JPH08316125A - Method and apparatus for projection exposing - Google Patents

Method and apparatus for projection exposing

Info

Publication number
JPH08316125A
JPH08316125A JP7121115A JP12111595A JPH08316125A JP H08316125 A JPH08316125 A JP H08316125A JP 7121115 A JP7121115 A JP 7121115A JP 12111595 A JP12111595 A JP 12111595A JP H08316125 A JPH08316125 A JP H08316125A
Authority
JP
Japan
Prior art keywords
diffraction grating
mask
light
optical system
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7121115A
Other languages
Japanese (ja)
Inventor
Fuon Bunoo Rudorufu
ルドルフ・フォン・ブノー
Hiroshi Fukuda
宏 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7121115A priority Critical patent/JPH08316125A/en
Publication of JPH08316125A publication Critical patent/JPH08316125A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To improve the resolution exceeding the diffraction limit by emitting the light from a light source to a mask, diffracting the pattern of the mask, diffracting the diffracted light through a projection optical system, and reproducing the pattern on a sample to be exposed. CONSTITUTION: A mask 1 is inserted between a projection optical system 2 and diffraction gratings A, B, and a diffraction grating C is inserted between the system 2 and a wafer 4. In this case, the gratings A, B, C are simultaneously phase gratings. The light R perpendicularly incident to the mask 1 is diffracted to zero order diffracted light R0, + primary diffraction light R1 and - primary diffracted light R1' on the mask surface. The light R0 arrives at a point A0 on the grating A, and the light diffracted in the - primary direction is diffracted to + primary direction at the point B0 on the grating B. Thereafter, it is diffracted at the point C0 on the grating C via the left end of the pupil 3 in ± primary direction, and arrived at two points Q, P on the image surfaces.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種固体素子の微細パ
タ−ンを形成するためのパタ−ン形成方法、及びこれに
用いられる投影露光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pattern forming method for forming a fine pattern of various solid state elements and a projection exposure apparatus used for the method.

【0002】[0002]

【従来の技術】LSI等の固体素子の集積度及び動作速
度を向上するため、回路パタ−ンの微細化が進んでい
る。又、レーザー等の光・電子素子や各種の量子効果素
子、誘電体・磁性体素子等の特性向上のため、パターン
の微細化が望まれている。現在これらのパタ−ン形成に
は、量産性と解像性能に優れた縮小投影露光法が広く用
いられている。この方法の解像限界は露光波長に比例し
投影レンズの開口数(NA)に反比例するため、短波長
化と高NA化により解像限界の向上が行われてきた。
2. Description of the Related Art In order to improve the degree of integration and operating speed of solid-state elements such as LSI, circuit patterns are becoming finer. Further, in order to improve the characteristics of optical / electronic elements such as lasers, various quantum effect elements, dielectric / magnetic element, etc., miniaturization of patterns is desired. At present, the reduction projection exposure method, which is excellent in mass productivity and resolution performance, is widely used for forming these patterns. Since the resolution limit of this method is proportional to the exposure wavelength and inversely proportional to the numerical aperture (NA) of the projection lens, the resolution limit has been improved by shortening the wavelength and increasing the NA.

【0003】又、縮小投影露光法の解像度をさらに向上
するための手法として、位相シフト法、変形照明法(斜
入射照明法)、瞳フィルター法等、様々な像改良法が適
用されている。これらは、従来光学系の性能を理論的な
回折限界(遮断空間周波数=2NA/λ)ぎりぎりまで
有効に使用しようというものである。これら像改良法
(しばしば超解像法と呼ばれる)については、例えば、
ULSIリソグラフィ技術の革新、第1章、第34頁か
ら第49頁(サイエンスフォーラム社刊、1994年、
東京)に論じられている。
As a method for further improving the resolution of the reduced projection exposure method, various image improving methods such as a phase shift method, a modified illumination method (oblique incidence illumination method), and a pupil filter method have been applied. These are intended to effectively use the performance of the conventional optical system to the limit of the theoretical diffraction limit (cutoff spatial frequency = 2NA / λ). For these image improvement methods (often called super-resolution methods), for example,
Innovation of ULSI Lithography Technology, Chapter 1, pp. 34-49 (Science Forum, 1994,
(Tokyo).

【0004】一方、顕微鏡の解像度を、従来の上記回折
限界を越えて向上する方法として、光学系の空間周波数
帯域を拡大する方法がいくつか知られている。これら空
間周波数帯域拡大法については、例えば、応用物理、第
37巻、第9号、第853頁から第859頁(1968
年)に論じられている。このうちの1つの方法は、2つ
の格子パターンを物体及び像の直上(少なくとも焦点深
度内)で互いに共役関係を保ちつつスキャンするもの
で、物体とその直上の第1格子パターンの重ねあわせに
よりモアレパターンを形成し、このモアレパターンをレ
ンズ系を通過させ、像側で第2の格子パターンと重ねる
ことにより復調を行なう。モアレパターンは、物体及び
第1格子パターンより低い空間周波数を有するため、レ
ンズ系を通過することができる。この方法を縮小投影露
光法に適用することが出願されている。一般に、ウエハ
ー直上で格子パターンを機械的にスキャンするのは困難
なため、ホトクロミック材料をウエハ上に直接設け、こ
れに干渉縞を重ねてスキャンすることにより、格子とし
て機能させている。
On the other hand, as a method for improving the resolution of a microscope beyond the conventional diffraction limit, there are known some methods for expanding the spatial frequency band of an optical system. These spatial frequency band expansion methods are described in, for example, Applied Physics, Volume 37, No. 9, pp. 853 to 859 (1968).
Year). One of these methods scans two grating patterns directly above the object and the image (at least within the depth of focus) while maintaining a conjugate relationship with each other. Demodulation is performed by forming a pattern, passing this moiré pattern through the lens system, and superposing it on the second grating pattern on the image side. Since the moire pattern has a lower spatial frequency than the object and the first grating pattern, it can pass through the lens system. It has been filed to apply this method to a reduction projection exposure method. Generally, it is difficult to mechanically scan the grating pattern directly on the wafer. Therefore, a photochromic material is directly provided on the wafer, and interference fringes are superposed on the wafer to perform scanning so that the grating functions.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記様
々な従来技術には次のような課題がある。
However, the various conventional techniques described above have the following problems.

【0006】まず露光光の短波長化は、光学(レンズ)
材料の透過率の問題からArFエキシマレーザ(波長1
93nm)が限界と考えられる。又、レンズ設計及び製
造上の問題から、投影光学系のNAは0.6〜0.7が限
界と考えられる。しかるに、従来露光法の解像限界は一
般に0.5λ/NA、周期型位相シフト法を用いた場合
は0.3λ/NA程度であり、従って、上記短波長化及
び高NA化の限界を用いても、0.1μm以下のパター
ンは形成は難しい。又、上記周期型位相シフト法ではマ
スクパターンが制限されるため、より一般的な回路パタ
ーンに関して、実際の限界寸法はさらに後退する。又、
LSIの大規模化に伴い露光面積の拡大が要求されてい
るが、投影光学系の露光フィールドの拡大と高NA化の
要求を同時に満足することは極めて困難となっている。
First, the shortening of the wavelength of the exposure light is caused by optics (lens).
ArF excimer laser (wavelength 1
(93 nm) is considered to be the limit. In addition, due to problems in lens design and manufacturing, it is considered that the NA of the projection optical system is limited to 0.6 to 0.7. However, the resolution limit of the conventional exposure method is generally 0.5λ / NA, and it is about 0.3λ / NA when the periodic phase shift method is used. Therefore, the above-mentioned limits for shortening the wavelength and increasing the NA are used. However, it is difficult to form a pattern of 0.1 μm or less. Further, since the mask pattern is limited in the above-mentioned periodic phase shift method, the actual critical dimension is further reduced for more general circuit patterns. or,
Although it is required to increase the exposure area with the increase in the scale of LSI, it is extremely difficult to simultaneously satisfy the requirements of the exposure field of the projection optical system and the high NA.

【0007】一方、従来の回折限界を越えることを目的
とする各種空間周波数帯域拡大法は顕微鏡を対象とし、
微小な物体を拡大することを目的とする。このため、光
リソグラフィで要求される微小な光学像を形成するのに
は必ずしも適してはいないという問題点があった。例え
ば、前記モアレパターンを利用する方法では、2つの格
子をマスク及びウエハーの直上で互いに共役関係を保ち
つつスキャンするための機構又は光学系が著しく複雑と
なる。レジストの露光が実質的にエバネッセント光で行
われるため波長レンジで光が減衰して厚いレジストを露
光するのが困難となる等の問題がある。さらに、ホトク
ロミックを使用する場合でも適当な材料がない。従っ
て、LSIの大量生産を考えた場合、必ずしも実用的と
はいえないという問題点があった。
On the other hand, various spatial frequency band expansion methods for the purpose of exceeding the conventional diffraction limit target a microscope,
The purpose is to magnify a small object. Therefore, there is a problem that it is not necessarily suitable for forming a minute optical image required in optical lithography. For example, in the method using the moire pattern, a mechanism or an optical system for scanning the two gratings directly above the mask and the wafer while maintaining a conjugate relationship with each other becomes extremely complicated. Since the exposure of the resist is substantially performed with the evanescent light, there is a problem that light is attenuated in the wavelength range and it becomes difficult to expose a thick resist. Furthermore, there are no suitable materials when using photochromics. Therefore, there is a problem that it is not always practical when considering mass production of LSI.

【0008】本発明の目的は、各種固体素子の微細パタ
ーンを形成する投影露光法において、その解像度を、従
来の回折限界(遮断空間周波数)を越えて向上する方法
を提供することにある。具体的には、投影光学系のNA
を変えることなしに、そのNAを実質的に最大2倍にし
たのとほぼ同等の効果が得られる新規な投影露光方法
と、これを可能とする露光装置を提供することにある。
It is an object of the present invention to provide a method for improving the resolution of a projection exposure method for forming a fine pattern of various solid-state elements beyond the conventional diffraction limit (cutoff spatial frequency). Specifically, the NA of the projection optical system
It is an object of the present invention to provide a novel projection exposure method that can obtain an effect substantially equivalent to that when the NA is substantially doubled at most without changing the above, and an exposure apparatus that enables this.

【0009】本発明の別の目的は、従来型の露光装置の
構成と光学系を大きく変更することなく、これらに多少
の改良を加えるだけで解像力向上効果の得ることが可能
で、かつ大きな露光フィールドと高い解像力を同時に満
足するLSIの大量生産に適した投影露光方法を提供す
ることにある。
Another object of the present invention is to obtain the effect of improving the resolution without changing the structure of the conventional exposure apparatus and the optical system to a large extent, and only by making some modifications to the apparatus, and to obtain a large exposure. It is an object of the present invention to provide a projection exposure method suitable for mass production of LSIs that simultaneously satisfy the field and high resolution.

【0010】[0010]

【課題を解決するための手段】上記目的は、波長λの光
を用いてマスクパターンをの投影光学系(開口数=N
A、縮小率=1:M)により基板上へ結像させてパター
ンを形成する際、上記基板と上記投影光学系の間に、上
記基板と平行に、空間周期P1(但し、λ/(1.42
・NA)≦P1≦λ/NAであることが望ましい)の第
1の回折格子を設けるとともに、上記第1の回折格子に
より回折された光の干渉により基板面近傍でマスクパタ
ーンの像が再生されるように、前記投影光学系と前記マ
スクの間に、上記マスクと平行に、上記マスク側から順
に第2の回折格子と第3の回折格子の2枚の回折格子を
設けることにより達成される。
The above object is to provide a projection optical system for a mask pattern (numerical aperture = N) using light of wavelength λ.
When a pattern is formed by forming an image on a substrate with A and a reduction ratio = 1: M, a spatial period P1 (where λ / (1 is provided between the substrate and the projection optical system, in parallel with the substrate. .42
(NA) ≦ P1 ≦ λ / NA is desirable), and an image of the mask pattern is reproduced near the substrate surface due to interference of light diffracted by the first diffraction grating. As described above, it is achieved by providing, between the projection optical system and the mask, two diffraction gratings, that is, a second diffraction grating and a third diffraction grating in order from the mask side in parallel with the mask. .

【0011】第1の回折格子の回折光によりマスクパタ
ーンの像を忠実に再生するためには、上記第1、第2及
び第3の回折格子の周期方向は等しく、上記第1の回折
格子の空間周期P1、第2の回折格子の空間周期P2、
第3の回折格子の空間周期P3を、ほぼ1/P3=1/
P2−1/(M・P1)の関係を満たす様に設定する。
又、上記第1の回折格子の上記基板表面からの光学距離
Z1、及び、上記第2、第3の回折格子の上記マスク表
面からの光学距離Z2、Z3は、ほぼ (Z3−Z2)/P2=(Z3/M+Z1・M)/P1 の関係を満たす様に設定する。さらに、P2≦1/(1
−2・NA/M)であることが望ましい。又、第1、第
2、第3の回折格子の設置位置、各回折格子の透明基板
の膜厚、及び第2の回折格子の周期を、上記マスク面と
像面の間の収差が最小となるように設定することが好ま
しい。又、基板と第1の回折格子の間に、幅がZ1・N
A以下で、空間周期がほぼ2・Z1・NAの第1の遮光パ
タ−ンを、又、前記マスクの直上又は直下に上記第1の
遮光パタ−ンとほぼ共役な領域を遮光する第2の遮光パ
タ−ンを設けて露光領域を制限することが好ましい。さ
らに、必要に応じて、上記制限された露光領域を基板上
で走査して露光するか、もしくはステップ状に移動しな
がら露光することが好ましい。これら各回折格子は、位
相格子であることが好ましい。
In order to faithfully reproduce the image of the mask pattern by the diffracted light of the first diffraction grating, the period directions of the first, second and third diffraction gratings are the same, and the first diffraction grating A spatial period P1, a spatial period P2 of the second diffraction grating,
The spatial period P3 of the third diffraction grating is approximately 1 / P3 = 1 /
Set so that the relationship of P2-1 / (M · P1) is satisfied.
The optical distance Z1 of the first diffraction grating from the substrate surface and the optical distances Z2 and Z3 of the second and third diffraction gratings from the mask surface are approximately (Z3-Z2) / P2. = (Z3 / M + Z1 · M) / P1. Furthermore, P2 ≦ 1 / (1
-2 · NA / M) is desirable. Further, the installation positions of the first, second, and third diffraction gratings, the film thickness of the transparent substrate of each diffraction grating, and the period of the second diffraction grating are set so that the aberration between the mask surface and the image plane is minimized. It is preferable to set so that In addition, the width is Z1 · N between the substrate and the first diffraction grating.
A second light-shielding pattern having a spatial period of about 2 · Z1 · NA or less, and a region substantially conjugate with the first light-shielding pattern immediately above or below the mask. It is preferable to limit the exposure area by providing the light shielding pattern. Further, if necessary, it is preferable that the limited exposure region is scanned and exposed on the substrate, or is exposed while being moved in steps. Each of these diffraction gratings is preferably a phase grating.

【0012】なお、前記回折格子は1次元回折格子と
し、前記投影光学系の波面収差を、瞳上での上記回折格
子の周期方向と垂直な方向の直径を軸として、線対称と
なるように収差補正することが好ましい。又、本発明
は、マスクとして周期型位相シフトマスクを用いた場
合、特に大きな効果を発揮する。さらに、必要に応じて
回折格子の周期及び方向に応じて、微細なパターンの周
期や方向を制限したり、パターン形状を補正することが
望ましい。又、第1の回折格子と前記基板の間を屈折率
nが1より大きい液体で満たし、前記投影光学系のNA
を、 0.5<NA<n/2 の範囲に設定すると、さらに微細なパターンの形成が可
能となる。
The diffraction grating is a one-dimensional diffraction grating, and the wavefront aberration of the projection optical system is line-symmetrical with the diameter in the direction perpendicular to the periodic direction of the diffraction grating on the pupil as an axis. It is preferable to correct aberration. Further, the present invention exerts a particularly great effect when a periodic type phase shift mask is used as the mask. Furthermore, it is desirable to limit the period and direction of the fine pattern or correct the pattern shape according to the period and direction of the diffraction grating as needed. Further, the space between the first diffraction grating and the substrate is filled with a liquid having a refractive index n larger than 1, and the NA of the projection optical system is
Is set in the range of 0.5 <NA <n / 2, it becomes possible to form a finer pattern.

【0013】[0013]

【作用】本発明は、投影光学系の最終エレメントとウエ
ハの間に回折格子を設け、ウエハ面へ入射する光ビーム
の入射角を大きくすることにより、実効的にNAを増大
するのと等価な効果を得ようというものである。しか
し、単純に従来光学系のレンズ−ウエハ間に回折格子を
設けただけでは、本来像面上の1点に集約するはずの回
折光は、像面上のばらばらな位置に散らばってしまい、
マスクパターンの再生は到底困難である。従って、干渉
の結果元のマスクパターンに忠実な像が再生されるよう
に、光学系を再構成する必要がある。しかも実用性の観
点から、これらの光学系は、従来の投影光学系を大きく
改造することなく、しかも従来のマスクが使用可能であ
ることが好ましい。本発明は、以下述べるようにこれら
の要求を満足するものである。
The present invention is equivalent to effectively increasing the NA by providing a diffraction grating between the final element of the projection optical system and the wafer and increasing the incident angle of the light beam incident on the wafer surface. It is about getting an effect. However, simply providing a diffraction grating between the lens and the wafer of the conventional optical system causes the diffracted light that should be concentrated at one point on the image plane to be scattered at different positions on the image plane.
It is very difficult to reproduce the mask pattern. Therefore, it is necessary to reconfigure the optical system so that an image faithful to the original mask pattern is reproduced as a result of interference. Moreover, from the viewpoint of practicality, it is preferable that these optical systems can use conventional masks without major modification of conventional projection optical systems. The present invention satisfies these requirements as described below.

【0014】本発明の作用を説明するために、本発明に
よる結像の原理を従来法と比較して説明する。本発明の
一形態に基づく光学系における結像を図1に、又比較の
ため、従来投影露光光学系で従来マスク又は位相シフト
マスクを、各々垂直に照明した場合と斜めに照明した場
合の結像の様子を図2a、b、c、dに示す。いずれの
図でも、2:1縮小光学系とコヒーレント照明、1次元
パターンを仮定し、近軸結像近似した。
In order to explain the operation of the present invention, the principle of imaging according to the present invention will be described in comparison with the conventional method. FIG. 1 shows an image formed in an optical system according to one embodiment of the present invention, and for comparison, a result obtained when a conventional mask or a phase shift mask is illuminated vertically or obliquely in a conventional projection exposure optical system. The appearance of the image is shown in FIGS. 2a, b, c and d. In both figures, paraxial imaging approximation was performed assuming a 2: 1 reduction optical system, coherent illumination, and a one-dimensional pattern.

【0015】まず、従来光学系で通常マスクを垂直照明
した場合(図2a)、透過型マスク21に垂直入射した
光22はマスク上のパターンにより回折され、回折光の
うち投影光学系23の瞳24(絞り20の内側)を通過
した光線が像面25上に収斂し、干渉してパターンを形
成する。ここで、瞳を通過できる最大の回折角を与える
パターン周期を解像限界と定義すると、解像限界は、λ
/(2NA)(但しNA=sinθ0)となる。さら
に、この光学系に周期型位相シフトマスク26を適用す
ると、図2bに示したように0次回折光が消滅して光軸
29(図中一点鎖線)に対して対称に回折光が生じる。
このため、瞳を通過できる最大の回折角は2倍となり、
解像限界はλ/(4NA)まで向上する。
First, when the mask is normally illuminated vertically by the conventional optical system (FIG. 2a), the light 22 vertically incident on the transmissive mask 21 is diffracted by the pattern on the mask, and the pupil of the projection optical system 23 out of the diffracted light. Light rays passing through 24 (inside the diaphragm 20) converge on the image plane 25 and interfere with each other to form a pattern. Here, when the pattern period that gives the maximum diffraction angle that can pass through the pupil is defined as the resolution limit, the resolution limit is λ
/ (2NA) (where NA = sin θ 0 ). Further, when the periodic phase shift mask 26 is applied to this optical system, the 0th-order diffracted light disappears and diffracted light is generated symmetrically with respect to the optical axis 29 (dotted line in the figure) as shown in FIG. 2b.
Therefore, the maximum diffraction angle that can pass through the pupil is doubled,
The resolution limit improves to λ / (4NA).

【0016】又、従来光学系に斜め照明を適用すると
(図2c、簡単のためマスク回折光の0次光27が図中
瞳の左端を通過すると仮定した)、マスク回折光のうち
0次光を中心として正負どちらかの回折角をもつ片側成
分(図では+1次光28)だけが瞳を通過し、像面に収
斂する。垂直入射の場合の2倍の回折角を有する回折光
が瞳を通過できるため、解像限界はやはりλ/(4N
A)となる。しかし、回折スペクトルの片側しか用いな
いため、例えば孤立パターンの解像度は垂直照明の場合
と変わらず、又、周期パターンの場合でもコントラスト
が低下する等の問題がある。さらに、マスクを周期型位
相シフトマスク26に変更すると複数の回折光は瞳を通
過できないため、パターンは解像しない(図2d)。
Further, when oblique illumination is applied to the conventional optical system (FIG. 2C, for simplicity, it is assumed that the 0th order light 27 of the mask diffracted light passes through the left end of the pupil in the figure), the 0th order light of the mask diffracted light. Only one-sided component (+ 1-order light 28 in the figure) having a positive or negative diffraction angle with respect to the center passes through the pupil and converges on the image plane. Since the diffracted light having a diffraction angle twice that of the case of vertical incidence can pass through the pupil, the resolution limit is still λ / (4N
A). However, since only one side of the diffraction spectrum is used, for example, the resolution of the isolated pattern is the same as that in the case of vertical illumination, and even in the case of the periodic pattern, there is a problem that the contrast is lowered. Furthermore, if the mask is changed to the periodic type phase shift mask 26, a plurality of diffracted lights cannot pass through the pupil, so the pattern is not resolved (FIG. 2d).

【0017】次に、本発明の一形態に基づく光学系にお
ける結像を図1に示す。図1の光学系は、図2の従来光
学系において、マスク1と投影光学系2の間に回折格子
A及び回折格子Bを、又、投影光学系2とウエハー4の
間に回折格子Cを挿入したものである。ここで、回折格
子A、B、Cはともに位相格子とする。
Next, FIG. 1 shows the image formation in the optical system according to one embodiment of the present invention. The optical system of FIG. 1 has a diffraction grating A and a diffraction grating B between the mask 1 and the projection optical system 2 and a diffraction grating C between the projection optical system 2 and the wafer 4 in the conventional optical system of FIG. It is inserted. Here, the diffraction gratings A, B, and C are all phase gratings.

【0018】マスク1に垂直入射した光Rはマスク面で
0次回折光R0、+1次回折光R1、−1次回折光R
1’に回折される。0次光R0は回折格子A上の点A0
に達し、そこで−1次方向に回折された光は、回折格子
B上の点B0で+1次方向に回折された後、瞳3(絞り
5の内側)の左端を経て回折格子C上の点C0で±1次
方向に回折され、各々像面上の2点Q、Pに達する。
又、+1次回折光R1は、回折格子A上の点A1に達
し、そこで−1次方向に回折された光は回折格子B上の
点B1で+1次方向に回折された後、瞳3の右端を経て
回折格子C上の点C1で±1次方向に回折され、やはり
像面上の点Q、Pに達する。一方、点A0で+1次方向
に回折された0次光R0’と−1次回折光R1’に対す
る光路は、上述の2光線の光路と光軸6(図中一点鎖
線)に対して対称となる。即ち、両者は、最終的に回折
格子C上の点C0で±1次方向に回折され像面上の点
P、Q’に達する。従って、P点ではマスクで回折され
た0次光、及び+1次、−1次光線の3つの光線が交わ
る。このことが、マスク回折角に依らないのは明らかで
ある。従って、点Pでは回折像が忠実に再生される。
The light R vertically incident on the mask 1 is 0-order diffracted light R0, + 1st-order diffracted light R1, and -1st-order diffracted light R on the mask surface.
Diffracted into 1 '. The 0th-order light R0 is a point A0 on the diffraction grating A.
The light that has reached the point where the light is diffracted in the −1st-order direction is diffracted in the + 1st-order direction at the point B0 on the diffraction grating B, and then passes through the left end of the pupil 3 (inside the diaphragm 5) to the point on the diffraction grating C. The light is diffracted in the ± 1st order directions at C0 and reaches two points Q and P on the image plane, respectively.
Further, the + 1st order diffracted light R1 reaches the point A1 on the diffraction grating A, and the light diffracted in the −1st order direction is diffracted in the + 1st direction at the point B1 on the diffraction grating B, and then the right end of the pupil 3. After passing through, the light is diffracted in the ± first-order directions at the point C1 on the diffraction grating C and reaches the points Q and P on the image plane. On the other hand, the optical paths for the 0th-order light R0 ′ and the −1st-order diffracted light R1 ′ diffracted in the + 1st-order direction at the point A0 are symmetric with respect to the optical path of the two light rays described above with respect to the optical axis 6 (the one-dot chain line in the figure). . That is, both of them finally diffract in the ± first-order directions at the point C0 on the diffraction grating C and reach the points P and Q ′ on the image plane. Therefore, at point P, the 0th-order light and the + 1st-order and -1st-order rays diffracted by the mask intersect. Obviously, this does not depend on the mask diffraction angle. Therefore, the diffraction image is faithfully reproduced at the point P.

【0019】従来法(図2a)と比べると、同一のN
A、倍率を持つ光学系を用いて、2倍の回折角をもつ回
折光が瞳を通過できるため、実質的にNAを2倍したの
と同様の効果が得られる。又、斜め照明(図2b)では
0次光を中心として正負どちらか片方の回折光しか像面
で再生できないのに対して、本発明では両側の回折光を
像面で再生できるため、斜め照明では困難であった孤立
パターンの解像度向上が可能で、また周期パターンに対
して大きなコントラストを得ることができる。さらに、
本光学系に周期型位相シフトマスクを適用すると(図3
a)、0次回折光が消滅して通常の倍の回折角を有する
+1次光R+と−1次光R−が干渉する結果、最小解像
度はλ/(8NA)となる。これは、これまで周期型位
相シフトマスクや斜め照明を用いた場合の理論限界であ
るλ/(4NA)の半分であり、本発明により飛躍的な
解像度の向上が可能となる。また、本光学系において斜
め照明を適用した場合の結像の様子を図3bに示す。斜
め照明により、片側のみに対して大きな回折角をもつ回
折光R1"まで瞳を通過させることが可能となり、垂直
照明時の最大2倍、即ちλ/(8NA)まで解像度を向
上できる。又、マスク入射角の異なる様々な照明光を用
いれば、従来光学系におけるのと全く同様に部分コヒー
レント照明の効果を得ることができる。
Compared to the conventional method (FIG. 2a), the same N
A. An optical system having a magnification can be used to pass diffracted light having a diffraction angle of 2 times through the pupil. Therefore, the same effect as when NA is substantially doubled can be obtained. Moreover, in the oblique illumination (FIG. 2B), only the positive or negative diffracted light centered on the 0th-order light can be reproduced on the image plane, whereas in the present invention, the diffracted light on both sides can be reproduced on the image plane. It is possible to improve the resolution of the isolated pattern, which was difficult with, and it is possible to obtain a large contrast with respect to the periodic pattern. further,
If a periodic phase shift mask is applied to this optical system (Fig. 3
a) As a result of the 0th-order diffracted light disappearing and the + 1st-order light R + and the -1st-order light R- having a diffraction angle twice the normal ones interfering, the minimum resolution becomes λ / (8NA). This is half of λ / (4NA), which is the theoretical limit when the periodic type phase shift mask or the oblique illumination is used, and the present invention enables a dramatic improvement in resolution. Further, FIG. 3b shows a state of image formation when oblique illumination is applied in the present optical system. The oblique illumination allows the diffracted light R1 ″ having a large diffraction angle with respect to only one side to pass through the pupil, and the resolution can be improved up to twice that at the time of vertical illumination, that is, λ / (8NA). If various illumination lights with different mask incident angles are used, the effect of partial coherent illumination can be obtained just as in the conventional optical system.

【0020】本発明の原理をフーリエ回折理論の立場か
ら説明すると次のようになる(図4)。以下の説明で
は、光学系の倍率は1、回折格子は1次元位相格子で±
1次回折光のみを考えるものとする。像面上の点Pか
ら、回折格子Cを介して瞳3を見ると、回折により瞳は
2つに分かれて見える(図4a)。各瞳の中には、各々
ある特定の角度で瞳を通過するマスクフーリエ変換像が
見える。一方、マスク側について考えると、マスクによ
り回折された光は回折格子A及びBで回折されて、瞳上
に複数のマスクフーリエ変換像を形成する。このうち、
ある特定の角度で瞳を通過したものが、上で見えた瞳の
中に見えることになる(図4b)。即ち、図4の場合、
図4bの右のフーリエ回折像が図4aの左側の瞳の中に
見え、図4bの左のフーリエ回折像が図4aの右側の瞳
の中に見える。このとき、点Pで正しく像が再生される
ための条件は次の2点である。
The principle of the present invention will be described below from the standpoint of Fourier diffraction theory (FIG. 4). In the following description, the magnification of the optical system is 1, and the diffraction grating is a one-dimensional phase grating ±
Only the first-order diffracted light is considered. When the pupil 3 is viewed from the point P on the image plane through the diffraction grating C, the pupil appears to be divided into two due to diffraction (FIG. 4a). In each pupil, a mask Fourier transform image that passes through the pupil at a specific angle can be seen. On the other hand, considering the mask side, the light diffracted by the mask is diffracted by the diffraction gratings A and B to form a plurality of mask Fourier transform images on the pupil. this house,
What has passed through the pupil at a certain angle will be visible in the pupil seen above (Fig. 4b). That is, in the case of FIG.
The right Fourier diffraction image of FIG. 4b is visible in the left pupil of FIG. 4a and the left Fourier diffraction image of FIG. 4b is visible in the right pupil of FIG. 4a. At this time, the conditions for the image to be reproduced correctly at the point P are the following two points.

【0021】(1)2つの瞳を介してマスク上の同一点
のスペクトルが見えること。
(1) The spectrum of the same point on the mask can be seen through the two pupils.

【0022】(2)2つのスペクトルが、2つの瞳の接
点で連続して接続すること。
(2) The two spectra are connected continuously at the contact points of the two pupils.

【0023】言い替えれば、1つの連続するスペクトル
を複数の瞳を介して見ることができるようにする必要が
ある。
In other words, it is necessary to be able to see one continuous spectrum through multiple pupils.

【0024】像から見て、回折格子Cを介してf'シフ
トした複数の瞳が見え、その各瞳の中に回折格子B及び
Aを介してやはりf"シフトした複数のフーリエ回折像
が見えるとすると、真の像の振幅分布u(x)は次式で表
わされる。
As seen from the image, a plurality of pupils shifted by f ′ can be seen through the diffraction grating C, and a plurality of Fourier diffraction images also shifted by f ″ can be seen through the diffraction gratings B and A in each pupil. Then, the amplitude distribution u (x) of the true image is expressed by the following equation.

【0025】 u(x)=F[Σp(f−f')・Σo(f−f")] f'=±SC f"=±(SA−SB−SC) ここで、F[ ]はフーリエ変換、p(f)は瞳関数、o
(f)はマスクフーリエ回折像、xは実空間座標、fは空
間周波数座標、SA、SB、SCは回折格子A、B、Cの
回折角のsin(正弦)、Σは異なる回折次数に対する和
を表す。従って、 SA=SB+SC とすると、 f"=0 となり、f'=±SCの両方に対して共にf"=0となる
項を得ることができる。即ち2つの瞳p(f±SC)を介
して1つのスペクトルo(f)を見ることができる。さら
に、点Pでマスク上同一点に対する像を得るためには、
マスク面と回折格子A、B間の距離、及び回折格子Cと
理想像面間の距離、各々ZA、ZB、ZCを、 SA・(ZB−ZA)=SC・(ZB+ZC) とすればよい。
U (x) = F [Σp (f−f ′) · Σo (f−f ″)] f ′ = ± SC f ″ = ± (SA−SB−SC) where F [] is Fourier Transformation, p (f) is the pupil function, o
(f) is a mask Fourier diffraction image, x is real space coordinates, f is spatial frequency coordinates, SA, SB, and SC are diffraction angles sin of the diffraction gratings A, B, and C, and Σ is the sum for different diffraction orders. Represents Therefore, if SA = SB + SC, then f ″ = 0, and for both f ′ = ± SC, the terms f ″ = 0 can be obtained. That is, one spectrum o (f) can be seen through the two pupils p (f ± SC). Further, in order to obtain an image of the same point on the mask at the point P,
The distance between the mask surface and the diffraction gratings A and B, and the distance between the diffraction grating C and the ideal image plane, ZA, ZB, and ZC, respectively, may be set to SA. (ZB-ZA) = SC. (ZB + ZC).

【0026】上の条件を近軸近似の下で縮小率M:1、
像側開口数NAの光学系に適用すると、回折格子A、
B、Cの周期PA、PB、PC、マスク面と回折格子A、
B間の距離ZA、ZB、回折格子Cと理想像面間の距離Z
Cをほぼ次のように設定すればよいことがわかる。
Under the paraxial approximation, the reduction ratio M: 1,
When applied to an optical system with an image-side numerical aperture NA, the diffraction grating A,
B, C periods PA, PB, PC, mask surface and diffraction grating A,
Distances ZA and ZB between B, distance Z between the diffraction grating C and the ideal image plane
It can be seen that C should be set almost as follows.

【0027】1/PA=1/PB−1/(M・PC) (ZB−ZA)/PA=(ZB/M+M・ZC)/PC さらに、本発明により十分な解像度向上効果を得るため
には、 λ/NA≦PC≦√2・λ/NA とすることが好ましい。
1 / PA = 1 / PB-1 / (M.PC) (ZB-ZA) / PA = (ZB / M + M.ZC) / PC Further, in order to obtain a sufficient resolution improving effect according to the present invention. , Λ / NA ≦ PC ≦ √2 · λ / NA is preferable.

【0028】回折格子A、Bは、位相格子であることが
好ましい。回折格子A、Bが完全な位相格子でなく0次
光を透過する場合、本方法より解像性に劣る従来光学系
や斜入射光学系等の効果が本方法の効果に重なる。この
ため解像性が劣化する恐れがある。一方、回折格子Cは
位相変調格子であっても振幅強度変調格子であっても構
わない。回折格子Cの周期はかなり小さく、屈折率1.
5のシリコン酸化膜を考えると格子パターンの断面縦横
比はほぼ1程度となる。この場合、パターン断面での光
の散乱効果に注意する必要がある。遮光パターンからな
る回折格子の場合、遮光膜の厚さはかなり薄くできるた
め散乱の影響は低減できる。但し、後で述べるように、
位相変調格子を用いる方が露光領域を広くすることがで
きる。
The diffraction gratings A and B are preferably phase gratings. When the diffraction gratings A and B are not perfect phase gratings and transmit 0th-order light, the effects of the conventional optical system and the oblique incidence optical system, which are inferior in resolution to this method, overlap the effects of this method. Therefore, the resolution may be deteriorated. On the other hand, the diffraction grating C may be a phase modulation grating or an amplitude intensity modulation grating. The period of the diffraction grating C is quite small, and the refractive index is 1.
Considering the silicon oxide film of No. 5, the cross-sectional aspect ratio of the lattice pattern is about 1. In this case, it is necessary to pay attention to the light scattering effect on the pattern cross section. In the case of a diffraction grating having a light-shielding pattern, the thickness of the light-shielding film can be made considerably thin, so that the influence of scattering can be reduced. However, as will be described later,
The exposure area can be widened by using the phase modulation grating.

【0029】回折格子Bの基板側を屈折率nが1より大
きい液体等で満たすと、この領域の波長と回折角のsi
nが1/nとなる。そこで、さらに回折格子Bの周期を
細かくし、回折角を液体を満たさない場合と等しくする
と、波長だけが1/nとなるため解像度も1/nに向上
する。この場合、マスク側ではより回折角の大きな回折
光が瞳を通過できる様マスク照明角を増大させる必要が
あるが、このとき回折角の小さな回折光は瞳を通過でき
なくなる。そこで、瞳の径をこれに応じて増大すること
が望ましい。このことは次のように言い替えることもで
きる。回折格子Bと基板の間の屈折率が1の場合、本発
明で用いる投影光学系のNAを0.5以上にしても何ら
解像度向上は得られない。sinθ>0.5の角度θで周期
λ/NAの回折格子Bに入射する光線に対する回折角は
90度以上となり、エバネッセント波として回折格子表
面に局在化してウエハーには伝わらないためである。一
方、回折格子Bと基板の間の屈折率をnとすると、sin
θ=NAの角度で回折格子B(瞳の端を通過した0次光
がウエハーに垂直入射するためには周期λ/NAでなけ
ればならない)へ入射した光の回折角θ'は sinθ'=(λ/PB+sinθ)/n=2NA/n となり、θ'<90度であるための条件は、NA<n/
2となる。即ち、本発明を最大NA=n/2の光学系ま
で有効に適用できる。一般に液浸光学系は特別な光学設
計を必要とするが、上述の様に本発明に適用した場合に
は何ら特別のレンズを必要としない。従って、半導体プ
ロセスにおいて通常使用されているNA0.6程度の投
影レンズを用いて、回折格子Bと基板の間を水(屈折率
約1.3)で満たして露光すれば、実質的にNAを1.
2としたのと等価な効果が得られる。この場合、位相シ
フトマスクを用いれば、水銀ランプのi線の波長(36
5nm)でも、0.1μm以下の解像度が得られること
になる。なお、本方法では、ウエハー近傍で干渉する光
の入射角は極めて大きいため、結像性能は光の偏光状態
に強く依存する。一般に、電場ベクトルが光の入射面に
垂直な偏光状態を有する光の方が、高いコントラストの
像を形成する上で望ましい。
When the substrate side of the diffraction grating B is filled with a liquid or the like having a refractive index n larger than 1, the wavelength of this region and the si of the diffraction angle are
n becomes 1 / n. Therefore, if the period of the diffraction grating B is made finer and the diffraction angle is made equal to that in the case where the liquid is not filled, only the wavelength becomes 1 / n, and the resolution also improves to 1 / n. In this case, on the mask side, it is necessary to increase the mask illumination angle so that diffracted light with a larger diffraction angle can pass through the pupil, but at this time, diffracted light with a smaller diffraction angle cannot pass through the pupil. Therefore, it is desirable to increase the diameter of the pupil accordingly. This can be rephrased as follows. When the refractive index between the diffraction grating B and the substrate is 1, even if the NA of the projection optical system used in the present invention is 0.5 or more, no improvement in resolution can be obtained. This is because the diffraction angle with respect to a light ray incident on the diffraction grating B having an angle θ of sin θ> 0.5 and a period λ / NA is 90 degrees or more, and it is localized as an evanescent wave on the surface of the diffraction grating and is not transmitted to the wafer. On the other hand, if the refractive index between the diffraction grating B and the substrate is n, then sin
The diffraction angle θ ′ of the light incident on the diffraction grating B (the 0th-order light passing through the edge of the pupil must have a period λ / NA in order to vertically enter the wafer) at an angle θ = NA is sin θ ′ = (Λ / PB + sin θ) / n = 2NA / n, and the condition for θ ′ <90 degrees is NA <n /
It becomes 2. That is, the present invention can be effectively applied to an optical system having a maximum NA = n / 2. Generally, the immersion optical system requires a special optical design, but when applied to the present invention as described above, no special lens is required. Therefore, if a gap between the diffraction grating B and the substrate is filled with water (refractive index of about 1.3) and exposed using a projection lens with an NA of about 0.6 that is normally used in semiconductor processes, the NA is substantially reduced. 1.
An effect equivalent to setting 2 is obtained. In this case, if a phase shift mask is used, the wavelength of the i-line of the mercury lamp (36
5 nm), a resolution of 0.1 μm or less can be obtained. In this method, since the incident angle of the light that interferes in the vicinity of the wafer is extremely large, the imaging performance strongly depends on the polarization state of the light. In general, light having a polarization state in which the electric field vector is perpendicular to the plane of incidence of light is desirable for forming a high-contrast image.

【0030】以上の議論は全て近軸近似を仮定し、回折
格子の基板の屈折率を1としたものであり、実際には回
折格子の基板の屈折率の効果や、回折格子により生じる
収差の影響を厳密に考慮する必要がある。このため、各
回折格子の設置位置等は若干変更する場合がある。複数
の回折格子のパターンの周期方向は十分な精度で一致さ
せることが好ましいことはいうまでもない。
In all the above discussions, the paraxial approximation is assumed, and the refractive index of the substrate of the diffraction grating is set to 1. In practice, the effect of the refractive index of the substrate of the diffraction grating and the aberration caused by the diffraction grating are The impact needs to be carefully considered. Therefore, the installation position of each diffraction grating may be slightly changed. It goes without saying that it is preferable to match the periodic directions of the patterns of the plurality of diffraction gratings with sufficient accuracy.

【0031】次に、本発明において注意すべき点につい
て4点述べる。
Next, four points to be noted in the present invention will be described.

【0032】第1に、本光学系では従来露光法と比べ
て、一般に露光領域が制限される。図1より分かるよう
に、像面上の点Q、Q’においても2光線が交わり互い
に干渉して像が形成される。この像は、本来形成される
べきでない位置に生じる偽の像であり、一般に好ましく
ない。これを回避するため、図5aに示すように像面5
1の直上(ウエハーと回折格子Cの間)に遮光マスク5
2を設けてこれらの偽の像を遮断することが望ましい。
回折格子Cと遮光マスク52は、図に示したように同一
の石英基板53の両面に形成することができる。(別々
の基板上に形成しても構わない。)又、これと同時に同
様にして、マスクの直上又は直下に上記遮光マスクとほ
ぼ共役な領域を遮光するマスキングブレードを設ける等
して、マスク照明領域を上記共役な領域に制限すること
が好ましい。1回の露光で転写可能な露光領域は、真の
像(P点)と偽の像(Q点)の間の距離(ほぼ2・NA・
ZB)に相当する領域で、上記距離の2倍を周期として
繰返し現れる。従って、露光可能な領域が露光したい面
積より狭い場合には、図5bに示した様に、露光領域を
ウエハー上でスキャンすることが望ましい。この際、光
学系の縮小率がM:1であったならば、マスクスキャン
速度とウェハースキャン速度の比も厳密にM:1とする
ことが望ましいことはいうまでもない。これら露光領域
をマスク及びウェハー上で同期スキャンする方法に関し
ては、既存の露光装置で用いられている方法をそのまま
用いることができる。一方、露光可能領域が露光したい
面積より大きい場合、即ち、真の像と偽の像の間の距離
が例えば1個のチップをカバーする場合には、スキャン
せずに露光可能である。露光領域の大きさは回折格子B
の設置位置によって決まり、回折格子Bを像面から離す
ほど、1つの露光領域の幅は増大する。但し、同時に転
写不可能な領域の幅も増大するため、両者の割合はほぼ
1:1のまま変わらない。偽の像の影響を排除するため
に、ウエハー上露光領域の幅Wは、W≦NA・ZBとする
ことが望ましい。又、回折格子Bに振幅強度変調格子を
用いた場合には、格子の0次回折光が真の像と偽の像の
中間点にもう一つの偽の像を形成するため、露光領域は
位相格子の場合のほぼ半分となる。
First, in the present optical system, the exposure area is generally limited as compared with the conventional exposure method. As can be seen from FIG. 1, two rays intersect at points Q and Q ′ on the image plane and interfere with each other to form an image. This image is a false image generated at a position where it should not be originally formed, and is generally not preferable. To avoid this, as shown in FIG.
Directly above 1 (between the wafer and the diffraction grating C), a light-shielding mask 5
It is desirable to provide two to block these spurious images.
The diffraction grating C and the light shielding mask 52 can be formed on both surfaces of the same quartz substrate 53 as shown in the figure. (It may be formed on a separate substrate.) At the same time, a masking blade that shields a region substantially conjugate with the above-mentioned light-shielding mask is provided immediately above or below the mask to provide mask illumination. It is preferable to limit the area to the conjugate area. The exposure area that can be transferred by one exposure is the distance between the true image (point P) and the false image (point Q) (approximately 2 · NA ·
ZB) repeatedly appears in a region corresponding to twice the above distance in a region corresponding to ZB). Therefore, when the area that can be exposed is smaller than the area to be exposed, it is desirable to scan the exposed area on the wafer as shown in FIG. 5b. At this time, if the reduction ratio of the optical system is M: 1, it is needless to say that the ratio of the mask scan speed to the wafer scan speed is also strictly set to M: 1. Regarding the method of synchronously scanning these exposure regions on the mask and the wafer, the method used in the existing exposure apparatus can be used as it is. On the other hand, when the exposed area is larger than the area to be exposed, that is, when the distance between the true image and the false image covers one chip, for example, the exposure can be performed without scanning. The size of the exposure area is the diffraction grating B
Depending on the installation position of the exposure area B, the width of one exposure region increases as the diffraction grating B is separated from the image plane. However, since the width of the non-transferable region also increases at the same time, the ratio of both remains almost 1: 1. In order to eliminate the influence of false images, it is desirable that the width W of the exposure area on the wafer be W ≦ NA · ZB. When an amplitude intensity modulation grating is used for the diffraction grating B, the 0th-order diffracted light of the grating forms another false image at the midpoint between the true image and the false image, so that the exposure region is a phase grating. It is almost half of the case of.

【0033】第2に、本方法では一般に露光強度が低下
する。本方法でウェハー上で結像する光線は、光学系中
に挿入された回折格子により回折された光線のうち特定
の回折次数の光だけを用いている。従って、回折格子を
通過する度に露光に寄与する光強度は低下することにな
る。また、上で述べたようにマスク及びウェハー上で露
光領域を制限していることも、スループット低下の原因
となる。このため、本方法では十分に強度の強い光源を
用いる、感度の高い化学増幅系レジスト等のレジスト材
料を用いる等の対策を行うことが望ましい。
Second, this method generally lowers the exposure intensity. The light beam imaged on the wafer in this method uses only light of a specific diffraction order among the light beams diffracted by the diffraction grating inserted in the optical system. Therefore, the light intensity that contributes to the exposure decreases each time the light passes through the diffraction grating. Further, limiting the exposure area on the mask and the wafer as described above also causes a decrease in throughput. Therefore, in this method, it is desirable to take measures such as using a light source having a sufficiently strong intensity and using a resist material such as a chemically amplified resist having high sensitivity.

【0034】第3に、前の説明で示したように、瞳上に
は、f"=0の望ましい回折像に加えて、f"=±2(SA
+SB)だけシフトしたフーリエ変換像が生じる。これ
は、マスクパターンの高次スペクトルが実質的に低い空
間周波数領域に重なってしまうことを意味し、一般に好
ましくない。図1の光学系においてこれを避けるために
は、 PA≦1/(1−2・NA/M) とすればよい。この場合、マスクで回折角2・NA/M
で回折された回折光(図1中R1)に対する回折格子A
による+1次方向の回折光(図1中A1から発する点線
に相当)は存在できないからである。
Third, as shown in the above description, in addition to the desired diffraction image of f "= 0 on the pupil, f" = ± 2 (SA
The Fourier transform image shifted by + SB) is generated. This means that the high-order spectrum of the mask pattern overlaps a substantially low spatial frequency region, which is generally not preferable. In order to avoid this in the optical system of FIG. 1, it is sufficient to set PA ≦ 1 / (1-2 · NA / M). In this case, the mask has a diffraction angle of 2 · NA / M
Diffraction grating A for the diffracted light (R1 in FIG. 1) diffracted by
This is because there is no diffracted light in the + 1st order direction (corresponding to the dotted line emitted from A1 in FIG. 1).

【0035】第4に、本発明の光学系では、回折格子導
入に伴う収差に注意する必要がある。回折格子により発
生する収差について、図6を用いて説明する。マスク通
過後の光線が光軸と回折格子の周期方向を含む面内にあ
ると仮定する(例えば、1次元パターンとコヒーレント
照明)。図6aの光学系が無収差であるためには、例え
ばOX123I、OY123I、及びOZ123
の各光路長の差が0でなければならない。しかし、これ
らの間に光路長差があるとこれが収差となる。ここで投
影光学系は収差0の理想的な光学系であると仮定する
と、X23=Y23=Z23より、OX12+X3I、
OY12+Y3I、及びOZ12+Z3Iの差が収差とな
る。瞳の直径を横切るOX123IからOZ123
に至る光路の波面収差をOY123Iを基準として規
格化した瞳半径座標sに対してプロットすると図6bの
実線のようになる。マスク通過後光軸に対して+の角度
を有する光線に対する収差w+(s)は瞳上で一般に非対
称となることがわかる。同様に光軸に対して−の角度を
有する光線に対する収差w−(s)は、光学系の対称性か
らw+(s)と瞳を中心として対称となる。本発明では、
+方向に回折した光と−方向に回折した光を同時にウエ
ハー上で干渉させる必要があるから、両者に対する収差
を同時に補正する必要がある。しかし、図6bからわか
るように、+方向と−方向に回折した光に対する瞳上収
差が一致しないことから、これらを同時に投影光学系で
補正することは原理的に困難となる。従って、これらの
収差は、マスクと投影光学系の間、又はウエハーと基板
の間で補正することが好ましい。これは、一般に次のよ
うな方法で行うことができる。
Fourth, in the optical system of the present invention, it is necessary to pay attention to the aberration associated with the introduction of the diffraction grating. The aberration generated by the diffraction grating will be described with reference to FIG. It is assumed that the light ray after passing through the mask is in a plane including the optical axis and the periodic direction of the diffraction grating (for example, one-dimensional pattern and coherent illumination). In order for the optical system of FIG. 6a to be aplanatic, for example, OX 1 X 2 X 3 I, OY 1 Y 2 Y 3 I, and OZ 1 Z 2 Z 3 I.
The difference between the optical path lengths of the two must be zero. However, if there is a difference in optical path length between them, this becomes an aberration. Assuming that the projection optical system is an ideal optical system with no aberration, X 2 X 3 = Y 2 Y 3 = Z 2 Z 3, and thus OX 1 X 2 + X 3 I,
The difference between OY 1 Y 2 + Y 3 I and OZ 1 Z 2 + Z 3 I is the aberration. OX 1 X 2 X 3 I to OZ 1 Z 2 Z 3 I across the diameter of the pupil
6b is plotted with respect to the pupil radius coordinate s standardized with OY 1 Y 2 Y 3 I as the reference, the solid line in FIG. It can be seen that the aberration w + (s) for a ray having an angle of + with respect to the optical axis after passing through the mask is generally asymmetric on the pupil. Similarly, the aberration w- (s) with respect to a ray having an angle of − with respect to the optical axis is symmetric with respect to w + (s) and the pupil due to the symmetry of the optical system. In the present invention,
Since it is necessary to cause the light diffracted in the + direction and the light diffracted in the − direction to interfere with each other on the wafer at the same time, it is necessary to simultaneously correct aberrations for both. However, as can be seen from FIG. 6b, since the on-pupil aberrations for the light diffracted in the + direction and the − direction do not match, it is theoretically difficult to correct them at the same time by the projection optical system. Therefore, it is preferable to correct these aberrations between the mask and the projection optical system or between the wafer and the substrate. This can generally be done in the following way.

【0036】w+(s)とw−(s)が等しければ、これを
投影光学系で補正することが可能である。そこで、Δw
(s)={w+(s)}−{w−(s)}を、瞳上(図6では
−1≦s≦1の範囲)で波長と比べて十分に小さい量δ
に抑えればよい。一方、Δw±(s)は、各回折格子の設
置位置と周期、回折格子を支える基板の厚さと屈折率、
基板と回折格子の相対位置関係等のパラメータxi(i
=1、2、…)の関数として表される。そこで、問題
は、−1≦s≦1の範囲で、Δw(s、xi)<δを満た
すxiを求めることに帰着する。実際の最適化の例につ
いては実施例で述べる。いずれにせよ、このようにし
て、マスク通過後光軸に対して±の角度を有する光線に
対する収差を瞳上で対称な形とすれば、これを投影光学
系において補正することができる。又、さらに上で述べ
た方法により収差自体を十分に抑制することができれ
ば、より好ましい。
If w + (s) and w- (s) are equal, this can be corrected by the projection optical system. Therefore, Δw
(s) = {w + (s)}-{w- (s)} is a sufficiently small amount δ compared with the wavelength on the pupil (in the range of −1 ≦ s ≦ 1 in FIG. 6).
It should be suppressed to. On the other hand, Δw ± (s) is the installation position and period of each diffraction grating, the thickness and refractive index of the substrate supporting the diffraction grating,
Parameters such as the relative positional relationship between the substrate and the diffraction grating xi (i
= 1, 2, ...). Therefore, the problem is reduced to finding xi satisfying Δw (s, xi) <δ in the range of −1 ≦ s ≦ 1. An example of actual optimization will be described in Examples. In any case, if the aberration with respect to the ray having an angle of ± with respect to the optical axis after passing through the mask is made symmetrical on the pupil in this way, this can be corrected in the projection optical system. It is more preferable if the aberration itself can be sufficiently suppressed by the method described above.

【0037】以上、簡単のためマスクパターンとして1
次元のパターンを想定したが、実際には2次元パターン
が存在したり、部分コヒーレント照明を用いた場合に
は、マスク通過後の光線は、光軸と回折格子の周期方向
を含む面内に収まらず、瞳上の様々な点に向かう。この
場合、Δwとして、瞳上の2次元座標(s、t)の関数
Δw(s、t)={w+(s、t)}−{w−(s、t)}を
考え、瞳面内で、Δw(s、t、xi)<δを満たすxi
を求めればよい。これは、w±(s、t)を瞳上でs=0
に対してできるだけ対称な形とすることを意味する。
As described above, 1 is used as the mask pattern for simplicity.
Although a two-dimensional pattern exists in reality, or when partial coherent illumination is used, the light beam after passing through the mask is not confined within the plane including the optical axis and the periodic direction of the diffraction grating. Instead, head to various points on your eyes. In this case, the function Δw (s, t) = {w + (s, t)}-{w- (s, t)} of the two-dimensional coordinates (s, t) on the pupil is considered as Δw, and And xi satisfying Δw (s, t, xi) <δ
You should ask. This means that w ± (s, t) is s = 0 on the pupil.
It means to be as symmetrical as possible with respect to.

【0038】さらに、全ての方向に対して本発明の効果
を得るためには、例えば図7a、bに示すように各回折
格子を2次元回折格子とすることが考えられる。この場
合、見かけ上の瞳の形は4回対称となる。しかしなが
ら、上で述べた事情により、互いに垂直な2組の瞳に対
して瞳上で同時に収差補正することは、光学系のNAが
小さい場合を除いてやや困難である。このため、マスク
上ですべての方向に対して同等に本発明の効果を得るこ
とはやや難しく、図8のような1次元回折格子を用いる
のがより現実的である。図8a、b、cは3つの代表的
な回折格子と見かけ上の瞳形状である。図8aの場合、
x方向のパターンに対して実質的なNAは2倍近く増大
するが、y方向のパターンに対しては減少する。図8b
の場合、x方向のパターンに対して実質的なNAは√2
倍となり、y方向のパターンに対しては1/√2とな
る。図8cの場合、x,y両方向ともNAは√2倍とな
るが、x,y方向以外に対する結像性能は著しくパター
ン方向に依存すると考えられる。何れの場合にも、マス
ク上でパターンのレイアウトルール等に方向による制限
を課すことが望ましい。
Further, in order to obtain the effect of the present invention in all directions, it is conceivable that each diffraction grating is a two-dimensional diffraction grating as shown in FIGS. 7A and 7B, for example. In this case, the apparent pupil shape is 4-fold symmetry. However, due to the above-mentioned circumstances, it is rather difficult to simultaneously perform aberration correction on two pupils that are perpendicular to each other, except when the NA of the optical system is small. For this reason, it is rather difficult to obtain the effect of the present invention on the mask equally in all directions, and it is more realistic to use the one-dimensional diffraction grating as shown in FIG. 8a, b and c show three typical diffraction gratings and an apparent pupil shape. In the case of FIG. 8a,
The substantial NA increases nearly twice for patterns in the x direction, but decreases for patterns in the y direction. Figure 8b
, The effective NA for the pattern in the x direction is √2
It is doubled and becomes 1 / √2 for the pattern in the y direction. In the case of FIG. 8c, the NA is √2 in both the x and y directions, but it is considered that the imaging performance in the directions other than the x and y directions remarkably depends on the pattern direction. In either case, it is desirable to impose restrictions on the pattern layout rule and the like on the mask depending on the direction.

【0039】結像性能のパターン方向依存性をなくすた
めには、図8a、b、cの条件を、各々例えば90度回
転させて多重露光を行ってもよい。特に、図8cにこれ
を適用した場合には、x,y方向以外に対するパターン
方向依存性を抑制し、かつ像コントラストを犠牲とせず
にx,y両方向ともNAを√2倍したのと同等な像を得
ることができる。但し、回折格子を90度回転させた場
合、収差特性も90度回転する。そこで、収差補正を瞳
フィルターを用いて行い、回折格子とともにこれを90
度回転させる等の対策を施すことが望ましい。なお、収
差抑制が困難な場合には、必要に応じて瞳にスリットフ
ィルターを設ける等してもよい。
In order to eliminate the pattern direction dependence of the imaging performance, multiple exposure may be carried out by rotating the conditions of FIGS. 8a, 8b and 8c by 90 degrees, for example. In particular, when this is applied to FIG. 8c, it is equivalent to suppressing the pattern direction dependence in directions other than the x and y directions and multiplying NA by √2 in both the x and y directions without sacrificing the image contrast. You can get a statue. However, when the diffraction grating is rotated by 90 degrees, the aberration characteristic is also rotated by 90 degrees. Therefore, aberration correction is performed using a pupil filter, and this is performed together with the diffraction grating.
It is desirable to take measures such as rotating once. If it is difficult to suppress aberrations, a slit filter may be provided in the pupil if necessary.

【0040】図3に示したように周期型位相シフトマス
クを完全コヒーレント照明した場合には、ウエハー近傍
で干渉する±1次光の光路は光軸に対して常に対称であ
り、各々の光路長は等しい。従って、光学系が収差補正
されていなくても微細パターン形成可能である。即ち、
完全コヒーレント照明下で周期型位相シフトマスクを用
いる場合には、図7に示したような2次元回折格子が使
用可能で、位相シフトマスクの効果をパターン方向に依
らず最大限に発揮することができる。様々なパターンの
混在するマスクパターンを転写する場合には、微細周期
パターンのみを上記方法で露光し、その後その他の部分
を従来露光法で露光すればよい。
When the periodic type phase shift mask is completely coherently illuminated as shown in FIG. 3, the optical paths of the ± first-order light beams that interfere in the vicinity of the wafer are always symmetrical with respect to the optical axis, and the optical path lengths of the respective light paths are long. Are equal. Therefore, a fine pattern can be formed even if the optical system is not corrected for aberration. That is,
When the periodic phase shift mask is used under the complete coherent illumination, the two-dimensional diffraction grating as shown in FIG. 7 can be used, and the effect of the phase shift mask can be maximized regardless of the pattern direction. it can. When a mask pattern in which various patterns are mixed is transferred, only the fine periodic pattern is exposed by the above method, and then the other portions are exposed by the conventional exposure method.

【0041】また、上記収差は一般にNAの値とともに
急激に増大する。このため、NA0.1〜0.2程度の光
学系では比較的問題とならない。従って、低NA・低倍
率の大面積用露光装置や、反射型の軟X線縮小投影露光
装置等に適用する場合には、上で述べたような様々な制
約が軽減される。
Further, the above-mentioned aberration generally increases rapidly with the value of NA. For this reason, there is relatively no problem in an optical system having an NA of about 0.1 to 0.2. Therefore, when applied to a large-area exposure apparatus with a low NA and a low magnification, a reflection type soft X-ray reduction projection exposure apparatus, and the like, various restrictions as described above are alleviated.

【0042】以上、本発明は、0次回折光線を中心とし
たフーリエ回折像の左右片側を各々別々に瞳を通過さ
せ、これを像側で合成するものであるといえる。この考
え方自体は、前述の文献に論じられている様に既に光学
顕微鏡に応用されているものであるが、これを縮小投影
光学系の上で実現可能な光学系の構成はこれまで考案さ
れていなかった。本発明は、これを縮小投影露光系にお
いてたくみに実現したものに他ならない。即ち、図1の
光学系は、投影光学系とウエハの間に回折格子を設け、
ウエハ面へ入射する光ビームの入射角を大きくするとと
もに、ウエハ面干渉の結果元のマスクパターンに忠実な
像が再生されるように、光学系を構成したものである。
本発明は、屈折光学系、反射光学系、及びこれらの組合
せ、縮小光学系、等倍光学系等、様々な投影光学系に適
用できる。これらの光学系を用いてマスクパターンをウ
ェハー上へ露光する場合の露光方法としても、一括転
写、スキャン方式、ステップアンドリピート、ステップ
アンドスキャン等のいずれにも適用可能である。又、以
上の説明より明らかなように、本発明は純粋に幾何光学
的な効果に基づいている。従って、前述のモアレ縞を用
いる方法における様なエバネッセント光利用に起因する
問題点は生じない。又、回折格子はウエハーより離して
設置可能で、しかも同期スキャン等の必要もないため、
はるかに容易に実現可能である。
As described above, according to the present invention, it can be said that the left and right sides of the Fourier diffracted image centering on the 0th-order diffracted light beam are passed through the pupils separately and are combined on the image side. This idea itself has already been applied to an optical microscope as discussed in the above-mentioned document, but an optical system configuration that can realize this on a reduction projection optical system has been devised so far. There wasn't. The present invention is nothing but the realization of this in a reduction projection exposure system. That is, in the optical system of FIG. 1, a diffraction grating is provided between the projection optical system and the wafer,
The optical system is configured so that the incident angle of the light beam incident on the wafer surface is increased and an image faithful to the original mask pattern is reproduced as a result of wafer surface interference.
The present invention can be applied to various projection optical systems such as a refractive optical system, a reflective optical system, and combinations thereof, a reduction optical system, and a unity magnification optical system. The exposure method for exposing the mask pattern onto the wafer using these optical systems can be applied to any of batch transfer, scanning method, step-and-repeat, step-and-scan and the like. Also, as is apparent from the above description, the present invention is based on a purely geometrical optical effect. Therefore, there is no problem caused by the use of evanescent light unlike the method using the moire fringes described above. Also, since the diffraction grating can be installed away from the wafer and there is no need for synchronous scanning,
Much easier to achieve.

【0043】[0043]

【実施例】【Example】

(実施例1)本発明に基づき、NA=0.45、光源波
長λ=248nm、縮小率4:1のスキャン型KrFエ
キシマレーザ投影露光装置を、図9に模式的に示すよう
に改造した。即ち、マスクステージ100上に設置した
マスク101と投影光学系102の間に、両面に位相格
子パターンを有する透明石英板103を挿入した。又、
ウエハーステージ(試料台)104上に設置したウエハ
ー105と投影光学系102の間に、片面に遮光パター
ン、もう片面に位相格子パターンを有する透明石英板1
06を、遮光パターンの側がウエハーに対面するように
挿入した。遮光パターンは幅300μm周期1mmのC
rパターン、位相格子パターンは周期=λ/NAのSi
酸化膜パターンとした。マスク側透明石英板103上の
位相格子パターンの周期は、ウエハー側の4倍である。
Si酸化膜厚は、膜の存在部と存在しない部分を透過し
た光の位相が180度ずれるように設定した。これらの
パターンはEBリソグラフィを用いて、いわゆるクロム
レス位相シフトマスクの作製プロセスと同様にして形成
した。又、マスクの照明光学系107側に、幅1.2m
m、周期=4mmの遮光パターンを有する透明石英板1
08を設けた。上記遮光パターンの遮光領域は、ウエハ
ー側透明石英板106上の遮光パターンと共役となるよ
うに設定した。
(Embodiment 1) Based on the present invention, a scanning type KrF excimer laser projection exposure apparatus having NA = 0.45, light source wavelength λ = 248 nm and reduction ratio 4: 1 was modified as schematically shown in FIG. That is, a transparent quartz plate 103 having a phase grating pattern on both sides was inserted between the mask 101 placed on the mask stage 100 and the projection optical system 102. or,
A transparent quartz plate 1 having a light-shielding pattern on one side and a phase grating pattern on the other side between a wafer 105 placed on a wafer stage (sample stage) 104 and a projection optical system 102.
06 was inserted so that the side of the light shielding pattern faces the wafer. The light-shielding pattern is C with a width of 300 μm and a period of 1 mm.
The r pattern and the phase grating pattern are Si with a period = λ / NA
The oxide film pattern was used. The period of the phase grating pattern on the mask side transparent quartz plate 103 is four times that on the wafer side.
The Si oxide film thickness was set so that the phase of light transmitted through the portion where the film was present and the portion where the film was not present were shifted by 180 degrees. These patterns were formed using EB lithography in the same manner as in the so-called chromeless phase shift mask manufacturing process. The width of the mask is 1.2 m on the side of the illumination optical system 107.
transparent quartz plate 1 having a light-shielding pattern of m and cycle = 4 mm
08 is provided. The light-shielding region of the light-shielding pattern was set to be conjugate with the light-shielding pattern on the wafer-side transparent quartz plate 106.

【0044】透明石英板103両面の位相格子の周期、
各透明石英板の膜厚と設置位置等は、作用の項に述べた
意味における投影光学系瞳上の収差が軸対称となるよ
う、光線追跡プログラムの最適化機能を用いて最適化し
た。さらに、上記軸対称な収差補正のため、収差補正フ
ィルター109を投影光学系の瞳位置に挿入した。ここ
で、収差補正フィルター109は、主に上記回折格子の
周期方向と垂直な方向の非点収差を補正するものであ
る。なお、これらの回折格子等を有する透明石英板と収
差補正フィルターは、いずれも交換可能で、所定の位置
にすみやかに設定できるようにした。又、透明石英板の
位置ぎめを正確に行うために、各石英基板のホルダー
(図示せず)は微動機構(図示せず)を有し、各石英基
板の位置を計測してこれを所望の位置に設定することが
できる。さらに、ウエハーステージ104上に設けたオ
ートフォーカスモニター(図示せず)により像をモニタ
ーすることにより、像面上で最適な結像特性が得られる
ように、モニター結果をフィードバックして各石英基板
の位置を調整することも可能とした。なお、投影光学系
自体をあらかじめ上記回折格子に対して収差補正を施し
てもよく、この場合には収差補正フィルターは必要な
い。露光は、マスク及びウエハーを同期スキャンしなが
ら行なった。ステージ制御系110は、マスクステージ
100とウエハーステージ104を、各々4:1の速度
比で同期走査する。
Period of the phase grating on both sides of the transparent quartz plate 103,
The film thickness and the installation position of each transparent quartz plate were optimized using the optimization function of the ray tracing program so that the aberration on the pupil of the projection optical system in the meaning described in the section of action becomes axially symmetric. Further, the aberration correction filter 109 is inserted at the pupil position of the projection optical system for the above-mentioned axially symmetric aberration correction. Here, the aberration correction filter 109 mainly corrects astigmatism in a direction perpendicular to the periodic direction of the diffraction grating. The transparent quartz plate having these diffraction gratings and the aberration correction filter are both replaceable so that they can be quickly set at predetermined positions. Further, in order to accurately position the transparent quartz plate, the holder (not shown) of each quartz substrate has a fine movement mechanism (not shown), and the position of each quartz substrate is measured to obtain the desired position. Can be set to a position. Further, by monitoring the image with an autofocus monitor (not shown) provided on the wafer stage 104, the monitor result is fed back so that the optimum image forming characteristic can be obtained on the image plane. It is also possible to adjust the position. It should be noted that the projection optical system itself may perform aberration correction on the diffraction grating in advance, and in this case, an aberration correction filter is not necessary. The exposure was performed while synchronously scanning the mask and the wafer. The stage control system 110 synchronously scans the mask stage 100 and the wafer stage 104 at a speed ratio of 4: 1.

【0045】上記露光装置を用いて、周期型位相シフト
パターンを含む様々な寸法のパターンを有するマスク
を、化学増幅系ポジ型レジスト上へ転写した。露光後所
定の現像処理を行い、走査型電子線顕微鏡で観察した結
果、上記位相格子の周期方向(x方向)に対して周期型
位相シフトマスクにより寸法90nm(周期180n
m)のレジストパターンが形成できた。一方、上記方向
と垂直な方向(y方向)の解像度は、位相シフトマスク
を用いて寸法140nm(周期280nm)程度であっ
た。そこで、次に、上記3枚の位相格子及び収差補正フ
ィルターを90度回転して同じマスクを露光してレジス
トパターンを形成したところ、x方向とy方向に対する
解像度は逆転した。
Using the above-mentioned exposure apparatus, masks having patterns of various sizes including a periodic type phase shift pattern were transferred onto a chemically amplified positive type resist. After the exposure, a predetermined development process was performed, and as a result of observation with a scanning electron beam microscope, a dimension of 90 nm (a period of 180 n was measured by a periodic phase shift mask in the periodic direction (x direction) of the phase grating.
The resist pattern of m) could be formed. On the other hand, the resolution in the direction perpendicular to the above direction (y direction) was about 140 nm (cycle 280 nm) using a phase shift mask. Then, next, when the same mask was exposed by exposing the same mask by rotating the three phase gratings and the aberration correction filter by 90 degrees, the resolutions in the x direction and the y direction were reversed.

【0046】なお、上の実施例は、光学系の種類、N
A、光源波長、縮小率、レジスト、マスクパターンの種
類と寸法、回折格子と遮光パターンの周期や設置位置
等、きわめて限定されたものであるが、これらの各種条
件は本発明の主旨に反しない範囲内で様々に変更可能で
ある。
In the above embodiment, the type of optical system, N
A, light source wavelength, reduction rate, resist, type and size of mask pattern, period of diffraction grating and light-shielding pattern, installation position, etc. are extremely limited, but these various conditions are not contrary to the gist of the present invention. Various changes can be made within the range.

【0047】(実施例2)次に、回折格子導入に伴う収
差の影響が最小となるよう、光学系を最適化した例を示
す。図10の光学系において、O、Iは、回折格子を導
入した光学系のマスク面と像面、Σ、Σ’は回折格子を
導入しない投影光学系のマスク面と像面、hi(i=1
〜6)は図中の距離を示す。回折格子A、B、Cとウエ
ハー直上の遮光パターンは実施例1同様透明石英基板の
両面に形成した。このとき、マスク通過後に光軸に対し
て±の角度を有する光線に対する横収差w±(s)は、規
格化瞳半径座標sの関数として次のように表される。
(Embodiment 2) Next, an example in which the optical system is optimized so that the influence of the aberration caused by the introduction of the diffraction grating is minimized will be shown. In the optical system of FIG. 10, O and I are the mask surface and the image surface of the optical system in which the diffraction grating is introduced, Σ and Σ ′ are the mask surface and the image surface of the projection optical system in which the diffraction grating is not introduced, hi (i = 1
6) shows the distance in the figure. The diffraction gratings A, B, and C and the light-shielding pattern directly on the wafer were formed on both surfaces of the transparent quartz substrate as in Example 1. At this time, the lateral aberration w ± (s) for a ray having an angle of ± with respect to the optical axis after passing through the mask is expressed as a function of the normalized pupil radius coordinate s as follows.

【0048】 w±(s)=wu±(s)+ws±(s) wu±(s)=C11+C2(s1)h2+C55+C66 ws±(s)=C33+C44 1=tan[(s±s0)/M]/M、C2=tan[±(s1/n)-(s±s0)/(nM)]/M、 C3=tan[s/M]/M、C4=tan(s)、 C5=tan[(s±s0)/n]、C6=tan(s±s0) ここで、wuは瞳上でs=0に対して非対称な成分、w
sは対称な成分を表す。但し、s0=NA、s1=λ/P
Aである。s0(NA)、縮小倍率M、透明石英基板の屈
折率nはシステム固有の値とすると、上式は7つの最適
化パラメータ、hi(i=1〜6)及びs1を含む。そこ
で、wu±(s)、ws±(s)に対して収差を最小とすべ
く7つの拘束条件を課すことにより、これらの値を最適
化した。いくつかのNAに対する最適化結果の一例を表
1に示す。但し、収差はh5/λを単位とする波面収差
で表した。
W ± (s) = wu ± (s) + ws ± (s) wu ± (s) = C 1 h 1 + C 2 (s 1 ) h 2 + C 5 h 5 + C 6 h 6 ws ± (s) = C 3 h 3 + C 4 h 4 C 1 = tan [(s ± s 0) / M] / M, C 2 = tan [± (s 1 / n) - (s ± s 0) / (nM)] / M, C 3 = tan [s / M] / M, C 4 = tan (s), C 5 = tan [(s ± s 0) / n], C 6 = tan (s ± s 0) where, wu is s = 0 on the pupil Component asymmetric with respect to w
s represents a symmetrical component. However, s 0 = NA, s 1 = λ / P
A. Assuming that s 0 (NA), the reduction ratio M, and the refractive index n of the transparent quartz substrate are system-specific values, the above equation includes seven optimization parameters, hi (i = 1 to 6) and s 1 . Therefore, these values were optimized by imposing seven constraint conditions on wu ± (s) and ws ± (s) in order to minimize the aberration. Table 1 shows an example of optimization results for some NAs. However, the aberration is represented by a wavefront aberration in units of h 5 / λ.

【0049】[0049]

【表1】 [Table 1]

【0050】表からわかるように、NA=0.4におい
ても十分に収差を抑えることが可能であった。同様の最
適化は、回折格子A、Bが各々別の透明基板上に設けら
れている場合等、様々な配置に対して行うことができ
る。さらに、新たな透明基板や回折格子を導入すること
により最適化のパラメータを増やすことにより、さらに
厳しい収差条件を満足させることができる。
As can be seen from the table, it was possible to sufficiently suppress the aberration even at NA = 0.4. Similar optimization can be performed for various arrangements such as when the diffraction gratings A and B are provided on different transparent substrates. Furthermore, by introducing a new transparent substrate or a new diffraction grating to increase the optimization parameters, it is possible to satisfy more severe aberration conditions.

【0051】(実施例3)次に、実施例1に示した露光
装置を用いて、0.1μm設計ルールのDRAMを作成
した例について述べる。図11は、上記デバイスの作製
工程を露光プロセスを中心に示したものである。
(Embodiment 3) Next, an example in which a DRAM having a design rule of 0.1 μm is prepared by using the exposure apparatus shown in Embodiment 1 will be described. FIG. 11 shows the manufacturing process of the above-mentioned device focusing on the exposure process.

【0052】まず、ウエル等(図示せず)を形成したS
i基板201上にアイソレーション202及びゲート2
03を形成した(図11a)。アイソレーション及びゲ
ートパターンは周期型位相シフトマスクを用い、実施例
1に示した露光装置により露光した。ここで、シミュレ
ーションにより周期パターンの周辺部においてパターン
形状が歪む部分が生じることが予測されたため、この不
要部分を除去するためのマスクを用意した。上記マスク
を上記露光を行ったものと同一レジスト膜に対して従来
露光装置を用いて重ね露光した後現像して、回路性能上
好ましくない部分を除去した。なお、上記不要部分を除
去せずに、回路的に無視することによって対処してもよ
い。
First, S having wells (not shown) formed therein
Isolation 202 and gate 2 on i substrate 201
03 was formed (Fig. 11a). The isolation and gate pattern were exposed by the exposure apparatus shown in Example 1 using a periodic type phase shift mask. Here, since it was predicted by simulation that a part in which the pattern shape was distorted was generated in the peripheral part of the periodic pattern, a mask for removing this unnecessary part was prepared. The above-mentioned mask was subjected to overexposure on the same resist film as that subjected to the above-mentioned exposure using a conventional exposure apparatus, and then developed to remove portions unfavorable for circuit performance. It should be noted that it is possible to deal with it by ignoring it in a circuit without removing the unnecessary portion.

【0053】次に、キャパシター204及びコンタクト
ホール205を形成した(図11b)。コンタクトホー
ルのパターン露光には、電子線直接描画法を用いた。次
に、第1層配線206、スルーホール(図示せず)、第
2層配線207を形成した(図11c)。第1層配線
(0.1μmL/S)は周期型位相シフトマスクと実施
例1に示した露光装置を用いて露光した。但し、ここで
各回折格子の方向と寸法を図9cに示したものに変更
し、さらにこれを90度回転させて多重露光を行った。
このとき、同時に収差補正フィルター109も回折格子
とともに90度回転させた。これにより、縦横の両方向
に延びる配線に対して方向依存性なしに0.1μmL/
Sを形成できた。スルーホールの形成はコンタクトホー
ルと同様、電子線直接描画法を用いた。以降の多層配線
パターン及びファイナルパッシベーションパターンは
0.2μmルールで設計されており、本発明を用いない
通常のKrFエキシマレーザ投影露光法により形成し
た。なお、デバイスの構造、材料等に関し、上記実施例
で用いたものにとらわれず変更可能である。
Next, a capacitor 204 and a contact hole 205 were formed (FIG. 11b). The electron beam direct writing method was used for pattern exposure of the contact holes. Next, a first layer wiring 206, a through hole (not shown) and a second layer wiring 207 were formed (FIG. 11c). The first layer wiring (0.1 μmL / S) was exposed using the periodic phase shift mask and the exposure apparatus described in the first embodiment. However, here, the directions and dimensions of the diffraction gratings were changed to those shown in FIG. 9c, and the diffraction gratings were rotated by 90 degrees to perform multiple exposure.
At this time, the aberration correction filter 109 was also rotated 90 degrees together with the diffraction grating. As a result, 0.1 μmL /
S could be formed. Like the contact holes, the through holes were formed by the electron beam direct writing method. Subsequent multilayer wiring patterns and final passivation patterns are designed according to the rule of 0.2 μm, and were formed by a normal KrF excimer laser projection exposure method not using the present invention. The device structure, materials, etc. can be changed without being limited to those used in the above-mentioned embodiments.

【0054】(実施例4)次に、本発明の別の実施例と
して、本発明を分布帰還型(DFB)レーザーの製作に
適用した例について述べる。露光装置には、NA0.5
のArFエキシマレーザ縮小投影露光装置を実施例1同
様にして改造したものを用いた。従来の1/4波長シフ
トDFBレーザーの作製工程において、電子線描画法等
を用いて形成していた周期140nmの回折格子を、周
期型位相シフトマスクと上記露光装置を用いて形成し
た。これにより、電子線描画法等を用いて作製したもの
とほぼ同等の性能を有するDFBレーザーを、より短期
間で製作することが可能となった。
(Embodiment 4) Next, as another embodiment of the present invention, an example in which the present invention is applied to manufacture of a distributed feedback (DFB) laser will be described. The exposure device has an NA of 0.5.
The ArF excimer laser reduction projection exposure apparatus of 1 was modified in the same manner as in Example 1 and used. In the manufacturing process of the conventional 1/4 wavelength shift DFB laser, a diffraction grating having a period of 140 nm, which was formed by using an electron beam drawing method or the like, was formed by using the periodic phase shift mask and the above-mentioned exposure apparatus. As a result, it becomes possible to manufacture a DFB laser having substantially the same performance as that manufactured by using the electron beam drawing method or the like in a shorter period of time.

【0055】[0055]

【発明の効果】以上、本発明によれば、照明光学系を介
して光をマスクに照射し、マスクパターンを投影光学系
により基板上へ結像させてパターンを形成する際、上記
基板と上記投影光学系の間に上記基板と平行に回折格子
を設けるとともに、上記回折格子により回折された光の
干渉により基板面近傍でマスクパターンの像が再生され
るように、投影光学系とマスクの間又はマスクと照明光
学系の間に回折格子又は結像光学系を設けることによ
り、従来露光装置の解像限界を越えた微細パターンの形
成が可能となる。具体的には、投影光学系のNAを変え
ることなしに、そのNAを実質的に最大2倍にしたのと
ほぼ同等の効果が得られる。これにより、従来露光装置
の光学系の基本的な構成を大きく変更することなく、大
きな露光フィールドと高い解像力が得られ、大量生産に
適した縮小投影光リソグラフィを用いて、寸法0.1μ
mクラスのLSIの製造が可能となる。
As described above, according to the present invention, when the mask is irradiated with light through the illumination optical system and the mask pattern is imaged on the substrate by the projection optical system to form the pattern, the substrate and A diffraction grating is provided in parallel with the substrate between the projection optical system, and the mask pattern image is reproduced between the projection optical system and the mask so that the image of the mask pattern is reproduced near the substrate surface due to the interference of the light diffracted by the diffraction grating. Alternatively, by providing a diffraction grating or an imaging optical system between the mask and the illumination optical system, it becomes possible to form a fine pattern that exceeds the resolution limit of the conventional exposure apparatus. Specifically, without changing the NA of the projection optical system, an effect substantially equivalent to doubling the NA can be obtained. As a result, a large exposure field and high resolving power can be obtained without significantly changing the basic configuration of the optical system of the conventional exposure apparatus, and the size can be reduced to 0.1 μm by using the reduced projection optical lithography suitable for mass production.
It is possible to manufacture m-class LSIs.

【0056】[0056]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による一光学系の結像の原理を幾何学的
に示す模式図である。
FIG. 1 is a schematic diagram geometrically showing the principle of image formation of one optical system according to the present invention.

【図2】各種従来露光法による結像の原理を示す模式図
である。
FIG. 2 is a schematic diagram showing the principle of image formation by various conventional exposure methods.

【図3】本発明による一光学系に位相シフトマスク又は
斜め照明法を適用した場合の結像の原理を示す模式図で
ある。
FIG. 3 is a schematic diagram showing the principle of image formation when a phase shift mask or an oblique illumination method is applied to one optical system according to the present invention.

【図4】本発明による一光学系の結像の原理を回折光学
的に示す模式図である。
FIG. 4 is a schematic diagram showing the principle of image formation of one optical system according to the present invention in a diffractive optical manner.

【図5】本発明による一光学系の一部分と露光方法の一
例を示す模式図である。
FIG. 5 is a schematic view showing an example of a part of an optical system and an exposure method according to the present invention.

【図6】本発明による一光学系の特性を示す模式図であ
る。
FIG. 6 is a schematic diagram showing characteristics of one optical system according to the present invention.

【図7】本発明で用いる光学部品とそれにより得られる
効果を示す模式図である。
FIG. 7 is a schematic diagram showing an optical component used in the present invention and an effect obtained by the optical component.

【図8】本発明で用いる光学部品とそれにより得られる
効果を示す模式図である。
FIG. 8 is a schematic diagram showing an optical component used in the present invention and an effect obtained thereby.

【図9】本発明の一実施例による露光装置の構成を示す
模式図である。
FIG. 9 is a schematic diagram showing a configuration of an exposure apparatus according to an embodiment of the present invention.

【図10】本発明の別の実施例の特性を示す図である。FIG. 10 is a diagram showing characteristics of another embodiment of the present invention.

【図11】本発明の別の実施例によるデバイス作製工程
を示す模式図である。
FIG. 11 is a schematic view showing a device manufacturing process according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…マスク、2…投影光学系、3…瞳、4…ウエハー、
5、20…絞り、6、29…光軸、A、B、C…回折格
子、R…光、R0、R0’…0次回折光、R1、R+、
R1”…+1次回折光、R1'、R−…−1次回折光、
A0、A1…回折格子A上の点、B0、B1…回折格子
B上の点、C0、C1、C1’…回折格子C上の点、
Q、P、Q’…像面上の点、21…従来透過型マスク、
22…光、23…投影光学系、24…瞳、25…像面、
26…周期型位相シフトマスク、27…マスク回折光の
0次光、28…+1次光、51…像面、52…遮光マス
ク、53…石英基板、O…マスク上の点、X1、Y1、Z
1…回折格子A上の点、X2、Y2、Z2…回折格子B上の
点、X3、Y3、Z3…回折格子C上の点、I…像面上の
点、100…マスクステージ、101…マスク、102
…投影光学系、103…透明石英板、104…ウエハー
ステージ(試料台)、105…ウエハー、106…透明
石英板、107…照明光学系、108…透明石英板、1
09…収差補正フィルター、110…ステージ制御系、
201…Si基板、202…アイソレーション、203
…ゲート、204…キャパシター、205…コンタクト
ホール、206…第1層配線、207…第2層配線。
1 ... Mask, 2 ... Projection optical system, 3 ... Pupil, 4 ... Wafer,
5, 20 ... Aperture, 6, 29 ... Optical axis, A, B, C ... Diffraction grating, R ... Light, R0, R0 '... 0th-order diffracted light, R1, R +,
R1 ″ ... + 1st order diffracted light, R1 ′, R −... −1st order diffracted light,
A0, A1 ... Points on diffraction grating A, B0, B1 ... Points on diffraction grating B, C0, C1, C1 '... Points on diffraction grating C,
Q, P, Q '... points on the image plane, 21 ... conventional transmissive mask,
22 ... Light, 23 ... Projection optical system, 24 ... Pupil, 25 ... Image plane,
26 ... Periodic phase shift mask, 27 ... 0th order light of mask diffracted light, 28 ... + 1st order light, 51 ... Image plane, 52 ... Shading mask, 53 ... Quartz substrate, O ... Point on mask, X 1 , Y 1 , Z
1 ... Point on diffraction grating A, X 2 , Y 2 , Z 2 ... Point on diffraction grating B, X 3 , Y 3 , Z 3 ... Point on diffraction grating C, I ... Point on image plane, 100 ... mask stage, 101 ... mask, 102
... projection optical system, 103 ... transparent quartz plate, 104 ... wafer stage (sample stage), 105 ... wafer, 106 ... transparent quartz plate, 107 ... illumination optical system, 108 ... transparent quartz plate, 1
09 ... Aberration correction filter, 110 ... Stage control system,
201 ... Si substrate, 202 ... Isolation, 203
... gate, 204 ... capacitor, 205 ... contact hole, 206 ... first layer wiring, 207 ... second layer wiring.

Claims (23)

【特許請求の範囲】[Claims] 【請求項1】マスクを準備する工程と、光源からの光を
上記マスクに照射する工程と、 上記マスクのパターンを回折する工程と、 該回折した光を投影光学系を通して回折し試料上に上記
マスクパターンを再生し露光する工程から成ることを特
徴とする投影露光方法。
1. A step of preparing a mask, a step of irradiating the mask with light from a light source, a step of diffracting the pattern of the mask, a step of diffracting the diffracted light through a projection optical system, and a step of A projection exposure method comprising a step of reproducing a mask pattern and exposing.
【請求項2】上記回折する工程として2回回折すること
を特徴とする請求項1記載の投影露光方法。
2. The projection exposure method according to claim 1, wherein the step of diffracting is performed twice.
【請求項3】光源と、 該光源からの光でマスク上のパターンを照射し、該マス
クからの光を回折する第1と第2の回折手段と、 回折した光を試料上に投影する投影光学系と、 該投影光学系からの光を回折する第3の回折手段と、 該第3の回折手段の下に配置された試料を載置する試料
台からなることを特徴とする投影露光装置。
3. A light source, first and second diffracting means for irradiating a pattern on a mask with light from the light source, and diffracting the light from the mask, and projection for projecting the diffracted light onto a sample. A projection exposure apparatus comprising an optical system, a third diffracting means for diffracting the light from the projection optical system, and a sample table on which a sample is placed under the third diffracting means. .
【請求項4】上記第1と第2の回折手段は位相格子であ
ることを特徴とする請求項3記載の投影露光装置。
4. The projection exposure apparatus according to claim 3, wherein the first and second diffracting means are phase gratings.
【請求項5】光源を発した波長λの光を照明光学系を介
してマスクに照射し、上記マスク上のパターンを開口数
NA、縮小率M:1の投影光学系により基板上へ結像さ
せることにより上記基板上にパターンを形成する方法に
おいて、上記基板と上記投影光学系の間に上記基板と平
行な第1の回折格子を有し、前記第1の回折格子により
回折された光の干渉により基板面近傍でマスクパターン
の像が再生されるように、上記マスクと上記照明光学系
の間に、上記マスクと平行に、上記マスク側から順に第
2の回折格子と第3の回折格子の2枚の回折格子を設け
ることを特徴とする投影露光方法。
5. A mask is irradiated with light of wavelength λ emitted from a light source through an illumination optical system, and a pattern on the mask is imaged on a substrate by a projection optical system having a numerical aperture NA and a reduction ratio M: 1. In the method of forming a pattern on the substrate by performing the above, a first diffraction grating parallel to the substrate is provided between the substrate and the projection optical system, and the light diffracted by the first diffraction grating is included. A second diffraction grating and a third diffraction grating are arranged between the mask and the illumination optical system in parallel with the mask in order from the mask side so that an image of the mask pattern is reproduced near the substrate surface due to interference. The projection exposure method is characterized by providing two diffraction gratings.
【請求項6】前記回折格子を設けた光学系の遮断空間周
波数fが、前記回折格子を設けない光学系の遮断空間周
波数f0より大きく、かつf0の2倍以下であることを
特徴とする請求項5記載の投影露光方法。
6. The cut-off spatial frequency f of the optical system provided with the diffraction grating is higher than the cut-off spatial frequency f0 of the optical system not provided with the diffraction grating and is not more than twice the f0. Item 6. The projection exposure method according to item 5.
【請求項7】前記第1の回折格子の空間周期P1は、 λ/(1.42・NA)≦P1≦λ/NA の範囲にあることを特徴とする請求項5記載の投影露光
方法。
7. The projection exposure method according to claim 5, wherein the spatial period P1 of the first diffraction grating is in the range of λ / (1.42 · NA) ≦ P1 ≦ λ / NA.
【請求項8】上記第1、第2及び第3の回折格子の周期
方向は等しく、上記第1の回折格子の空間周期P1、第
2の回折格子の空間周期P2、第3の回折格子の空間周
期P3は、ほぼ 1/P3=1/P2−1/(M・P1) の関係を満たすことを特徴とする請求項5記載の投影露
光方法。
8. The first, second, and third diffraction gratings have the same period direction, and the first diffraction grating has a spatial period P1, the second diffraction grating has a spatial period P2, and the third diffraction grating has a spatial period P2. 6. The projection exposure method according to claim 5, wherein the spatial period P3 substantially satisfies the relationship of 1 / P3 = 1 / P2-1 / (M · P1).
【請求項9】上記第1の回折格子の上記基板表面から光
学距離Z1、及び、上記第2、第3の回折格子の上記マ
スク表面から光学距離Z2、Z3は、ほぼ (Z3−Z2)/P2=(Z3/M+Z1・M)/P1 の関係を満たすことを特徴とする請求項5記載の投影露
光方法。
9. The optical distance Z1 from the substrate surface of the first diffraction grating and the optical distances Z2 and Z3 from the mask surfaces of the second and third diffraction gratings are approximately (Z3-Z2) / The projection exposure method according to claim 5, wherein the relationship of P2 = (Z3 / M + Z1 · M) / P1 is satisfied.
【請求項10】上記第1の回折格子、上記第2の回折格
子、及び上記第3の回折格子の各設置位置、上記第1の
回折格子、上記第2の回折格子、及び上記第3の回折格
子を設ける各透明基板の膜厚、及び上記第2の回折格子
の周期を、前記投影光学系のNA及び縮小倍率、各回折
格子と上記基板の位置関係に応じて、上記マスク面と像
面の間の収差が最小となるように設定したことを特徴と
する請求項5記載の投影露光方法。
10. The respective installation positions of the first diffraction grating, the second diffraction grating, and the third diffraction grating, the first diffraction grating, the second diffraction grating, and the third diffraction grating. The film thickness of each transparent substrate on which the diffraction grating is provided, the period of the second diffraction grating, the mask surface and the image according to the NA and reduction magnification of the projection optical system and the positional relationship between each diffraction grating and the substrate. 6. The projection exposure method according to claim 5, wherein the aberration between the surfaces is set to be minimum.
【請求項11】前記第2の回折格子の空間周期P2は、 P2≦1/(1−2・NA/M) を満たすことを特徴とする請求項5記載の投影露光方
法。
11. The projection exposure method according to claim 5, wherein a spatial period P2 of the second diffraction grating satisfies P2 ≦ 1 / (1-2 · NA / M).
【請求項12】前記第2及び第3の回折格子は、位相格
子であることを特徴とする請求項5記載の投影露光方
法。
12. The projection exposure method according to claim 5, wherein the second and third diffraction gratings are phase gratings.
【請求項13】前記第1の回折格子は、位相格子である
ことを特徴とする請求項5記載の投影露光方法。
13. The projection exposure method according to claim 5, wherein the first diffraction grating is a phase grating.
【請求項14】前記基板と前記第1の回折格子の間に、
前記一方向に対する幅がZ1・NA以下で、空間周期が
ほぼ2・Z1・NAの第1の遮光パタ−ンを設けるととも
に、前記マスクの直上又は直下に、マスク上の上記第1
の遮光パタ−ンとほぼ共役な領域を遮光する第2の遮光
パタ−ンを設けて露光領域を制限するか、又は、上記制
限された露光領域を基板上で走査して露光するか、もし
くはステップ状に移動しながら露光することを特徴とす
る請求項5記載の投影露光方法。
14. Between the substrate and the first diffraction grating,
A first light-shielding pattern having a width in the one direction of Z1 · NA or less and a spatial period of approximately 2 · Z1 · NA is provided, and the first light-shielding pattern on the mask is directly above or directly below the mask.
A second light-shielding pattern that shields a region substantially conjugate with the light-shielding pattern of (1) to limit the exposure region, or scan the substrate to expose the limited exposure region, or The projection exposure method according to claim 5, wherein the exposure is performed while moving in steps.
【請求項15】前記回折格子は1次元回折格子であり、
前記投影光学系の波面収差が、瞳上での上記回折格子の
周期方向と垂直な方向の直径を軸として、線対称となる
ように収差補正されていることを特徴とする請求項5記
載の投影露光方法。
15. The diffraction grating is a one-dimensional diffraction grating,
6. The wavefront aberration of the projection optical system is corrected so as to be line-symmetrical about the diameter of the diffraction grating on the pupil in the direction perpendicular to the periodic direction as an axis. Projection exposure method.
【請求項16】前記マスクは、周期型位相シフトマスク
を含むことを特徴とする請求項5記載の投影露光方法。
16. The projection exposure method according to claim 5, wherein the mask includes a periodic phase shift mask.
【請求項17】前記マスクは、前記第1の回折格子の周
期及び方向に応じて、特定方向に微細なパターンを有す
ることを特徴とする請求項5記載の投影露光方法。
17. The projection exposure method according to claim 5, wherein the mask has a fine pattern in a specific direction according to the period and direction of the first diffraction grating.
【請求項18】前記マスクは、前記第1の回折格子の周
期及び方向に応じて、パターン形状を補正したことを特
徴とする請求項5記載の投影露光方法。
18. The projection exposure method according to claim 5, wherein the mask has its pattern shape corrected in accordance with the period and direction of the first diffraction grating.
【請求項19】前記第1の回折格子と前記基板の間を、
屈折率nが1より大きい液体で満たし、前記投影光学系
のNAを、 0.5<NA<n/2 の範囲に設定したことを特徴とする請求項5記載の投影
露光方法。
19. Between the first diffraction grating and the substrate,
The projection exposure method according to claim 5, wherein the projection optical system is filled with a liquid having a refractive index n larger than 1, and the NA of the projection optical system is set to a range of 0.5 <NA <n / 2.
【請求項20】光源を発した波長λの光をマスクステー
ジ上のマスクに照射する照明光学系と上記マスク上のパ
ターンを基板ステージ上の基板表面近傍で結像させる開
口数NA、縮小率M:1の投影光学系を有する投影露光
装置において、上記基板と上記投影光学系の間に上記基
板と平行な第1の空間周期P1(λ/(1.42・N
A)≦P1≦λ/NA)の第1回折格子を有し、上記第
1の回折格子により回折された光の干渉により基板面近
傍でマスクパターンの像が再生されるように、上記マス
クと上記照明光学系の間に、上記マスクと平行に、上記
マスク側から順に第2の回折格子と第3の回折格子の2
枚の回折格子を有することを特徴とする投影露光装置。
20. An illumination optical system for irradiating a mask on a mask stage with light having a wavelength λ emitted from a light source, a numerical aperture NA for forming a pattern on the mask near the substrate surface on the substrate stage, and a reduction ratio M. In a projection exposure apparatus having a projection optical system of 1: 1, a first spatial period P1 (λ / (1.42 · N) parallel to the substrate is provided between the substrate and the projection optical system.
A) ≦ P1 ≦ λ / NA), and the mask so that the image of the mask pattern is reproduced near the substrate surface by the interference of the light diffracted by the first diffraction grating. Between the illumination optical system, in parallel with the mask, the second diffraction grating and the third diffraction grating are arranged in order from the mask side.
A projection exposure apparatus having a single diffraction grating.
【請求項21】上記第1、第2及び第3の回折格子の周
期方向は等しく、上記第1の回折格子の空間周期P1、
第2の回折格子の空間周期P2、第3の回折格子の空間
周期P3は、ほぼ 1/P3=1/(M・P1)+1/P2 の関係を満たすことを特徴とする請求項20記載の投影
露光装置。
21. The periodic directions of the first, second and third diffraction gratings are the same, and the spatial period P1 of the first diffraction grating is
21. The spatial period P2 of the second diffraction grating and the spatial period P3 of the third diffraction grating substantially satisfy the relationship of 1 / P3 = 1 / (M.P1) + 1 / P2. Projection exposure device.
【請求項22】上記第1の回折格子、上記第2の回折格
子、及び上記第3の回折格子の各設置位置、上記第1の
回折格子、上記第2の回折格子、及び上記第3の回折格
子を設ける各透明基板の膜厚、及び上記第2の回折格子
の周期を、前記投影光学系のNA及び縮小倍率、各回折
格子と上記基板の位置関係に応じて、上記マスク面と像
面の間の収差が最小となるように設定したことを特徴と
する請求項20記載の投影露光装置。
22. The respective installation positions of the first diffraction grating, the second diffraction grating, and the third diffraction grating, the first diffraction grating, the second diffraction grating, and the third diffraction grating. The film thickness of each transparent substrate on which the diffraction grating is provided and the period of the second diffraction grating are determined according to the NA and reduction magnification of the projection optical system, the positional relationship between each diffraction grating and the substrate, and the mask surface and the image. 21. The projection exposure apparatus according to claim 20, wherein the aberration between the surfaces is set to be minimum.
【請求項23】前記基板と前記第1の回折格子の間に、
前記一方向に対する幅がZ1・NA以下で、空間周期が
ほぼ2・NA・Z1の遮光パタ−ンを有するか、又は、
上記遮光パタ−ンにより制限された露光領域を基板上で
走査して露光するか、もしくはステップ状に移動しなが
ら露光する機能を有することを特徴とする請求項20記
載の投影露光装置。
23. Between the substrate and the first diffraction grating,
It has a light-shielding pattern whose width in the one direction is Z1 · NA or less and whose spatial period is approximately 2 · NA · Z1, or
21. The projection exposure apparatus according to claim 20, wherein the projection exposure apparatus has a function of performing exposure by scanning an exposure area limited by the light-shielding pattern on the substrate or moving the substrate in a stepwise manner.
JP7121115A 1995-05-19 1995-05-19 Method and apparatus for projection exposing Pending JPH08316125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7121115A JPH08316125A (en) 1995-05-19 1995-05-19 Method and apparatus for projection exposing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7121115A JPH08316125A (en) 1995-05-19 1995-05-19 Method and apparatus for projection exposing

Publications (1)

Publication Number Publication Date
JPH08316125A true JPH08316125A (en) 1996-11-29

Family

ID=14803263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7121115A Pending JPH08316125A (en) 1995-05-19 1995-05-19 Method and apparatus for projection exposing

Country Status (1)

Country Link
JP (1) JPH08316125A (en)

Cited By (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136244A (en) * 2003-10-31 2005-05-26 Semiconductor Leading Edge Technologies Inc Exposure method
US7046337B2 (en) 2002-12-10 2006-05-16 Canon Kabushiki Kaisha Exposure apparatus and method
WO2006064900A1 (en) * 2004-12-17 2006-06-22 Nikon Corporation Exposure method and apparatus, and device manufacturing method
WO2006090807A1 (en) * 2005-02-25 2006-08-31 Nikon Corporation Exposure method and apparatus, and electronic device manufacturing method
US7251017B2 (en) 2003-04-10 2007-07-31 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US7268854B2 (en) 2003-02-26 2007-09-11 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2007311783A (en) * 2006-05-15 2007-11-29 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
JP2008502127A (en) * 2004-06-04 2008-01-24 カール・ツァイス・エスエムティー・アーゲー Projection system with compensation for intensity variation and compensation element therefor
US7339650B2 (en) 2003-04-09 2008-03-04 Nikon Corporation Immersion lithography fluid control system that applies force to confine the immersion liquid
US7352440B2 (en) 2004-12-10 2008-04-01 Asml Netherlands B.V. Substrate placement in immersion lithography
US7375796B2 (en) 2004-04-01 2008-05-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7379158B2 (en) 2002-12-10 2008-05-27 Nikon Corporation Exposure apparatus and method for producing device
US7394521B2 (en) 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7397532B2 (en) 2003-04-10 2008-07-08 Nikon Corporation Run-off path to collect liquid for an immersion lithography apparatus
US7414794B2 (en) 2003-04-17 2008-08-19 Nikon Corporation Optical arrangement of autofocus elements for use with immersion lithography
US7433019B2 (en) 2003-07-09 2008-10-07 Nikon Corporation Exposure apparatus and device manufacturing method
US7436486B2 (en) 2002-12-10 2008-10-14 Nikon Corporation Exposure apparatus and device manufacturing method
US7443482B2 (en) 2003-04-11 2008-10-28 Nikon Corporation Liquid jet and recovery system for immersion lithography
US7450217B2 (en) 2005-01-12 2008-11-11 Asml Netherlands B.V. Exposure apparatus, coatings for exposure apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby
US7456929B2 (en) 2004-10-15 2008-11-25 Nikon Corporation Exposure apparatus and device manufacturing method
US7466392B2 (en) 2002-12-10 2008-12-16 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7471371B2 (en) 2003-03-25 2008-12-30 Nikon Corporation Exposure apparatus and device fabrication method
US7486381B2 (en) 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7522259B2 (en) 2003-04-11 2009-04-21 Nikon Corporation Cleanup method for optics in immersion lithography
US7589820B2 (en) 2002-12-10 2009-09-15 Nikon Corporation Exposure apparatus and method for producing device
US7697111B2 (en) 2003-08-26 2010-04-13 Nikon Corporation Optical element and exposure apparatus
US7697110B2 (en) 2004-01-26 2010-04-13 Nikon Corporation Exposure apparatus and device manufacturing method
US7700268B2 (en) 2003-12-17 2010-04-20 Panasonic Corporation Exposure system and pattern formation method using the same
US7705968B2 (en) 2005-03-18 2010-04-27 Nikon Corporation Plate member, substrate holding device, exposure apparatus and method, and device manufacturing method
US7803516B2 (en) 2005-11-21 2010-09-28 Nikon Corporation Exposure method, device manufacturing method using the same, exposure apparatus, and substrate processing method and apparatus
US7804576B2 (en) 2004-12-06 2010-09-28 Nikon Corporation Maintenance method, maintenance device, exposure apparatus, and device manufacturing method
US7812926B2 (en) 2005-08-31 2010-10-12 Nikon Corporation Optical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice
US7839485B2 (en) 2006-01-19 2010-11-23 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US7852456B2 (en) 2004-10-13 2010-12-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7872730B2 (en) 2006-09-15 2011-01-18 Nikon Corporation Immersion exposure apparatus and immersion exposure method, and device manufacturing method
US7876418B2 (en) 2002-12-10 2011-01-25 Nikon Corporation Optical element and projection exposure apparatus based on use of the optical element
US7924416B2 (en) 2005-06-22 2011-04-12 Nikon Corporation Measurement apparatus, exposure apparatus, and device manufacturing method
US7932996B2 (en) 2003-10-28 2011-04-26 Nikon Corporation Exposure apparatus, exposure method, and device fabrication method
US7948604B2 (en) 2002-12-10 2011-05-24 Nikon Corporation Exposure apparatus and method for producing device
US7973910B2 (en) 2006-11-17 2011-07-05 Nikon Corporation Stage apparatus and exposure apparatus
US8004652B2 (en) 2004-10-18 2011-08-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8013975B2 (en) 2006-12-01 2011-09-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8023100B2 (en) 2004-02-20 2011-09-20 Nikon Corporation Exposure apparatus, supply method and recovery method, exposure method, and device producing method
US8035800B2 (en) 2006-03-13 2011-10-11 Nikon Corporation Exposure apparatus, maintenance method, exposure method, and method for producing device
US8035799B2 (en) 2004-12-09 2011-10-11 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US8035797B2 (en) 2003-09-26 2011-10-11 Nikon Corporation Projection exposure apparatus, cleaning and maintenance methods of a projection exposure apparatus, and device manufacturing method
US8040490B2 (en) 2006-12-01 2011-10-18 Nikon Corporation Liquid immersion exposure apparatus, exposure method, and method for producing device
US8040489B2 (en) 2004-10-26 2011-10-18 Nikon Corporation Substrate processing method, exposure apparatus, and method for producing device by immersing substrate in second liquid before immersion exposure through first liquid
US8054465B2 (en) 2004-11-18 2011-11-08 Nikon Corporation Position measurement method
US8064039B2 (en) 2005-04-25 2011-11-22 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US8064037B2 (en) 2003-08-21 2011-11-22 Nikon Corporation Immersion exposure apparatus and device manufacturing method with no liquid recovery during exposure
US8064044B2 (en) 2004-01-05 2011-11-22 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US8070145B2 (en) 2005-08-26 2011-12-06 Nikon Corporation Holding unit, assembly system, sputtering unit, and processing method and processing unit
JP4830859B2 (en) * 2005-01-14 2011-12-07 株式会社ニコン Exposure method and apparatus, and electronic device manufacturing method
US8089608B2 (en) 2005-04-18 2012-01-03 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8102512B2 (en) 2004-09-17 2012-01-24 Nikon Corporation Substrate holding device, exposure apparatus, and device manufacturing method
US8111374B2 (en) 2005-09-09 2012-02-07 Nikon Corporation Analysis method, exposure method, and device manufacturing method
US8134681B2 (en) 2006-02-17 2012-03-13 Nikon Corporation Adjustment method, substrate processing method, substrate processing apparatus, exposure apparatus, inspection apparatus, measurement and/or inspection system, processing apparatus, computer system, program and information recording medium
US8164734B2 (en) 2004-06-16 2012-04-24 Asml Netherlands B.V. Vacuum system for immersion photolithography
US8164736B2 (en) 2007-05-29 2012-04-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US8169591B2 (en) 2004-08-03 2012-05-01 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8179517B2 (en) 2005-06-30 2012-05-15 Nikon Corporation Exposure apparatus and method, maintenance method for exposure apparatus, and device manufacturing method
US8208119B2 (en) 2004-02-04 2012-06-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8208123B2 (en) 2003-08-29 2012-06-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8237915B2 (en) 2002-12-10 2012-08-07 Carl Zeiss Smt Gmbh Method for improving an optical imaging property of a projection objective of a microlithographic projection exposure apparatus
US8236467B2 (en) 2005-04-28 2012-08-07 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US8253921B2 (en) 2003-09-03 2012-08-28 Nikon Corporation Exposure apparatus and device fabricating method
US8294873B2 (en) 2004-11-11 2012-10-23 Nikon Corporation Exposure method, device manufacturing method, and substrate
US8325326B2 (en) 2004-06-07 2012-12-04 Nikon Corporation Stage unit, exposure apparatus, and exposure method
US8330939B2 (en) 2004-11-01 2012-12-11 Nikon Corporation Immersion exposure apparatus and device manufacturing method with a liquid recovery port provided on at least one of a first stage and second stage
US8368870B2 (en) 2004-06-21 2013-02-05 Nikon Corporation Exposure apparatus and device manufacturing method
US8373843B2 (en) 2004-06-10 2013-02-12 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8411271B2 (en) 2005-12-28 2013-04-02 Nikon Corporation Pattern forming method, pattern forming apparatus, and device manufacturing method
US8477283B2 (en) 2006-05-10 2013-07-02 Nikon Corporation Exposure apparatus and device manufacturing method
US8482716B2 (en) 2004-06-10 2013-07-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8488099B2 (en) 2004-04-19 2013-07-16 Nikon Corporation Exposure apparatus and device manufacturing method
US8508713B2 (en) 2004-06-10 2013-08-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8570484B2 (en) 2006-08-30 2013-10-29 Nikon Corporation Immersion exposure apparatus, device manufacturing method, cleaning method, and cleaning member to remove foreign substance using liquid
US8638422B2 (en) 2005-03-18 2014-01-28 Nikon Corporation Exposure method, exposure apparatus, method for producing device, and method for evaluating exposure apparatus
US8654308B2 (en) 2004-07-12 2014-02-18 Nikon Corporation Method for determining exposure condition, exposure method, exposure apparatus, and method for manufacturing device
US8675174B2 (en) 2004-09-17 2014-03-18 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US8705008B2 (en) 2004-06-09 2014-04-22 Nikon Corporation Substrate holding unit, exposure apparatus having same, exposure method, method for producing device, and liquid repellant plate
US8717533B2 (en) 2004-06-10 2014-05-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8721803B2 (en) 2006-12-05 2014-05-13 Nikon Corporation Cleaning liquid, cleaning method, liquid generating apparatus, exposure apparatus, and device fabricating method
US8780326B2 (en) 2005-09-09 2014-07-15 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8797502B2 (en) 2003-09-29 2014-08-05 Nikon Corporation Exposure apparatus, exposure method, and method for producing device with electricity removal device by adding additive to liquid
US8891053B2 (en) 2008-09-10 2014-11-18 Asml Netherlands B.V. Lithographic apparatus, method of manufacturing an article for a lithographic apparatus and device manufacturing method
US8902401B2 (en) 2006-05-09 2014-12-02 Carl Zeiss Smt Gmbh Optical imaging device with thermal attenuation
US8928856B2 (en) 2003-10-31 2015-01-06 Nikon Corporation Exposure apparatus and device fabrication method
US8937704B2 (en) 2003-07-31 2015-01-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a resistivity sensor
US8937710B2 (en) 2006-08-31 2015-01-20 Nikon Corporation Exposure method and apparatus compensating measuring error of encoder due to grating section and displacement of movable body in Z direction
US8941810B2 (en) 2005-12-30 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR20150034741A (en) * 2012-06-26 2015-04-03 케이엘에이-텐코 코포레이션 Near field metrology
US9097992B2 (en) 2004-08-19 2015-08-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9104117B2 (en) 2004-07-07 2015-08-11 Bob Streefkerk Lithographic apparatus having a liquid detection system
US9224632B2 (en) 2004-12-15 2015-12-29 Nikon Corporation Substrate holding apparatus, exposure apparatus, and device fabricating method
US9239524B2 (en) 2005-03-30 2016-01-19 Nikon Corporation Exposure condition determination method, exposure method, exposure apparatus, and device manufacturing method involving detection of the situation of a liquid immersion region
US9250537B2 (en) 2004-07-12 2016-02-02 Nikon Corporation Immersion exposure apparatus and method with detection of liquid on members of the apparatus
US9256136B2 (en) 2010-04-22 2016-02-09 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method involving gas supply
US9329060B2 (en) 2006-02-21 2016-05-03 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9377698B2 (en) 2006-09-01 2016-06-28 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9411247B2 (en) 2004-06-10 2016-08-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9429495B2 (en) 2004-06-04 2016-08-30 Carl Zeiss Smt Gmbh System for measuring the image quality of an optical imaging system
US9436095B2 (en) 2004-01-20 2016-09-06 Carl Zeiss Smt Gmbh Exposure apparatus and measuring device for a projection lens
US9500960B2 (en) 2003-04-11 2016-11-22 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9551943B2 (en) 2003-06-19 2017-01-24 Nikon Corporation Exposure apparatus and device manufacturing method
US9568841B2 (en) 2003-08-29 2017-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9623436B2 (en) 2004-05-18 2017-04-18 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
US9632431B2 (en) 2004-02-02 2017-04-25 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US9639006B2 (en) 2003-07-28 2017-05-02 Asml Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US9645505B2 (en) 2004-06-09 2017-05-09 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device to measure specific resistance of liquid
US9658537B2 (en) 2003-04-10 2017-05-23 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9684250B2 (en) 2003-12-23 2017-06-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9703210B2 (en) 2004-12-20 2017-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9740107B2 (en) 2002-11-12 2017-08-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9746781B2 (en) 2005-01-31 2017-08-29 Nikon Corporation Exposure apparatus and method for producing device
US9760026B2 (en) 2003-07-28 2017-09-12 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
US9798245B2 (en) 2003-12-15 2017-10-24 Nikon Corporation Exposure apparatus, and exposure method, with recovery device to recover liquid leaked from between substrate and member
US9798246B2 (en) 2003-05-13 2017-10-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9817319B2 (en) 2003-09-03 2017-11-14 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US9829799B2 (en) 2004-04-14 2017-11-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9846371B2 (en) 2003-06-13 2017-12-19 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
US9857697B2 (en) 2006-02-21 2018-01-02 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9874822B2 (en) 2006-09-01 2018-01-23 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9933708B2 (en) 2003-05-23 2018-04-03 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US9939739B2 (en) 2003-05-23 2018-04-10 Nikon Corporation Exposure apparatus and method for producing device
US9952515B2 (en) 2003-11-14 2018-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9958792B2 (en) 2006-08-31 2018-05-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US9964858B2 (en) 2003-06-11 2018-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9977352B2 (en) 2003-07-09 2018-05-22 Nikon Corporation Exposure apparatus and device manufacturing method
USRE46933E1 (en) 2005-04-08 2018-07-03 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
US10025194B2 (en) 2003-09-29 2018-07-17 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
US10067428B2 (en) 2006-08-31 2018-09-04 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
US10082739B2 (en) 2003-05-28 2018-09-25 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US10088760B2 (en) 2003-12-03 2018-10-02 Nikon Corporation Exposure apparatus, exposure method, method for producing device, and optical part
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10126661B2 (en) 2004-03-25 2018-11-13 Nikon Corporation Exposure apparatus and device fabrication method
US10151983B2 (en) 2004-02-03 2018-12-11 Nikon Corporation Exposure apparatus and device manufacturing method
US10180629B2 (en) 2003-06-09 2019-01-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10209623B2 (en) 2003-10-09 2019-02-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10222706B2 (en) 2002-11-12 2019-03-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10248034B2 (en) 2003-10-28 2019-04-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10261428B2 (en) 2002-11-12 2019-04-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10503084B2 (en) 2002-11-12 2019-12-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11187991B2 (en) 2008-05-28 2021-11-30 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
US20220397716A1 (en) * 2019-11-11 2022-12-15 Wave Optics Ltd Led illuminated waveguide projector display

Cited By (349)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9740107B2 (en) 2002-11-12 2017-08-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10261428B2 (en) 2002-11-12 2019-04-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10503084B2 (en) 2002-11-12 2019-12-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10962891B2 (en) 2002-11-12 2021-03-30 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10222706B2 (en) 2002-11-12 2019-03-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10620545B2 (en) 2002-11-12 2020-04-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10191389B2 (en) 2002-11-12 2019-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10788755B2 (en) 2002-11-12 2020-09-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8089611B2 (en) 2002-12-10 2012-01-03 Nikon Corporation Exposure apparatus and method for producing device
US7589821B2 (en) 2002-12-10 2009-09-15 Nikon Corporation Exposure apparatus and device manufacturing method
US7466392B2 (en) 2002-12-10 2008-12-16 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7948604B2 (en) 2002-12-10 2011-05-24 Nikon Corporation Exposure apparatus and method for producing device
US7126667B2 (en) 2002-12-10 2006-10-24 Canon Kk Exposure apparatus and method
US7379158B2 (en) 2002-12-10 2008-05-27 Nikon Corporation Exposure apparatus and method for producing device
US8767173B2 (en) 2002-12-10 2014-07-01 Nikon Corporation Optical element and projection exposure apparatus based on use of the optical element
US7639343B2 (en) 2002-12-10 2009-12-29 Nikon Corporation Exposure apparatus and device manufacturing method
US7589820B2 (en) 2002-12-10 2009-09-15 Nikon Corporation Exposure apparatus and method for producing device
US7876418B2 (en) 2002-12-10 2011-01-25 Nikon Corporation Optical element and projection exposure apparatus based on use of the optical element
US7436487B2 (en) 2002-12-10 2008-10-14 Nikon Corporation Exposure apparatus and method for producing device
US7436486B2 (en) 2002-12-10 2008-10-14 Nikon Corporation Exposure apparatus and device manufacturing method
US7515246B2 (en) 2002-12-10 2009-04-07 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7446851B2 (en) 2002-12-10 2008-11-04 Nikon Corporation Exposure apparatus and device manufacturing method
US7505111B2 (en) 2002-12-10 2009-03-17 Nikon Corporation Exposure apparatus and device manufacturing method
US7046337B2 (en) 2002-12-10 2006-05-16 Canon Kabushiki Kaisha Exposure apparatus and method
US8237915B2 (en) 2002-12-10 2012-08-07 Carl Zeiss Smt Gmbh Method for improving an optical imaging property of a projection objective of a microlithographic projection exposure apparatus
US7460207B2 (en) 2002-12-10 2008-12-02 Nikon Corporation Exposure apparatus and method for producing device
US10180632B2 (en) 2003-02-26 2019-01-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7453550B2 (en) 2003-02-26 2008-11-18 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7535550B2 (en) 2003-02-26 2009-05-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7542128B2 (en) 2003-02-26 2009-06-02 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9766555B2 (en) 2003-02-26 2017-09-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7268854B2 (en) 2003-02-26 2007-09-11 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7471371B2 (en) 2003-03-25 2008-12-30 Nikon Corporation Exposure apparatus and device fabrication method
US9618852B2 (en) 2003-04-09 2017-04-11 Nikon Corporation Immersion lithography fluid control system regulating flow velocity of gas based on position of gas outlets
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US8497973B2 (en) 2003-04-09 2013-07-30 Nikon Corporation Immersion lithography fluid control system regulating gas velocity based on contact angle
US7339650B2 (en) 2003-04-09 2008-03-04 Nikon Corporation Immersion lithography fluid control system that applies force to confine the immersion liquid
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US8797500B2 (en) 2003-04-09 2014-08-05 Nikon Corporation Immersion lithography fluid control system changing flow velocity of gas outlets based on motion of a surface
US7397532B2 (en) 2003-04-10 2008-07-08 Nikon Corporation Run-off path to collect liquid for an immersion lithography apparatus
US8243253B2 (en) 2003-04-10 2012-08-14 Nikon Corporation Lyophobic run-off path to collect liquid for an immersion lithography apparatus
US9632427B2 (en) 2003-04-10 2017-04-25 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US9658537B2 (en) 2003-04-10 2017-05-23 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US7345742B2 (en) 2003-04-10 2008-03-18 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US7251017B2 (en) 2003-04-10 2007-07-31 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US9007561B2 (en) 2003-04-10 2015-04-14 Nikon Corporation Immersion lithography apparatus with hydrophilic region encircling hydrophobic region which encircles substrate support
US9910370B2 (en) 2003-04-10 2018-03-06 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US9977350B2 (en) 2003-04-10 2018-05-22 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US9785057B2 (en) 2003-04-11 2017-10-10 Nikon Corporation Liquid jet and recovery system for immersion lithography
US9946163B2 (en) 2003-04-11 2018-04-17 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9500960B2 (en) 2003-04-11 2016-11-22 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US7522259B2 (en) 2003-04-11 2009-04-21 Nikon Corporation Cleanup method for optics in immersion lithography
US10185222B2 (en) 2003-04-11 2019-01-22 Nikon Corporation Liquid jet and recovery system for immersion lithography
US7443482B2 (en) 2003-04-11 2008-10-28 Nikon Corporation Liquid jet and recovery system for immersion lithography
US8059258B2 (en) 2003-04-11 2011-11-15 Nikon Corporation Liquid jet and recovery system for immersion lithography
US9958786B2 (en) 2003-04-11 2018-05-01 Nikon Corporation Cleanup method for optics in immersion lithography using object on wafer holder in place of wafer
US7414794B2 (en) 2003-04-17 2008-08-19 Nikon Corporation Optical arrangement of autofocus elements for use with immersion lithography
US7570431B2 (en) 2003-04-17 2009-08-04 Nikon Corporation Optical arrangement of autofocus elements for use with immersion lithography
US10466595B2 (en) 2003-05-13 2019-11-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9798246B2 (en) 2003-05-13 2017-10-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9977336B2 (en) 2003-05-23 2018-05-22 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US9939739B2 (en) 2003-05-23 2018-04-10 Nikon Corporation Exposure apparatus and method for producing device
US9933708B2 (en) 2003-05-23 2018-04-03 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US10082739B2 (en) 2003-05-28 2018-09-25 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US10180629B2 (en) 2003-06-09 2019-01-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10678139B2 (en) 2003-06-09 2020-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9964858B2 (en) 2003-06-11 2018-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9846371B2 (en) 2003-06-13 2017-12-19 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
US10191388B2 (en) 2003-06-19 2019-01-29 Nikon Corporation Exposure apparatus, and device manufacturing method
US9810995B2 (en) 2003-06-19 2017-11-07 Nikon Corporation Exposure apparatus and device manufacturing method
US10007188B2 (en) 2003-06-19 2018-06-26 Nikon Corporation Exposure apparatus and device manufacturing method
US9551943B2 (en) 2003-06-19 2017-01-24 Nikon Corporation Exposure apparatus and device manufacturing method
US7433019B2 (en) 2003-07-09 2008-10-07 Nikon Corporation Exposure apparatus and device manufacturing method
US9977352B2 (en) 2003-07-09 2018-05-22 Nikon Corporation Exposure apparatus and device manufacturing method
US9639006B2 (en) 2003-07-28 2017-05-02 Asml Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US9760026B2 (en) 2003-07-28 2017-09-12 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
US10185232B2 (en) 2003-07-28 2019-01-22 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
US10303066B2 (en) 2003-07-28 2019-05-28 Asml Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US8937704B2 (en) 2003-07-31 2015-01-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a resistivity sensor
US9285686B2 (en) 2003-07-31 2016-03-15 Asml Netherlands B.V. Lithographic apparatus involving an immersion liquid supply system with an aperture
US10203608B2 (en) 2003-08-21 2019-02-12 Nikon Corporation Exposure apparatus and device manufacturing method having lower scanning speed to expose peripheral shot area
US10209622B2 (en) 2003-08-21 2019-02-19 Nikon Corporation Exposure method and device manufacturing method having lower scanning speed to expose peripheral shot area
US8064037B2 (en) 2003-08-21 2011-11-22 Nikon Corporation Immersion exposure apparatus and device manufacturing method with no liquid recovery during exposure
US10175584B2 (en) 2003-08-26 2019-01-08 Nikon Corporation Optical element and exposure apparatus
US7697111B2 (en) 2003-08-26 2010-04-13 Nikon Corporation Optical element and exposure apparatus
US9568841B2 (en) 2003-08-29 2017-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10025204B2 (en) 2003-08-29 2018-07-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11003096B2 (en) 2003-08-29 2021-05-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8208123B2 (en) 2003-08-29 2012-06-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10514618B2 (en) 2003-08-29 2019-12-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10203610B2 (en) 2003-09-03 2019-02-12 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US8253921B2 (en) 2003-09-03 2012-08-28 Nikon Corporation Exposure apparatus and device fabricating method
US9817319B2 (en) 2003-09-03 2017-11-14 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US8035797B2 (en) 2003-09-26 2011-10-11 Nikon Corporation Projection exposure apparatus, cleaning and maintenance methods of a projection exposure apparatus, and device manufacturing method
US8724076B2 (en) 2003-09-26 2014-05-13 Nikon Corporation Projection exposure apparatus, cleaning and maintenance methods of a projection exposure apparatus, and device manufacturing method
US10025194B2 (en) 2003-09-29 2018-07-17 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8797502B2 (en) 2003-09-29 2014-08-05 Nikon Corporation Exposure apparatus, exposure method, and method for producing device with electricity removal device by adding additive to liquid
US10209623B2 (en) 2003-10-09 2019-02-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8272544B2 (en) 2003-10-28 2012-09-25 Nikon Corporation Exposure apparatus, exposure method, and device fabrication method
US10248034B2 (en) 2003-10-28 2019-04-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10527955B2 (en) 2003-10-28 2020-01-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US7932996B2 (en) 2003-10-28 2011-04-26 Nikon Corporation Exposure apparatus, exposure method, and device fabrication method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US8797506B2 (en) 2003-10-28 2014-08-05 Nikon Corporation Exposure apparatus, exposure method, and device fabrication method
JP2005136244A (en) * 2003-10-31 2005-05-26 Semiconductor Leading Edge Technologies Inc Exposure method
US9563133B2 (en) 2003-10-31 2017-02-07 Nikon Corporation Exposure apparatus and device fabrication method
US9829801B2 (en) 2003-10-31 2017-11-28 Nikon Corporation Exposure apparatus and device fabrication method
US10048597B2 (en) 2003-10-31 2018-08-14 Nikon Corporation Exposure apparatus and device fabrication method
US8928856B2 (en) 2003-10-31 2015-01-06 Nikon Corporation Exposure apparatus and device fabrication method
US10345712B2 (en) 2003-11-14 2019-07-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9952515B2 (en) 2003-11-14 2018-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10088760B2 (en) 2003-12-03 2018-10-02 Nikon Corporation Exposure apparatus, exposure method, method for producing device, and optical part
US9798245B2 (en) 2003-12-15 2017-10-24 Nikon Corporation Exposure apparatus, and exposure method, with recovery device to recover liquid leaked from between substrate and member
US7700268B2 (en) 2003-12-17 2010-04-20 Panasonic Corporation Exposure system and pattern formation method using the same
US10613447B2 (en) 2003-12-23 2020-04-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9684250B2 (en) 2003-12-23 2017-06-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9817321B2 (en) 2003-12-23 2017-11-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10768538B2 (en) 2003-12-23 2020-09-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7394521B2 (en) 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8064044B2 (en) 2004-01-05 2011-11-22 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US9910369B2 (en) 2004-01-05 2018-03-06 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US9588436B2 (en) 2004-01-05 2017-03-07 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US10345710B2 (en) 2004-01-20 2019-07-09 Carl Zeiss Smt Gmbh Microlithographic projection exposure apparatus and measuring device for a projection lens
US9436095B2 (en) 2004-01-20 2016-09-06 Carl Zeiss Smt Gmbh Exposure apparatus and measuring device for a projection lens
US7697110B2 (en) 2004-01-26 2010-04-13 Nikon Corporation Exposure apparatus and device manufacturing method
US8330934B2 (en) 2004-01-26 2012-12-11 Nikon Corporation Exposure apparatus and device manufacturing method
US10139737B2 (en) 2004-02-02 2018-11-27 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US9665016B2 (en) 2004-02-02 2017-05-30 Nikon Corporation Lithographic apparatus and method having substrate table and sensor table to hold immersion liquid
US9632431B2 (en) 2004-02-02 2017-04-25 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US9684248B2 (en) 2004-02-02 2017-06-20 Nikon Corporation Lithographic apparatus having substrate table and sensor table to measure a patterned beam
US10007196B2 (en) 2004-02-02 2018-06-26 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US10151983B2 (en) 2004-02-03 2018-12-11 Nikon Corporation Exposure apparatus and device manufacturing method
US10048602B2 (en) 2004-02-04 2018-08-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9316921B2 (en) 2004-02-04 2016-04-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8208119B2 (en) 2004-02-04 2012-06-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8605252B2 (en) 2004-02-04 2013-12-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8023100B2 (en) 2004-02-20 2011-09-20 Nikon Corporation Exposure apparatus, supply method and recovery method, exposure method, and device producing method
US10126661B2 (en) 2004-03-25 2018-11-13 Nikon Corporation Exposure apparatus and device fabrication method
US7375796B2 (en) 2004-04-01 2008-05-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10705432B2 (en) 2004-04-14 2020-07-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10234768B2 (en) 2004-04-14 2019-03-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9989861B2 (en) 2004-04-14 2018-06-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9829799B2 (en) 2004-04-14 2017-11-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9599907B2 (en) 2004-04-19 2017-03-21 Nikon Corporation Exposure apparatus and device manufacturing method
US8488099B2 (en) 2004-04-19 2013-07-16 Nikon Corporation Exposure apparatus and device manufacturing method
US9623436B2 (en) 2004-05-18 2017-04-18 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
US10761438B2 (en) 2004-05-18 2020-09-01 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
US7486381B2 (en) 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2008502127A (en) * 2004-06-04 2008-01-24 カール・ツァイス・エスエムティー・アーゲー Projection system with compensation for intensity variation and compensation element therefor
JP4913041B2 (en) * 2004-06-04 2012-04-11 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection system with compensation for intensity variation and compensation element therefor
US9429495B2 (en) 2004-06-04 2016-08-30 Carl Zeiss Smt Gmbh System for measuring the image quality of an optical imaging system
JP2012028803A (en) * 2004-06-04 2012-02-09 Carl Zeiss Smt Gmbh Projection system with compensation of intensity variations and compensation element therefor
US8325326B2 (en) 2004-06-07 2012-12-04 Nikon Corporation Stage unit, exposure apparatus, and exposure method
US9645505B2 (en) 2004-06-09 2017-05-09 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device to measure specific resistance of liquid
US8705008B2 (en) 2004-06-09 2014-04-22 Nikon Corporation Substrate holding unit, exposure apparatus having same, exposure method, method for producing device, and liquid repellant plate
US9134621B2 (en) 2004-06-10 2015-09-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10203614B2 (en) 2004-06-10 2019-02-12 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8482716B2 (en) 2004-06-10 2013-07-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9778580B2 (en) 2004-06-10 2017-10-03 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8717533B2 (en) 2004-06-10 2014-05-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8373843B2 (en) 2004-06-10 2013-02-12 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8508713B2 (en) 2004-06-10 2013-08-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9411247B2 (en) 2004-06-10 2016-08-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9529273B2 (en) 2004-06-10 2016-12-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8704999B2 (en) 2004-06-10 2014-04-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9507270B2 (en) 2004-06-16 2016-11-29 Asml Netherlands B.V. Vacuum system for immersion photolithography
US10168624B2 (en) 2004-06-16 2019-01-01 Asml Netherlands B.V. Vacuum system for immersion photolithography
US8830440B2 (en) 2004-06-16 2014-09-09 Asml Netherlands B.V. Vacuum system for immersion photolithography
US8164734B2 (en) 2004-06-16 2012-04-24 Asml Netherlands B.V. Vacuum system for immersion photolithography
US9857699B2 (en) 2004-06-16 2018-01-02 Asml Netherlands B.V. Vacuum system for immersion photolithography
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US9470984B2 (en) 2004-06-21 2016-10-18 Nikon Corporation Exposure apparatus
US8368870B2 (en) 2004-06-21 2013-02-05 Nikon Corporation Exposure apparatus and device manufacturing method
US9904182B2 (en) 2004-06-21 2018-02-27 Nikon Corporation Exposure apparatus
US8810767B2 (en) 2004-06-21 2014-08-19 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US10338478B2 (en) 2004-07-07 2019-07-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9104117B2 (en) 2004-07-07 2015-08-11 Bob Streefkerk Lithographic apparatus having a liquid detection system
US10739684B2 (en) 2004-07-07 2020-08-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9250537B2 (en) 2004-07-12 2016-02-02 Nikon Corporation Immersion exposure apparatus and method with detection of liquid on members of the apparatus
US8654308B2 (en) 2004-07-12 2014-02-18 Nikon Corporation Method for determining exposure condition, exposure method, exposure apparatus, and method for manufacturing device
US8169591B2 (en) 2004-08-03 2012-05-01 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10705439B2 (en) 2004-08-19 2020-07-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9746788B2 (en) 2004-08-19 2017-08-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9904185B2 (en) 2004-08-19 2018-02-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10599054B2 (en) 2004-08-19 2020-03-24 Asml Holding N.V. Lithographic apparatus and device manufacturing method
US10331047B2 (en) 2004-08-19 2019-06-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9488923B2 (en) 2004-08-19 2016-11-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9507278B2 (en) 2004-08-19 2016-11-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9097992B2 (en) 2004-08-19 2015-08-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8675174B2 (en) 2004-09-17 2014-03-18 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8102512B2 (en) 2004-09-17 2012-01-24 Nikon Corporation Substrate holding device, exposure apparatus, and device manufacturing method
US9958785B2 (en) 2004-09-17 2018-05-01 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9341959B2 (en) 2004-09-17 2016-05-17 Nikon Corporation Substrate holding device, exposure apparatus, and device manufacturing method
US7852456B2 (en) 2004-10-13 2010-12-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8456609B2 (en) 2004-10-15 2013-06-04 Nikon Corporation Exposure apparatus and device manufacturing method
US7456929B2 (en) 2004-10-15 2008-11-25 Nikon Corporation Exposure apparatus and device manufacturing method
US9436097B2 (en) 2004-10-18 2016-09-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10248033B2 (en) 2004-10-18 2019-04-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9753380B2 (en) 2004-10-18 2017-09-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8004652B2 (en) 2004-10-18 2011-08-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8040489B2 (en) 2004-10-26 2011-10-18 Nikon Corporation Substrate processing method, exposure apparatus, and method for producing device by immersing substrate in second liquid before immersion exposure through first liquid
US8941808B2 (en) 2004-10-26 2015-01-27 Nikon Corporation Immersion lithographic apparatus rinsing outer contour of substrate with immersion space
US8330939B2 (en) 2004-11-01 2012-12-11 Nikon Corporation Immersion exposure apparatus and device manufacturing method with a liquid recovery port provided on at least one of a first stage and second stage
US8922754B2 (en) 2004-11-01 2014-12-30 Nikon Corporation Immersion exposure apparatus and device fabricating method with two substrate stages and metrology station
US9709900B2 (en) 2004-11-01 2017-07-18 Nikon Corporation Exposure apparatus and device fabricating method
US8294873B2 (en) 2004-11-11 2012-10-23 Nikon Corporation Exposure method, device manufacturing method, and substrate
US9348238B2 (en) 2004-11-18 2016-05-24 Niko Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US8576379B2 (en) 2004-11-18 2013-11-05 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US9223231B2 (en) 2004-11-18 2015-12-29 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US8059260B2 (en) * 2004-11-18 2011-11-15 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US8072578B2 (en) 2004-11-18 2011-12-06 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US10222708B2 (en) 2004-11-18 2019-03-05 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US9223230B2 (en) 2004-11-18 2015-12-29 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US9857692B2 (en) 2004-11-18 2018-01-02 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US9298108B2 (en) 2004-11-18 2016-03-29 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US8054465B2 (en) 2004-11-18 2011-11-08 Nikon Corporation Position measurement method
US8456608B2 (en) 2004-12-06 2013-06-04 Nikon Corporation Maintenance method, maintenance device, exposure apparatus, and device manufacturing method
US7804576B2 (en) 2004-12-06 2010-09-28 Nikon Corporation Maintenance method, maintenance device, exposure apparatus, and device manufacturing method
US8891055B2 (en) 2004-12-06 2014-11-18 Nikon Corporation Maintenance method, maintenance device, exposure apparatus, and device manufacturing method
US8035799B2 (en) 2004-12-09 2011-10-11 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US8913224B2 (en) 2004-12-09 2014-12-16 Nixon Corporation Exposure apparatus, exposure method, and device producing method
US10345711B2 (en) 2004-12-10 2019-07-09 Asml Netherlands B.V. Substrate placement in immersion lithography
US9182222B2 (en) 2004-12-10 2015-11-10 Asml Netherlands B.V. Substrate placement in immersion lithography
US9740106B2 (en) 2004-12-10 2017-08-22 Asml Netherlands B.V. Substrate placement in immersion lithography
US7352440B2 (en) 2004-12-10 2008-04-01 Asml Netherlands B.V. Substrate placement in immersion lithography
US9224632B2 (en) 2004-12-15 2015-12-29 Nikon Corporation Substrate holding apparatus, exposure apparatus, and device fabricating method
US9964860B2 (en) 2004-12-15 2018-05-08 Nikon Corporation Substrate holding apparatus, exposure apparatus, and device fabricating method
US9690206B2 (en) 2004-12-15 2017-06-27 Nikon Corporation Substrate holding apparatus, exposure apparatus, and device fabricating method
WO2006064900A1 (en) * 2004-12-17 2006-06-22 Nikon Corporation Exposure method and apparatus, and device manufacturing method
JP4756380B2 (en) * 2004-12-17 2011-08-24 株式会社ニコン Exposure method and apparatus, and electronic device manufacturing method
TWI417672B (en) * 2004-12-17 2013-12-01 尼康股份有限公司 Exposure method, manufacturing method for electronic device, electronic device, and exposure device
US10509326B2 (en) 2004-12-20 2019-12-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9703210B2 (en) 2004-12-20 2017-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7450217B2 (en) 2005-01-12 2008-11-11 Asml Netherlands B.V. Exposure apparatus, coatings for exposure apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby
US8542341B2 (en) 2005-01-12 2013-09-24 Asml Netherlands B.V. Exposure apparatus
US8830446B2 (en) 2005-01-12 2014-09-09 Asml Netherlands B.V. Exposure apparatus
JP4830859B2 (en) * 2005-01-14 2011-12-07 株式会社ニコン Exposure method and apparatus, and electronic device manufacturing method
US9746781B2 (en) 2005-01-31 2017-08-29 Nikon Corporation Exposure apparatus and method for producing device
JP2011181979A (en) * 2005-02-25 2011-09-15 Nikon Corp Illuminating optical device, exposure device, and method of manufacturing electronic device
WO2006090807A1 (en) * 2005-02-25 2006-08-31 Nikon Corporation Exposure method and apparatus, and electronic device manufacturing method
JP4822022B2 (en) * 2005-02-25 2011-11-24 株式会社ニコン Exposure method and apparatus, and electronic device manufacturing method
US8638422B2 (en) 2005-03-18 2014-01-28 Nikon Corporation Exposure method, exposure apparatus, method for producing device, and method for evaluating exposure apparatus
US7705968B2 (en) 2005-03-18 2010-04-27 Nikon Corporation Plate member, substrate holding device, exposure apparatus and method, and device manufacturing method
US9239524B2 (en) 2005-03-30 2016-01-19 Nikon Corporation Exposure condition determination method, exposure method, exposure apparatus, and device manufacturing method involving detection of the situation of a liquid immersion region
USRE47943E1 (en) 2005-04-08 2020-04-14 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
USRE46933E1 (en) 2005-04-08 2018-07-03 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
US8089608B2 (en) 2005-04-18 2012-01-03 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8724077B2 (en) 2005-04-18 2014-05-13 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US9618854B2 (en) 2005-04-25 2017-04-11 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US8064039B2 (en) 2005-04-25 2011-11-22 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US9335639B2 (en) 2005-04-25 2016-05-10 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US8941812B2 (en) 2005-04-28 2015-01-27 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US8236467B2 (en) 2005-04-28 2012-08-07 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7924416B2 (en) 2005-06-22 2011-04-12 Nikon Corporation Measurement apparatus, exposure apparatus, and device manufacturing method
US8179517B2 (en) 2005-06-30 2012-05-15 Nikon Corporation Exposure apparatus and method, maintenance method for exposure apparatus, and device manufacturing method
US8070145B2 (en) 2005-08-26 2011-12-06 Nikon Corporation Holding unit, assembly system, sputtering unit, and processing method and processing unit
US8668191B2 (en) 2005-08-26 2014-03-11 Nikon Corporation Holding unit, assembly system, sputtering unit, and processing method and processing unit
US7812926B2 (en) 2005-08-31 2010-10-12 Nikon Corporation Optical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice
US8724075B2 (en) 2005-08-31 2014-05-13 Nikon Corporation Optical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice
US8111374B2 (en) 2005-09-09 2012-02-07 Nikon Corporation Analysis method, exposure method, and device manufacturing method
US8780326B2 (en) 2005-09-09 2014-07-15 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US7803516B2 (en) 2005-11-21 2010-09-28 Nikon Corporation Exposure method, device manufacturing method using the same, exposure apparatus, and substrate processing method and apparatus
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
US8411271B2 (en) 2005-12-28 2013-04-02 Nikon Corporation Pattern forming method, pattern forming apparatus, and device manufacturing method
US9851644B2 (en) 2005-12-30 2017-12-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10761433B2 (en) 2005-12-30 2020-09-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10222711B2 (en) 2005-12-30 2019-03-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9436096B2 (en) 2005-12-30 2016-09-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11275316B2 (en) 2005-12-30 2022-03-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US11669021B2 (en) 2005-12-30 2023-06-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8947631B2 (en) 2005-12-30 2015-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8941810B2 (en) 2005-12-30 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10133195B2 (en) 2006-01-19 2018-11-20 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US10203613B2 (en) 2006-01-19 2019-02-12 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US10185228B2 (en) 2006-01-19 2019-01-22 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US7839485B2 (en) 2006-01-19 2010-11-23 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US10185227B2 (en) 2006-01-19 2019-01-22 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US8134681B2 (en) 2006-02-17 2012-03-13 Nikon Corporation Adjustment method, substrate processing method, substrate processing apparatus, exposure apparatus, inspection apparatus, measurement and/or inspection system, processing apparatus, computer system, program and information recording medium
US10088759B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10409173B2 (en) 2006-02-21 2019-09-10 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9857697B2 (en) 2006-02-21 2018-01-02 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US10345121B2 (en) 2006-02-21 2019-07-09 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US9329060B2 (en) 2006-02-21 2016-05-03 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10234773B2 (en) 2006-02-21 2019-03-19 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9989859B2 (en) 2006-02-21 2018-06-05 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10132658B2 (en) 2006-02-21 2018-11-20 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10088343B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10012913B2 (en) 2006-02-21 2018-07-03 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10139738B2 (en) 2006-02-21 2018-11-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US8035800B2 (en) 2006-03-13 2011-10-11 Nikon Corporation Exposure apparatus, maintenance method, exposure method, and method for producing device
US9810996B2 (en) 2006-05-09 2017-11-07 Carl Zeiss Smt Gmbh Optical imaging device with thermal attenuation
US8902401B2 (en) 2006-05-09 2014-12-02 Carl Zeiss Smt Gmbh Optical imaging device with thermal attenuation
US8477283B2 (en) 2006-05-10 2013-07-02 Nikon Corporation Exposure apparatus and device manufacturing method
JP2007311783A (en) * 2006-05-15 2007-11-29 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
US7952803B2 (en) 2006-05-15 2011-05-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8570484B2 (en) 2006-08-30 2013-10-29 Nikon Corporation Immersion exposure apparatus, device manufacturing method, cleaning method, and cleaning member to remove foreign substance using liquid
US9983486B2 (en) 2006-08-31 2018-05-29 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US8947639B2 (en) 2006-08-31 2015-02-03 Nikon Corporation Exposure method and apparatus measuring position of movable body based on information on flatness of encoder grating section
US10067428B2 (en) 2006-08-31 2018-09-04 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
US10338482B2 (en) 2006-08-31 2019-07-02 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US10353301B2 (en) 2006-08-31 2019-07-16 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US9958792B2 (en) 2006-08-31 2018-05-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US10101673B2 (en) 2006-08-31 2018-10-16 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
US10353302B2 (en) 2006-08-31 2019-07-16 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US10162274B2 (en) 2006-08-31 2018-12-25 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
US10073359B2 (en) 2006-08-31 2018-09-11 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
US8937710B2 (en) 2006-08-31 2015-01-20 Nikon Corporation Exposure method and apparatus compensating measuring error of encoder due to grating section and displacement of movable body in Z direction
US10289012B2 (en) 2006-09-01 2019-05-14 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9971253B2 (en) 2006-09-01 2018-05-15 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9625834B2 (en) 2006-09-01 2017-04-18 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9874822B2 (en) 2006-09-01 2018-01-23 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US10197924B2 (en) 2006-09-01 2019-02-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US10289010B2 (en) 2006-09-01 2019-05-14 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US9377698B2 (en) 2006-09-01 2016-06-28 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9740114B2 (en) 2006-09-01 2017-08-22 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9760021B2 (en) 2006-09-01 2017-09-12 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9846374B2 (en) 2006-09-01 2017-12-19 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US7872730B2 (en) 2006-09-15 2011-01-18 Nikon Corporation Immersion exposure apparatus and immersion exposure method, and device manufacturing method
US8743341B2 (en) 2006-09-15 2014-06-03 Nikon Corporation Immersion exposure apparatus and immersion exposure method, and device manufacturing method
US8749755B2 (en) 2006-11-17 2014-06-10 Nikon Corporation Stage apparatus and exposure apparatus
US7973910B2 (en) 2006-11-17 2011-07-05 Nikon Corporation Stage apparatus and exposure apparatus
US8013975B2 (en) 2006-12-01 2011-09-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8040490B2 (en) 2006-12-01 2011-10-18 Nikon Corporation Liquid immersion exposure apparatus, exposure method, and method for producing device
US8721803B2 (en) 2006-12-05 2014-05-13 Nikon Corporation Cleaning liquid, cleaning method, liquid generating apparatus, exposure apparatus, and device fabricating method
US8164736B2 (en) 2007-05-29 2012-04-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US11187991B2 (en) 2008-05-28 2021-11-30 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
US8891053B2 (en) 2008-09-10 2014-11-18 Asml Netherlands B.V. Lithographic apparatus, method of manufacturing an article for a lithographic apparatus and device manufacturing method
US10209624B2 (en) 2010-04-22 2019-02-19 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US10620544B2 (en) 2010-04-22 2020-04-14 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US9846372B2 (en) 2010-04-22 2017-12-19 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US9256136B2 (en) 2010-04-22 2016-02-09 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method involving gas supply
JP2015524554A (en) * 2012-06-26 2015-08-24 ケーエルエー−テンカー コーポレイション Near field measurement
US10261014B2 (en) 2012-06-26 2019-04-16 Kla-Tencor Corporation Near field metrology
KR20150034741A (en) * 2012-06-26 2015-04-03 케이엘에이-텐코 코포레이션 Near field metrology
US20220397716A1 (en) * 2019-11-11 2022-12-15 Wave Optics Ltd Led illuminated waveguide projector display
US11747538B2 (en) * 2019-11-11 2023-09-05 Snap Inc. LED illuminated waveguide projector display

Similar Documents

Publication Publication Date Title
JPH08316125A (en) Method and apparatus for projection exposing
JPH08316124A (en) Method and apparatus for projection exposing
TWI276924B (en) Exposure apparatus and method
KR100213605B1 (en) Method of forming a pattern and projection exposure apparatus
USRE40084E1 (en) Optical proximity correction
JP4497968B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method
JP2006005319A (en) System and method of lighting optical system, exposure apparatus, and device manufacturing method
JPH09199390A (en) Pattern forming method, projection aligner and semiconductor device manufacturing method
JPH07122478A (en) Pattern projection method
JPH10335224A (en) Apparatus and method for projection exposure, amplitude aberration evaluating mask pattern, amplitude aberration evaluation method and amplitude aberration filter
US5650632A (en) Focal plane phase-shifting lithography
US5418093A (en) Projection exposure method and an optical mask for use in projection exposure
JPH06244082A (en) Projection exposure device
JP3647272B2 (en) Exposure method and exposure apparatus
JP5571289B2 (en) Exposure mask and pattern forming method
JP3997199B2 (en) Exposure method and apparatus
JPH07147223A (en) Pattern forming method
JPH09120154A (en) Polarizing mask and its production as well as pattern exposure method and pattern projection aligner using the same
JP3296296B2 (en) Exposure method and exposure apparatus
JP3647270B2 (en) Exposure method and exposure apparatus
JP3123542B2 (en) Exposure apparatus and device manufacturing method
JPH07326573A (en) Pattern forming method and projection aligner
JPH07211617A (en) Pattern formation, mask and projection aligner
JP2001358073A (en) Pattern forming method
JP3647271B2 (en) Exposure method and exposure apparatus