JP2005191344A - Aligner and manufacturing method of device - Google Patents

Aligner and manufacturing method of device Download PDF

Info

Publication number
JP2005191344A
JP2005191344A JP2003431950A JP2003431950A JP2005191344A JP 2005191344 A JP2005191344 A JP 2005191344A JP 2003431950 A JP2003431950 A JP 2003431950A JP 2003431950 A JP2003431950 A JP 2003431950A JP 2005191344 A JP2005191344 A JP 2005191344A
Authority
JP
Japan
Prior art keywords
liquid
suction port
substrate
exposure apparatus
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003431950A
Other languages
Japanese (ja)
Other versions
JP4954444B2 (en
Inventor
Hideaki Hara
英明 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2003431950A priority Critical patent/JP4954444B2/en
Publication of JP2005191344A publication Critical patent/JP2005191344A/en
Application granted granted Critical
Publication of JP4954444B2 publication Critical patent/JP4954444B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aligner capable of obtaining high exposure accuracy by maintaining the size of a liquid immersion region. <P>SOLUTION: The aligner emits exposure light onto a substrate P to expose a substrate P via a projection optical system PL and a liquid LQ. The aligner is provided with supply ports 13, 14 to which the liquid LQ is supplied; an inner absorption port 25 located to the outside of a projection region of the projection optical system PL from the supply ports 13, 14; an outer absorption port 26 provided to the outside from the inner absorption port 25; a first member 27 provided to the inner absorption port 25 and having a first flow resistance; and a second member 28 provided to the outer absorption port 26 and having a second flow resistance different from the first flow resistance, and an edge EG of the liquid immersion region formed to an image face side of the projection optical system PL by the liquid LQ is located to the outer absorption port 26. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、投影光学系と液体とを介して基板上に露光光を照射して基板を露光する露光装置及びデバイス製造方法に関するものである。   The present invention relates to an exposure apparatus and a device manufacturing method for exposing a substrate by irradiating the substrate with exposure light via a projection optical system and a liquid.

半導体デバイスや液晶表示デバイスは、マスク上に形成されたパターンを感光性の基板上に転写する、いわゆるフォトリソグラフィの手法により製造される。このフォトリソグラフィ工程で使用される露光装置は、マスクを支持するマスクステージと基板を支持する基板ステージとを有し、マスクステージ及び基板ステージを逐次移動しながらマスクのパターンを投影光学系を介して基板に転写するものである。近年、デバイスパターンのより一層の高集積化に対応するために投影光学系の更なる高解像度化が望まれている。投影光学系の解像度は、使用する露光波長が短いほど、また投影光学系の開口数が大きいほど高くなる。そのため、露光装置で使用される露光波長は年々短波長化しており、投影光学系の開口数も増大している。そして、現在主流の露光波長はKrFエキシマレーザの248nmであるが、更に短波長のArFエキシマレーザの193nmも実用化されつつある。また、露光を行う際には、解像度と同様に焦点深度(DOF)も重要となる。解像度R、及び焦点深度δはそれぞれ以下の式で表される。
R=k・λ/NA … (1)
δ=±k・λ/NA … (2)
ここで、λは露光波長、NAは投影光学系の開口数、k、kはプロセス係数である。(1)式、(2)式より、解像度Rを高めるために、露光波長λを短くして、開口数NAを大きくすると、焦点深度δが狭くなることが分かる。
Semiconductor devices and liquid crystal display devices are manufactured by a so-called photolithography technique in which a pattern formed on a mask is transferred onto a photosensitive substrate. An exposure apparatus used in this photolithography process has a mask stage for supporting a mask and a substrate stage for supporting a substrate, and a mask pattern is transferred via a projection optical system while sequentially moving the mask stage and the substrate stage. It is transferred to the substrate. In recent years, in order to cope with higher integration of device patterns, higher resolution of the projection optical system is desired. The resolution of the projection optical system becomes higher as the exposure wavelength used is shorter and the numerical aperture of the projection optical system is larger. Therefore, the exposure wavelength used in the exposure apparatus is shortened year by year, and the numerical aperture of the projection optical system is also increasing. The mainstream exposure wavelength is 248 nm of the KrF excimer laser, but the 193 nm of the shorter wavelength ArF excimer laser is also being put into practical use. Also, when performing exposure, the depth of focus (DOF) is important as well as the resolution. The resolution R and the depth of focus δ are each expressed by the following equations.
R = k 1 · λ / NA (1)
δ = ± k 2 · λ / NA 2 (2)
Here, λ is the exposure wavelength, NA is the numerical aperture of the projection optical system, and k 1 and k 2 are process coefficients. From equations (1) and (2), it can be seen that if the exposure wavelength λ is shortened and the numerical aperture NA is increased to increase the resolution R, the depth of focus δ becomes narrower.

焦点深度δが狭くなり過ぎると、投影光学系の像面に対して基板表面を合致させることが困難となり、露光動作時のフォーカスマージンが不足するおそれがある。そこで、実質的に露光波長を短くして、且つ焦点深度を広くする方法として、例えば下記特許文献1に開示されている液浸法が提案されている。この液浸法は、投影光学系の下面と基板表面との間を水や有機溶媒等の液体で満たして液浸領域を形成し、液体中での露光光の波長が空気中の1/n(nは液体の屈折率で通常1.2〜1.6程度)になることを利用して解像度を向上するとともに、焦点深度を約n倍に拡大するというものである。
国際公開第99/49504号パンフレット
If the depth of focus δ becomes too narrow, it becomes difficult to match the substrate surface with the image plane of the projection optical system, and the focus margin during the exposure operation may be insufficient. Therefore, as a method for substantially shortening the exposure wavelength and increasing the depth of focus, for example, a liquid immersion method disclosed in Patent Document 1 below has been proposed. In this immersion method, a space between the lower surface of the projection optical system and the substrate surface is filled with a liquid such as water or an organic solvent to form an immersion region, and the wavelength of exposure light in the liquid is 1 / n of that in air. (Where n is the refractive index of the liquid, which is usually about 1.2 to 1.6), the resolution is improved, and the depth of focus is expanded about n times.
International Publication No. 99/49504 Pamphlet

ところで、上記従来技術は、基板上に液体の液浸領域を局所的に形成する局所液浸方式であるが、局所液浸方式においては基板上の液浸領域の大きさを維持することが重要である。例えば、液浸領域が大きくなって液浸領域の液体が基板の外側に流出すると、基板を保持する基板ステージ周辺の機械部品に錆びを生じさせる等の不都合が発生する。また、流出した液体により基板の置かれている環境(湿度、温度など)が変動し、例えば基板ステージの位置情報を計測する干渉計の計測光の光路上の屈折率の変化を引き起こす等、露光精度に影響を及ぼす可能性もある。一方、露光光の照射中に投影光学系の投影領域より液浸領域が小さくなったり、基板上の液体が枯渇するなどして液浸領域が所望状態に形成されないと、液体を介さないで露光光が基板に照射され、露光精度の劣化を招く。   By the way, the above prior art is a local liquid immersion method in which a liquid immersion region is locally formed on a substrate. However, in the local liquid immersion method, it is important to maintain the size of the liquid immersion region on the substrate. It is. For example, when the liquid immersion area becomes large and the liquid in the liquid immersion area flows out of the substrate, inconveniences such as rusting occur on mechanical parts around the substrate stage that holds the substrate. Also, the environment in which the substrate is placed (humidity, temperature, etc.) fluctuates due to the spilled liquid, for example, causing a change in refractive index on the optical path of the measurement light of the interferometer that measures the position information of the substrate stage It can also affect accuracy. On the other hand, if the immersion area becomes smaller than the projection area of the projection optical system during exposure light exposure, or if the immersion area is not formed in the desired state due to depletion of the liquid on the substrate, exposure is not performed via the liquid. Light is irradiated onto the substrate, resulting in deterioration of exposure accuracy.

また、基板上の液体を液体回収口から吸引回収する構成の場合、基板上の液浸領域の大きさが変動し、液浸領域の端部が移動すると、回収口が液体で覆われたり完全に覆われない状況が発生する。例えば回収口が液体で覆われない場合、回収口からは液体と一緒にその周囲の気体も噛み込むようにして回収されるため、回収された液体は分断されて液滴状態となって回収口からその回収口に接続する回収管などに流入する。この場合、その液滴状態の液体が回収管に当たって音や振動を発生する可能性が高くなり、発生した振動によって露光精度が劣化する。   In addition, when the liquid on the substrate is sucked and collected from the liquid recovery port, the size of the liquid immersion area on the substrate changes and the end of the liquid immersion area moves. Situation that is not covered by occurs. For example, when the recovery port is not covered with liquid, it is recovered from the recovery port by biting the surrounding gas together with the liquid, so that the recovered liquid is divided into droplets and is recovered from the recovery port. It flows into a collection pipe connected to the collection port. In this case, there is a high possibility that the liquid in the droplet state hits the collection tube and generates a sound or vibration, and the exposure accuracy deteriorates due to the generated vibration.

本発明はこのような事情に鑑みてなされたものであって、液浸領域の大きさを維持して高い露光精度を得ることができる露光装置、及びこの露光装置を用いるデバイス製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides an exposure apparatus capable of maintaining the size of a liquid immersion region and obtaining high exposure accuracy, and a device manufacturing method using the exposure apparatus. For the purpose.

上記の課題を解決するため、本発明は実施の形態に示す図1〜図7に対応付けした以下の構成を採用している。
本発明の露光装置(EX)は、投影光学系(PL)と液体(LQ)とを介して基板(P)上に露光光(EL)を照射して基板(P)を露光する露光装置において、液体(LQ)を供給する供給口(13、14)と、投影光学系(PL)の投影領域(AR1)に対して供給口(13、14)より外側に設けられた第1吸引口(25)と、第1吸引口(25)より外側に設けられた第2吸引口(26)と、第1吸引口(25)に設けられ、第1の流れの抵抗を有する第1部材(27)と、第2吸引口(26)に設けられ、第1の流れの抵抗とは異なる第2の流れの抵抗を有する第2部材(28)とを備え、第2吸引口(26)に、液体(LQ)によって投影光学系(PL)の像面側に形成される液浸領域(AR2)の端部(EG)が配置されることを特徴とする。
また本発明のデバイス製造方法は、上記記載の露光装置(EX)を用いることを特徴とする。
In order to solve the above-described problems, the present invention adopts the following configuration corresponding to FIGS. 1 to 7 shown in the embodiment.
An exposure apparatus (EX) of the present invention is an exposure apparatus that exposes a substrate (P) by irradiating the substrate (P) with exposure light (EL) via a projection optical system (PL) and a liquid (LQ). , Supply ports (13, 14) for supplying liquid (LQ), and first suction ports (13, 14) provided outside the supply ports (13, 14) with respect to the projection area (AR1) of the projection optical system (PL). 25), a second suction port (26) provided outside the first suction port (25), and a first member (27) provided at the first suction port (25) and having a first flow resistance. ) And a second member (28) provided at the second suction port (26) and having a second flow resistance different from the first flow resistance, and the second suction port (26), An end (EG) of the immersion area (AR2) formed on the image plane side of the projection optical system (PL) by the liquid (LQ) is disposed. The features.
The device manufacturing method of the present invention is characterized by using the above-described exposure apparatus (EX).

本発明によれば、第2吸引口に液浸領域の端部を配置することで、第1吸引口は液体で完全に覆われ、その第1吸引口を介して液体回収を良好に行いつつ、液浸領域の端部の位置を制御してその端部の移動を抑えることができる。したがって、液浸領域の大きさを維持でき、液体の流出又は枯渇、あるいは振動の発生を防止して高い露光精度を得ることができる。   According to the present invention, by arranging the end of the liquid immersion area at the second suction port, the first suction port is completely covered with the liquid, and the liquid is recovered well through the first suction port. By controlling the position of the end of the liquid immersion region, the movement of the end can be suppressed. Therefore, the size of the liquid immersion area can be maintained, and high exposure accuracy can be obtained by preventing the outflow or depletion of liquid or occurrence of vibration.

本発明によれば、基板上の液浸領域の大きさを維持でき、高い露光精度を得ることができるため、所望の性能を有するデバイスを製造することができる。   According to the present invention, since the size of the liquid immersion area on the substrate can be maintained and high exposure accuracy can be obtained, a device having desired performance can be manufactured.

以下、本発明の露光装置について図面を参照しながら説明する。図1は本発明の露光装置の一実施形態を示す概略構成図である。
図1において、露光装置EXは、マスクMを支持するマスクステージMSTと、基板Pを支持する基板ステージPSTと、マスクステージMSTに支持されているマスクMを露光光ELで照明する照明光学系ILと、露光光ELで照明されたマスクMのパターン像を基板ステージPSTに支持されている基板Pに投影露光する投影光学系PLと、露光装置EX全体の動作を統括制御する制御装置CONTとを備えている。
The exposure apparatus of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic block diagram showing an embodiment of the exposure apparatus of the present invention.
In FIG. 1, an exposure apparatus EX includes a mask stage MST that supports a mask M, a substrate stage PST that supports a substrate P, and an illumination optical system IL that illuminates the mask M supported by the mask stage MST with exposure light EL. A projection optical system PL that projects and exposes the pattern image of the mask M illuminated by the exposure light EL onto the substrate P supported by the substrate stage PST, and a control device CONT that controls the overall operation of the exposure apparatus EX. I have.

本実施形態の露光装置EXは、露光波長を実質的に短くして解像度を向上するとともに焦点深度を実質的に広くするために液浸法を適用した液浸露光装置であって、基板P上に液体LQを供給する液体供給機構10と、基板P上の液体LQを回収する液体回収機構20とを備えている。露光装置EXは、少なくともマスクMのパターン像を基板P上に転写している間、液体供給機構10から供給した液体LQにより投影光学系PLの投影領域AR1を含む基板P上の一部に(局所的に)液浸領域AR2を形成する。具体的には、露光装置EXは、投影光学系PLの像面側終端部の光学素子2と、その像面側に配置された基板P表面との間に液体LQを満たす局所液浸方式を採用し、この投影光学系PLと基板Pとの間の液体LQ及び投影光学系PLを介してマスクMを通過した露光光ELを基板Pに照射することによってマスクMのパターンを基板Pに投影露光する。   The exposure apparatus EX of the present embodiment is an immersion exposure apparatus to which an immersion method is applied in order to substantially shorten the exposure wavelength to improve the resolution and substantially increase the depth of focus. A liquid supply mechanism 10 for supplying the liquid LQ to the substrate P, and a liquid recovery mechanism 20 for recovering the liquid LQ on the substrate P. While transferring at least the pattern image of the mask M onto the substrate P, the exposure apparatus EX uses a liquid LQ supplied from the liquid supply mechanism 10 to a part on the substrate P including the projection area AR1 of the projection optical system PL ( Locally) the immersion area AR2 is formed. Specifically, the exposure apparatus EX employs a local liquid immersion method in which the liquid LQ is filled between the optical element 2 at the image plane side end portion of the projection optical system PL and the surface of the substrate P disposed on the image plane side. The pattern of the mask M is projected onto the substrate P by irradiating the substrate P with the liquid LQ between the projection optical system PL and the substrate P and the exposure light EL that has passed through the mask M via the projection optical system PL. Exposure.

本実施形態では、露光装置EXとしてマスクMと基板Pとを走査方向における互いに異なる向き(逆方向)に同期移動しつつマスクMに形成されたパターンを基板Pに露光する走査型露光装置(所謂スキャニングステッパ)を使用する場合を例にして説明する。以下の説明において、投影光学系PLの光軸AXと一致する方向をZ軸方向、Z軸方向に垂直な平面内でマスクMと基板Pとの同期移動方向(走査方向)をX軸方向、Z軸方向及びX軸方向に垂直な方向(非走査方向)をY軸方向とする。また、X軸、Y軸、及びZ軸まわりの回転(傾斜)方向をそれぞれ、θX、θY、及びθZ方向とする。   In this embodiment, the exposure apparatus EX is a scanning exposure apparatus (so-called so-called exposure apparatus EX) that exposes a pattern formed on the mask M onto the substrate P while synchronously moving the mask M and the substrate P in different directions (reverse directions) in the scanning direction. A case where a scanning stepper) is used will be described as an example. In the following description, the direction that coincides with the optical axis AX of the projection optical system PL is the Z-axis direction, the synchronous movement direction (scanning direction) between the mask M and the substrate P in the plane perpendicular to the Z-axis direction is the X-axis direction, A direction (non-scanning direction) perpendicular to the Z-axis direction and the X-axis direction is defined as a Y-axis direction. Further, the rotation (inclination) directions around the X axis, Y axis, and Z axis are the θX, θY, and θZ directions, respectively.

照明光学系ILは、マスクステージMSTに支持されているマスクMを露光光ELで照明するものであり、露光用光源、露光用光源から射出された光束の照度を均一化するオプティカルインテグレータ、オプティカルインテグレータからの露光光ELを集光するコンデンサレンズ、リレーレンズ系、露光光ELによるマスクM上の照明領域をスリット状に設定する可変視野絞り等を有している。マスクM上の所定の照明領域は照明光学系ILにより均一な照度分布の露光光ELで照明される。照明光学系ILから射出される露光光ELとしては、例えば水銀ランプから射出される紫外域の輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)や、ArFエキシマレーザ光(波長193nm)及びFレーザ光(波長157nm)等の真空紫外光(VUV光)などが用いられる。本実施形態においてはArFエキシマレーザ光が用いられる。 The illumination optical system IL illuminates the mask M supported by the mask stage MST with the exposure light EL, and the exposure light source, and an optical integrator and an optical integrator for uniformizing the illuminance of the light beam emitted from the exposure light source A condenser lens that collects the exposure light EL from the light source, a relay lens system, a variable field stop that sets the illumination area on the mask M by the exposure light EL in a slit shape, and the like. A predetermined illumination area on the mask M is illuminated with the exposure light EL having a uniform illuminance distribution by the illumination optical system IL. As the exposure light EL emitted from the illumination optical system IL, for example, far ultraviolet light (g-line, h-line, i-line) and KrF excimer laser light (wavelength 248 nm) emitted from a mercury lamp (e.g. DUV light), vacuum ultraviolet light (VUV light) such as ArF excimer laser light (wavelength 193 nm) and F 2 laser light (wavelength 157 nm), or the like is used. In this embodiment, ArF excimer laser light is used.

本実施形態において、液体LQには純水が用いられる。純水はArFエキシマレーザ光のみならず、例えば水銀ランプから射出される紫外域の輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)も透過可能である。   In the present embodiment, pure water is used as the liquid LQ. Pure water is not only ArF excimer laser light, but also far ultraviolet light (DUV light) such as ultraviolet emission lines (g-line, h-line, i-line) emitted from mercury lamps and KrF excimer laser light (wavelength 248 nm). Can also be transmitted.

マスクステージMSTは、マスクMを保持して移動可能であって、例えばマスクMを真空吸着(又は静電吸着)により固定している。マスクステージMSTは、リニアモータ等を含むマスクステージ駆動装置MSTDにより、投影光学系PLの光軸AXに垂直な平面内、すなわちXY平面内で2次元移動可能及びθZ方向に微少回転可能である。そして、マスクステージMSTは、X軸方向に指定された走査速度で移動可能となっており、マスクMの全面が少なくとも投影光学系PLの光軸AXを横切ることができるだけのX軸方向の移動ストロークを有している。   The mask stage MST is movable while holding the mask M. For example, the mask M is fixed by vacuum suction (or electrostatic suction). The mask stage MST can be moved two-dimensionally in the plane perpendicular to the optical axis AX of the projection optical system PL, that is, the XY plane, and can be slightly rotated in the θZ direction by a mask stage driving device MSTD including a linear motor or the like. The mask stage MST is movable at a scanning speed specified in the X-axis direction, and the movement stroke in the X-axis direction is such that the entire surface of the mask M can cross at least the optical axis AX of the projection optical system PL. have.

マスクステージMST上には移動鏡50が設けられている。また、移動鏡50に対向する位置にはレーザ干渉計51が設けられている。マスクステージMST上のマスクMの2次元方向の位置、及びθZ方向の回転角(場合によってはθX、θY方向の回転角も含む)はレーザ干渉計51によりリアルタイムで計測され、計測結果は制御装置CONTに出力される。制御装置CONTは、レーザ干渉計51の計測結果に基づいてマスクステージ駆動装置MSTDを駆動することでマスクステージMSTに支持されているマスクMの位置を制御する。   A movable mirror 50 is provided on the mask stage MST. A laser interferometer 51 is provided at a position facing the movable mirror 50. The position of the mask M on the mask stage MST in the two-dimensional direction and the rotation angle in the θZ direction (including rotation angles in the θX and θY directions in some cases) are measured in real time by the laser interferometer 51, and the measurement result is the control device. Output to CONT. The control device CONT controls the position of the mask M supported by the mask stage MST by driving the mask stage drive device MSTD based on the measurement result of the laser interferometer 51.

投影光学系PLは、マスクMのパターンを所定の投影倍率βで基板Pに投影露光するものであって、基板P側の先端部に設けられた光学素子(レンズ)2を含む複数の光学素子で構成されており、これら光学素子2は鏡筒PKで支持されている。本実施形態において、投影光学系PLは、投影倍率βが例えば1/4あるいは1/5の縮小系である。なお、投影光学系PLは等倍系及び拡大系のいずれでもよい。   The projection optical system PL projects and exposes the pattern of the mask M onto the substrate P at a predetermined projection magnification β, and includes a plurality of optical elements including an optical element (lens) 2 provided at the front end portion on the substrate P side. These optical elements 2 are supported by a lens barrel PK. In the present embodiment, the projection optical system PL is a reduction system having a projection magnification β of, for example, 1/4 or 1/5. Note that the projection optical system PL may be either an equal magnification system or an enlargement system.

本実施形態において、投影光学系PLの先端部の光学素子2は鏡筒PKより露出しており、液浸領域AR2の液体LQが接触する。光学素子2は螢石で形成されている。螢石表面、あるいはMgF、Al、SiO等を付着させた表面は水との親和性が高いので、光学素子2の液体接触面2aのほぼ全面に液体LQを密着させることができる。すなわち、本実施形態においては光学素子2の液体接触面2aとの親和性が高い液体(水)LQを供給するようにしているので、光学素子2の液体接触面2aと液体LQとの密着性が高く、光学素子2と基板Pとの間の光路を液体LQで確実に満たすことができる。なお、光学素子2は、水との親和性が高い石英であってもよい。また、光学素子2の液体接触面2aに親水化(親液化)処理を施して、液体LQとの親和性をより高めるようにしてもよい。 In the present embodiment, the optical element 2 at the tip of the projection optical system PL is exposed from the lens barrel PK, and the liquid LQ in the liquid immersion area AR2 comes into contact therewith. The optical element 2 is made of meteorite. Since the surface of the meteorite or the surface to which MgF 2 , Al 2 O 3 , SiO 2 or the like is attached has a high affinity with water, the liquid LQ can be adhered to almost the entire liquid contact surface 2 a of the optical element 2. it can. That is, in the present embodiment, the liquid (water) LQ having a high affinity with the liquid contact surface 2a of the optical element 2 is supplied, and therefore the adhesion between the liquid contact surface 2a of the optical element 2 and the liquid LQ. And the optical path between the optical element 2 and the substrate P can be reliably filled with the liquid LQ. The optical element 2 may be quartz having a high affinity for water. Further, the liquid contact surface 2a of the optical element 2 may be subjected to a hydrophilization (lyophilic process) to further increase the affinity with the liquid LQ.

基板ステージPSTは、基板Pを保持して移動可能であって、XYステージ55と、XYステージ55上に搭載されたZチルトステージ54とを含んで構成されている。XYステージ55は、ステージベース56の上面の上方に不図示の非接触ベアリングである気体軸受(エアベアリング)を介して非接触支持されている。XYステージ55(基板ステージPST)はステージベース56の上面に対して非接触支持された状態で、リニアモータ等を含む基板ステージ駆動装置PSTDにより、投影光学系PLの光軸AXに垂直な平面内、すなわちXY平面内で2次元移動可能及びθZ方向に微小回転可能である。このXYステージ55上にZチルトステージ54が搭載され、Zチルトステージ54上に不図示の基板ホルダを介して基板Pが例えば真空吸着等により保持されている。Zチルトステージ54は、Z軸方向、θX方向、及びθY方向にも移動可能に設けられている。基板ステージ駆動装置PSTDは制御装置CONTにより制御される。   The substrate stage PST is movable while holding the substrate P, and includes an XY stage 55 and a Z tilt stage 54 mounted on the XY stage 55. The XY stage 55 is supported in a non-contact manner above the upper surface of the stage base 56 via a gas bearing (air bearing) which is a non-contact bearing (not shown). The XY stage 55 (substrate stage PST) is supported in a non-contact manner on the upper surface of the stage base 56, and is in a plane perpendicular to the optical axis AX of the projection optical system PL by the substrate stage driving device PSTD including a linear motor and the like. That is, it can move two-dimensionally in the XY plane and can rotate in the θZ direction. A Z tilt stage 54 is mounted on the XY stage 55, and the substrate P is held on the Z tilt stage 54 through a substrate holder (not shown), for example, by vacuum suction. The Z tilt stage 54 is movably provided in the Z-axis direction, the θX direction, and the θY direction. The substrate stage driving device PSTD is controlled by the control device CONT.

また、基板ステージPSTのZチルトステージ54上には、Zチルトステージ54に保持された基板Pを囲むようにプレート部材57が設けられている。プレート部材57は環状部材であって、基板Pの外側に配置されている。プレート部材57は、基板ステージPSTに保持された基板Pの表面とほぼ同じ高さ(面一)の平坦面(平坦部)57Aを有している。平坦面57Aは、Zチルトステージ54上の基板ホルダに保持された基板Pの外側の周囲に配置されている。   A plate member 57 is provided on the Z tilt stage 54 of the substrate stage PST so as to surround the substrate P held by the Z tilt stage 54. The plate member 57 is an annular member and is disposed outside the substrate P. The plate member 57 has a flat surface (flat portion) 57A having substantially the same height (level) as the surface of the substrate P held by the substrate stage PST. The flat surface 57 </ b> A is disposed around the outside of the substrate P held by the substrate holder on the Z tilt stage 54.

プレート部材57は、例えばポリ四フッ化エチレン(テフロン(登録商標))などの撥液性を有する材料によって形成されている。そのため、平坦面57Aは撥液性を有する。なお、例えば所定の金属などでプレート部材57を形成し、その金属製のプレート部材57の少なくとも平坦面57Aに対して撥液処理を施すことで、平坦面57Aを撥液性にしてもよい。プレート部材57(平坦面57A)の撥液処理としては、例えば、ポリ四フッ化エチレン等のフッ素系樹脂材料あるいはアクリル系樹脂材料等の撥液性材料を塗布、あるいは前記撥液性材料からなる薄膜を貼付する。撥液性にするための撥液性材料としては液体LQに対して非溶解性の材料が用いられる。また、撥液性材料の塗布領域としては、プレート部材57の表面全域に対して塗布してもよいし、例えば平坦面57Aなど撥液性を必要とする一部の領域のみに対して塗布するようにしてもよい。   The plate member 57 is made of a material having liquid repellency such as polytetrafluoroethylene (Teflon (registered trademark)). Therefore, the flat surface 57A has liquid repellency. For example, the flat member 57A may be made liquid repellent by forming the plate member 57 with a predetermined metal and applying a liquid repellent treatment to at least the flat surface 57A of the metal plate member 57. As the liquid repellent treatment of the plate member 57 (flat surface 57A), for example, a liquid repellent material such as a fluororesin material such as polytetrafluoroethylene or an acrylic resin material is applied, or the liquid repellent material is used. Apply a thin film. As the liquid repellent material for making it liquid repellent, a material that is insoluble in the liquid LQ is used. In addition, the application region of the liquid repellent material may be applied to the entire surface of the plate member 57, or may be applied to only a part of the region requiring liquid repellency such as the flat surface 57A. You may do it.

基板Pの周囲に、基板P表面とほぼ面一の平坦面57Aを有するプレート部材57を設けたので、基板Pのエッジ領域Eを液浸露光するときにおいても、投影光学系PLの下に液体LQを保持し、投影光学系PLの像面側に液浸領域AR2を良好に形成することができる。また、平坦面57Aを撥液性にすることにより、液浸露光中における基板P外側(平坦面57A外側)への液体LQの流出を抑え、また液浸露光後においても液体LQを円滑に回収できて、平坦面57A上に液体LQが残留することを防止することができる。   Since the plate member 57 having the flat surface 57A substantially flush with the surface of the substrate P is provided around the substrate P, even when the edge region E of the substrate P is subjected to immersion exposure, the liquid is placed under the projection optical system PL. The liquid immersion area AR2 can be satisfactorily formed on the image plane side of the projection optical system PL while maintaining LQ. Further, by making the flat surface 57A liquid-repellent, the liquid LQ is prevented from flowing out to the outside of the substrate P (outside the flat surface 57A) during immersion exposure, and the liquid LQ is smoothly recovered even after immersion exposure. Thus, the liquid LQ can be prevented from remaining on the flat surface 57A.

基板ステージPST(Zチルトステージ54)上には移動鏡52が設けられている。また、移動鏡52に対向する位置にはレーザ干渉計53が設けられている。基板ステージPST上の基板Pの2次元方向の位置、及び回転角はレーザ干渉計53によりリアルタイムで計測され、計測結果は制御装置CONTに出力される。制御装置CONTはレーザ干渉計53の計測結果に基づいてリニアモータ等を含む基板ステージ駆動装置PSTDを駆動することで基板ステージPSTに支持されている基板Pの位置決めを行う。   A movable mirror 52 is provided on the substrate stage PST (Z tilt stage 54). A laser interferometer 53 is provided at a position facing the movable mirror 52. The position and rotation angle of the substrate P on the substrate stage PST in the two-dimensional direction are measured in real time by the laser interferometer 53, and the measurement result is output to the control device CONT. The controller CONT positions the substrate P supported by the substrate stage PST by driving the substrate stage driving device PSTD including a linear motor or the like based on the measurement result of the laser interferometer 53.

