JP2005026634A - Aligner and manufacturing method of semiconductor device - Google Patents

Aligner and manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2005026634A
JP2005026634A JP2003270911A JP2003270911A JP2005026634A JP 2005026634 A JP2005026634 A JP 2005026634A JP 2003270911 A JP2003270911 A JP 2003270911A JP 2003270911 A JP2003270911 A JP 2003270911A JP 2005026634 A JP2005026634 A JP 2005026634A
Authority
JP
Japan
Prior art keywords
liquid
stage
exposure
nozzle
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003270911A
Other languages
Japanese (ja)
Inventor
Rikio Ikeda
Tomohiro Sugiyama
知広 杉山
利喜夫 池田
Original Assignee
Sony Corp
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, ソニー株式会社 filed Critical Sony Corp
Priority to JP2003270911A priority Critical patent/JP2005026634A/en
Publication of JP2005026634A publication Critical patent/JP2005026634A/en
Application status is Granted legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/70216Systems for imaging mask onto workpiece
    • G03F7/70341Immersion

Abstract

<P>PROBLEM TO BE SOLVED: To ensure exposure having an original refractive index of liquid by suppressing the occurrence of the turbulence of the liquid due to the movement of a stage in a liquid-immersion type aligner. <P>SOLUTION: In an aligner performing exposure in such a state that liquid E is interposed between an optical outgoing end in a lens L and a wafer W that is an object for exposure, there are provided a stage 10 mounting the wafer W and performing relative movement to the lens L in performing exposure, a tank 11 for dipping the entire wafer W mounted on the stage 10 in the liquid E, liquid ejection nozzles N1 and N2 ejecting the liquid E same as the liquid E for generating the flow of the liquid E located between the wafer W on the stage 10 and the optical outgoing end in the lens L, and a control means controlling the ejection of the liquid E from the liquid ejection nozzles N1 and N2 at a speed corresponding to the travel speed of the stage 10 along the traveling direction of the stage 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、基板の表面全体を液体で浸した状態でステージを移動させながら露光を行う液侵式の露光装置および半導体装置の製造方法に関する。 The present invention relates to a manufacturing method of an exposure device and a semiconductor device of an immersion type exposure is performed while the entire surface of the substrate by moving the stage in a state immersed in the liquid.

現在、光リソグラフィの光源はKrFから移行しArF技術が主流となってきている。 Currently, optical lithography light source is ArF technology transition from KrF has become the mainstream. このような中、近年デバイスパターンの高集積化が進み、要求されるスペックが光リソグラフィとしての限界に近づいている状況である。 In this situation, progress in high integration of recent device patterns, a situation that required specifications is approaching the limit of the optical lithography. また、次世代のリソグラフィとしてF2リソグラフィの技術開発が進められている。 In addition, the technical development of the F2 lithography as lithography of the next generation is in progress. しかしながらF2リソグラフィは現行設備を新規に置き換える事が前提となり莫大なコストが掛かるという問題がある。 However F2 lithography is to replace the current equipment to the new, there is a problem in that it takes enormous cost is assumed.

そこで、ArFを用いたImmersion Lithography技術が考えられている。 So, Immersion Lithography technology using ArF has been considered. Immersion Lithographyとは、レンズと露光対象である基板(例えば、ウエハ)との間に液体(代表的には純水)を介在させることで液体の屈折率を利用し、High NA化を可能とする方法である。 The Immersion Lithography, substrate is a lens and the exposure target (e.g., a wafer) liquid (typically pure water) between using refraction index of the liquid by an intervening, enabling High NA of it is a method. これにより、現行光源でF2と同等の微細技術が可能になると考えられている。 Thus, it is believed to be a possible equivalent of the fine art and F2 in the current source. すなわち、現行設備を改造する程度の範囲内で次世代の技術を集約できる能力がある(例えば、特許文献1参照。)。 That is, the ability to aggregate next-generation technology in a range enough to retrofit existing equipment (for example, see Patent Document 1.).

国際公開第99/49504号パンフレット International Publication No. WO 99/49504

しかしながら、Immersion Lithographyの液浸技術としては、液体に対しての制御が必要である。 However, as the immersion technique Immersion Lithography, it is necessary to control the relative liquid. すなわち、液体といっても温度・粘性・乱流等の問題が存在するため、全てにおいて詳細な制御が必要と考える。 That is, since even if the liquid present problems such as temperature, viscosity, turbulent flow, considered more control in all required. この液体の制御を行わないと液体本来の屈折率が得られず、High NA化を達成することは不可能である。 When this does not control the liquid is not obtained liquid original refractive index, it is not possible to achieve a High NA of.

本発明はこのような課題を解決するために成されたものである。 The present invention has been made in order to solve such problems. すなわち、本発明は、光学レンズ部における光出射端と露光対象となる基板との間に液体を介在させた状態で露光を行う露光装置において、基板を載置するとともに、露光を行う際に光学レンズ部との間で相対的な移動を行うステージと、ステージに載置される基板の全体を液体で浸すための槽と、ステージ上の基板と光学レンズ部における光出射端との間にある液体の流れを生成するため液体と同じ液体を噴出するノズルと、ステージの移動方向に沿ってそのステージの移動速度と対応した速度でノズルから液体を噴出する制御を行う制御手段とを備えている。 That is, the present invention is an exposure apparatus that performs exposure while interposing the liquid between the substrate as a light emitting end subject to exposure in the optical lens unit, thereby placing the substrate, optical when performing exposure It is between the light emitting end of the relative movement and the stage of performing, bath and the substrate and the optical lens portion on the stage for immersing the entire substrate with a liquid which is placed on the stage between the lens portion It includes a nozzle for ejecting the same liquid as the liquid for producing a flow of liquid, and a control means for performing control for ejecting liquid from a nozzle at a speed corresponding with the speed of movement of the stage along the moving direction of the stage .

また、本発明は、ステージ上に載置した基板の表面全体を液体で浸した状態で、ステージを移動させながら基板上に配置した光学レンズ部から光を出射して露光を行う工程を含む半導体装置の製造方法において、ステージを移動させながら露光を行うにあたり、そのステージの移動速度と対応した速度で基板上の液体の流れを生成するようにしている。 Further, the present invention is that the entire surface of the substrate placed on the stage in a state dipped in the liquid, the semiconductor comprising the step of performing exposure by emitting light from the optical lens unit arranged on the substrate while moving the stage the method of manufacturing a device, in performing exposure while moving the stage, and to generate a flow of liquid on the substrate at a speed corresponding to the moving speed of the stage.

このような本発明では、基板全体を液体で浸した状態でステージの移動を行いながら露光を行うにあたり、ステージの移動方向に沿って、かつステージの移動速度に対応した速度でノズルから液体を噴出するため、ステージの移動とともに基板上の液体が移動する状態となり、ステージの移動による液体の乱流を抑制できるようになる。 In the present invention, ejecting the entire substrate in performing exposure while moving the stage in a state dipped in the liquid, along the moving direction of the stage, and the liquid from the nozzle at a speed corresponding to the moving speed of the stage to reason, a state in which the liquid on the substrate along with movement of the stage is moved, it becomes possible to suppress the turbulence of the liquid by movement of the stage.

本発明では、基板全体を液体で浸した状態でステージを移動させながら露光を行う場合でも、ステージの移動による基板上の液体の乱流を抑制できるため、液体の屈折率を最大限に活用した高精度な露光を実現することが可能となる。 In the present invention, since the entire substrate even when exposure is performed while moving the stage in a state dipped in the liquid, it can be suppressed turbulence of the liquid on the substrate by movement of the stage, utilizing the refractive index of the liquid to maximize it is possible to realize highly accurate exposure.

以下、本発明の実施の形態を図に基づき説明する。 Hereinafter will be described with reference to FIG. Embodiments of the present invention. 図1、図2は、本実施形態に係る露光装置を説明する模式図であり、図1はウエハ載置状態、図2は液体注入状態を示している。 1, FIG. 2 is a schematic view for explaining an exposure apparatus according to this embodiment, FIG. 1 is a wafer placement state, FIG. 2 shows a liquid injection state. すなわち、この露光装置は、露光対象の基板であるウエハWの全体を液体(例えば、純水)Eによって浸した状態で露光を行ういわゆる液侵式の露光装置である。 That is, the exposure apparatus, the entire wafer W as a substrate to be exposed liquid (e.g., pure water) is an exposure apparatus of a so-called immersion type exposure is performed in a state dipped by E. したがって、液体Eを溜めるための槽11内にウエハWおよびこれを載置するためのステージ10が配置されている。 Thus, the stage 10 for placing the wafer W and this tank 11 for storing the liquid E is disposed. また、光学系であるレンズLの光出射端(先端)も液体Eに浸かるよう構成されている。 Further, the light emitting end of the lens L is an optical system (tip) is also configured to soak in the liquid E.

槽11には液体Eを注入するための注水口と、槽11内に一定以上の液体Eが溜まらないよう排出するための排水口が設けられている。 And water injection port for injecting the liquid E to the vessel 11, discharge port for discharging so as not to accumulate a certain or more liquid E in the tank 11 is provided. なお、槽11内の全ての液体Eを排出するためのドレン(図示せず)も設けられている。 Incidentally, (not shown) Drain for discharging all of the liquid E in the tank 11 is also provided.

本実施形態の露光装置は、このような液侵式において、ウエハWを載置したステージ10を移動させながら露光を行うスキャナ型となっている。 The exposure apparatus of the present embodiment, in such immersion type, has a scanner-type exposure is performed while moving the stage 10 mounted with the wafer W. すなわち、ウエハWとレンズLの先端との間に液体Eを介在させた状態でステージ10を所定方向に移動させながら露光を行うものである。 That, and performs exposure while moving the stage 10 in a predetermined direction while interposing the liquid E between the tip of the wafer W and the lens L.

このような露光装置において、本実施形態では、レンズLの周辺に液体噴出ノズルN1、N2が配置されている。 In such an exposure apparatus, in the present embodiment, the liquid ejection nozzle N1, N2 are arranged on the periphery of the lens L. この液体噴出ノズルN1、N2は、槽11内の液体Eと同じ液体Eを噴出できるもので、レンズLを間にして液体Eを噴出するための開口部が各々対向した状態で配置される。 The liquid jet nozzle N1, N2 may be capable ejecting the same liquid E and the liquid E in the tank 11, opening for ejecting liquid E and between the lens L is arranged in each opposite state.

この液体噴出ノズルN1、N2からは、露光の際のステージ10の移動方向に沿って、かつそのステージ10の移動速度と対応した速度(ほぼ等しい速度)で液体Eを噴出して、ウエハWとレンズLの先端部との間に介在する液体Eにステージ10の移動と対応した流れを生成することができる。 From this liquid ejection nozzles N1, N2, along the moving direction of the stage 10 during exposure, and by ejecting the liquid E at a speed corresponding to the moving speed of the stage 10 (approximately equal speed), and the wafer W the flow corresponding with movement of the stage 10 in the liquid E interposed between the tip of the lens L can be generated.

各液体噴出ノズルN1、N2には、噴出する液体Eの流量を制御する制御部(図示せず)が設けられている。 Each liquid ejection nozzles N1, N2, control unit for controlling the flow rate of liquid E for jetting (not shown) is provided. 制御部は各液体噴出ノズルN1、N2独立でも、共通で切り換えて用いてもよい。 The control unit also each liquid jet nozzle N1, N2 independently may be used by switching a common. 各液体噴出ノズルN1、N2の液体噴出量はセンサーによって検知され、正確に制御される。 Liquid ejection amount of each liquid jet nozzle N1, N2 is sensed by the sensor is accurately controlled.

ここで、制御部による液体噴出ノズルN1、N2からの液体Eの噴出量制御は、例えば以下の式に基づき行われる。 Here, the ejection amount control of the liquid E from the liquid ejection nozzle N1, N2 by the control unit is performed, for example, based on the following equation.

VE=D・v・d VE = D · v · d
(VEは液体Eの噴出量(m 3 /s)、DはレンズLの先端における直径(m)、vはステージ10の移動速度(m/s)、dはレンズLの先端とウエハWの表面との間隔(m)である。) (VE the ejection amount (m 3 / s), D is the diameter at the tip of the lens L (m), v is the moving speed (m / s of the stage 10), d is the lens L tip and the wafer W of the liquid E is a distance between the surface (m).)

液体噴出ノズルN1、N2が2つ設けられているのは、ステージ10が往復移動するためであり、一方に移動する際には液体噴出ノズルN1のみから液体E$を噴出し、他方に移動する際には液体噴出ノズルN2のみから液体Eを噴出することになる。 The liquid jet nozzle N1, N2 is provided with two is because the stage 10 reciprocates, when moving in one of which ejects liquid E $ from only the liquid ejection nozzles N1, moves to the other will eject liquid E from only the liquid ejection nozzle N2 is the time.

このような液体噴出ノズルN1、N2からのステージ移動に対応した液体Eの噴出によって、ウエハWとレンズLとの間に介在する液体Eの流れとステージ10の移動速度とをほぼ等しくでき、ステージ10の移動と液体Eの移動との相対速度差をなくしてこの間で発生する液体Eの乱流を抑制することが可能となる。 The ejection of such a liquid ejection nozzle N1, the liquid E corresponding to the stage movement from N2, can substantially equal to the moving speed of the flow and the stage 10 of the liquid E interposed between the wafer W and the lens L, stage 10 by eliminating the relative speed difference between the movement of the moving liquid E it is possible to suppress the turbulence of the liquid E generated during this period of.

次に、この露光装置を用いた露光方法を説明する。 Next, a description will be given of an exposure method using the exposure apparatus. 先ず、図1に示すように、ステージ10上にウエハWを載置して真空吸着する。 First, as shown in FIG. 1, vacuum suction by placing the wafer W on the stage 10. そして、図示しないマスクとのアライメントをとる。 Then, take the alignment of the mask (not shown).

次いで、注水口からステージ10上に温度制御された液体E(この場合は純水。その他ではアルコールやオイル等)をレンズLの先端部が浸るように注入する。 Then, the temperature control on the stage 10 from the water inlet liquid E (in this case pure water. Elsewhere alcohol or oil) is injected to soak the tip of the lens L is. 液体Eは一定レベル以上になると排水口から自動的に排出される。 Liquid E is automatically discharged from the discharge port reaches or exceeds a certain level.

続いて、露光動作を開始する。 Then, to start the exposure operation. 露光動作の開始とともにレンズL付近にある液体噴出ノズルN1もしくは液体噴出ノズルN2から槽11に入れた液体Eと同じ液体Eを露光領域に向けて噴出させる。 The same liquid E and put from the liquid ejection nozzle N1 or liquid jet nozzle N2 in the vicinity of the lens L at the start of the exposure operation in a bath 11 liquid E toward the exposed region is ejected. その時の流速はステージ10の移動速度と同じとする。 Flow rate at that time is the same as the moving speed of the stage 10.

ここで、図3に示すように、露光時にステージ10が一方(図中矢印x1参照)に移動する際には、液体噴出ノズルN1から同じ方向に沿って液体Eを噴出する。 Here, as shown in FIG. 3, when the stage 10 at the time of exposure is to be moved to one side (see FIG arrow x1) is ejected liquid E along the liquid jet nozzle N1 in the same direction. このとき液体噴出ノズルN2からは液体Eを噴出しないようにする。 At this time so as not to eject the liquid E from the liquid ejection nozzle N2.

一方、図4に示すように、ステージ10が先とは反対の方向(図中矢印x2参照)に移動する際には、液体噴出ノズルN2から同じ方向に沿って液体Eを噴出する。 On the other hand, as shown in FIG. 4, when the stage 10 from the previous move in the opposite direction (see arrow in the drawing x2), the ejecting liquid E along the liquid jet nozzle N2 in the same direction. このとき液体噴出ノズルN1からは液体Eを噴出しないようにする。 At this time so as not to eject the liquid E from the liquid ejection nozzle N1.

このように、ステージ10の往復移動の方向および速度に合わせて液体噴出ノズルN1、N2から各々液体Eを噴出することで、レンズLとウエハWとの間で液体Eとステージ10との相対移動速度をなくすことができ、液体Eの乱流発生を最小限に抑制できるようになる。 Thus, relative movement between the liquid E and the stage 10 with the respective By ejecting liquid E, the lens L and the wafer W from the liquid ejection nozzle N1, N2 to suit the direction and speed of the reciprocating movement of the stage 10 can be eliminated speed, it becomes possible to minimize the turbulence generation liquid E.

図5は液体噴出ノズルと露光領域との関係を説明する模式斜視図である。 Figure 5 is a schematic perspective view for explaining the relationship between the liquid ejection nozzle and the exposure area. 液体噴出ノズルN1、N2における開口の幅D1は、レンズ領域内の露光領域Sの幅よりも広くなっている。 Liquid jet nozzles N1, N2 width D1 of the opening in is wider than the width of the exposure area S of the lens area. これにより、露光領域Sの全体にわたって液体噴出ノズルN1、N2から液体を噴出することができ、露光領域Sでの液体乱流を確実に抑制できるようになる。 Thus, it is possible to eject the liquid from the liquid ejection nozzle N1, N2 throughout the exposure area S, it becomes possible to reliably suppress liquid turbulence in the exposure area S.

図6は2つの液体噴出ノズルと露光領域との位置関係を説明する模式上面図である。 6 is a schematic top view illustrating the positional relationship between the two liquid ejection nozzle and the exposure area. 各液体噴出ノズルN1、N2はレンズ領域を間としてステージの移動方向に沿って対向するよう配置されている。 Each liquid ejection nozzles N1, N2 are arranged to face along the movement direction of the stage as between the lens area.

これにより、ステージが図中矢印x1方向へ移動する際には液体噴出ノズルN1からステージの移動方向に沿った図中矢印x1'の方向へ液体を噴出する。 Thus, stage when moving into in the arrow x1 direction ejecting liquid in the direction of the arrow in the figure x1 'along the moving direction of the stage from the liquid ejection nozzle N1. 一方、ステージが先とは反対の図中矢印x2方向へ移動する際には液体噴出ノズルN2からステージの移動方向に沿った図中矢印x2'の方向へ液体を噴出する。 On the other hand, the stage from the preceding ejecting a liquid in the direction of the arrow in the figure x2 'along the moving direction of the stage from the liquid ejection nozzle N2 is when moving in the opposite in the arrow direction x2. ステージの往復移動があっても、各液体噴出ノズルN1、N2から各々ステージの移動方向に沿った液体の噴出を行うことができ、露光領域Sの全体において介在する液体の乱流を抑制できるようになる。 Even when the reciprocating movement of the stage, can be performed the ejection of the liquid, respectively along the moving direction of the stage from the liquid ejection nozzles N1, N2, so that the turbulence of the liquid interposed in the overall exposure area S can be suppressed become.

なお、上記説明した実施形態では、液体噴出ノズルとして2つを備えるものを例としたが、本発明はこれに限定されず、1つのものであっても可能である。 In the embodiment described above, although an example those with two as the liquid ejection nozzle, the present invention is not limited thereto, and can be of one. すなわち、露光時のステージ移動方向に合わせて液体噴出ノズルを設けて液体の流れを制御するようにすればよい。 That is, it is sufficient to provided a liquid jet nozzle for controlling the flow of liquid in accordance with the moving direction of the stage during exposure.

上記説明した露光装置および露光方法は、主として半導体装置の製造方法の一工程として適用されるもので、例えばArFを光源として用いた露光であってもF2光源と同等の微細技術が可能となり、半導体装置における微細パターンの形成技術として利用することが可能である。 The exposure apparatus and the exposure method described primarily intended to be applied as the method for manufacturing a semiconductor device, for example a exposure also enables comparable fine art and F2 light using ArF as a light source, a semiconductor It can be utilized as a technique of forming a fine pattern in the device.

本実施形態に係る露光装置を説明する模式図(ウエハ載置状態)である。 It is a schematic view illustrating an exposure apparatus according to this embodiment (wafer mount state). 本実施形態に係る露光装置を説明する模式図(液体注入状態)である。 It is a schematic view illustrating an exposure apparatus according to this embodiment (liquid injection state). 露光方法を説明する模式図(その1)である。 Schematic view for explaining the exposure method (Part 1). 露光方法を説明する模式図(その2)である。 Schematic view for explaining the exposure method (Part 2). 液体噴出ノズルと露光領域との関係を説明する模式斜視図である。 It is a schematic perspective view for explaining the relationship between the liquid ejection nozzle and the exposure area. 2つの液体噴出ノズルと露光領域との位置関係を説明する模式上面図である。 It is a schematic top view illustrating the positional relationship between the two liquid ejection nozzle and the exposure area.

符号の説明 DESCRIPTION OF SYMBOLS

10…ステージ、11…槽、L…レンズ、N1…液体噴出ノズル、N2…液体噴出ノズル、S…露光領域、W…ウエハ 10 ... stage, 11 ... bath, L ... lens, N1 ... liquid jet nozzle, N2 ... liquid jet nozzle, S ... exposure region, W ... wafer

Claims (5)

  1. 光学レンズ部における光出射端と露光対象となる基板との間に液体を介在させた状態で露光を行う露光装置において、 In the exposure apparatus which performs exposure while interposing the liquid between the substrate as a light emitting end subject to exposure in the optical lens unit,
    前記基板を載置するとともに、露光を行う際に前記光学レンズ部との間で相対的な移動を行うステージと、 With mounting the substrate, a stage for the relative movement between the optical lens unit in performing the exposure,
    前記ステージに載置される前記基板の全体を前記液体で浸すための槽と、 And bath for immersing the whole of the substrate placed on the stage in the liquid,
    前記ステージ上の前記基板と前記光学レンズ部における光出射端との間にある液体の流れを生成するため前記液体と同じ液体を噴出するノズルと、 A nozzle for ejecting the same liquid as the liquid for producing a flow of liquid that is between the light emitting end of the substrate and the optical lens portion on the stage,
    前記ステージの移動方向に沿って、かつそのステージの移動速度と対応した速度で前記ノズルから前記液体を噴出する制御を行う制御手段と を備えることを特徴とする露光装置。 Along the moving direction of the stage, and an exposure apparatus, characterized in that it comprises a control means for controlling to eject the liquid from the nozzle at a moving speed and the corresponding speed of the stage.
  2. 前記ノズルは第1ノズルと第2ノズルとの2つを備えており、前記ステージの往復移動に対応して前記液体を噴出するよう、前記第1ノズルと前記第2ノズルとが対向配置されている ことを特徴とする請求項1記載の露光装置。 The nozzle is provided with two first nozzle and the second nozzle so as to eject the liquid in response to the reciprocating movement of the stage, and the first nozzle and the second nozzle is arranged opposite the exposure apparatus according to claim 1, wherein the are.
  3. 前記ノズルの前記液体が噴出する開口部の幅は、前記ステージを移動させながら行う露光の領域の幅より広くなっている ことを特徴とする請求項1記載の露光装置。 The width of the opening in which the liquid in the nozzle is ejected, the exposure apparatus according to claim 1, wherein that it is wider than the area of ​​exposure performed while moving the stage.
  4. ステージ上に載置した基板の表面全体を液体で浸した状態で、前記ステージを移動させながら前記基板上に配置した光学レンズ部から光を出射して露光を行う工程を含む半導体装置の製造方法において、 The entire surface of the substrate placed on the stage in a state dipped in the liquid, a method of manufacturing a semiconductor device including a step of performing exposure by emitting light from the optical lens unit disposed on the substrate while moving the stage in,
    前記ステージを移動させながら露光を行うにあたり、そのステージの移動方向に沿って、かつ前記ステージの移動速度と対応した速度で前記基板上の液体の流れを生成する工程を含む ことを特徴とする半導体装置の製造方法。 In performing exposure while moving the stage, a semiconductor which comprises the step of along the moving direction of the stage, and generates a flow of liquid on the substrate at a moving speed and the corresponding speed of the stage manufacturing method of the device.
  5. 前記ステージが往復移動する場合、そのステージの移動方向に合わせて前記基板上の液体の流れを反転させる ことを特徴とする請求項4記載の半導体装置の製造方法。 If the stage is reciprocated, a method of manufacturing a semiconductor device according to claim 4, wherein reversing the flow of liquid on the substrate in accordance with the movement direction of the stage.
JP2003270911A 2003-07-04 2003-07-04 Aligner and manufacturing method of semiconductor device Granted JP2005026634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003270911A JP2005026634A (en) 2003-07-04 2003-07-04 Aligner and manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003270911A JP2005026634A (en) 2003-07-04 2003-07-04 Aligner and manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2005026634A true JP2005026634A (en) 2005-01-27

Family

ID=34190737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003270911A Granted JP2005026634A (en) 2003-07-04 2003-07-04 Aligner and manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP2005026634A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106836A1 (en) * 2005-03-31 2006-10-12 Nikon Corporation Exposure method, exposure apparatus and device manufacturing method
WO2007147304A1 (en) * 2006-06-13 2007-12-27 Shanghai Micro Electronics Equipment Co., Ltd. Immersion flow field maintenance system for immersion lithography machine
JP2008118102A (en) * 2006-11-03 2008-05-22 Taiwan Semiconductor Manufacturing Co Ltd Liquid immersion lithography apparatus, liquid immersion lithography method and liquid immersion lithography apparatus
JP2008118114A (en) * 2006-11-03 2008-05-22 Taiwan Semiconductor Manufacturing Co Ltd Liquid immersion lithography apparatus and liquid immersion lithography method
JP2011066416A (en) * 2005-04-05 2011-03-31 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP2012151513A (en) * 2003-08-29 2012-08-09 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9606448B2 (en) 2003-08-29 2017-03-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10146142B2 (en) 2003-08-29 2018-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2012151513A (en) * 2003-08-29 2012-08-09 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
US8804097B2 (en) 2003-08-29 2014-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9442388B2 (en) 2003-08-29 2016-09-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
WO2006106836A1 (en) * 2005-03-31 2006-10-12 Nikon Corporation Exposure method, exposure apparatus and device manufacturing method
JP2011066416A (en) * 2005-04-05 2011-03-31 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
WO2007147304A1 (en) * 2006-06-13 2007-12-27 Shanghai Micro Electronics Equipment Co., Ltd. Immersion flow field maintenance system for immersion lithography machine
US8130365B2 (en) 2006-06-13 2012-03-06 Shanghai Micro Electronics Equipment Co., Ltd. Immersion flow field maintenance system for an immersion lithography machine
JP4847584B2 (en) * 2006-06-13 2011-12-28 シャンハイ マイクロ エレクトロニクス イクイプメント カンパニー リミティド Immersion flow field maintenance system for an immersion lithography machine
JP2008118114A (en) * 2006-11-03 2008-05-22 Taiwan Semiconductor Manufacturing Co Ltd Liquid immersion lithography apparatus and liquid immersion lithography method
JP2008118102A (en) * 2006-11-03 2008-05-22 Taiwan Semiconductor Manufacturing Co Ltd Liquid immersion lithography apparatus, liquid immersion lithography method and liquid immersion lithography apparatus
JP4742077B2 (en) * 2006-11-03 2011-08-10 台湾積體電路製造股▲ふん▼有限公司Taiwan Semiconductor Manufacturing Company,Ltd. Immersion lithographic apparatus, the immersion exposure method and a liquid immersion exposure apparatus
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Similar Documents

Publication Publication Date Title
JP4612630B2 (en) Apparatus and method for providing a liquid confined for immersion lithography
EP0771659B1 (en) Method of manufacturing an ink jet head and ink jet head
JP4305095B2 (en) Immersion projection exposure apparatus and the immersion optics cleaning method equipped with cleaning mechanism of the optical components
KR100566730B1 (en) Pattern formation method and substrate manufacturing apparatus
EP1163552B2 (en) Method of forming a masking pattern on a surface
KR101308826B1 (en) Apparatus and method for providing fluid for immersion lithography
CN100470367C (en) Lithographic apparatus and device manufacturing method
US20050134817A1 (en) Liquid immersion type exposure apparatus
JP4378136B2 (en) Exposure apparatus and device manufacturing method
JP4037410B2 (en) The method for producing a thin film transistor manufacturing method and a liquid crystal display device
US7411654B2 (en) Lithographic apparatus and device manufacturing method
US7932989B2 (en) Liquid jet and recovery system for immersion lithography
US9086636B2 (en) Optical arrangement of autofocus elements for use with immersion lithography
US9285683B2 (en) Apparatus and method for providing fluid for immersion lithography
KR100585903B1 (en) Method of Manufacturing Microstructure, Method of Manufacturing Liquid Discharge Head, and Liquid Discharge Head
JP4532785B2 (en) A method of manufacturing a structure, and a manufacturing method of the liquid discharge head
JP4772306B2 (en) Immersion optical device and a cleaning method
US7041226B2 (en) Methods for improving flow through fluidic channels
KR20050121715A (en) Immersion lithography fluid control system
WO2004090956A1 (en) Exposure apparatus and method for manufacturing device
JP4734063B2 (en) Substrate cleaning apparatus and a substrate cleaning method.
US7821616B2 (en) Resist pattern forming method, semiconductor apparatus using said method, and exposure apparatus thereof
US7195860B2 (en) Semiconductor manufacturing apparatus and pattern formation method
KR20050016234A (en) Microlens and method of manufacturing microlens, optical device, optical transmission device, head for laser printer, and laser printer
US20060277755A1 (en) Liquid discharge head manufacturing method, and liquid discharge head obtained using this method