by using the stored table.
[4] 前記投影光学系の光学特性は、非回転対称収差を含むことを特徴とする請求項 1 から請求項 3の何れか一項に記載の露光装置。  4. The exposure apparatus according to any one of claims 1 to 3, wherein the optical characteristics of the projection optical system include non-rotationally symmetric aberration.
[5] 前記投影光学系の光学特性は、回転対称収差を含むことを特徴とする請求項 4記 載の露光装置。  5. The exposure apparatus according to claim 4, wherein the optical characteristics of the projection optical system include rotationally symmetric aberration.
[6] 照明光をマスクに照射する照明光学系と、前記マスクのパターンの像を基板上に投 影する投影光学系とを備える露光装置において、  [6] An exposure apparatus comprising: an illumination optical system that irradiates a mask with illumination light; and a projection optical system that projects an image of the mask pattern onto a substrate.
前記投影光学系における非回転対称の静的な光学特性を調整する第 1調整機構 と、  A first adjustment mechanism for adjusting a static optical property of non-rotation symmetry in the projection optical system;
前記投影光学系における非回転対称の動的な光学特性を調整する第 2調整機構 と を備えることを特徴とする露光装置。 A second adjustment mechanism for adjusting non-rotationally symmetric dynamic optical characteristics in the projection optical system; An exposure apparatus comprising:
[7] 前記静的な光学特性は、前記投影光学系が初期状態で有している光学特性であ り、 [7] The static optical characteristic is an optical characteristic that the projection optical system has in an initial state,
前記動的な光学特性は、前記投影光学系に前記照明光を入射させたときに前記 照明光の照明条件に応じて変化する光学特性である  The dynamic optical characteristic is an optical characteristic that changes according to an illumination condition of the illumination light when the illumination light is incident on the projection optical system.
ことを特徴とする請求項 6記載の露光装置。  The exposure apparatus according to claim 6, wherein:
[8] 前記第 1調整機構は、前記投影光学系に含まれる少なくとも 1つの光学素子に対し て、加熱、冷却、加圧、減圧の少なくとも一つを行う機構を含むことを特徴とする請求 項 6又は請求項 7記載の露光装置。 8. The first adjustment mechanism includes a mechanism that performs at least one of heating, cooling, pressurization, and decompression on at least one optical element included in the projection optical system. The exposure apparatus according to claim 6 or 7.
[9] 前記第 2調整機構は、前記投影光学系の少なくとも一部に前記照明光の波長とは 異なる波長の光ビームを照射する機構を含むことを特徴とする請求項 6から請求項 8 の何れか一項に記載の露光装置。 9. The second adjustment mechanism includes a mechanism for irradiating at least a part of the projection optical system with a light beam having a wavelength different from the wavelength of the illumination light. The exposure apparatus according to any one of the above.
[10] 請求項 1から請求項 9の何れか一項に記載の露光装置を用いてデバイスのパター ンを物体上に転写する工程を含むことを特徴とするデバイス製造方法。 [10] A device manufacturing method comprising a step of transferring a device pattern onto an object using the exposure apparatus according to any one of [1] to [9].
PCT/JP2005/015800 2004-08-31 2005-08-30 Exposure apparatus and device manufacturing method WO2006025408A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006532735A JP5266641B2 (en) 2004-08-31 2005-08-30 Exposure apparatus and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004251877 2004-08-31
JP2004-251877 2004-08-31

Publications (1)

Publication Number Publication Date
WO2006025408A1 true WO2006025408A1 (en) 2006-03-09

Family

ID=36000058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015800 WO2006025408A1 (en) 2004-08-31 2005-08-30 Exposure apparatus and device manufacturing method

Country Status (3)