また、露光装置EXは、基板ステージPSTに支持されている基板Pの表面の位置を検出する不図示のフォーカス検出系を備えている。なお、フォーカス検出系の構成としては、例えば特開平8−37149号公報に開示されているものを用いることができる。フォーカス検出系の受光結果は制御装置CONTに出力される。制御装置CONTはフォーカス検出系の検出結果に基づいて、基板P表面のZ軸方向の位置情報、及び基板PのθX及びθY方向の傾斜情報を検出することができる。Zチルトステージ54は、基板Pのフォーカス位置及び傾斜角を制御して基板Pの表面をオートフォーカス方式、及びオートレベリング方式で投影光学系PLの像面に合わせ込み、XYステージ55は基板PのX軸方向及びY軸方向における位置決めを行う。なお、ZチルトステージとXYステージとを一体的に設けてよいことは言うまでもない。   In addition, the exposure apparatus EX includes a focus detection system (not shown) that detects the position of the surface of the substrate P supported by the substrate stage PST. As the configuration of the focus detection system, for example, the one disclosed in JP-A-8-37149 can be used. The light reception result of the focus detection system is output to the control device CONT. Based on the detection result of the focus detection system, the control device CONT can detect the position information of the surface of the substrate P in the Z-axis direction and the tilt information of the substrate P in the θX and θY directions. The Z tilt stage 54 controls the focus position and tilt angle of the substrate P to adjust the surface of the substrate P to the image plane of the projection optical system PL by the auto focus method and the auto leveling method. Positioning is performed in the X-axis direction and the Y-axis direction. Needless to say, the Z tilt stage and the XY stage may be provided integrally.

液体供給機構10は、所定の液体LQを基板P上に供給するものであって、液体LQを送出可能な第1液体供給部11及び第2液体供給部12と、第1、第2液体供給部11、12のそれぞれにその一端部を接続する第1、第2供給管11A、12Aとを備えている。第1、第2液体供給部11、12のそれぞれは、液体LQを収容するタンク、及び加圧ポンプ等を備えている。   The liquid supply mechanism 10 supplies a predetermined liquid LQ onto the substrate P, and includes a first liquid supply unit 11 and a second liquid supply unit 12 capable of delivering the liquid LQ, and first and second liquid supplies. First and second supply pipes 11 </ b> A and 12 </ b> A that connect one end of each of the parts 11 and 12 are provided. Each of the first and second liquid supply units 11 and 12 includes a tank for storing the liquid LQ, a pressure pump, and the like.

液体回収機構20は、基板P上に供給された液体LQを回収するものであって、液体LQを回収可能な液体回収部21と、液体回収部21にその一端部を接続する回収管22と、真空系23と、真空系23にその一端部を接続する吸引管24とを備えている。液体回収部21は例えば真空ポンプ等の真空系(吸引装置)、気液分離器、及び回収した液体LQを収容するタンク等を備えている。真空系23は、真空ポンプあるいは工場に設けられている真空系により構成されている。   The liquid recovery mechanism 20 recovers the liquid LQ supplied onto the substrate P, and includes a liquid recovery unit 21 that can recover the liquid LQ, and a recovery tube 22 that connects one end of the liquid recovery unit 21 to the liquid recovery unit 21. And a vacuum system 23 and a suction tube 24 connected to one end of the vacuum system 23. The liquid recovery unit 21 includes, for example, a vacuum system (a suction device) such as a vacuum pump, a gas-liquid separator, and a tank that stores the recovered liquid LQ. The vacuum system 23 is configured by a vacuum pump or a vacuum system provided in a factory.

投影光学系PLの終端部の光学素子2の近傍には流路形成部材30が配置されている。流路形成部材30は、基板P(基板ステージPST)の上方において光学素子2の周りを囲むように設けられた環状部材であって、光学部材2と対向する内周壁30Aを有している。内周壁30Aと光学素子2とは離れており、流路形成部材30と投影光学系PLとは振動的に分離するように、不図示の支持機構に支持されている。流路形成部材30は、液体供給機構10及び液体回収機構20それぞれの一部を構成している。   A flow path forming member 30 is disposed in the vicinity of the optical element 2 at the end of the projection optical system PL. The flow path forming member 30 is an annular member provided so as to surround the optical element 2 above the substrate P (substrate stage PST), and has an inner peripheral wall 30 </ b> A facing the optical member 2. The inner peripheral wall 30A and the optical element 2 are separated from each other, and the flow path forming member 30 and the projection optical system PL are supported by a support mechanism (not shown) so as to be vibrationally separated. The flow path forming member 30 constitutes a part of each of the liquid supply mechanism 10 and the liquid recovery mechanism 20.

図2は流路形成部材30近傍の断面図、図3は流路形成部材30を下方から見た図、図4は流路形成部材30を一部破断した斜視図である。
図2及び図3において、流路形成部材30は、基板P(基板ステージPST)の上方に設けられ、その基板P表面に対向するように配置された第1液体供給口13と第2液体供給口14とを備えている。流路形成部材30の下面はほぼ平坦面であり、第1液体供給口13及び第2液体供給口14は流路形成部材30の下面に設けられている。また、流路形成部材30は、その内部に供給流路15、16を有している。供給流路15の一端部は第1液体供給口13に接続され、他端部は第1供給管11Aを介して第1液体供給部11に接続されている。供給流路16の一端部は第2液体供給口14に接続され、他端部は第2供給管12Aを介して第2液体供給部12に接続されている。
2 is a cross-sectional view of the vicinity of the flow path forming member 30, FIG. 3 is a view of the flow path forming member 30 as viewed from below, and FIG. 4 is a perspective view in which the flow path forming member 30 is partially broken.
2 and 3, the flow path forming member 30 is provided above the substrate P (substrate stage PST), and the first liquid supply port 13 and the second liquid supply arranged so as to face the surface of the substrate P. And a mouth 14. The lower surface of the flow path forming member 30 is a substantially flat surface, and the first liquid supply port 13 and the second liquid supply port 14 are provided on the lower surface of the flow path forming member 30. The flow path forming member 30 has supply flow paths 15 and 16 therein. One end of the supply channel 15 is connected to the first liquid supply port 13, and the other end is connected to the first liquid supply unit 11 via the first supply pipe 11 </ b> A. One end of the supply flow channel 16 is connected to the second liquid supply port 14, and the other end is connected to the second liquid supply unit 12 through the second supply pipe 12 </ b> A.

第1液体供給部11から送出された液体LQは、供給管11A、及び供給流路15を介して、第1液体供給口13より基板P上に供給される。同様に、第2液体供給部12から送出された液体LQは、供給管12A、及び供給流路16を介して、第2液体供給口14より基板P上に供給される。第1、第2液体供給部11、12の液体供給動作は制御装置CONTにより制御され、制御装置CONTは、第1、第2液体供給部11、12による基板P上に対する単位時間あたりの液体供給量をそれぞれ独立して制御可能である。なお本実施形態では、液体供給部を複数の供給部(第1、第2液体供給部11、12)で構成したが、これに限定されるものではなく、例えば1つの供給部で構成してもよい。   The liquid LQ delivered from the first liquid supply unit 11 is supplied onto the substrate P from the first liquid supply port 13 via the supply pipe 11A and the supply flow path 15. Similarly, the liquid LQ delivered from the second liquid supply unit 12 is supplied onto the substrate P from the second liquid supply port 14 via the supply pipe 12 </ b> A and the supply flow channel 16. The liquid supply operation of the first and second liquid supply units 11 and 12 is controlled by the control device CONT, and the control device CONT supplies the liquid per unit time onto the substrate P by the first and second liquid supply units 11 and 12. Each amount can be controlled independently. In this embodiment, the liquid supply unit is configured by a plurality of supply units (first and second liquid supply units 11 and 12). However, the present invention is not limited to this. For example, the liquid supply unit is configured by one supply unit. Also good.

更に、流路形成部材30は、基板P(基板ステージPST)の上方に設けられ、その基板P表面に対向するように配置された内側吸引口(第1吸引口)25及び外側吸引口(第2吸引口)26を備えている。内側吸引口25及び外側吸引口26は流路形成部材30の下面に設けられている。内側吸引口25及び外側吸引口26は、流路形成部材30内部に形成されている空間部31に接続されている。空間部31には吸引管24の他端部が接続されており、真空系23と空間部31とは吸引管24の流路を介して接続されている。吸引管24を介して空間部31に接続されている真空系23は、吸引管24の流路を介して空間部31内部の気体を吸引可能である。   Furthermore, the flow path forming member 30 is provided above the substrate P (substrate stage PST), and is arranged so as to face the surface of the substrate P. The inner suction port (first suction port) 25 and the outer suction port (first suction port). 2 suction ports) 26. The inner suction port 25 and the outer suction port 26 are provided on the lower surface of the flow path forming member 30. The inner suction port 25 and the outer suction port 26 are connected to a space portion 31 formed inside the flow path forming member 30. The other end portion of the suction tube 24 is connected to the space portion 31, and the vacuum system 23 and the space portion 31 are connected via a flow path of the suction tube 24. The vacuum system 23 connected to the space portion 31 via the suction tube 24 can suck the gas inside the space portion 31 via the flow path of the suction tube 24.

また、空間部31には回収管22の他端部が接続されており、液体回収部21と空間部31とは回収管22の流路を介して接続されている。回収管22を介して空間部31に接続されている液体回収部21は、回収管22の流路を介して空間部31内部の液体LQを回収可能である。   The other end portion of the recovery pipe 22 is connected to the space portion 31, and the liquid recovery portion 21 and the space portion 31 are connected via a flow path of the recovery tube 22. The liquid recovery part 21 connected to the space part 31 via the recovery pipe 22 can recover the liquid LQ inside the space part 31 via the flow path of the recovery pipe 22.

図3に示すように、第1液体供給口13は投影光学系PLの投影領域AR1に対して−X側に設けられ、第2液体供給口14は投影領域AR1に対して+X側に設けられている。投影光学系PLの投影領域AR1は、Y軸方向を長手方向とし、X軸方向を短手方向とした矩形状に設定されている。第1液体供給口13及び第2液体供給口14のそれぞれは平面視略円弧状のスリット状に形成されており、そのY軸方向の大きさは、少なくとも投影領域AR1より大きくなっている。   As shown in FIG. 3, the first liquid supply port 13 is provided on the −X side with respect to the projection area AR1 of the projection optical system PL, and the second liquid supply port 14 is provided on the + X side with respect to the projection area AR1. ing. The projection area AR1 of the projection optical system PL is set in a rectangular shape with the Y-axis direction as the long direction and the X-axis direction as the short direction. Each of the first liquid supply port 13 and the second liquid supply port 14 is formed in a slit shape having a substantially arc shape in plan view, and the size in the Y-axis direction is at least larger than the projection area AR1.

内側吸引口25は、投影光学系PLの投影領域AR1に対して第1、第2液体供給口13、14より外側に設けられており、その投影領域AR1及び第1、第2液体供給口13、14を囲むように複数分割して設けられている。本実施形態において、内側吸引口25は12箇所にほぼ等間隔で設けられている。また、外側吸引口26は、投影光学系PLの投影領域AR1に対して内側吸引口25より更に外側に設けられており、投影領域AR1及び内側吸引口25を囲むように複数分割して設けられている。本実施形態において、外側吸引口26は、内側吸引口25と同じ12箇所にほぼ等間隔で設けられている。   The inner suction port 25 is provided outside the first and second liquid supply ports 13 and 14 with respect to the projection region AR1 of the projection optical system PL, and the projection region AR1 and the first and second liquid supply ports 13 are provided. , 14 are divided into a plurality of parts so as to surround them. In the present embodiment, the inner suction ports 25 are provided at approximately equal intervals at 12 locations. The outer suction port 26 is provided further outside the inner suction port 25 with respect to the projection area AR1 of the projection optical system PL, and is provided in a plurality of divisions so as to surround the projection area AR1 and the inner suction port 25. ing. In the present embodiment, the outer suction ports 26 are provided at approximately the same intervals at the same 12 locations as the inner suction ports 25.

複数の内側吸引口25のそれぞれには、第1の流れの抵抗を有する第1部材27が設けられている。また、複数の外側吸引口26のそれぞれには、第1の流れの抵抗とは異なる第2の流れの抵抗を有する第2部材28が設けられている。第2部材28の流れの抵抗(第2の流れの抵抗)は、第1部材27の流れの抵抗(第1の流れの抵抗)よりも大きい。   Each of the plurality of inner suction ports 25 is provided with a first member 27 having a first flow resistance. Each of the plurality of outer suction ports 26 is provided with a second member 28 having a second flow resistance different from the first flow resistance. The flow resistance of the second member 28 (second flow resistance) is greater than the flow resistance of the first member 27 (first flow resistance).

第1部材27及び第2部材28のそれぞれは多孔質体により構成されており、例えば多孔質セラミックス等により構成されている。そして、例えば第1部材27を粗な多孔質体によって構成し、第2部材28を密な多孔質体によって構成することにより、第2部材28の流れの抵抗を第1部材27の流れの抵抗より大きくすることができる。   Each of the 1st member 27 and the 2nd member 28 is comprised by the porous body, for example, is comprised by the porous ceramics etc. For example, the first member 27 is formed of a coarse porous body, and the second member 28 is formed of a dense porous body, whereby the flow resistance of the second member 28 is reduced to the flow resistance of the first member 27. Can be larger.

第1部材27としては液体LQを通過可能なものが用いられる。第1部材27より流れの抵抗が大きい第2部材28としては液体LQを殆ど通過させず、主に気体のみを通過可能なものが用いられる。したがって、第1部材27を配置された内側吸引口25は液体LQを通過可能であり、第2部材28を配置された外側吸引口26は液体LQを殆ど通過させず、主に気体を通過させる。   As the first member 27, one that can pass through the liquid LQ is used. As the second member 28 whose flow resistance is larger than that of the first member 27, a member that hardly allows the liquid LQ to pass therethrough and mainly allows only the gas to pass therethrough is used. Therefore, the inner suction port 25 in which the first member 27 is disposed can pass the liquid LQ, and the outer suction port 26 in which the second member 28 is disposed hardly allows the liquid LQ to pass, and mainly allows gas to pass. .

ここで、第2部材28を撥液性にすることにより、第2部材28(外側吸引口26)の液体LQの通過を更に良好に規制(阻止)して、気体のみを通過させることができる。例えば第2部材28をポリ四フッ化エチレン(テフロン(登録商標))等の撥液性材料からなる多孔質体によって構成することにより、撥液性を有する第2部材28を形成することができる。もちろん、第2部材28をセラミックス等の所定の材料によって形成し、その第2部材28に撥液性材料を塗布する等の撥液処理を施すことによって第2部材28を撥液性としてもよい。   Here, by making the second member 28 liquid repellent, the passage of the liquid LQ through the second member 28 (outer suction port 26) can be more effectively regulated (blocked), and only the gas can pass. . For example, the second member 28 having liquid repellency can be formed by forming the second member 28 with a porous body made of a liquid repellent material such as polytetrafluoroethylene (Teflon (registered trademark)). . Of course, the second member 28 may be made liquid repellent by forming the second member 28 from a predetermined material such as ceramics and applying a liquid repellent treatment such as applying a liquid repellent material to the second member 28. .

なお、第1部材27及び第2部材28としては、多孔質体に限られず、毛細管など所定の流れの抵抗を有するものであれば任意の部材(材料)を使用することができる。特に第1部材27としては、多孔質体や毛細管の他に、例えばステンレス鋼製の板部材に小さな貫通穴を複数設けた部材、あるいは金属等の網目状の部材によって構成してもよい。また、液体LQが円滑に流通するように、内側吸引口25に配置される第1部材27は親液性であることが好ましい。一方、本実施形態においては、第2部材28は主に気体のみを通過させるようにするため、上述したように、セラミックスやポリ四フッ化エチレン等からなる撥液性を有する多孔質体であることが好ましい。   The first member 27 and the second member 28 are not limited to porous bodies, and any member (material) may be used as long as it has a predetermined flow resistance such as a capillary tube. In particular, the first member 27 may be constituted by a member provided with a plurality of small through holes in a plate member made of stainless steel, for example, or a net-like member such as metal, in addition to the porous body and the capillary tube. Moreover, it is preferable that the 1st member 27 arrange | positioned at the inner side suction port 25 is lyophilic so that the liquid LQ may distribute | circulate smoothly. On the other hand, in the present embodiment, the second member 28 is a porous body having liquid repellency made of ceramics, polytetrafluoroethylene, or the like, as described above, so as to mainly allow only gas to pass therethrough. It is preferable.

図4に示すように、内側吸引口25及び外側吸引口26に接続する空間部31は、投影領域AR1を囲むように複数分割されて設けられている。すなわち空間部31は、複数の内側吸引口25及び外側吸引口26に対応するように複数(12個)設けられている。複数の空間部31どうしは仕切壁32によって仕切られており、複数の空間部31に回収管22及び吸引管24がそれぞれ接続されている。吸引管24は、空間部31の上部を覆う天板部30Tに接続され、回収管22は側壁部30Sに接続されている。内側吸引口25及び外側吸引口26は、空間部31の底部30Bに設けられている。そして、真空系23は吸引管24を介して複数の空間部31それぞれの気体を吸引可能である。液体回収部21は回収管22を介して複数の空間部31それぞれの液体LQを回収可能である。   As shown in FIG. 4, the space 31 connected to the inner suction port 25 and the outer suction port 26 is divided into a plurality of parts so as to surround the projection area AR1. That is, a plurality of (12) space portions 31 are provided so as to correspond to the plurality of inner suction ports 25 and outer suction ports 26. The plurality of space portions 31 are partitioned by a partition wall 32, and the recovery tube 22 and the suction tube 24 are connected to the plurality of space portions 31, respectively. The suction tube 24 is connected to a top plate portion 30T that covers the upper portion of the space portion 31, and the recovery tube 22 is connected to the side wall portion 30S. The inner suction port 25 and the outer suction port 26 are provided on the bottom 30 </ b> B of the space portion 31. The vacuum system 23 can suck the gas in each of the plurality of space portions 31 via the suction pipe 24. The liquid recovery part 21 can recover the liquid LQ of each of the plurality of space parts 31 via the recovery pipe 22.

また、図2に示すように、空間部31と真空系23とを接続する複数の吸引管24のそれぞれには、第3の流れの抵抗を有する第3部材29が設けられている。第3部材29も多孔質セラミックス等の多孔質体により構成されている。なお第3部材29はオリフィスにより構成されてもよい。   Further, as shown in FIG. 2, each of the plurality of suction pipes 24 connecting the space portion 31 and the vacuum system 23 is provided with a third member 29 having a third flow resistance. The third member 29 is also composed of a porous body such as porous ceramics. The third member 29 may be constituted by an orifice.

なお、本実施形態において、複数の回収管22は1つの液体回収部21に接続されているが、回収管22の数に対応した液体回収部21を複数(ここでは12個)設け、複数(12本)の回収管22のそれぞれを前記複数の液体回収部21のそれぞれに接続するようにしてもよい。同様に、本実施形態においては、複数の吸引管24は1つの真空系23に接続されているが、吸引管24の数に対応した真空系23を複数(ここでは12個)設け、複数(12本)の吸引管24のそれぞれを前記複数の真空系23のそれぞれに接続するようにしてもよい。   In the present embodiment, the plurality of recovery pipes 22 are connected to one liquid recovery section 21, but a plurality of (here, twelve) liquid recovery sections 21 corresponding to the number of recovery pipes 22 are provided. Each of the twelve) recovery pipes 22 may be connected to each of the plurality of liquid recovery units 21. Similarly, in the present embodiment, a plurality of suction pipes 24 are connected to one vacuum system 23, but a plurality of (here, twelve) vacuum systems 23 corresponding to the number of suction pipes 24 are provided to provide a plurality ( Each of the 12 suction pipes 24 may be connected to each of the plurality of vacuum systems 23.

複数の空間部31それぞれの内部には、液体LQと気体とを分離する気液分離部材33が設けられている。気液分離部材33は箱状部材であって、その下部には外側吸引口26に対応する開口部34が設けられている。気液分離部材33は、開口部34と外側吸引口26とを位置合わせした状態で、その外側吸引口26を覆うように設けられている。また、気液分離部材33の上方には突出部35が設けられており、突出部35には、箱状部材である気液分離部材33の内部空間33Kと外部とを連通する穴部36が形成されている。気液分離部材33は、空間部31に配置されている液体LQに対して、外側吸引口26から吸引された気体を分離する。空間部31と回収管22とを接続する接続部(流路)は、穴部36の上端部よりも低い位置に設けられている。   A gas-liquid separation member 33 that separates the liquid LQ and the gas is provided inside each of the plurality of space portions 31. The gas-liquid separation member 33 is a box-like member, and an opening 34 corresponding to the outer suction port 26 is provided in the lower part thereof. The gas-liquid separation member 33 is provided so as to cover the outer suction port 26 in a state where the opening 34 and the outer suction port 26 are aligned. A protrusion 35 is provided above the gas-liquid separation member 33. The protrusion 35 has a hole 36 that communicates the internal space 33K of the gas-liquid separation member 33, which is a box-shaped member, with the outside. Is formed. The gas-liquid separation member 33 separates the gas sucked from the outer suction port 26 with respect to the liquid LQ arranged in the space portion 31. A connection part (flow path) that connects the space part 31 and the recovery pipe 22 is provided at a position lower than the upper end part of the hole part 36.

また、複数の空間部31それぞれの内部には、空間部31に配置されている液体LQの液面の高さを調整する液面調整機構40が設けられている。液面調整機構40は、空間部31内部の液体LQの液面の高さを少なくとも気液分離部材33の突出部35の穴部36の上端部よりも低くなるように調整する。液面調整機構40は、液体LQの液面に浮く浮き部材41と、浮き部材41の位置に応じて回収管22と空間部31とを接続する接続部の流路の開閉を行うヒンジ部42Aを有した弁部42とを備えている。液体LQの液面が穴部36の上端部に対して下方に所定距離以上離れた位置にあるときには、その液面の位置に応じて、浮き部材41も穴部36の上端部に対して下方に所定距離以上離れた位置に配置され、その浮き部材41の位置に応じて弁部42が空間部31と回収管22とを接続する接続部(流路)を閉じるようになっている。一方、液体LQが穴部36の上端部に対して所定距離以下に近づいた位置になったとき、浮き部材41も穴部36の上端部に対して所定距離以下に近づいた位置に配置され、その浮き部材41の位置に応じて弁部42が駆動されて空間部31と回収管22とを接続する接続部(流路)を開けるようになっている。   In addition, a liquid level adjustment mechanism 40 that adjusts the height of the liquid level of the liquid LQ disposed in the space portion 31 is provided inside each of the plurality of space portions 31. The liquid level adjusting mechanism 40 adjusts the height of the liquid level of the liquid LQ inside the space portion 31 to be lower than at least the upper end portion of the hole portion 36 of the protruding portion 35 of the gas-liquid separation member 33. The liquid level adjustment mechanism 40 includes a floating member 41 that floats on the liquid level of the liquid LQ, and a hinge portion 42A that opens and closes the flow path of the connecting portion that connects the recovery pipe 22 and the space portion 31 according to the position of the floating member 41. And a valve portion 42 having When the liquid level of the liquid LQ is at a position below the upper end of the hole 36 by a predetermined distance or more, the floating member 41 is also below the upper end of the hole 36 depending on the position of the liquid level. The valve part 42 closes the connection part (flow path) that connects the space part 31 and the recovery pipe 22 in accordance with the position of the floating member 41. On the other hand, when the liquid LQ is located at a position closer to a predetermined distance or less with respect to the upper end portion of the hole 36, the floating member 41 is also arranged at a position closer to a predetermined distance or less with respect to the upper end portion of the hole 36, The valve portion 42 is driven according to the position of the floating member 41 so as to open a connection portion (flow path) that connects the space portion 31 and the recovery pipe 22.

次に、基板P上に液体LQの液浸領域AR2を形成する動作について説明する。
基板Pが基板ステージPSTに搬入された後、制御装置CONTは、基板P上に液体LQの液浸領域AR2を形成するために、液体供給機構10及び液体回収機構20を使って液体LQの供給及び回収を開始する。
Next, an operation of forming the liquid LQ immersion area AR2 on the substrate P will be described.
After the substrate P is carried into the substrate stage PST, the controller CONT supplies the liquid LQ using the liquid supply mechanism 10 and the liquid recovery mechanism 20 in order to form the liquid LQ immersion area AR2 on the substrate P. And start recovery.

制御装置CONTは、第1液体供給部11及び第2液体供給部12を駆動し、供給管11A、12A、及び供給流路15、16を介して、第1液体供給口13及び第2液体供給口14より、単位時間当たり所定量の液体LQを基板P上に供給する。本実施形態において、液体LQは第1液体供給口13及び第2液体供給口14のそれぞれから同時に供給される。供給された液体LQは、基板Pと投影光学系PLの光学素子2との間に拡がり、投影光学系PLの投影領域AR1を覆うように、投影領域AR1よりも大きく且つ基板Pよりも小さい液浸領域AR2を基板P上に局所的に形成する。   The control device CONT drives the first liquid supply unit 11 and the second liquid supply unit 12, and supplies the first liquid supply port 13 and the second liquid supply via the supply pipes 11 </ b> A and 12 </ b> A and the supply channels 15 and 16. A predetermined amount of liquid LQ per unit time is supplied onto the substrate P from the mouth 14. In the present embodiment, the liquid LQ is simultaneously supplied from each of the first liquid supply port 13 and the second liquid supply port 14. The supplied liquid LQ spreads between the substrate P and the optical element 2 of the projection optical system PL, and is larger than the projection area AR1 and smaller than the substrate P so as to cover the projection area AR1 of the projection optical system PL. The immersion area AR2 is locally formed on the substrate P.

また、制御装置CONTは、液体供給機構10の第1、第2液体供給部11、12の駆動の開始と同時に(又はその前に)、液体回収機構20の真空系23を駆動する。真空系23は、吸引管24を介して複数の空間部31それぞれの気体を吸引する。   In addition, the control device CONT drives the vacuum system 23 of the liquid recovery mechanism 20 simultaneously with (or before) the start of driving of the first and second liquid supply units 11 and 12 of the liquid supply mechanism 10. The vacuum system 23 sucks the gas in each of the plurality of space portions 31 through the suction pipe 24.

真空系23は、空間部31の気体を吸引することにより空間部31を負圧にする。これにより、基板P上の液体LQは、空間部31に接続されている内側吸引口25から吸引回収され、空間部31に配置される。投影領域AR1及び第1、第2液体供給口13、14の外側に流出した液体LQは内側吸引口25を介して吸引回収され、空間部31のうち、気液分離部材33の外側の空間(内部空間33Kの外側の空間)に配置される。なおこのとき、液体LQの液面は穴部36の上端部に対して下方に所定距離以上離れた位置にあるので、液面調整機構40の浮き部材41の位置に応じて、弁部42により空間部31と回収管22とを接続する接続部(流路)は閉じられている。   The vacuum system 23 makes the space 31 have a negative pressure by sucking the gas in the space 31. As a result, the liquid LQ on the substrate P is sucked and collected from the inner suction port 25 connected to the space portion 31 and is disposed in the space portion 31. The liquid LQ that has flowed out of the projection area AR1 and the first and second liquid supply ports 13 and 14 is sucked and collected through the inner suction port 25, and the space (outside of the gas-liquid separation member 33 in the space 31) ( (Space outside the internal space 33K). At this time, the liquid level of the liquid LQ is at a position that is a predetermined distance or more away from the upper end of the hole 36, so that the valve unit 42 determines the position of the floating member 41 of the liquid level adjustment mechanism 40. A connecting portion (flow path) that connects the space portion 31 and the recovery pipe 22 is closed.

やがて、吸引回収された液体LQの空間部31での量が増し、空間部31において液体LQの液面が上昇する。液体LQの液面の上昇(移動)に伴って、液面調整機構40の浮き部材41も上昇(移動)する。液体LQの液面、ひいては浮き部材41が穴部36の上端部に対して所定距離以下になったとき、弁部42が駆動されて空間部31と回収管22とを接続する接続部(流路)が開けられる。ここで、液体回収部21の吸引装置(真空系)は常時駆動しており、回収管22は常時負圧(例えば、真空系23で設定される圧力より低い圧力に設定される)となっている。そして、空間部31と回収管22とを接続する流路が開けられることにより、液体回収部21は回収管22を介して空間部31の液体LQを回収する。そして、空間部31の液体LQが液体回収部21によって回収され、空間部31内部の液体LQの液面(浮き部材41)が下降すると、空間部31と回収管22とを接続する流路が弁部42によって閉じられる。   Eventually, the amount of the liquid LQ sucked and collected in the space 31 increases, and the liquid level of the liquid LQ rises in the space 31. As the liquid level of the liquid LQ rises (moves), the floating member 41 of the liquid level adjustment mechanism 40 also rises (moves). When the liquid level of the liquid LQ, and hence the floating member 41, is less than a predetermined distance with respect to the upper end of the hole 36, the valve 42 is driven to connect the space 31 and the recovery pipe 22 (flow Road) is opened. Here, the suction device (vacuum system) of the liquid recovery unit 21 is always driven, and the recovery pipe 22 is always negative pressure (for example, set to a pressure lower than the pressure set in the vacuum system 23). Yes. Then, by opening a flow path connecting the space portion 31 and the recovery pipe 22, the liquid recovery portion 21 recovers the liquid LQ in the space portion 31 via the recovery pipe 22. When the liquid LQ in the space portion 31 is recovered by the liquid recovery portion 21 and the liquid level (floating member 41) of the liquid LQ in the space portion 31 is lowered, a flow path connecting the space portion 31 and the recovery pipe 22 is formed. It is closed by the valve part 42.

一方、外側吸引口26には、液体LQを殆ど通過させず主に気体のみを通過させる第2部材28が設けられているため、空間部31及び空間部31の一部を構成する気液分離部材33の内部空間33Kが負圧にされても、基板P上の液体LQは外側吸引口26を介して回収されない。そして、内部空間33K(空間部31)が負圧になることにより、外側吸引口26から主に気体が吸引される。外側吸引口26から吸引された気体は、内部空間33K、穴部36、空間部31のうち気液分離部材33の外側の空間、及び吸引管24を介して真空系23に吸引される。   On the other hand, since the outer suction port 26 is provided with the second member 28 that allows the liquid LQ to hardly pass but mainly the gas only, the space portion 31 and the gas-liquid separation constituting a part of the space portion 31 are provided. Even if the internal space 33K of the member 33 is set to a negative pressure, the liquid LQ on the substrate P is not collected through the outer suction port 26. The gas is mainly sucked from the outer suction port 26 by the negative pressure in the internal space 33K (space portion 31). The gas sucked from the outer suction port 26 is sucked into the vacuum system 23 through the inner space 33K, the hole 36, the space outside the gas-liquid separation member 33 in the space 31, and the suction pipe 24.

ここで、空間部31において、液体LQは気液分離部材33によって内部空間33Kの外側の空間に配置されており、空間部31の液体LQの液面は、液面調整機構40によって、穴部36の上端部より低くなるように調整されているため、空間部31のうち内部空間33Kの外側の空間の液体LQは、穴部36を介して内部空間33Kに流入しない。このように、気液分離部材33によって、外側吸引口26に接続する内部空間33Kには液体LQが流入されず(配置されず)、主に気体のみが満たされることになる。   Here, in the space portion 31, the liquid LQ is disposed in a space outside the internal space 33 </ b> K by the gas-liquid separation member 33, and the liquid level of the liquid LQ in the space portion 31 is The liquid LQ in the space outside the internal space 33K in the space 31 does not flow into the internal space 33K through the hole 36. In this way, the liquid LQ is not flowed (not arranged) into the internal space 33K connected to the outer suction port 26 by the gas-liquid separation member 33, and only the gas is mainly filled.

そして、外側吸引口26の空間部31側に液体LQが配置されないように、液体よけ部材として気液分離部材33を設けたことにより、空間部31に配置されている液体LQに対して外側吸引口26から吸引された気体が分離され、外側吸引口26は円滑に気体を吸引することができる。すなわち、気液分離部材33を設けない構成の場合、第2部材28の上面側(空間部31側)に液体LQが配置されることになり、外側吸引口26(第2部材28)を介して空間部31側に吸引された気体(空気)が空間部31の液体LQ中に流入し、気泡などを発生して振動を発生する可能性が高くなる。振動は露光精度の劣化を招くが、本実施形態のように、気液分離部材33によって、外側吸引口26(第2部材28)の上面側に液体LQを配置させずに気体を配置させることにより、上記気泡の発生を防止し、振動の発生を防止することができる。   And by providing the gas-liquid separation member 33 as a liquid shielding member so that the liquid LQ is not arranged on the space part 31 side of the outer suction port 26, the outer side with respect to the liquid LQ arranged in the space part 31. The gas sucked from the suction port 26 is separated, and the outer suction port 26 can suck the gas smoothly. That is, in the case of the configuration in which the gas-liquid separation member 33 is not provided, the liquid LQ is disposed on the upper surface side (space portion 31 side) of the second member 28, and via the outer suction port 26 (second member 28). Thus, there is a high possibility that the gas (air) sucked to the space portion 31 side flows into the liquid LQ in the space portion 31 to generate bubbles and generate vibration. Although the vibration causes deterioration in exposure accuracy, the gas is arranged by the gas-liquid separation member 33 without arranging the liquid LQ on the upper surface side of the outer suction port 26 (second member 28) as in this embodiment. Therefore, the generation of the bubbles can be prevented, and the generation of vibration can be prevented.

図2や図3に示すように、外側吸引口26に、液体LQによって投影光学系PLの像面側に形成される液浸領域AR2の端部EGが配置される。本実施形態では、端部EGが外側吸引口26に配置されるように、内側吸引口25及び外側吸引口26のそれぞれに配置される第1部材27及び第2部材28の大きさ及び流れの抵抗が最適に設定される。そして、真空系23の吸引力を一定、換言すれば吸引管24のうち第3部材29の真空系23側の圧力(負圧)を一定にした状態で、空間部31の圧力が液浸領域AR2の端部EGの位置に応じて変化することで、液浸領域AR2の端部EGが外側吸引口26に配置されるように制御される。ここで、第3部材29は、吸引管24のうち第3部材29に対して真空系23側の圧力Pvと、空間部31側の圧力Pcとの差を維持するために設けられている。   As shown in FIGS. 2 and 3, the outer suction port 26 is provided with the end EG of the liquid immersion area AR2 formed on the image plane side of the projection optical system PL by the liquid LQ. In the present embodiment, the size and flow of the first member 27 and the second member 28 disposed in the inner suction port 25 and the outer suction port 26 respectively so that the end portion EG is disposed in the outer suction port 26. The resistance is set optimally. The pressure of the space 31 is maintained in the liquid immersion region while the suction force of the vacuum system 23 is constant, in other words, the pressure (negative pressure) on the vacuum system 23 side of the third member 29 in the suction pipe 24 is constant. By changing according to the position of the end portion EG of AR2, the end portion EG of the liquid immersion area AR2 is controlled to be disposed in the outer suction port 26. Here, the third member 29 is provided in order to maintain the difference between the pressure Pv on the vacuum system 23 side and the pressure Pc on the space portion 31 side with respect to the third member 29 in the suction pipe 24.

以下、液浸領域AR2の端部EGの位置が制御される原理について説明する。
基板P上の液体LQを吸引回収するに際し、第1部材27が配置された内側吸引口25は常時液体LQに覆われている。内側吸引口25を通過する液体LQの単位時間あたりの流量をMw、大気圧をPa、空間部31内部の圧力をPc、液体(水)LQの粘性係数をμw、液体LQの密度をρw、多孔質体である第1部材27の厚さをta、第1部材27(内側吸引口25)の面積をAa、第1部材27の浸透率(permeability)をKaとしたとき、ダルシーの法則より、
Hereinafter, the principle of controlling the position of the end EG of the liquid immersion area AR2 will be described.
When sucking and collecting the liquid LQ on the substrate P, the inner suction port 25 where the first member 27 is disposed is always covered with the liquid LQ. The flow rate per unit time of the liquid LQ passing through the inner suction port 25 is Mw, the atmospheric pressure is Pa, the pressure inside the space 31 is Pc, the viscosity coefficient of the liquid (water) LQ is μw, the density of the liquid LQ is ρw, When the thickness of the first member 27, which is a porous body, is ta, the area of the first member 27 (inner suction port 25) is Aa, and the permeability of the first member 27 is Ka, the Darcy's law ,

Figure 2005191344
Figure 2005191344

の関係が成り立つ。ここで、Raが第1部材27の流れの抵抗(第1の流れの抵抗)に相当する。第1部材(多孔質体)27が密になるとRaの値は大きくなり、粗になるとRaの値は小さくなる。 The relationship holds. Here, Ra corresponds to the flow resistance (first flow resistance) of the first member 27. When the first member (porous body) 27 becomes dense, the value of Ra increases, and when it becomes rough, the value of Ra decreases.

また、第2部材28が配置された外側吸引口26からは主に気体(空気)が吸引される。外側吸引口26を通過する気体の単位時間あたりの流量をM1、大気圧をPa、空間部31内部の圧力をPc、気体の粘性係数をμa、気体の密度をρa、多孔質体である第2部材28の厚さをtb、第2部材28(外側吸引口26)の面積をAb、第2部材28の通気率(浸透率)をKb、第2吸引口26(第2部材28)のうち気体に覆われている面積の割合をαとしたとき、   Further, gas (air) is mainly sucked from the outer suction port 26 where the second member 28 is disposed. The flow rate per unit time of the gas passing through the outer suction port 26 is M1, the atmospheric pressure is Pa, the pressure in the space 31 is Pc, the gas viscosity coefficient is μa, the gas density is ρa, The thickness of the second member 28 is tb, the area of the second member 28 (outer suction port 26) is Ab, the air permeability (permeability) of the second member 28 is Kb, and the second suction port 26 (second member 28) When the ratio of the area covered with gas is α,

Figure 2005191344
Figure 2005191344

の関係が成り立つ。ここで、Rbが第2部材28の流れの抵抗(第2の流れの抵抗)に相当する。また、液浸領域AR2の端部EGが第2吸引口26に配置されているとき、その端部EGの移動に伴って、第2吸引口26(第2部材28)のうち、液体LQに覆われる面積と気体に覆われる面積との比が変動する。第2吸引口26が全て液体LQに覆われている状態のときα=0であり、第2吸引口26が全て気体に覆われている状態のときα=1である。 The relationship holds. Here, Rb corresponds to the flow resistance (second flow resistance) of the second member 28. Further, when the end portion EG of the liquid immersion area AR2 is disposed in the second suction port 26, the liquid LQ in the second suction port 26 (second member 28) is moved along with the movement of the end portion EG. The ratio between the area covered and the area covered with gas varies. When all the second suction ports 26 are covered with the liquid LQ, α = 0, and when all the second suction ports 26 are covered with gas, α = 1.

また、吸引管24に配置されている第3部材29を通過する気体の単位時間あたりの流量をM2、大気圧をPa、吸引管24のうち第3部材29より真空系23側の圧力をPv、気体の粘性係数をμa、気体の密度をρa、多孔質体である第3部材29の厚さをtc、第3部材29(吸引管24)の面積をAc、第3部材29の通気率(浸透率)をKcとしたとき、   Further, the flow rate per unit time of the gas passing through the third member 29 disposed in the suction pipe 24 is M2, the atmospheric pressure is Pa, and the pressure on the vacuum system 23 side from the third member 29 in the suction pipe 24 is Pv. , The viscosity coefficient of the gas is μa, the density of the gas is ρa, the thickness of the third member 29 which is a porous body is tc, the area of the third member 29 (suction pipe 24) is Ac, and the air permeability of the third member 29 When (permeability) is Kc,

Figure 2005191344
Figure 2005191344

の関係が成り立つ。ここで、Rcが第3部材29の流れの抵抗(第3の流れの抵抗)に相当する。また、上述したように、真空系23の吸引力、すなわち吸引管24のうち第3部材29に対して真空系23側の圧力Pvは一定である。 The relationship holds. Here, Rc corresponds to the flow resistance (third flow resistance) of the third member 29. Further, as described above, the suction force of the vacuum system 23, that is, the pressure Pv on the vacuum system 23 side with respect to the third member 29 in the suction tube 24 is constant.

内側吸引口25は液体LQで全て覆われているため、第2部材28が配置された外側吸引口26を通過する気体の単位時間あたりの流量M1と、吸引管24の第3部材29を通過する気体の単位時間あたりの流量M2とは等しい(M1=M2)。したがって、空間部31内部の圧力Pcは、(2−1)式及び(3−1)式より、   Since the inner suction port 25 is entirely covered with the liquid LQ, the flow rate M1 per unit time of the gas passing through the outer suction port 26 where the second member 28 is disposed and the third member 29 of the suction pipe 24 pass. The flow rate M2 per unit time of the gas is equal (M1 = M2). Therefore, the pressure Pc inside the space portion 31 is expressed by the equations (2-1) and (3-1):

Figure 2005191344
Figure 2005191344

である。(4)式に示すように、空間部31内部の圧力Pcは第2の流れの抵抗Rbの関数、ひいてはαの関数である、したがって、αが変動すると、すなわち液浸領域AR2の端部EGが移動して第2部材28(外側吸引口26)のうち気体に覆われる面積量が変動すると、空間部31内部の圧力Pcが変動する。このように、液浸領域AR2の端部EGの位置に応じて、空間部31内部の圧力Pcが変化するようになっている。 It is. As shown in the equation (4), the pressure Pc in the space portion 31 is a function of the resistance Rb of the second flow, and hence a function of α. Therefore, when α varies, that is, the end portion EG of the liquid immersion area AR2. When the area of the second member 28 (outer suction port 26) covered with gas changes, the pressure Pc inside the space 31 changes. Thus, the pressure Pc inside the space 31 changes according to the position of the end EG of the liquid immersion area AR2.

圧力Pcが変動すると、(1−1)式より、第1部材26が配置された内側吸引口25を通過する液体LQの単位時間あたりの流量Mwが変動する。具体的には、図5(a)に示すように、液浸領域AR2の端部EGが内側(投影領域AR1側)に移動して外側吸引口26(第2部材28)のうち気体で覆われる面積の割合αが大きくなると、圧力Pcが上昇し、大気圧Paと圧力Pcとの差が小さくなり、内側吸引口25(第1部材27)を介して液体LQを吸引回収する力が弱くなる。したがって、内側吸引口25を介した液体回収量が少なくなり、液浸領域AR2は大きくなる。つまり、液浸領域AR2の端部EGが外側(投影領域AR1と離れる方向側)に移動する。   When the pressure Pc fluctuates, the flow rate Mw per unit time of the liquid LQ passing through the inner suction port 25 where the first member 26 is arranged fluctuates from the equation (1-1). Specifically, as shown in FIG. 5A, the end EG of the liquid immersion area AR2 moves inward (projection area AR1 side) and is covered with gas in the outer suction port 26 (second member 28). As the area ratio α increases, the pressure Pc increases, the difference between the atmospheric pressure Pa and the pressure Pc decreases, and the force for sucking and collecting the liquid LQ via the inner suction port 25 (first member 27) is weak. Become. Accordingly, the amount of liquid recovered via the inner suction port 25 is reduced, and the liquid immersion area AR2 is increased. That is, the end EG of the liquid immersion area AR2 moves outward (in the direction away from the projection area AR1).

一方、図5(b)に示すように、液浸領域AR2の端部EGが外側に移動して外側吸引口26(第2部材28)のうち気体で覆われる面積の割合αが小さくなると、圧力Pcが低下し、大気圧Paと圧力Pcとの差が大きくなり、内側吸引口25(第1部材27)を介して液体LQを吸引回収する力が強くなる。したがって、内側吸引口25を介した液体回収量が多くなり、液浸領域AR2は小さくなる。つまり、液浸領域AR2の端部EGが内側に移動する。   On the other hand, as shown in FIG. 5B, when the end portion EG of the liquid immersion area AR2 moves to the outside and the ratio α of the area covered with gas in the outer suction port 26 (second member 28) decreases, The pressure Pc decreases, the difference between the atmospheric pressure Pa and the pressure Pc increases, and the force for sucking and collecting the liquid LQ via the inner suction port 25 (first member 27) increases. Accordingly, the amount of liquid recovered via the inner suction port 25 increases, and the liquid immersion area AR2 becomes smaller. That is, the end EG of the liquid immersion area AR2 moves inward.

このように、液浸領域AR2の端部EGの位置が制御された状態で、マスクステージMSTに支持されているマスクMを露光光ELで照明することにより、露光光ELで照明されたマスクMのパターン像が投影光学系PL及び液浸領域AR2の液体LQを介して基板Pに投影される。   Thus, the mask M illuminated with the exposure light EL is illuminated by illuminating the mask M supported by the mask stage MST with the exposure light EL while the position of the end EG of the liquid immersion area AR2 is controlled. The pattern image is projected onto the substrate P through the projection optical system PL and the liquid LQ in the liquid immersion area AR2.

以上説明したように、第1部材27及び第2部材28の材料及び寸法を選択し、内側吸引口25の流れの抵抗及び外側吸引口26の流れの抵抗や、各吸引口の大きさや各部材の寸法等を最適化することで、圧力Pvを一定にした状態で液浸領域AR2の端部EGの位置を制御することができる。したがって、液浸領域AR2が大きくなりすぎて液浸領域AR2の液体LQが基板Pの外側に流出して、例えば基板Pの置かれている環境変動を引き起こしたり、逆に液浸領域AR2が小さくなりすぎて液体LQを介さないで露光光ELが基板Pに照射されるといった不都合の発生を防止することができる。   As described above, the materials and dimensions of the first member 27 and the second member 28 are selected, the flow resistance of the inner suction port 25 and the flow resistance of the outer suction port 26, the size of each suction port, and each member. By optimizing the dimensions and the like, the position of the end EG of the liquid immersion area AR2 can be controlled with the pressure Pv kept constant. Accordingly, the liquid immersion area AR2 becomes too large, and the liquid LQ in the liquid immersion area AR2 flows out of the substrate P, causing, for example, an environmental change where the substrate P is placed, or conversely, the liquid immersion area AR2 is small. It is possible to prevent the occurrence of inconvenience that the exposure light EL is irradiated onto the substrate P without passing through the liquid LQ.

そして、内側吸引口25に液体LQを通過可能な第1部材27を設け、外側吸引口26に主に気体を通過する第2部材28を設けて、液体LQの回収を主に内側吸引口25で行うようにしたので、内側吸引口25を常に液体LQで覆った状態で、液体LQを吸引回収することができる。このように、内側吸引口25と外側吸引口26とで液体LQと気体とを別々に吸引することで、内側吸引口25からは液体LQのみが吸引回収され、液体LQを吸引回収するときに、その液体LQの周囲の気体も一緒に噛み込むようにして回収することに起因する音や振動の発生を防止することができる。また、液浸領域AR2の端部EGの大きな移動は、例えば基板Pを振動をさせるなど、露光精度の劣化を一因になる場合があるが、本実施形態のように、液浸領域AR2の端部EGの位置の変動領域を所定範囲内(外側吸引口26の領域内)におさめることで、液浸領域AR2の端部EGの移動に伴う振動などの発生を防止することができる。   A first member 27 that can pass the liquid LQ is provided in the inner suction port 25, and a second member 28 that mainly passes gas is provided in the outer suction port 26, and the recovery of the liquid LQ is mainly performed in the inner suction port 25. Therefore, the liquid LQ can be sucked and collected while the inner suction port 25 is always covered with the liquid LQ. Thus, when the liquid LQ and the gas are separately sucked by the inner suction port 25 and the outer suction port 26, only the liquid LQ is sucked and collected from the inner suction port 25, and the liquid LQ is sucked and collected. Further, it is possible to prevent the generation of sound and vibration caused by the gas surrounding the liquid LQ being collected together. Further, the large movement of the end portion EG of the liquid immersion area AR2 may contribute to deterioration of the exposure accuracy, for example, when the substrate P is vibrated. By keeping the fluctuation region of the position of the end portion EG within a predetermined range (within the region of the outer suction port 26), it is possible to prevent the occurrence of vibration or the like accompanying the movement of the end portion EG of the liquid immersion region AR2.

なお、内側吸引口25の大きさが十分に小さい場合には、この内側吸引口25に第1部材27を設けない構成を採用することも可能である。一方で、第2部材28は主に液浸領域AR2の端部EGの位置を制御するために設けられ、第1部材27は主に回収する液体LQの単位時間あたりの流量を制御するために設けられているため、第1部材27を内側吸引口25に設けることにより、液浸領域AR2の端部EGの位置制御が不安定状態になる不都合を防止することができる。つまり、例えば内側吸引口25に第1部材27を設けない場合(内側吸引口27に流れの抵抗を設けない場合)、外側吸引口26(第2部材28)の全てが液体LQで覆われたとき、気体の流入口が無くなった状態となり、流れの抵抗のない内側吸引口25から液体LQが急激に吸引回収される状況が発生し、液浸領域AR2の端部EGが急激に投影領域AR1側に移動することになる。この急激な端部EGの移動は振動発生の原因となるが、内側吸引口25に第1部材27を設けることで、上記不都合を回避することができる。   In addition, when the size of the inner suction port 25 is sufficiently small, a configuration in which the first member 27 is not provided in the inner suction port 25 may be employed. On the other hand, the second member 28 is provided mainly for controlling the position of the end portion EG of the liquid immersion area AR2, and the first member 27 is mainly used for controlling the flow rate per unit time of the liquid LQ to be collected. Therefore, by providing the first member 27 in the inner suction port 25, it is possible to prevent inconvenience that the position control of the end portion EG of the liquid immersion area AR2 becomes unstable. That is, for example, when the first member 27 is not provided in the inner suction port 25 (when the flow resistance is not provided in the inner suction port 27), all of the outer suction port 26 (second member 28) is covered with the liquid LQ. At this time, there is no gas inflow port, and a situation occurs in which the liquid LQ is rapidly sucked and collected from the inner suction port 25 having no flow resistance, and the end EG of the liquid immersion area AR2 is suddenly projected into the projection area AR1. Will move to the side. This abrupt movement of the end portion EG causes vibrations, but the inconvenience can be avoided by providing the first member 27 in the inner suction port 25.

なお上述した実施形態においては、内側吸引口25と外側吸引口26とは、投影領域AR1(投影光学系PLの光軸AX)を基準として放射方向に関して並んで配置されているが、図6に示すように、ずれて配置されていても構わない。また、上述した実施形態においては、流路形成部材30の下面は平坦面であり、内側吸引口25と外側吸引口26とは基板P表面に対してほぼ同じ高さに設けられているが、例えば流路形成部材30の下面を投影領域AR1に対して外側に向かうにつれて漸次高くなる(基板Pより離れる)ようにテーパ状に形成し、内側吸引口25と外側吸引口26との基板Pに対する高さを互いに異ならせてもよい。   In the above-described embodiment, the inner suction port 25 and the outer suction port 26 are arranged side by side in the radial direction with reference to the projection area AR1 (the optical axis AX of the projection optical system PL). As shown, they may be offset. In the embodiment described above, the lower surface of the flow path forming member 30 is a flat surface, and the inner suction port 25 and the outer suction port 26 are provided at substantially the same height with respect to the surface of the substrate P. For example, the lower surface of the flow path forming member 30 is formed in a tapered shape so as to be gradually higher (away from the substrate P) toward the outside with respect to the projection area AR1, and the inner suction port 25 and the outer suction port 26 with respect to the substrate P are formed. The heights may be different from each other.

上述したように、本実施形態における液体LQは純水により構成されている。純水は、半導体製造工場等で容易に大量に入手できるとともに、基板P上のフォトレジストや光学素子(レンズ)等に対する悪影響がない利点がある。また、純水は環境に対する悪影響がないとともに、不純物の含有量が極めて低いため、基板Pの表面、及び投影光学系PLの先端面に設けられている光学素子の表面を洗浄する作用も期待できる。なお工場等から供給される純水の純度が低い場合には、露光装置が超純水製造器を持つようにしてもよい。   As described above, the liquid LQ in the present embodiment is composed of pure water. Pure water has an advantage that it can be easily obtained in large quantities at a semiconductor manufacturing factory or the like, and has no adverse effect on the photoresist, optical element (lens), etc. on the substrate P. In addition, pure water has no adverse effects on the environment, and since the impurity content is extremely low, it can be expected to clean the surface of the substrate P and the surface of the optical element provided on the front end surface of the projection optical system PL. . When the purity of pure water supplied from a factory or the like is low, the exposure apparatus may have an ultrapure water production device.

そして、波長が193nm程度の露光光ELに対する純水(水)の屈折率nはほぼ1.44と言われており、露光光ELの光源としてArFエキシマレーザ光(波長193nm)を用いた場合、基板P上では1/n、すなわち約134nmに短波長化されて高い解像度が得られる。更に、焦点深度は空気中に比べて約n倍、すなわち約1.44倍に拡大されるため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、投影光学系PLの開口数をより増加させることができ、この点でも解像度が向上する。   The refractive index n of pure water (water) with respect to the exposure light EL having a wavelength of about 193 nm is said to be approximately 1.44. When ArF excimer laser light (wavelength 193 nm) is used as the light source of the exposure light EL, On the substrate P, the wavelength is shortened to 1 / n, that is, about 134 nm, and a high resolution can be obtained. Furthermore, since the depth of focus is enlarged by about n times, that is, about 1.44 times compared with that in the air, the projection optical system PL can be used when it is sufficient to ensure the same depth of focus as that in the air. The numerical aperture can be further increased, and the resolution is improved in this respect as well.

なお、上述したように液浸法を用いた場合には、投影光学系の開口数NAが0.9〜1.3になることもある。このように投影光学系の開口数NAが大きくなる場合には、従来から露光光として用いられているランダム偏光光では偏光効果によって結像性能が悪化することもあるので、偏光照明を用いるのが望ましい。その場合、マスク(レチクル)のライン・アンド・スペースパターンのラインパターンの長手方向に合わせた直線偏光照明を行い、マスク(レチクル)のパターンからは、S偏光成分(TE偏光成分)、すなわちラインパターンの長手方向に沿った偏光方向成分の回折光が多く射出されるようにするとよい。投影光学系PLと基板P表面に塗布されたレジストとの間が液体で満たされている場合、投影光学系PLと基板P表面に塗布されたレジストとの間が空気(気体)で満たされている場合に比べて、コントラストの向上に寄与するS偏光成分(TE偏光成分)の回折光のレジスト表面での透過率が高くなるため、投影光学系の開口数NAが1.0を越えるような場合でも高い結像性能を得ることができる。また、位相シフトマスクや特開平6−188169号公報に開示されているようなラインパターンの長手方向に合わせた斜入射照明法(特にダイボール照明法)等を適宜組み合わせると更に効果的である。   As described above, when the liquid immersion method is used, the numerical aperture NA of the projection optical system may be 0.9 to 1.3. When the numerical aperture NA of the projection optical system becomes large in this way, the imaging performance may deteriorate due to the polarization effect with random polarized light conventionally used as exposure light. desirable. In that case, linearly polarized illumination is performed in accordance with the longitudinal direction of the line pattern of the mask (reticle) line-and-space pattern. From the mask (reticle) pattern, the S-polarized light component (TE-polarized light component), that is, the line pattern It is preferable that a large amount of diffracted light having a polarization direction component is emitted along the longitudinal direction. When the space between the projection optical system PL and the resist applied on the surface of the substrate P is filled with a liquid, the space between the projection optical system PL and the resist applied on the surface of the substrate P is filled with air (gas). Compared with the case where the transmittance of the diffracted light of the S-polarized component (TE-polarized component) contributing to the improvement of the contrast is high on the resist surface, the numerical aperture NA of the projection optical system exceeds 1.0. Even in this case, high imaging performance can be obtained. Further, it is more effective to appropriately combine a phase shift mask or an oblique incidence illumination method (particularly a die ball illumination method) or the like according to the longitudinal direction of the line pattern as disclosed in JP-A-6-188169.

また、例えばArFエキシマレーザを露光光とし、1/4程度の縮小倍率の投影光学系PLを使って、微細なライン・アンド・スペースパターン(例えば25〜50nm程度のライン・アンド・スペース)を基板P上に露光するような場合、マスクMの構造(例えばパターンの微細度やクロムの厚み)によっては、Wave guide効果によりマスクMが偏光板として作用し、コントラストを低下させるP偏光成分(TM偏光成分)の回折光よりS偏光成分(TE偏光成分)の回折光が多くマスクMから射出されるようになるので、上述の直線偏光照明を用いることが望ましい。ただし、ランダム偏光光でマスクMを照明しても、投影光学系PLの開口数NAが0.9〜1.3のように大きい場合でも高い解像性能を得ることができる。また、マスクM上の極微細なライン・アンド・スペースパターンを基板P上に露光するような場合、Wire Grid効果によりP偏光成分(TM偏光成分)がS偏光成分(TE偏光成分)よりも大きくなる可能性もある。しかし、例えばArFエキシマレーザを露光光とし、1/4程度の縮小倍率の投影光学系PLを使って、25nmより大きいライン・アンド・スペースパターンを基板P上に露光するような場合には、S偏光成分(TE偏光成分)の回折光がP偏光成分(TM偏光成分)の回折光よりも多くマスクMから射出されるので、投影光学系PLの開口数NAが0.9〜1.3のように大きい場合でも高い解像性能を得ることができる。   Further, for example, an ArF excimer laser is used as the exposure light, and a fine line and space pattern (for example, a line and space of about 25 to 50 nm) is formed on the substrate by using the projection optical system PL with a reduction magnification of about 1/4. When exposing on P, depending on the structure of the mask M (for example, the fineness of the pattern and the thickness of chrome), the mask M acts as a polarizing plate due to the Wave guide effect, and the P-polarized component (TM polarized light) that lowers the contrast. Since the diffracted light of the S-polarized component (TE-polarized component) is emitted from the mask M more than the diffracted light of the component), it is desirable to use the linearly polarized illumination described above. However, even if the mask M is illuminated with randomly polarized light, high resolution performance can be obtained even when the numerical aperture NA of the projection optical system PL is as large as 0.9 to 1.3. When an extremely fine line-and-space pattern on the mask M is exposed on the substrate P, the P-polarized component (TM-polarized component) is larger than the S-polarized component (TE-polarized component) due to the Wire Grid effect. There is also a possibility. However, when, for example, an ArF excimer laser is used as the exposure light and a line and space pattern larger than 25 nm is exposed on the substrate P using the projection optical system PL with a reduction magnification of about 1/4, S Since the diffracted light of the polarization component (TE polarization component) is emitted from the mask M more than the diffracted light of the P polarization component (TM polarization component), the numerical aperture NA of the projection optical system PL is 0.9 to 1.3. Even in such a large case, high resolution performance can be obtained.

更に、マスク(レチクル)のラインパターンの長手方向に合わせた直線偏光照明(S偏光照明)だけでなく、特開平6−53120号公報に開示されているように、光軸を中心とした円の接線(周)方向に直線偏光する偏光照明法と斜入射照明法との組み合わせも効果的である。特に、マスク(レチクル)のパターンが所定の一方向に延びるラインパターンだけでなく、複数の異なる方向に延びるラインパターンが混在する場合には、同じく特開平6−53120号公報に開示されているように、光軸を中心とした円の接線方向に直線偏光する偏光照明法と輪帯照明法とを併用することによって、投影光学系の開口数NAが大きい場合でも高い結像性能を得ることができる。   Furthermore, not only linearly polarized illumination (S-polarized illumination) matched to the longitudinal direction of the line pattern of the mask (reticle) but also a circle centered on the optical axis as disclosed in JP-A-6-53120. A combination of the polarization illumination method that linearly polarizes in the tangential (circumferential) direction and the oblique incidence illumination method is also effective. In particular, when a mask (reticle) pattern includes not only a line pattern extending in a predetermined direction but also a plurality of line patterns extending in different directions, the same is disclosed in Japanese Patent Laid-Open No. 6-53120. In addition, by using the polarization illumination method that linearly polarizes in the tangential direction of the circle centered on the optical axis and the annular illumination method, high imaging performance can be obtained even when the numerical aperture NA of the projection optical system is large. it can.

