US8208123B2 - Lithographic apparatus and device manufacturing method - Google Patents
Lithographic apparatus and device manufacturing method Download PDFInfo
- Publication number
- US8208123B2 US8208123B2 US10/927,531 US92753104A US8208123B2 US 8208123 B2 US8208123 B2 US 8208123B2 US 92753104 A US92753104 A US 92753104A US 8208123 B2 US8208123 B2 US 8208123B2
- Authority
- US
- United States
- Prior art keywords
- substrate
- liquid
- projection system
- protective coating
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/7095—Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
- G03F7/70958—Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
- G03F7/70966—Birefringence
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70341—Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/7095—Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
- G03F7/70958—Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70983—Optical system protection, e.g. pellicles or removable covers for protection of mask
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S430/00—Radiation imagery chemistry: process, composition, or product thereof
- Y10S430/162—Protective or antiabrasion layer
Definitions
- the present invention relates to a lithographic apparatus and a method for manufacturing a device.
- a lithographic apparatus is a machine that applies a desired pattern onto a substrate, usually onto a target portion of the substrate.
- a lithographic apparatus can be used, for example, in the manufacture of integrated circuits (ICs).
- a patterning device which is alternatively referred to as a mask or a reticle, may be used to generate a circuit pattern to be formed on an individual layer of the IC.
- This pattern can be transferred onto a target portion (e.g. comprising part of, one, or several dies) on a substrate (e.g. a silicon wafer). Transfer of the pattern is typically via imaging onto a layer of radiation-sensitive material (resist) provided on the substrate.
- resist radiation-sensitive material
- a single substrate will contain a network of adjacent target portions that are successively patterned.
- lithographic apparatus include so-called steppers, in which each target portion is irradiated by exposing an entire pattern onto the target portion at one time, and so-called scanners, in which each target portion is irradiated by scanning the pattern through a radiation beam in a given direction (the “scanning”-direction) while synchronously scanning the substrate parallel or anti-parallel to this direction. It is also possible to transfer the pattern from the patterning device to the substrate by imprinting the pattern onto the substrate.
- liquid supply system to provide liquid on only a localized area of the substrate and in between the final element of the projection system and the substrate using a liquid confinement system (the substrate generally has a larger surface area than the final element of the projection system).
- a liquid confinement system the substrate generally has a larger surface area than the final element of the projection system.
- FIG. 2 shows the arrangement schematically in which liquid is supplied via inlet IN and is taken up on the other side of the element by outlet OUT which is connected to a low pressure source.
- the liquid is supplied along the direction of movement of the substrate relative to the final element, though this does not need to be the case.
- FIG. 3 Various orientations and numbers of in- and out-lets positioned around the final element are possible, one example is illustrated in FIG. 3 in which four sets of an inlet with an outlet on either side are provided in a regular pattern around the final element.
- immersion liquid in the space between the final element of the projection system and the substrate means that the final element of the projection system (e.g., an ‘ab gleichplatte’ which seals the projection system, or the final optical element of the projection system) and substrate table are in contact with the immersion liquid. This can lead to problems with reaction or dissolution in the immersion liquid of the components of the projection system or substrate table.
- a lithographic projection apparatus arranged to project a pattern from a patterning device onto a substrate using a projection system and having a liquid supply system configured to at least partly fill a space between the projection system and the substrate with a liquid, wherein an element of the projection system through which the pattern is projected has, on a surface configured to be in contact with the liquid, a protective coating which is substantially insoluble in the liquid.
- the final element of the projection system may be made of a material which is selected due to superior optical properties and considerations regarding the activity between the material of the element and the immersion liquid do not need to be taken into account. If the thickness of the protective coating is kept low, the effect of the protective coating on the projection beam may be minimized.
- the protective coating is a metal, a metal oxide or nitride e.g. TiN, diamond, DLC or SiO 2 . These materials are both transparent to projection beam radiation used in immersion lithography as well as insoluble or inert in the immersion liquid, which in an embodiment comprises substantially water.
- a lithographic projection apparatus arranged to project a pattern from a patterning device onto a substrate using a projection system and having a liquid supply system configured to at least partly fill a space between the projection system and the substrate with a liquid, wherein the liquid supply system is configured to provide a first liquid in the space in contact with an element of the projection system through which the pattern is projected and to provide a second liquid in the space in contact with the substrate.
- This arrangement may allow a first immersion liquid to be chosen such that the material of the final element of the projection system is insoluble (and/or inert) in that liquid.
- a second immersion liquid different from the first, may be selected such that it has the correct optical properties or otherwise as required.
- the first and second liquids are kept apart so that it can be ensured that only the first liquid is in contact with the element.
- the liquid supply system has a membrane configured to separate the first and second immersion liquids.
- a membrane configured to separate the first and second immersion liquids.
- Material of which the membrane could be made includes quartz, which, in an embodiment, may be between 0.1 and 5 mm thick. In this way, for example, the final element of the projection system may be protected from the second immersion liquid with only a small adverse effect to the quality of the projection beam.
- Other solutions are possible.
- a lithographic projection apparatus arranged to project a pattern from a patterning device onto a substrate using a projection system and having a liquid supply system configured to at least partly fill a space between the projection system and the substrate with a liquid, wherein an element of the projection system through which the pattern is to be projected and configured to be at least in part in contact with the liquid, comprises first and second components of CaF 2 , SiO 2 or a combination of both materials, the components being arranged such that the projected pattern passes through the first component before passing through the second component.
- the first and second components are concentric. This is a compact geometry in which the optical paths through the first component are substantially of equal length to those through the second component.
- the second component may be positioned substantially within a recess in the first component such that if the final lens element is substantially of hemispherical shape the second lens component is substantially hemispherical in shape and the first component is also substantially of hemispherical shape though with a (substantially hemispherical) recess in the non-spherical surface.
- only the final element of the projection system is made of CaF 2 and the other elements of the projection system can be made of materials other than CaF 2 .
- a lithographic projection apparatus arranged to project a pattern from a patterning device onto a substrate using a projection system and having a liquid supply system configured to at least partly fill a space between the projection system and the substrate with a liquid, wherein the liquid supply system comprises a sacrificial body, in the liquid upstream of the space, configured to dissolve in the liquid to reduce the rate of dissolution of a component of (a) the projection system, (b) the substrate table, (c) the liquid supply system, or any combination of (a), (b), and (c).
- This aspect works by the sacrificial body dissolving in the immersion liquid to reduce the activity of the immersion liquid on components downstream of the sacrificial body.
- the immersion liquid becomes substantially saturated in the material of the sacrificial body such that no more such material can be dissolved by the immersion liquid and the component made of that material is thereby protected.
- One example of such material is quartz.
- the sacrificial body is of a shape with a high surface area to volume ratio (e.g. rods, tubing, fibers), it will dissolve particularly quickly in the immersion liquid which is advantageous.
- a device manufacturing method comprising projecting a patterned beam of radiation onto a substrate through a liquid provided in a space between an element of a projection system and the substrate, wherein a surface of the element in contact with the liquid comprises a protective coating which is substantially insoluble in the liquid.
- a device manufacturing method comprising projecting a patterned beam of radiation onto a substrate through a first liquid and a second liquid provided in a space between an element of a projection system and the substrate, wherein the first liquid is in contact with the element and the second liquid is in contact with the substrate.
- a device manufacturing method comprising projecting a patterned beam of radiation onto a substrate through a liquid provided in a space between an element of a projection system and the substrate, wherein the element is at least in part in contact with the liquid and comprises first and second components of CaF 2 , SiO 2 or a combination of both materials, the components being arranged such that the patterned beam of radiation passes through the first component before passing through the second component.
- a device manufacturing method comprising projecting a patterned beam of radiation onto a substrate through a liquid provided in a space between an element of a projection system and the substrate, wherein a sacrificial body, in the liquid upstream of the space, dissolves in the liquid to reduce the rate of dissolution of a component of (a) the projection system, (b) a substrate table holding the substrate, (c) a liquid supply system providing the liquid, or any combination of (a), (b), and (c).
- FIG. 1 depicts a lithographic apparatus according to an embodiment of the invention
- FIGS. 2 and 3 depict a liquid supply system for use in a lithographic projection apparatus
- FIG. 4 depicts another liquid supply system for use in a lithographic projection apparatus
- FIG. 5 depicts a further liquid supply system according to an embodiment of the invention.
- FIG. 6 depicts a final element of the projection system with a protective coating
- FIG. 7 depicts a final element of the projection system and a liquid supply system for providing a first immersion liquid and a second immersion liquid;
- FIG. 8 depicts a liquid supply system according to an embodiment of the present invention.
- FIG. 9 depicts a protective plate applied to the final element of a projection system according to an embodiment of the invention.
- FIG. 10 depicts a protective plate and liquid layer applied to the final element of a projection system according to an embodiment of the invention.
- FIG. 11 depicts a two layer protective coating applied to the final element of a projection system according to an embodiment of the invention.
- FIG. 1 schematically depicts a lithographic apparatus according to one embodiment of the invention.
- the apparatus comprises:
- the illumination system may include various types of optical components, such as refractive, reflective, magnetic, electromagnetic, electrostatic or other types of optical components, or any combination thereof, for directing, shaping, or controlling radiation.
- optical components such as refractive, reflective, magnetic, electromagnetic, electrostatic or other types of optical components, or any combination thereof, for directing, shaping, or controlling radiation.
- the support structure supports, i.e. bears the weight of, the patterning device. It holds the patterning device in a manner that depends on the orientation of the patterning device, the design of the lithographic apparatus, and other conditions, such as for example whether or not the patterning device is held in a vacuum environment.
- the support structure can use mechanical, vacuum, electrostatic or other clamping techniques to hold the patterning device.
- the support structure may be a frame or a table, for example, which may be fixed or movable as required.
- the support structure may ensure that the patterning device is at a desired position, for example with respect to the projection system. Any use of the terms “reticle” or “mask” herein may be considered synonymous with the more general term “patterning device.”
- patterning device used herein should be broadly interpreted as referring to any device that can be used to impart a radiation beam with a pattern in its cross-section such as to create a pattern in a target portion of the substrate. It should be noted that the pattern imparted to the radiation beam may not exactly correspond to the desired pattern in the target portion of the substrate, for example if the pattern includes phase-shifting features or so called assist features. Generally, the pattern imparted to the radiation beam will correspond to a particular functional layer in a device being created in the target portion, such as an integrated circuit.
- the patterning device may be transmissive or reflective.
- Examples of patterning devices include masks, programmable mirror arrays, and programmable LCD panels.
- Masks are well known in lithography, and include mask types such as binary, alternating phase-shift, and attenuated phase-shift, as well as various hybrid mask types.
- An example of a programmable mirror array employs a matrix arrangement of small mirrors, each of which can be individually tilted so as to reflect an incoming radiation beam in different directions. The tilted mirrors impart a pattern in a radiation beam which is reflected by the mirror matrix.
- projection system used herein should be broadly interpreted as encompassing any type of projection system, including refractive, reflective, catadioptric, magnetic, electromagnetic and electrostatic optical systems, or any combination thereof, as appropriate for the exposure radiation being used, or for other factors such as the use of an immersion liquid or the use of a vacuum. Any use of the term “projection lens” herein may be considered as synonymous with the more general term “projection system”.
- the apparatus is of a transmissive type (e.g. employing a transmissive mask).
- the apparatus may be of a reflective type (e.g. employing a programmable mirror array of a type as referred to above, or employing a reflective mask).
- the lithographic apparatus may be of a type having two (dual stage) or more substrate tables (and/or two or more mask tables). In such “multiple stage” machines the additional tables may be used in parallel, or preparatory steps may be carried out on one or more tables while one or more other tables are being used for exposure.
- the illuminator IL receives a radiation beam from a radiation source SO.
- the source and the lithographic apparatus may be separate entities, for example when the source is an excimer laser. In such cases, the source is not considered to form part of the lithographic apparatus and the radiation beam is passed from the source SO to the illuminator IL with the aid of a beam delivery system BD comprising, for example, suitable directing mirrors and/or a beam expander. In other cases the source may be an integral part of the lithographic apparatus, for example when the source is a mercury lamp.
- the source SO and the illuminator IL, together with the beam delivery system BD if required, may be referred to as a radiation system.
- the illuminator IL may comprise an adjuster AD for adjusting the angular intensity distribution of the radiation beam.
- an adjuster AD for adjusting the angular intensity distribution of the radiation beam.
- the illuminator IL may comprise various other components, such as an integrator IN and a condenser CO.
- the illuminator may be used to condition the radiation beam, to have a desired uniformity and intensity distribution in its cross-section.
- the radiation beam PB is incident on the patterning device (e.g., mask MA), which is held on the support structure (e.g., mask table MT), and is patterned by the patterning device. Having traversed the mask MA, the radiation beam PB passes through the projection system PL, which focuses the beam onto a target portion C of the substrate W.
- the substrate table WT can be moved accurately, e.g. so as to position different target portions C in the path of the radiation beam PB.
- the first positioner PM and another position sensor (which is not explicitly depicted in FIG.
- the mask table MT can be used to accurately position the mask MA with respect to the path of the radiation beam PB, e.g. after mechanical retrieval from a mask library, or during a scan.
- movement of the mask table MT may be realized with the aid of a long-stroke module (coarse positioning) and a short-stroke module (fine positioning), which form part of the first positioner PM.
- movement of the substrate table WT may be realized using a long-stroke module and a short-stroke module, which form part of the second positioner PW.
- the mask table MT may be connected to a short-stroke actuator only, or may be fixed.
- Mask MA and substrate W may be aligned using mask alignment marks M 1 , M 2 and substrate alignment marks P 1 , P 2 .
- the substrate alignment marks as illustrated occupy dedicated target portions, they may be located in spaces between target portions (these are known as scribe-lane alignment marks).
- the mask alignment marks may be located between the dies.
- the depicted apparatus could be used in at least one of the following modes:
- step mode the mask table MT and the substrate table WT are kept essentially stationary, while an entire pattern imparted to the radiation beam is projected onto a target portion C at one time (i.e. a single static exposure).
- the substrate table WT is then shifted in the X and/or Y direction so that a different target portion C can be exposed.
- step mode the maximum size of the exposure field limits the size of the target portion C imaged in a single static exposure.
- the mask table MT and the substrate table WT are scanned synchronously while a pattern imparted to the radiation beam is projected onto a target portion C (i.e. a single dynamic exposure).
- the velocity and direction of the substrate table WT relative to the mask table MT may be determined by the (de-)magnification and image reversal characteristics of the projection system PL.
- the maximum size of the exposure field limits the width (in the non-scanning direction) of the target portion in a single dynamic exposure, whereas the length of the scanning motion determines the height (in the scanning direction) of the target portion.
- the mask table MT is kept essentially stationary holding a programmable patterning device, and the substrate table WT is moved or scanned while a pattern imparted to the radiation beam is projected onto a target portion C.
- a pulsed radiation source is employed and the programmable patterning device is updated as required after each movement of the substrate table WT or in between successive radiation pulses during a scan.
- This mode of operation can be readily applied to maskless lithography that utilizes programmable patterning device, such as a programmable mirror array of a type as referred to above.
- Another solution which has been proposed is to provide the liquid supply system with a seal member which extends along at least a part of a boundary of the space between the final element of the projection system and the substrate table.
- the seal member is substantially stationary relative to the projection system in the XY plane though there may be some relative movement in the Z direction (in the direction of the optical axis).
- a seal is formed between the seal member and the surface of the substrate.
- the seal is a contactless seal such as a gas seal.
- Such as system with a gas seal is disclosed in U.S. patent application Ser. No. 10/705,783, hereby incorporated in its entirety by reference.
- FIG. 5 shows a liquid reservoir 10 between the projection system PL and a substrate W which is positioned on the substrate stage WT.
- the liquid reservoir 10 is filled with a liquid 11 having a relatively high refractive index, e.g. water, provided via inlet/outlet ducts 13 .
- the liquid has the effect that the radiation of the projection beam is a shorter wavelength in the liquid than in air or in a vacuum, allowing smaller features to be resolved. It is well known that the resolution limit of a projection system is determined, inter alia, by the wavelength of the projection beam and the numerical aperture of the system. The presence of the liquid may also be regarded as increasing the effective numerical aperture. Furthermore, at fixed numerical aperture, the liquid is effective to increase the depth of field.
- the reservoir 10 forms, in an embodiment, a contactless seal to the substrate W around the image field of the projection system PL so that the liquid is confined to fill the space between the substrate's primary surface, which faces the projection system PL, and the final element (e.g. an ‘ab gleichplatte’ which seals the projection system, or the final optical element of the projection system) of the projection system PL.
- the reservoir is formed by a seal member 12 positioned below and surrounding the final element of the projection system PL.
- the liquid supply system provides liquid on only a localized area of the substrate.
- the seal member 12 forms part of the liquid supply system for filling the space between the final element of the projection system and the substrate W (or, e.g., a sensor) with a liquid.
- the seal member 12 extends a little above the bottom element of the projection system and the liquid rises above the final element so that a buffer of liquid is provided.
- the seal member 12 has an inner periphery that at the upper end closely conforms to the shape of the projection system or the final element thereof and may, e.g. be round. At the bottom the inner periphery forms an aperture which closely conforms to the shape of the image field, e.g. rectangular, though this is not necessarily so. The projection beam passes through this aperture.
- the liquid 11 is confined in the reservoir 10 by a seal device 16 .
- the seal device is a contactless seal, i.e. a gas seal.
- the gas seal is formed by gas, e.g. air or synthetic air, provided under pressure via inlet 15 to the gap between seal member 12 and substrate W and extracted by first outlet 14 .
- the over pressure on the gas inlet 15 , vacuum level on the first outlet 14 and the geometry of the gap are arranged so that there is a high-velocity gas flow inwards towards the optical axis of the apparatus that confines the liquid 11 .
- some liquid is likely to escape, for example up the first outlet 14 .
- FIGS. 2 and 3 also depict a liquid reservoir defined by inlet(s) IN, outlet(s) OUT, the substrate W and the final element of projection system PL.
- the liquid supply system illustrated in FIGS. 2 and 3 comprising inlet(s) IN and outlet(s) OUT, supplies liquid to a space between the final element of the projection system and a localized area of the primary surface of the substrate.
- FIG. 6 illustrates in detail the final element 20 of the projection system PL.
- the final element is a final optical element 20 which comprises a first component 25 and a second component 27 .
- the final element 20 of the projection system PL comprises first and second components 25 , 27 so that the element may be made of a material which exhibits birefringence.
- An example material for irradiation at 157 nm is CaF 2 which is transmissive but exhibits birefringence properties at this wavelength. Quartz is barely transmissive at 157 nm. CaF 2 is also useful for 193 nm although quartz can also be used at this wavelength.
- quartz lenses suffer from compaction at these wavelengths which can cause radiation to be focused on to small bits of the lens which discolor (go dark) and absorb more heat and so a channel can get cut.
- the birefringence exhibited by CaF 2 at 157 nm can be compensated for by ensuring that the crystal orientations of the first and second components are aligned such that the intrinsic birefringence exhibited by the first component 25 is cancelled or reduced by the intrinsic birefringence exhibited by the second component 27 .
- the projection beam PB which passes first through the first component 25 and then through the second component 27 exits the second component 27 substantially free of birefringence phenomena.
- the remaining optical elements of the projection system PL may be comprised of materials other than CaF 2 .
- the intensity of the projection beam is highest at the last element which is also the smallest so that it is this element which is most likely to suffer from compaction if made of quartz.
- the final element 20 of the projection system PL is substantially hemispherical in shape.
- the second component 27 is in the shape of a hemisphere and is positioned in a recess of the first component 25 which has an outer surface of the shape of a hemisphere with a recess in its non-curved surface.
- CaF 2 may dissolve or react with immersion liquid 11 used in an immersion liquid lithographic projection apparatus.
- the immersion liquid is envisaged as comprising substantially water for 248 nm and 193 nm.
- perfluouro-hydrocarbons are envisaged.
- One way of protecting the final element 20 of the projection system from attack by the immersion liquid 11 is to provide a protective coating 40 on a surface of the final element 20 which is in contact with the immersion liquid.
- the material of the protective coating 40 is inert in the immersion liquid 11 and does not dissolve.
- the protective coating 40 is attached to the bottom (as illustrated) surface of the second component 27 of the projection system PL.
- the protective layer is made as thin as possible while still providing protection to the final optical element 20 of the projection system PL.
- the protective coating is between 5 and 500 nm thick, or between 10 and 200 nm thick.
- the material of the protective coating 40 is a metal, a metal oxide or nitride or SiO2 with a low contact angle with the immersion liquid to limit bubble inclusion.
- the layer may be deposited on the element 20 by e.g. evaporation, sputtering, etc.
- a protective coating 40 is not limited to the case where the final element 20 of the projection system PL is comprised of CaF 2 .
- the final element is comprised of quartz (as typically in the case of an abQueryplatte being the final element)
- a protective layer 40 may also be used.
- the protective coating 40 should be as thin as possible to minimize transmission losses.
- the refractive index of the protective coating 40 can be partially varied by the deposition process and the deposition parameters. Experience gained in the deposition of EUV coatings might be usefully harnessed to optimize this process.
- FIG. 7 illustrates a second embodiment of the present invention which is the same as the embodiment described above except as described below.
- the liquid supply system comprises a mechanism to provide a first immersion liquid 70 which is in contact with the final element 20 of the projection system.
- a second immersion liquid 75 is also provided which is in contact with the substrate W.
- the first immersion liquid 70 can be chosen such that it only reacts with or dissolves very slowly the material of the final element 20 or does not react at all.
- the second immersion liquid 75 can then be chosen because of its good optical properties without any activity limitations being placed on it because of its contact with the final element 20 .
- the two immersion liquids 70 , 75 may be provided to the correct areas of the space and kept substantially apart.
- a membrane 50 is provided for separating the first and second 70 , 75 immersion liquids.
- the immersion liquids 70 , 75 may then be provided separately on either side of the membrane.
- the membrane is between 0.1 and 5 mm thick to give the required stiffness without seriously deleteriously affecting the quality of the projection beam PB.
- a suitable material for making the membrane 50 is SiO2.
- the membrane 50 may be replaceable.
- FIG. 8 illustrates a liquid supply system which may be used with either of the above two embodiments.
- the liquid supply system 100 provides liquid from an inlet 102 to a liquid containment system, for example, for use with or used in the types of liquid supply systems illustrated in FIGS. 2 to 5 .
- the immersion liquid is provided between the ab gleichplatte 90 and the substrate W. Immersion liquid exits then via a drain 104 .
- Components of the liquid supply system, the projection system PL and the substrate table WT all come in contact with the immersion liquid. If any of those components are made of a material which can dissolve in untreated immersion liquid, and are not protected, this can deleteriously affect the lifetime of the apparatus.
- a sacrificial unit 80 is provided upstream of the liquid containment system (for example, seal member 12 ) in the liquid supply system 100 .
- the sacrificial unit 80 at least one sacrificial body 85 is positioned.
- the sacrificial body 85 is intended to dissolve in the immersion liquid to reduce the activity of the immersion liquid with materials of the components to be protected in the projection system and/or of the substrate table and/or of the liquid supply system downstream.
- the final element of the projection system PL e.g. an abQueryplatte 90 (last lens element)
- the immersion liquid which may be water
- the immersion liquid can be saturated with quartz as it passes through the sacrificial unit 80 such that the immersion liquid activity with quartz once it reaches the liquid containment system and ab gleichplatte 90 is reduced.
- the sacrificial unit 80 may contain a plurality of sacrificial bodies which are not necessarily all of the same material. It may also be that the sacrificial bodies may be made of a different material to those materials which they are intended to protect. For example, a sacrificial body may be designed to reduce the pH of the immersion liquid to such a level that materials of components to be protected downstream of the sacrificial unit 80 do not dissolve. Alternatively, a buffer could be added to the liquid.
- the sacrificial bodies 85 have as large as possible a surface area to volume ratio.
- Example shapes are rods, tubes, etc. However, clearly any shape may be used.
- the final element 20 of the projection system is protected by a fused silica plate 45 .
- This plate may have a thickness in the range of from 50 ⁇ m to 5 mm and may be contact bonded or glue bonded to the final element 20 . In contact bonding, no glue is used—the bonding surfaces are made smooth and clean enough to directly bond together.
- the fused silica plate may be ground and polished to the desired thickness, avoiding difficulties inherent in handling a very thin plate.
- a liquid-tight seal 46 may be provided around the perimeter of the joint.
- a seal 46 around the joint of the final element and the fused silica protective plate may be desirable where the final element and the fused silica plate are contact bonded together.
- this form of bonding can provide an exceptionally strong bond, where dissimilar materials, such as CaF 2 and fused silica, are bonded, temperature changes and thermal gradients may cause the bond to “breathe”—differential thermal expansion or contraction of the two materials causes them to separate until the stress is relieved.
- the bond usually reforms very quickly in the case of thermal separation, if this occurs when the final element is in contact with a liquid, e.g. during polishing or grinding of the protective layer or use of the apparatus, liquid can be drawn into the gap.
- seal is a layer of SiO formed by applying a suitable precursor (such as silicone fluids (i.e. comprising Si—O chains of various lengths with various hydrocarbon side-chains), tetraethyl orthosilicate, decamethyl tetrasiloxane and tetrabutyl orthosilicate) and irradiating it with DUV light to photo-convert the precursor to SiO.
- a suitable precursor such as silicone fluids (i.e. comprising Si—O chains of various lengths with various hydrocarbon side-chains), tetraethyl orthosilicate, decamethyl tetrasiloxane and tetrabutyl orthosilicate) and irradiating it with DUV light to photo-convert the precursor to SiO.
- a suitable precursor such as silicone fluids (i.e. comprising Si—O chains of various lengths with various hydrocarbon side-chains), tetraethyl orthosilicate, decamethyl tetrasi
- seals that is useful are a silicon caulk provided over a layer of titanium oxide.
- the titanium oxide is applied by painting a precursor onto the seal and photo-converting it to titanium oxide and acts to protect the silicone caulk from UV light during operation of the apparatus.
- a further form of seal is formed by painting tetraethyl orthosilicate around the joint, which then decomposes at room temperature to form a thin layer of fused silica which forms a seal. This seal is however rather brittle so that careful handling is required.
- a liquid 47 such as oil, is provided between the last lens element 20 and the protective plate 45 .
- the liquid 47 has a refractive index as close as possible to that of the immersion liquid 11 , which may be water, but is not damaging to the material of the final lens element 20 , which may be CaF 2 . This enables the protective plate to be interchangeable by substantially reducing the requirements on the accuracy with which the protective plate 45 must be positioned as the fluids above and below it have similar refractive indices.
- a further variant, shown in FIG. 11 uses a two layer protective coating, made up of inner layer 48 and outer layer 49 . It may be very difficult to form a layer of protective coating without pinholes. Even the smallest pinhole in a protective coating applied to a CaF 2 body allows dissolution of the CaF 2 body when immersed in liquid (e.g., water), causing cavitation which is extremely deleterious to the optical properties of the element.
- a two layer protective coating it can be arranged that the pinholes in one layer do not match up with the pinholes in the other layer so that there is no through path in the protective layer. It can best be ensured that the pinholes of the two layers do not match up by applying the two protective layers by different methods.
- An embodiment of the invention has a first layer 48 of SiO applied by sputtering and a second layer 49 applied by spin coating a precursor and photo-converting the precursor to SiO.
- This method may be more effective than sputtering two layers of SiO since the pinholes in the second sputtered layer have a tendency to line up with those in the first layer.
- the spin coating and photo-conversion method may provide a layer of bulk SiO rather than porous SiO.
- a layer formed by spin-coating a precursor and then photo-converting it to SiO may also be used on its own as a seal layer.
- the precursor used to form protective layer 49 may be any suitable fluid of, or containing, organo-silicon compounds. Suitable examples are silicone fluids (i.e. comprising Si—O chains of various lengths with various hydrocarbon side-chains), tetraethyl orthosilicate, decamethyl tetrasiloxane and tetrabutyl orthosilicate.
- the material may be chosen to have a desired viscosity to enable a suitably even layer to be provided by spin coating. Solvents, such as volatile organic solvents, may be used to adjust the viscosity if necessary.
- Photo-conversion of the precursor to SiO can be achieved with irradiation by DUV light of various wavelengths, e.g. 184 nm or 172 nm, at a rate determined to avoid any deleterious effects that might be induced by thermal gradients in the element.
- Each of the two layers of the protective coating may have a thickness in the range of 50 to 200 nm.
- FIG. 4 A further immersion lithography solution with a localized liquid supply system is shown in FIG. 4 .
- Liquid is supplied by two groove inlets IN on either side of the projection system PL and is removed by a plurality of discrete outlets OUT arranged radially outwardly of the inlets IN.
- the inlets IN and OUT can be arranged in a plate with a hole in its center and through which the projection beam is projected.
- Liquid is supplied by one groove inlet IN on one side of the projection system PL and removed by a plurality of discrete outlets OUT on the other side of the projection system PL, causing a flow of a thin film of liquid between the projection system PL and the substrate W.
- the choice of which combination of inlet IN and outlets OUT to use can depend on the direction of movement of the substrate W (the other combination of inlet IN and outlets OUT being inactive).
- a twin or dual stage immersion lithography apparatus is disclosed.
- Such an apparatus is provided with two tables for supporting the substrate.
- Leveling measurements are carried out with a table at a first position, without immersion liquid, and exposure is carried out with a table at a second position, where immersion liquid is present.
- the apparatus may have only one table movable between exposure and measurement positions.
- lithographic apparatus in the manufacture of ICs
- the lithographic apparatus described herein may have other applications, such as the manufacture of integrated optical systems, guidance and detection patterns for magnetic domain memories, flat-panel displays, liquid-crystal displays (LCDs), thin-film magnetic heads, etc.
- LCDs liquid-crystal displays
- any use of the terms “wafer” or “die” herein may be considered as synonymous with the more general terms “substrate” or “target portion”, respectively.
- the substrate referred to herein may be processed, before or after exposure, in for example a track (a tool that typically applies a layer of resist to a substrate and develops the exposed resist), a metrology tool and/or an inspection tool. Where applicable, the disclosure herein may be applied to such and other substrate processing tools. Further, the substrate may be processed more than once, for example in order to create a multi-layer IC, so that the term substrate used herein may also refer to a substrate that already contains multiple processed layers.
- UV radiation e.g. having a wavelength of or about 365, 248, 193, 157 or 126 nm.
- lens may refer to any one or combination of various types of optical components, including refractive and reflective optical components.
- the invention may take the form of a computer program containing one or more sequences of machine-readable instructions describing a method as disclosed above, or a data storage medium (e.g. semiconductor memory, magnetic or optical disk) having such a computer program stored therein.
- a data storage medium e.g. semiconductor memory, magnetic or optical disk
- the present invention can be applied to any immersion lithography apparatus, in particular, but not exclusively, to those types mentioned above.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Surface Treatment Of Optical Elements (AREA)
Abstract
Description
-
- an illumination system (illuminator) IL configured to condition a radiation beam PB (e.g. UV radiation or DUV radiation).
- a support structure (e.g. a mask table) MT constructed to support a patterning device (e.g. a mask) MA and connected to a first positioner PM configured to accurately position the patterning device in accordance with certain parameters;
- a substrate table (e.g. a wafer table) WT constructed to hold a substrate (e.g. a resist-coated wafer) W and connected to a second positioner PW configured to accurately position the substrate in accordance with certain parameters; and
- a projection system (e.g. a refractive projection lens system) PL configured to project a pattern imparted to the radiation beam PB by patterning device MA onto a target portion C (e.g. comprising one or more dies) of the substrate W.
Claims (40)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/529,587 US8208124B2 (en) | 2003-08-29 | 2006-09-29 | Lithographic apparatus and device manufacturing method |
US13/240,753 US8804097B2 (en) | 2003-08-29 | 2011-09-22 | Lithographic apparatus and device manufacturing method |
US13/903,885 US9606448B2 (en) | 2003-08-29 | 2013-05-28 | Lithographic apparatus and device manufacturing method |
US14/456,845 US9442388B2 (en) | 2003-08-29 | 2014-08-11 | Lithographic apparatus and device manufacturing method |
US15/419,769 US10146142B2 (en) | 2003-08-29 | 2017-01-30 | Lithographic apparatus and device manufacturing method |
US16/197,416 US20190086819A1 (en) | 2003-08-29 | 2018-11-21 | Lithographic apparatus and device manufacturing method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03255377 | 2003-08-29 | ||
EP03255377 | 2003-08-29 | ||
EP03255377.8 | 2003-08-29 | ||
US10/698,012 US6954256B2 (en) | 2003-08-29 | 2003-10-31 | Gradient immersion lithography |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/529,587 Continuation US8208124B2 (en) | 2003-08-29 | 2006-09-29 | Lithographic apparatus and device manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
US20050094119A1 US20050094119A1 (en) | 2005-05-05 |
US8208123B2 true US8208123B2 (en) | 2012-06-26 |
Family
ID=34424773
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/698,012 Expired - Fee Related US6954256B2 (en) | 2003-08-29 | 2003-10-31 | Gradient immersion lithography |
US10/927,531 Expired - Fee Related US8208123B2 (en) | 2003-08-29 | 2004-08-27 | Lithographic apparatus and device manufacturing method |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/698,012 Expired - Fee Related US6954256B2 (en) | 2003-08-29 | 2003-10-31 | Gradient immersion lithography |
Country Status (5)
Country | Link |
---|---|
US (2) | US6954256B2 (en) |
EP (1) | EP1510871B1 (en) |
JP (3) | JP2005079589A (en) |
CN (1) | CN100495213C (en) |
SG (1) | SG109610A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100321695A1 (en) * | 2009-06-19 | 2010-12-23 | Asml Netherlands B.V. | Sensor, a table and lithographic apparatus |
US20120212716A1 (en) * | 2003-08-26 | 2012-08-23 | Nikon Corporation | Optical element and exposure apparatus |
US8830446B2 (en) * | 2005-01-12 | 2014-09-09 | Asml Netherlands B.V. | Exposure apparatus |
US10175584B2 (en) | 2003-08-26 | 2019-01-08 | Nikon Corporation | Optical element and exposure apparatus |
Families Citing this family (244)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI249082B (en) * | 2002-08-23 | 2006-02-11 | Nikon Corp | Projection optical system and method for photolithography and exposure apparatus and method using same |
US7081278B2 (en) * | 2002-09-25 | 2006-07-25 | Asml Holdings N.V. | Method for protection of adhesives used to secure optics from ultra-violet light |
SG135052A1 (en) | 2002-11-12 | 2007-09-28 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
US7110081B2 (en) | 2002-11-12 | 2006-09-19 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
SG121822A1 (en) * | 2002-11-12 | 2006-05-26 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
JP3953460B2 (en) | 2002-11-12 | 2007-08-08 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic projection apparatus |
US9482966B2 (en) | 2002-11-12 | 2016-11-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7372541B2 (en) * | 2002-11-12 | 2008-05-13 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
DE60335595D1 (en) | 2002-11-12 | 2011-02-17 | Asml Netherlands Bv | Immersion lithographic apparatus and method of making a device |
US10503084B2 (en) | 2002-11-12 | 2019-12-10 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
CN101424883B (en) * | 2002-12-10 | 2013-05-15 | 株式会社尼康 | Exposure system and device producing method |
US7242455B2 (en) * | 2002-12-10 | 2007-07-10 | Nikon Corporation | Exposure apparatus and method for producing device |
KR20050062665A (en) | 2002-12-10 | 2005-06-23 | 가부시키가이샤 니콘 | Exposure apparatus and method for manufacturing device |
KR101101737B1 (en) * | 2002-12-10 | 2012-01-05 | 가부시키가이샤 니콘 | Exposure apparatus, exposure method and method for manufacturing device |
JP4352874B2 (en) * | 2002-12-10 | 2009-10-28 | 株式会社ニコン | Exposure apparatus and device manufacturing method |
KR20050085026A (en) * | 2002-12-10 | 2005-08-29 | 가부시키가이샤 니콘 | Optical device and projection exposure apparatus using such optical device |
US7948604B2 (en) * | 2002-12-10 | 2011-05-24 | Nikon Corporation | Exposure apparatus and method for producing device |
EP1571694A4 (en) * | 2002-12-10 | 2008-10-15 | Nikon Corp | Exposure apparatus and method for manufacturing device |
JP4364805B2 (en) * | 2002-12-19 | 2009-11-18 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Method and apparatus for irradiating a spot on a layer |
DE10261775A1 (en) * | 2002-12-20 | 2004-07-01 | Carl Zeiss Smt Ag | Device for the optical measurement of an imaging system |
KR101506408B1 (en) * | 2003-02-26 | 2015-03-26 | 가부시키가이샤 니콘 | Exposure apparatus and method, and method of producing apparatus |
KR20050110033A (en) | 2003-03-25 | 2005-11-22 | 가부시키가이샤 니콘 | Exposure system and device production method |
KR101176817B1 (en) * | 2003-04-07 | 2012-08-24 | 가부시키가이샤 니콘 | Exposure apparatus and method for manufacturing device |
JP4488004B2 (en) * | 2003-04-09 | 2010-06-23 | 株式会社ニコン | Immersion lithography fluid control system |
KR20170064003A (en) * | 2003-04-10 | 2017-06-08 | 가부시키가이샤 니콘 | Environmental system including a transport region for an immersion lithography apparatus |
KR101886027B1 (en) * | 2003-04-10 | 2018-09-06 | 가부시키가이샤 니콘 | Environmental system including vaccum scavange for an immersion lithography apparatus |
CN1771463A (en) | 2003-04-10 | 2006-05-10 | 株式会社尼康 | Run-off path to collect liquid for an immersion lithography apparatus |
JP4656057B2 (en) * | 2003-04-10 | 2011-03-23 | 株式会社ニコン | Electro-osmotic element for immersion lithography equipment |
WO2004092830A2 (en) * | 2003-04-11 | 2004-10-28 | Nikon Corporation | Liquid jet and recovery system for immersion lithography |
SG189557A1 (en) * | 2003-04-11 | 2013-05-31 | Nikon Corp | Cleanup method for optics in immersion lithography |
JP4315198B2 (en) | 2003-04-11 | 2009-08-19 | 株式会社ニコン | Lithographic apparatus for maintaining immersion liquid under an optical assembly, immersion liquid maintenance method and device manufacturing method using them |
SG152078A1 (en) | 2003-04-17 | 2009-05-29 | Nikon Corp | Optical arrangement of autofocus elements for use with immersion lithography |
EP2722702A3 (en) | 2003-05-06 | 2014-07-23 | Nikon Corporation | Projection optical system, and exposure apparatus and exposure method |
US7348575B2 (en) | 2003-05-06 | 2008-03-25 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
TWI295414B (en) | 2003-05-13 | 2008-04-01 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
EP1624481A4 (en) * | 2003-05-15 | 2008-01-30 | Nikon Corp | Exposure apparatus and method for manufacturing device |
TWI511181B (en) * | 2003-05-23 | 2015-12-01 | 尼康股份有限公司 | Exposure method and exposure apparatus, and device manufacturing method |
TWI503865B (en) * | 2003-05-23 | 2015-10-11 | 尼康股份有限公司 | A method of manufacturing an exposure apparatus and an element |
KR20060009956A (en) * | 2003-05-28 | 2006-02-01 | 가부시키가이샤 니콘 | Exposure method, exposure apparatus, and device manufacturing method |
TWI347741B (en) * | 2003-05-30 | 2011-08-21 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
US7213963B2 (en) | 2003-06-09 | 2007-05-08 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7317504B2 (en) * | 2004-04-08 | 2008-01-08 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP1486827B1 (en) | 2003-06-11 | 2011-11-02 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
TW201818451A (en) | 2003-06-13 | 2018-05-16 | 日商尼康股份有限公司 | Substrate stage, exposure device |
TWI536430B (en) | 2003-06-19 | 2016-06-01 | 尼康股份有限公司 | An exposure apparatus, an exposure method, and an element manufacturing method |
JP2007527615A (en) * | 2003-07-01 | 2007-09-27 | 株式会社ニコン | Method of using isotope specific fluid as optical element |
JP4697138B2 (en) * | 2003-07-08 | 2011-06-08 | 株式会社ニコン | Immersion lithography apparatus, immersion lithography method, and device manufacturing method |
KR101296501B1 (en) * | 2003-07-09 | 2013-08-13 | 가부시키가이샤 니콘 | Exposure apparatus and method for manufacturing device |
WO2005006415A1 (en) | 2003-07-09 | 2005-01-20 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
JP4844123B2 (en) | 2003-07-09 | 2011-12-28 | 株式会社ニコン | Exposure apparatus and device manufacturing method |
SG109000A1 (en) * | 2003-07-16 | 2005-02-28 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
EP1500982A1 (en) * | 2003-07-24 | 2005-01-26 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP3346485A1 (en) * | 2003-07-25 | 2018-07-11 | Nikon Corporation | Projection optical system inspecting method and inspection apparatus, and a projection optical system manufacturing method |
US7175968B2 (en) * | 2003-07-28 | 2007-02-13 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method and a substrate |
EP1503244A1 (en) * | 2003-07-28 | 2005-02-02 | ASML Netherlands B.V. | Lithographic projection apparatus and device manufacturing method |
KR101641011B1 (en) | 2003-07-28 | 2016-07-19 | 가부시키가이샤 니콘 | Exposure apparatus, device producing method, and exposure apparatus controlling method |
US7326522B2 (en) | 2004-02-11 | 2008-02-05 | Asml Netherlands B.V. | Device manufacturing method and a substrate |
US7779781B2 (en) | 2003-07-31 | 2010-08-24 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US6954256B2 (en) | 2003-08-29 | 2005-10-11 | Asml Netherlands B.V. | Gradient immersion lithography |
EP2261740B1 (en) | 2003-08-29 | 2014-07-09 | ASML Netherlands BV | Lithographic apparatus |
TWI263859B (en) | 2003-08-29 | 2006-10-11 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
SG145780A1 (en) * | 2003-08-29 | 2008-09-29 | Nikon Corp | Exposure apparatus and device fabricating method |
TWI245163B (en) | 2003-08-29 | 2005-12-11 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
EP3223074A1 (en) * | 2003-09-03 | 2017-09-27 | Nikon Corporation | Apparatus and method for immersion lithography for recovering fluid |
JP4444920B2 (en) * | 2003-09-19 | 2010-03-31 | 株式会社ニコン | Exposure apparatus and device manufacturing method |
SG2014014971A (en) | 2003-09-29 | 2014-04-28 | Nippon Kogaku Kk | Exposure apparatus, exposure method, and device manufacturing method |
SG144907A1 (en) * | 2003-09-29 | 2008-08-28 | Nikon Corp | Liquid immersion type lens system, projection exposure apparatus, and device fabricating method |
US7369217B2 (en) * | 2003-10-03 | 2008-05-06 | Micronic Laser Systems Ab | Method and device for immersion lithography |
JP2005136364A (en) * | 2003-10-08 | 2005-05-26 | Zao Nikon Co Ltd | Substrate transport apparatus, exposure apparatus, and device manufacturing method |
EP1672682A4 (en) | 2003-10-08 | 2008-10-15 | Zao Nikon Co Ltd | Substrate transporting apparatus and method, exposure apparatus and method, and device producing method |
KR101361892B1 (en) * | 2003-10-08 | 2014-02-12 | 가부시키가이샤 자오 니콘 | Substrate carrying apparatus, substrate carrying method, exposure apparatus, exposure method, and method for producing device |
TWI598934B (en) | 2003-10-09 | 2017-09-11 | Nippon Kogaku Kk | Exposure apparatus, exposure method, and device manufacturing method |
EP1524557A1 (en) * | 2003-10-15 | 2005-04-20 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP1524558A1 (en) | 2003-10-15 | 2005-04-20 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7352433B2 (en) | 2003-10-28 | 2008-04-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7411653B2 (en) * | 2003-10-28 | 2008-08-12 | Asml Netherlands B.V. | Lithographic apparatus |
US7924397B2 (en) * | 2003-11-06 | 2011-04-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Anti-corrosion layer on objective lens for liquid immersion lithography applications |
JP4295712B2 (en) | 2003-11-14 | 2009-07-15 | エーエスエムエル ネザーランズ ビー.ブイ. | Lithographic apparatus and apparatus manufacturing method |
US7545481B2 (en) | 2003-11-24 | 2009-06-09 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
SG2014014955A (en) | 2003-12-03 | 2014-07-30 | Nippon Kogaku Kk | Exposure apparatus, exposure method, method for producing device, and optical part |
JP2005175034A (en) * | 2003-12-09 | 2005-06-30 | Canon Inc | Exposure equipment |
US20070081133A1 (en) * | 2004-12-14 | 2007-04-12 | Niikon Corporation | Projection exposure apparatus and stage unit, and exposure method |
JP4907596B2 (en) * | 2003-12-15 | 2012-03-28 | カール・ツァイス・エスエムティー・ゲーエムベーハー | Refractive projection objective |
WO2005057635A1 (en) * | 2003-12-15 | 2005-06-23 | Nikon Corporation | Projection exposure apparatus, stage apparatus, and exposure method |
KR101499405B1 (en) | 2003-12-15 | 2015-03-05 | 가부시키가이샤 니콘 | Stage system, exposure apparatus and exposure method |
JP2005189850A (en) * | 2003-12-15 | 2005-07-14 | Carl Zeiss Smt Ag | Refractive projection objective lens for immersion lithography |
US7460206B2 (en) * | 2003-12-19 | 2008-12-02 | Carl Zeiss Smt Ag | Projection objective for immersion lithography |
US7394521B2 (en) | 2003-12-23 | 2008-07-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7589818B2 (en) * | 2003-12-23 | 2009-09-15 | Asml Netherlands B.V. | Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus |
JP2005191394A (en) * | 2003-12-26 | 2005-07-14 | Canon Inc | Exposure method and apparatus |
JP2005195878A (en) * | 2004-01-07 | 2005-07-21 | Olympus Corp | Objective lens, optical analyzer, method of operating the optical analyzer, and microscope |
EP1706793B1 (en) * | 2004-01-20 | 2010-03-03 | Carl Zeiss SMT AG | Exposure apparatus and measuring device for a projection lens |
US20050161644A1 (en) * | 2004-01-23 | 2005-07-28 | Peng Zhang | Immersion lithography fluids |
TWI259319B (en) * | 2004-01-23 | 2006-08-01 | Air Prod & Chem | Immersion lithography fluids |
US7589822B2 (en) * | 2004-02-02 | 2009-09-15 | Nikon Corporation | Stage drive method and stage unit, exposure apparatus, and device manufacturing method |
KR101377815B1 (en) | 2004-02-03 | 2014-03-26 | 가부시키가이샤 니콘 | Exposure apparatus and method of producing device |
US7050146B2 (en) | 2004-02-09 | 2006-05-23 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP4370992B2 (en) * | 2004-02-18 | 2009-11-25 | 株式会社ニコン | Optical element and exposure apparatus |
TWI395069B (en) * | 2004-02-18 | 2013-05-01 | 尼康股份有限公司 | Projection optical system, exposure device and exposure method |
WO2005081295A1 (en) * | 2004-02-20 | 2005-09-01 | Nikon Corporation | Exposure method, exposure apparatus, exposure system and method for manufacturing device |
TWI486719B (en) | 2004-03-25 | 2015-06-01 | 尼康股份有限公司 | Exposure method |
JP4510494B2 (en) * | 2004-03-29 | 2010-07-21 | キヤノン株式会社 | Exposure equipment |
US7034917B2 (en) * | 2004-04-01 | 2006-04-25 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method and device manufactured thereby |
US7898642B2 (en) | 2004-04-14 | 2011-03-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US20050231695A1 (en) * | 2004-04-15 | 2005-10-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and system for immersion lithography using high PH immersion fluid |
US7271878B2 (en) * | 2004-04-22 | 2007-09-18 | International Business Machines Corporation | Wafer cell for immersion lithography |
US20060244938A1 (en) * | 2004-05-04 | 2006-11-02 | Karl-Heinz Schuster | Microlitographic projection exposure apparatus and immersion liquid therefore |
WO2005111722A2 (en) | 2004-05-04 | 2005-11-24 | Nikon Corporation | Apparatus and method for providing fluid for immersion lithography |
US7616383B2 (en) * | 2004-05-18 | 2009-11-10 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7486381B2 (en) * | 2004-05-21 | 2009-02-03 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP4655763B2 (en) * | 2004-06-04 | 2011-03-23 | 株式会社ニコン | Exposure apparatus, exposure method, and device manufacturing method |
WO2005119742A1 (en) | 2004-06-04 | 2005-12-15 | Nikon Corporation | Exposure apparatus, exposure method, and device producing method |
JP4845880B2 (en) | 2004-06-04 | 2011-12-28 | カール・ツァイス・エスエムティー・ゲーエムベーハー | Image quality measurement system for optical imaging system |
US20070103661A1 (en) * | 2004-06-04 | 2007-05-10 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
KR101512884B1 (en) * | 2004-06-09 | 2015-04-16 | 가부시키가이샤 니콘 | Exposure system and device production method |
US20070222959A1 (en) * | 2004-06-10 | 2007-09-27 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
EP3067749B1 (en) * | 2004-06-10 | 2017-10-18 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US7481867B2 (en) | 2004-06-16 | 2009-01-27 | Edwards Limited | Vacuum system for immersion photolithography |
US7180572B2 (en) * | 2004-06-23 | 2007-02-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Immersion optical projection system |
US7463330B2 (en) | 2004-07-07 | 2008-12-09 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
WO2006006565A1 (en) * | 2004-07-12 | 2006-01-19 | Nikon Corporation | Exposure equipment and device manufacturing method |
US7304715B2 (en) | 2004-08-13 | 2007-12-04 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP4983257B2 (en) * | 2004-08-18 | 2012-07-25 | 株式会社ニコン | Exposure apparatus, device manufacturing method, measuring member, and measuring method |
US7701550B2 (en) | 2004-08-19 | 2010-04-20 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7522261B2 (en) * | 2004-09-24 | 2009-04-21 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7355674B2 (en) * | 2004-09-28 | 2008-04-08 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method and computer program product |
US7894040B2 (en) | 2004-10-05 | 2011-02-22 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7379155B2 (en) * | 2004-10-18 | 2008-05-27 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7583357B2 (en) * | 2004-11-12 | 2009-09-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7423720B2 (en) | 2004-11-12 | 2008-09-09 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7414699B2 (en) * | 2004-11-12 | 2008-08-19 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7411657B2 (en) * | 2004-11-17 | 2008-08-12 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
WO2006054719A1 (en) * | 2004-11-19 | 2006-05-26 | Nikon Corporation | Maintenance method, exposure method, exposure apparatus, and device producing method |
US7161654B2 (en) * | 2004-12-02 | 2007-01-09 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7256121B2 (en) * | 2004-12-02 | 2007-08-14 | Texas Instruments Incorporated | Contact resistance reduction by new barrier stack process |
US7446850B2 (en) * | 2004-12-03 | 2008-11-04 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7397533B2 (en) | 2004-12-07 | 2008-07-08 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7196770B2 (en) * | 2004-12-07 | 2007-03-27 | Asml Netherlands B.V. | Prewetting of substrate before immersion exposure |
US7365827B2 (en) | 2004-12-08 | 2008-04-29 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7352440B2 (en) | 2004-12-10 | 2008-04-01 | Asml Netherlands B.V. | Substrate placement in immersion lithography |
US7403261B2 (en) | 2004-12-15 | 2008-07-22 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7880860B2 (en) | 2004-12-20 | 2011-02-01 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7528931B2 (en) | 2004-12-20 | 2009-05-05 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7405805B2 (en) | 2004-12-28 | 2008-07-29 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7491661B2 (en) * | 2004-12-28 | 2009-02-17 | Asml Netherlands B.V. | Device manufacturing method, top coat material and substrate |
US20060147821A1 (en) * | 2004-12-30 | 2006-07-06 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
SG124359A1 (en) * | 2005-01-14 | 2006-08-30 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
SG124351A1 (en) | 2005-01-14 | 2006-08-30 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
US8692973B2 (en) * | 2005-01-31 | 2014-04-08 | Nikon Corporation | Exposure apparatus and method for producing device |
EP2506289A3 (en) * | 2005-01-31 | 2013-05-22 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
JP2006222222A (en) * | 2005-02-09 | 2006-08-24 | Canon Inc | Projection optical system and exposure apparatus having the same |
KR101211570B1 (en) | 2005-02-10 | 2012-12-12 | 에이에스엠엘 네델란즈 비.브이. | Immersion liquid, exposure apparatus, and exposure process |
US7378025B2 (en) | 2005-02-22 | 2008-05-27 | Asml Netherlands B.V. | Fluid filtration method, fluid filtered thereby, lithographic apparatus and device manufacturing method |
US7224431B2 (en) * | 2005-02-22 | 2007-05-29 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8018573B2 (en) | 2005-02-22 | 2011-09-13 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7428038B2 (en) | 2005-02-28 | 2008-09-23 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method and apparatus for de-gassing a liquid |
US7282701B2 (en) | 2005-02-28 | 2007-10-16 | Asml Netherlands B.V. | Sensor for use in a lithographic apparatus |
US7324185B2 (en) * | 2005-03-04 | 2008-01-29 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7684010B2 (en) * | 2005-03-09 | 2010-03-23 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method, seal structure, method of removing an object and a method of sealing |
JP2006261606A (en) * | 2005-03-18 | 2006-09-28 | Canon Inc | Exposure apparatus, exposure method, and device manufacturing method |
US7330238B2 (en) * | 2005-03-28 | 2008-02-12 | Asml Netherlands, B.V. | Lithographic apparatus, immersion projection apparatus and device manufacturing method |
US7411654B2 (en) * | 2005-04-05 | 2008-08-12 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7291850B2 (en) * | 2005-04-08 | 2007-11-06 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
USRE43576E1 (en) | 2005-04-08 | 2012-08-14 | Asml Netherlands B.V. | Dual stage lithographic apparatus and device manufacturing method |
US20090135382A1 (en) * | 2005-04-28 | 2009-05-28 | Nikon Corporation | Exposure method, exposure apparatus, and method for producing device |
US7433016B2 (en) | 2005-05-03 | 2008-10-07 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7317507B2 (en) * | 2005-05-03 | 2008-01-08 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8248577B2 (en) * | 2005-05-03 | 2012-08-21 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
DE102005024163A1 (en) * | 2005-05-23 | 2006-11-30 | Carl Zeiss Smt Ag | Optical system e.g. projection objective, for microlithography projection exposure system, has module insertable and removable as unit into system, and concave curved optical surface for capping cavity during operation of exposure system |
US8253924B2 (en) * | 2005-05-24 | 2012-08-28 | Nikon Corporation | Exposure method, exposure apparatus and device manufacturing method |
DE102006021161A1 (en) * | 2005-05-25 | 2006-11-30 | Carl Zeiss Smt Ag | Projection lens e.g. refractive projection lens, for microlithography, has lens part in image side with free space that is filled with different liquids relative to refractive index during different modes of operation of projection lens |
DE102005024682A1 (en) * | 2005-05-30 | 2006-12-14 | Schott Ag | Optical material e.g. glasses, for UV microlithography, has earth alkali metal fluoride doped with bivalent metal ions that possess ion radius, which is similar to that of alkali ions, so that bivalent ions are integrated in crystal lattice |
KR100638107B1 (en) * | 2005-06-09 | 2006-10-24 | 연세대학교 산학협력단 | Optical modulation micro-opening array device having immersion thin film layer and high speed micro pattern recording system using same |
US7385673B2 (en) * | 2005-06-10 | 2008-06-10 | International Business Machines Corporation | Immersion lithography with equalized pressure on at least projection optics component and wafer |
US7652746B2 (en) * | 2005-06-21 | 2010-01-26 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7751027B2 (en) | 2005-06-21 | 2010-07-06 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7834974B2 (en) * | 2005-06-28 | 2010-11-16 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7468779B2 (en) * | 2005-06-28 | 2008-12-23 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7474379B2 (en) | 2005-06-28 | 2009-01-06 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7242843B2 (en) * | 2005-06-30 | 2007-07-10 | Corning Incorporated | Extended lifetime excimer laser optics |
US7351348B2 (en) * | 2005-08-10 | 2008-04-01 | International Business Machines Corporation | Evaporation control using coating |
US7535644B2 (en) * | 2005-08-12 | 2009-05-19 | Asml Netherlands B.V. | Lens element, lithographic apparatus, device manufacturing method, and device manufactured thereby |
US8054445B2 (en) * | 2005-08-16 | 2011-11-08 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP4923480B2 (en) * | 2005-08-23 | 2012-04-25 | 株式会社ニコン | Exposure apparatus, device manufacturing method, and measurement member |
US20070058263A1 (en) * | 2005-09-13 | 2007-03-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Apparatus and methods for immersion lithography |
US20070070323A1 (en) * | 2005-09-21 | 2007-03-29 | Nikon Corporation | Exposure apparatus, exposure method, and device fabricating method |
US7357768B2 (en) * | 2005-09-22 | 2008-04-15 | William Marshall | Recliner exerciser |
US7495743B2 (en) | 2005-09-30 | 2009-02-24 | International Business Machines Corporation | Immersion optical lithography system having protective optical coating |
US7411658B2 (en) * | 2005-10-06 | 2008-08-12 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
GB2431670A (en) * | 2005-10-25 | 2007-05-02 | Zeiss Carl Smt Ag | Protective coating with windows for protection of optical element that is soluble in immersion liquid. |
US20070127135A1 (en) * | 2005-11-01 | 2007-06-07 | Nikon Corporation | Exposure apparatus, exposure method and device manufacturing method |
US7804577B2 (en) | 2005-11-16 | 2010-09-28 | Asml Netherlands B.V. | Lithographic apparatus |
US7864292B2 (en) | 2005-11-16 | 2011-01-04 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7656501B2 (en) * | 2005-11-16 | 2010-02-02 | Asml Netherlands B.V. | Lithographic apparatus |
US7633073B2 (en) * | 2005-11-23 | 2009-12-15 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7773195B2 (en) * | 2005-11-29 | 2010-08-10 | Asml Holding N.V. | System and method to increase surface tension and contact angle in immersion lithography |
US20070124987A1 (en) * | 2005-12-05 | 2007-06-07 | Brown Jeffrey K | Electronic pest control apparatus |
KR100768849B1 (en) * | 2005-12-06 | 2007-10-22 | 엘지전자 주식회사 | Power supply system and method for grid-connected fuel cell system |
EP1966652B1 (en) * | 2005-12-22 | 2011-06-29 | Freescale Semiconductor, Inc. | Immersion lithography apparatus and method of performing immersion lithography |
US7420194B2 (en) * | 2005-12-27 | 2008-09-02 | Asml Netherlands B.V. | Lithographic apparatus and substrate edge seal |
US7839483B2 (en) | 2005-12-28 | 2010-11-23 | Asml Netherlands B.V. | Lithographic apparatus, device manufacturing method and a control system |
US7649611B2 (en) | 2005-12-30 | 2010-01-19 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US8045134B2 (en) | 2006-03-13 | 2011-10-25 | Asml Netherlands B.V. | Lithographic apparatus, control system and device manufacturing method |
CN100590173C (en) * | 2006-03-24 | 2010-02-17 | 北京有色金属研究总院 | A kind of fluorescent powder and its manufacturing method and the made electric light source |
US9477158B2 (en) * | 2006-04-14 | 2016-10-25 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
DE102006021797A1 (en) | 2006-05-09 | 2007-11-15 | Carl Zeiss Smt Ag | Optical imaging device with thermal damping |
US7969548B2 (en) * | 2006-05-22 | 2011-06-28 | Asml Netherlands B.V. | Lithographic apparatus and lithographic apparatus cleaning method |
DE102006027609A1 (en) * | 2006-06-13 | 2007-12-20 | Carl Zeiss Smt Ag | imaging device |
JP2008042004A (en) * | 2006-08-08 | 2008-02-21 | Tokyo Electron Ltd | Patterning method and device |
US7567338B2 (en) * | 2006-08-30 | 2009-07-28 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7964522B2 (en) * | 2006-08-31 | 2011-06-21 | Corning Incorporated | F-doped silica glass and process of making same |
CN102540766A (en) * | 2006-09-12 | 2012-07-04 | 卡尔蔡司Smt有限责任公司 | Optical device for immersion lithography and projection exposure apparatus comprising such a device |
US8045135B2 (en) | 2006-11-22 | 2011-10-25 | Asml Netherlands B.V. | Lithographic apparatus with a fluid combining unit and related device manufacturing method |
US20080138631A1 (en) * | 2006-12-06 | 2008-06-12 | International Business Machines Corporation | Method to reduce mechanical wear of immersion lithography apparatus |
US9632425B2 (en) * | 2006-12-07 | 2017-04-25 | Asml Holding N.V. | Lithographic apparatus, a dryer and a method of removing liquid from a surface |
US8634053B2 (en) | 2006-12-07 | 2014-01-21 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US7791709B2 (en) * | 2006-12-08 | 2010-09-07 | Asml Netherlands B.V. | Substrate support and lithographic process |
US8817226B2 (en) | 2007-02-15 | 2014-08-26 | Asml Holding N.V. | Systems and methods for insitu lens cleaning using ozone in immersion lithography |
US8654305B2 (en) * | 2007-02-15 | 2014-02-18 | Asml Holding N.V. | Systems and methods for insitu lens cleaning in immersion lithography |
JP2008218653A (en) * | 2007-03-02 | 2008-09-18 | Canon Inc | Exposure apparatus and device manufacturing method |
US8237911B2 (en) * | 2007-03-15 | 2012-08-07 | Nikon Corporation | Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine |
US7969555B2 (en) * | 2007-03-16 | 2011-06-28 | Industry-Academic Cooperation Foundation, Yonsei University | Lens structure, optical system having the same, and lithography method using the optical system |
US7841352B2 (en) | 2007-05-04 | 2010-11-30 | Asml Netherlands B.V. | Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method |
US8947629B2 (en) | 2007-05-04 | 2015-02-03 | Asml Netherlands B.V. | Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method |
US8011377B2 (en) | 2007-05-04 | 2011-09-06 | Asml Netherlands B.V. | Cleaning device and a lithographic apparatus cleaning method |
US7866330B2 (en) * | 2007-05-04 | 2011-01-11 | Asml Netherlands B.V. | Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method |
US7561250B2 (en) * | 2007-06-19 | 2009-07-14 | Asml Netherlands B.V. | Lithographic apparatus having parts with a coated film adhered thereto |
TWI389551B (en) * | 2007-08-09 | 2013-03-11 | Mstar Semiconductor Inc | Gamma correction device |
NL1036579A1 (en) * | 2008-02-19 | 2009-08-20 | Asml Netherlands Bv | Lithographic apparatus and methods. |
KR101448152B1 (en) * | 2008-03-26 | 2014-10-07 | 삼성전자주식회사 | Distance measuring sensor having vertical photogate and three dimensional color image sensor having the same |
US8654306B2 (en) * | 2008-04-14 | 2014-02-18 | Nikon Corporation | Exposure apparatus, cleaning method, and device fabricating method |
US9176393B2 (en) | 2008-05-28 | 2015-11-03 | Asml Netherlands B.V. | Lithographic apparatus and a method of operating the apparatus |
NL2003392A (en) * | 2008-09-17 | 2010-03-18 | Asml Netherlands Bv | Lithographic apparatus and a method of operating the apparatus. |
NL2004497A (en) | 2009-05-01 | 2010-11-02 | Asml Netherlands Bv | Lithographic apparatus and a method of operating the apparatus. |
NL2004888A (en) * | 2009-06-29 | 2010-12-30 | Asml Netherlands Bv | Deposition method and apparatus. |
NL2005207A (en) * | 2009-09-28 | 2011-03-29 | Asml Netherlands Bv | Heat pipe, lithographic apparatus and device manufacturing method. |
US8946514B2 (en) * | 2009-12-28 | 2015-02-03 | E.I. Du Pont De Nemours And Company | Sorghum fertility restorer genotypes and methods of marker-assisted selection |
DE102010007728A1 (en) * | 2010-02-12 | 2011-09-29 | Leica Microsystems Cms Gmbh | Device and method for scanning an object and microscope |
US20110222030A1 (en) * | 2010-03-09 | 2011-09-15 | Nanya Technology Corporation | Immersion lithographic apparatuses |
EP2381310B1 (en) | 2010-04-22 | 2015-05-06 | ASML Netherlands BV | Fluid handling structure and lithographic apparatus |
US8910089B1 (en) * | 2013-06-19 | 2014-12-09 | International Business Machines Corporation | Printing process calibration and correction |
CN105022239B (en) * | 2014-04-25 | 2018-03-02 | 上海微电子装备(集团)股份有限公司 | Backside alignment device and alignment methods |
JP6384252B2 (en) * | 2014-10-07 | 2018-09-05 | 株式会社ニコン | Pattern exposure equipment |
DE102019108611B3 (en) * | 2019-04-02 | 2020-08-06 | Leica Microsystems Cms Gmbh | Device and method for feeding an immersion medium and objective with a feeding device |
Citations (111)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3573975A (en) | 1968-07-10 | 1971-04-06 | Ibm | Photochemical fabrication process |
US3648587A (en) | 1967-10-20 | 1972-03-14 | Eastman Kodak Co | Focus control for optical instruments |
US3706485A (en) | 1970-02-04 | 1972-12-19 | Rank Organisation Ltd | Multi-layer anti-reflection coatings using intermediate layers having monotonically graded refractive index |
EP0023231A1 (en) | 1979-07-27 | 1981-02-04 | Tabarelli, Werner, Dr. | Optical lithographic method and apparatus for copying a pattern onto a semiconductor wafer |
FR2474708A1 (en) | 1980-01-24 | 1981-07-31 | Dme | Micro:photo:lithographic process giving high line resolution - with application of immersion oil between mask and photosensitive layer before exposure |
US4346164A (en) | 1980-10-06 | 1982-08-24 | Werner Tabarelli | Photolithographic method for the manufacture of integrated circuits |
JPS57153433A (en) | 1981-03-18 | 1982-09-22 | Hitachi Ltd | Manufacturing device for semiconductor |
US4390273A (en) | 1981-02-17 | 1983-06-28 | Censor Patent-Und Versuchsanstalt | Projection mask as well as a method and apparatus for the embedding thereof and projection printing system |
US4396705A (en) | 1980-09-19 | 1983-08-02 | Hitachi, Ltd. | Pattern forming method and pattern forming apparatus using exposures in a liquid |
JPS58202448A (en) | 1982-05-21 | 1983-11-25 | Hitachi Ltd | exposure equipment |
DD206607A1 (en) | 1982-06-16 | 1984-02-01 | Mikroelektronik Zt Forsch Tech | METHOD AND DEVICE FOR ELIMINATING INTERFERENCE EFFECTS |
JPS5919912A (en) | 1982-07-26 | 1984-02-01 | Hitachi Ltd | Immersion distance holding device |
US4500611A (en) | 1980-07-24 | 1985-02-19 | Vdo Adolf Schindling Ag | Solderable layer system |
US4509852A (en) | 1980-10-06 | 1985-04-09 | Werner Tabarelli | Apparatus for the photolithographic manufacture of integrated circuit elements |
DD221563A1 (en) | 1983-09-14 | 1985-04-24 | Mikroelektronik Zt Forsch Tech | IMMERSIONS OBJECTIVE FOR THE STEP-BY-STEP PROJECTION IMAGING OF A MASK STRUCTURE |
DD224448A1 (en) | 1984-03-01 | 1985-07-03 | Zeiss Jena Veb Carl | DEVICE FOR PHOTOLITHOGRAPHIC STRUCTURAL TRANSMISSION |
US4568140A (en) | 1983-05-24 | 1986-02-04 | U.S. Philips Corporation | Optical element comprising a transparent substrate and an antireflection coating for the near-infrared region of wavelengths |
DD242880A1 (en) | 1983-01-31 | 1987-02-11 | Kuch Karl Heinz | DEVICE FOR PHOTOLITHOGRAPHIC STRUCTURAL TRANSMISSION |
JPS6265326A (en) | 1985-09-18 | 1987-03-24 | Hitachi Ltd | Exposure device |
JPS62121417A (en) | 1985-11-22 | 1987-06-02 | Hitachi Ltd | Immersion objective lens device |
JPS63157419A (en) | 1986-12-22 | 1988-06-30 | Toshiba Corp | Fine pattern transfer apparatus |
US4954372A (en) * | 1988-04-20 | 1990-09-04 | Nihon Parkerizing Co., Ltd. | Metal surface hydrophilicizing process and composition |
EP0418427A2 (en) | 1989-09-06 | 1991-03-27 | Eiichi Miyake | Exposure process |
US5040020A (en) | 1988-03-31 | 1991-08-13 | Cornell Research Foundation, Inc. | Self-aligned, high resolution resonant dielectric lithography |
US5067781A (en) | 1989-11-21 | 1991-11-26 | Raytheon Company | Optical elements and method of manufacture |
US5121256A (en) | 1991-03-14 | 1992-06-09 | The Board Of Trustees Of The Leland Stanford Junior University | Lithography system employing a solid immersion lens |
US5139879A (en) | 1991-09-20 | 1992-08-18 | Allied-Signal Inc. | Fluoropolymer blend anti-reflection coatings and coated articles |
JPH04305915A (en) | 1991-04-02 | 1992-10-28 | Nikon Corp | Adhesion type exposure device |
JPH04305917A (en) | 1991-04-02 | 1992-10-28 | Nikon Corp | Close-contact exposure equipment |
JPH0562877A (en) | 1991-09-02 | 1993-03-12 | Yasuko Shinohara | Optical system for lsi manufacturing contraction projection aligner by light |
JPH06124873A (en) | 1992-10-09 | 1994-05-06 | Canon Inc | Immersion projection exposure system |
EP0605103A1 (en) | 1992-11-27 | 1994-07-06 | Canon Kabushiki Kaisha | Projection apparatus for immersed exposure |
JPH07132262A (en) | 1992-12-21 | 1995-05-23 | Tokyo Electron Ltd | Liquid treating device of immersion type |
JPH07220990A (en) | 1994-01-28 | 1995-08-18 | Hitachi Ltd | Pattern forming method and exposure apparatus thereof |
US5494743A (en) | 1992-08-20 | 1996-02-27 | Southwall Technologies Inc. | Antireflection coatings |
JPH08316125A (en) | 1995-05-19 | 1996-11-29 | Hitachi Ltd | Projection exposure method and exposure apparatus |
US5648860A (en) | 1992-10-09 | 1997-07-15 | Ag Technology Co., Ltd. | Projection type color liquid crystal optical apparatus |
US5715039A (en) | 1995-05-19 | 1998-02-03 | Hitachi, Ltd. | Projection exposure apparatus and method which uses multiple diffraction gratings in order to produce a solid state device with fine patterns |
EP0834773A2 (en) | 1996-10-07 | 1998-04-08 | Nikon Corporation | Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus |
JPH10163099A (en) | 1996-11-28 | 1998-06-19 | Nikon Corp | Exposure method and exposure apparatus |
JPH10214783A (en) | 1996-11-28 | 1998-08-11 | Nikon Corp | Projection exposure apparatus and projection exposure method |
JPH10228661A (en) | 1997-02-14 | 1998-08-25 | Sony Corp | Master disk manufacturing aligner for optical recording medium |
JPH10255319A (en) | 1997-03-12 | 1998-09-25 | Hitachi Maxell Ltd | Master exposure apparatus and method |
JPH10303114A (en) | 1997-04-23 | 1998-11-13 | Nikon Corp | Immersion type exposure equipment |
JPH10340846A (en) | 1997-06-10 | 1998-12-22 | Nikon Corp | Aligner, its manufacture, exposing method and device manufacturing method |
US5882773A (en) | 1993-10-13 | 1999-03-16 | The Regents Of The University Of California | Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer |
US5900354A (en) | 1997-07-03 | 1999-05-04 | Batchelder; John Samuel | Method for optical inspection and lithography |
JPH11176727A (en) | 1997-12-11 | 1999-07-02 | Nikon Corp | Projection exposure equipment |
JPH11264903A (en) | 1998-03-17 | 1999-09-28 | Canon Inc | Antireflection film and method of manufacturing the same |
US5962079A (en) | 1995-09-01 | 1999-10-05 | The University Of Connecticut | Ultra thin silicon oxide and metal oxide films and a method for the preparation thereof |
US5993898A (en) | 1997-05-19 | 1999-11-30 | Nikon Corporation | Fabrication method and structure for multilayer optical anti-reflection coating, and optical component and optical system using multilayer optical anti-reflection coating |
JP2000058436A (en) | 1998-08-11 | 2000-02-25 | Nikon Corp | Projection exposure apparatus and exposure method |
JP2000131503A (en) | 1998-10-22 | 2000-05-12 | Nikon Corp | Optical components |
JP2000505958A (en) | 1996-12-24 | 2000-05-16 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Two-dimensional balance positioning device having two article holders and lithographic device having this positioning device |
US6084846A (en) | 1998-06-03 | 2000-07-04 | Seagate Technology, Inc. | Liquid immersion lens for optical data storage |
EP1039511A1 (en) | 1997-12-12 | 2000-09-27 | Nikon Corporation | Projection exposure method and projection aligner |
US6166855A (en) | 1998-06-05 | 2000-12-26 | Fuji Photo Film Co., Ltd. | Anti-reflection film and display device having the same |
JP2001091849A (en) | 1999-09-21 | 2001-04-06 | Olympus Optical Co Ltd | Immersion objective lens for microscope |
US6236634B1 (en) | 1996-08-26 | 2001-05-22 | Digital Papyrus Corporation | Method and apparatus for coupling an optical lens to a disk through a coupling medium having a relatively high index of refraction |
EP1172670A2 (en) | 2000-07-11 | 2002-01-16 | Nikon Corporation | Optical element formed with optical thin film and ultraviolet exposure apparatus |
US20020020821A1 (en) | 2000-08-08 | 2002-02-21 | Koninklijke Philips Electronics N.V. | Method of manufacturing an optically scannable information carrier |
US6466365B1 (en) | 2000-04-07 | 2002-10-15 | Corning Incorporated | Film coated optical lithography elements and method of making |
US20020163629A1 (en) | 2001-05-07 | 2002-11-07 | Michael Switkes | Methods and apparatus employing an index matching medium |
WO2002093209A2 (en) | 2001-05-15 | 2002-11-21 | Carl Zeiss | Lens system consisting of fluoride crystal lenses |
US6556353B2 (en) | 2001-02-23 | 2003-04-29 | Nikon Corporation | Projection optical system, projection exposure apparatus, and projection exposure method |
US6560032B2 (en) | 2000-03-27 | 2003-05-06 | Olympus Optical Co., Ltd. | Liquid immersion lens system and optical apparatus using the same |
US6574039B1 (en) | 1999-09-30 | 2003-06-03 | Nikon Corporation | Optical element with multilayer thin film and exposure apparatus with the element |
EP1316849A2 (en) | 2001-11-26 | 2003-06-04 | Canon Kabushiki Kaisha | Method of removing color centers from film coated fluoride optical elements |
US20030123040A1 (en) | 2001-11-07 | 2003-07-03 | Gilad Almogy | Optical spot grid array printer |
US20030137733A1 (en) | 2001-07-18 | 2003-07-24 | Carl Zeiss Semiconductor Manufacturing Technologies Ag | Objective with lenses made of a crystalline material |
US6600547B2 (en) | 2001-09-24 | 2003-07-29 | Nikon Corporation | Sliding seal |
US6603130B1 (en) | 1999-04-19 | 2003-08-05 | Asml Netherlands B.V. | Gas bearings for use with vacuum chambers and their application in lithographic projection apparatuses |
US20030174408A1 (en) | 2002-03-08 | 2003-09-18 | Carl Zeiss Smt Ag | Refractive projection objective for immersion lithography |
US6628574B1 (en) | 1998-01-12 | 2003-09-30 | Hitachi Maxell, Ltd. | Reproducing method and reproducing apparatus using plural light beam powers for transferring a magnetic domain |
US6633365B2 (en) | 2000-12-11 | 2003-10-14 | Nikon Corporation | Projection optical system and exposure apparatus having the projection optical system |
US20040000627A1 (en) | 2002-06-28 | 2004-01-01 | Carl Zeiss Semiconductor Manufacturing Technologies Ag | Method for focus detection and an imaging system with a focus-detection system |
US20040075895A1 (en) | 2002-10-22 | 2004-04-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | Apparatus for method for immersion lithography |
US20040109237A1 (en) | 2002-12-09 | 2004-06-10 | Carl Zeiss Smt Ag | Projection objective, especially for microlithography, and method for adjusting a projection objective |
EP1429190A2 (en) | 2002-12-10 | 2004-06-16 | Canon Kabushiki Kaisha | Exposure apparatus and method |
WO2004053596A2 (en) | 2002-12-10 | 2004-06-24 | Carl Zeiss Smt Ag | Method for adjusting a desired optical property of a positioning lens and microlithographic projection exposure system |
WO2004053954A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
WO2004053953A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
WO2004053958A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
WO2004053952A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
WO2004053955A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Exposure system and device producing method |
WO2004053951A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Exposure method, exposure apparatus and method for manufacturing device |
WO2004053956A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Exposure apparatus, exposure method and method for manufacturing device |
WO2004053959A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Optical device and projection exposure apparatus using such optical device |
WO2004053950A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
WO2004053957A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Surface position detection apparatus, exposure method, and device porducing method |
US20040125351A1 (en) | 2002-12-30 | 2004-07-01 | Krautschik Christof Gabriel | Immersion lithography |
WO2004055803A1 (en) | 2002-12-13 | 2004-07-01 | Koninklijke Philips Electronics N.V. | Liquid removal in a method and device for irradiating spots on a layer |
WO2004057590A1 (en) | 2002-12-19 | 2004-07-08 | Koninklijke Philips Electronics N.V. | Method and device for irradiating spots on a layer |
WO2004057589A1 (en) | 2002-12-19 | 2004-07-08 | Koninklijke Philips Electronics N.V. | Method and device for irradiating spots on a layer |
JP2004193252A (en) | 2002-12-10 | 2004-07-08 | Nikon Corp | Exposure method and device manufacturing method |
JP2004259966A (en) | 2003-02-26 | 2004-09-16 | Nikon Corp | Exposure apparatus and device manufacturing method |
WO2004107048A2 (en) | 2003-05-30 | 2004-12-09 | Carl Zeiss Smt Ag | Microlithographic projection exposure system |
US20050007567A1 (en) | 2003-07-10 | 2005-01-13 | Fortis Systems Inc. | Contact or proximity printing using a magnified mask image |
EP1510871A2 (en) | 2003-08-29 | 2005-03-02 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US20050100745A1 (en) | 2003-11-06 | 2005-05-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Anti-corrosion layer on objective lens for liquid immersion lithography applications |
JP2005202375A (en) | 2003-12-15 | 2005-07-28 | Carl Zeiss Smt Ag | Projection objective for immersion lithography |
JP2002244035A5 (en) | 2001-12-05 | 2005-08-18 | ||
US20050213066A1 (en) | 2004-03-29 | 2005-09-29 | Yuhei Sumiyoshi | Exposure apparatus |
JP2005268741A (en) | 2004-02-18 | 2005-09-29 | Nikon Corp | Optical element and exposure apparatus |
US20050225737A1 (en) | 2003-12-19 | 2005-10-13 | Carl Zeiss Smt Ag | Projection objective for immersion lithography |
US20050248856A1 (en) | 2002-08-23 | 2005-11-10 | Nikon Corporation | Projection optical system and method for photolithography and exposure apparatus and method using same |
US20060087725A1 (en) * | 2002-12-06 | 2006-04-27 | Newport Corporation | High resolution objective lens assembly |
US20060203218A1 (en) | 2003-08-26 | 2006-09-14 | Nikon Corporation | Optical element and exposure apparatus |
US7187503B2 (en) | 1999-12-29 | 2007-03-06 | Carl Zeiss Smt Ag | Refractive projection objective for immersion lithography |
US7393469B2 (en) * | 2003-07-31 | 2008-07-01 | Ramazan Benrashid | High performance sol-gel spin-on glass materials |
US7697111B2 (en) | 2003-08-26 | 2010-04-13 | Nikon Corporation | Optical element and exposure apparatus |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE242880C (en) | ||||
DE224448C (en) | ||||
AU2747999A (en) | 1998-03-26 | 1999-10-18 | Nikon Corporation | Projection exposure method and system |
JP2002244035A (en) | 2000-12-11 | 2002-08-28 | Nikon Corp | Projection optical system and exposure device provided with it |
JP2003015046A (en) * | 2001-06-28 | 2003-01-15 | Nikon Corp | Immersion microscope objective lens |
EP1459203B1 (en) * | 2001-11-28 | 2006-04-19 | Leica Microsystems CMS GmbH | Method for guided blind deconvolution of microscopic images and software |
JP2005519346A (en) * | 2002-03-06 | 2005-06-30 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Fluorine-containing compound with high transparency in vacuum ultraviolet |
SG131766A1 (en) * | 2002-11-18 | 2007-05-28 | Asml Netherlands Bv | Lithographic apparatus and device manufacturing method |
EP1420302A1 (en) * | 2002-11-18 | 2004-05-19 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
JP4595320B2 (en) | 2002-12-10 | 2010-12-08 | 株式会社ニコン | Exposure apparatus and device manufacturing method |
US6809794B1 (en) * | 2003-06-27 | 2004-10-26 | Asml Holding N.V. | Immersion photolithography system and method using inverted wafer-projection optics interface |
-
2003
- 2003-10-31 US US10/698,012 patent/US6954256B2/en not_active Expired - Fee Related
-
2004
- 2004-08-17 EP EP04254940A patent/EP1510871B1/en not_active Expired - Lifetime
- 2004-08-23 SG SG200405050A patent/SG109610A1/en unknown
- 2004-08-27 JP JP2004247771A patent/JP2005079589A/en active Pending
- 2004-08-27 US US10/927,531 patent/US8208123B2/en not_active Expired - Fee Related
- 2004-08-27 JP JP2004247632A patent/JP3946212B2/en not_active Expired - Lifetime
- 2004-08-30 CN CNB2004100748555A patent/CN100495213C/en not_active Expired - Lifetime
-
2008
- 2008-10-03 JP JP2008258276A patent/JP2009016871A/en active Pending
Patent Citations (125)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3648587A (en) | 1967-10-20 | 1972-03-14 | Eastman Kodak Co | Focus control for optical instruments |
US3573975A (en) | 1968-07-10 | 1971-04-06 | Ibm | Photochemical fabrication process |
US3706485A (en) | 1970-02-04 | 1972-12-19 | Rank Organisation Ltd | Multi-layer anti-reflection coatings using intermediate layers having monotonically graded refractive index |
EP0023231A1 (en) | 1979-07-27 | 1981-02-04 | Tabarelli, Werner, Dr. | Optical lithographic method and apparatus for copying a pattern onto a semiconductor wafer |
FR2474708A1 (en) | 1980-01-24 | 1981-07-31 | Dme | Micro:photo:lithographic process giving high line resolution - with application of immersion oil between mask and photosensitive layer before exposure |
US4500611A (en) | 1980-07-24 | 1985-02-19 | Vdo Adolf Schindling Ag | Solderable layer system |
US4396705A (en) | 1980-09-19 | 1983-08-02 | Hitachi, Ltd. | Pattern forming method and pattern forming apparatus using exposures in a liquid |
US4346164A (en) | 1980-10-06 | 1982-08-24 | Werner Tabarelli | Photolithographic method for the manufacture of integrated circuits |
US4509852A (en) | 1980-10-06 | 1985-04-09 | Werner Tabarelli | Apparatus for the photolithographic manufacture of integrated circuit elements |
US4390273A (en) | 1981-02-17 | 1983-06-28 | Censor Patent-Und Versuchsanstalt | Projection mask as well as a method and apparatus for the embedding thereof and projection printing system |
JPS57153433A (en) | 1981-03-18 | 1982-09-22 | Hitachi Ltd | Manufacturing device for semiconductor |
US4480910A (en) | 1981-03-18 | 1984-11-06 | Hitachi, Ltd. | Pattern forming apparatus |
JPS58202448A (en) | 1982-05-21 | 1983-11-25 | Hitachi Ltd | exposure equipment |
DD206607A1 (en) | 1982-06-16 | 1984-02-01 | Mikroelektronik Zt Forsch Tech | METHOD AND DEVICE FOR ELIMINATING INTERFERENCE EFFECTS |
JPS5919912A (en) | 1982-07-26 | 1984-02-01 | Hitachi Ltd | Immersion distance holding device |
DD242880A1 (en) | 1983-01-31 | 1987-02-11 | Kuch Karl Heinz | DEVICE FOR PHOTOLITHOGRAPHIC STRUCTURAL TRANSMISSION |
US4568140A (en) | 1983-05-24 | 1986-02-04 | U.S. Philips Corporation | Optical element comprising a transparent substrate and an antireflection coating for the near-infrared region of wavelengths |
DD221563A1 (en) | 1983-09-14 | 1985-04-24 | Mikroelektronik Zt Forsch Tech | IMMERSIONS OBJECTIVE FOR THE STEP-BY-STEP PROJECTION IMAGING OF A MASK STRUCTURE |
DD224448A1 (en) | 1984-03-01 | 1985-07-03 | Zeiss Jena Veb Carl | DEVICE FOR PHOTOLITHOGRAPHIC STRUCTURAL TRANSMISSION |
JPS6265326A (en) | 1985-09-18 | 1987-03-24 | Hitachi Ltd | Exposure device |
JPS62121417A (en) | 1985-11-22 | 1987-06-02 | Hitachi Ltd | Immersion objective lens device |
JPS63157419A (en) | 1986-12-22 | 1988-06-30 | Toshiba Corp | Fine pattern transfer apparatus |
US5040020A (en) | 1988-03-31 | 1991-08-13 | Cornell Research Foundation, Inc. | Self-aligned, high resolution resonant dielectric lithography |
US4954372A (en) * | 1988-04-20 | 1990-09-04 | Nihon Parkerizing Co., Ltd. | Metal surface hydrophilicizing process and composition |
EP0418427A2 (en) | 1989-09-06 | 1991-03-27 | Eiichi Miyake | Exposure process |
US5067781A (en) | 1989-11-21 | 1991-11-26 | Raytheon Company | Optical elements and method of manufacture |
US5121256A (en) | 1991-03-14 | 1992-06-09 | The Board Of Trustees Of The Leland Stanford Junior University | Lithography system employing a solid immersion lens |
JPH04305915A (en) | 1991-04-02 | 1992-10-28 | Nikon Corp | Adhesion type exposure device |
JPH04305917A (en) | 1991-04-02 | 1992-10-28 | Nikon Corp | Close-contact exposure equipment |
JPH0562877A (en) | 1991-09-02 | 1993-03-12 | Yasuko Shinohara | Optical system for lsi manufacturing contraction projection aligner by light |
US5139879A (en) | 1991-09-20 | 1992-08-18 | Allied-Signal Inc. | Fluoropolymer blend anti-reflection coatings and coated articles |
US5494743A (en) | 1992-08-20 | 1996-02-27 | Southwall Technologies Inc. | Antireflection coatings |
JPH06124873A (en) | 1992-10-09 | 1994-05-06 | Canon Inc | Immersion projection exposure system |
US5648860A (en) | 1992-10-09 | 1997-07-15 | Ag Technology Co., Ltd. | Projection type color liquid crystal optical apparatus |
EP0605103A1 (en) | 1992-11-27 | 1994-07-06 | Canon Kabushiki Kaisha | Projection apparatus for immersed exposure |
US5610683A (en) | 1992-11-27 | 1997-03-11 | Canon Kabushiki Kaisha | Immersion type projection exposure apparatus |
JPH07132262A (en) | 1992-12-21 | 1995-05-23 | Tokyo Electron Ltd | Liquid treating device of immersion type |
US5882773A (en) | 1993-10-13 | 1999-03-16 | The Regents Of The University Of California | Optical coatings of variable refractive index and high laser-resistance from physical-vapor-deposited perfluorinated amorphous polymer |
JPH07220990A (en) | 1994-01-28 | 1995-08-18 | Hitachi Ltd | Pattern forming method and exposure apparatus thereof |
JPH08316125A (en) | 1995-05-19 | 1996-11-29 | Hitachi Ltd | Projection exposure method and exposure apparatus |
US5715039A (en) | 1995-05-19 | 1998-02-03 | Hitachi, Ltd. | Projection exposure apparatus and method which uses multiple diffraction gratings in order to produce a solid state device with fine patterns |
US5962079A (en) | 1995-09-01 | 1999-10-05 | The University Of Connecticut | Ultra thin silicon oxide and metal oxide films and a method for the preparation thereof |
US6236634B1 (en) | 1996-08-26 | 2001-05-22 | Digital Papyrus Corporation | Method and apparatus for coupling an optical lens to a disk through a coupling medium having a relatively high index of refraction |
US6191429B1 (en) | 1996-10-07 | 2001-02-20 | Nikon Precision Inc. | Projection exposure apparatus and method with workpiece area detection |
US5825043A (en) | 1996-10-07 | 1998-10-20 | Nikon Precision Inc. | Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus |
EP0834773A2 (en) | 1996-10-07 | 1998-04-08 | Nikon Corporation | Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus |
JPH10154659A (en) | 1996-10-07 | 1998-06-09 | Nikon Corp | Focus and tilt adjustment system for lithography aligner, manufacturing equipment or inspection equipment |
JPH10214783A (en) | 1996-11-28 | 1998-08-11 | Nikon Corp | Projection exposure apparatus and projection exposure method |
JPH10163099A (en) | 1996-11-28 | 1998-06-19 | Nikon Corp | Exposure method and exposure apparatus |
JP2000505958A (en) | 1996-12-24 | 2000-05-16 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Two-dimensional balance positioning device having two article holders and lithographic device having this positioning device |
JPH10228661A (en) | 1997-02-14 | 1998-08-25 | Sony Corp | Master disk manufacturing aligner for optical recording medium |
JPH10255319A (en) | 1997-03-12 | 1998-09-25 | Hitachi Maxell Ltd | Master exposure apparatus and method |
JPH10303114A (en) | 1997-04-23 | 1998-11-13 | Nikon Corp | Immersion type exposure equipment |
US5993898A (en) | 1997-05-19 | 1999-11-30 | Nikon Corporation | Fabrication method and structure for multilayer optical anti-reflection coating, and optical component and optical system using multilayer optical anti-reflection coating |
JPH10340846A (en) | 1997-06-10 | 1998-12-22 | Nikon Corp | Aligner, its manufacture, exposing method and device manufacturing method |
US5900354A (en) | 1997-07-03 | 1999-05-04 | Batchelder; John Samuel | Method for optical inspection and lithography |
JPH11176727A (en) | 1997-12-11 | 1999-07-02 | Nikon Corp | Projection exposure equipment |
EP1039511A1 (en) | 1997-12-12 | 2000-09-27 | Nikon Corporation | Projection exposure method and projection aligner |
US6628574B1 (en) | 1998-01-12 | 2003-09-30 | Hitachi Maxell, Ltd. | Reproducing method and reproducing apparatus using plural light beam powers for transferring a magnetic domain |
JPH11264903A (en) | 1998-03-17 | 1999-09-28 | Canon Inc | Antireflection film and method of manufacturing the same |
US6084846A (en) | 1998-06-03 | 2000-07-04 | Seagate Technology, Inc. | Liquid immersion lens for optical data storage |
US6166855A (en) | 1998-06-05 | 2000-12-26 | Fuji Photo Film Co., Ltd. | Anti-reflection film and display device having the same |
JP2000058436A (en) | 1998-08-11 | 2000-02-25 | Nikon Corp | Projection exposure apparatus and exposure method |
JP2000131503A (en) | 1998-10-22 | 2000-05-12 | Nikon Corp | Optical components |
US6603130B1 (en) | 1999-04-19 | 2003-08-05 | Asml Netherlands B.V. | Gas bearings for use with vacuum chambers and their application in lithographic projection apparatuses |
JP2001091849A (en) | 1999-09-21 | 2001-04-06 | Olympus Optical Co Ltd | Immersion objective lens for microscope |
US6574039B1 (en) | 1999-09-30 | 2003-06-03 | Nikon Corporation | Optical element with multilayer thin film and exposure apparatus with the element |
US7187503B2 (en) | 1999-12-29 | 2007-03-06 | Carl Zeiss Smt Ag | Refractive projection objective for immersion lithography |
US6560032B2 (en) | 2000-03-27 | 2003-05-06 | Olympus Optical Co., Ltd. | Liquid immersion lens system and optical apparatus using the same |
US6466365B1 (en) | 2000-04-07 | 2002-10-15 | Corning Incorporated | Film coated optical lithography elements and method of making |
EP1172670A2 (en) | 2000-07-11 | 2002-01-16 | Nikon Corporation | Optical element formed with optical thin film and ultraviolet exposure apparatus |
US20020020821A1 (en) | 2000-08-08 | 2002-02-21 | Koninklijke Philips Electronics N.V. | Method of manufacturing an optically scannable information carrier |
US20040021844A1 (en) | 2000-12-11 | 2004-02-05 | Nikon Corporation | Projection optical system and exposure apparatus having the projection optical system |
US6633365B2 (en) | 2000-12-11 | 2003-10-14 | Nikon Corporation | Projection optical system and exposure apparatus having the projection optical system |
US6556353B2 (en) | 2001-02-23 | 2003-04-29 | Nikon Corporation | Projection optical system, projection exposure apparatus, and projection exposure method |
US20020163629A1 (en) | 2001-05-07 | 2002-11-07 | Michael Switkes | Methods and apparatus employing an index matching medium |
WO2002093209A2 (en) | 2001-05-15 | 2002-11-21 | Carl Zeiss | Lens system consisting of fluoride crystal lenses |
US20030137733A1 (en) | 2001-07-18 | 2003-07-24 | Carl Zeiss Semiconductor Manufacturing Technologies Ag | Objective with lenses made of a crystalline material |
US6600547B2 (en) | 2001-09-24 | 2003-07-29 | Nikon Corporation | Sliding seal |
US20030123040A1 (en) | 2001-11-07 | 2003-07-03 | Gilad Almogy | Optical spot grid array printer |
EP1316849A2 (en) | 2001-11-26 | 2003-06-04 | Canon Kabushiki Kaisha | Method of removing color centers from film coated fluoride optical elements |
JP2002244035A5 (en) | 2001-12-05 | 2005-08-18 | ||
US20030174408A1 (en) | 2002-03-08 | 2003-09-18 | Carl Zeiss Smt Ag | Refractive projection objective for immersion lithography |
US20040000627A1 (en) | 2002-06-28 | 2004-01-01 | Carl Zeiss Semiconductor Manufacturing Technologies Ag | Method for focus detection and an imaging system with a focus-detection system |
US20050248856A1 (en) | 2002-08-23 | 2005-11-10 | Nikon Corporation | Projection optical system and method for photolithography and exposure apparatus and method using same |
US20040075895A1 (en) | 2002-10-22 | 2004-04-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | Apparatus for method for immersion lithography |
US20060087725A1 (en) * | 2002-12-06 | 2006-04-27 | Newport Corporation | High resolution objective lens assembly |
US20040109237A1 (en) | 2002-12-09 | 2004-06-10 | Carl Zeiss Smt Ag | Projection objective, especially for microlithography, and method for adjusting a projection objective |
EP1429190A2 (en) | 2002-12-10 | 2004-06-16 | Canon Kabushiki Kaisha | Exposure apparatus and method |
WO2004053953A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
WO2004053952A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
WO2004053955A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Exposure system and device producing method |
WO2004053951A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Exposure method, exposure apparatus and method for manufacturing device |
WO2004053956A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Exposure apparatus, exposure method and method for manufacturing device |
WO2004053959A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Optical device and projection exposure apparatus using such optical device |
WO2004053950A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
WO2004053957A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Surface position detection apparatus, exposure method, and device porducing method |
WO2004053596A2 (en) | 2002-12-10 | 2004-06-24 | Carl Zeiss Smt Ag | Method for adjusting a desired optical property of a positioning lens and microlithographic projection exposure system |
WO2004053958A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
US20060209285A1 (en) | 2002-12-10 | 2006-09-21 | Nikon Corporation | Optical element and projection exposure apparatus based on use of the optical element |
WO2004053954A1 (en) | 2002-12-10 | 2004-06-24 | Nikon Corporation | Exposure apparatus and method for manufacturing device |
JP2004193252A (en) | 2002-12-10 | 2004-07-08 | Nikon Corp | Exposure method and device manufacturing method |
US20040119954A1 (en) | 2002-12-10 | 2004-06-24 | Miyoko Kawashima | Exposure apparatus and method |
US20050237504A1 (en) | 2002-12-10 | 2005-10-27 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
US20050225738A1 (en) | 2002-12-10 | 2005-10-13 | Nikon Corporation | Optical element and projection exposure apparatus based on use of the optical element |
WO2004055803A1 (en) | 2002-12-13 | 2004-07-01 | Koninklijke Philips Electronics N.V. | Liquid removal in a method and device for irradiating spots on a layer |
WO2004057590A1 (en) | 2002-12-19 | 2004-07-08 | Koninklijke Philips Electronics N.V. | Method and device for irradiating spots on a layer |
WO2004057589A1 (en) | 2002-12-19 | 2004-07-08 | Koninklijke Philips Electronics N.V. | Method and device for irradiating spots on a layer |
US20040125351A1 (en) | 2002-12-30 | 2004-07-01 | Krautschik Christof Gabriel | Immersion lithography |
JP2004259966A (en) | 2003-02-26 | 2004-09-16 | Nikon Corp | Exposure apparatus and device manufacturing method |
WO2004107048A2 (en) | 2003-05-30 | 2004-12-09 | Carl Zeiss Smt Ag | Microlithographic projection exposure system |
US20050007567A1 (en) | 2003-07-10 | 2005-01-13 | Fortis Systems Inc. | Contact or proximity printing using a magnified mask image |
US7393469B2 (en) * | 2003-07-31 | 2008-07-01 | Ramazan Benrashid | High performance sol-gel spin-on glass materials |
US20060203218A1 (en) | 2003-08-26 | 2006-09-14 | Nikon Corporation | Optical element and exposure apparatus |
US7697111B2 (en) | 2003-08-26 | 2010-04-13 | Nikon Corporation | Optical element and exposure apparatus |
US20050094119A1 (en) | 2003-08-29 | 2005-05-05 | Asml Netherlands B.V. | Lithographic apparatus and device manufacturing method |
EP1510871A2 (en) | 2003-08-29 | 2005-03-02 | ASML Netherlands B.V. | Lithographic apparatus and device manufacturing method |
US20050100745A1 (en) | 2003-11-06 | 2005-05-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Anti-corrosion layer on objective lens for liquid immersion lithography applications |
JP2004207711A5 (en) | 2003-12-10 | 2009-04-02 | ||
JP2005202375A (en) | 2003-12-15 | 2005-07-28 | Carl Zeiss Smt Ag | Projection objective for immersion lithography |
US20050225737A1 (en) | 2003-12-19 | 2005-10-13 | Carl Zeiss Smt Ag | Projection objective for immersion lithography |
JP2005268741A (en) | 2004-02-18 | 2005-09-29 | Nikon Corp | Optical element and exposure apparatus |
US20050213066A1 (en) | 2004-03-29 | 2005-09-29 | Yuhei Sumiyoshi | Exposure apparatus |
US7215410B2 (en) | 2004-03-29 | 2007-05-08 | Canon Kabushiki Kaisha | Exposure apparatus |
JP2005286026A (en) | 2004-03-29 | 2005-10-13 | Canon Inc | Exposure equipment |
Non-Patent Citations (53)
Title |
---|
"Depth-of-Focus Enhancement Using High Refractive Index Layer on the Imaging Layer", IBM Technical Disclosure Bulletin, vol. 27, No. 11, Apr. 1985, p. 6521. |
A. Suzuki, "Lithography Advances on Multiple Fronts", EEdesign, EE Times, Jan. 5, 2004. |
B. Lin, The k3 coefficient in nonparaxial lambda/NA scaling equations for resolution, depth of focus, and immersion lithography, J. Microlith., Microfab., Microsyst. 1(1):7-12 (2002). |
B. Lin, The k3 coefficient in nonparaxial λ/NA scaling equations for resolution, depth of focus, and immersion lithography, J. Microlith., Microfab., Microsyst. 1(1):7-12 (2002). |
B.J. Lin, "Drivers, Prospects and Challenges for Immersion Lithography", TSMC, Inc., Sep. 2002. |
B.J. Lin, "Proximity Printing Through Liquid", IBM Technical Disclosure Bulletin, vol. 20, No. 11B, Apr. 1978, p. 4997. |
B.J. Lin, "The Paths to Subhalf-Micrometer Optical Lithography", SPIE vol. 922, Optical/Laser Microlithography (1988), pp. 256-269. |
B.W. Smith et al., "Immersion Optical Lithography at 193nm", Future Fab International, vol. 15, Jul. 11, 2003. |
Bleeker, U.S. Appl. No. 10/715,116, filed Nov. 18, 2003. |
Continuing Application Transmittal as filed in U.S. Appl. No. 12/926,890, dated Dec. 15, 2010 (p. 3, No. 16). |
De Smit et al., U.S. Appl. No. 10/705,804, filed Nov. 12, 2003. |
Derksen et al., U.S. Appl. No. 10/705,785, filed Nov. 12, 2003. |
Dierichs, U.S. Appl. No. 10/775,326, filed Feb. 11, 2004. |
Duineveld et al., U.S. Appl. No. 10/773,461, filed Feb. 9, 2004. |
European Search Report for EP 03255377.8, dated Aug. 6, 2004. |
Flagello et al., U.S. Appl. No. 10/698,012, filed Oct. 31, 2003. |
G. Owen et al., "1/8mum Optical Lithography", J. Vac. Sci. Technol. B., vol. 10, No. 6, Nov./Dec. 1992, pp. 3032-3036. |
G. Owen et al., "1/8μm Optical Lithography", J. Vac. Sci. Technol. B., vol. 10, No. 6, Nov./Dec. 1992, pp. 3032-3036. |
G.W.W. Stevens, "Reduction of Waste Resulting from Mask Defects", Solid State Technology, Aug. 1978, vol. 21 008, pp. 68-72. |
H. Hata, "The Development of Immersion Exposure Tools", Litho Forum, International SEMATECH, Los Angeles, Jan. 27-29, 2004, Slide Nos. 1-22. |
H. Hogan, "New Semiconductor Lithography Makes a Splash", Photonics Spectra, Photonics TechnologyWorld, Oct. 2003 Edition, pp. 1-3. |
H. Kawata et al., "Fabrication of 0.2mum Fine Patterns Using Optical Projection Lithography with an Oil Immersion Lens", Jpn. J. Appl. Phys. vol. 31 (1992), pp. 4174-4177. |
H. Kawata et al., "Fabrication of 0.2μm Fine Patterns Using Optical Projection Lithography with an Oil Immersion Lens", Jpn. J. Appl. Phys. vol. 31 (1992), pp. 4174-4177. |
H. Kawata et al., "Optical Projection Lithography using Lenses with Numerical Apertures Greater than Unity", Microelectronic Engineering 9 (1989), pp. 31-36. |
Information Disclosure Statement filed May 2, 2006 for U.S. Appl. No. 11/415,160. |
Information Disclosure Statement filed May 3, 2006 for U.S. Appl. No. 11/416,110. |
J.A. Hoffnagle et al., "Liquid Immersion Deep-Ultraviolet Interferometric Litography", J. Vac. Sci. Technol. B., vol. 17, No. 6, Nov./Dec. 1999, pp. 3306-3309. |
Japanese Office Action mailed Nov. 15, 2011 in corresponding Japanese Patent Application No. 2010-081728. |
Korean Official Action issued for Korean Patent Application No. 10-2004-0067737, dated May 26, 2006, and English language translation thereof. |
Lof et al., U.S. Appl. No. 10/705,783, filed Nov. 12, 2003. |
Lof et al., U.S. Appl. No. 10/705,805, filed Nov. 12, 2003. |
Lof et al., U.S. Appl. No. 10/705,816, filed Nov. 12, 2003. |
M. Switkes et al., "Immersion Lithography at 157 nm", J. Vac. Sci. Technol. B., vol. 19, No. 6, Nov./Dec. 2001, pp. 2353-2356. |
M. Switkes et al., "Immersion Lithography at 157 nm", MIT Lincoln Lab, Orlando Jan. 2001, Dec. 17, 2001. |
M. Switkes et al., "Immersion Lithography: Optics for the 50 nm Node", 157 Anvers-1, Sep. 4, 2002. |
Mulkens et al., U.S. Appl. No. 10/743,266, filed Dec. 23, 2003. |
Nikon Precision Europe GmbH, "Investor Relations-2003 Nikon's Real Solutions", May 15, 2003. |
Non-final Office Action as issued for U.S. Appl. No. 11/415,160, dated Jul. 24, 2009. |
Office Action dated Aug. 3, 2006 issued for U.S. Appl. No. 11/416,110. |
Office Action dated Jan. 29, 2007 issued for U.S. Appl. No. 11/416,110. |
Office Action dated Jul. 26, 2007 issued for U.S. Appl. No. 11/416,110. |
S. Owa and N. Nagasaka, "Potential Performance and Feasibility of Immersion Lithography", NGL Workshop 2003, Jul. 10, 2003, Slide Nos. 1-33. |
S. Owa et al., "Advantage and Feasibility of Immersion Lithography", Proc. SPIE 5040 (2003). |
S. Owa et al., "Immersion Lithography; its potential performance and issues", SPIE Microlithography 2003, 5040-186, Feb. 27, 2003. |
S. Owa et al., "Update on 193nm immersion exposure tool", Litho Forum, International SEMATECH, Los Angeles, Jan. 27-29, 2004, Slide Nos. 1-51. |
Search Report for European Application No. EP 04254940.2, dated Feb. 18, 2005. |
Search Report for European Application No. EP 04254940.2, dated Nov. 17, 2004. |
Search Report for European Application No. EP 04254940.2, dated Nov. 9, 2004. |
Simon et al., U.S. Appl. No. 10/724,402, filed Dec. 1, 2003. |
Streefkerk et al., U.S. Appl. No. 10/719,683, filed Nov. 24, 2003. |
Suwa et al. (Reissue Application of U.S. Patent No. 6,191,429 B1), U.S. Appl. No. 10/367,910, filed Feb. 19, 2003. |
T. Matsuyama et al., "Nikon Projection Lens Update", SPIE Microlithography 2004, 5377-65, Mar. 2004. |
Van Santen et al., U.S. Appl. No. 10/743,271, filed Dec. 23, 2003. |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120212716A1 (en) * | 2003-08-26 | 2012-08-23 | Nikon Corporation | Optical element and exposure apparatus |
US9046796B2 (en) * | 2003-08-26 | 2015-06-02 | Nikon Corporation | Optical element and exposure apparatus |
US10175584B2 (en) | 2003-08-26 | 2019-01-08 | Nikon Corporation | Optical element and exposure apparatus |
US8830446B2 (en) * | 2005-01-12 | 2014-09-09 | Asml Netherlands B.V. | Exposure apparatus |
US20100321695A1 (en) * | 2009-06-19 | 2010-12-23 | Asml Netherlands B.V. | Sensor, a table and lithographic apparatus |
US8395772B2 (en) * | 2009-06-19 | 2013-03-12 | Asml Netherlands B.V. | Sensor, a table and lithographic apparatus |
Also Published As
Publication number | Publication date |
---|---|
US20050094119A1 (en) | 2005-05-05 |
SG109610A1 (en) | 2005-03-30 |
JP2005079589A (en) | 2005-03-24 |
JP2009016871A (en) | 2009-01-22 |
JP2005093997A (en) | 2005-04-07 |
CN100495213C (en) | 2009-06-03 |
EP1510871B1 (en) | 2012-04-04 |
US20050094116A1 (en) | 2005-05-05 |
US6954256B2 (en) | 2005-10-11 |
JP3946212B2 (en) | 2007-07-18 |
EP1510871A2 (en) | 2005-03-02 |
EP1510871A3 (en) | 2005-04-06 |
CN1591197A (en) | 2005-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8208123B2 (en) | Lithographic apparatus and device manufacturing method | |
US10146142B2 (en) | Lithographic apparatus and device manufacturing method | |
US8013978B2 (en) | Lithographic apparatus and device manufacturing method | |
US8456611B2 (en) | System and method to increase surface tension and contact angle in immersion lithography | |
US20060290909A1 (en) | Lithographic apparatus and device manufacturing method | |
US10802410B2 (en) | Lithographic apparatus and device manufacturing method involving a barrier structure to handle liquid | |
US7209213B2 (en) | Lithographic apparatus and device manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ASML NETHERLANDS B.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LOOPSTRA, ERIK ROELOF;BASELMANS, JOHANNES JACOBUS MATHEUS;DIERICHS, MARCEL MATHIJS THEODORE MARIE;AND OTHERS;REEL/FRAME:015495/0549;SIGNING DATES FROM 20041112 TO 20041124 Owner name: ASML NETHERLANDS B.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LOOPSTRA, ERIK ROELOF;BASELMANS, JOHANNES JACOBUS MATHEUS;DIERICHS, MARCEL MATHIJS THEODORE MARIE;AND OTHERS;SIGNING DATES FROM 20041112 TO 20041124;REEL/FRAME:015495/0549 |
|
AS | Assignment |
Owner name: ASML NETHERLANDS B.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LOOPSTRA, ERIK ROELOF;MULKENS, JOHANNES CATHARINUS HUBERTUS;REEL/FRAME:019312/0160 Effective date: 20041124 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
ZAAA | Notice of allowance and fees due |
Free format text: ORIGINAL CODE: NOA |
|
ZAAB | Notice of allowance mailed |
Free format text: ORIGINAL CODE: MN/=. |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20240626 |