Country Link
JP (1) JP5266641B2 (en)
TW (1) TW200619865A (en)
WO (1) WO2006025408A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135742A (en) * 2006-11-27 2008-06-12 Asml Netherlands Bv Lithographic apparatus, method of manufacturing device, and computer program product
JP2008277822A (en) * 2007-05-04 2008-11-13 Asml Holding Nv Lithographic apparatus
WO2010098299A1 (en) * 2009-02-24 2010-09-02 株式会社ニコン Optical element retaining device, optical system, and exposure device
US7903234B2 (en) 2006-11-27 2011-03-08 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program product
JP2011520240A (en) * 2007-08-24 2011-07-14 カール・ツァイス・エスエムティー・ゲーエムベーハー Controllable optical element, method of operating optical element with thermal actuator, and projection exposure apparatus for semiconductor lithography
US8508854B2 (en) 2006-09-21 2013-08-13 Carl Zeiss Smt Gmbh Optical element and method
US8760744B2 (en) 2007-03-27 2014-06-24 Carl Zeiss Smt Gmbh Correction of optical elements by correction light irradiated in a flat manner
JP2015515134A (en) * 2012-04-18 2015-05-21 カール・ツァイス・エスエムティー・ゲーエムベーハー Microlithography apparatus and method for changing the optical wavefront in such an apparatus
US11474439B2 (en) 2019-06-25 2022-10-18 Canon Kabushiki Kaisha Exposure apparatus, exposure method, and method of manufacturing article
US11640119B2 (en) 2019-09-19 2023-05-02 Canon Kabushiki Kaisha Exposure method, exposure apparatus, article manufacturing method, and method of manufacturing semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6951498B2 (en) * 2019-06-25 2021-10-20 キヤノン株式会社 Exposure equipment, exposure method and article manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088178A (en) * 1994-04-22 1996-01-12 Canon Inc Projection aligner and manufacture of device
JPH09232213A (en) * 1996-02-26 1997-09-05 Nikon Corp Projection aligner
JPH11258498A (en) * 1998-03-13 1999-09-24 Nikon Corp Projective lens and scanning exposure device
JPH11305419A (en) * 1998-02-18 1999-11-05 Nikon Corp Photomask, aberration correction plate and exposure device
JP2001076993A (en) * 1999-09-01 2001-03-23 Canon Inc Exposure method and scanning exposure system using the same
JP2001217189A (en) * 2000-01-05 2001-08-10 Carl Zeiss:Fa Optical system
JP2001237180A (en) * 1999-12-29 2001-08-31 Carl Zeiss:Fa Optical device
JP2003234276A (en) * 2002-02-07 2003-08-22 Nikon Corp Exposure device and optical device, manufacturing method of device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088178A (en) * 1994-04-22 1996-01-12 Canon Inc Projection aligner and manufacture of device
JPH09232213A (en) * 1996-02-26 1997-09-05 Nikon Corp Projection aligner
JPH11305419A (en) * 1998-02-18 1999-11-05 Nikon Corp Photomask, aberration correction plate and exposure device
JPH11258498A (en) * 1998-03-13 1999-09-24 Nikon Corp Projective lens and scanning exposure device
JP2001076993A (en) * 1999-09-01 2001-03-23 Canon Inc Exposure method and scanning exposure system using the same
JP2001237180A (en) * 1999-12-29 2001-08-31 Carl Zeiss:Fa Optical device
JP2001217189A (en) * 2000-01-05 2001-08-10 Carl Zeiss:Fa Optical system
JP2003234276A (en) * 2002-02-07 2003-08-22 Nikon Corp Exposure device and optical device, manufacturing method of device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8508854B2 (en) 2006-09-21 2013-08-13 Carl Zeiss Smt Gmbh Optical element and method
US8891172B2 (en) 2006-09-21 2014-11-18 Carl Zeiss Smt Gmbh Optical element and method
JP2008135742A (en) * 2006-11-27 2008-06-12 Asml Netherlands Bv Lithographic apparatus, method of manufacturing device, and computer program product
US7903234B2 (en) 2006-11-27 2011-03-08 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program product
US10054786B2 (en) 2007-03-27 2018-08-21 Carl Zeiss Smt Gmbh Correction of optical elements by correction light irradiated in a flat manner
