JP2003229347A - Semiconductor manufacturing device - Google Patents

Semiconductor manufacturing device

Info

Publication number
JP2003229347A
JP2003229347A JP2002024079A JP2002024079A JP2003229347A JP 2003229347 A JP2003229347 A JP 2003229347A JP 2002024079 A JP2002024079 A JP 2002024079A JP 2002024079 A JP2002024079 A JP 2002024079A JP 2003229347 A JP2003229347 A JP 2003229347A
Authority
JP
Japan
Prior art keywords
temperature
heat
chuck
semiconductor manufacturing
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002024079A
Other languages
Japanese (ja)
Inventor
Nobushige Korenaga
伸茂 是永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002024079A priority Critical patent/JP2003229347A/en
Publication of JP2003229347A publication Critical patent/JP2003229347A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-contact temperature control means of high precision in a vacuum, and also to provide an aligner comprising the temperature control means. <P>SOLUTION: The aligner uses an EUV light source for exposure in a vacuum to bake a minute pattern. An electrostatic chuck is used to secure a work piece such as wafer in a vacuum, only to generate heat by the electrostatic chuck. If it is cooled directly, vibration for cooling is transmitted to the wafer, resulting in the degraded positional accuracy of a pattern. A radiating board supported not to contact the chuck is provided as a countermeasure, and the temperature of the radiant board is set to a low value so that a sufficient amount of heat is moved from the chuck to the radiant boards at all times. Further, the chuck is provided with a heating body and a temperature-measuring means to control a temperature by controlling the amount of heat applied to the heating body. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、真空中で動作する
半導体露光装置、および半導体製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor exposure apparatus that operates in a vacuum and a semiconductor manufacturing apparatus.

【0002】[0002]

【従来の技術】図8に従来の大気中で使用される半導体
露光装置を示す。照明系、マスクステージ系、投影系、
ウエハステージから構成される。マスクステージ系と投
影系は不図示本体系で支持されるのが一般的である。
2. Description of the Related Art FIG. 8 shows a conventional semiconductor exposure apparatus used in the atmosphere. Lighting system, mask stage system, projection system,
It consists of a wafer stage. The mask stage system and the projection system are generally supported by a main body system (not shown).

【0003】図9の(a)にウエハステージ全体の斜視
図を示す。長ストロークをXY面内で移動する粗動ステ
ージ上に小ストロークをXYZωxωyωzの6軸方向
に移動可能な微動ステージが搭載され、微動ステージの
上にウエハチャックが載置されチャックされたウエハに
不図示露光系によって原版のパターンを焼き付けるよう
になっている。チャックは真空チャックが用いられる。
微動ステージの位置はミラーに照射されるレーザ干渉計
で高精度に計測制御される。
FIG. 9A shows a perspective view of the entire wafer stage. A fine movement stage capable of moving a small stroke in the 6-axis directions of XYZωxωyωz is mounted on a coarse movement stage that moves a long stroke in the XY plane, and a wafer chuck is placed on the fine movement stage and a wafer chucked is not shown. The exposure system prints the pattern of the original plate. A vacuum chuck is used as the chuck.
The position of the fine movement stage is measured and controlled with high accuracy by a laser interferometer irradiated on the mirror.

【0004】微動ステージは6軸をリニアモータ、とく
にローレンツ力タイプのリニアモータで制御するものが
望ましい。微動ステージをローレンツタイプのリニアモ
ータで制御すると粗動ステージからの振動が絶縁される
ので、最も高精度な制御が可能となる。
It is desirable that the fine movement stage controls six axes by a linear motor, particularly a Lorentz force type linear motor. When the fine movement stage is controlled by a Lorentz type linear motor, the vibration from the coarse movement stage is insulated, and the most precise control is possible.

【0005】粗動ステージは2段重ね構成のもの以外に
いわゆる田の字構成のもの、平面モータ構成のものなど
がある。駆動手段はリニアモータが一般的である。
Coarse movement stages include those having a so-called cross-shaped configuration and a planar motor configuration in addition to the two-stage overlapping configuration. A linear motor is generally used as the driving means.

