JPH04179115A - Contracted projection aligner - Google Patents

Contracted projection aligner

Info

Publication number
JPH04179115A
JPH04179115A JP2303484A JP30348490A JPH04179115A JP H04179115 A JPH04179115 A JP H04179115A JP 2303484 A JP2303484 A JP 2303484A JP 30348490 A JP30348490 A JP 30348490A JP H04179115 A JPH04179115 A JP H04179115A
Authority
JP
Japan
Prior art keywords
stage
michelson
interferometers
laser
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2303484A
Other languages
Japanese (ja)
Inventor
Kazuhisa Tajima
田島 一久
Makoto Ikejiri
池尻 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Kyushu Ltd
Original Assignee
NEC Kyushu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Kyushu Ltd filed Critical NEC Kyushu Ltd
Priority to JP2303484A priority Critical patent/JPH04179115A/en
Publication of JPH04179115A publication Critical patent/JPH04179115A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position

Abstract

PURPOSE:To enable the slip and the gradient in the Z axial direction on the reflection surface to be monitored per shot by a method wherein Michelson's interferometers are respectively arranged in X, Y, Z axial directions on a stage to mount a semiconductor wafer and mobile mirrors perpendicularly opposing to the laser beams oscillated from respective interferometers are fitted to the stage. CONSTITUTION:Mobil mirrors 2-5 are fitted to the side of a stage 1. Next, Michelson's laser interferometers 6, 8 are arranged on the perpendicular surfaces of X Z of the mobile mirror 2 while the Michelson's laser interferometers 7, 9 are arranged on the perpendicular surfaces of X Z of the mobile mirror 3. Through these procedures, in order to contact-project the pattern on the semiconductor wafer 10 on a stage 1, the gradient and the slip of the stage 1 can be constantly monitored thereby enabling the mechanical error due to aging, etc., in the device to be corrected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体製造装置に関し、特に縮小投影露光装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor manufacturing apparatus, and particularly to a reduction projection exposure apparatus.

〔従来の技術〕[Conventional technology]

従来の縮小投影露光装置では、第3図の斜視図に示す様
に、半導体ウェハー10をのせるステージ1は、X軸、
Y軸方向に対し各々垂直な面を持つ移動鏡11と、その
各々の面に対して対面して設けられたマイケルソンレー
ザ干渉計6及び7を有している。このステージ1めモニ
タ動作としては、固定されたマイケルソンレーザ干渉計
6及び7から発した照射レーザ光]2がそれぞれ垂直に
対面する移動鏡11で反射され、反射レーザ光13とし
て照射レーザ光12と同一光路を反射されてくる。
In the conventional reduction projection exposure apparatus, as shown in the perspective view of FIG.
It has movable mirrors 11 each having a surface perpendicular to the Y-axis direction, and Michelson laser interferometers 6 and 7 provided facing each surface. In the first stage monitoring operation, the irradiated laser beams 2 emitted from the fixed Michelson laser interferometers 6 and 7 are reflected by the vertically facing movable mirrors 11, and the irradiated laser beams 12 are reflected as reflected laser beams 13. It is reflected along the same optical path.

こめ照射レーザ光12及び反射レーザ光13を干渉さぜ
ると、各レーザ光は単一波長で且つ位相が揃っていると
いう性質により、ステージ]がX、Y平面を移動する際
、X、Y軸に沿って、使用しているレーザ光の波長λの
λ/4の距離毎に、マイケルソンレーザ干渉計6及び7
のディテクター面上では明暗を繰り返す。
When the irradiated laser beam 12 and the reflected laser beam 13 are interfered, each laser beam has a single wavelength and the same phase. Along the axis, at every distance of λ/4 of the wavelength λ of the laser light being used, Michelson laser interferometers 6 and 7 are installed.
The light and darkness repeats on the detector surface.

この明暗の数をカウントする事により、ステージのX、
Y方向への正確な位置をモニタしていた。
By counting the number of brightness and darkness, the X of the stage,
The exact position in the Y direction was monitored.

第5図は、マイケルソンレーザ干渉計の原理図である。FIG. 5 is a diagram showing the principle of a Michelson laser interferometer.

ずなわぢ、レーザ発振器14からの照射レーザ光12と
、移動鏡2で反射する反射レーザ光13との干渉縞がデ
ィテクター面上に表れる。
Interference fringes between the irradiated laser beam 12 from the laser oscillator 14 and the reflected laser beam 13 reflected by the movable mirror 2 appear on the detector surface.

18は固定鏡である。18 is a fixed mirror.

家な、ステージのZ軸方向の露光面の変動に対しては、
第4図の光路図に示す様に、レーザ発振器14から出た
レーザ光がステージ面あるいは半導体ウェハー面の反射
面15で反射され、ディテクター17で受光される時の
バーピングミラー16の回転角度で、反斜面のZ軸方向
ずれ及び傾斜をショット毎にフォーカスコントロールを
行ない、モニターする様な構成となっている。
Regarding the fluctuation of the exposure surface in the Z-axis direction of the stage,
As shown in the optical path diagram of FIG. 4, the rotation angle of the burping mirror 16 when the laser beam emitted from the laser oscillator 14 is reflected by the reflecting surface 15 of the stage surface or the semiconductor wafer surface and received by the detector 17. The configuration is such that the focus control is performed and the inclination of the opposite slope in the Z-axis direction is monitored for each shot.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この従来の縮小投影露光装置では、X、Y軸方向へのス
テージの移動量のみ常時モニタする方式%式% その為、ステージのZ軸方向のずれ及び傾斜については
、第4図に示した方法で、ショット毎にフォーカスを取
る事で行なっているが、実際的にビ は、バーヤングミラー16の回転角度と反射面15のず
れ量の相関を取って間接的に行なっている。この様なシ
ステムでは、バーピングミラー16の回転角度と反射面
15のずれ量との相関が崩れた場合、リアルタイムでそ
の崩れを確認する事が出来ないという問題点があった。
This conventional reduction projection exposure apparatus uses a method that constantly monitors only the amount of movement of the stage in the X and Y axis directions.Therefore, the shift and inclination of the stage in the Z axis direction can be determined using the method shown in Figure 4. Although this is done by taking focus for each shot, in reality, B is done indirectly by calculating the correlation between the rotation angle of the Buryoung mirror 16 and the amount of shift of the reflecting surface 15. Such a system has a problem in that if the correlation between the rotation angle of the burping mirror 16 and the amount of deviation of the reflective surface 15 breaks down, it is not possible to confirm the break in real time.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の縮小投影露光装置は、半導体ウェハーをのせる
ステージのX、Y、Z軸方向の各々にマイケルソンレー
ザ干渉計を設け、前記各々の干渉形から発振するレーザ
光の各々に垂直に対面する移動鏡を前記ステージに備え
ている。
In the reduction projection exposure apparatus of the present invention, a Michelson laser interferometer is provided in each of the X, Y, and Z axis directions of a stage on which a semiconductor wafer is placed, and the Michelson laser interferometer is provided perpendicularly to each of the laser beams oscillated from each of the above-mentioned interference types. The stage is equipped with a movable mirror.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の実施例1の斜視図である。本実施例は
、ステージ1の側面に移動鏡2〜5を取り付け、移動鏡
2の垂直なX−7の2面に対してマイケルソンレーザ干
渉計6と8を、また移動鏡3の垂直なX−7面に対して
マイケルソンレーザ干渉計7と9を、第1図の様に配置
している。
FIG. 1 is a perspective view of Embodiment 1 of the present invention. In this embodiment, movable mirrors 2 to 5 are attached to the side surface of stage 1, Michelson laser interferometers 6 and 8 are mounted on the two vertical X-7 surfaces of movable mirror 2, and Michelson laser interferometers 6 and 8 are mounted on the vertical Michelson laser interferometers 7 and 9 are arranged on the X-7 plane as shown in FIG.

この様な構成にする事により、ステージ1上の半導体ウ
ェハー]0上にあるパターンを縮小投影する際、ステー
ジ11の傾斜及びずれを常時モニタする事ができ、装置
の経時変化等による機械的な誤差の補正を可能にしてい
る。
With this configuration, when reducing and projecting the pattern on the semiconductor wafer 0 on stage 1, the inclination and displacement of stage 11 can be constantly monitored, and mechanical damage due to changes in the equipment over time etc. can be constantly monitored. This makes it possible to correct errors.

第2図は、本発明の実施例2の斜視図で、ステージ1の
側面に移動@2〜5を取り付け、Z軸方向のマイケルソ
ンレーザ干渉計8から移動鏡2〜5のZ軸面までの距離
を、ステージ1に取り付けた中心軸を回転させる事で測
定し、ステージの傾きをチエツクできるようにしたもの
である。この実施例によれば、マイケルソンレーザ干渉
計が1個で済むという利点がある。
FIG. 2 is a perspective view of Embodiment 2 of the present invention, in which the movable mirrors 2 to 5 are attached to the side surface of the stage 1, and the Michelson laser interferometer 8 in the Z-axis direction is moved from the Michelson laser interferometer 8 to the Z-axis plane of the movable mirrors 2 to 5. This distance is measured by rotating the central axis attached to the stage 1, and the inclination of the stage can be checked. This embodiment has the advantage that only one Michelson laser interferometer is required.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明は、x、Y軸方向の移動量に対
してだけでなく、Z軸方向のステージの傾斜及びずれに
対しても、常時モニタできるという効果を有する。
As explained above, the present invention has the advantage of being able to constantly monitor not only the amount of movement in the x- and Y-axis directions, but also the inclination and displacement of the stage in the Z-axis direction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1の斜視図、第2図は本発明の
実施例2の斜視図、第3図は従来の露光装置の斜視図、
第4図は従来のフォーカスコンI・ロールの光路図、第
5図はマイケルソンレーザ干渉計の原理図である。 1・・・ステージ、2,3,4.5・・・移動鏡、6゜
7.8.9・・・マイケルソンレーザ干渉計、10・・
・半導体ウェハー、11・・・移動鏡、12・・・照射
レーザ光、13・・・反射レーザ光、]4・・・レーザ
発振器、15・・・反射面、16・・・バーピングミラ
ー、17・・・デイデクター、]8・・・固定鏡。
FIG. 1 is a perspective view of Embodiment 1 of the present invention, FIG. 2 is a perspective view of Embodiment 2 of the present invention, and FIG. 3 is a perspective view of a conventional exposure apparatus.
FIG. 4 is an optical path diagram of a conventional focus controller I roll, and FIG. 5 is a principle diagram of a Michelson laser interferometer. 1... Stage, 2, 3, 4.5... Moving mirror, 6° 7.8.9... Michelson laser interferometer, 10...
- Semiconductor wafer, 11... Moving mirror, 12... Irradiated laser beam, 13... Reflected laser beam,] 4... Laser oscillator, 15... Reflective surface, 16... Burping mirror, 17...Deidector, ]8...Fixed mirror.

Claims (1)

【特許請求の範囲】[Claims]  半導体ウェハーをのせるステージのX、Y、Z軸方向
の各々にマイケルソンレーザ干渉計を設け、前記各々の
干渉計から発振するレーザ光の各々に垂直に対面する移
動鏡を前記ステージに備えていることを特徴とする縮小
投影露光装置。
A Michelson laser interferometer is provided in each of the X, Y, and Z axis directions of a stage on which a semiconductor wafer is placed, and the stage is provided with a movable mirror that faces each of the laser beams oscillated from each of the interferometers perpendicularly. A reduction projection exposure apparatus characterized by:
JP2303484A 1990-11-08 1990-11-08 Contracted projection aligner Pending JPH04179115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2303484A JPH04179115A (en) 1990-11-08 1990-11-08 Contracted projection aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2303484A JPH04179115A (en) 1990-11-08 1990-11-08 Contracted projection aligner

Publications (1)

Publication Number Publication Date
JPH04179115A true JPH04179115A (en) 1992-06-25

Family

ID=17921508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2303484A Pending JPH04179115A (en) 1990-11-08 1990-11-08 Contracted projection aligner

Country Status (1)

Country Link
JP (1) JPH04179115A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151277A (en) * 1992-10-30 1994-05-31 Canon Inc Aligner
JPH10270305A (en) * 1997-03-26 1998-10-09 Nikon Corp Method of exposure
WO1999028790A1 (en) * 1997-12-02 1999-06-10 Asm Lithography B.V. Interferometer system and lithographic apparatus comprising such a system
EP1285222A1 (en) * 2000-05-17 2003-02-26 Zygo Corporation Interferometric apparatus and method
US6674510B1 (en) 1999-03-08 2004-01-06 Asml Netherlands B.V. Off-axis levelling in lithographic projection apparatus
US6819433B2 (en) 2001-02-15 2004-11-16 Canon Kabushiki Kaisha Exposure apparatus including interferometer system
US6924884B2 (en) 1999-03-08 2005-08-02 Asml Netherlands B.V. Off-axis leveling in lithographic projection apparatus
KR100578140B1 (en) * 2004-10-07 2006-05-10 삼성전자주식회사 Interferometer System For Measuring Displacement And Exposure System Using The Same
US7116401B2 (en) 1999-03-08 2006-10-03 Asml Netherlands B.V. Lithographic projection apparatus using catoptrics in an optical sensor system, optical arrangement, method of measuring, and device manufacturing method
WO2007097466A1 (en) * 2006-02-21 2007-08-30 Nikon Corporation Measuring device and method, processing device and method, pattern forming device and method, exposing device and method, and device fabricating method
US8054472B2 (en) 2006-02-21 2011-11-08 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06151277A (en) * 1992-10-30 1994-05-31 Canon Inc Aligner
JPH10270305A (en) * 1997-03-26 1998-10-09 Nikon Corp Method of exposure
EP1347336A1 (en) * 1997-12-02 2003-09-24 ASML Netherlands B.V. Interferometer system and lithographic apparatus comprising such a system
WO1999028790A1 (en) * 1997-12-02 1999-06-10 Asm Lithography B.V. Interferometer system and lithographic apparatus comprising such a system
US6020964A (en) * 1997-12-02 2000-02-01 Asm Lithography B.V. Interferometer system and lithograph apparatus including an interferometer system
US6674510B1 (en) 1999-03-08 2004-01-06 Asml Netherlands B.V. Off-axis levelling in lithographic projection apparatus
US7206058B2 (en) 1999-03-08 2007-04-17 Asml Netherlands B.V. Off-axis levelling in lithographic projection apparatus
US6882405B2 (en) 1999-03-08 2005-04-19 Asml Netherlands B.V. Off-axis levelling in lithographic projection apparatus
US6924884B2 (en) 1999-03-08 2005-08-02 Asml Netherlands B.V. Off-axis leveling in lithographic projection apparatus
US7019815B2 (en) 1999-03-08 2006-03-28 Asml Netherlands B.V. Off-axis leveling in lithographic projection apparatus
US7202938B2 (en) 1999-03-08 2007-04-10 Asml Netherlands B.V. Off-axis levelling in lithographic projection apparatus
US7116401B2 (en) 1999-03-08 2006-10-03 Asml Netherlands B.V. Lithographic projection apparatus using catoptrics in an optical sensor system, optical arrangement, method of measuring, and device manufacturing method
EP1285222A4 (en) * 2000-05-17 2006-11-15 Zygo Corp Interferometric apparatus and method
EP1285222A1 (en) * 2000-05-17 2003-02-26 Zygo Corporation Interferometric apparatus and method
US6819433B2 (en) 2001-02-15 2004-11-16 Canon Kabushiki Kaisha Exposure apparatus including interferometer system
KR100482267B1 (en) * 2001-02-15 2005-04-13 캐논 가부시끼가이샤 Exposure apparatus including interferometer system
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
KR100578140B1 (en) * 2004-10-07 2006-05-10 삼성전자주식회사 Interferometer System For Measuring Displacement And Exposure System Using The Same
US7433048B2 (en) 2004-10-07 2008-10-07 Samsung Electronics Co., Ltd. Interferometer systems for measuring displacement and exposure systems using the same
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10088759B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10234773B2 (en) 2006-02-21 2019-03-19 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10409173B2 (en) 2006-02-21 2019-09-10 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US10088343B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US9329060B2 (en) 2006-02-21 2016-05-03 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
JP5177674B2 (en) * 2006-02-21 2013-04-03 株式会社ニコン Measuring apparatus and method, pattern forming apparatus and method, and device manufacturing method
US9989859B2 (en) 2006-02-21 2018-06-05 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
JP2012094899A (en) * 2006-02-21 2012-05-17 Nikon Corp Processing apparatus and method, pattern forming apparatus, exposure device and method, and method for manufacturing device
US10012913B2 (en) 2006-02-21 2018-07-03 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10345121B2 (en) 2006-02-21 2019-07-09 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
WO2007097466A1 (en) * 2006-02-21 2007-08-30 Nikon Corporation Measuring device and method, processing device and method, pattern forming device and method, exposing device and method, and device fabricating method
US9857697B2 (en) 2006-02-21 2018-01-02 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US10132658B2 (en) 2006-02-21 2018-11-20 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10139738B2 (en) 2006-02-21 2018-11-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US8054472B2 (en) 2006-02-21 2011-11-08 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US8027021B2 (en) 2006-02-21 2011-09-27 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Similar Documents

Publication Publication Date Title
JPH04179115A (en) Contracted projection aligner
US7130056B2 (en) System and method of using a side-mounted interferometer to acquire position information
EP0956518B1 (en) Interferometer system and lithographic apparatus comprising such a system
EP0823977B1 (en) Lithopraphic apparatus for step-and-scan imaging of a mask pattern
KR100632427B1 (en) Method and apparatus for repeatedly projecting a mask pattern using time-saving height measurement
JP3774476B2 (en) Interferometer system using two wavelengths and lithographic apparatus comprising such a system
NL9100215A (en) Apparatus for the repetitive imaging of a mask pattern on a substrate.
EP1664931A2 (en) Surface triangulation and profiling through a thin film coating
JPH09275072A (en) Straightness error correction method for moving mirror and stage device
KR20020067658A (en) Exposure apparatus including interferometer system
JPH0310105A (en) Method and apparatus for measuring or determining position
US7139080B2 (en) Interferometry systems involving a dynamic beam-steering assembly
US6674512B2 (en) Interferometer system for a semiconductor exposure system
JP3849266B2 (en) Laser interference length measuring method and apparatus, stage apparatus using the same, and exposure apparatus using the same
KR100503877B1 (en) Differential interferometer system and lithographic step-and-scan device with it
JPS62150106A (en) Apparatus for detecting position
JPH09171954A (en) Position measuring equipment
JPH10284416A (en) Scanning aligner and its method
JPH11132762A (en) Measuring method of difference in flatness of long mirror of scanning type exposing device
JPH10281720A (en) Stage device and wave front aberration measuring device using the same
SU1315799A1 (en) Device for measuring linear displacements
KR19980070129A (en) Measuring device with interferometer
JPH08327343A (en) Straightness measuring apparatus
JPH08297010A (en) Laser measuring apparatus and stage apparatus or aligner having the apparatus
JPH0719842A (en) Optical measuring apparatus for shape of surface