US8760744B2 (en) 2007-03-27 2014-06-24 Carl Zeiss Smt Gmbh Correction of optical elements by correction light irradiated in a flat manner
US8811568B2 (en) 2007-03-27 2014-08-19 Carl Zeiss Smt Gmbh Correction of optical elements by correction light irradiated in a flat manner
US9366857B2 (en) 2007-03-27 2016-06-14 Carl Zeiss Smt Gmbh Correction of optical elements by correction light irradiated in a flat manner
JP2008277822A (en) * 2007-05-04 2008-11-13 Asml Holding Nv Lithographic apparatus
US8325322B2 (en) 2007-08-24 2012-12-04 Carl Zeiss Smt Gmbh Optical correction device
JP2011520240A (en) * 2007-08-24 2011-07-14 カール・ツァイス・エスエムティー・ゲーエムベーハー Controllable optical element, method of operating optical element with thermal actuator, and projection exposure apparatus for semiconductor lithography
WO2010098299A1 (en) * 2009-02-24 2010-09-02 株式会社ニコン Optical element retaining device, optical system, and exposure device
JP2015515134A (en) * 2012-04-18 2015-05-21 カール・ツァイス・エスエムティー・ゲーエムベーハー Microlithography apparatus and method for changing the optical wavefront in such an apparatus
US10423082B2 (en) 2012-04-18 2019-09-24 Carl Zeiss Smt Gmbh Microlithographic apparatus and method of changing an optical wavefront in such an apparatus
US11474439B2 (en) 2019-06-25 2022-10-18 Canon Kabushiki Kaisha Exposure apparatus, exposure method, and method of manufacturing article
US11640119B2 (en) 2019-09-19 2023-05-02 Canon Kabushiki Kaisha Exposure method, exposure apparatus, article manufacturing method, and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
TW200619865A (en) 2006-06-16
JPWO2006025408A1 (en) 2008-05-08
TWI315452B (en) 2009-10-01
JP5266641B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5099933B2 (en) Exposure method and apparatus, and device manufacturing method
JP5266641B2 (en) Exposure apparatus and device manufacturing method
JP4692753B2 (en) Exposure method and apparatus, and device manufacturing method
US20030137654A1 (en) Wavefront aberration measuring instrument, wavefront aberration measuring method, exposure apparautus, and method for manufacturing micro device
JPWO2007000984A1 (en) Exposure method, exposure apparatus, and device manufacturing method
US7385672B2 (en) Exposure apparatus and method
JP2003092253A (en) Illumination optical system, projection aligner, and manufacturing method of microdevice
US20100290020A1 (en) Optical apparatus, exposure apparatus, exposure method, and method for producing device
JP2005311020A (en) Exposure method and method of manufacturing device
JP2006073584A (en) Exposure apparatus and exposure method, and device manufacturing method
JP3762323B2 (en) Exposure equipment
JP4655332B2 (en) Exposure apparatus, exposure apparatus adjustment method, and microdevice manufacturing method
JP2005051147A (en) Exposure method and exposure device
WO1999018604A1 (en) Projection exposure method and apparatus
JPH0784357A (en) Exposure mask and projecting exposure method
JP4147574B2 (en) Wavefront aberration measurement method, projection optical system adjustment method and exposure method, and exposure apparatus manufacturing method
WO2013094733A1 (en) Measurement method and device, and maintenance method and device
JP2003100612A (en) Surface position detecting apparatus, method of adjusting the focusing apparatus, surface position detecting method, exposing apparatus and method of manufacturing device
JP2003045795A (en) Optical characteristics measurement method, adjustment and exposure method of projection optical system, and manufacturing method of aligner
JP2005051145A (en) Exposure method and exposure device
JP2009111175A (en) Illumination optical apparatus, exposure apparatus, and manufacturing method of device
JP2000164489A (en) Scanning projection aligner
JP2004146732A (en) Exposure method and exposure device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006532735

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase