JPH08316125A - Method and apparatus for projection exposing - Google Patents

Method and apparatus for projection exposing

Info

Publication number
JPH08316125A
JPH08316125A JP7121115A JP12111595A JPH08316125A JP H08316125 A JPH08316125 A JP H08316125A JP 7121115 A JP7121115 A JP 7121115A JP 12111595 A JP12111595 A JP 12111595A JP H08316125 A JPH08316125 A JP H08316125A
Authority
JP
Japan
Prior art keywords
diffraction grating
mask
light
optical system
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7121115A
Other languages
Japanese (ja)
Inventor
Hiroshi Fukuda
Fuon Bunoo Rudorufu
ルドルフ・フォン・ブノー
宏 福田
Original Assignee
Hitachi Ltd
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, 株式会社日立製作所 filed Critical Hitachi Ltd
Priority to JP7121115A priority Critical patent/JPH08316125A/en
Publication of JPH08316125A publication Critical patent/JPH08316125A/en
Application status is Pending legal-status Critical

Links

Abstract

PURPOSE: To improve the resolution exceeding the diffraction limit by emitting the light from a light source to a mask, diffracting the pattern of the mask, diffracting the diffracted light through a projection optical system, and reproducing the pattern on a sample to be exposed. CONSTITUTION: A mask 1 is inserted between a projection optical system 2 and diffraction gratings A, B, and a diffraction grating C is inserted between the system 2 and a wafer 4. In this case, the gratings A, B, C are simultaneously phase gratings. The light R perpendicularly incident to the mask 1 is diffracted to zero order diffracted light R0, + primary diffraction light R1 and - primary diffracted light R1' on the mask surface. The light R0 arrives at a point A0 on the grating A, and the light diffracted in the - primary direction is diffracted to + primary direction at the point B0 on the grating B. Thereafter, it is diffracted at the point C0 on the grating C via the left end of the pupil 3 in ± primary direction, and arrived at two points Q, P on the image surfaces.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、各種固体素子の微細パタ−ンを形成するためのパタ−ン形成方法、及びこれに用いられる投影露光装置に関する。 The present invention relates to a fine pattern of various solid-state devices - pattern for forming a down - down forming method and a projection exposure apparatus used for this.

【0002】 [0002]

【従来の技術】LSI等の固体素子の集積度及び動作速度を向上するため、回路パタ−ンの微細化が進んでいる。 To improve the integration density and operation speed of the Related Art Solid elements such as LSI, circuit patterns - miniaturization of emissions is progressing. 又、レーザー等の光・電子素子や各種の量子効果素子、誘電体・磁性体素子等の特性向上のため、パターンの微細化が望まれている。 The optical and electronic devices and various quantum effect device such as a laser, improve characteristics such as dielectric, magnetic device, miniaturization of the pattern is desired. 現在これらのパタ−ン形成には、量産性と解像性能に優れた縮小投影露光法が広く用いられている。 Currently these patterns - the emissions formation, excellent reduction projection exposure method in mass productivity and resolution performance has been widely used. この方法の解像限界は露光波長に比例し投影レンズの開口数(NA)に反比例するため、短波長化と高NA化により解像限界の向上が行われてきた。 Resolution limit of this method is inversely proportional to the numerical aperture (NA) of the projection lens in proportion to the exposure wavelength, improve the resolution limit by shorter wavelength and higher NA have been made.

【0003】又、縮小投影露光法の解像度をさらに向上するための手法として、位相シフト法、変形照明法(斜入射照明法)、瞳フィルター法等、様々な像改良法が適用されている。 [0003] Further, as a technique for further improving the resolution of the reduction projection exposure method, the phase shift method, the modified illumination method (oblique illumination method), a pupil filter method or the like, various image improvement methods have been applied. これらは、従来光学系の性能を理論的な回折限界(遮断空間周波数=2NA/λ)ぎりぎりまで有効に使用しようというものである。 These conventional optical system performance theoretical diffraction limit of (cut-off spatial frequency = 2NA / lambda) is that attempts to effectively use until the last minute. これら像改良法(しばしば超解像法と呼ばれる)については、例えば、 These images improved methods (often referred to as super resolution method), for example,
ULSIリソグラフィ技術の革新、第1章、第34頁から第49頁(サイエンスフォーラム社刊、1994年、 Innovation of ULSI lithography technology, Chapter 1, the first 49 pages from 34 pages (Science Forum published by, 1994,
東京)に論じられている。 It is discussed in Tokyo).

【0004】一方、顕微鏡の解像度を、従来の上記回折限界を越えて向上する方法として、光学系の空間周波数帯域を拡大する方法がいくつか知られている。 On the other hand, the microscope resolution, as a method of improving beyond conventional the diffraction limit, a method of expanding the spatial frequency band of the optical system are known some. これら空間周波数帯域拡大法については、例えば、応用物理、第37巻、第9号、第853頁から第859頁(1968 These spatial frequency band extending method, for example, Applied Physics, Vol. 37, No. 9, No. 859, pages from the 853 pages (1968
年)に論じられている。 It is discussed in the year). このうちの1つの方法は、2つの格子パターンを物体及び像の直上(少なくとも焦点深度内)で互いに共役関係を保ちつつスキャンするもので、物体とその直上の第1格子パターンの重ねあわせによりモアレパターンを形成し、このモアレパターンをレンズ系を通過させ、像側で第2の格子パターンと重ねることにより復調を行なう。 One method of this is for scanning while maintaining the conjugate relationship with each other just above the two objects a grid pattern and the image (at least focus in depth), the moire by superposition of the first grating pattern on the object and immediately thereon forming a pattern, the moire pattern is passed through the lens system performs demodulation by superimposing a second grating pattern on the image side. モアレパターンは、物体及び第1格子パターンより低い空間周波数を有するため、レンズ系を通過することができる。 Moire patterns, since it has a lower spatial frequency than the object and the first grating pattern, can pass through the lens system. この方法を縮小投影露光法に適用することが出願されている。 It has been filed to apply this method to the reduction projection exposure method. 一般に、ウエハー直上で格子パターンを機械的にスキャンするのは困難なため、ホトクロミック材料をウエハ上に直接設け、これに干渉縞を重ねてスキャンすることにより、格子として機能させている。 In general, since it is difficult to mechanically scan the grid pattern just above the wafer, by providing directly photochromic material on a wafer, to scan overlapping this in interference fringes, and to function as a grid.

【0005】 [0005]

【発明が解決しようとする課題】しかしながら、上記様々な従来技術には次のような課題がある。 [SUMMARY OF THE INVENTION However, the aforementioned various prior art has the following problems.

【0006】まず露光光の短波長化は、光学(レンズ) [0006] First a shorter wavelength of exposure light, an optical (lens)
材料の透過率の問題からArFエキシマレーザ(波長1 ArF excimer laser transmittance from material in question (wavelength 1
93nm)が限界と考えられる。 93nm) is considered to be the limit. 又、レンズ設計及び製造上の問題から、投影光学系のNAは0.6〜0.7が限界と考えられる。 Also, the problem on the lens design and manufacture, NA of the projection optical system 0.6-0.7 is considered marginal. しかるに、従来露光法の解像限界は一般に0.5λ/NA、周期型位相シフト法を用いた場合は0.3λ/NA程度であり、従って、上記短波長化及び高NA化の限界を用いても、0.1μm以下のパターンは形成は難しい。 However, resolution limit of conventional exposure methods In general, when using 0.5 [lambda / NA, a periodic phase shift method is about 0.3λ / NA, therefore, by limiting the shorter wavelength and higher NA even, following the pattern 0.1μm is formed is difficult. 又、上記周期型位相シフト法ではマスクパターンが制限されるため、より一般的な回路パターンに関して、実際の限界寸法はさらに後退する。 In the above periodic phase shift method for a mask pattern is limited, for a more general circuit pattern, the actual critical dimension further retreats. 又、 or,
LSIの大規模化に伴い露光面積の拡大が要求されているが、投影光学系の露光フィールドの拡大と高NA化の要求を同時に満足することは極めて困難となっている。 Although enlargement of exposure area along with the scale of LSI is required, to satisfy the requirements of expansion and higher NA of the exposure field of the projection optical system at the same time has become extremely difficult.

【0007】一方、従来の回折限界を越えることを目的とする各種空間周波数帯域拡大法は顕微鏡を対象とし、 On the other hand, various spatial frequency band extending method for the purpose of exceeding the conventional diffraction limit is directed to the microscope,
微小な物体を拡大することを目的とする。 And an object thereof is to expand the small object. このため、光リソグラフィで要求される微小な光学像を形成するのには必ずしも適してはいないという問題点があった。 Therefore, there problem not is necessarily suitable for forming a fine optical image required by optical lithography. 例えば、前記モアレパターンを利用する方法では、2つの格子をマスク及びウエハーの直上で互いに共役関係を保ちつつスキャンするための機構又は光学系が著しく複雑となる。 For example, in the method using the moiré pattern, mechanism or an optical system for scanning while maintaining the conjugate relationship with each other the two gratings just above the mask and the wafer is significantly more complex. レジストの露光が実質的にエバネッセント光で行われるため波長レンジで光が減衰して厚いレジストを露光するのが困難となる等の問題がある。 Exposure of the resist substantially light at the wavelength range to be done by the evanescent light is a problem such that it is difficult to expose the thick resist attenuated. さらに、ホトクロミックを使用する場合でも適当な材料がない。 In addition, there is no suitable material, even if you use a photochromic. 従って、LSIの大量生産を考えた場合、必ずしも実用的とはいえないという問題点があった。 Therefore, when considering the mass production of LSI, it was always there is a problem that not be said to be practical.

【0008】本発明の目的は、各種固体素子の微細パターンを形成する投影露光法において、その解像度を、従来の回折限界(遮断空間周波数)を越えて向上する方法を提供することにある。 An object of the present invention, a projection exposure method for forming a fine pattern of various solid state devices, the resolution, is to provide a method for improving beyond conventional diffraction limit (the cutoff spatial frequency). 具体的には、投影光学系のNA Specifically, NA of the projection optical system
を変えることなしに、そのNAを実質的に最大2倍にしたのとほぼ同等の効果が得られる新規な投影露光方法と、これを可能とする露光装置を提供することにある。 Without changing the present invention is to provide a novel projection exposure method substantially equivalent effect as substantially up to twice to obtain an exposure apparatus capable of this the NA.

【0009】本発明の別の目的は、従来型の露光装置の構成と光学系を大きく変更することなく、これらに多少の改良を加えるだけで解像力向上効果の得ることが可能で、かつ大きな露光フィールドと高い解像力を同時に満足するLSIの大量生産に適した投影露光方法を提供することにある。 Another object of the present invention, without constituting a large change of the optical system of a conventional exposure apparatus, can be obtained a resolving power improvement only these make minor modifications, and large exposure It satisfies the field and high resolution at the same time to provide a projection exposure method suitable for mass production of LSI.

【0010】 [0010]

【課題を解決するための手段】上記目的は、波長λの光を用いてマスクパターンをの投影光学系(開口数=N Above object to an aspect of the projection optical system of a mask pattern using light of a wavelength lambda (numerical aperture = N
A、縮小率=1:M)により基板上へ結像させてパターンを形成する際、上記基板と上記投影光学系の間に、上記基板と平行に、空間周期P1(但し、λ/(1.42 A, reduction ratio = 1: case of forming a pattern is imaged onto a substrate by M), between the substrate and the projection optical system, in parallel with the substrate, the spatial period P1 (where, lambda / (1 .42
・NA)≦P1≦λ/NAであることが望ましい)の第1の回折格子を設けるとともに、上記第1の回折格子により回折された光の干渉により基板面近傍でマスクパターンの像が再生されるように、前記投影光学系と前記マスクの間に、上記マスクと平行に、上記マスク側から順に第2の回折格子と第3の回折格子の2枚の回折格子を設けることにより達成される。 · NA) provided with a first diffraction grating of ≦ P1 is desirably ≦ λ / NA), the image of the mask pattern is reproduced in the substrate surface near the interference of the light diffracted by the first diffraction grating in so that, during the projection optical system and the mask is accomplished by parallel to the mask, providing two diffraction grating of the second diffraction grating and third diffraction grating in order from the mask side .

【0011】第1の回折格子の回折光によりマスクパターンの像を忠実に再生するためには、上記第1、第2及び第3の回折格子の周期方向は等しく、上記第1の回折格子の空間周期P1、第2の回折格子の空間周期P2、 In order to reproduce the first by the diffraction light of the diffraction grating faithful image of the mask pattern, the first, second and third periodic direction of the diffraction grating of equal, the first diffraction grating spatial period P1, the spatial period P2 of the second diffraction grating,
第3の回折格子の空間周期P3を、ほぼ1/P3=1/ The spatial period P3 of the third diffraction grating, approximately 1 / P3 = 1 /
P2−1/(M・P1)の関係を満たす様に設定する。 To set so as to satisfy the relationship of P2-1 / (M · P1).
又、上記第1の回折格子の上記基板表面からの光学距離Z1、及び、上記第2、第3の回折格子の上記マスク表面からの光学距離Z2、Z3は、ほぼ (Z3−Z2)/P2=(Z3/M+Z1・M)/P1 の関係を満たす様に設定する。 Further, the first optical distance from the substrate surface of the diffraction grating of Z1 and, said second optical distance Z2, Z3 from the mask surface of the third diffraction grating is approximately (Z3-Z2) / P2 = to set so as to satisfy the relationship of (Z3 / M + Z1 · M) / P1. さらに、P2≦1/(1 In addition, P2 ≦ 1 / (1
−2・NA/M)であることが望ましい。 -2 · NA / M) it is desirable that. 又、第1、第2、第3の回折格子の設置位置、各回折格子の透明基板の膜厚、及び第2の回折格子の周期を、上記マスク面と像面の間の収差が最小となるように設定することが好ましい。 Further, the first, second, installation position of the third diffraction grating, the film thickness of the transparent substrate of the diffraction grating, and the second period of the diffraction grating, the aberrations between the mask plane and the image plane Min it is preferably set so that. 又、基板と第1の回折格子の間に、幅がZ1・N Further, between the substrate and the first diffraction grating, the width Z1 · N
A以下で、空間周期がほぼ2・Z1・NAの第1の遮光パタ−ンを、又、前記マスクの直上又は直下に上記第1の遮光パタ−ンとほぼ共役な領域を遮光する第2の遮光パタ−ンを設けて露光領域を制限することが好ましい。 In A below, the first light shielding approximately 2 · Z1 · NA is the spatial period pattern - down, and also, the first light-shielding pattern directly above or directly under the mask - second to shield substantially conjugate region and down shielding pattern of - it is preferred to down the provided limits the exposure region. さらに、必要に応じて、上記制限された露光領域を基板上で走査して露光するか、もしくはステップ状に移動しながら露光することが好ましい。 Further, if necessary, it is preferable to expose while moving the limited exposure area or exposure scanning on the substrate, or stepwise. これら各回折格子は、位相格子であることが好ましい。 Each of the diffraction grating is preferably a phase grating.

【0012】なお、前記回折格子は1次元回折格子とし、前記投影光学系の波面収差を、瞳上での上記回折格子の周期方向と垂直な方向の直径を軸として、線対称となるように収差補正することが好ましい。 [0012] Incidentally, the diffraction grating is a one-dimensional diffraction grating, the wavefront aberration of the projection optical system, as an axis the periodic direction perpendicular to the direction of the diameter of the diffraction grating on the pupil, so as to be line symmetry it is preferable that the aberration correction. 又、本発明は、マスクとして周期型位相シフトマスクを用いた場合、特に大きな効果を発揮する。 Further, the present invention is, when a periodic phase shift mask as a mask, in particular a great effect. さらに、必要に応じて回折格子の周期及び方向に応じて、微細なパターンの周期や方向を制限したり、パターン形状を補正することが望ましい。 Furthermore, depending on the period and the direction of the diffraction grating according to need, or to limit the period or the direction of the fine pattern, it is desirable to correct the pattern shape. 又、第1の回折格子と前記基板の間を屈折率nが1より大きい液体で満たし、前記投影光学系のNA Further, between the substrate and the first diffraction grating filled with the refractive index n is greater than 1. Liquid, NA of the projection optical system
を、 0.5<NA<n/2 の範囲に設定すると、さらに微細なパターンの形成が可能となる。 And is set to a range of 0.5 <NA <n / 2, it is possible to further form a fine pattern.

【0013】 [0013]

【作用】本発明は、投影光学系の最終エレメントとウエハの間に回折格子を設け、ウエハ面へ入射する光ビームの入射角を大きくすることにより、実効的にNAを増大するのと等価な効果を得ようというものである。 DETAILED DESCRIPTION OF THE INVENTION The present invention, a diffraction grating in between the final element of the projection optical system and the wafer is provided, by the angle of incidence of the light beam incident to the wafer surface is increased, a equivalent to effectively increase the NA it is that going to get the effect. しかし、単純に従来光学系のレンズ−ウエハ間に回折格子を設けただけでは、本来像面上の1点に集約するはずの回折光は、像面上のばらばらな位置に散らばってしまい、 However, simply conventional optical system of the lens - is only provided with the diffraction grating between the wafer, diffraction light should be aggregated into one point on the original image plane, it will be scattered apart locations on the image plane,
マスクパターンの再生は到底困難である。 Play of the mask pattern is far from difficult. 従って、干渉の結果元のマスクパターンに忠実な像が再生されるように、光学系を再構成する必要がある。 Thus, as faithful image is reproduced Result Original mask pattern of the interference, it is necessary to reconfigure the optical system. しかも実用性の観点から、これらの光学系は、従来の投影光学系を大きく改造することなく、しかも従来のマスクが使用可能であることが好ましい。 Moreover in view of practicality, these optical systems, without significant modification to conventional projection optical system, moreover it is preferred conventional mask can be used. 本発明は、以下述べるようにこれらの要求を満足するものである。 The present invention satisfies these needs as described below.

【0014】本発明の作用を説明するために、本発明による結像の原理を従来法と比較して説明する。 [0014] To illustrate the effect of the present invention, the principle of imaging according to the present invention will be described in comparison with the conventional method. 本発明の一形態に基づく光学系における結像を図1に、又比較のため、従来投影露光光学系で従来マスク又は位相シフトマスクを、各々垂直に照明した場合と斜めに照明した場合の結像の様子を図2a、b、c、dに示す。 Imaging in the optical system according to one embodiment of the present invention in FIG. 1, and for comparison, binding when the conventional projection exposure conventional mask or phase shift mask system, and lighting obliquely and when illuminated each vertically showing how image Figure 2a, b, c, to d. いずれの図でも、2:1縮小光学系とコヒーレント照明、1次元パターンを仮定し、近軸結像近似した。 In both figures, 2: 1 reduction optical system and coherent illumination, assuming a one-dimensional pattern was Kinjikuyuizo approximation.

【0015】まず、従来光学系で通常マスクを垂直照明した場合(図2a)、透過型マスク21に垂直入射した光22はマスク上のパターンにより回折され、回折光のうち投影光学系23の瞳24(絞り20の内側)を通過した光線が像面25上に収斂し、干渉してパターンを形成する。 [0015] First, when an ordinary mask vertically illuminated with conventional optical system (FIG. 2a), the light 22 which is perpendicularly incident on the transmission type mask 21 is diffracted by the pattern on the mask, the pupil of the projection optical system 23 in the diffracted light 24 light that has passed through the (inside of the diaphragm 20) is converged on the image plane 25 to form an interference to the pattern. ここで、瞳を通過できる最大の回折角を与えるパターン周期を解像限界と定義すると、解像限界は、λ Here, when the pattern period which gives the maximum diffraction angle that can pass through the pupil is defined as the resolution limit, resolution limit, lambda
/(2NA)(但しNA=sinθ 0 )となる。 / A (2NA) (however NA = sinθ 0). さらに、この光学系に周期型位相シフトマスク26を適用すると、図2bに示したように0次回折光が消滅して光軸29(図中一点鎖線)に対して対称に回折光が生じる。 Furthermore, this Applying periodic phase shift mask 26 in the optical system, diffracted light symmetrically relative to the zero-order diffracted light is extinguished optical axis 29 (one-dot chain line) as shown in Figure 2b arises.
このため、瞳を通過できる最大の回折角は2倍となり、 Therefore, the maximum angle of diffraction that can pass through the pupil is doubled,
解像限界はλ/(4NA)まで向上する。 The resolution limit can be improved up to λ / (4NA).

【0016】又、従来光学系に斜め照明を適用すると(図2c、簡単のためマスク回折光の0次光27が図中瞳の左端を通過すると仮定した)、マスク回折光のうち0次光を中心として正負どちらかの回折角をもつ片側成分(図では+1次光28)だけが瞳を通過し、像面に収斂する。 [0016] Also, conventional Applying oblique illumination optical system (Fig. 2c, the zero-order light 27 in mask diffracted light for simplicity assumed to pass through the left end in the drawing the pupil), of the mask diffracted light 0 order light only one component having a positive or negative of the diffraction angle around the (+1 order light 28 in the figure) passes through the pupil, converge on the image plane. 垂直入射の場合の2倍の回折角を有する回折光が瞳を通過できるため、解像限界はやはりλ/(4N Since the diffracted light having twice the diffraction angle in the case of normal incidence to pass through the pupil, the resolution limit is also lambda / (4N
A)となる。 The A). しかし、回折スペクトルの片側しか用いないため、例えば孤立パターンの解像度は垂直照明の場合と変わらず、又、周期パターンの場合でもコントラストが低下する等の問題がある。 However, since only using one of the diffraction spectrum, for example, the resolution of the isolated pattern does not change in the case of vertical lighting, also there is a problem that contrast is lowered even when the periodic pattern. さらに、マスクを周期型位相シフトマスク26に変更すると複数の回折光は瞳を通過できないため、パターンは解像しない(図2d)。 Furthermore, since a plurality of diffracted light by changing the mask cycle phase shift mask 26 can not pass through the pupil, pattern not resolved (Fig. 2d).

【0017】次に、本発明の一形態に基づく光学系における結像を図1に示す。 Next, the imaging in the optical system according to one embodiment of the present invention shown in FIG. 図1の光学系は、図2の従来光学系において、マスク1と投影光学系2の間に回折格子A及び回折格子Bを、又、投影光学系2とウエハー4の間に回折格子Cを挿入したものである。 The optical system of FIG. 1, the conventional optical system shown in FIG. 2, the diffraction grating A and the diffraction grating B, between the mask 1 and the projection optical system 2, also the diffraction grating C between the projection optical system 2 and the wafer 4 in which inserted. ここで、回折格子A、B、Cはともに位相格子とする。 Here, the diffraction grating A, B, C are both a phase grating.

【0018】マスク1に垂直入射した光Rはマスク面で0次回折光R0、+1次回折光R1、−1次回折光R The optical R which is perpendicularly incident on the mask 1 in the mask plane 0-order diffracted light R0, + 1-order diffracted light R1, -1-order diffracted light R
1'に回折される。 It is diffracted to 1 '. 0次光R0は回折格子A上の点A0 0-order light R0 is a point on the diffraction grating A A0
に達し、そこで−1次方向に回折された光は、回折格子B上の点B0で+1次方向に回折された後、瞳3(絞り5の内側)の左端を経て回折格子C上の点C0で±1次方向に回折され、各々像面上の2点Q、Pに達する。 Reached, where the light diffracted in the -1 order direction, after being diffracted in the +1 order direction at a point B0 on ​​the diffraction grating B, the pupil 3 points on the diffraction grating C through the leftmost (inner aperture 5) is diffracted to ± 1-order direction in C0, 2 points on each image plane Q, reaches P.
又、+1次回折光R1は、回折格子A上の点A1に達し、そこで−1次方向に回折された光は回折格子B上の点B1で+1次方向に回折された後、瞳3の右端を経て回折格子C上の点C1で±1次方向に回折され、やはり像面上の点Q、Pに達する。 Also, + 1-order diffracted light R1 reaches the point A1 on the diffraction grating A, where the light diffracted in the -1 order direction after being diffracted in the +1 order direction at a point B1 on the diffraction grating B, the right edge of the pupil 3 the diffracted to ± 1-order direction at point C1 on the diffraction grating C through, reaching again point Q on the image plane, the P. 一方、点A0で+1次方向に回折された0次光R0'と−1次回折光R1'に対する光路は、上述の2光線の光路と光軸6(図中一点鎖線)に対して対称となる。 On the other hand, the optical path for diffracted in the +1 order direction at the point A0 0 order light R0 'and -1 order diffracted light R1' is symmetrical with respect to the optical path and the optical axis 6 of the 2 beams described above (one-dot chain line in the drawing) . 即ち、両者は、最終的に回折格子C上の点C0で±1次方向に回折され像面上の点P、Q'に達する。 That is, they will eventually diffraction grating C at point C0 ± 1-order direction to a point on the diffracted image surface on the P, reaches Q '. 従って、P点ではマスクで回折された0次光、及び+1次、−1次光線の3つの光線が交わる。 Therefore, the zero-order light diffracted by the mask at the point P, and the +1 order, intersect three rays of the -1 order beam. このことが、マスク回折角に依らないのは明らかである。 This is, it is clear that does not depend on the mask diffraction angle. 従って、点Pでは回折像が忠実に再生される。 Thus, at the point P diffraction image it is faithfully reproduced.

【0019】従来法(図2a)と比べると、同一のN [0019] Compared with the conventional method (Fig. 2a), the same N
A、倍率を持つ光学系を用いて、2倍の回折角をもつ回折光が瞳を通過できるため、実質的にNAを2倍したのと同様の効果が得られる。 A, using an optical system having a magnification, since the diffracted light having a diffraction angle of 2 times to pass through the pupil, substantially the same effect as obtained by doubling the NA can be obtained. 又、斜め照明(図2b)では0次光を中心として正負どちらか片方の回折光しか像面で再生できないのに対して、本発明では両側の回折光を像面で再生できるため、斜め照明では困難であった孤立パターンの解像度向上が可能で、また周期パターンに対して大きなコントラストを得ることができる。 Further, while the diagonal illumination sign either one of the diffracted light around the (Figure 2b) the 0-order light only be played on the image plane, since the present invention can play both sides of the diffracted light at the image plane, oblique illumination in can be improved resolution which was difficult isolated pattern, and it is possible to obtain a large contrast with respect to the periodic pattern. さらに、 further,
本光学系に周期型位相シフトマスクを適用すると(図3 Applying periodic phase shift mask in the optical system (Fig. 3
a)、0次回折光が消滅して通常の倍の回折角を有する+1次光R+と−1次光R−が干渉する結果、最小解像度はλ/(8NA)となる。 a), 0-order and diffracted light disappears normal times the diffraction angle order light R + and -1 order light R- interferes result having the minimum resolution becomes λ / (8NA). これは、これまで周期型位相シフトマスクや斜め照明を用いた場合の理論限界であるλ/(4NA)の半分であり、本発明により飛躍的な解像度の向上が可能となる。 This is by far a half of a theoretical limit λ / (4NA) in the case of using a periodic phase shift mask and the oblique illumination, it is possible to improve the dramatic resolution by the present invention. また、本光学系において斜め照明を適用した場合の結像の様子を図3bに示す。 Further, the state of imaging when the present optical system applying the oblique illumination shown in FIG. 3b. 斜め照明により、片側のみに対して大きな回折角をもつ回折光R1"まで瞳を通過させることが可能となり、垂直照明時の最大2倍、即ちλ/(8NA)まで解像度を向上できる。又、マスク入射角の異なる様々な照明光を用いれば、従来光学系におけるのと全く同様に部分コヒーレント照明の効果を得ることができる。 By oblique illumination, the diffracted light R1 "until it is possible to pass the pupil having a large diffraction angle with respect to only one side, up to two times the vertical illumination and improve the resolution or to λ / (8NA). Furthermore, the use of various illumination lights of different masks incidence angle, can be as in the conventional optical system to obtain the effect of just as partially coherent illumination.

【0020】本発明の原理をフーリエ回折理論の立場から説明すると次のようになる(図4)。 [0020] The principles of the present invention will be described from the standpoint of the Fourier diffraction theory is as follows (Figure 4). 以下の説明では、光学系の倍率は1、回折格子は1次元位相格子で± In the following description, the magnification of the optical system 1, the diffraction grating is ± 1-dimensional phase grating
1次回折光のみを考えるものとする。 1 to be considered the order diffracted light only. 像面上の点Pから、回折格子Cを介して瞳3を見ると、回折により瞳は2つに分かれて見える(図4a)。 From point P on the image plane, looking at the pupil 3 via a diffraction grating C, pupil by diffraction appears divided into two (Fig. 4a). 各瞳の中には、各々ある特定の角度で瞳を通過するマスクフーリエ変換像が見える。 Some of the pupil, the mask Fourier transform image that passes through the pupil at each certain angle is visible. 一方、マスク側について考えると、マスクにより回折された光は回折格子A及びBで回折されて、瞳上に複数のマスクフーリエ変換像を形成する。 On the other hand, considering the mask side, light diffracted by the mask is diffracted by the diffraction grating A and B, to form a plurality of mask Fourier transform image on the pupil. このうち、 this house,
ある特定の角度で瞳を通過したものが、上で見えた瞳の中に見えることになる(図4b)。 That passed through the pupil at a specific angle, will appear in the eyes appeared above (Figure 4b). 即ち、図4の場合、 In other words, in the case of FIG. 4,
図4bの右のフーリエ回折像が図4aの左側の瞳の中に見え、図4bの左のフーリエ回折像が図4aの右側の瞳の中に見える。 Right Fourier diffraction image of FIG 4b is visible in the pupil of the left Figure 4a, a Fourier diffraction image of the left of Figure 4b is visible in the right pupil of Figure 4a. このとき、点Pで正しく像が再生されるための条件は次の2点である。 In this case, the conditions for proper image at point P is reproduced are the following two.

【0021】(1)2つの瞳を介してマスク上の同一点のスペクトルが見えること。 [0021] (1) The visible spectrum of the same point on the mask via two pupils.

【0022】(2)2つのスペクトルが、2つの瞳の接点で連続して接続すること。 [0022] (2) two spectra, to connect successively with contact of the two pupils that.

【0023】言い替えれば、1つの連続するスペクトルを複数の瞳を介して見ることができるようにする必要がある。 [0023] In other words, it is necessary to be able to see one continuous spectrum over a plurality of pupils.

【0024】像から見て、回折格子Cを介してf'シフトした複数の瞳が見え、その各瞳の中に回折格子B及びAを介してやはりf"シフトした複数のフーリエ回折像が見えるとすると、真の像の振幅分布u(x)は次式で表わされる。 [0024] viewed from the image looks a plurality of pupils that f 'shifted through the diffraction grating C, more Fourier diffraction pattern is visible that also f "shifted through the diffraction grating B and A in its respective pupils When, the true image amplitude distribution u (x) is expressed by the following equation.

【0025】 u(x)=F[Σp(f−f')・Σo(f−f")] f'=±SC f"=±(SA−SB−SC) ここで、F[ ]はフーリエ変換、p(f)は瞳関数、o [0025] u (x) = F [Σp (f-f ') · Σo (f-f ")] f' = ± SC f" = ± (SA-SB-SC) here, F [] Fourier conversion, p (f) is the pupil function, o
(f)はマスクフーリエ回折像、xは実空間座標、fは空間周波数座標、SA、SB、SCは回折格子A、B、Cの回折角のsin(正弦)、Σは異なる回折次数に対する和を表す。 (F) sum mask Fourier diffraction image, x is a real space coordinates, f is the spatial frequency coordinates, SA, SB, SC diffraction grating A, B, sin diffraction angle of C (sine), sigma is for different diffraction orders a representative. 従って、 SA=SB+SC とすると、 f"=0 となり、f'=±SCの両方に対して共にf"=0となる項を得ることができる。 Therefore, when SA = SB + SC, f can be obtained a term "= 0, f '= both f for both ± SC" becomes = 0. 即ち2つの瞳p(f±SC)を介して1つのスペクトルo(f)を見ることができる。 That can be seen one spectral o (f) through the two pupils p (f ± SC). さらに、点Pでマスク上同一点に対する像を得るためには、 Furthermore, in order to obtain an image for the same point on the mask at the point P,
マスク面と回折格子A、B間の距離、及び回折格子Cと理想像面間の距離、各々ZA、ZB、ZCを、 SA・(ZB−ZA)=SC・(ZB+ZC) とすればよい。 Mask surface and the diffraction grating A, the distance between B, and the distance between the diffraction grating C and the ideal image plane, respectively ZA, ZB, ZC, and may be set to SA · (ZB-ZA) = SC · (ZB + ZC).

【0026】上の条件を近軸近似の下で縮小率M:1、 [0026] reduction under the paraxial approximation of the conditions on the rate M: 1,
像側開口数NAの光学系に適用すると、回折格子A、 When applied to the optical system of the image-side numerical aperture NA, the diffraction grating A,
B、Cの周期PA、PB、PC、マスク面と回折格子A、 B, the period of C PA, PB, PC, the mask surface and the diffraction grating A,
B間の距離ZA、ZB、回折格子Cと理想像面間の距離Z Distance ZA between B, ZB, the distance between the diffraction grating C and the ideal image plane Z
Cをほぼ次のように設定すればよいことがわかる。 C It can be seen that a may be set substantially as follows.

【0027】1/PA=1/PB−1/(M・PC) (ZB−ZA)/PA=(ZB/M+M・ZC)/PC さらに、本発明により十分な解像度向上効果を得るためには、 λ/NA≦PC≦√2・λ/NA とすることが好ましい。 [0027] 1 / PA = 1 / PB-1 / (M · PC) (ZB-ZA) / PA = (ZB / M + M · ZC) / PC Furthermore, in order to obtain a sufficient effect of improving the resolution by the present invention , it is preferable that the λ / NA ≦ PC ≦ √2 · λ / NA.

【0028】回折格子A、Bは、位相格子であることが好ましい。 The diffraction grating A, B is preferably a phase grating. 回折格子A、Bが完全な位相格子でなく0次光を透過する場合、本方法より解像性に劣る従来光学系や斜入射光学系等の効果が本方法の効果に重なる。 Diffraction grating A, if B is transmitted through the 0-order light, not a complete phase grating, the effect of a conventional optical system or oblique incidence optical system such as poor resolution of from the process overlaps the effect of the present method. このため解像性が劣化する恐れがある。 Therefore there is a possibility that the resolution is deteriorated. 一方、回折格子Cは位相変調格子であっても振幅強度変調格子であっても構わない。 On the other hand, the diffraction grating C is also a phase modulation grating may be an amplitude intensity modulation grating. 回折格子Cの周期はかなり小さく、屈折率1. Period of the diffraction grating C is quite small, the refractive index 1.
5のシリコン酸化膜を考えると格子パターンの断面縦横比はほぼ1程度となる。 Given the 5 silicon oxide film of the cross-sectional aspect ratio of the grating pattern is approximately 1 mm. この場合、パターン断面での光の散乱効果に注意する必要がある。 In this case, it is necessary to pay attention to the scattering effect of light in the pattern section. 遮光パターンからなる回折格子の場合、遮光膜の厚さはかなり薄くできるため散乱の影響は低減できる。 For the diffraction grating made of a light-shielding pattern, the influence of the scattering for the thickness of the light-shielding film can be considerably thinner can be reduced. 但し、後で述べるように、 However, as will be described later,
位相変調格子を用いる方が露光領域を広くすることができる。 May be better to use a phase modulation grating is wider exposure area.

【0029】回折格子Bの基板側を屈折率nが1より大きい液体等で満たすと、この領域の波長と回折角のsi [0029] If the refractive index n of the substrate side of the diffraction grating B is filled with greater than 1 liquid like, si wavelength and the diffraction angle of this area
nが1/nとなる。 n is 1 / n. そこで、さらに回折格子Bの周期を細かくし、回折角を液体を満たさない場合と等しくすると、波長だけが1/nとなるため解像度も1/nに向上する。 Therefore, further diffracts the period of the grating B finely, when the diffraction angle is equal to is not satisfied liquids, only the wavelength is increased to be 1 / n resolution for a 1 / n. この場合、マスク側ではより回折角の大きな回折光が瞳を通過できる様マスク照明角を増大させる必要があるが、このとき回折角の小さな回折光は瞳を通過できなくなる。 In this case, it is necessary to increase the mask illumination angle such that it passes through the large diffracted light pupil of more diffraction angle at the mask side, a small diffracted light of the diffraction angle at this time will not be able to pass through the pupil. そこで、瞳の径をこれに応じて増大することが望ましい。 Therefore, it is desirable that increases with the size of the pupil in this. このことは次のように言い替えることもできる。 This can also be in other words as follows. 回折格子Bと基板の間の屈折率が1の場合、本発明で用いる投影光学系のNAを0.5以上にしても何ら解像度向上は得られない。 If the refractive index between the diffraction grating B and the substrate 1, not at all improved resolution can be obtained even if the NA of the projection optical system to 0.5 or more for use in the present invention. sinθ>0.5の角度θで周期λ/NAの回折格子Bに入射する光線に対する回折角は90度以上となり、エバネッセント波として回折格子表面に局在化してウエハーには伝わらないためである。 sin [theta> 0.5 diffraction angle for rays incident on the diffraction grating B at an angle θ of the period lambda / NA of becomes 90 degrees or more is because not transmitted to the wafer localized to the diffraction grating surface as evanescent waves. 一方、回折格子Bと基板の間の屈折率をnとすると、sin On the other hand, if the refractive index between the diffraction grating B and the substrate and n, sin
θ=NAの角度で回折格子B(瞳の端を通過した0次光がウエハーに垂直入射するためには周期λ/NAでなければならない)へ入射した光の回折角θ'は sinθ'=(λ/PB+sinθ)/n=2NA/n となり、θ'<90度であるための条件は、NA<n/ theta = diffraction angle of light incident on the (must be periodically lambda / NA is to 0 order light passing through the edge of the pupil is normally incident on the wafer) diffraction grating B at an angle of NA theta 'is sin [theta' = (λ / PB + sinθ) / n = 2NA / n next, theta '<conditions for a 90 degrees, NA <n /
2となる。 2 become. 即ち、本発明を最大NA=n/2の光学系まで有効に適用できる。 That is, it effectively apply the present invention to the optical system of up to NA = n / 2. 一般に液浸光学系は特別な光学設計を必要とするが、上述の様に本発明に適用した場合には何ら特別のレンズを必要としない。 Generally immersion optical system requires a special optical design, does not require any special lens when applied to the present invention as described above. 従って、半導体プロセスにおいて通常使用されているNA0.6程度の投影レンズを用いて、回折格子Bと基板の間を水(屈折率約1.3)で満たして露光すれば、実質的にNAを1. Therefore, using conventional about NA0.6 used projection lens in semiconductor processing, if the exposure between the diffraction grating B and the substrate is filled with water (refractive index about 1.3), a substantially NA 1.
2としたのと等価な効果が得られる。 2 and the the equivalent effect is obtained. この場合、位相シフトマスクを用いれば、水銀ランプのi線の波長(36 In this case, by using the phase shift mask, the wavelength of the mercury lamp i-line (36
5nm)でも、0.1μm以下の解像度が得られることになる。 5 nm) But so that the following resolution 0.1μm obtained. なお、本方法では、ウエハー近傍で干渉する光の入射角は極めて大きいため、結像性能は光の偏光状態に強く依存する。 In the present method, the incident angle of the interfering light at the wafer near the very large, the imaging performance is strongly dependent on the polarization state of light. 一般に、電場ベクトルが光の入射面に垂直な偏光状態を有する光の方が、高いコントラストの像を形成する上で望ましい。 In general, the light for which the electric field vector has a vertical polarization state to a light incident surface is desirable in forming the image of high contrast.

【0030】以上の議論は全て近軸近似を仮定し、回折格子の基板の屈折率を1としたものであり、実際には回折格子の基板の屈折率の効果や、回折格子により生じる収差の影響を厳密に考慮する必要がある。 [0030] Assuming the above discussion, all paraxial approximation is obtained by the refractive index of the substrate of the diffraction grating 1, actually or effects of the refractive index of the substrate of the diffraction grating, the aberrations caused by the diffraction grating impact it is necessary strictly taken into account. このため、各回折格子の設置位置等は若干変更する場合がある。 Therefore, the installation position of the diffraction grating is to change slightly. 複数の回折格子のパターンの周期方向は十分な精度で一致させることが好ましいことはいうまでもない。 Periodic direction of the pattern of the plurality of diffraction gratings is preferred of course be matched with sufficient accuracy.

【0031】次に、本発明において注意すべき点について4点述べる。 Next, we described four points the points to note in the present invention.

【0032】第1に、本光学系では従来露光法と比べて、一般に露光領域が制限される。 [0032] First, in this optical system as compared with the conventional exposure method, generally exposure region is limited. 図1より分かるように、像面上の点Q、Q'においても2光線が交わり互いに干渉して像が形成される。 As can be seen from Figure 1, Q point on an image plane, the image interfere with each other intersect two beams are formed also in the Q '. この像は、本来形成されるべきでない位置に生じる偽の像であり、一般に好ましくない。 This image is an image of the fake occurring position which should not be formed, generally not preferred. これを回避するため、図5aに示すように像面5 To avoid this, the image plane as shown in FIG. 5a 5
1の直上(ウエハーと回折格子Cの間)に遮光マスク5 Shielding mask 5 immediately above the 1 (between the wafer and the diffraction grating C)
2を設けてこれらの偽の像を遮断することが望ましい。 2 is provided, it is desirable to block the image of these fake.
回折格子Cと遮光マスク52は、図に示したように同一の石英基板53の両面に形成することができる。 Diffraction grating C and the light-shielding mask 52 can be formed on both sides of the same quartz substrate 53 as shown in FIG. (別々の基板上に形成しても構わない。)又、これと同時に同様にして、マスクの直上又は直下に上記遮光マスクとほぼ共役な領域を遮光するマスキングブレードを設ける等して、マスク照明領域を上記共役な領域に制限することが好ましい。 (May be formed on separate substrates.) In addition, this and similarly at the same time, and the like provided a masking blade for blocking substantially conjugate area and the light shielding mask directly above or directly below the mask, the mask illumination it is preferable to limit the region to the conjugate region. 1回の露光で転写可能な露光領域は、真の像(P点)と偽の像(Q点)の間の距離(ほぼ2・NA・ Transferable exposure region with a single exposure, the distance (approximately 2 · NA · between true image (P point) and the false image (Q point)
ZB)に相当する領域で、上記距離の2倍を周期として繰返し現れる。 In the region corresponding to ZB), it appears repeatedly 2 times the distance as a cycle. 従って、露光可能な領域が露光したい面積より狭い場合には、図5bに示した様に、露光領域をウエハー上でスキャンすることが望ましい。 Therefore, when the exposable region is narrower than the area to be exposed, as shown in FIG. 5b, the exposure region it is desirable to scan on the wafer. この際、光学系の縮小率がM:1であったならば、マスクスキャン速度とウェハースキャン速度の比も厳密にM:1とすることが望ましいことはいうまでもない。 In this case, the reduction ratio of the optical system is M: If there was one, strictly be a ratio of the mask scan speed and the wafer scan speed M: It goes without saying desirable to 1. これら露光領域をマスク及びウェハー上で同期スキャンする方法に関しては、既存の露光装置で用いられている方法をそのまま用いることができる。 These exposure areas with respect to the method for scanning synchronization on the mask and the wafer, can be used as a method used in conventional exposure apparatus. 一方、露光可能領域が露光したい面積より大きい場合、即ち、真の像と偽の像の間の距離が例えば1個のチップをカバーする場合には、スキャンせずに露光可能である。 On the other hand, when the exposure area is an area larger than the to be exposed, i.e., when the cover is for example a single-chip distances between true image and the false image can be exposed without scanning. 露光領域の大きさは回折格子B The size of the exposure field diffraction grating B
の設置位置によって決まり、回折格子Bを像面から離すほど、1つの露光領域の幅は増大する。 Determined by the installation position, the more separate the diffraction grating B from the image plane, the width of a single exposure areas is increased. 但し、同時に転写不可能な領域の幅も増大するため、両者の割合はほぼ1:1のまま変わらない。 However, in order to increase the width of the transfer impossible region simultaneously, substantially the proportion of both 1: remains unchanged in 1. 偽の像の影響を排除するために、ウエハー上露光領域の幅Wは、W≦NA・ZBとすることが望ましい。 To eliminate the influence of false image, the width W of the wafer on the exposure region, it is desirable that the W ≦ NA · ZB. 又、回折格子Bに振幅強度変調格子を用いた場合には、格子の0次回折光が真の像と偽の像の中間点にもう一つの偽の像を形成するため、露光領域は位相格子の場合のほぼ半分となる。 Further, in the case of using the amplitude intensity modulation grating on the diffraction grating B, because the 0-order diffracted light of the grating to form an image of another false midpoint of true image and the false image, the exposed areas the phase grating is almost half of the cases.

【0033】第2に、本方法では一般に露光強度が低下する。 [0033] Second, in general exposure intensity is reduced in this way. 本方法でウェハー上で結像する光線は、光学系中に挿入された回折格子により回折された光線のうち特定の回折次数の光だけを用いている。 Rays imaged on the wafer in the present method uses only light of a specific diffraction order of the diffracted light ray by the diffraction grating which is inserted in the optical system. 従って、回折格子を通過する度に露光に寄与する光強度は低下することになる。 Therefore, light contributing intensity exposure whenever passing through the diffraction grating is lowered. また、上で述べたようにマスク及びウェハー上で露光領域を制限していることも、スループット低下の原因となる。 Further, it limits the exposure region on the mask and the wafer as mentioned above, causes a reduction in throughput. このため、本方法では十分に強度の強い光源を用いる、感度の高い化学増幅系レジスト等のレジスト材料を用いる等の対策を行うことが望ましい。 Therefore, using a strong light source with sufficiently strength in this way, it is desirable to take countermeasures such as using a resist material with high chemical amplification resist, etc. sensitivity.

【0034】第3に、前の説明で示したように、瞳上には、f"=0の望ましい回折像に加えて、f"=±2(SA Thirdly, as shown in the previous description, on the pupil, "in addition to the desired diffraction pattern of = 0, f" f = ± 2 (SA
+SB)だけシフトしたフーリエ変換像が生じる。 + SB) Fourier transform image is produced which is shifted. これは、マスクパターンの高次スペクトルが実質的に低い空間周波数領域に重なってしまうことを意味し、一般に好ましくない。 This means that the higher-order spectrum of the mask pattern overlaps the substantially lower spatial frequency range, generally not preferred. 図1の光学系においてこれを避けるためには、 PA≦1/(1−2・NA/M) とすればよい。 To avoid this in the optical system of FIG. 1 may be PA ≦ 1 / a (1-2 · NA / M). この場合、マスクで回折角2・NA/M In this case, the diffraction angle 2 · NA in the mask / M
で回折された回折光(図1中R1)に対する回折格子A In the diffraction grating A for diffracted diffracted light (in FIG. 1 R1)
による+1次方向の回折光(図1中A1から発する点線に相当)は存在できないからである。 + 1-order direction of diffracted light by the (corresponding to the dotted line emanating from in Fig 1 A1) is can not be present.

【0035】第4に、本発明の光学系では、回折格子導入に伴う収差に注意する必要がある。 [0035] Fourthly, the optical system of the present invention, it should be noted aberration caused by the diffraction grating introduction. 回折格子により発生する収差について、図6を用いて説明する。 The aberration caused by the diffraction grating will be described with reference to FIG. マスク通過後の光線が光軸と回折格子の周期方向を含む面内にあると仮定する(例えば、1次元パターンとコヒーレント照明)。 Assume ray after masking passage is in the plane including the periodic direction of the optical axis and the diffraction grating (e.g., 1-dimensional pattern and coherent illumination). 図6aの光学系が無収差であるためには、例えばOX 123 I、OY 123 I、及びOZ 123 For the optical system of FIG. 6a is no aberration, for example OX 1 X 2 X 3 I, OY 1 Y 2 Y 3 I, and OZ 1 Z 2 Z 3 I
の各光路長の差が0でなければならない。 Difference between the optical path lengths of the must be zero. しかし、これらの間に光路長差があるとこれが収差となる。 However, if there is an optical path length difference between them which is aberration. ここで投影光学系は収差0の理想的な光学系であると仮定すると、X 23 =Y 23 =Z 23より、OX 12 +X 3 I、 Now the projection optical system is assumed to be ideal optics aberrations 0, than X 2 X 3 = Y 2 Y 3 = Z 2 Z 3, OX 1 X 2 + X 3 I,
OY 12 +Y 3 I、及びOZ 12 +Z 3 Iの差が収差となる。 Difference OY 1 Y 2 + Y 3 I , and OZ 1 Z 2 + Z 3 I is aberration. 瞳の直径を横切るOX 123 IからOZ 123 OX 1 X 2 X 3 I from OZ 1 Z 2 Z 3 I across the diameter of the pupil
に至る光路の波面収差をOY 123 Iを基準として規格化した瞳半径座標sに対してプロットすると図6bの実線のようになる。 Plotting the wavefront aberration of the optical path with respect to OY 1 Y 2 Y 3 I pupil radial coordinate s normalized relative to the leading to become a solid line in FIG. 6b. マスク通過後光軸に対して+の角度を有する光線に対する収差w+(s)は瞳上で一般に非対称となることがわかる。 Aberration w + for light having an angle of + the mask passes halo shaft (s) is understood to be a generally asymmetrical on the pupil. 同様に光軸に対して−の角度を有する光線に対する収差w−(s)は、光学系の対称性からw+(s)と瞳を中心として対称となる。 Similarly with respect to the optical axis - aberration w- (s) for the light having an angle of, consists symmetry of the optical system w + (s) and symmetrically around the pupil. 本発明では、 In the present invention,
+方向に回折した光と−方向に回折した光を同時にウエハー上で干渉させる必要があるから、両者に対する収差を同時に補正する必要がある。 + And light diffracted in the direction - because it is necessary to interfere with light diffracted in directions simultaneously on a wafer, it is necessary to correct the aberration to both simultaneously. しかし、図6bからわかるように、+方向と−方向に回折した光に対する瞳上収差が一致しないことから、これらを同時に投影光学系で補正することは原理的に困難となる。 However, as can be seen from Figure 6b, + direction and - since the pupil aberration can not match to light diffracted in the direction and these simultaneously be corrected in the projection optical system is theoretically difficult. 従って、これらの収差は、マスクと投影光学系の間、又はウエハーと基板の間で補正することが好ましい。 Therefore, these aberrations, between the mask and the projection optical system, or it is preferable to correct between the wafer and the substrate. これは、一般に次のような方法で行うことができる。 This can be done in general the following method.

【0036】w+(s)とw−(s)が等しければ、これを投影光学系で補正することが可能である。 [0036] If w + (s) and w- (s) are equal, it is possible to correct this in the projection optical system. そこで、Δw Therefore, Δw
(s)={w+(s)}−{w−(s)}を、瞳上(図6では−1≦s≦1の範囲)で波長と比べて十分に小さい量δ (S) = {w + (s)} - {w- (s)} a, the amount is sufficiently smaller than the wavelength on the pupil (range in FIG. 6 -1 ≦ s ≦ 1) δ
に抑えればよい。 Osaere to. 一方、Δw±(s)は、各回折格子の設置位置と周期、回折格子を支える基板の厚さと屈折率、 On the other hand, [Delta] w ± (s), the installation position and period of the diffraction grating, the thickness and refractive index of the substrate supporting the diffraction grating,
基板と回折格子の相対位置関係等のパラメータxi(i Parameter xi (i relative positional relationship between the substrate and the diffraction grating
=1、2、…)の関数として表される。 = 1,2, expressed as a function of ...). そこで、問題は、−1≦s≦1の範囲で、Δw(s、xi)<δを満たすxiを求めることに帰着する。 Therefore, the problem is in the range of -1 ≦ s ≦ 1, resulting in obtaining the xi satisfying Δw (s, xi) <δ. 実際の最適化の例については実施例で述べる。 For an example of the actual optimization described in the Examples. いずれにせよ、このようにして、マスク通過後光軸に対して±の角度を有する光線に対する収差を瞳上で対称な形とすれば、これを投影光学系において補正することができる。 In any case, this way, if the aberrations symmetrical shape on the pupil for light having an angle of ± respect to the mask passes halo axis, can be corrected in the projection optical system this. 又、さらに上で述べた方法により収差自体を十分に抑制することができれば、より好ましい。 Further, if it is possible to sufficiently suppress the aberration itself by further methods described above, more preferable.

【0037】以上、簡単のためマスクパターンとして1 [0037] As described above, as a mask pattern for the sake of simplicity 1
次元のパターンを想定したが、実際には2次元パターンが存在したり、部分コヒーレント照明を用いた場合には、マスク通過後の光線は、光軸と回折格子の周期方向を含む面内に収まらず、瞳上の様々な点に向かう。 It is assumed the dimensions of the pattern, the actual or there are two-dimensional pattern, the portion in the case of using coherent illumination, rays after masking passage is fit in a plane including a periodic direction of the optical axis the diffraction grating not, going to various points on the pupil. この場合、Δwとして、瞳上の2次元座標(s、t)の関数Δw(s、t)={w+(s、t)}−{w−(s、t)}を考え、瞳面内で、Δw(s、t、xi)<δを満たすxi In this case, as [Delta] w, 2-dimensional coordinates on the pupil (s, t) function Δw (s, t) = {w + (s, t)} - ​​consider {w- (s, t)}, a pupil plane in, Δw (s, t, xi) <satisfy [delta] xi
を求めればよい。 The may be obtained. これは、w±(s、t)を瞳上でs=0 This is, w ± (s, t) and on the pupil s = 0
に対してできるだけ対称な形とすることを意味する。 Means that as much as possible symmetrical shape with respect.

【0038】さらに、全ての方向に対して本発明の効果を得るためには、例えば図7a、bに示すように各回折格子を2次元回折格子とすることが考えられる。 [0038] Further, in order to obtain the effect of the present invention in all directions is, for example, FIG. 7a, it is conceivable that a two-dimensional diffraction grating of each grating as shown in b. この場合、見かけ上の瞳の形は4回対称となる。 In this case, the shape of the pupil of the apparent is four-fold symmetry. しかしながら、上で述べた事情により、互いに垂直な2組の瞳に対して瞳上で同時に収差補正することは、光学系のNAが小さい場合を除いてやや困難である。 However, the circumstances mentioned above, be simultaneously aberration correction on the pupil with respect to the vertical two sets of the pupil from each other, it is somewhat difficult, except when NA of the optical system is small. このため、マスク上ですべての方向に対して同等に本発明の効果を得ることはやや難しく、図8のような1次元回折格子を用いるのがより現実的である。 Therefore, it is somewhat difficult to obtain the effect of equally present invention in all directions on the mask, to use a one-dimensional diffraction grating as shown in FIG. 8 is a more realistic. 図8a、b、cは3つの代表的な回折格子と見かけ上の瞳形状である。 Figure 8a, b, c is the pupil shape of the three representative diffraction grating and apparent. 図8aの場合、 In the case of Figure 8a,
x方向のパターンに対して実質的なNAは2倍近く増大するが、y方向のパターンに対しては減少する。 Substantial NA increases nearly double with respect to the x-direction of the pattern, but decreases with respect to the y-direction of the pattern. 図8b Figure 8b
の場合、x方向のパターンに対して実質的なNAは√2 For, the substantial NA to the x-direction of the pattern √2
倍となり、y方向のパターンに対しては1/√2となる。 Times and will become 1 / √2 for y direction of the pattern. 図8cの場合、x,y両方向ともNAは√2倍となるが、x,y方向以外に対する結像性能は著しくパターン方向に依存すると考えられる。 In FIG. 8c, x, although both y directions NA becomes √2 times, x, the imaging performance for other y-direction will depend significantly pattern direction. 何れの場合にも、マスク上でパターンのレイアウトルール等に方向による制限を課すことが望ましい。 In either case, it is desirable to impose restrictions direction to the layout rules such as the pattern on the mask.

【0039】結像性能のパターン方向依存性をなくすためには、図8a、b、cの条件を、各々例えば90度回転させて多重露光を行ってもよい。 [0039] To eliminate the pattern direction dependence of the imaging performance, FIG. 8a, b, the conditions of c, may be performed multiple exposure by rotating each 90 degrees, for example. 特に、図8cにこれを適用した場合には、x,y方向以外に対するパターン方向依存性を抑制し、かつ像コントラストを犠牲とせずにx,y両方向ともNAを√2倍したのと同等な像を得ることができる。 In particular, when this is applied to Figure 8c, x, to suppress pattern direction dependency on other y-direction, and equivalent to that √2 times x, the both y directions NA without sacrificing image contrast image can be obtained. 但し、回折格子を90度回転させた場合、収差特性も90度回転する。 However, when the diffraction grating is rotated 90 degrees, the aberration characteristic is also rotated 90 degrees. そこで、収差補正を瞳フィルターを用いて行い、回折格子とともにこれを90 Accordingly, performed using the pupil filter aberration correction, which together with the diffraction grating 90
度回転させる等の対策を施すことが望ましい。 It is desirable to take measures such as to degree rotation. なお、収差抑制が困難な場合には、必要に応じて瞳にスリットフィルターを設ける等してもよい。 Incidentally, when aberration suppression is difficult, it may be for example, by providing a slit filter pupil as needed.

【0040】図3に示したように周期型位相シフトマスクを完全コヒーレント照明した場合には、ウエハー近傍で干渉する±1次光の光路は光軸に対して常に対称であり、各々の光路長は等しい。 [0040] When the periodic phase shift mask as shown fully coherent illumination in FIG. 3, the optical path of the interfering ± 1-order light at the wafer vicinity is always symmetrical with respect to the optical axis, each of the optical path length It is equal. 従って、光学系が収差補正されていなくても微細パターン形成可能である。 Therefore, it is also possible fine pattern formation not be an optical system to correct aberrations. 即ち、 In other words,
完全コヒーレント照明下で周期型位相シフトマスクを用いる場合には、図7に示したような2次元回折格子が使用可能で、位相シフトマスクの効果をパターン方向に依らず最大限に発揮することができる。 In the case of using a periodic phase shift mask is under full coherent illumination, can be used two-dimensional diffraction grating as shown in FIG. 7, it is maximized regardless of the effect of the phase shift mask in the pattern direction it can. 様々なパターンの混在するマスクパターンを転写する場合には、微細周期パターンのみを上記方法で露光し、その後その他の部分を従来露光法で露光すればよい。 When transferring a mask pattern to mix the various patterns, only the fine periodic pattern exposure by the above method, after which the other portions may be exposed in the conventional exposure method.

【0041】また、上記収差は一般にNAの値とともに急激に増大する。 Further, the aberrations are generally rapidly increases with the value of the NA. このため、NA0.1〜0.2程度の光学系では比較的問題とならない。 Therefore, not a relatively problem in the optical system of about NA0.1~0.2. 従って、低NA・低倍率の大面積用露光装置や、反射型の軟X線縮小投影露光装置等に適用する場合には、上で述べたような様々な制約が軽減される。 Thus, the low NA · low magnification exposure apparatus for a large area, when applied to a reflection type soft X-ray reduction projection exposure apparatus or the like of a variety of constraints such as described above is reduced.

【0042】以上、本発明は、0次回折光線を中心としたフーリエ回折像の左右片側を各々別々に瞳を通過させ、これを像側で合成するものであるといえる。 [0042] While the present invention is, 0-order diffracted beam, each separately passed through a pupil of the left and right side of the Fourier diffraction pattern, which is centered on said that this is to synthesize the image side. この考え方自体は、前述の文献に論じられている様に既に光学顕微鏡に応用されているものであるが、これを縮小投影光学系の上で実現可能な光学系の構成はこれまで考案されていなかった。 The idea itself is one that is applied to the already light microscopy As discussed in the aforementioned literature have been devised so far the structure of the optical system can be implemented on a reduction projection optical system of this There was no. 本発明は、これを縮小投影露光系においてたくみに実現したものに他ならない。 The present invention is nothing but an implementation skillfully in the reduction projection exposure system of this. 即ち、図1の光学系は、投影光学系とウエハの間に回折格子を設け、 That is, the optical system of FIG. 1, the diffraction grating disposed between the projection optical system and the wafer,
ウエハ面へ入射する光ビームの入射角を大きくするとともに、ウエハ面干渉の結果元のマスクパターンに忠実な像が再生されるように、光学系を構成したものである。 The angle of incidence of the light beam incident to the wafer surface so as to be larger, as faithful image is reproduced Result Original mask pattern on the wafer surface the interference, it is obtained by an optical system.
本発明は、屈折光学系、反射光学系、及びこれらの組合せ、縮小光学系、等倍光学系等、様々な投影光学系に適用できる。 The present invention, refractive optics, reflective optics, and combinations thereof, reduction optical system, magnification optical system and the like, can be applied to a variety of projection optical system. これらの光学系を用いてマスクパターンをウェハー上へ露光する場合の露光方法としても、一括転写、スキャン方式、ステップアンドリピート、ステップアンドスキャン等のいずれにも適用可能である。 Even a mask pattern using these optical systems as an exposure method in the case of exposure on the wafer, bulk transfer, scan method, step-and-repeat, it is applicable to any step-and-scan or the like. 又、以上の説明より明らかなように、本発明は純粋に幾何光学的な効果に基づいている。 Also, as is clear from the above description, the present invention is based on purely geometrical optical effect. 従って、前述のモアレ縞を用いる方法における様なエバネッセント光利用に起因する問題点は生じない。 Therefore, there is no problem caused by the evanescent light use such as in the method using moire fringes above. 又、回折格子はウエハーより離して設置可能で、しかも同期スキャン等の必要もないため、 Further, the diffraction grating can be placed away from the wafer, and since there is no need of synchronizing the scan or the like,
はるかに容易に実現可能である。 It is much more easily achievable.

【0043】 [0043]

【実施例】 【Example】

(実施例1)本発明に基づき、NA=0.45、光源波長λ=248nm、縮小率4:1のスキャン型KrFエキシマレーザ投影露光装置を、図9に模式的に示すように改造した。 Based on (Example 1) The present invention, NA = 0.45, the light source wavelength lambda = 248 nm, the reduction ratio of 4: 1 of the scanning type KrF excimer laser projection exposure apparatus, was modified as shown schematically in FIG. 即ち、マスクステージ100上に設置したマスク101と投影光学系102の間に、両面に位相格子パターンを有する透明石英板103を挿入した。 That is, between the mask 101 and the projection optical system 102 is placed on the mask stage 100, the insertion of the transparent quartz plate 103 having a phase grating pattern on both sides. 又、 or,
ウエハーステージ(試料台)104上に設置したウエハー105と投影光学系102の間に、片面に遮光パターン、もう片面に位相格子パターンを有する透明石英板1 During the wafer stage wafer 105 and the projection optical system 102 was placed on (sample stage) 104, the light-shielding pattern on one surface, a transparent quartz plate having a phase grating pattern on the other surface 1
06を、遮光パターンの側がウエハーに対面するように挿入した。 06, the side of the light-shielding pattern is inserted so as to face the wafer. 遮光パターンは幅300μm周期1mmのC C of the light-shielding pattern has a width 300μm period 1mm
rパターン、位相格子パターンは周期=λ/NAのSi Si of r pattern, a phase grating pattern periodic = lambda / NA
酸化膜パターンとした。 And an oxide film pattern. マスク側透明石英板103上の位相格子パターンの周期は、ウエハー側の4倍である。 Period of the phase grating pattern on the mask-side transparent quartz plate 103 is four times the wafer side.
Si酸化膜厚は、膜の存在部と存在しない部分を透過した光の位相が180度ずれるように設定した。 Si oxide film thickness, the phase of light transmitted through the part that does not exist with the presence of the film is set to be shifted 180 degrees. これらのパターンはEBリソグラフィを用いて、いわゆるクロムレス位相シフトマスクの作製プロセスと同様にして形成した。 These patterns by using an EB lithography was formed in the same manner as in the preparation process of the so-called chromeless phase shift mask. 又、マスクの照明光学系107側に、幅1.2m Further, the illumination optical system 107 side of the mask, width 1.2m
m、周期=4mmの遮光パターンを有する透明石英板1 m, the transparent quartz plate having a light shielding pattern of the cycle = 4 mm 1
08を設けた。 08 and the formed. 上記遮光パターンの遮光領域は、ウエハー側透明石英板106上の遮光パターンと共役となるように設定した。 Shielding region of the light shielding pattern, it was set to be the light-shielding pattern and the conjugate on the wafer-side transparent quartz plate 106.

【0044】透明石英板103両面の位相格子の周期、 The period of the transparent quartz plate 103 on both sides of the phase grating,
各透明石英板の膜厚と設置位置等は、作用の項に述べた意味における投影光学系瞳上の収差が軸対称となるよう、光線追跡プログラムの最適化機能を用いて最適化した。 Thickness and setting position of each of the transparent quartz plate, so that the aberration of the projection optical system pupil in the sense described in the section of the working becomes axisymmetric was optimized using an optimization function of the ray tracing program. さらに、上記軸対称な収差補正のため、収差補正フィルター109を投影光学系の瞳位置に挿入した。 Furthermore, because of the axisymmetric aberration correction, were inserted aberration correction filter 109 to the pupil position of the projection optical system. ここで、収差補正フィルター109は、主に上記回折格子の周期方向と垂直な方向の非点収差を補正するものである。 Here, the aberration correction filter 109 is to primarily correct astigmatism in the periodic direction perpendicular to the direction of the diffraction grating. なお、これらの回折格子等を有する透明石英板と収差補正フィルターは、いずれも交換可能で、所定の位置にすみやかに設定できるようにした。 The transparent quartz plate and aberration correction filter having these diffraction gratings, etc. are all interchangeable, and to be quickly set in place. 又、透明石英板の位置ぎめを正確に行うために、各石英基板のホルダー(図示せず)は微動機構(図示せず)を有し、各石英基板の位置を計測してこれを所望の位置に設定することができる。 The transparent in order to perform the positioning of the quartz plate accurately, the holder (not shown) of each quartz substrate has a fine movement mechanism (not shown), which desired to measure the position of each quartz substrate it can be set to the position. さらに、ウエハーステージ104上に設けたオートフォーカスモニター(図示せず)により像をモニターすることにより、像面上で最適な結像特性が得られるように、モニター結果をフィードバックして各石英基板の位置を調整することも可能とした。 Further, by monitoring the image with auto focus monitor provided on the wafer stage 104 (not shown), so that the optimum image formation characteristic is obtained on the image plane, by feeding back the monitored result of the quartz substrate It was also possible to adjust the position. なお、投影光学系自体をあらかじめ上記回折格子に対して収差補正を施してもよく、この場合には収差補正フィルターは必要ない。 Incidentally, may be subjected to aberration correction in advance to the diffraction grating of the projection optical system itself, the aberration correction filters are not required in this case. 露光は、マスク及びウエハーを同期スキャンしながら行なった。 Exposure was performed while synchronously scanning the mask and wafer. ステージ制御系110は、マスクステージ100とウエハーステージ104を、各々4:1の速度比で同期走査する。 Stage control system 110, a mask stage 100 and wafer stage 104, each 4: synchronously scanning at a first speed ratio.

【0045】上記露光装置を用いて、周期型位相シフトパターンを含む様々な寸法のパターンを有するマスクを、化学増幅系ポジ型レジスト上へ転写した。 [0045] Using the above exposure apparatus, a mask having a pattern of various sizes, including a periodic phase shift pattern was transferred to the chemically amplified positive resist on. 露光後所定の現像処理を行い、走査型電子線顕微鏡で観察した結果、上記位相格子の周期方向(x方向)に対して周期型位相シフトマスクにより寸法90nm(周期180n Performs predetermined development processing after exposure, results were observed with a scanning electron microscope, the dimension by a periodic direction (x direction) with respect to the periodic phase shift mask of the phase grating 90 nm (cycle 180n
m)のレジストパターンが形成できた。 Resist pattern m) was formed. 一方、上記方向と垂直な方向(y方向)の解像度は、位相シフトマスクを用いて寸法140nm(周期280nm)程度であった。 On the other hand, the resolution of the direction perpendicular to the direction (y-direction) was about the size 140 nm (period 280 nm) by using a phase shift mask. そこで、次に、上記3枚の位相格子及び収差補正フィルターを90度回転して同じマスクを露光してレジストパターンを形成したところ、x方向とy方向に対する解像度は逆転した。 Accordingly, next, when a resist pattern was formed by exposing the same mask the three phase gratings and the aberration correction filter rotated 90 degrees, the resolution with respect to the x and y directions were reversed.

【0046】なお、上の実施例は、光学系の種類、N [0046] Incidentally, the above examples, the type of optical system, N
A、光源波長、縮小率、レジスト、マスクパターンの種類と寸法、回折格子と遮光パターンの周期や設置位置等、きわめて限定されたものであるが、これらの各種条件は本発明の主旨に反しない範囲内で様々に変更可能である。 A, the wavelength of light source, the reduction ratio, resist, type and dimensions of the mask pattern, cycle and installation position of the diffraction grating and the light-shielding pattern, but one which is very limited, these various conditions is not contrary to the gist of the present invention It can be variously modified within the scope.

【0047】(実施例2)次に、回折格子導入に伴う収差の影響が最小となるよう、光学系を最適化した例を示す。 [0047] (Embodiment 2) Next, as the influence of aberration due to the diffraction grating introduction is minimized, shows an example of optimizing the optical system. 図10の光学系において、O、Iは、回折格子を導入した光学系のマスク面と像面、Σ、Σ'は回折格子を導入しない投影光学系のマスク面と像面、hi(i=1 In the optical system of FIG. 10, O, I, the mask surface and the image plane of the optical system by introducing the diffraction grating, sigma, sigma 'is a mask surface of the projection optical system does not introduce a diffraction grating image plane, hi (i = 1
〜6)は図中の距離を示す。 6) is the distance in FIG. 回折格子A、B、Cとウエハー直上の遮光パターンは実施例1同様透明石英基板の両面に形成した。 Diffraction grating A, B, the light-shielding pattern just above C and the wafer was formed on both sides of the first embodiment similarly transparent quartz substrate. このとき、マスク通過後に光軸に対して±の角度を有する光線に対する横収差w±(s)は、規格化瞳半径座標sの関数として次のように表される。 At this time, lateral aberration w ± for light having an angle of ± with respect to the optical axis after the mask passage (s) is expressed as a function of the normalized pupil radius coordinate s as follows.

【0048】 w±(s)=wu±(s)+ws±(s) wu±(s)=C 11 +C 2 (s 1 )h 2 +C 55 +C 66 [0048] w ± (s) = wu ± (s) + ws ± (s) wu ± (s) = C 1 h 1 + C 2 (s 1) h 2 + C 5 h 5 + C 6 h 6 ws±(s)=C 33 +C 44 ws ± (s) = C 3 h 3 + C 4 h 4 1 =tan[(s±s 0 )/M]/M、C 2 =tan[±(s 1 /n)-(s±s 0 )/(nM)]/M、 C 3 =tan[s/M]/M、C 4 =tan(s)、 C 5 =tan[(s±s 0 )/n]、C 6 =tan(s±s 0 ) ここで、wuは瞳上でs=0に対して非対称な成分、w C 1 = tan [(s ± s 0) / M] / M, C 2 = tan [± (s 1 / n) - (s ± s 0) / (nM)] / M, C 3 = tan [s / M] / M, C 4 = tan (s), C 5 = tan [(s ± s 0) / n], C 6 = tan (s ± s 0) where, wu is s = 0 on the pupil asymmetric component with respect to, w
sは対称な成分を表す。 s represents a symmetrical component. 但し、s 0 =NA、s 1 =λ/P However, s 0 = NA, s 1 = λ / P
Aである。 It is A. 0 (NA)、縮小倍率M、透明石英基板の屈折率nはシステム固有の値とすると、上式は7つの最適化パラメータ、hi(i=1〜6)及びs 1を含む。 s 0 (NA), including reduction magnification M, the refractive index n of the transparent quartz substrate when the system-specific value, the above equation seven optimization parameters, hi (i = 1~6) and s 1. そこで、wu±(s)、ws±(s)に対して収差を最小とすべく7つの拘束条件を課すことにより、これらの値を最適化した。 Therefore, wu ± (s), ws by imposing seven constraints in order to aberrations minimized relative to ± (s), and optimize these values. いくつかのNAに対する最適化結果の一例を表1に示す。 Table 1 shows an example of the optimization results for a number of NA. 但し、収差はh 5 /λを単位とする波面収差で表した。 However, the aberration was expressed in the wavefront aberration in units of h 5 / λ.

【0049】 [0049]

【表1】 [Table 1]

【0050】表からわかるように、NA=0.4においても十分に収差を抑えることが可能であった。 [0050] As seen from Table, it was possible to suppress sufficiently aberration in NA = 0.4. 同様の最適化は、回折格子A、Bが各々別の透明基板上に設けられている場合等、様々な配置に対して行うことができる。 Similar optimization, etc. when the diffraction grating A, B are provided on respective separate transparent substrate can be made to the various configurations. さらに、新たな透明基板や回折格子を導入することにより最適化のパラメータを増やすことにより、さらに厳しい収差条件を満足させることができる。 Further, by increasing the parameter optimization by introducing a new transparent substrate and a diffraction grating, it is possible to satisfy the more severe aberrations conditions.

【0051】(実施例3)次に、実施例1に示した露光装置を用いて、0.1μm設計ルールのDRAMを作成した例について述べる。 [0051] (Embodiment 3) Next, using the exposure device shown in Embodiment 1 describes an example that created the DRAM of 0.1μm design rule. 図11は、上記デバイスの作製工程を露光プロセスを中心に示したものである。 Figure 11 is a diagram showing a manufacturing process of the device around the exposure process.

【0052】まず、ウエル等(図示せず)を形成したS Firstly, to form the wells or the like (not shown) S
i基板201上にアイソレーション202及びゲート2 Isolation on the i-substrate 201 202 and the gate 2
03を形成した(図11a)。 03 was formed (FIG. 11a). アイソレーション及びゲートパターンは周期型位相シフトマスクを用い、実施例1に示した露光装置により露光した。 Isolation and gate patterns using periodic phase shift mask, and exposed by the exposure apparatus shown in Example 1. ここで、シミュレーションにより周期パターンの周辺部においてパターン形状が歪む部分が生じることが予測されたため、この不要部分を除去するためのマスクを用意した。 Here, since the portion where the pattern shape is distorted occurs is predicted in the peripheral portion of the periodic pattern by simulation was prepared mask for removing the unnecessary portion. 上記マスクを上記露光を行ったものと同一レジスト膜に対して従来露光装置を用いて重ね露光した後現像して、回路性能上好ましくない部分を除去した。 The mask and developed after exposure overlaid with a conventional exposure apparatus for the same resist film as subjected to the exposure, to remove the circuit performance undesirable portion. なお、上記不要部分を除去せずに、回路的に無視することによって対処してもよい。 Incidentally, without removing the unnecessary portion may be addressed by ignoring the circuit manner.

【0053】次に、キャパシター204及びコンタクトホール205を形成した(図11b)。 Next, to form the capacitor 204 and the contact hole 205 (FIG. 11b). コンタクトホールのパターン露光には、電子線直接描画法を用いた。 The pattern exposure of the contact hole, using an electron beam direct drawing method. 次に、第1層配線206、スルーホール(図示せず)、第2層配線207を形成した(図11c)。 Next, the first layer wiring 206, a through hole (not shown) to form a second layer wiring 207 (FIG. 11c). 第1層配線(0.1μmL/S)は周期型位相シフトマスクと実施例1に示した露光装置を用いて露光した。 The first layer wiring (0.1μmL / S) was exposed using the exposure apparatus shown in Example 1 and the periodic phase shift mask. 但し、ここで各回折格子の方向と寸法を図9cに示したものに変更し、さらにこれを90度回転させて多重露光を行った。 However, here is changed as the direction and size of the diffraction grating shown in FIG. 9c, were multiple exposure is further rotated it 90 degrees.
このとき、同時に収差補正フィルター109も回折格子とともに90度回転させた。 At this time, it rotated 90 degrees with the diffraction grating aberration correction filter 109 at the same time. これにより、縦横の両方向に延びる配線に対して方向依存性なしに0.1μmL/ Thus, 0.1MyumL without direction dependence on lines extending in both the vertical and horizontal /
Sを形成できた。 It was able to form a S. スルーホールの形成はコンタクトホールと同様、電子線直接描画法を用いた。 Formation of through holes as well as the contact hole, using an electron beam direct drawing method. 以降の多層配線パターン及びファイナルパッシベーションパターンは0.2μmルールで設計されており、本発明を用いない通常のKrFエキシマレーザ投影露光法により形成した。 Subsequent multilayer wiring pattern and final passivation pattern is designed with 0.2μm rule was formed by a conventional KrF excimer laser projection exposure method without using the present invention. なお、デバイスの構造、材料等に関し、上記実施例で用いたものにとらわれず変更可能である。 The structure of the device relates to materials, which can be changed regardless to that used in the above embodiment.

【0054】(実施例4)次に、本発明の別の実施例として、本発明を分布帰還型(DFB)レーザーの製作に適用した例について述べる。 [0054] (Embodiment 4) Next, another embodiment of the present invention will be described an example of applying the present invention to manufacture of distributed feedback (DFB) laser. 露光装置には、NA0.5 The exposure apparatus, NA0.5
のArFエキシマレーザ縮小投影露光装置を実施例1同様にして改造したものを用いた。 The ArF excimer laser reduction projection exposure apparatus used was modified in the same manner as in Example 1. 従来の1/4波長シフトDFBレーザーの作製工程において、電子線描画法等を用いて形成していた周期140nmの回折格子を、周期型位相シフトマスクと上記露光装置を用いて形成した。 In a manufacturing process of a conventional quarter-wave shifted DFB lasers, the periodic 140nm of the diffraction grating has been formed by using an electron beam drawing method or the like, is formed using a periodic phase shift mask and the exposure device. これにより、電子線描画法等を用いて作製したものとほぼ同等の性能を有するDFBレーザーを、より短期間で製作することが可能となった。 Thus, the DFB laser having approximately the same performance as that produced by using an electron beam lithography method, it becomes possible to more production in a short period of time.

【0055】 [0055]

【発明の効果】以上、本発明によれば、照明光学系を介して光をマスクに照射し、マスクパターンを投影光学系により基板上へ結像させてパターンを形成する際、上記基板と上記投影光学系の間に上記基板と平行に回折格子を設けるとともに、上記回折格子により回折された光の干渉により基板面近傍でマスクパターンの像が再生されるように、投影光学系とマスクの間又はマスクと照明光学系の間に回折格子又は結像光学系を設けることにより、従来露光装置の解像限界を越えた微細パターンの形成が可能となる。 Effect of the Invention] According to the present invention, when irradiated with light mask via the illumination optical system, to form a pattern is imaged onto a substrate a mask pattern by the projection optical system, the substrate and the with provision of the substrate and parallel to the diffraction grating between the projection optical system, so that the image of the mask pattern in the substrate plane near is reproduced by the interference of the diffracted light by the diffraction grating, between the projection optical system and the mask or by providing a diffraction grating or an imaging optical system between the mask and the illumination optical system, to form a fine pattern exceeding the resolution limit of a conventional exposure apparatus can be realized. 具体的には、投影光学系のNAを変えることなしに、そのNAを実質的に最大2倍にしたのとほぼ同等の効果が得られる。 More specifically, without changing the NA of the projection optical system, substantially the same effect is obtained as that in the substantially up to twice the NA. これにより、従来露光装置の光学系の基本的な構成を大きく変更することなく、大きな露光フィールドと高い解像力が得られ、大量生産に適した縮小投影光リソグラフィを用いて、寸法0.1μ Thus, without greatly changing the basic structure of an optical system of a conventional exposure device, a large exposure field and high resolution can be obtained, using a reduction projection optical lithography suitable for mass production, the dimensions 0.1μ
mクラスのLSIの製造が可能となる。 Production of LSI of m class is possible.

【0056】 [0056]

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明による一光学系の結像の原理を幾何学的に示す模式図である。 1 is a schematic diagram illustrating geometrically the principle of imaging one optical system according to the present invention.

【図2】各種従来露光法による結像の原理を示す模式図である。 2 is a schematic diagram showing the principle of imaging with various conventional exposure method.

【図3】本発明による一光学系に位相シフトマスク又は斜め照明法を適用した場合の結像の原理を示す模式図である。 3 is a schematic view to an optical system according to the present invention showing the principle of imaging in the case of applying a phase shift mask or an oblique illumination method.

【図4】本発明による一光学系の結像の原理を回折光学的に示す模式図である。 Is a schematic diagram showing the principle diffraction optical imaging one optical system according to the present invention; FIG.

【図5】本発明による一光学系の一部分と露光方法の一例を示す模式図である。 5 is a schematic diagram showing an example of a portion the exposure method of an optical system according to the present invention.

【図6】本発明による一光学系の特性を示す模式図である。 Is a schematic diagram showing a characteristic of the first optical system according to the present invention; FIG.

【図7】本発明で用いる光学部品とそれにより得られる効果を示す模式図である。 7 is a schematic diagram showing the optical components and thereby obtain the effect used in the present invention.

【図8】本発明で用いる光学部品とそれにより得られる効果を示す模式図である。 8 is a schematic diagram showing the optical components and thereby obtain the effect used in the present invention.

【図9】本発明の一実施例による露光装置の構成を示す模式図である。 Is a schematic diagram showing the arrangement of an exposure apparatus according to an embodiment of the present invention; FIG.

【図10】本発明の別の実施例の特性を示す図である。 Is a diagram showing characteristics of another embodiment of the present invention; FIG.

【図11】本発明の別の実施例によるデバイス作製工程を示す模式図である。 11 is a schematic diagram showing a device manufacturing process according to another embodiment of the present invention.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…マスク、2…投影光学系、3…瞳、4…ウエハー、 1 ... mask, 2 ... projection optical system, 3 ... pupil, 4 ... wafer,
5、20…絞り、6、29…光軸、A、B、C…回折格子、R…光、R0、R0'…0次回折光、R1、R+、 5,20 ... iris, 6, 29 ... optical axis, A, B, C ... diffraction grating, R ... light, R0, R0 '... 0-order diffracted light, R1, R +,
R1”…+1次回折光、R1'、R−…−1次回折光、 R1 "... + 1-order diffracted light, R1 ', R- ... -1-order diffracted light,
A0、A1…回折格子A上の点、B0、B1…回折格子B上の点、C0、C1、C1'…回折格子C上の点、 A0, A1 ... point on the diffraction grating A, B0, B1 ... point on the diffraction grating B, C0, C1, C1 '... point on the diffraction grating C,
Q、P、Q'…像面上の点、21…従来透過型マスク、 Q, P, Q '... point on the image plane, 21 ... conventional transmission mask,
22…光、23…投影光学系、24…瞳、25…像面、 22 ... light, 23 ... projection optical system, 24 ... pupil, 25 ... image surface,
26…周期型位相シフトマスク、27…マスク回折光の0次光、28…+1次光、51…像面、52…遮光マスク、53…石英基板、O…マスク上の点、X 1 、Y 1 、Z 26 ... periodic phase shift mask, the zero-order light of 27 ... mask diffracted light, 28 ... + 1-order light, 51 ... image surface, 52 ... light shielding mask, 53 ... a quartz substrate, a point on the O ... mask, X 1, Y 1, Z
1 …回折格子A上の点、X 2 、Y 2 、Z 2 …回折格子B上の点、X 3 、Y 3 、Z 3 …回折格子C上の点、I…像面上の点、100…マスクステージ、101…マスク、102 1 ... point on the diffraction grating A, X 2, Y 2, Z 2 ... point on the diffraction grating B, X 3, Y 3, Z 3 ... a point on the diffraction grating C, a point on the I ... image surface, 100 ... mask stage, 101 ... mask, 102
…投影光学系、103…透明石英板、104…ウエハーステージ(試料台)、105…ウエハー、106…透明石英板、107…照明光学系、108…透明石英板、1 ... projection optical system, 103 ... transparent quartz plate, 104 ... wafer stage (sample stage), 105 ... wafer, 106 ... transparent quartz plate, 107 ... illumination optical system, 108 ... transparent quartz plate, 1
09…収差補正フィルター、110…ステージ制御系、 09 ... aberration correction filter, 110 ... stage control system,
201…Si基板、202…アイソレーション、203 201 ... Si substrate, 202 ... Isolation, 203
…ゲート、204…キャパシター、205…コンタクトホール、206…第1層配線、207…第2層配線。 ... gate, 204 ... capacitor, 205 ... contact hole, 206 ... first wiring layer, 207 ... second layer wiring.

Claims (23)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】マスクを準備する工程と、光源からの光を上記マスクに照射する工程と、 上記マスクのパターンを回折する工程と、 該回折した光を投影光学系を通して回折し試料上に上記マスクパターンを再生し露光する工程から成ることを特徴とする投影露光方法。 1. A a step of preparing a mask, irradiating the light from the light source to the mask to the diffraction pattern of the mask, the light that is the diffracted diffracted on the sample through the projection optical system projection exposure method characterized by comprising the step of reproducing the mask pattern exposure.
  2. 【請求項2】上記回折する工程として2回回折することを特徴とする請求項1記載の投影露光方法。 2. A projection exposure method according to claim 1, wherein the diffracting twice as steps of the diffraction.
  3. 【請求項3】光源と、 該光源からの光でマスク上のパターンを照射し、該マスクからの光を回折する第1と第2の回折手段と、 回折した光を試料上に投影する投影光学系と、 該投影光学系からの光を回折する第3の回折手段と、 該第3の回折手段の下に配置された試料を載置する試料台からなることを特徴とする投影露光装置。 3. A light source illuminates the pattern on the mask with light from a light source, a first and second diffraction means for diffracting the light from the mask, a projection that projects diffracted light on the sample an optical system, a projection exposure apparatus, wherein the third diffraction means for diffracting the light from the projection optical system, in that it consists of a sample stage for placing a sample placed beneath the diffraction means the third .
  4. 【請求項4】上記第1と第2の回折手段は位相格子であることを特徴とする請求項3記載の投影露光装置。 Wherein said first and second diffraction means projection exposure apparatus according to claim 3, characterized in that the phase grating.
  5. 【請求項5】光源を発した波長λの光を照明光学系を介してマスクに照射し、上記マスク上のパターンを開口数NA、縮小率M:1の投影光学系により基板上へ結像させることにより上記基板上にパターンを形成する方法において、上記基板と上記投影光学系の間に上記基板と平行な第1の回折格子を有し、前記第1の回折格子により回折された光の干渉により基板面近傍でマスクパターンの像が再生されるように、上記マスクと上記照明光学系の間に、上記マスクと平行に、上記マスク側から順に第2の回折格子と第3の回折格子の2枚の回折格子を設けることを特徴とする投影露光方法。 5. irradiating a mask with light of wavelength λ emitted light source via an illumination optical system, the pattern on the mask aperture NA, the reduction ratio M: imaging to 1 of the projection optical system by the substrate a method of forming a pattern on the substrate by, has a first diffraction grating parallel to the substrate between the substrate and the projection optical system, it has been the light diffracted by the first diffraction grating interference by such image of the mask pattern in the substrate plane near is played, between the mask and the illumination optical system, in parallel with the mask, the second diffraction grating in order from the mask side and the third diffraction grating projection exposure method characterized by providing two diffraction gratings.
  6. 【請求項6】前記回折格子を設けた光学系の遮断空間周波数fが、前記回折格子を設けない光学系の遮断空間周波数f0より大きく、かつf0の2倍以下であることを特徴とする請求項5記載の投影露光方法。 6. cutoff spatial frequency f of the optical system provided with the diffraction grating is greater than the cut-off spatial frequency f0 of the optical system not provided with the diffraction grating, and is equal to or less than twice the f0 claims the projection exposure method as in claim 5, wherein.
  7. 【請求項7】前記第1の回折格子の空間周期P1は、 λ/(1.42・NA)≦P1≦λ/NA の範囲にあることを特徴とする請求項5記載の投影露光方法。 Wherein said spatial period P1 of the first diffraction grating, λ / (1.42 · NA) projection exposure method according to claim 5, wherein a is in the range of ≦ P1 ≦ λ / NA.
  8. 【請求項8】上記第1、第2及び第3の回折格子の周期方向は等しく、上記第1の回折格子の空間周期P1、第2の回折格子の空間周期P2、第3の回折格子の空間周期P3は、ほぼ 1/P3=1/P2−1/(M・P1) の関係を満たすことを特徴とする請求項5記載の投影露光方法。 8. The first, second and third periodic direction of the diffraction grating equal, the spatial period P1 of the first diffraction grating, the spatial period P2 of the second diffraction grating, the third diffraction grating spatial period P3 is approximately 1 / P3 = 1 / P2-1 / projection exposure method according to claim 5, wherein a satisfying (M · P1) relationship.
  9. 【請求項9】上記第1の回折格子の上記基板表面から光学距離Z1、及び、上記第2、第3の回折格子の上記マスク表面から光学距離Z2、Z3は、ほぼ (Z3−Z2)/P2=(Z3/M+Z1・M)/P1 の関係を満たすことを特徴とする請求項5記載の投影露光方法。 9. The optical distance from the first of the substrate surface of the diffraction grating Z1 and, said second optical distance Z2, Z3 from the mask surface of the third diffraction grating is approximately (Z3-Z2) / P2 = (Z3 / M + Z1 · M) / P1 projection exposure method according to claim 5, wherein a satisfies the relationship.
  10. 【請求項10】上記第1の回折格子、上記第2の回折格子、及び上記第3の回折格子の各設置位置、上記第1の回折格子、上記第2の回折格子、及び上記第3の回折格子を設ける各透明基板の膜厚、及び上記第2の回折格子の周期を、前記投影光学系のNA及び縮小倍率、各回折格子と上記基板の位置関係に応じて、上記マスク面と像面の間の収差が最小となるように設定したことを特徴とする請求項5記載の投影露光方法。 10. The first diffraction grating, the second diffraction grating, and the installation position of the third diffraction grating, the first diffraction grating, the second diffraction grating, and the third the thickness of the transparent substrate provided with a diffraction grating, and the second period of the diffraction grating, NA and reduction ratio of the projection optical system, depending on the positional relationship between the diffraction grating and the substrate, the mask plane and the image the projection exposure method according to claim 5, wherein the aberration between the faces was set to be minimized.
  11. 【請求項11】前記第2の回折格子の空間周期P2は、 P2≦1/(1−2・NA/M) を満たすことを特徴とする請求項5記載の投影露光方法。 11. The spatial period P2 of the second diffraction grating, the projection exposure method according to claim 5, wherein a satisfying P2 ≦ 1 / (1-2 · NA / M).
  12. 【請求項12】前記第2及び第3の回折格子は、位相格子であることを特徴とする請求項5記載の投影露光方法。 Wherein said second and third diffraction grating of the projection exposure method according to claim 5, wherein it is a phase grating.
  13. 【請求項13】前記第1の回折格子は、位相格子であることを特徴とする請求項5記載の投影露光方法。 Wherein said first diffraction grating, the projection exposure method according to claim 5, wherein it is a phase grating.
  14. 【請求項14】前記基板と前記第1の回折格子の間に、 14. between said substrate and said first diffraction grating,
    前記一方向に対する幅がZ1・NA以下で、空間周期がほぼ2・Z1・NAの第1の遮光パタ−ンを設けるとともに、前記マスクの直上又は直下に、マスク上の上記第1 Wherein a width of less than Z1 · NA for one direction, the first light-shielding pattern of approximately 2 · Z1 · NA is the spatial period - provided with a down, immediately above or immediately below the mask, the first on the mask
    の遮光パタ−ンとほぼ共役な領域を遮光する第2の遮光パタ−ンを設けて露光領域を制限するか、又は、上記制限された露光領域を基板上で走査して露光するか、もしくはステップ状に移動しながら露光することを特徴とする請求項5記載の投影露光方法。 Shielding pattern of - ting a second light-blocking pattern which blocks substantially conjugate region - or to limit the exposure region by providing a down, or either exposed by scanning the limited exposure region on the substrate, or the projection exposure method according to claim 5, wherein the exposure while moving stepwise.
  15. 【請求項15】前記回折格子は1次元回折格子であり、 15. The diffraction grating is one-dimensional diffraction grating,
    前記投影光学系の波面収差が、瞳上での上記回折格子の周期方向と垂直な方向の直径を軸として、線対称となるように収差補正されていることを特徴とする請求項5記載の投影露光方法。 Wavefront aberration of the projection optical system, as an axis the periodic direction perpendicular to the direction of the diameter of the diffraction grating on the pupil, according to claim 5, characterized in that it is the aberration corrected so as to be line symmetry projection exposure method.
  16. 【請求項16】前記マスクは、周期型位相シフトマスクを含むことを特徴とする請求項5記載の投影露光方法。 16. The mask, the projection exposure method according to claim 5, characterized in that it comprises a periodic phase shift mask.
  17. 【請求項17】前記マスクは、前記第1の回折格子の周期及び方向に応じて、特定方向に微細なパターンを有することを特徴とする請求項5記載の投影露光方法。 17. The mask, the first in accordance with the period and the direction of the diffraction grating, the projection exposure method according to claim 5, characterized by having a fine pattern in a specific direction.
  18. 【請求項18】前記マスクは、前記第1の回折格子の周期及び方向に応じて、パターン形状を補正したことを特徴とする請求項5記載の投影露光方法。 18. The mask, in accordance with the period and the direction of the first diffraction grating, the projection exposure method according to claim 5, wherein the correcting the pattern shape.
  19. 【請求項19】前記第1の回折格子と前記基板の間を、 19. between the substrate and the first diffraction grating,
    屈折率nが1より大きい液体で満たし、前記投影光学系のNAを、 0.5<NA<n/2 の範囲に設定したことを特徴とする請求項5記載の投影露光方法。 Filled refractive index n is greater than 1 the liquid, the NA of the projection optical system, 0.5 <NA <projection exposure method according to claim 5, wherein the set in the range of n / 2.
  20. 【請求項20】光源を発した波長λの光をマスクステージ上のマスクに照射する照明光学系と上記マスク上のパターンを基板ステージ上の基板表面近傍で結像させる開口数NA、縮小率M:1の投影光学系を有する投影露光装置において、上記基板と上記投影光学系の間に上記基板と平行な第1の空間周期P1(λ/(1.42・N 20. numerical aperture NA for focusing the pattern on the illumination optical system and the mask is irradiated with light of wavelength λ emitted light source to the mask on the mask stage at the substrate surface near the substrate stage, the reduction ratio M : in a projection exposure apparatus having a projection optical system, a first spatial period parallel to the substrate between the substrate and the projection optical system P1 (λ / (1.42 · N
    A)≦P1≦λ/NA)の第1回折格子を有し、上記第1の回折格子により回折された光の干渉により基板面近傍でマスクパターンの像が再生されるように、上記マスクと上記照明光学系の間に、上記マスクと平行に、上記マスク側から順に第2の回折格子と第3の回折格子の2 It has a first diffraction grating A) ≦ P1 ≦ λ / NA), so that the image of the mask pattern in the substrate plane near the interference of the diffracted light by the first diffraction grating is reproduced, and the mask between said illumination optical system, in parallel with the mask, the second diffraction grating and third diffraction grating in order from the mask side 2
    枚の回折格子を有することを特徴とする投影露光装置。 Projection exposure apparatus characterized by having a single diffraction grating.
  21. 【請求項21】上記第1、第2及び第3の回折格子の周期方向は等しく、上記第1の回折格子の空間周期P1、 21. The first, second and third periodic direction of the diffraction grating of equal spatial periods of the first diffraction grating P1,
    第2の回折格子の空間周期P2、第3の回折格子の空間周期P3は、ほぼ 1/P3=1/(M・P1)+1/P2 の関係を満たすことを特徴とする請求項20記載の投影露光装置。 Spatial period P2 of the second diffraction grating, the spatial period P3 of the third diffraction grating of claim 20, wherein a satisfies the relationship approximately 1 / P3 = 1 / (M · P1) + 1 / P2 projection exposure apparatus.
  22. 【請求項22】上記第1の回折格子、上記第2の回折格子、及び上記第3の回折格子の各設置位置、上記第1の回折格子、上記第2の回折格子、及び上記第3の回折格子を設ける各透明基板の膜厚、及び上記第2の回折格子の周期を、前記投影光学系のNA及び縮小倍率、各回折格子と上記基板の位置関係に応じて、上記マスク面と像面の間の収差が最小となるように設定したことを特徴とする請求項20記載の投影露光装置。 22. The first diffraction grating, the second diffraction grating, and the installation position of the third diffraction grating, the first diffraction grating, the second diffraction grating, and the third the thickness of the transparent substrate provided with a diffraction grating, and the second period of the diffraction grating, NA and reduction ratio of the projection optical system, depending on the positional relationship between the diffraction grating and the substrate, the mask plane and the image projection exposure apparatus according to claim 20, wherein the aberration between the faces was set to be minimized.
  23. 【請求項23】前記基板と前記第1の回折格子の間に、 23. between said substrate and said first diffraction grating,
    前記一方向に対する幅がZ1・NA以下で、空間周期がほぼ2・NA・Z1の遮光パタ−ンを有するか、又は、 Wherein a width of less than Z1 · NA for one direction, the light blocking pattern of substantially spatial period 2 · NA · Z1 - or with a down, or,
    上記遮光パタ−ンにより制限された露光領域を基板上で走査して露光するか、もしくはステップ状に移動しながら露光する機能を有することを特徴とする請求項20記載の投影露光装置。 The light shielding pattern - a limited exposure area is exposed by scanning on a substrate by emissions or, or a projection exposure apparatus according to claim 20, wherein a has a function of exposure while moving stepwise.
JP7121115A 1995-05-19 1995-05-19 Method and apparatus for projection exposing Pending JPH08316125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7121115A JPH08316125A (en) 1995-05-19 1995-05-19 Method and apparatus for projection exposing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7121115A JPH08316125A (en) 1995-05-19 1995-05-19 Method and apparatus for projection exposing

Publications (1)

Publication Number Publication Date
JPH08316125A true JPH08316125A (en) 1996-11-29

Family

ID=14803263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7121115A Pending JPH08316125A (en) 1995-05-19 1995-05-19 Method and apparatus for projection exposing

Country Status (1)

Country Link
JP (1) JPH08316125A (en)

Cited By (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046337B2 (en) 2002-12-10 2006-05-16 Canon Kabushiki Kaisha Exposure apparatus and method
WO2006064900A1 (en) * 2004-12-17 2006-06-22 Nikon Corporation Exposure method and apparatus, and device manufacturing method
WO2006090807A1 (en) * 2005-02-25 2006-08-31 Nikon Corporation Exposure method and apparatus, and electronic device manufacturing method
US7251017B2 (en) 2003-04-10 2007-07-31 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US7268854B2 (en) 2003-02-26 2007-09-11 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2007311783A (en) * 2006-05-15 2007-11-29 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
JP2008502127A (en) * 2004-06-04 2008-01-24 カール・ツァイス・エスエムティー・アーゲー Projection system and the compensation element therefor involves compensation of intensity variation
US7339650B2 (en) 2003-04-09 2008-03-04 Nikon Corporation Immersion lithography fluid control system that applies force to confine the immersion liquid
US7352440B2 (en) 2004-12-10 2008-04-01 Asml Netherlands B.V. Substrate placement in immersion lithography
US7375796B2 (en) 2004-04-01 2008-05-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7379158B2 (en) 2002-12-10 2008-05-27 Nikon Corporation Exposure apparatus and method for producing device
US7394521B2 (en) 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7397532B2 (en) 2003-04-10 2008-07-08 Nikon Corporation Run-off path to collect liquid for an immersion lithography apparatus
US7414794B2 (en) 2003-04-17 2008-08-19 Nikon Corporation Optical arrangement of autofocus elements for use with immersion lithography
US7433019B2 (en) 2003-07-09 2008-10-07 Nikon Corporation Exposure apparatus and device manufacturing method
US7436486B2 (en) 2002-12-10 2008-10-14 Nikon Corporation Exposure apparatus and device manufacturing method
US7443482B2 (en) 2003-04-11 2008-10-28 Nikon Corporation Liquid jet and recovery system for immersion lithography
US7450217B2 (en) 2005-01-12 2008-11-11 Asml Netherlands B.V. Exposure apparatus, coatings for exposure apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby
US7456929B2 (en) 2004-10-15 2008-11-25 Nikon Corporation Exposure apparatus and device manufacturing method
US7466392B2 (en) 2002-12-10 2008-12-16 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7471371B2 (en) 2003-03-25 2008-12-30 Nikon Corporation Exposure apparatus and device fabrication method
US7486381B2 (en) 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7522259B2 (en) 2003-04-11 2009-04-21 Nikon Corporation Cleanup method for optics in immersion lithography
US7589820B2 (en) 2002-12-10 2009-09-15 Nikon Corporation Exposure apparatus and method for producing device
US7697110B2 (en) 2004-01-26 2010-04-13 Nikon Corporation Exposure apparatus and device manufacturing method
US7697111B2 (en) 2003-08-26 2010-04-13 Nikon Corporation Optical element and exposure apparatus
US7700268B2 (en) 2003-12-17 2010-04-20 Panasonic Corporation Exposure system and pattern formation method using the same
US7705968B2 (en) 2005-03-18 2010-04-27 Nikon Corporation Plate member, substrate holding device, exposure apparatus and method, and device manufacturing method
US7803516B2 (en) 2005-11-21 2010-09-28 Nikon Corporation Exposure method, device manufacturing method using the same, exposure apparatus, and substrate processing method and apparatus
US7804576B2 (en) 2004-12-06 2010-09-28 Nikon Corporation Maintenance method, maintenance device, exposure apparatus, and device manufacturing method
US7812926B2 (en) 2005-08-31 2010-10-12 Nikon Corporation Optical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice
US7839485B2 (en) 2006-01-19 2010-11-23 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US7852456B2 (en) 2004-10-13 2010-12-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7872730B2 (en) 2006-09-15 2011-01-18 Nikon Corporation Immersion exposure apparatus and immersion exposure method, and device manufacturing method
US7876418B2 (en) 2002-12-10 2011-01-25 Nikon Corporation Optical element and projection exposure apparatus based on use of the optical element
US7924416B2 (en) 2005-06-22 2011-04-12 Nikon Corporation Measurement apparatus, exposure apparatus, and device manufacturing method
US7932996B2 (en) 2003-10-28 2011-04-26 Nikon Corporation Exposure apparatus, exposure method, and device fabrication method
US7948604B2 (en) 2002-12-10 2011-05-24 Nikon Corporation Exposure apparatus and method for producing device
US7973910B2 (en) 2006-11-17 2011-07-05 Nikon Corporation Stage apparatus and exposure apparatus
US8004652B2 (en) 2004-10-18 2011-08-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8013975B2 (en) 2006-12-01 2011-09-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8023100B2 (en) 2004-02-20 2011-09-20 Nikon Corporation Exposure apparatus, supply method and recovery method, exposure method, and device producing method
US8035800B2 (en) 2006-03-13 2011-10-11 Nikon Corporation Exposure apparatus, maintenance method, exposure method, and method for producing device
US8035799B2 (en) 2004-12-09 2011-10-11 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US8035797B2 (en) 2003-09-26 2011-10-11 Nikon Corporation Projection exposure apparatus, cleaning and maintenance methods of a projection exposure apparatus, and device manufacturing method
US8040489B2 (en) 2004-10-26 2011-10-18 Nikon Corporation Substrate processing method, exposure apparatus, and method for producing device by immersing substrate in second liquid before immersion exposure through first liquid
US8040490B2 (en) 2006-12-01 2011-10-18 Nikon Corporation Liquid immersion exposure apparatus, exposure method, and method for producing device
US8054465B2 (en) 2004-11-18 2011-11-08 Nikon Corporation Position measurement method
US8064039B2 (en) 2005-04-25 2011-11-22 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US8064037B2 (en) 2003-08-21 2011-11-22 Nikon Corporation Immersion exposure apparatus and device manufacturing method with no liquid recovery during exposure
US8064044B2 (en) 2004-01-05 2011-11-22 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US8070145B2 (en) 2005-08-26 2011-12-06 Nikon Corporation Holding unit, assembly system, sputtering unit, and processing method and processing unit
US8089608B2 (en) 2005-04-18 2012-01-03 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8102512B2 (en) 2004-09-17 2012-01-24 Nikon Corporation Substrate holding device, exposure apparatus, and device manufacturing method
US8111374B2 (en) 2005-09-09 2012-02-07 Nikon Corporation Analysis method, exposure method, and device manufacturing method
US8134681B2 (en) 2006-02-17 2012-03-13 Nikon Corporation Adjustment method, substrate processing method, substrate processing apparatus, exposure apparatus, inspection apparatus, measurement and/or inspection system, processing apparatus, computer system, program and information recording medium
US8164734B2 (en) 2004-06-16 2012-04-24 Asml Netherlands B.V. Vacuum system for immersion photolithography
US8164736B2 (en) 2007-05-29 2012-04-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US8169591B2 (en) 2004-08-03 2012-05-01 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8179517B2 (en) 2005-06-30 2012-05-15 Nikon Corporation Exposure apparatus and method, maintenance method for exposure apparatus, and device manufacturing method
US8208119B2 (en) 2004-02-04 2012-06-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8208123B2 (en) 2003-08-29 2012-06-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8237915B2 (en) 2002-12-10 2012-08-07 Carl Zeiss Smt Gmbh Method for improving an optical imaging property of a projection objective of a microlithographic projection exposure apparatus
US8236467B2 (en) 2005-04-28 2012-08-07 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US8253921B2 (en) 2003-09-03 2012-08-28 Nikon Corporation Exposure apparatus and device fabricating method
US8294873B2 (en) 2004-11-11 2012-10-23 Nikon Corporation Exposure method, device manufacturing method, and substrate
US8325326B2 (en) 2004-06-07 2012-12-04 Nikon Corporation Stage unit, exposure apparatus, and exposure method
US8330939B2 (en) 2004-11-01 2012-12-11 Nikon Corporation Immersion exposure apparatus and device manufacturing method with a liquid recovery port provided on at least one of a first stage and second stage
US8368870B2 (en) 2004-06-21 2013-02-05 Nikon Corporation Exposure apparatus and device manufacturing method
US8373843B2 (en) 2004-06-10 2013-02-12 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8411271B2 (en) 2005-12-28 2013-04-02 Nikon Corporation Pattern forming method, pattern forming apparatus, and device manufacturing method
US8477283B2 (en) 2006-05-10 2013-07-02 Nikon Corporation Exposure apparatus and device manufacturing method
US8482716B2 (en) 2004-06-10 2013-07-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8488099B2 (en) 2004-04-19 2013-07-16 Nikon Corporation Exposure apparatus and device manufacturing method
US8508713B2 (en) 2004-06-10 2013-08-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8570484B2 (en) 2006-08-30 2013-10-29 Nikon Corporation Immersion exposure apparatus, device manufacturing method, cleaning method, and cleaning member to remove foreign substance using liquid
US8638422B2 (en) 2005-03-18 2014-01-28 Nikon Corporation Exposure method, exposure apparatus, method for producing device, and method for evaluating exposure apparatus
US8654308B2 (en) 2004-07-12 2014-02-18 Nikon Corporation Method for determining exposure condition, exposure method, exposure apparatus, and method for manufacturing device
US8675174B2 (en) 2004-09-17 2014-03-18 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US8705008B2 (en) 2004-06-09 2014-04-22 Nikon Corporation Substrate holding unit, exposure apparatus having same, exposure method, method for producing device, and liquid repellant plate
US8717533B2 (en) 2004-06-10 2014-05-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8721803B2 (en) 2006-12-05 2014-05-13 Nikon Corporation Cleaning liquid, cleaning method, liquid generating apparatus, exposure apparatus, and device fabricating method
US8780326B2 (en) 2005-09-09 2014-07-15 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8797502B2 (en) 2003-09-29 2014-08-05 Nikon Corporation Exposure apparatus, exposure method, and method for producing device with electricity removal device by adding additive to liquid
US8891053B2 (en) 2008-09-10 2014-11-18 Asml Netherlands B.V. Lithographic apparatus, method of manufacturing an article for a lithographic apparatus and device manufacturing method
US8902401B2 (en) 2006-05-09 2014-12-02 Carl Zeiss Smt Gmbh Optical imaging device with thermal attenuation
US8928856B2 (en) 2003-10-31 2015-01-06 Nikon Corporation Exposure apparatus and device fabrication method
US8937704B2 (en) 2003-07-31 2015-01-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a resistivity sensor
US8937710B2 (en) 2006-08-31 2015-01-20 Nikon Corporation Exposure method and apparatus compensating measuring error of encoder due to grating section and displacement of movable body in Z direction
US8941810B2 (en) 2005-12-30 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9097992B2 (en) 2004-08-19 2015-08-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9104117B2 (en) 2004-07-07 2015-08-11 Bob Streefkerk Lithographic apparatus having a liquid detection system
JP2015524554A (en) * 2012-06-26 2015-08-24 ケーエルエー−テンカー コーポレイション Near-field measurement
US9224632B2 (en) 2004-12-15 2015-12-29 Nikon Corporation Substrate holding apparatus, exposure apparatus, and device fabricating method
US9239524B2 (en) 2005-03-30 2016-01-19 Nikon Corporation Exposure condition determination method, exposure method, exposure apparatus, and device manufacturing method involving detection of the situation of a liquid immersion region
US9250537B2 (en) 2004-07-12 2016-02-02 Nikon Corporation Immersion exposure apparatus and method with detection of liquid on members of the apparatus
US9256136B2 (en) 2010-04-22 2016-02-09 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method involving gas supply
US9329060B2 (en) 2006-02-21 2016-05-03 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9377698B2 (en) 2006-09-01 2016-06-28 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9411247B2 (en) 2004-06-10 2016-08-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9429495B2 (en) 2004-06-04 2016-08-30 Carl Zeiss Smt Gmbh System for measuring the image quality of an optical imaging system
US9436095B2 (en) 2004-01-20 2016-09-06 Carl Zeiss Smt Gmbh Exposure apparatus and measuring device for a projection lens
US9500960B2 (en) 2003-04-11 2016-11-22 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9551943B2 (en) 2003-06-19 2017-01-24 Nikon Corporation Exposure apparatus and device manufacturing method
US9568841B2 (en) 2003-08-29 2017-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9623436B2 (en) 2004-05-18 2017-04-18 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
US9632431B2 (en) 2004-02-02 2017-04-25 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US9639006B2 (en) 2003-07-28 2017-05-02 Asml Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US9645505B2 (en) 2004-06-09 2017-05-09 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device to measure specific resistance of liquid
US9658537B2 (en) 2003-04-10 2017-05-23 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9684250B2 (en) 2003-12-23 2017-06-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9703210B2 (en) 2004-12-20 2017-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9740107B2 (en) 2002-11-12 2017-08-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9746781B2 (en) 2005-01-31 2017-08-29 Nikon Corporation Exposure apparatus and method for producing device
US9760026B2 (en) 2003-07-28 2017-09-12 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
US9798245B2 (en) 2003-12-15 2017-10-24 Nikon Corporation Exposure apparatus, and exposure method, with recovery device to recover liquid leaked from between substrate and member
US9798246B2 (en) 2003-05-13 2017-10-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9817319B2 (en) 2003-09-03 2017-11-14 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US9829799B2 (en) 2004-04-14 2017-11-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9846371B2 (en) 2003-06-13 2017-12-19 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
US9857697B2 (en) 2006-02-21 2018-01-02 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9874822B2 (en) 2006-09-01 2018-01-23 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9933708B2 (en) 2003-05-23 2018-04-03 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US9939739B2 (en) 2003-05-23 2018-04-10 Nikon Corporation Exposure apparatus and method for producing device
US9952515B2 (en) 2003-11-14 2018-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9958792B2 (en) 2006-08-31 2018-05-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US9964858B2 (en) 2003-06-11 2018-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9977352B2 (en) 2003-07-09 2018-05-22 Nikon Corporation Exposure apparatus and device manufacturing method
USRE46933E1 (en) 2005-04-08 2018-07-03 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
US10025194B2 (en) 2003-09-29 2018-07-17 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
US10067428B2 (en) 2006-08-31 2018-09-04 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
US10082739B2 (en) 2003-05-28 2018-09-25 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US10088760B2 (en) 2003-12-03 2018-10-02 Nikon Corporation Exposure apparatus, exposure method, method for producing device, and optical part
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10126661B2 (en) 2004-03-25 2018-11-13 Nikon Corporation Exposure apparatus and device fabrication method
US10151983B2 (en) 2004-02-03 2018-12-11 Nikon Corporation Exposure apparatus and device manufacturing method
US10180629B2 (en) 2003-06-09 2019-01-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10209623B2 (en) 2003-10-09 2019-02-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10222706B2 (en) 2002-11-12 2019-03-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10248034B2 (en) 2003-10-28 2019-04-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Cited By (302)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10191389B2 (en) 2002-11-12 2019-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9740107B2 (en) 2002-11-12 2017-08-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10222706B2 (en) 2002-11-12 2019-03-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7446851B2 (en) 2002-12-10 2008-11-04 Nikon Corporation Exposure apparatus and device manufacturing method
US7515246B2 (en) 2002-12-10 2009-04-07 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7505111B2 (en) 2002-12-10 2009-03-17 Nikon Corporation Exposure apparatus and device manufacturing method
US7589820B2 (en) 2002-12-10 2009-09-15 Nikon Corporation Exposure apparatus and method for producing device
US7466392B2 (en) 2002-12-10 2008-12-16 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8089611B2 (en) 2002-12-10 2012-01-03 Nikon Corporation Exposure apparatus and method for producing device
US7948604B2 (en) 2002-12-10 2011-05-24 Nikon Corporation Exposure apparatus and method for producing device
US7460207B2 (en) 2002-12-10 2008-12-02 Nikon Corporation Exposure apparatus and method for producing device
US7876418B2 (en) 2002-12-10 2011-01-25 Nikon Corporation Optical element and projection exposure apparatus based on use of the optical element
US7379158B2 (en) 2002-12-10 2008-05-27 Nikon Corporation Exposure apparatus and method for producing device
US7126667B2 (en) 2002-12-10 2006-10-24 Canon Kk Exposure apparatus and method
US8237915B2 (en) 2002-12-10 2012-08-07 Carl Zeiss Smt Gmbh Method for improving an optical imaging property of a projection objective of a microlithographic projection exposure apparatus
US7639343B2 (en) 2002-12-10 2009-12-29 Nikon Corporation Exposure apparatus and device manufacturing method
US7046337B2 (en) 2002-12-10 2006-05-16 Canon Kabushiki Kaisha Exposure apparatus and method
US7436487B2 (en) 2002-12-10 2008-10-14 Nikon Corporation Exposure apparatus and method for producing device
US7436486B2 (en) 2002-12-10 2008-10-14 Nikon Corporation Exposure apparatus and device manufacturing method
US8767173B2 (en) 2002-12-10 2014-07-01 Nikon Corporation Optical element and projection exposure apparatus based on use of the optical element
US7589821B2 (en) 2002-12-10 2009-09-15 Nikon Corporation Exposure apparatus and device manufacturing method
US9766555B2 (en) 2003-02-26 2017-09-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7453550B2 (en) 2003-02-26 2008-11-18 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10180632B2 (en) 2003-02-26 2019-01-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7542128B2 (en) 2003-02-26 2009-06-02 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7268854B2 (en) 2003-02-26 2007-09-11 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7535550B2 (en) 2003-02-26 2009-05-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7471371B2 (en) 2003-03-25 2008-12-30 Nikon Corporation Exposure apparatus and device fabrication method
US8797500B2 (en) 2003-04-09 2014-08-05 Nikon Corporation Immersion lithography fluid control system changing flow velocity of gas outlets based on motion of a surface
US9618852B2 (en) 2003-04-09 2017-04-11 Nikon Corporation Immersion lithography fluid control system regulating flow velocity of gas based on position of gas outlets
US8497973B2 (en) 2003-04-09 2013-07-30 Nikon Corporation Immersion lithography fluid control system regulating gas velocity based on contact angle
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US7339650B2 (en) 2003-04-09 2008-03-04 Nikon Corporation Immersion lithography fluid control system that applies force to confine the immersion liquid
US9977350B2 (en) 2003-04-10 2018-05-22 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US9910370B2 (en) 2003-04-10 2018-03-06 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US7251017B2 (en) 2003-04-10 2007-07-31 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US9007561B2 (en) 2003-04-10 2015-04-14 Nikon Corporation Immersion lithography apparatus with hydrophilic region encircling hydrophobic region which encircles substrate support
US7345742B2 (en) 2003-04-10 2008-03-18 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US9632427B2 (en) 2003-04-10 2017-04-25 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US9658537B2 (en) 2003-04-10 2017-05-23 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US7397532B2 (en) 2003-04-10 2008-07-08 Nikon Corporation Run-off path to collect liquid for an immersion lithography apparatus
US8243253B2 (en) 2003-04-10 2012-08-14 Nikon Corporation Lyophobic run-off path to collect liquid for an immersion lithography apparatus
US9500960B2 (en) 2003-04-11 2016-11-22 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9785057B2 (en) 2003-04-11 2017-10-10 Nikon Corporation Liquid jet and recovery system for immersion lithography
US7522259B2 (en) 2003-04-11 2009-04-21 Nikon Corporation Cleanup method for optics in immersion lithography
US10185222B2 (en) 2003-04-11 2019-01-22 Nikon Corporation Liquid jet and recovery system for immersion lithography
US7443482B2 (en) 2003-04-11 2008-10-28 Nikon Corporation Liquid jet and recovery system for immersion lithography
US9958786B2 (en) 2003-04-11 2018-05-01 Nikon Corporation Cleanup method for optics in immersion lithography using object on wafer holder in place of wafer
US8059258B2 (en) 2003-04-11 2011-11-15 Nikon Corporation Liquid jet and recovery system for immersion lithography
US9946163B2 (en) 2003-04-11 2018-04-17 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US7414794B2 (en) 2003-04-17 2008-08-19 Nikon Corporation Optical arrangement of autofocus elements for use with immersion lithography
US7570431B2 (en) 2003-04-17 2009-08-04 Nikon Corporation Optical arrangement of autofocus elements for use with immersion lithography
US9798246B2 (en) 2003-05-13 2017-10-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9977336B2 (en) 2003-05-23 2018-05-22 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US9933708B2 (en) 2003-05-23 2018-04-03 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US9939739B2 (en) 2003-05-23 2018-04-10 Nikon Corporation Exposure apparatus and method for producing device
US10082739B2 (en) 2003-05-28 2018-09-25 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US10180629B2 (en) 2003-06-09 2019-01-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9964858B2 (en) 2003-06-11 2018-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9846371B2 (en) 2003-06-13 2017-12-19 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
US9551943B2 (en) 2003-06-19 2017-01-24 Nikon Corporation Exposure apparatus and device manufacturing method
US9810995B2 (en) 2003-06-19 2017-11-07 Nikon Corporation Exposure apparatus and device manufacturing method
US10191388B2 (en) 2003-06-19 2019-01-29 Nikon Corporation Exposure apparatus, and device manufacturing method
US10007188B2 (en) 2003-06-19 2018-06-26 Nikon Corporation Exposure apparatus and device manufacturing method
US9977352B2 (en) 2003-07-09 2018-05-22 Nikon Corporation Exposure apparatus and device manufacturing method
US7433019B2 (en) 2003-07-09 2008-10-07 Nikon Corporation Exposure apparatus and device manufacturing method
US10185232B2 (en) 2003-07-28 2019-01-22 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
US9639006B2 (en) 2003-07-28 2017-05-02 Asml Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US9760026B2 (en) 2003-07-28 2017-09-12 Nikon Corporation Exposure apparatus, method for producing device, and method for controlling exposure apparatus
US8937704B2 (en) 2003-07-31 2015-01-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a resistivity sensor
US9285686B2 (en) 2003-07-31 2016-03-15 Asml Netherlands B.V. Lithographic apparatus involving an immersion liquid supply system with an aperture
US10203608B2 (en) 2003-08-21 2019-02-12 Nikon Corporation Exposure apparatus and device manufacturing method having lower scanning speed to expose peripheral shot area
US10209622B2 (en) 2003-08-21 2019-02-19 Nikon Corporation Exposure method and device manufacturing method having lower scanning speed to expose peripheral shot area
US8064037B2 (en) 2003-08-21 2011-11-22 Nikon Corporation Immersion exposure apparatus and device manufacturing method with no liquid recovery during exposure
US7697111B2 (en) 2003-08-26 2010-04-13 Nikon Corporation Optical element and exposure apparatus
US10175584B2 (en) 2003-08-26 2019-01-08 Nikon Corporation Optical element and exposure apparatus
US9568841B2 (en) 2003-08-29 2017-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8208123B2 (en) 2003-08-29 2012-06-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10025204B2 (en) 2003-08-29 2018-07-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8253921B2 (en) 2003-09-03 2012-08-28 Nikon Corporation Exposure apparatus and device fabricating method
US9817319B2 (en) 2003-09-03 2017-11-14 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US10203610B2 (en) 2003-09-03 2019-02-12 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US8724076B2 (en) 2003-09-26 2014-05-13 Nikon Corporation Projection exposure apparatus, cleaning and maintenance methods of a projection exposure apparatus, and device manufacturing method
US8035797B2 (en) 2003-09-26 2011-10-11 Nikon Corporation Projection exposure apparatus, cleaning and maintenance methods of a projection exposure apparatus, and device manufacturing method
US10025194B2 (en) 2003-09-29 2018-07-17 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8797502B2 (en) 2003-09-29 2014-08-05 Nikon Corporation Exposure apparatus, exposure method, and method for producing device with electricity removal device by adding additive to liquid
US10209623B2 (en) 2003-10-09 2019-02-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8272544B2 (en) 2003-10-28 2012-09-25 Nikon Corporation Exposure apparatus, exposure method, and device fabrication method
US8797506B2 (en) 2003-10-28 2014-08-05 Nikon Corporation Exposure apparatus, exposure method, and device fabrication method
US7932996B2 (en) 2003-10-28 2011-04-26 Nikon Corporation Exposure apparatus, exposure method, and device fabrication method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10248034B2 (en) 2003-10-28 2019-04-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9563133B2 (en) 2003-10-31 2017-02-07 Nikon Corporation Exposure apparatus and device fabrication method
US8928856B2 (en) 2003-10-31 2015-01-06 Nikon Corporation Exposure apparatus and device fabrication method
US9829801B2 (en) 2003-10-31 2017-11-28 Nikon Corporation Exposure apparatus and device fabrication method
US10048597B2 (en) 2003-10-31 2018-08-14 Nikon Corporation Exposure apparatus and device fabrication method
US9952515B2 (en) 2003-11-14 2018-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10088760B2 (en) 2003-12-03 2018-10-02 Nikon Corporation Exposure apparatus, exposure method, method for producing device, and optical part
US9798245B2 (en) 2003-12-15 2017-10-24 Nikon Corporation Exposure apparatus, and exposure method, with recovery device to recover liquid leaked from between substrate and member
US7700268B2 (en) 2003-12-17 2010-04-20 Panasonic Corporation Exposure system and pattern formation method using the same
US7394521B2 (en) 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9817321B2 (en) 2003-12-23 2017-11-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9684250B2 (en) 2003-12-23 2017-06-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9910369B2 (en) 2004-01-05 2018-03-06 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US8064044B2 (en) 2004-01-05 2011-11-22 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US9588436B2 (en) 2004-01-05 2017-03-07 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US9436095B2 (en) 2004-01-20 2016-09-06 Carl Zeiss Smt Gmbh Exposure apparatus and measuring device for a projection lens
US7697110B2 (en) 2004-01-26 2010-04-13 Nikon Corporation Exposure apparatus and device manufacturing method
US8330934B2 (en) 2004-01-26 2012-12-11 Nikon Corporation Exposure apparatus and device manufacturing method
US9632431B2 (en) 2004-02-02 2017-04-25 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US10007196B2 (en) 2004-02-02 2018-06-26 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US9684248B2 (en) 2004-02-02 2017-06-20 Nikon Corporation Lithographic apparatus having substrate table and sensor table to measure a patterned beam
US9665016B2 (en) 2004-02-02 2017-05-30 Nikon Corporation Lithographic apparatus and method having substrate table and sensor table to hold immersion liquid
US10139737B2 (en) 2004-02-02 2018-11-27 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US10151983B2 (en) 2004-02-03 2018-12-11 Nikon Corporation Exposure apparatus and device manufacturing method
US9316921B2 (en) 2004-02-04 2016-04-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8605252B2 (en) 2004-02-04 2013-12-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8208119B2 (en) 2004-02-04 2012-06-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10048602B2 (en) 2004-02-04 2018-08-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8023100B2 (en) 2004-02-20 2011-09-20 Nikon Corporation Exposure apparatus, supply method and recovery method, exposure method, and device producing method
US10126661B2 (en) 2004-03-25 2018-11-13 Nikon Corporation Exposure apparatus and device fabrication method
US7375796B2 (en) 2004-04-01 2008-05-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10234768B2 (en) 2004-04-14 2019-03-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9989861B2 (en) 2004-04-14 2018-06-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9829799B2 (en) 2004-04-14 2017-11-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8488099B2 (en) 2004-04-19 2013-07-16 Nikon Corporation Exposure apparatus and device manufacturing method
US9623436B2 (en) 2004-05-18 2017-04-18 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
US7486381B2 (en) 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9429495B2 (en) 2004-06-04 2016-08-30 Carl Zeiss Smt Gmbh System for measuring the image quality of an optical imaging system
JP2008502127A (en) * 2004-06-04 2008-01-24 カール・ツァイス・エスエムティー・アーゲー Projection system and the compensation element therefor involves compensation of intensity variation
JP2012028803A (en) * 2004-06-04 2012-02-09 Carl Zeiss Smt Gmbh Projection system with compensation of intensity variations and compensation element therefor
US8325326B2 (en) 2004-06-07 2012-12-04 Nikon Corporation Stage unit, exposure apparatus, and exposure method
US8705008B2 (en) 2004-06-09 2014-04-22 Nikon Corporation Substrate holding unit, exposure apparatus having same, exposure method, method for producing device, and liquid repellant plate
US9645505B2 (en) 2004-06-09 2017-05-09 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device to measure specific resistance of liquid
US8717533B2 (en) 2004-06-10 2014-05-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10203614B2 (en) 2004-06-10 2019-02-12 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9778580B2 (en) 2004-06-10 2017-10-03 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8482716B2 (en) 2004-06-10 2013-07-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9529273B2 (en) 2004-06-10 2016-12-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8373843B2 (en) 2004-06-10 2013-02-12 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9411247B2 (en) 2004-06-10 2016-08-09 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9134621B2 (en) 2004-06-10 2015-09-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8508713B2 (en) 2004-06-10 2013-08-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8704999B2 (en) 2004-06-10 2014-04-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9857699B2 (en) 2004-06-16 2018-01-02 Asml Netherlands B.V. Vacuum system for immersion photolithography
US9507270B2 (en) 2004-06-16 2016-11-29 Asml Netherlands B.V. Vacuum system for immersion photolithography
US8164734B2 (en) 2004-06-16 2012-04-24 Asml Netherlands B.V. Vacuum system for immersion photolithography
US8830440B2 (en) 2004-06-16 2014-09-09 Asml Netherlands B.V. Vacuum system for immersion photolithography
US10168624B2 (en) 2004-06-16 2019-01-01 Asml Netherlands B.V. Vacuum system for immersion photolithography
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US9470984B2 (en) 2004-06-21 2016-10-18 Nikon Corporation Exposure apparatus
US8368870B2 (en) 2004-06-21 2013-02-05 Nikon Corporation Exposure apparatus and device manufacturing method
US8810767B2 (en) 2004-06-21 2014-08-19 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
US9904182B2 (en) 2004-06-21 2018-02-27 Nikon Corporation Exposure apparatus
US9104117B2 (en) 2004-07-07 2015-08-11 Bob Streefkerk Lithographic apparatus having a liquid detection system
US9250537B2 (en) 2004-07-12 2016-02-02 Nikon Corporation Immersion exposure apparatus and method with detection of liquid on members of the apparatus
US8654308B2 (en) 2004-07-12 2014-02-18 Nikon Corporation Method for determining exposure condition, exposure method, exposure apparatus, and method for manufacturing device
US8169591B2 (en) 2004-08-03 2012-05-01 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9904185B2 (en) 2004-08-19 2018-02-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9746788B2 (en) 2004-08-19 2017-08-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9097992B2 (en) 2004-08-19 2015-08-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9507278B2 (en) 2004-08-19 2016-11-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9488923B2 (en) 2004-08-19 2016-11-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9958785B2 (en) 2004-09-17 2018-05-01 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8675174B2 (en) 2004-09-17 2014-03-18 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8102512B2 (en) 2004-09-17 2012-01-24 Nikon Corporation Substrate holding device, exposure apparatus, and device manufacturing method
US9341959B2 (en) 2004-09-17 2016-05-17 Nikon Corporation Substrate holding device, exposure apparatus, and device manufacturing method
US7852456B2 (en) 2004-10-13 2010-12-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8456609B2 (en) 2004-10-15 2013-06-04 Nikon Corporation Exposure apparatus and device manufacturing method
US7456929B2 (en) 2004-10-15 2008-11-25 Nikon Corporation Exposure apparatus and device manufacturing method
US9436097B2 (en) 2004-10-18 2016-09-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8004652B2 (en) 2004-10-18 2011-08-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9753380B2 (en) 2004-10-18 2017-09-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8040489B2 (en) 2004-10-26 2011-10-18 Nikon Corporation Substrate processing method, exposure apparatus, and method for producing device by immersing substrate in second liquid before immersion exposure through first liquid
US8941808B2 (en) 2004-10-26 2015-01-27 Nikon Corporation Immersion lithographic apparatus rinsing outer contour of substrate with immersion space
US8330939B2 (en) 2004-11-01 2012-12-11 Nikon Corporation Immersion exposure apparatus and device manufacturing method with a liquid recovery port provided on at least one of a first stage and second stage
US8922754B2 (en) 2004-11-01 2014-12-30 Nikon Corporation Immersion exposure apparatus and device fabricating method with two substrate stages and metrology station
US9709900B2 (en) 2004-11-01 2017-07-18 Nikon Corporation Exposure apparatus and device fabricating method
US8294873B2 (en) 2004-11-11 2012-10-23 Nikon Corporation Exposure method, device manufacturing method, and substrate
US9298108B2 (en) 2004-11-18 2016-03-29 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US8072578B2 (en) 2004-11-18 2011-12-06 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US9223230B2 (en) 2004-11-18 2015-12-29 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US8059260B2 (en) * 2004-11-18 2011-11-15 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US10222708B2 (en) 2004-11-18 2019-03-05 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US9857692B2 (en) 2004-11-18 2018-01-02 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US9348238B2 (en) 2004-11-18 2016-05-24 Niko Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US8576379B2 (en) 2004-11-18 2013-11-05 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US8054465B2 (en) 2004-11-18 2011-11-08 Nikon Corporation Position measurement method
US9223231B2 (en) 2004-11-18 2015-12-29 Nikon Corporation Position measurement method, position control method, measurement method, loading method, exposure method and exposure apparatus, and device manufacturing method
US8456608B2 (en) 2004-12-06 2013-06-04 Nikon Corporation Maintenance method, maintenance device, exposure apparatus, and device manufacturing method
US7804576B2 (en) 2004-12-06 2010-09-28 Nikon Corporation Maintenance method, maintenance device, exposure apparatus, and device manufacturing method
US8891055B2 (en) 2004-12-06 2014-11-18 Nikon Corporation Maintenance method, maintenance device, exposure apparatus, and device manufacturing method
US8913224B2 (en) 2004-12-09 2014-12-16 Nixon Corporation Exposure apparatus, exposure method, and device producing method
US8035799B2 (en) 2004-12-09 2011-10-11 Nikon Corporation Exposure apparatus, exposure method, and device producing method
US9182222B2 (en) 2004-12-10 2015-11-10 Asml Netherlands B.V. Substrate placement in immersion lithography
US9740106B2 (en) 2004-12-10 2017-08-22 Asml Netherlands B.V. Substrate placement in immersion lithography
US7352440B2 (en) 2004-12-10 2008-04-01 Asml Netherlands B.V. Substrate placement in immersion lithography
US9224632B2 (en) 2004-12-15 2015-12-29 Nikon Corporation Substrate holding apparatus, exposure apparatus, and device fabricating method
US9964860B2 (en) 2004-12-15 2018-05-08 Nikon Corporation Substrate holding apparatus, exposure apparatus, and device fabricating method
US9690206B2 (en) 2004-12-15 2017-06-27 Nikon Corporation Substrate holding apparatus, exposure apparatus, and device fabricating method
TWI417672B (en) * 2004-12-17 2013-12-01 尼康股份有限公司 Exposure method, manufacturing method for electronic device, electronic device, and exposure device
WO2006064900A1 (en) * 2004-12-17 2006-06-22 Nikon Corporation Exposure method and apparatus, and device manufacturing method
US9703210B2 (en) 2004-12-20 2017-07-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8830446B2 (en) 2005-01-12 2014-09-09 Asml Netherlands B.V. Exposure apparatus
US7450217B2 (en) 2005-01-12 2008-11-11 Asml Netherlands B.V. Exposure apparatus, coatings for exposure apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby
US8542341B2 (en) 2005-01-12 2013-09-24 Asml Netherlands B.V. Exposure apparatus
US9746781B2 (en) 2005-01-31 2017-08-29 Nikon Corporation Exposure apparatus and method for producing device
WO2006090807A1 (en) * 2005-02-25 2006-08-31 Nikon Corporation Exposure method and apparatus, and electronic device manufacturing method
JP2011181979A (en) * 2005-02-25 2011-09-15 Nikon Corp Illuminating optical device, exposure device, and method of manufacturing electronic device
JP4822022B2 (en) * 2005-02-25 2011-11-24 株式会社ニコン Exposure method and apparatus, and electronic device manufacturing method
US8638422B2 (en) 2005-03-18 2014-01-28 Nikon Corporation Exposure method, exposure apparatus, method for producing device, and method for evaluating exposure apparatus
US7705968B2 (en) 2005-03-18 2010-04-27 Nikon Corporation Plate member, substrate holding device, exposure apparatus and method, and device manufacturing method
US9239524B2 (en) 2005-03-30 2016-01-19 Nikon Corporation Exposure condition determination method, exposure method, exposure apparatus, and device manufacturing method involving detection of the situation of a liquid immersion region
USRE46933E1 (en) 2005-04-08 2018-07-03 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
US8724077B2 (en) 2005-04-18 2014-05-13 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8089608B2 (en) 2005-04-18 2012-01-03 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US9335639B2 (en) 2005-04-25 2016-05-10 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US8064039B2 (en) 2005-04-25 2011-11-22 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US9618854B2 (en) 2005-04-25 2017-04-11 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US8236467B2 (en) 2005-04-28 2012-08-07 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US8941812B2 (en) 2005-04-28 2015-01-27 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7924416B2 (en) 2005-06-22 2011-04-12 Nikon Corporation Measurement apparatus, exposure apparatus, and device manufacturing method
US8179517B2 (en) 2005-06-30 2012-05-15 Nikon Corporation Exposure apparatus and method, maintenance method for exposure apparatus, and device manufacturing method
US8668191B2 (en) 2005-08-26 2014-03-11 Nikon Corporation Holding unit, assembly system, sputtering unit, and processing method and processing unit
US8070145B2 (en) 2005-08-26 2011-12-06 Nikon Corporation Holding unit, assembly system, sputtering unit, and processing method and processing unit
US8724075B2 (en) 2005-08-31 2014-05-13 Nikon Corporation Optical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice
US7812926B2 (en) 2005-08-31 2010-10-12 Nikon Corporation Optical element, exposure apparatus based on the use of the same, exposure method, and method for producing microdevice
US8111374B2 (en) 2005-09-09 2012-02-07 Nikon Corporation Analysis method, exposure method, and device manufacturing method
US8780326B2 (en) 2005-09-09 2014-07-15 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US7803516B2 (en) 2005-11-21 2010-09-28 Nikon Corporation Exposure method, device manufacturing method using the same, exposure apparatus, and substrate processing method and apparatus
US10061207B2 (en) 2005-12-02 2018-08-28 Asml Netherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
US8411271B2 (en) 2005-12-28 2013-04-02 Nikon Corporation Pattern forming method, pattern forming apparatus, and device manufacturing method
US8947631B2 (en) 2005-12-30 2015-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9436096B2 (en) 2005-12-30 2016-09-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10222711B2 (en) 2005-12-30 2019-03-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9851644B2 (en) 2005-12-30 2017-12-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8941810B2 (en) 2005-12-30 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10203613B2 (en) 2006-01-19 2019-02-12 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US7839485B2 (en) 2006-01-19 2010-11-23 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US10185227B2 (en) 2006-01-19 2019-01-22 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US10133195B2 (en) 2006-01-19 2018-11-20 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US10185228B2 (en) 2006-01-19 2019-01-22 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US8134681B2 (en) 2006-02-17 2012-03-13 Nikon Corporation Adjustment method, substrate processing method, substrate processing apparatus, exposure apparatus, inspection apparatus, measurement and/or inspection system, processing apparatus, computer system, program and information recording medium
US10139738B2 (en) 2006-02-21 2018-11-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10132658B2 (en) 2006-02-21 2018-11-20 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10088343B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US9857697B2 (en) 2006-02-21 2018-01-02 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9989859B2 (en) 2006-02-21 2018-06-05 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10234773B2 (en) 2006-02-21 2019-03-19 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9329060B2 (en) 2006-02-21 2016-05-03 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10012913B2 (en) 2006-02-21 2018-07-03 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10088759B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US8035800B2 (en) 2006-03-13 2011-10-11 Nikon Corporation Exposure apparatus, maintenance method, exposure method, and method for producing device
US9810996B2 (en) 2006-05-09 2017-11-07 Carl Zeiss Smt Gmbh Optical imaging device with thermal attenuation
US8902401B2 (en) 2006-05-09 2014-12-02 Carl Zeiss Smt Gmbh Optical imaging device with thermal attenuation
US8477283B2 (en) 2006-05-10 2013-07-02 Nikon Corporation Exposure apparatus and device manufacturing method
JP2007311783A (en) * 2006-05-15 2007-11-29 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
US7952803B2 (en) 2006-05-15 2011-05-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8570484B2 (en) 2006-08-30 2013-10-29 Nikon Corporation Immersion exposure apparatus, device manufacturing method, cleaning method, and cleaning member to remove foreign substance using liquid
US10073359B2 (en) 2006-08-31 2018-09-11 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
US10101673B2 (en) 2006-08-31 2018-10-16 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
US10162274B2 (en) 2006-08-31 2018-12-25 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
US8947639B2 (en) 2006-08-31 2015-02-03 Nikon Corporation Exposure method and apparatus measuring position of movable body based on information on flatness of encoder grating section
US8937710B2 (en) 2006-08-31 2015-01-20 Nikon Corporation Exposure method and apparatus compensating measuring error of encoder due to grating section and displacement of movable body in Z direction
US9983486B2 (en) 2006-08-31 2018-05-29 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US10067428B2 (en) 2006-08-31 2018-09-04 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
US9958792B2 (en) 2006-08-31 2018-05-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US9846374B2 (en) 2006-09-01 2017-12-19 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9971253B2 (en) 2006-09-01 2018-05-15 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9760021B2 (en) 2006-09-01 2017-09-12 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US10197924B2 (en) 2006-09-01 2019-02-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9874822B2 (en) 2006-09-01 2018-01-23 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US9377698B2 (en) 2006-09-01 2016-06-28 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9740114B2 (en) 2006-09-01 2017-08-22 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9625834B2 (en) 2006-09-01 2017-04-18 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US8743341B2 (en) 2006-09-15 2014-06-03 Nikon Corporation Immersion exposure apparatus and immersion exposure method, and device manufacturing method
US7872730B2 (en) 2006-09-15 2011-01-18 Nikon Corporation Immersion exposure apparatus and immersion exposure method, and device manufacturing method
US7973910B2 (en) 2006-11-17 2011-07-05 Nikon Corporation Stage apparatus and exposure apparatus
US8749755B2 (en) 2006-11-17 2014-06-10 Nikon Corporation Stage apparatus and exposure apparatus
US8040490B2 (en) 2006-12-01 2011-10-18 Nikon Corporation Liquid immersion exposure apparatus, exposure method, and method for producing device
US8013975B2 (en) 2006-12-01 2011-09-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8721803B2 (en) 2006-12-05 2014-05-13 Nikon Corporation Cleaning liquid, cleaning method, liquid generating apparatus, exposure apparatus, and device fabricating method
US8164736B2 (en) 2007-05-29 2012-04-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8891053B2 (en) 2008-09-10 2014-11-18 Asml Netherlands B.V. Lithographic apparatus, method of manufacturing an article for a lithographic apparatus and device manufacturing method
US9846372B2 (en) 2010-04-22 2017-12-19 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US10209624B2 (en) 2010-04-22 2019-02-19 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US9256136B2 (en) 2010-04-22 2016-02-09 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method involving gas supply
JP2015524554A (en) * 2012-06-26 2015-08-24 ケーエルエー−テンカー コーポレイション Near-field measurement
US10248033B2 (en) 2017-09-01 2019-04-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Similar Documents

Publication Publication Date Title
CA1321496C (en) Resolution doubling lithography technique
US5767949A (en) Exposure apparatus and method
US8675177B2 (en) Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
JP3495734B2 (en) Lithography pattern formation method of a semiconductor device manufacturing process
CN101634813B (en) Improved illumination system, an exposure apparatus and a method of forming line / space circuit pattern
KR100464843B1 (en) Avoidance of pattern shortening by using an off axis illumination with twisting dipole and polarizing apertures
US7217503B2 (en) Exposure method and apparatus
JP3264224B2 (en) Illumination device and a projection exposure apparatus using the same
US5523186A (en) Split and cover technique for phase shifting photolithography
US5229230A (en) Photomask
US20030027366A1 (en) Microlithographic device, microlithographic assist features, system for forming contacts and other structures, and method of determining mask patterns
KR100265549B1 (en) Halftone type phase shift photomask and the method of manufacture
US6855486B1 (en) Lithographic method and apparatus
US5715089A (en) Exposure method and apparatus therefor
US7023522B2 (en) Multiple exposure method
US6004699A (en) Photomask used for projection exposure with phase shifted auxiliary pattern
JP3075381B2 (en) Projection exposure apparatus and a transfer method
EP1152288B1 (en) Method of designing and method of using a phase-shift mask
JP3101594B2 (en) Exposure method and apparatus
JP2884947B2 (en) Projection exposure apparatus, a manufacturing method of an exposure method and a semiconductor integrated circuit
US6934009B2 (en) Illumination apparatus, illumination-controlling method, exposure apparatus, device fabricating method
JP3950731B2 (en) An illumination optical system, exposure apparatus and device manufacturing method having the illumination optical system
US5467166A (en) Projection exposure method and apparatus
US20060121367A1 (en) Method for producing photomask and method for producing photomask pattern layout
KR100571623B1 (en) Mask and its manufacturing method, exposure method, and device fabrication method