【0006】従来例における発熱源は粗動ステージ駆動
用リニアモータ、微動ステージ駆動用リニアモータ、お
よび不図示露光手段による露光熱である。
The heat sources in the conventional example are the linear motor for driving the coarse moving stage, the linear motor for driving the fine moving stage, and the exposure heat from the exposing means (not shown).

【0007】発熱源から発熱があると、レーザ干渉計光
路の空気密度が変化し計測精度を劣化させるし、粗動ス
テージや微動ステージが熱で変形しウエハが歪んだり計
測基準が歪んだりする。どちらも焼き付けられるパター
ンの精度を劣化させる。
When heat is generated from the heat source, the air density in the optical path of the laser interferometer is changed to deteriorate the measurement accuracy, and the coarse movement stage and the fine movement stage are deformed by heat, and the wafer is distorted or the measurement reference is distorted. Both degrade the accuracy of the pattern printed.

【0008】この対策として図9の(b)と(c)に示
すように粗動リニアモータ、微動リニアモータにジャケ
ットを設けてそこに冷媒を循環させることでモータコイ
ルからの発熱を除去し、それでもジャケット外に漏れる
発熱は露光雰囲気全体に温調された空気を循環させて除
去するようにしている。
As a countermeasure against this, as shown in FIGS. 9B and 9C, a coarse linear motor and a fine linear motor are provided with a jacket, and a refrigerant is circulated through the jacket to remove heat generated from the motor coil. Even so, heat generated by leaking out of the jacket is removed by circulating temperature-controlled air throughout the exposure atmosphere.

【0009】微動ステージリニアモータの断面図は図9
の(b)、粗動リニアモータの上から見た断面図は図9
の(c)、である。
A sectional view of the fine movement stage linear motor is shown in FIG.
(B), a cross-sectional view of the coarse motion linear motor seen from above is shown in FIG.
(C) of.

【0010】一方露光系からの熱は大気中に伝導で逃げ
ていくので温調された空気を循環させることで十分事足
りている。
On the other hand, since the heat from the exposure system escapes to the atmosphere by conduction, it is sufficient to circulate the temperature-controlled air.

【0011】[0011]

【発明が解決しようとする課題】より微細なパターンを
焼き付けるためにEUV光源を使用し真空中で真空中で
露光を行う装置が提案されている。
An apparatus for exposing in a vacuum using an EUV light source for printing a finer pattern has been proposed.

【0012】真空中で露光を行う装置では空気を介した
熱の伝導が無視できる。このため従来例で問題になった
干渉計光路の揺らぎ問題は生じない。またアクチュエー
タと各部材を非接触に構成しておけばアクチュエータか
らの空気を介した熱の伝導も無視できるし、アクチュエ
ータのコイル等をジャケットで囲んで水冷すればコイル
からの発熱をほぼ100%除去できるのでアクチュエー
タから外部への熱の漏れも格段に小さくなる。
In an apparatus which performs exposure in a vacuum, heat conduction through air can be ignored. Therefore, the problem of fluctuation of the optical path of the interferometer, which has been a problem in the conventional example, does not occur. In addition, if the actuator and each member are configured so as not to contact with each other, the conduction of heat from the actuator via air can be ignored, and if the actuator coil is surrounded by a jacket and water-cooled, almost 100% of the heat generated from the coil is removed. As a result, the leakage of heat from the actuator to the outside is significantly reduced.

【0013】がしかし真空中の露光装置ではまわりが真
空なので露光系からの露光熱はまわりに逃げることは出
来ない。さらに真空中では従来例のような真空チャック
が使えないので静電チャックを用いる。ところが静電チ
ャックにはそれ自体が発熱する特性があり熱源がひとつ
増える。露光熱と静電チャックからの熱を除去するため
にチャック周りに冷却水を流すと冷却系からの振動を微
動ステージに伝達してしまう。すると6軸微動ステージ
のもつ振動絶縁という利点を損ない微動ステージの位置
精度を劣化させてしまうという欠点がある。
However, in an exposure apparatus in vacuum, the heat of exposure from the exposure system cannot escape to the surroundings because the surrounding area is vacuum. Furthermore, an electrostatic chuck is used in a vacuum because a vacuum chuck like the conventional example cannot be used. However, the electrostatic chuck has a characteristic of generating heat by itself, and the number of heat sources increases by one. When cooling water is caused to flow around the chuck to remove the exposure heat and the heat from the electrostatic chuck, the vibration from the cooling system is transmitted to the fine movement stage. Then, there is a drawback that the advantage of the vibration isolation of the 6-axis fine movement stage is lost and the positional accuracy of the fine movement stage is deteriorated.

【0014】次に考えられるのは輻射を用いた熱の除去
で、チャック近傍に輻射板を設けて輻射板の温度を制御
し静電チャックや露光熱を除去することである。しかし
輻射現象はチャックと輻射板だけの間だけでなく周囲の
全ての物体との間で起こる。よって輻射板の温度を制御
し輻射板とチャック間で授受される熱量だけを制御して
もチャックを所望の状態に制御するのは極めて困難であ
る。つまり輻射による温調は精度が悪いという問題があ
る。
The next conceivable method is the removal of heat using radiation, in which a radiation plate is provided near the chuck to control the temperature of the radiation plate and remove the electrostatic chuck and exposure heat. However, the radiation phenomenon occurs not only between the chuck and the radiation plate but also between all surrounding objects. Therefore, it is extremely difficult to control the chuck to a desired state even if the temperature of the radiation plate is controlled and only the amount of heat exchanged between the radiation plate and the chuck is controlled. That is, there is a problem that the temperature control by radiation is inaccurate.

【0015】本発明は、真空中において非接触で高精度
の温調手段を提供すること、その温調手段を備える露光
装置を提供することを目的とする。
An object of the present invention is to provide a highly accurate temperature adjusting means in a non-contact state in a vacuum and an exposure apparatus provided with the temperature adjusting means.

【0016】[0016]

【課題を解決するための手段】輻射板の温度を低温に設
定し、チャックから輻射板へ常に十分な熱量が移動する
ようにして周囲の温度、つまり周囲の物体との輻射によ
る熱の授受の程度にかかわらずチャックの温度は単調に
減少する状況をつくる。さらにチャックに加熱体および
温度計測手段を設けて温調は加熱体に加える熱の大小で
行うようにする。
[Means for Solving the Problems] The temperature of the radiation plate is set to a low temperature so that a sufficient amount of heat is always transferred from the chuck to the radiation plate, and the ambient temperature, that is, the transfer of heat to and from the surrounding object due to radiation is transferred. Regardless of the degree, the temperature of the chuck will decrease monotonically. Further, the chuck is provided with a heating body and a temperature measuring means so that the temperature is controlled by the amount of heat applied to the heating body.

【0017】微細なパターンを焼き付けるためにEUV
光源を使用し真空中で真空中で露光を行う露光装置が提
案されている。真空中ではウエハ等の工作物を固定する
のに静電チャックが用いられるが、静電チャックは発熱
を伴う。これを直接冷却すると冷却のための振動がウエ
ハに伝達されパターンの位置精度を劣化させる。そこで
チャックと非接触に支持される輻射板を設け輻射板の温
度を低温に設定し、チャックから輻射板へ常に十分な熱
量が移動するようにし、さらにチャックに加熱体および
温度計測手段を設けて温調は加熱体に加える熱の大小で
行うようにする。
EUV for printing fine patterns
An exposure apparatus that uses a light source to perform exposure in vacuum has been proposed. An electrostatic chuck is used to fix a workpiece such as a wafer in a vacuum, but the electrostatic chuck generates heat. If this is directly cooled, the vibration for cooling is transmitted to the wafer and the positional accuracy of the pattern deteriorates. Therefore, a radiation plate that is supported in non-contact with the chuck is provided, and the temperature of the radiation plate is set to a low temperature so that a sufficient amount of heat is always transferred from the chuck to the radiation plate. Temperature control should be performed according to the amount of heat applied to the heating element.

【0018】[0018]

【発明の実施の形態】〈第1実施例〉全体図を図1に示
す。真空中で使用する装置であるから真空チャンバが設
けられ、ステージ系は真空チャンバの中に入っていて、
真空チャンバ内は高真空に保たれている。ステージ構
成、アクチュエータ構成は従来例と同一なので省略す
る。微動ステージ周りについてのみ図2で説明する。
BEST MODE FOR CARRYING OUT THE INVENTION <First Embodiment> An overall view is shown in FIG. Since it is a device used in vacuum, a vacuum chamber is provided, and the stage system is inside the vacuum chamber,
The inside of the vacuum chamber is maintained at a high vacuum. Since the stage configuration and the actuator configuration are the same as those of the conventional example, they are omitted. Only around the fine movement stage will be described with reference to FIG.

【0019】微動ステージ天板上にウエハをチャックす
るための静電チャックが設けられ、静電チャックにウエ
ハがチャックされている。静電チャックの下には穴が設
けられ、静電チャック下面と対面するように輻射板が設
けられている。輻射板の下部には冷却手段が設けられ輻
射板が受けた熱量を除去し、輻射板の温度を常に低温に
保持するようになっている。
An electrostatic chuck for chucking the wafer is provided on the top plate of the fine movement stage, and the wafer is chucked by the electrostatic chuck. A hole is provided below the electrostatic chuck, and a radiation plate is provided so as to face the lower surface of the electrostatic chuck. Cooling means is provided below the radiating plate to remove the amount of heat received by the radiating plate and keep the temperature of the radiating plate low at all times.

【0020】輻射板およびその下部の冷却手段は粗動ス
テージに固定されている。冷却手段は従来例に示したよ
うな冷却媒体を循環させて媒体の熱容量と流量によって
熱を除去するものや、ヒートパイプや冷凍系のような相
変化を利用するもの、気体の断熱膨張を利用するもの等
一般的な手段が使用可能である。
The radiation plate and the cooling means therebelow are fixed to the coarse movement stage. The cooling means circulates the cooling medium as shown in the conventional example to remove heat by the heat capacity and flow rate of the medium, the phase change such as a heat pipe or a refrigeration system, and the adiabatic expansion of gas. A general means such as one that can be used.

【0021】また輻射板と冷却手段の間にペルチェ素子
を介在させて輻射板自身を強制的に冷却してもよい。い
ずれの場合でも冷却手段においては何らかの媒質に熱を
移動させて媒質を強制的に移動させることが必要であり
除去する熱量が増えれば振動は増える傾向である。が、
この冷却手段は粗動ステージに固定されており微動ステ
ージ天板とは非接触なので冷却手段が振動を発生しても
微動ステージ天板には伝達されない。
Alternatively, a Peltier element may be interposed between the radiation plate and the cooling means to forcibly cool the radiation plate itself. In any case, in the cooling means, it is necessary to move heat to some medium to forcibly move the medium, and if the amount of heat removed increases, vibration tends to increase. But,
Since this cooling means is fixed to the coarse movement stage and is not in contact with the fine movement stage top plate, even if the cooling means vibrates, it is not transmitted to the fine movement stage top plate.

【0022】静電チャック下部には不図示リード線を介
して不図示電源に接続される抵抗素子で構成される加熱
体および温度検出手段が複数個設けられ、静電チャック
の温度を所望の温度にするように静電チャックへの加熱
の度合いを調整できるようになっている。
Below the electrostatic chuck, there are provided a plurality of heating elements composed of resistance elements connected to a power source (not shown) via lead wires (not shown) and a plurality of temperature detecting means, and the temperature of the electrostatic chuck is set to a desired temperature. The degree of heating of the electrostatic chuck can be adjusted as described above.

【0023】以上の構成において露光装置はウエハを所
望位置に位置決めしたり走査したりしてウエハの露光を
行う。このときアクチュエータ系の発熱は従来例同様の
冷却ジャケットで除去されるがジャケットの外は真空な
のでほぼ100%の発熱がジャケット内の冷媒に回収さ
れ、外にはほとんど漏れない。問題は静電チャックの発
熱と露光熱である。
In the above structure, the exposure apparatus positions the wafer at a desired position or scans the wafer to expose the wafer. At this time, the heat generated in the actuator system is removed by the cooling jacket similar to the conventional example, but since the outside of the jacket is vacuum, almost 100% of the heat generated is recovered by the refrigerant in the jacket and hardly leaks outside. The problems are heat generation and exposure heat of the electrostatic chuck.

【0024】これらによって静電チャックの温度は上が
ろうとするが、穴のところに設けた輻射板の温度が静電
チャックの発熱と露光熱より大きな熱量を逃がすように
低温に設定されていてトータルとして静電チャック系か
らは熱が奪われるようになっている。さらにいうと真空
チャンバ壁や周辺の不図示投影系、本体系などとの相対
位置が変化するとそれらの周辺物体との輻射による熱の
授受も変化するが、その変動も込みでチャック系からは
熱が奪われるように輻射板の温度が設定されている。よ
ってそのままほっておくと静電チャックの温度は単調に
下がる。
Although the temperature of the electrostatic chuck tends to rise by these, the temperature of the radiation plate provided at the hole is set to a low temperature so as to release a larger amount of heat than the heat generated by the electrostatic chuck and the exposure heat, so that the total temperature is reduced. As a result, heat is taken from the electrostatic chuck system. Furthermore, if the relative positions of the vacuum chamber wall and the surrounding projection system, main body system, etc. change, the transfer of heat by radiation to these peripheral objects also changes, but due to this fluctuation, The temperature of the radiant plate is set so that the heat is taken away. Therefore, if left untouched, the temperature of the electrostatic chuck will decrease monotonically.

【0025】輻射板の温度は静電チャックが周辺からう
ける熱量+静電チャック自身の発熱よりも大きい熱量を
排出できるようにさえ設定すればよい。それほど高精度
に制御しなくても良い。するとチャック下面に設けた温
度検出手段により温度が単調に下がっていくことが検出
されるので温度を一定に保つように図3のような温度制
御系で加熱体を制御すればよい。
The temperature of the radiation plate may be set so that the amount of heat received from the periphery of the electrostatic chuck + the amount of heat generated by the electrostatic chuck itself can be discharged. It does not need to be controlled with such high precision. Then, since the temperature detecting means provided on the lower surface of the chuck detects that the temperature is monotonically decreasing, the heating body may be controlled by a temperature control system as shown in FIG. 3 so as to keep the temperature constant.

【0026】図3では設定温度と温度検出手段で検出さ
れる温度との温度差にPID等の制御演算を施してこの
結果を熱量指令とする。熱量∝抵抗素子の電流の二乗な
ので熱量指令に√演算を施して抵抗素子の電流指令と
し、これを電流アンプに加えて抵抗素子の電流を制御す
る。
In FIG. 3, a control calculation such as PID is performed on the temperature difference between the set temperature and the temperature detected by the temperature detecting means, and the result is used as a heat quantity command. Since the heat quantity ∝ is the square of the current of the resistance element, the heat quantity command is subjected to √ calculation to obtain the current command of the resistance element, and this is added to the current amplifier to control the current of the resistance element.

【0027】このような線形化は必ずしも必要ではなく
熱の変動が小さければ√演算を省略しても良い。
Such linearization is not always necessary, and if the heat fluctuation is small, the √ calculation may be omitted.

【0028】輻射板系とは関係なくチャック下面の加熱
体と温度検出手段だけで閉じた局所的な温度制御系にな
っている。複数個の各々の温度検出手段と加熱体の対に
対して図4のように図3の制御系を独立に適用しても良
いし、図5のように互いの干渉を考慮して複数個の温度
検出手段の検出結果に非干渉を目的とした行列演算を施
してそれを各制御系に帰還するようにしてもよい。
It is a local temperature control system which is closed only by the heating body on the lower surface of the chuck and the temperature detecting means irrespective of the radiation plate system. The control system of FIG. 3 may be independently applied to each of the plurality of pairs of temperature detecting means and the heating body as shown in FIG. 4, or a plurality of control systems may be provided in consideration of mutual interference as shown in FIG. The detection result of the temperature detection means may be subjected to matrix calculation for the purpose of non-interference and fed back to each control system.

【0029】また加熱体と温度検出手段の数は同じであ
る必要も無く各々の数の組み合わせは臨機応変に対応す
ればよい。加熱体から加えた熱量はすぐに温度検出手段
に帰還されるので高精度な温度制御が可能になる。
The number of heating elements and the number of temperature detecting means do not have to be the same, and the combination of each number may be flexibly adapted. The amount of heat applied from the heating element is immediately returned to the temperature detecting means, which enables highly accurate temperature control.

【0030】この結果、真空中で使用する露光装置おい
て非接触で高精度な温度制御が実現できる。
As a result, highly accurate temperature control can be realized in a non-contact type exposure apparatus used in a vacuum.

【0031】〈第2実施例〉第2実施例を図6に示す。
第1実施例ではチャック下面近傍のみに温調手段を構成
しチャックのみの温調を行っていた。しかし静電チャッ
クの発熱は天板にも伝わり天板を変形させる可能性もあ
る。天板が変形すると計測基準であるミラーとウエハの
相対関係が変化するのでウエハの位置精度を劣化させ
る。そこで本実施例では、天板下面にも温度検出手段お
よび加熱体を設け、天板下面も輻射板と対面させる。
<Second Embodiment> A second embodiment is shown in FIG.
In the first embodiment, the temperature control means is provided only near the lower surface of the chuck to control the temperature of only the chuck. However, the heat generated by the electrostatic chuck is also transmitted to the top plate and may deform the top plate. When the top plate is deformed, the relative relationship between the mirror and the wafer, which is a measurement reference, is changed, so that the positional accuracy of the wafer is deteriorated. Therefore, in the present embodiment, the temperature detecting means and the heating body are also provided on the lower surface of the top plate, and the lower surface of the top plate faces the radiation plate.

【0032】加熱体,温度検出手段、輻射板の構成、作
用効果は第1実施例と同じである。
The structure, function and effect of the heating element, the temperature detecting means and the radiation plate are the same as those in the first embodiment.

【0033】第2実施例特有の効果はチャックだけでな
く天板も温調されるので天板変形によるウエハの位置精
度劣化を回避できることである。
The effect peculiar to the second embodiment is that not only the chuck but also the top plate is temperature-controlled, so that the deterioration of the wafer position accuracy due to the deformation of the top plate can be avoided.

【0034】〈第3実施例〉第3実施例を図7に示す。
加熱体の構成以外は第1実施例と同じである。加熱体に
ついてのみ説明する。
<Third Embodiment> FIG. 7 shows a third embodiment.
The structure is the same as that of the first embodiment except the structure of the heating body. Only the heating element will be described.

【0035】天板下面の加熱体を単なる導体で構成し、
粗動ステージ側には導体と対面してコイルを設けコイル
に高周波電流を流すことにより導体に誘導電流をながし
て高周波加熱するのが基本である。チャック下面には複
数の導体が形成されている。導体は薄膜をメッキや蒸着
などで形成するのが望ましい。チャックと導体との密着
性がよくなり導体とチャックとの境界での熱抵抗が減少
するからである。効果は基本的に第1実施例と同じであ
る。
The heating element on the lower surface of the top plate is composed of a simple conductor,
Basically, a coil is provided on the coarse movement stage side so as to face the conductor, and a high-frequency current is passed through the coil to flow an induction current through the conductor for high-frequency heating. A plurality of conductors are formed on the lower surface of the chuck. The conductor is preferably formed by forming a thin film by plating or vapor deposition. This is because the adhesion between the chuck and the conductor is improved and the thermal resistance at the boundary between the conductor and the chuck is reduced. The effect is basically the same as that of the first embodiment.

【0036】第3実施例特有の効果として抵抗素子の分
の結線が不要になる。この結果微動ステージへの振動伝
達要素が減り、微動ステージの制御精度が向上する。
As an effect peculiar to the third embodiment, the wiring for the resistance element is unnecessary. As a result, the vibration transmission element to the fine movement stage is reduced, and the control accuracy of the fine movement stage is improved.

【0037】〈変形例など〉走査型露光装置では原版で
あるマスクもウエハに同期して走査される。このために
マスクステージが必要になり粗動が1軸であること以外
はウエハステージと同様の構成になる。
<Modifications> In the scanning type exposure apparatus, the mask, which is the original plate, is also scanned in synchronization with the wafer. For this reason, a mask stage is required, and the structure is the same as that of the wafer stage except that the coarse movement is uniaxial.

【0038】よってマスクおよびマスクチャックの冷却
においても第1から第3実施例と同様の構成が適用でき
る。
Therefore, the same structure as in the first to third embodiments can be applied to the cooling of the mask and the mask chuck.

【0039】真空中でウエハを保持して処理を行う他の
半導体製造装置にも適用可能である。
The present invention can also be applied to other semiconductor manufacturing apparatuses that hold a wafer in vacuum and perform processing.

【0040】[0040]

【発明の効果】以上説明したように本発明によれば、真
空中で使用する半導体露光装置、半導体製造装置におい
て非接触で高精度な温度制御が実現できる
As described above, according to the present invention, highly accurate temperature control can be realized without contact in a semiconductor exposure apparatus and a semiconductor manufacturing apparatus used in a vacuum.

【図面の簡単な説明】[Brief description of drawings]

【図1】 第1実施例全体図FIG. 1 is an overall view of a first embodiment.

【図2】 第1実施例微動天板詳細図FIG. 2 is a detailed view of the fine movement top plate according to the first embodiment.

【図3】 第1実施例温度制御ブロック図1FIG. 3 is a temperature control block diagram of the first embodiment.

【図4】 第1実施例温度制御ブロック図2FIG. 4 is a temperature control block diagram of the first embodiment.

【図5】 第1実施例温度制御ブロック図3FIG. 5 is a temperature control block diagram of the first embodiment.

【図6】 第2実施例微動天板詳細図FIG. 6 is a detailed view of the fine movement top plate according to the second embodiment.

【図7】 第3実施例微動天板詳細図FIG. 7 is a detailed view of a fine movement top plate according to a third embodiment.

【図8】 従来例の全体図FIG. 8 Overall view of conventional example

【図9】 (a)は粗動ステージH形斜視図、(b)は
微動ステージ冷却系断面図、(c)は粗動リニアモータ
冷却系断面図
9A is a perspective view of a coarse movement stage H, FIG. 9B is a sectional view of a fine movement stage cooling system, and FIG. 9C is a sectional view of a coarse movement linear motor cooling system.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 真空中で使用される半導体製造装置の温
調系において温調対象付近にを輻射現象を利用した温調
対象と非接触に支持された熱量除去手段と、温調対象に
直付けされた加熱手段と温度検出手段を設けることを特
徴とする半導体製造装置。
1. A heat quantity removing means that is supported in a temperature control system of a semiconductor manufacturing apparatus used in a vacuum in the vicinity of a temperature control target in a non-contact manner with a temperature control target utilizing a radiation phenomenon, and directly connected to the temperature control target. A semiconductor manufacturing apparatus characterized by comprising a heating means and a temperature detecting means attached thereto.
【請求項2】 請求項1において熱量除去手段は輻射板
と冷却手段から構成されることを特徴とする半導体製造
装置。
2. The semiconductor manufacturing apparatus according to claim 1, wherein the heat quantity removing means comprises a radiation plate and a cooling means.
【請求項3】 請求項1または2において加熱体は抵抗
素子で構成されることを特徴とする半導体製造装置。
3. The semiconductor manufacturing apparatus according to claim 1, wherein the heating element is composed of a resistance element.
【請求項4】 請求項1から3の何れかにおいて加熱体
は温調対象に直付けされた導体および導体と非接触に支
持されたコイルから構成されることを特徴とする半導体
製造装置。
4. The semiconductor manufacturing apparatus according to claim 1, wherein the heating body is composed of a conductor directly attached to a temperature control target and a coil supported in a non-contact manner with the conductor.
【請求項5】 請求項1から4の何れかにおいて加熱体
制御手段を設け、温調対象の目標温度と上記温度検出手
段による検出温度との差によって上記加熱体を制御する
ことを特徴とする半導体製造装置。
5. The heating element control means according to any one of claims 1 to 4, wherein the heating element is controlled by a difference between a target temperature of a temperature control target and a temperature detected by the temperature detecting means. Semiconductor manufacturing equipment.
【請求項6】 請求項1の温調手段を有する半導体製造
装置
6. A semiconductor manufacturing apparatus having the temperature adjusting means according to claim 1.
JP2002024079A 2002-01-31 2002-01-31 Semiconductor manufacturing device Pending JP2003229347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002024079A JP2003229347A (en) 2002-01-31 2002-01-31 Semiconductor manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002024079A JP2003229347A (en) 2002-01-31 2002-01-31 Semiconductor manufacturing device

Publications (1)

Publication Number Publication Date
JP2003229347A true JP2003229347A (en) 2003-08-15

Family

ID=27746621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002024079A Pending JP2003229347A (en) 2002-01-31 2002-01-31 Semiconductor manufacturing device

Country Status (1)

Country Link
JP (1) JP2003229347A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351741A (en) * 2005-06-15 2006-12-28 Sumitomo Heavy Ind Ltd Temperature control device, movable state with temperature control function, and radiation heat transmitting device
JP2007207887A (en) * 2006-01-31 2007-08-16 Nikon Corp Processor and processing method, and exposure apparatus
WO2007113955A1 (en) * 2006-03-30 2007-10-11 Nikon Corporation Mobile device, exposure device, exposure method, micro-motion body, and device manufacturing method
JP2010010695A (en) * 2003-11-05 2010-01-14 Asml Netherlands Bv Lithographic apparatus and article support structure
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2010010695A (en) * 2003-11-05 2010-01-14 Asml Netherlands Bv Lithographic apparatus and article support structure
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2006351741A (en) * 2005-06-15 2006-12-28 Sumitomo Heavy Ind Ltd Temperature control device, movable state with temperature control function, and radiation heat transmitting device
JP4558589B2 (en) * 2005-06-15 2010-10-06 住友重機械工業株式会社 Temperature control device, movable stage with temperature control function, and radiation heat transfer device
JP2007207887A (en) * 2006-01-31 2007-08-16 Nikon Corp Processor and processing method, and exposure apparatus
US7696653B2 (en) 2006-03-30 2010-04-13 Nikon Corporation Movable-body apparatus, exposure apparatus and methods comprising same, and device-manufacturing methods
WO2007113955A1 (en) * 2006-03-30 2007-10-11 Nikon Corporation Mobile device, exposure device, exposure method, micro-motion body, and device manufacturing method
JPWO2007113955A1 (en) * 2006-03-30 2009-08-13 株式会社ニコン MOBILE BODY DEVICE, EXPOSURE APPARATUS, EXPOSURE METHOD, MICROMOVING BODY, AND DEVICE MANUFACTURING METHOD
JP5257845B2 (en) * 2006-03-30 2013-08-07 株式会社ニコン MOBILE BODY DEVICE, EXPOSURE APPARATUS, EXPOSURE METHOD, MICROMOVING BODY, AND DEVICE MANUFACTURING METHOD
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Similar Documents

Publication Publication Date Title
TWI242697B (en) Lithographic apparatus and device manufacturing method
JP3814598B2 (en) Temperature adjustment apparatus, exposure apparatus, and device manufacturing method
KR100977030B1 (en) Substrate support and lithographic process
US20060007415A1 (en) Exposure system and device production process
US20050073663A1 (en) Reflection mirror apparatus, exposure apparatus and device manufacturing method
JP2003229347A (en) Semiconductor manufacturing device
US7791709B2 (en) Substrate support and lithographic process
JPWO2003081648A1 (en) Exposure apparatus, exposure method, and device manufacturing method
US20100156198A1 (en) Shield layer plus refrigerated backside cooling for planar motors
JPH0992613A (en) Temperature conditioner and scanning aligner
JP2004146492A (en) Euv aligner
JP2001007015A (en) Stage device
TWI355562B (en) Lithographic apparatus and method for manufacturin
JP2004247438A (en) Cooling apparatus
JP2005175490A (en) Lithography system, and device manufacturing method
US20100186942A1 (en) Reticle error reduction by cooling
US7460213B2 (en) Alignment apparatus, exposure apparatus, and device manufacturing method using exposure apparatus
US8810770B2 (en) Exposure apparatus and article manufacturing method
US20060209287A1 (en) Positioning apparatus, exposure apparatus, and device manufacturing method
JP2006261497A (en) Device manufacturing apparatus
JP2003229348A (en) Semiconductor aligner
US20060048363A1 (en) Cooling assembly for a stage
TWI657317B (en) Optical device, exposure apparatus having the same, and article manufacturing method
US7391495B2 (en) Stage apparatus, exposure system using the same, and device manufacturing method
JP2001217177A (en) Aligner and exposure method