JP2004349645A - Liquid-immersed differential liquid-drainage static-pressure floating pad, master-disk exposure apparatus, and method of exposure using liquid-immersed differential liquid-drainage - Google Patents

Liquid-immersed differential liquid-drainage static-pressure floating pad, master-disk exposure apparatus, and method of exposure using liquid-immersed differential liquid-drainage Download PDF

Info

Publication number
JP2004349645A
JP2004349645A JP2003148040A JP2003148040A JP2004349645A JP 2004349645 A JP2004349645 A JP 2004349645A JP 2003148040 A JP2003148040 A JP 2003148040A JP 2003148040 A JP2003148040 A JP 2003148040A JP 2004349645 A JP2004349645 A JP 2004349645A
Authority
JP
Japan
Prior art keywords
liquid
master
drainage
irradiation light
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003148040A
Other languages
Japanese (ja)
Inventor
Yuichi Aki
祐一 安芸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003148040A priority Critical patent/JP2004349645A/en
Publication of JP2004349645A publication Critical patent/JP2004349645A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply

Abstract

<P>PROBLEM TO BE SOLVED: To increase numerical aperture of a lens by using a liquid-immersed objective lens and to prevent the liquid from scattering to surroundings. <P>SOLUTION: The liquid-immersed differential liquid-drainage static-pressure floating pad 3 comprises: a feeding part 16 capable of feeding a liquid to a periphery of a liquid-immersed part 7 of the liquid-immersed objective lens 9 via a compressed gas from a positive pressure part 17; a liquid-drainage part 14 capable of draining the liquid by sucking the liquid through a plurality of annular sucking grooves 5, 6 by the suction with a compressed gas from a negative pressure part 18; and a control part 19 with which the liquid-immersed objective lens 9 is movable in a direction perpendicular to a master disk 10 by an actuator 21 such that a radiating laser beam is confirmed to be focused on the master disk 10 by a detecting mechanism 20 for the reflective laser beam from the master disk. By the constitution as such, the refractive index in the working distance between the objective lens and the irradiated object is raised to be higher than 1 since the liquid-immersed lens is constituted without liquid leakage by using the differential liquid-drainage static-pressure floating pad, and therefore, high-density exposure is carried out since a smaller spot than in atmospheric air is realized. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、液浸対物レンズを有する液浸差動排液静圧浮上パッド、原盤露光装置および液浸差動排液による露光方法に関するものである。
【0002】
【従来の技術】
従来の原盤露光装置に用いられるレンズは、原盤表面とレンズ先端の差動距離の間が大気で、屈折率は約1である。そのため、レンズの開口率(NA:Numerical Aperture)が1を超えるようにすることはできない。
【0003】
また、これを解決するために原盤表面とレンズ先端のワークディスタンスを短くした近接場による露光装置があった。
【0004】
また、特許文献1には、フォトレジスト膜を塗布した原盤にレーザー光を集光して照射して所望のパターンに感光する際に、ノズルにより露光中に集光レンズと原盤との間に水を充満させて、集光レンズのNAを増大させて、液侵レンズとして機能させる従来の原盤露光装置が開示されている。
【0005】
また、特許文献2,3,4において構成要素として説明されている静圧浮上パッドは、複数の環状溝を有し、非接触で真空度を維持する差動排気を行なう差動排気静圧浮上パッドについて開示されている。
【0006】
【特許文献1】
特開平10−255319号公報
【特許文献2】
特開2000−076707号公報
【特許文献3】
特開2000−076708号公報
【特許文献4】
特開2001−242300号公報
【0007】
【発明が解決しようとする課題】
しかし、上述した従来の原盤露光装置では、レンズの開口率が1を超えるようにすることはできないため、それ以上の小スポット化ができないという不都合があった。
【0008】
また、近接場による露光装置では、レンズ先端と原盤の差動距離をレーザー波長の半分以下に保持しなければならず、微細な塵埃の影響を受け原盤表面を引っかいてしまうため、高度な清浄空間が要求され、高価であるという不都合があった。
【0009】
また、特許文献1記載の原盤露光装置では、液浸の液を原盤上に流して撒き散らしながら液浸するため、飛散した液が乾き、汚れとなったり、飛散自体が振動発生源となり、精度を劣化させたりするという不都合があった。
【0010】
そこで、本発明は、かかる点に鑑みてなされたものであり、液浸対物レンズを用いてレンズの開口率を上げると共に、周囲に液が飛び散らないようにした原盤露光装置および液浸差動排液による露光方法装置を提供することを課題とする。
【0011】
【課題を解決するための手段】
本発明は、まず、複数の環状吸引溝から液体を吸引して排液可能とし、次に、照射光の通路に設けられ、駆動手段により原盤に対して対向する方向に進退可能に構成され、高屈折率の液体を含浸した液浸状態とすることにより高開口率の対物レンズとして機能する液浸対物レンズを設けた液浸差動排液静圧浮上パッドに対して、液浸対物レンズの周囲の液浸部に液体を供給可能とし、ここで、原盤に対する反射照射光の検出により照射光が合焦状態となるように液浸対物レンズを駆動手段により原盤に対して対向する方向に進退させるように制御するものである。
【0012】
従って本発明によれば、以下の作用をする。
複数の環状溝を有し、非接触で真空度を維持する差動排気を行なう差動静圧浮上パッドを用いたディスク原盤露光装置において、差動静圧浮上パッドと対物レンズに液浸レンズを用いたものを組み合わせて液浸差動排液静圧浮上パッドとする。
【0013】
そこで、液浸レンズの内周を液で満たし、対物レンズ先端を液浸させ、差動排気静圧浮上パッド液浸対物レンズ近傍を部分的に高屈折率の液で満たす事により露光系の開口数NAを高く保ち、ビームスポットを大気中より小さくする事で高密度記録を可能とする。
【0014】
また、液を漏らすことなく回収することで装置を清浄に保ちながら、液の屈折率に応じた、大気中より小さなビームスポットで露光できる。液浸差動排液静圧浮上パッドの機能により液が飛散せず装置を清浄かつ安定に保つことができる。
【0015】
【発明の実施の形態】
以下に、本発明の実施の形態について、適宜、図面を参照しながら説明する。
【0016】
図1は、原盤露光装置に適用される液浸差動排液静圧浮上パッドの概念図である。
液浸差動排液静圧浮上パッド3は、レーザー駆動部23からのレーザー光22を図示しない光学系を介してスピンドル回転機構12およびスライド機構13により回転移動およびスライド移動するターンテーブル11上に真空吸着された原盤10に露光可能に照射するものである。
【0017】
この液浸差動排液静圧浮上パッド3は、原盤10に対して微小間隔(5μm)をもって対向し、原盤10にレーザー照射光22を照射するための出射孔8を有し、出射孔8に連通する照射光の通路の周囲に原盤10との対向面に開口する複数の環状吸引溝5,6が形成され、吸引溝5,6の周囲に多孔質4の環状気体排出軸受け部が形成される。
【0018】
また、液浸差動排液静圧浮上パッド3は、レーザー照射光22の通路に液浸部7を設け、この液浸部7に設けられ、アクチュエータ21により原盤10に対して対向する方向に進退可能に構成され、高屈折率の液体を含浸した液浸状態とすることにより高開口率の対物レンズとして機能する液浸対物レンズ9を有して構成される。
【0019】
また、液浸差動排液静圧浮上パッド3は、液浸対物レンズ9の周囲の液浸部7に正圧部17からの圧縮気体を介して液体を供給可能な供給部16と、複数の環状吸引溝5,6から負圧部18からの圧縮気体の吸引により液体を吸引して排液可能な排液部14を有して構成される。なお、正圧部17からの圧縮気体は基台1に対して液浸差動排液静圧浮上パッド3を原盤10に対して対向する方向に伸縮させる伸縮部2に供給されると共に、環状気体排出軸受け部として機能する多孔質4に供給される。
【0020】
また、液浸差動排液静圧浮上パッド3は、レーザー駆動部23、スピンドル回転機構12およびスライド機構13ならびに排液部14および供給部16を制御すると共に、原盤10に対する反射レーザー照射光の検出機構20によりレーザー照射光が合焦状態となるように液浸対物レンズ9をアクチュエータ21により原盤10に対して対向する方向に進退させる制御部19を有して構成される。
【0021】
また、液浸差動排液静圧浮上パッド3は、排液部14により吸引した液体を貯蔵して供給部16に供給するタンク15を備え、排液部14により吸引した液をタンクに回収し、ろ過して供給部16に供給して再利用するように構成される。
【0022】
図2に、液浸差動排液静圧浮上パッドの底面図を示す。
図2において、液浸差動排液静圧浮上パッド3は、円形の中心部に原盤10にレーザー照射光22を照射するための出射孔8を有し、出射孔8の外周側に原盤10との対向面に開口する複数の環状吸引溝5,6が形成され、吸引溝5,6の外周に多孔質4の環状気体排出軸受け部が形成される。
【0023】
このように構成された液浸差動排液静圧浮上パッドの一連の動作を説明する。
【0024】
図3は、液浸差動排液静圧浮上パッドの一連の動作を示すフローチャートである。
図3において、ステップS1で、他のワークがあるか否かを判断する。具体的には、ターンテーブル11上に真空吸着されてレーザー駆動部23により露光される他の原盤10があるか否かを判断する。
【0025】
図4は、ワーク交換動作を示すフローチャートである。図4は、図3のステップS1に対応するものである。
【0026】
ステップS11で、スライド機構でターンテーブルをワーク交換位置に移動する。具体的には、制御部19は、正圧部17からの圧縮気体を基台1に対して液浸差動排液静圧浮上パッド3を原盤10に対して対向する方向に伸縮させる伸縮部2に供給するのを停止して、液浸差動排液静圧浮上パッド3を原盤10に離間する方向に収縮させる。このとき、スライド機構によりターンテーブルをワーク交換位置に移動する。
【0027】
ステップS12で、ワークを交換する。具体的には、露光後のワークを取り除き、他のワークである新たな原盤をターンテーブル上に真空吸着させる。
【0028】
ステップS13で、スライド機構でターンテーブルを露光位置に移動する。具体的には、制御部19は、正圧部17からの圧縮気体を基台1に対して液浸差動排液静圧浮上パッド3を原盤10に対して対向する方向に伸縮させる伸縮部2に供給するのを停止して、液浸差動排液静圧浮上パッド3を原盤10に離間する方向に収縮させた状態で、スライド機構によりターンテーブルを露光位置に移動する。
【0029】
ステップS14で、他のワークがあるか否かを判断し、他のワークがあるときは、ステップS11へ戻って、ステップS11〜ステップS14の処理および判断を繰り返す。他のワークがないときは終了する。
【0030】
図3に戻って、ステップS1で他のワークがないときは終了し、他のワークがあるときは、ステップS2へ移行して、ステップS2でパッドを下降させる。具体的には、制御部19は、正圧部17からの圧縮気体を基台1に対して液浸差動排液静圧浮上パッド3を原盤10に対して対向する方向に伸縮させる伸縮部2に供給して、液浸差動排液静圧浮上パッド3を原盤10に近接する方向に伸張させる。
【0031】
ステップS3でパッドを浮上させる。具体的には、制御部19は、正圧部17からの圧縮気体を環状気体排出軸受け部として機能する多孔質4に供給して、液浸差動排液静圧浮上パッド3が、原盤10に対して対向する方向に浮上させる。
【0032】
ステップS4で、排液部により液を回収することにより、パッドを下降させて、隙間を5μmとする。具体的には、制御部19は、複数の環状吸引溝5,6から負圧部18からの圧縮気体の吸引と、正圧部17からの環状気体排出軸受け部として機能する多孔質4への圧縮気体の供給による浮上とがつりあう状態にして、液浸差動排液静圧浮上パッド3が、原盤10に対して微小間隔(5μm)をもって対向するように維持させる。
【0033】
ステップS5で、吸引状態で液を回収する。具体的には、制御部19は、排液部14により複数の環状吸引溝5,6から負圧部18からの圧縮気体の吸引により液体を吸引して排液する。このとき、排液部14により吸引した液体をタンク15に貯蔵する。
【0034】
図5は、液回収動作を示すフローチャートである。図5は、図3のステップS4,S5に対応するものである。
ステップS21で、排液部が内周側溝の液を回収する。具体的には、制御部19は、排液部14により複数の環状吸引溝5,6のうち内周側溝6から負圧部18からの圧縮気体の吸引により液体を吸引して排液する。
【0035】
ステップS22で、隙間が5μmであるか否かを判断し、隙間が5μmでないときは、ステップS21へ戻って、ステップS21〜ステップS22の処理および判断を繰り返す。隙間が5μmであるときはステップS23へ移行する。
【0036】
ステップS23で、回収した液をタンクに貯蔵する。具体的には、制御部19は、排液部14により複数の環状吸引溝5,6のうち内周側溝6から負圧部18からの圧縮気体の吸引により液体を吸引して排液するとき、排液部14により吸引した液体をタンク15に貯蔵する。
【0037】
ステップS24で、排気部がパッド浮上による排気エアからの外周溝の液漏れを回収する。具体的には、制御部19は、排液部14により複数の環状吸引溝5,6のうち外周側溝5から負圧部18からの圧縮気体の吸引により多孔質4からの圧縮気体の漏れこみを回収する。
【0038】
ステップS25で、外周側溝5の圧力がやや大気圧よりも高いか否かを判断し、やや大気圧よりも高くないときは、ステップS24へ戻って、ステップS24〜ステップS25の処理および判断を繰り返す。やや大気圧よりも高いときはステップS26へ移行する。
【0039】
ステップS26で、回収した液をタンクに貯蔵する。具体的には、制御部19は、排液部14により複数の環状吸引溝5,6のうち外周側溝5から負圧部18からの圧縮気体の吸引により多孔質4からの圧縮気体の漏れこみにより飛散した液を回収してタンクに貯蔵する。
【0040】
図3に戻って、ステップS6で、供給部により液を補給する。具体的には、制御部19は、供給部16により液浸対物レンズ9の周囲の液浸部7に正圧部17からの圧縮気体を介して液体を供給する。これにより、液浸対物レンズ9は、高屈折率の液体を含浸した液浸状態とすることにより高開口率の対物レンズとして機能する。
【0041】
図6は、液供給動作を示すフローチャートである。図6は、図3のステップS6に対応するものである。
ステップS31で、供給部はタンクから液を正圧により排出する。具体的には、制御部19は、供給部16により液浸対物レンズ9の周囲の液浸部7に正圧部17からの圧縮気体を介して液体を供給する。
【0042】
ステップS32で、液を内周の液浸部7に供給する。具体的には、液浸対物レンズ9は、高屈折率の液体を含浸した液浸状態とすることにより高開口率の対物レンズとして機能する。
【0043】
図3に戻って、ステップS7で、対物レンズを下降させる。具体的には、制御部19は、液浸対物レンズ9をアクチュエータ21により原盤10に対して対向する方向に進出させる。
【0044】
ステップS8で、合焦点であるか否かを判断する。具体的には、制御部19は、原盤10に対する反射レーザー照射光の検出機構20によりレーザー照射光が合焦状態となるように液浸対物レンズ9をアクチュエータ21により原盤10に対して対向する方向に進出させる。
【0045】
図7は、液浸対物レンズ下降動作を示すフローチャートである。図7は、図3のステップS7、S8に対応するものである。
【0046】
ステップS41で、制御部はアクチュエータに駆動信号を供給する。具体的には、制御部19は、圧電素子やボイスコイルモータで構成されるアクチュエータに液浸対物レンズを下降させるための駆動信号を供給する。
【0047】
ステップS42で、アクチュエータが液浸対物レンズを下降させる。具体的には、圧電素子やボイスコイルモータで構成されるアクチュエータが下方に進出することにより液浸対物レンズを下降させる。
【0048】
ステップS43で、レーザー駆動部がフォーカス調整用レーザーを照射させる。具体的には、制御部19は、レーザー駆動部23によりフォーカス調整用レーザーを照射させる。
【0049】
ステップS44で、反射検出機構により反射検出する。具体的には、制御部19は、原盤10に対する反射レーザー照射光の検出機構20によりレーザー照射光を検出する。
【0050】
ステップS45で、合焦点であるか否かを判断する。具体的には、制御部19は、原盤10に対する反射レーザー照射光の検出機構20により検出されたレーザー照射光が合焦点状態であるか否かを判断する。合焦点状態でないときは、ステップS41へ戻って、ステップS41〜ステップS45の処理および判断を繰り返す。合焦点状態のときは終了する。
【0051】
図3に戻って、ステップS8で合焦点であるときは、ステップS9へ移行し、ステップS8で合焦点でないときは、ステップS7へ戻って、ステップS7およびステップS8の処理および判断を繰り返す。
【0052】
ステップS8で合焦点であるときは、ステップS8で、露光動作を行う。具体的には、制御部19は、液浸差動排液静圧浮上パッド3を用いて、レーザー駆動部23からのレーザー光22を介してスピンドル回転機構12およびスライド機構13により回転移動およびスライド移動するターンテーブル11上に真空吸着された原盤10に露光を行う。
【0053】
図8は、露光動作を示すフローチャートである。図8は、図3のステップS9に対応するものである。
【0054】
ステップS51で、レーザー駆動部が露光用レーザーを照射させる。具体的には、制御部19は、レーザー駆動部23により露光用レーザーを照射させる。
【0055】
ステップS52で、スピンドルの回転に応じてスライド機構でターンテーブルを内周から外周へ移動する。具体的には、制御部19は、液浸差動排液静圧浮上パッド3を用いて、レーザー駆動部23からのレーザー光22をスピンドル回転機構12およびスライド機構13により回転移動およびスライド移動するターンテーブル11上に真空吸着された原盤10にらせん状に露光するように照射する。
【0056】
ステップS53で、露光終了か否かを判断し、露光終了までステップS52へ戻って、ステップS522およびステップS53の処理および判断を繰り返す。
【0057】
なお、本発明の実施の形態は、光ディスク原盤露光装置の液浸差動排液静圧浮上パッド3の工夫に関して説明したが、同様の効果のあるたとえば、レーザー光を照射して反者検出するテレビジョン受像機管面検出装置、半導体検査装置などすべての用途について利用可能である。
【0058】
上述したように、液浸差動排液静圧浮上パッド3の中心部の液浸部7に液を供給し、適度な負圧を用いて掃除機のように液を吸引できるように外周側に環状溝5,6を設け、吸引回収することにより、パッド底面と原盤のすきまは5ミクロン程度を維持することができると同時に、液を外周側に漏れにくくすることができ、多孔質4による空気軸受けの浮上のためのエアが内周に与圧を与えるため液は吸引環状溝6の内周側にとどまるようにすることができる。内周吸引溝6の外周には環状の溝5が設けられ、これにより、多孔質4による空気軸受けの適度な正圧により液の漏れこみを防ぎつつ排気を回収することができる。
【0059】
【発明の効果】
この発明によれば、差動排気型静圧浮上パッドを用いて、液漏れがなく液浸レンズを構成できるため、対物レンズと照射対象物の作動距離の間の屈折率を1より高くすることができるので大気中より小スポット化できるため、高密度の露光を行うことができる。
【0060】
また、液が飛び散らないので、装置を清浄に保つ事が容易で、また、飛散による振動で精度を劣化させないようにことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に適用される原盤露光装置に用いられる液浸差動排液静圧浮上パッドの概念図である。
【図2】液浸差動排液静圧浮上パッドの底面図である。
【図3】一連の動作を示すフローチャートである。
【図4】ワーク交換動作を示すフローチャートである。
【図5】液回収動作を示すフローチャートである。
【図6】液供給動作を示すフローチャートである。
【図7】液浸対物レンズ下降動作を示すフローチャートである。
【図8】露光動作を示すフローチャートである。
【符号の説明】
1……基台、2……伸縮部、3……静圧浮上パッド、4……多孔質、5……溝、6……溝、7……液浸部、8……孔、9……液浸対物レンズ、10……原盤、11……ターンテーブル、12……スピンドル、13……スライド機構、14……排液部、15……タンク、16……供給部、17……正圧部、18……負圧部、19……制御部、20……反射検出機構、21……アクチュエータ、22……レーザー照射光、23……レーザー駆動部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to, for example, an immersion differential drainage static pressure floating pad having an immersion objective lens, a master exposure apparatus, and an exposure method using immersion differential drainage.
[0002]
[Prior art]
A lens used in a conventional master exposure apparatus has a refractive index of about 1 between the surface of the master and the differential distance between the lens tip and the atmosphere. Therefore, the numerical aperture (NA) of the lens cannot exceed 1.
[0003]
In order to solve this problem, there is an exposure apparatus using a near field in which the work distance between the surface of the master and the tip of the lens is shortened.
[0004]
Patent Document 1 discloses that when a laser beam is condensed and irradiated on a master on which a photoresist film is applied and a desired pattern is exposed, water is conveyed between the condenser lens and the master during exposure by a nozzle. A conventional master exposure apparatus has been disclosed in which the numerical aperture is filled to increase the NA of the condenser lens so as to function as an immersion lens.
[0005]
Further, the static pressure floating pad described as a component in Patent Documents 2, 3, and 4 has a plurality of annular grooves, and performs differential exhaust static pressure floating that performs differential exhaust while maintaining a degree of vacuum in a non-contact manner. A pad is disclosed.
[0006]
[Patent Document 1]
JP 10-255319 A [Patent Document 2]
Japanese Patent Application Laid-Open No. 2000-076707 [Patent Document 3]
JP 2000-076708 A [Patent Document 4]
JP 2001-242300 A
[Problems to be solved by the invention]
However, in the conventional master exposure apparatus described above, since the aperture ratio of the lens cannot be made to exceed 1, there is a disadvantage that the spot size cannot be further reduced.
[0008]
In an exposure apparatus using a near-field, the differential distance between the lens tip and the master must be maintained at less than half the laser wavelength, and the surface of the master is scratched by the influence of minute dust. Is required, and there is an inconvenience of being expensive.
[0009]
Further, in the master exposure apparatus described in Patent Document 1, since the immersion liquid flows over the master and is immersed while being scattered, the scattered liquid dries and becomes dirty, and the scatter itself becomes a source of vibration, and the precision is reduced. There is a disadvantage that it deteriorates.
[0010]
Accordingly, the present invention has been made in view of such a point, and a master exposure apparatus and a liquid immersion differential discharge apparatus that use an immersion objective lens to increase the aperture ratio of the lens and prevent the liquid from scattering around. An object of the present invention is to provide a liquid exposure method apparatus.
[0011]
[Means for Solving the Problems]
The present invention firstly allows liquid to be discharged by sucking liquid from a plurality of annular suction grooves, and then is provided in a path of irradiation light, and is configured to be able to advance and retreat in a direction facing the master by a driving unit, An immersion objective lens is provided with an immersion objective lens that functions as a high aperture ratio objective lens by being in an immersion state impregnated with a liquid having a high refractive index. The liquid can be supplied to the surrounding liquid immersion part. Here, the liquid immersion objective lens moves forward and backward in the direction facing the master by driving means so that the irradiation light is focused by detecting the reflected irradiation light on the master. It is controlled so as to make it.
[0012]
Therefore, according to the present invention, the following operations are performed.
In a master disk exposure apparatus using a differential static pressure floating pad that has a plurality of annular grooves and performs differential evacuation to maintain the degree of vacuum in a non-contact manner, a liquid immersion lens was used for the differential static pressure floating pad and the objective lens. These are combined to form a liquid immersion differential drainage static pressure floating pad.
[0013]
Therefore, the inner periphery of the immersion lens is filled with liquid, the tip of the objective lens is immersed, and the vicinity of the differentially evacuated static pressure floating pad immersion objective lens is partially filled with a liquid having a high refractive index to open the exposure system. High density recording is possible by keeping several NA high and making the beam spot smaller than in the atmosphere.
[0014]
In addition, by collecting the liquid without leaking, it is possible to perform exposure with a beam spot smaller than that in the air according to the refractive index of the liquid while keeping the apparatus clean. The function of the liquid immersion differential drainage static pressure floating pad makes it possible to keep the apparatus clean and stable without scattering the liquid.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings as appropriate.
[0016]
FIG. 1 is a conceptual diagram of a liquid immersion differential drainage static pressure floating pad applied to a master exposure apparatus.
The liquid immersion differential drainage static pressure floating pad 3 is provided on a turntable 11 on which a laser beam 22 from a laser drive unit 23 is rotated and slid by a spindle rotation mechanism 12 and a slide mechanism 13 via an optical system (not shown). The vacuum-adsorbed master 10 is irradiated so that it can be exposed.
[0017]
The liquid immersion differential drainage static pressure floating pad 3 is opposed to the master 10 at a minute interval (5 μm), and has an emission hole 8 for irradiating the master 10 with laser irradiation light 22. A plurality of annular suction grooves 5 and 6 are formed around the passage of the irradiation light communicating with the master disk 10 and open on the surface facing the master 10, and a porous gas discharge bearing portion of porous 4 is formed around the suction grooves 5 and 6. Is done.
[0018]
The liquid immersion differential drainage static pressure floating pad 3 is provided with a liquid immersion part 7 in the path of the laser irradiation light 22, provided in the liquid immersion part 7, and in a direction facing the master 10 by the actuator 21. It has an immersion objective lens 9 which is configured to be able to advance and retreat and which functions as an objective lens having a high aperture ratio by being in an immersion state in which a liquid having a high refractive index is impregnated.
[0019]
The immersion differential drainage static pressure floating pad 3 includes a supply unit 16 that can supply a liquid to the immersion unit 7 around the immersion objective lens 9 via the compressed gas from the positive pressure unit 17, The liquid suction portion 14 is configured to be able to suck and discharge the liquid by sucking the compressed gas from the negative pressure portion 18 from the annular suction grooves 5 and 6. The compressed gas from the positive pressure unit 17 is supplied to the expansion / contraction unit 2 that expands / contracts the liquid immersion differential drainage static pressure floating pad 3 with respect to the base 1 in the direction opposite to the master 10. The gas is supplied to the porous member 4 functioning as a gas discharge bearing.
[0020]
The immersion differential drainage static pressure floating pad 3 controls the laser drive unit 23, the spindle rotation mechanism 12 and the slide mechanism 13, the drainage unit 14 and the supply unit 16, and emits reflected laser irradiation light to the master 10. The control unit 19 is configured to move the liquid immersion objective lens 9 forward and backward by the actuator 21 in the direction facing the master 10 so that the laser irradiation light is focused by the detection mechanism 20.
[0021]
Further, the immersion differential drainage static pressure floating pad 3 includes a tank 15 for storing the liquid sucked by the drainage unit 14 and supplying it to the supply unit 16, and collects the liquid sucked by the drainage unit 14 into the tank. Then, it is configured to be filtered, supplied to the supply unit 16 and reused.
[0022]
FIG. 2 shows a bottom view of the liquid immersion differential drainage static pressure floating pad.
In FIG. 2, the liquid immersion differential drainage static pressure floating pad 3 has an emission hole 8 for irradiating the laser beam 22 to the master 10 at the center of the circle, and the master 10 A plurality of annular suction grooves 5 and 6 are formed on the surface opposite to the suction groove 5, and an annular gas discharge bearing portion of porous 4 is formed on the outer periphery of the suction grooves 5 and 6.
[0023]
A series of operations of the liquid immersion differential drainage static pressure floating pad thus configured will be described.
[0024]
FIG. 3 is a flowchart showing a series of operations of the liquid immersion differential drainage static pressure floating pad.
In FIG. 3, in step S1, it is determined whether or not there is another work. Specifically, it is determined whether there is another master 10 that is vacuum-sucked on the turntable 11 and exposed by the laser drive unit 23.
[0025]
FIG. 4 is a flowchart showing the work exchange operation. FIG. 4 corresponds to step S1 in FIG.
[0026]
In step S11, the turntable is moved to the work changing position by the slide mechanism. Specifically, the control unit 19 is configured to expand and contract the compressed gas from the positive pressure unit 17 with respect to the base 1 so that the immersion differential drainage static pressure floating pad 3 expands and contracts in a direction facing the master 10. Then, the supply to the master 2 is stopped, and the immersion differential drainage static pressure floating pad 3 is contracted in a direction away from the master 10. At this time, the turntable is moved to the work exchange position by the slide mechanism.
[0027]
In step S12, the work is exchanged. Specifically, the work after exposure is removed, and a new master, which is another work, is vacuum-adsorbed on the turntable.
[0028]
In step S13, the turntable is moved to the exposure position by the slide mechanism. Specifically, the control unit 19 is configured to expand and contract the compressed gas from the positive pressure unit 17 with respect to the base 1 so that the immersion differential drainage static pressure floating pad 3 expands and contracts in a direction facing the master 10. 2 is stopped, and the turntable is moved to the exposure position by the slide mechanism with the immersion differential drainage static pressure floating pad 3 contracted in the direction away from the master 10.
[0029]
In step S14, it is determined whether or not there is another work. If there is another work, the process returns to step S11, and the processes and determinations in steps S11 to S14 are repeated. If there is no other work, the process ends.
[0030]
Returning to FIG. 3, if there is no other work in step S1, the process ends. If there is another work, the process proceeds to step S2, and the pad is lowered in step S2. Specifically, the control unit 19 is configured to expand and contract the compressed gas from the positive pressure unit 17 with respect to the base 1 so that the immersion differential drainage static pressure floating pad 3 expands and contracts in a direction facing the master 10. 2 to expand the immersion differential drainage static pressure floating pad 3 in a direction approaching the master 10.
[0031]
In step S3, the pad is floated. Specifically, the control unit 19 supplies the compressed gas from the positive pressure unit 17 to the porous member 4 functioning as the annular gas discharge bearing unit, and the immersion differential drainage static pressure floating pad 3 Levitate in the direction opposite to.
[0032]
In step S4, the pad is lowered by collecting the liquid by the drain part, and the gap is set to 5 μm. More specifically, the control unit 19 sucks the compressed gas from the plurality of annular suction grooves 5 and 6 from the negative pressure unit 18 and sends the compressed gas from the positive pressure unit 17 to the porous 4 functioning as an annular gas discharge bearing unit. The immersion differential drainage static pressure levitation pad 3 is maintained so as to be opposed to the master 10 at a minute interval (5 μm) in a state where the levitation by the supply of the compressed gas is balanced.
[0033]
In step S5, the liquid is collected in a suction state. Specifically, the control unit 19 sucks and discharges the liquid by suction of the compressed gas from the negative pressure unit 18 from the plurality of annular suction grooves 5 and 6 by the drain unit 14. At this time, the liquid sucked by the drainage unit 14 is stored in the tank 15.
[0034]
FIG. 5 is a flowchart showing the liquid collecting operation. FIG. 5 corresponds to steps S4 and S5 in FIG.
In step S21, the drain part collects the liquid in the inner circumferential groove. Specifically, the control unit 19 causes the liquid discharging unit 14 to suction and discharge the liquid by suctioning the compressed gas from the inner peripheral groove 6 of the plurality of annular suction grooves 5 and 6 from the negative pressure unit 18.
[0035]
In step S22, it is determined whether or not the gap is 5 μm. If the gap is not 5 μm, the process returns to step S21, and the processing and determination in steps S21 to S22 are repeated. When the gap is 5 μm, the process proceeds to step S23.
[0036]
In step S23, the collected liquid is stored in a tank. Specifically, the control unit 19 is configured to use the liquid discharging unit 14 to suction and discharge the liquid by suctioning the compressed gas from the inner circumferential groove 6 of the plurality of annular suction grooves 5 and 6 from the negative pressure unit 18. Then, the liquid sucked by the drain unit 14 is stored in the tank 15.
[0037]
In step S24, the exhaust unit collects the leakage of the liquid in the outer peripheral groove from the exhaust air due to the floating of the pad. Specifically, the control unit 19 causes the drainage unit 14 to leak the compressed gas from the porous member 4 by suctioning the compressed gas from the outer peripheral groove 5 of the plurality of annular suction grooves 5 and 6 from the negative pressure unit 18. Collect.
[0038]
In step S25, it is determined whether or not the pressure of the outer circumferential groove 5 is slightly higher than the atmospheric pressure. If the pressure is slightly higher than the atmospheric pressure, the process returns to step S24, and the processing and determination of steps S24 to S25 are repeated. . If the pressure is slightly higher than the atmospheric pressure, the process proceeds to step S26.
[0039]
In step S26, the collected liquid is stored in a tank. Specifically, the control unit 19 causes the drainage unit 14 to leak the compressed gas from the porous member 4 by suctioning the compressed gas from the outer peripheral groove 5 of the plurality of annular suction grooves 5 and 6 from the negative pressure unit 18. The scattered liquid is collected and stored in a tank.
[0040]
Returning to FIG. 3, in step S6, liquid is supplied by the supply unit. Specifically, the control section 19 supplies the liquid to the liquid immersion section 7 around the liquid immersion objective lens 9 via the compressed gas from the positive pressure section 17 by the supply section 16. Thus, the liquid immersion objective lens 9 functions as a high aperture ratio objective lens by being in a liquid immersion state in which a liquid having a high refractive index is impregnated.
[0041]
FIG. 6 is a flowchart showing the liquid supply operation. FIG. 6 corresponds to step S6 in FIG.
In step S31, the supply unit discharges the liquid from the tank by positive pressure. Specifically, the control section 19 supplies the liquid to the liquid immersion section 7 around the liquid immersion objective lens 9 via the compressed gas from the positive pressure section 17 by the supply section 16.
[0042]
In step S32, the liquid is supplied to the liquid immersion section 7 on the inner periphery. Specifically, the liquid immersion objective lens 9 functions as a high aperture ratio objective lens by being immersed in a liquid having a high refractive index.
[0043]
Returning to FIG. 3, in step S7, the objective lens is lowered. Specifically, the controller 19 causes the actuator 21 to advance the immersion objective lens 9 in a direction facing the master 10.
[0044]
In step S8, it is determined whether or not the subject is in focus. Specifically, the control unit 19 moves the liquid immersion objective lens 9 toward the master 10 by the actuator 21 so that the laser irradiation light is focused by the detection mechanism 20 of the reflected laser irradiation light on the master 10. To advance.
[0045]
FIG. 7 is a flowchart showing the immersion objective lens lowering operation. FIG. 7 corresponds to steps S7 and S8 in FIG.
[0046]
In step S41, the control unit supplies a drive signal to the actuator. Specifically, the control unit 19 supplies a drive signal for lowering the liquid immersion objective lens to an actuator including a piezoelectric element and a voice coil motor.
[0047]
In step S42, the actuator lowers the immersion objective lens. Specifically, the immersion objective lens is lowered by the actuator constituted by the piezoelectric element and the voice coil motor moving downward.
[0048]
In step S43, the laser driver irradiates the laser for focus adjustment. Specifically, the control unit 19 causes the laser driving unit 23 to emit a focus adjustment laser.
[0049]
In step S44, reflection is detected by the reflection detection mechanism. Specifically, the control unit 19 detects the laser irradiation light by the reflected laser irradiation light detection mechanism 20 for the master 10.
[0050]
In step S45, it is determined whether or not the subject is in focus. Specifically, the control unit 19 determines whether the laser irradiation light detected by the reflected laser irradiation light detection mechanism 20 for the master 10 is in a focused state. If it is not in the focused state, the process returns to step S41, and the processing and determination of steps S41 to S45 are repeated. If the camera is in the focused state, the process ends.
[0051]
Returning to FIG. 3, when it is determined that the focal point is in focus at step S8, the process proceeds to step S9, and when it is not the focal point at step S8, the process returns to step S7 to repeat the processing and determination of step S7 and step S8.
[0052]
If the focal point is found in step S8, an exposure operation is performed in step S8. Specifically, the control unit 19 uses the immersion differential drainage static pressure floating pad 3 to rotate and slide by the spindle rotation mechanism 12 and the slide mechanism 13 via the laser beam 22 from the laser drive unit 23. Exposure is performed on the master 10 vacuum-adsorbed on the moving turntable 11.
[0053]
FIG. 8 is a flowchart showing the exposure operation. FIG. 8 corresponds to step S9 in FIG.
[0054]
In step S51, the laser driving unit irradiates an exposure laser. Specifically, the control unit 19 causes the laser driving unit 23 to irradiate an exposure laser.
[0055]
In step S52, the turntable is moved from the inner circumference to the outer circumference by the slide mechanism according to the rotation of the spindle. Specifically, the control unit 19 uses the immersion differential drainage static pressure floating pad 3 to rotate and slide the laser beam 22 from the laser drive unit 23 by the spindle rotation mechanism 12 and the slide mechanism 13. Irradiation is performed so that the master 10 vacuum-adsorbed on the turntable 11 is exposed spirally.
[0056]
In step S53, it is determined whether or not the exposure is completed. The process returns to step S52 until the exposure is completed, and the processes and determinations in step S522 and step S53 are repeated.
[0057]
Although the embodiment of the present invention has been described with respect to the invention of the liquid immersion differential drainage static pressure floating pad 3 of the optical disk master exposure apparatus, the same effect can be detected, for example, by irradiating a laser beam to detect an opponent. It can be used for all applications such as television receiver tube surface detectors and semiconductor inspection devices.
[0058]
As described above, the liquid is supplied to the liquid immersion portion 7 at the center of the liquid immersion differential drainage static pressure floating pad 3, and the liquid is applied to the outer peripheral side so that the liquid can be sucked like a vacuum cleaner using an appropriate negative pressure. By providing the annular grooves 5 and 6 and collecting by suction, the clearance between the pad bottom surface and the master can be maintained at about 5 μm, and at the same time, the liquid can be made hard to leak to the outer peripheral side. Since the air for floating the air bearing applies a pressure to the inner circumference, the liquid can be kept on the inner circumference side of the suction annular groove 6. The annular groove 5 is provided on the outer periphery of the inner peripheral suction groove 6, whereby the exhaust gas can be collected while preventing the leakage of the liquid by an appropriate positive pressure of the air bearing by the porous material 4.
[0059]
【The invention's effect】
According to the present invention, the liquid immersion lens can be configured without liquid leakage by using the differential exhaust type static pressure floating pad, so that the refractive index between the working distance between the objective lens and the irradiation target is set to be higher than 1. Therefore, the spot can be made smaller than that in the air, so that high-density exposure can be performed.
[0060]
Further, since the liquid does not scatter, it is easy to keep the apparatus clean, and it is possible to prevent the accuracy from being deteriorated by the vibration due to the scatter.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a liquid immersion differential drainage static pressure floating pad used in a master exposure apparatus applied to an embodiment of the present invention.
FIG. 2 is a bottom view of a liquid immersion differential drainage static pressure floating pad.
FIG. 3 is a flowchart showing a series of operations.
FIG. 4 is a flowchart showing a work exchange operation.
FIG. 5 is a flowchart showing a liquid recovery operation.
FIG. 6 is a flowchart showing a liquid supply operation.
FIG. 7 is a flowchart showing a lowering operation of the immersion objective lens.
FIG. 8 is a flowchart illustrating an exposure operation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Base, 2 ... Elastic part, 3 ... Static pressure floating pad, 4 ... Porous, 5 ... Groove, 6 ... Groove, 7 ... Liquid immersion part, 8 ... Hole, 9 ... ... Immersion objective lens, 10 ... Master disk, 11 ... Turntable, 12 ... Spindle, 13 ... Slide mechanism, 14 ... Drainage unit, 15 ... Tank, 16 ... Supply unit, 17 ... Positive Pressure unit, 18 Negative pressure unit, 19 Control unit, 20 Reflection detection mechanism, 21 Actuator, 22 Laser irradiation light, 23 Laser drive unit

Claims (7)

レーザー照射手段からの照射光を光学系を介して回転機構およびスライド機構により回転移動およびスライド移動する原盤に露光可能に照射するものであって、
上記原盤に対して微小間隔をもって対向し、上記原盤に照射光を照射するための出射孔を有し、上記出射孔に連通する照射光の通路の周囲に上記原盤との対向面に開口する複数の環状吸引溝が形成され、上記吸引溝の周囲に環状気体排出軸受け部が形成される静圧浮上パッドに対して、
上記照射光の通路に設けられ、駆動手段により上記原盤に対して対向する方向に進退可能に構成され、高屈折率の液体を含浸した液浸状態とすることにより高開口率の対物レンズとして機能する液浸対物レンズと、
上記液浸対物レンズの周囲の液浸部に液体を供給可能な供給手段と、
上記複数の環状吸引溝から液体を吸引して排液可能な排液手段と、
上記レーザー照射手段、上記回転機構および上記スライド機構ならびに上記排液手段および上記供給手段を制御すると共に、上記原盤に対する反射照射光の検出により上記照射光が合焦状態となるように上記液浸対物レンズを上記駆動手段により上記原盤に対して対向する方向に進退させる制御手段と
を備えた液浸差動排液静圧浮上パッド。
It is intended to irradiate the irradiation light from the laser irradiation means to a master that is rotationally and slidably moved by a rotation mechanism and a slide mechanism via an optical system so as to be exposed,
A plurality of openings opposed to the master at a small interval, and having an emission hole for irradiating the master with irradiation light, and having an opening on a surface facing the master around a path of irradiation light communicating with the emission hole; An annular suction groove is formed, and a static pressure floating pad in which an annular gas discharge bearing portion is formed around the suction groove,
It is provided in the path of the irradiation light, is configured to be able to advance and retreat in a direction facing the master by a driving unit, and functions as an objective lens having a high aperture ratio by being immersed in a liquid having a high refractive index. Liquid immersion objective lens,
Supply means capable of supplying a liquid to a liquid immersion part around the liquid immersion objective lens;
Drainage means capable of sucking and draining liquid from the plurality of annular suction grooves,
The laser irradiating means, the rotating mechanism and the sliding mechanism, the drainage means and the supply means are controlled, and the liquid immersion objective is set so that the irradiation light is focused by detecting reflected irradiation light with respect to the master. A liquid immersion differential drainage static pressure floating pad having control means for moving the lens forward and backward with respect to the master by the driving means.
請求項1記載の液浸差動排液静圧浮上パッドにおいて、
上記排液手段により吸引した液体を貯蔵して上記供給手段に供給する貯蔵手段を備え、上記排液手段により吸引した液を上記貯蔵手段に回収し、ろ過して上記供給手段に供給して再利用することを特徴とした液浸差動排液静圧浮上パッド。
The immersion differential drainage static pressure floating pad according to claim 1,
Storage means for storing the liquid sucked by the drainage means and supplying the liquid to the supply means; collecting the liquid sucked by the drainage means in the storage means; filtering and supplying the liquid to the supply means; Liquid immersion differential drainage static pressure levitation pad characterized by use.
請求項1記載の液浸差動排液静圧浮上パッドにおいて、
上記制御手段は、上記合焦状態の後の上記露光動作を上記液浸状態で行うことを特徴とした液浸差動排液静圧浮上パッド。
The immersion differential drainage static pressure floating pad according to claim 1,
A liquid immersion differential drainage static pressure floating pad, wherein the control means performs the exposure operation after the focusing state in the liquid immersion state.
レーザー照射手段からの照射光を光学系を介して回転機構およびスライド機構により回転移動およびスライド移動する原盤に露光可能に照射する原盤露光装置において、
上記原盤に照射光を露光可能に照射するものであって、
上記原盤に対して微小間隔をもって対向し、上記原盤に照射光を照射するための出射孔を有し、上記出射孔に連通する照射光の通路の周囲に上記原盤との対向面に開口する複数の環状吸引溝が形成され、上記吸引溝の周囲に環状気体排出軸受け部が形成される静圧浮上パッドに対して、
上記照射光の通路に設けられ、駆動手段により上記原盤に対して対向する方向に進退可能に構成され、高屈折率の液体を含浸した液浸状態とすることにより高開口率の対物レンズとして機能する液浸対物レンズと、
上記液浸対物レンズの周囲の液浸部に液体を供給可能な供給手段と、
上記複数の環状吸引溝から液体を吸引して排液可能な排液手段と、
上記レーザー照射手段、上記回転機構および上記スライド機構ならびに上記排液手段および上記供給手段を制御すると共に、上記原盤に対する反射照射光の検出により上記照射光が合焦状態となるように上記液浸対物レンズを上記駆動手段により上記原盤に対して対向する方向に進退させる制御手段とを有する液浸差動排液静圧浮上パッド
を備えたことを特徴とした原盤露光装置。
In a master exposure apparatus that irradiates irradiation light from a laser irradiation unit onto a master that is rotationally and slidably moved by a rotation mechanism and a slide mechanism via an optical system so as to be capable of exposing,
It is to irradiate the master disc with irradiation light so that it can be exposed,
A plurality of openings opposed to the master at a small interval, and having an emission hole for irradiating the master with irradiation light, and having an opening on a surface facing the master around a path of irradiation light communicating with the emission hole; An annular suction groove is formed, and a static pressure floating pad in which an annular gas discharge bearing portion is formed around the suction groove,
It is provided in the path of the irradiation light, is configured to be able to advance and retreat in a direction facing the master by a driving unit, and functions as an objective lens having a high aperture ratio by being immersed in a liquid having a high refractive index. Liquid immersion objective lens,
Supply means capable of supplying a liquid to a liquid immersion part around the liquid immersion objective lens;
Drainage means capable of sucking and draining liquid from the plurality of annular suction grooves,
The laser irradiating means, the rotating mechanism and the sliding mechanism, the drainage means and the supply means are controlled, and the liquid immersion objective is set so that the irradiation light is focused by detecting reflected irradiation light with respect to the master. A master exposure apparatus, comprising: a liquid immersion differential drainage static pressure floating pad having control means for moving the lens forward and backward with respect to the master by the driving means.
請求項4記載の原盤露光装置において、
上記排液手段により吸引した液体を貯蔵して上記供給手段に供給する貯蔵手段を備え、上記排液手段により吸引した液を上記貯蔵手段に回収し、ろ過して上記供給手段に供給して再利用することを特徴とした原盤露光装置。
The master exposure apparatus according to claim 4,
Storage means for storing the liquid sucked by the drainage means and supplying the liquid to the supply means; collecting the liquid sucked by the drainage means in the storage means; filtering and supplying the liquid to the supply means; Master exposure equipment characterized by being used.
請求項4記載の原盤露光装置において、
上記制御手段は、上記合焦状態の後の上記露光動作を上記液侵状態で行うことを特徴とした原盤露光装置。
The master exposure apparatus according to claim 4,
The master exposure apparatus, wherein the control unit performs the exposure operation after the in-focus state in the liquid immersion state.
レーザー照射手段からの照射光を原盤に露光可能に照射するものであって、上記原盤に対して微小間隔をもって対向し、上記原盤に照射光を照射するための出射孔を有し、上記出射孔に連通する照射光の通路の周囲に上記原盤との対向面に開口する複数の環状吸引溝が形成され、上記吸引溝の周囲に環状気体排出軸受け部が形成される静圧浮上パッドを用いて、光学系を介して回転機構およびスライド機構により回転移動およびスライド移動する原盤を露光する原盤露光装置を用いた液浸差動排液による露光方法において、
上記複数の環状吸引溝から液体を吸引して排液可能な排液ステップと、
上記照射光の通路に設けられ、駆動手段により上記原盤に対して対向する方向に進退可能に構成され、高屈折率の液体を含浸した液浸状態とすることにより高開口率の対物レンズとして機能する液浸対物レンズを設けた液浸差動排液静圧浮上パッドに対して、上記液浸対物レンズの周囲の液浸部に液体を供給可能な供給ステップと、
上記原盤に対する反射照射光の検出により上記照射光が合焦状態となるように上記液浸対物レンズを上記駆動手段により上記原盤に対して対向する方向に進退させる制御ステップと
を備えたことを特徴とした液浸差動排液による露光方法。
Irradiation light from a laser irradiating means is applied to the master so as to be capable of exposing the master, and the master is opposed to the master at a small interval, and has an emission hole for irradiating the master with irradiation light. A plurality of annular suction grooves are formed around the passage of the irradiation light communicating with the master disk, and a plurality of annular suction grooves are formed on the surface facing the master, and an annular gas discharge bearing portion is formed around the suction grooves using a static pressure floating pad. In an exposure method by immersion differential drainage using a master exposure apparatus that exposes a master that is rotationally and slid by a rotation mechanism and a slide mechanism via an optical system,
A draining step capable of suctioning and draining liquid from the plurality of annular suction grooves,
It is provided in the path of the irradiation light, is configured to be able to advance and retreat in a direction facing the master by a driving unit, and functions as an objective lens having a high aperture ratio by being immersed in a liquid having a high refractive index. A supply step capable of supplying a liquid to an immersion portion around the immersion objective lens for the immersion differential drainage static pressure floating pad provided with the immersion objective lens to be provided;
A control step of moving the liquid immersion objective lens forward and backward by the driving means in a direction facing the master so that the irradiation light is brought into a focused state by detecting reflected irradiation light with respect to the master. Exposure method using liquid immersion differential drainage.
JP2003148040A 2003-05-26 2003-05-26 Liquid-immersed differential liquid-drainage static-pressure floating pad, master-disk exposure apparatus, and method of exposure using liquid-immersed differential liquid-drainage Pending JP2004349645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003148040A JP2004349645A (en) 2003-05-26 2003-05-26 Liquid-immersed differential liquid-drainage static-pressure floating pad, master-disk exposure apparatus, and method of exposure using liquid-immersed differential liquid-drainage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003148040A JP2004349645A (en) 2003-05-26 2003-05-26 Liquid-immersed differential liquid-drainage static-pressure floating pad, master-disk exposure apparatus, and method of exposure using liquid-immersed differential liquid-drainage