本実施形態では、投影光学系PLの先端に光学素子2が取り付けられており、このレンズにより投影光学系PLの光学特性、例えば収差(球面収差、コマ収差等)の調整を行うことができる。なお、投影光学系PLの先端に取り付ける光学素子としては、投影光学系PLの光学特性の調整に用いる光学プレートであってもよい。あるいは露光光ELを透過可能な平行平面板であってもよい。   In the present embodiment, the optical element 2 is attached to the tip of the projection optical system PL, and the optical characteristics of the projection optical system PL, for example, aberration (spherical aberration, coma aberration, etc.) can be adjusted by this lens. The optical element attached to the tip of the projection optical system PL may be an optical plate used for adjusting the optical characteristics of the projection optical system PL. Alternatively, it may be a plane parallel plate that can transmit the exposure light EL.

なお、液体LQの流れによって生じる投影光学系PLの先端の光学素子と基板Pとの間の圧力が大きい場合には、その光学素子を交換可能とするのではなく、その圧力によって光学素子が動かないように堅固に固定してもよい。   When the pressure between the optical element at the tip of the projection optical system PL generated by the flow of the liquid LQ and the substrate P is large, the optical element is not exchangeable but the optical element is moved by the pressure. It may be fixed firmly so that there is no.

なお、本実施形態では、投影光学系PLと基板P表面との間は液体LQで満たされている構成であるが、例えば基板Pの表面に平行平面板からなるカバーガラスを取り付けた状態で液体LQを満たす構成であってもよい。   In the present embodiment, the space between the projection optical system PL and the surface of the substrate P is filled with the liquid LQ. However, for example, the liquid with the cover glass made of a plane-parallel plate attached to the surface of the substrate P is used. The structure which satisfy | fills LQ may be sufficient.

なお、本実施形態の液体LQは水であるが、水以外の液体であってもよい、例えば、露光光ELの光源がFレーザである場合、このFレーザ光は水を透過しないので、液体LQとしてはFレーザ光を透過可能な例えば、過フッ化ポリエーテル(PFPE)やフッ素系オイル等のフッ素系流体であってもよい。この場合、液体LQと接触する部分には、例えばフッ素を含む極性の小さい分子構造の物質で薄膜を形成することで親液化処理する。また、液体LQとしては、その他にも、露光光ELに対する透過性があってできるだけ屈折率が高く、投影光学系PLや基板P表面に塗布されているフォトレジストに対して安定なもの(例えばセダー油)を用いることも可能である。この場合も表面処理は用いる液体LQの極性に応じて行われる。 The liquid LQ of the present embodiment is water, but may be a liquid other than water. For example, when the light source of the exposure light EL is an F 2 laser, the F 2 laser light does not pass through water. The liquid LQ may be, for example, a fluorinated fluid such as perfluorinated polyether (PFPE) or fluorinated oil that can transmit F 2 laser light. In this case, the lyophilic treatment is performed by forming a thin film with a substance having a molecular structure having a small polarity including fluorine, for example, at a portion in contact with the liquid LQ. In addition, as the liquid LQ, the liquid LQ is transmissive to the exposure light EL, has a refractive index as high as possible, and is stable with respect to the photoresist applied to the projection optical system PL and the surface of the substrate P (for example, Cedar). Oil) can also be used. Also in this case, the surface treatment is performed according to the polarity of the liquid LQ to be used.

なお、上記各実施形態の基板Pとしては、半導体デバイス製造用の半導体ウエハのみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)等が適用される。   The substrate P in each of the above embodiments is not only a semiconductor wafer for manufacturing a semiconductor device, but also a glass substrate for a display device, a ceramic wafer for a thin film magnetic head, or an original mask or reticle used in an exposure apparatus. (Synthetic quartz, silicon wafer) or the like is applied.

露光装置EXとしては、マスクMと基板Pとを同期移動してマスクMのパターンを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。また、本発明は基板P上で少なくとも2つのパターンを部分的に重ねて転写するステップ・アンド・スティッチ方式の露光装置にも適用できる。   As the exposure apparatus EX, in addition to the step-and-scan type scanning exposure apparatus (scanning stepper) that scans and exposes the pattern of the mask M by moving the mask M and the substrate P synchronously, the mask M and the substrate P Can be applied to a step-and-repeat type projection exposure apparatus (stepper) in which the pattern of the mask M is collectively exposed while the substrate P is stationary and the substrate P is sequentially moved stepwise. The present invention can also be applied to a step-and-stitch type exposure apparatus that partially transfers at least two patterns on the substrate P.

また、本発明は、特開平10−163099号公報、特開平10−214783号公報、特表2000−505958号公報などに開示されているツインステージ型の露光装置にも適用できる。   The present invention can also be applied to a twin stage type exposure apparatus disclosed in Japanese Patent Application Laid-Open No. 10-163099, Japanese Patent Application Laid-Open No. 10-214783, and Japanese Translation of PCT International Publication No. 2000-505958.

また、上述の実施形態においては、投影光学系PLと基板Pとの間に局所的に液体を満たす露光装置を採用しているが、本発明は、特開平6−124873号公報に開示されているような露光対象の基板を保持したステージを液槽の中で移動させる液浸露光装置にも適用可能である。   In the above-described embodiment, an exposure apparatus that locally fills the liquid between the projection optical system PL and the substrate P is employed. However, the present invention is disclosed in Japanese Patent Laid-Open No. 6-124873. It is also applicable to an immersion exposure apparatus that moves a stage holding a substrate to be exposed in a liquid tank.

露光装置EXの種類としては、基板Pに半導体素子パターンを露光する半導体素子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の露光装置や、薄膜磁気ヘッド、撮像素子(CCD)あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。   The type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on the substrate P, but an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, an image sensor (CCD). ) Or an exposure apparatus for manufacturing reticles or masks.

基板ステージPSTやマスクステージMSTにリニアモータ(USP5,623,853またはUSP5,528,118参照)を用いる場合は、エアベアリングを用いたエア浮上型およびローレンツ力またはリアクタンス力を用いた磁気浮上型のどちらを用いてもよい。また、各ステージPST、MSTは、ガイドに沿って移動するタイプでもよく、ガイドを設けないガイドレスタイプであってもよい。   When using a linear motor (see USP5,623,853 or USP5,528,118) for the substrate stage PST and mask stage MST, use either an air levitation type using air bearings or a magnetic levitation type using Lorentz force or reactance force. Also good. Each stage PST, MST may be a type that moves along a guide, or may be a guideless type that does not have a guide.

各ステージPST、MSTの駆動機構としては、二次元に磁石を配置した磁石ユニットと、二次元にコイルを配置した電機子ユニットとを対向させ電磁力により各ステージPST、MSTを駆動する平面モータを用いてもよい。この場合、磁石ユニットと電機子ユニットとのいずれか一方をステージPST、MSTに接続し、磁石ユニットと電機子ユニットとの他方をステージPST、MSTの移動面側に設ければよい。   As a driving mechanism for each stage PST, MST, a planar motor that drives each stage PST, MST by electromagnetic force with a magnet unit having a two-dimensionally arranged magnet and an armature unit having a two-dimensionally arranged coil facing each other is provided. It may be used. In this case, either one of the magnet unit and the armature unit may be connected to the stages PST and MST, and the other of the magnet unit and the armature unit may be provided on the moving surface side of the stages PST and MST.

基板ステージPSTの移動により発生する反力は、投影光学系PLに伝わらないように、特開平8−166475号公報(USP5,528,118)に記載されているように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。
マスクステージMSTの移動により発生する反力は、投影光学系PLに伝わらないように、特開平8−330224号公報(US S/N 08/416,558)に記載されているように、フレーム部材を用いて機械的に床(大地)に逃がしてもよい。
As described in JP-A-8-166475 (USP 5,528,118), the reaction force generated by the movement of the substrate stage PST is not transmitted to the projection optical system PL, but mechanically using a frame member. You may escape to the floor (ground).
As described in JP-A-8-330224 (US S / N 08 / 416,558), a frame member is used so that the reaction force generated by the movement of the mask stage MST is not transmitted to the projection optical system PL. May be mechanically released to the floor (ground).

以上のように、本願実施形態の露光装置EXは、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。   As described above, the exposure apparatus EX according to the present embodiment maintains various mechanical subsystems including the respective constituent elements recited in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling. In order to ensure these various accuracies, before and after assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, and various electrical systems are Adjustments are made to achieve electrical accuracy. The assembly process from the various subsystems to the exposure apparatus includes mechanical connection, electrical circuit wiring connection, pneumatic circuit piping connection and the like between the various subsystems. Needless to say, there is an assembly process for each subsystem before the assembly process from the various subsystems to the exposure apparatus. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies as the entire exposure apparatus. The exposure apparatus is preferably manufactured in a clean room where the temperature, cleanliness, etc. are controlled.

半導体デバイス等のマイクロデバイスは、図7に示すように、マイクロデバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板を製造するステップ203、前述した実施形態の露光装置EXによりマスクのパターンを基板に露光する露光処理ステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)205、検査ステップ206等を経て製造される。   As shown in FIG. 7, a microdevice such as a semiconductor device includes a step 201 for designing a function / performance of the microdevice, a step 202 for producing a mask (reticle) based on the design step, and a substrate as a base material of the device. Manufacturing step 203, exposure processing step 204 for exposing the mask pattern onto the substrate by the exposure apparatus EX of the above-described embodiment, device assembly step (including dicing process, bonding process, packaging process) 205, inspection step 206, etc. It is manufactured after.

本発明の露光装置の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the exposure apparatus of this invention. 液体供給口及び吸引口を有する流路形成部材近傍の拡大断面図である。It is an expanded sectional view near a flow path forming member having a liquid supply port and a suction port. 液体供給口及び吸引口を有する流路形成部材を下方から見た図である。It is the figure which looked at the flow-path formation member which has a liquid supply port and a suction port from the downward direction. 流路形成部材を一部破断した斜視図である。It is the perspective view which fractured | ruptured the flow-path formation member partially. 液浸領域の端部の位置を制御している状態を説明するための模式図である。It is a schematic diagram for demonstrating the state which is controlling the position of the edge part of a liquid immersion area | region. 液体供給口及び吸引口を有する流路形成部材の別の実施例を示す図である。It is a figure which shows another Example of the flow-path formation member which has a liquid supply port and a suction port. 半導体デバイスの製造工程の一例を示すフローチャート図である。It is a flowchart figure which shows an example of the manufacturing process of a semiconductor device.

符号の説明Explanation of symbols

10…液体供給機構、13…第1液体供給口、14…第2液体供給口、
20…液体回収機構、21…液体回収部、23…真空系、24…吸引管、
25…内側吸引口(第1吸引口)、26…外側吸引口(第2吸引口)、27…第1部材、28…第2部材、29…第3部材、31…空間部、33…気液分離部材(分離器)、
AR1…投影領域、AR2…液浸領域、EG…端部、EL…露光光、EX…露光装置、
LQ…液体、P…基板、PL…投影光学系
DESCRIPTION OF SYMBOLS 10 ... Liquid supply mechanism, 13 ... 1st liquid supply port, 14 ... 2nd liquid supply port,
20 ... Liquid recovery mechanism, 21 ... Liquid recovery unit, 23 ... Vacuum system, 24 ... Suction tube,
25 ... Inner suction port (first suction port), 26 ... Outer suction port (second suction port), 27 ... First member, 28 ... Second member, 29 ... Third member, 31 ... Space, 33 ... Air Liquid separation member (separator),
AR1 ... projection area, AR2 ... immersion area, EG ... edge, EL ... exposure light, EX ... exposure device,
LQ ... Liquid, P ... Substrate, PL ... Projection optical system

Claims (13)

投影光学系と液体とを介して基板上に露光光を照射して前記基板を露光する露光装置において、
前記液体を供給する供給口と、
前記投影光学系の投影領域に対して前記供給口より外側に設けられた第1吸引口と、
前記第1吸引口より外側に設けられた第2吸引口と、
前記第1吸引口に設けられ、第1の流れの抵抗を有する第1部材と、
前記第2吸引口に設けられ、前記第1の流れの抵抗とは異なる第2の流れの抵抗を有する第2部材とを備え、
前記第2吸引口に、前記液体によって前記投影光学系の像面側に形成される液浸領域の端部が配置されることを特徴とする露光装置。
In an exposure apparatus that exposes the substrate by irradiating the substrate with exposure light via a projection optical system and a liquid,
A supply port for supplying the liquid;
A first suction port provided outside the supply port with respect to the projection region of the projection optical system;
A second suction port provided outside the first suction port;
A first member provided at the first suction port and having a first flow resistance;
A second member provided at the second suction port and having a second flow resistance different from the first flow resistance;
An exposure apparatus, wherein an end of a liquid immersion area formed on the image plane side of the projection optical system by the liquid is disposed at the second suction port.
前記第2の流れの抵抗は前記第1の流れの抵抗よりも大きいことを特徴とする請求項1記載の露光装置。   2. The exposure apparatus according to claim 1, wherein the resistance of the second flow is larger than the resistance of the first flow. 前記第1吸引口から前記液体が吸引回収され、
前記第2吸引口から主に気体が吸引されることを特徴とする請求項1又は2記載の露光装置。
The liquid is sucked and collected from the first suction port,
3. An exposure apparatus according to claim 1, wherein gas is mainly sucked from the second suction port.
前記第1吸引口及び前記第2吸引口のそれぞれに接続する空間部と、
前記空間部に接続し、前記空間部の気体を吸引する真空系と、
前記空間部と前記真空系とを接続する流路に設けられ、第3の流れの抵抗を有する第3部材とを備えたことを特徴とする請求項1〜3のいずれか一項記載の露光装置。
A space connected to each of the first suction port and the second suction port;
A vacuum system connected to the space and sucking the gas in the space;
The exposure according to claim 1, further comprising: a third member provided in a flow path connecting the space and the vacuum system and having a third flow resistance. apparatus.
前記第2吸引口を通過する単位時間あたりの気体量と、前記流路を通過する単位時間あたりの気体量とは略同じであることを特徴とする請求項4記載の露光装置。   5. The exposure apparatus according to claim 4, wherein the amount of gas per unit time passing through the second suction port and the amount of gas per unit time passing through the flow path are substantially the same. 前記液浸領域の端部の位置に応じて前記空間部の圧力が変化することを特徴とする請求項4又は5記載の露光装置。   6. The exposure apparatus according to claim 4, wherein the pressure of the space portion changes according to the position of the end of the immersion area. 前記空間部に設けられ、液体と気体とを分離する分離器を有することを特徴とする請求項4〜6のいずれか一項記載の露光装置。   The exposure apparatus according to claim 4, further comprising a separator that is provided in the space and separates liquid and gas. 前記分離器は、前記空間部の液体に対して前記第2吸引口から吸引された気体を分離することを特徴とする請求項7記載の露光装置。   The exposure apparatus according to claim 7, wherein the separator separates the gas sucked from the second suction port with respect to the liquid in the space portion. 前記第1吸引口及び前記第2吸引口に接続する前記空間部は前記投影領域を囲むように複数分割されて設けられていることを特徴とする請求項4〜8のいずれか一項記載の露光装置。   The space portion connected to the first suction port and the second suction port is provided by being divided into a plurality of parts so as to surround the projection region. Exposure device. 前記空間部の液体を回収する液体回収部を有することを特徴とする請求項4〜9のいずれか一項記載の露光装置。   The exposure apparatus according to claim 4, further comprising a liquid recovery unit that recovers the liquid in the space. 前記第2部材は撥液性であることを特徴とする請求項1〜10のいずれか一項記載の露光装置。   The exposure apparatus according to claim 1, wherein the second member is liquid repellent. 前記第2部材は多孔質体であることを特徴とする請求項1〜11のいずれか一項記載の露光装置。   The exposure apparatus according to claim 1, wherein the second member is a porous body. 請求項1〜請求項12のいずれか一項記載の露光装置を用いることを特徴とするデバイス製造方法。   A device manufacturing method using the exposure apparatus according to claim 1.
JP2003431950A 2003-12-26 2003-12-26 Channel forming member, exposure apparatus, and device manufacturing method Expired - Fee Related JP4954444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003431950A JP4954444B2 (en) 2003-12-26 2003-12-26 Channel forming member, exposure apparatus, and device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003431950A JP4954444B2 (en) 2003-12-26 2003-12-26 Channel forming member, exposure apparatus, and device manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010013493A Division JP5246174B2 (en) 2010-01-25 2010-01-25 Channel forming member, exposure apparatus, and device manufacturing method