Publications (1)

Publication Number Publication Date
JP2004349645A true JP2004349645A (en) 2004-12-09

Family

ID=33534392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003148040A Pending JP2004349645A (en) 2003-05-26 2003-05-26 Liquid-immersed differential liquid-drainage static-pressure floating pad, master-disk exposure apparatus, and method of exposure using liquid-immersed differential liquid-drainage

Country Status (1)

Country Link
JP (1) JP2004349645A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005029559A1 (en) * 2003-09-19 2005-03-31 Nikon Corporation Exposure apparatus and device producing method
JP2005191344A (en) * 2003-12-26 2005-07-14 Nikon Corp Aligner and manufacturing method of device
JP2005353820A (en) * 2004-06-10 2005-12-22 Nikon Corp Exposure system and method of manufacturing device
WO2006106851A1 (en) * 2005-03-31 2006-10-12 Nikon Corporation Exposure apparatus, exposure method, and device production method
JP2007019463A (en) * 2005-03-31 2007-01-25 Nikon Corp Exposure device, exposure method, and method of manufacturing device
JPWO2005093791A1 (en) * 2004-03-25 2008-02-14 株式会社ニコン Exposure apparatus and device manufacturing method
JP2008523432A (en) * 2004-12-10 2008-07-03 イグジテック・リミテッド Positioning device
JP2009044168A (en) * 2003-09-03 2009-02-26 Nikon Corp Device and method for supplying fluid for immersion lithography
JP2010171462A (en) * 2010-04-26 2010-08-05 Nikon Corp Exposure device and method of manufacturing device
JP2011061233A (en) * 2003-07-09 2011-03-24 Nikon Corp Exposure apparatus and device manufacturing method
CN102540443A (en) * 2012-02-18 2012-07-04 福州大学 Slit flow stability control device
US8436979B2 (en) 2003-06-19 2013-05-07 Nikon Corporation Exposure apparatus, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2014057114A (en) * 2003-04-10 2014-03-27 Nikon Corp Environmental system including transport region for immersion lithography apparatus
JP2014112716A (en) * 2003-02-26 2014-06-19 Nikon Corp Exposure equipment, exposure method, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9500960B2 (en) 2003-04-11 2016-11-22 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9632431B2 (en) 2004-02-02 2017-04-25 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US9658537B2 (en) 2003-04-10 2017-05-23 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112716A (en) * 2003-02-26 2014-06-19 Nikon Corp Exposure equipment, exposure method, and device manufacturing method
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9658537B2 (en) 2003-04-10 2017-05-23 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
JP2014057114A (en) * 2003-04-10 2014-03-27 Nikon Corp Environmental system including transport region for immersion lithography apparatus
US9977350B2 (en) 2003-04-10 2018-05-22 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US9632427B2 (en) 2003-04-10 2017-04-25 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US9910370B2 (en) 2003-04-10 2018-03-06 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US9500960B2 (en) 2003-04-11 2016-11-22 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9946163B2 (en) 2003-04-11 2018-04-17 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9810995B2 (en) 2003-06-19 2017-11-07 Nikon Corporation Exposure apparatus and device manufacturing method
US10007188B2 (en) 2003-06-19 2018-06-26 Nikon Corporation Exposure apparatus and device manufacturing method
US9551943B2 (en) 2003-06-19 2017-01-24 Nikon Corporation Exposure apparatus and device manufacturing method
JP2019020745A (en) * 2003-06-19 2019-02-07 株式会社ニコン Exposure apparatus, exposure method, and method for manufacturing device
US10191388B2 (en) 2003-06-19 2019-01-29 Nikon Corporation Exposure apparatus, and device manufacturing method
US8436979B2 (en) 2003-06-19 2013-05-07 Nikon Corporation Exposure apparatus, and device manufacturing method
JP2017090932A (en) * 2003-06-19 2017-05-25 株式会社ニコン Exposure device, exposure method and device production method
JP2011061233A (en) * 2003-07-09 2011-03-24 Nikon Corp Exposure apparatus and device manufacturing method
US9977352B2 (en) 2003-07-09 2018-05-22 Nikon Corporation Exposure apparatus and device manufacturing method
JP2016026309A (en) * 2003-09-03 2016-02-12 株式会社ニコン Apparatus and method for providing fluid for immersion lithography
JP2014003330A (en) * 2003-09-03 2014-01-09 Nikon Corp Fluid supply device and method for immersion lithography
JP2014197716A (en) * 2003-09-03 2014-10-16 株式会社ニコン Apparatus and method for providing fluid for immersion lithography
JP2009044168A (en) * 2003-09-03 2009-02-26 Nikon Corp Device and method for supplying fluid for immersion lithography
US10203610B2 (en) 2003-09-03 2019-02-12 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US9817319B2 (en) 2003-09-03 2017-11-14 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
WO2005029559A1 (en) * 2003-09-19 2005-03-31 Nikon Corporation Exposure apparatus and device producing method
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
JP2005191344A (en) * 2003-12-26 2005-07-14 Nikon Corp Aligner and manufacturing method of device
US10139737B2 (en) 2004-02-02 2018-11-27 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US9665016B2 (en) 2004-02-02 2017-05-30 Nikon Corporation Lithographic apparatus and method having substrate table and sensor table to hold immersion liquid
US9632431B2 (en) 2004-02-02 2017-04-25 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US10007196B2 (en) 2004-02-02 2018-06-26 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US9684248B2 (en) 2004-02-02 2017-06-20 Nikon Corporation Lithographic apparatus having substrate table and sensor table to measure a patterned beam
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2011199311A (en) * 2004-03-25 2011-10-06 Nikon Corp Aligner and method of manufacturing device
JP2012156540A (en) * 2004-03-25 2012-08-16 Nikon Corp Exposure apparatus, and method for manufacturing device
JP4525676B2 (en) * 2004-03-25 2010-08-18 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
JP2013236096A (en) * 2004-03-25 2013-11-21 Nikon Corp Exposure apparatus and method of manufacturing device
JP2010153931A (en) * 2004-03-25 2010-07-08 Nikon Corp Exposure apparatus and method for manufacturing device
JPWO2005093791A1 (en) * 2004-03-25 2008-02-14 株式会社ニコン Exposure apparatus and device manufacturing method
US10126661B2 (en) 2004-03-25 2018-11-13 Nikon Corporation Exposure apparatus and device fabrication method
JP4543767B2 (en) * 2004-06-10 2010-09-15 株式会社ニコン Exposure apparatus and device manufacturing method
JP2005353820A (en) * 2004-06-10 2005-12-22 Nikon Corp Exposure system and method of manufacturing device
JP2008523432A (en) * 2004-12-10 2008-07-03 イグジテック・リミテッド Positioning device
JP2007019463A (en) * 2005-03-31 2007-01-25 Nikon Corp Exposure device, exposure method, and method of manufacturing device
WO2006106851A1 (en) * 2005-03-31 2006-10-12 Nikon Corporation Exposure apparatus, exposure method, and device production method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2010171462A (en) * 2010-04-26 2010-08-05 Nikon Corp Exposure device and method of manufacturing device
CN102540443A (en) * 2012-02-18 2012-07-04 福州大学 Slit flow stability control device

Similar Documents

Publication Publication Date Title
JP2004349645A (en) Liquid-immersed differential liquid-drainage static-pressure floating pad, master-disk exposure apparatus, and method of exposure using liquid-immersed differential liquid-drainage
US7358507B2 (en) Liquid removal in a method and device for irradiating spots on a layer
TWI612556B (en) Exposure apparatus, exposure method, and component manufacturing method
JP7066559B2 (en) Joining device and joining method
JP5389236B2 (en) Ablation method and apparatus
KR100776771B1 (en) Lithographic projection apparatus
KR101181683B1 (en) Exposure equipment, exposure method and device manufacturing method
JPH11162831A (en) Projection aligner and projection aligning method
TW200423076A (en) Method and device for irradiating spots on a layer
JP2006511011A (en) Method and apparatus for irradiating a spot on a layer
CN1673859A (en) Assembly of a reticle holder and a reticle
KR20010087255A (en) Electron beam irradiation apparatus, electron beam irradiation method, original disk, stamper, and recording medium
US6438074B1 (en) Optical recording medium manufacturing master recording apparatus
JP5065722B2 (en) Laser processing equipment
JP2008060539A (en) Liquid filled lens element, lithographic apparatus comprising such lens element, and device manufacturing method
KR20140046719A (en) Laser processing apparatus
JPWO2005124467A1 (en) Electron beam drawing device
JP2002260296A (en) Electron beam irradiation device and method
JP2009176888A (en) Mastering machine and liquid-immersion differential drainage static pressure surfacing pad used in same
TW202020551A (en) Photomask laser etch
JP2004348927A (en) Optical recorder, optical player, optically recording method and optically playing method
JP2019098356A (en) Wafer processing method
JP4379020B2 (en) Electron beam focus control device, electron beam irradiation head attitude control device, electron beam focus control method, and electron beam irradiation head attitude control method
CN114258482A (en) Self-diagnosis method for inspection apparatus and inspection apparatus
JP2023102923A (en) Grinding device