Publications (2)

Publication Number Publication Date
JP2005191344A true JP2005191344A (en) 2005-07-14
JP4954444B2 JP4954444B2 (en) 2012-06-13

Family

ID=34789801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003431950A Expired - Fee Related JP4954444B2 (en) 2003-12-26 2003-12-26 Channel forming member, exposure apparatus, and device manufacturing method

Country Status (1)

Country Link
JP (1) JP4954444B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055373A1 (en) * 2005-11-14 2007-05-18 Nikon Corporation Liquid recovery member, exposure apparatus, exposure method, and device production method
JP2007288185A (en) * 2006-04-14 2007-11-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2008503079A (en) * 2004-06-16 2008-01-31 ザ ビーオーシー グループ ピーエルシー Vacuum system for immersion photolithography
JP2008147652A (en) * 2006-12-07 2008-06-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2009076951A (en) * 2004-08-19 2009-04-09 Asml Netherlands Bv Lithographic apparatus, and manufacturing method of device
JP2009272636A (en) * 2008-05-08 2009-11-19 Asml Netherlands Bv Liquid immersion lithographic device, drying device, liquid immersion metro logy device and method for manufacturing device
JP2010050454A (en) * 2008-08-19 2010-03-04 Asml Netherlands Bv Lithographic apparatus, drying device, metrology apparatus and device manufacturing method
JP2010093300A (en) * 2010-01-25 2010-04-22 Nikon Corp Flow path forming member, aligner and method for manufacturing device
US7751026B2 (en) 2005-08-25 2010-07-06 Nikon Corporation Apparatus and method for recovering fluid for immersion lithography
JP2011014902A (en) * 2009-06-30 2011-01-20 Asml Netherlands Bv Lithographic device, and method of measuring flow rate in two-phase flow
JP2011023749A (en) * 2006-04-14 2011-02-03 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
WO2011111878A1 (en) * 2010-03-12 2011-09-15 Nikon Corporation Liquid immersion member and exposure apparatus
WO2012008606A1 (en) * 2010-07-14 2012-01-19 Nikon Corporation Liquid immersion member and immersion exposure apparatus
WO2012008605A1 (en) * 2010-07-14 2012-01-19 Nikon Corporation Liquid immersion member and immersion exposure apparatus
WO2012008604A1 (en) * 2010-07-14 2012-01-19 Nikon Corporation Liquid immersion member and immersion exposure apparatus
WO2012011605A1 (en) * 2010-07-23 2012-01-26 Nikon Corporation Liquid immersion member and cleaning method
JP2012044186A (en) * 2007-12-03 2012-03-01 Asml Netherlands Bv Lithographic apparatus
JP2012506641A (en) * 2008-10-22 2012-03-15 株式会社ニコン Vacuum control apparatus and control method for porous material using a plurality of porous materials
WO2012011612A3 (en) * 2010-07-23 2012-03-15 Nikon Corporation Cleaning method, immersion exposure apparatus and device fabricating method
WO2012011613A3 (en) * 2010-07-23 2012-03-29 Nikon Corporation Cleaning method and apparatus, and device fabricating method
US8351018B2 (en) 2008-05-08 2013-01-08 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
WO2013012032A1 (en) * 2011-07-21 2013-01-24 株式会社ニコン Exposure device, exposure method, method for manufacturing device, program and recording medium
US8421993B2 (en) 2008-05-08 2013-04-16 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8634053B2 (en) 2006-12-07 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8934082B2 (en) 2004-10-18 2015-01-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101559689B1 (en) 2007-03-23 2015-10-13 가부시키가이샤 니콘 Liquid recovery system and immersion exposure apparatus
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9746781B2 (en) 2005-01-31 2017-08-29 Nikon Corporation Exposure apparatus and method for producing device
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
JP2004289126A (en) * 2002-11-12 2004-10-14 Asml Netherlands Bv Lithography system and process for fabricating device
JP2004349645A (en) * 2003-05-26 2004-12-09 Sony Corp Liquid-immersed differential liquid-drainage static-pressure floating pad, master-disk exposure apparatus, and method of exposure using liquid-immersed differential liquid-drainage
WO2005029559A1 (en) * 2003-09-19 2005-03-31 Nikon Corporation Exposure apparatus and device producing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999049504A1 (en) * 1998-03-26 1999-09-30 Nikon Corporation Projection exposure method and system
JP2004289126A (en) * 2002-11-12 2004-10-14 Asml Netherlands Bv Lithography system and process for fabricating device
JP2004349645A (en) * 2003-05-26 2004-12-09 Sony Corp Liquid-immersed differential liquid-drainage static-pressure floating pad, master-disk exposure apparatus, and method of exposure using liquid-immersed differential liquid-drainage
WO2005029559A1 (en) * 2003-09-19 2005-03-31 Nikon Corporation Exposure apparatus and device producing method

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9507270B2 (en) 2004-06-16 2016-11-29 Asml Netherlands B.V. Vacuum system for immersion photolithography
US9857699B2 (en) 2004-06-16 2018-01-02 Asml Netherlands B.V. Vacuum system for immersion photolithography
JP2010141363A (en) * 2004-06-16 2010-06-24 Asml Netherlands Bv Vacuum system for immersion photolithography
US8830440B2 (en) 2004-06-16 2014-09-09 Asml Netherlands B.V. Vacuum system for immersion photolithography
US10168624B2 (en) 2004-06-16 2019-01-01 Asml Netherlands B.V. Vacuum system for immersion photolithography
JP2008503079A (en) * 2004-06-16 2008-01-31 ザ ビーオーシー グループ ピーエルシー Vacuum system for immersion photolithography
JP2011176352A (en) * 2004-06-16 2011-09-08 Asml Netherlands Bv Vacuum system for immersion photolithography
JP4772787B2 (en) * 2004-06-16 2011-09-14 エーエスエムエル ネザーランズ ビー.ブイ. Vacuum system for immersion photolithography
US8164734B2 (en) 2004-06-16 2012-04-24 Asml Netherlands B.V. Vacuum system for immersion photolithography
US10331047B2 (en) 2004-08-19 2019-06-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9746788B2 (en) 2004-08-19 2017-08-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9488923B2 (en) 2004-08-19 2016-11-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2015015503A (en) * 2004-08-19 2015-01-22 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and device manufacturing method
US8031325B2 (en) 2004-08-19 2011-10-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2009076951A (en) * 2004-08-19 2009-04-09 Asml Netherlands Bv Lithographic apparatus, and manufacturing method of device
US9097992B2 (en) 2004-08-19 2015-08-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8755028B2 (en) 2004-08-19 2014-06-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10705439B2 (en) 2004-08-19 2020-07-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9904185B2 (en) 2004-08-19 2018-02-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2012114478A (en) * 2004-08-19 2012-06-14 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US8446563B2 (en) 2004-08-19 2013-05-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10599054B2 (en) 2004-08-19 2020-03-24 Asml Holding N.V. Lithographic apparatus and device manufacturing method
US9507278B2 (en) 2004-08-19 2016-11-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7701550B2 (en) 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9436097B2 (en) 2004-10-18 2016-09-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8934082B2 (en) 2004-10-18 2015-01-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9753380B2 (en) 2004-10-18 2017-09-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10248033B2 (en) 2004-10-18 2019-04-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9746781B2 (en) 2005-01-31 2017-08-29 Nikon Corporation Exposure apparatus and method for producing device
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7751026B2 (en) 2005-08-25 2010-07-06 Nikon Corporation Apparatus and method for recovering fluid for immersion lithography
US8345217B2 (en) 2005-11-14 2013-01-01 Nikon Corporation Liquid recovery member, exposure apparatus, exposing method, and device fabricating method
TWI397945B (en) * 2005-11-14 2013-06-01 尼康股份有限公司 A liquid recovery member, an exposure apparatus, an exposure method, and an element manufacturing method
WO2007055373A1 (en) * 2005-11-14 2007-05-18 Nikon Corporation Liquid recovery member, exposure apparatus, exposure method, and device production method
JPWO2007055373A1 (en) * 2005-11-14 2009-04-30 株式会社ニコン Liquid recovery member, exposure apparatus, exposure method, and device manufacturing method
US8634059B2 (en) 2006-04-14 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2011035423A (en) * 2006-04-14 2011-02-17 Asml Netherlands Bv Lithography device and method of manufacturing device
JP2007288185A (en) * 2006-04-14 2007-11-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2011023749A (en) * 2006-04-14 2011-02-03 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US8634053B2 (en) 2006-12-07 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9645506B2 (en) 2006-12-07 2017-05-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2008147652A (en) * 2006-12-07 2008-06-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2011097107A (en) * 2006-12-07 2011-05-12 Asml Netherlands Bv Lithographic projection apparatus
US10268127B2 (en) 2006-12-07 2019-04-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101559689B1 (en) 2007-03-23 2015-10-13 가부시키가이샤 니콘 Liquid recovery system and immersion exposure apparatus
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2012044186A (en) * 2007-12-03 2012-03-01 Asml Netherlands Bv Lithographic apparatus
US8421993B2 (en) 2008-05-08 2013-04-16 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
JP2009272636A (en) * 2008-05-08 2009-11-19 Asml Netherlands Bv Liquid immersion lithographic device, drying device, liquid immersion metro logy device and method for manufacturing device
US8351018B2 (en) 2008-05-08 2013-01-08 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US8345218B2 (en) 2008-05-08 2013-01-01 Asml Netherlands B.V. Immersion lithographic apparatus, drying device, immersion metrology apparatus and device manufacturing method
JP2014099655A (en) * 2008-05-08 2014-05-29 Asml Netherlands Bv Fluid handling structure and method, and lithography device
US10018925B2 (en) 2008-08-19 2018-07-10 Asml Netherlands B.V. Lithographic apparatus, drying device, metrology apparatus and device manufacturing method
JP2010050454A (en) * 2008-08-19 2010-03-04 Asml Netherlands Bv Lithographic apparatus, drying device, metrology apparatus and device manufacturing method
JP2012506641A (en) * 2008-10-22 2012-03-15 株式会社ニコン Vacuum control apparatus and control method for porous material using a plurality of porous materials
JP2011014902A (en) * 2009-06-30 2011-01-20 Asml Netherlands Bv Lithographic device, and method of measuring flow rate in two-phase flow
US8446561B2 (en) 2009-06-30 2013-05-21 Asml Netherlands B.V. Lithographic apparatus and a method of measuring flow rate in a two phase flow
JP2010093300A (en) * 2010-01-25 2010-04-22 Nikon Corp Flow path forming member, aligner and method for manufacturing device
WO2011111878A1 (en) * 2010-03-12 2011-09-15 Nikon Corporation Liquid immersion member and exposure apparatus
WO2012008606A1 (en) * 2010-07-14 2012-01-19 Nikon Corporation Liquid immersion member and immersion exposure apparatus
CN102918462A (en) * 2010-07-14 2013-02-06 株式会社尼康 Liquid immersion member and immersion exposure apparatus
WO2012008605A1 (en) * 2010-07-14 2012-01-19 Nikon Corporation Liquid immersion member and immersion exposure apparatus
WO2012008604A1 (en) * 2010-07-14 2012-01-19 Nikon Corporation Liquid immersion member and immersion exposure apparatus
US8937703B2 (en) 2010-07-14 2015-01-20 Nikon Corporation Liquid immersion member, immersion exposure apparatus, liquid recovering method, device fabricating method, program, and storage medium
WO2012011605A1 (en) * 2010-07-23 2012-01-26 Nikon Corporation Liquid immersion member and cleaning method
WO2012011613A3 (en) * 2010-07-23 2012-03-29 Nikon Corporation Cleaning method and apparatus, and device fabricating method
WO2012011612A3 (en) * 2010-07-23 2012-03-15 Nikon Corporation Cleaning method, immersion exposure apparatus and device fabricating method
US9494876B2 (en) 2011-07-21 2016-11-15 Nikon Corporation Exposure apparatus, exposure method, method of manufacturing device, program, and storage medium
US9329496B2 (en) 2011-07-21 2016-05-03 Nikon Corporation Exposure apparatus, exposure method, method of manufacturing device, program, and storage medium
WO2013012032A1 (en) * 2011-07-21 2013-01-24 株式会社ニコン Exposure device, exposure method, method for manufacturing device, program and recording medium

Also Published As

Publication number Publication date
JP4954444B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4954444B2 (en) Channel forming member, exposure apparatus, and device manufacturing method
JP6466894B2 (en) Exposure method and device manufacturing method
JP6195005B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP5741875B2 (en) Exposure apparatus and device manufacturing method
JP4655763B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP4622340B2 (en) Exposure apparatus and device manufacturing method
JP4770129B2 (en) Exposure apparatus and device manufacturing method
JP2005236121A (en) Exposure system and device manufacturing method
JP4720106B2 (en) Exposure method and device manufacturing method
JP5246174B2 (en) Channel forming member, exposure apparatus, and device manufacturing method
JP4973754B2 (en) Exposure method, exposure apparatus, and device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100727

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

R150 Certificate of patent or registration of utility model

Ref document number: 4954444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees