JP2001313250A - Aligner, its adjusting method, and method for fabricating device using aligner - Google Patents

Aligner, its adjusting method, and method for fabricating device using aligner

Info

Publication number
JP2001313250A
JP2001313250A JP2001038326A JP2001038326A JP2001313250A JP 2001313250 A JP2001313250 A JP 2001313250A JP 2001038326 A JP2001038326 A JP 2001038326A JP 2001038326 A JP2001038326 A JP 2001038326A JP 2001313250 A JP2001313250 A JP 2001313250A
Authority
JP
Japan
Prior art keywords
illumination
system
exposure
object
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001038326A
Other languages
Japanese (ja)
Inventor
Hisashi Nishinaga
壽 西永
Original Assignee
Nikon Corp
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000-49740 priority Critical
Priority to JP2000049740 priority
Application filed by Nikon Corp, 株式会社ニコン filed Critical Nikon Corp
Priority to JP2001038326A priority patent/JP2001313250A/en
Priority claimed from TW090104135A external-priority patent/TW546699B/en
Publication of JP2001313250A publication Critical patent/JP2001313250A/en
Application status is Withdrawn legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/70058Mask illumination systems

Abstract

PROBLEM TO BE SOLVED: To provide an aligner in which an illumination optical system can be adjusted accurately in a short time.
SOLUTION: A reticle R is irradiated with an exposing light IL from an exposing light source 1 through an illumination optical system ILS comprising a first fly eye lens 6, a second fly eye lens 9, lens systems 12, 13 blinds 14A, 14B, and condenser lens systems 17, 18 and the pattern image of the reticle R is projected onto a wafer W through a projection optical system PL. Specific illumination characteristics are measured using an evaluation mark plate 33 on a reticle stage 31, and a spatial image measuring system 46 provided on a wafer state 39 and then the state of the second fly eye lens 9 and the lens systems 12, 13 is adjusted through drive units 23, 24 and 25 based on the measurements.
COPYRIGHT: (C)2001,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、例えば半導体素子、液晶表示素子、プラズマディスプレイ素子、又は薄膜磁気ヘッド等を製造するためのリソグラフィ工程でマスクパターンを投影光学系を介して基板上に転写するために使用される露光装置、及びこの露光装置の調整方法に関し、特に照明系の調整を自動的に行う機能を備えた露光装置に関する。 BACKGROUND OF THE INVENTION The present invention is transferred for example a semiconductor device, a liquid crystal display device, a plasma display device, or a mask pattern in a lithography process for manufacturing a thin film magnetic head or the like via a projection optical system onto a substrate exposure apparatus used for, and to a method of adjusting the exposure apparatus, an exposure apparatus having a particularly the ability to automatically assign adjustment of the illumination system.

【0002】 [0002]

【従来の技術】半導体デバイスの集積度及び微細度の向上に対応するため、半導体デバイスを製造するためのリソグラフィ工程(代表的にはレジスト塗布工程、露光工程、及びレジスト現像工程からなる)を担う露光装置においては、解像力、及び転写忠実度等をより高めることが要求されている。 To accommodate increased density and fineness of semiconductor devices, play a lithography process for manufacturing semiconductor devices (typically resist coating step to consist of the exposure step, and resist development step) in the exposure apparatus, resolution, and is possible to increase the transfer fidelity, etc. are required. このように解像力、及び転写忠実度を高めるためには、露光ビームとしての露光光の波長を短波長化して、開口数の大きい投影光学系を使用すると共に、基板としてのウエハ上に塗布されたフォトレジストを適正露光量で露光するための露光量制御を高精度に行う必要がある。 To increase this way resolving power, and a transcription fidelity the wavelength of the exposure light as an exposure beam with shorter wavelength, the use of large projection optical system of the numerical aperture, coated on a wafer as a substrate it is necessary to perform exposure control for exposing the photoresist in a proper amount of exposure with high accuracy. そして、その投影光学系の結像特性を限界まで引き出して、フォトレジストの露光量制御を高精度に行うためには、マスクとしてのレチクルを露光光で照明する照明光学系の照明特性をできるだけ高めるように、その照明光学系の最適化を行う必要がある。 Then, pull the imaging characteristics of the projection optical system to the limit, in order to perform exposure control of the photoresist with high precision, increasing as much as possible the illumination characteristics of the illumination optical system for illuminating a reticle as a mask with exposure light as such, it is necessary to optimize the illumination optical system.

【0003】露光装置の照明光学系を最適化するための調整は、従来は以下のような工程で行われていた。 [0003] Adjustment to optimize the illumination optical system of the exposure apparatus has traditionally been performed by the following steps. (イ)オペレータが照明光学系の調整対象の照明特性(例えば照度むら)を計測する。 (B) The operator measures the illumination characteristics to be adjusted in the illumination optical system (e.g., illuminance unevenness). (ロ)その計測結果に基づいて、その照明特性に対応した駆動ユニットを用いて所定の光学部材の状態(位置又は傾斜角等)を調整する。 (B) based on the measurement result, to adjust the state of the predetermined optical element (position or tilt angle, etc.) by using the driving unit corresponding to the illumination characteristics. この際の駆動量は、光学設計値をオペレータの経験に基づいて修正することによって、その照明特性をできるだけ改善するように設定される。 Drive amount at this time, by modifying the basis of optical design values ​​to the experience of the operator, are set to improve as much as possible their illumination characteristics.

【0004】(ハ)その調整後に、その照明特性の残存する量を再計測し、その残存する量が許容範囲を超える際には、その駆動ユニットを介して再調整を行う。 [0004] (iii) After the adjustment, the re-measuring the amount remaining of the illumination characteristics, that when the amount remaining exceeds the allowable range, readjust via its drive unit. (ニ)その調整の完了後に、その光学部材の最終的な状態(最適な状態)を記憶する。 (D) after completion of the adjustment, and stores the final state of the optical member (optimal state). そして、複数の照明条件のそれぞれにおいて、上記の調整工程を調整対象の照明特性毎に繰り返して、対応する光学部材の最適な状態を記憶し、照明条件が切り換えられた際には、対応する光学部材をそれぞれ最適な状態に設定していた。 Then, in each of the plurality of illumination conditions, repeat the above adjustment process for each illumination characteristics to be adjusted, and stores the optimum state of the corresponding optical member, when the illumination condition has been switched, the corresponding optical member has been set to the optimum state.

【0005】 [0005]

【発明が解決しようとする課題】上記の如く従来の露光装置の照明光学系を最適化するための調整は、露光装置の組立調整時、及びメンテナンス時等にオペレータによって行われていた。 Adjustment to optimize the illumination optical system of the invention It is an object of the above as conventional exposure apparatus, when assembling the adjustment of the exposure apparatus, and was done by an operator during maintenance or the like. しかしながら、オペレータが調整を行う場合には、調整に長い時間を要するという不都合がある。 However, if the operator makes an adjustment, there is a disadvantage that it takes a long time to adjust. 更に、複数の照明条件の全てについてそれぞれ照明光学系の調整を行う必要があるため、全体の調整時間はかなり長くなっていた。 Furthermore, since it is necessary to perform each adjustment of the illumination optical system for all of the plurality of illumination conditions, the overall adjustment time to be much larger. また、最適化に要する時間は、オペレータの熟練度にも左右されるため、オペレータによっては更に調整時間が長くなってしまう恐れもあった。 Also, the time required for optimization since also depends on the operator's skill, was also a risk that further adjustment time by the operator becomes long.

【0006】また、照明光学系中の複数の光学部材の状態を調整する必要がある場合には、調整に伴う相互の影響等も考慮する必要があるため、調整工程が極めて煩雑となっていた。 [0006] When it is necessary to adjust the state of the plurality of optical members in the illumination optical system, since the mutual influence with the adjustment it is necessary to consider the adjustment process has been a very complicated . このように従来の照明光学系の調整には長時間の煩雑な工程を要したため、例えば製造するデバイスの要求精度等に応じて所定の照明特性の許容レベルを変化させるような運用を行うことが困難であった。 Thus since the adjustment of the conventional illumination optical system takes a long time of complicated steps, is possible to perform operations such as changing an acceptable level of predetermined illumination characteristics in accordance with the required accuracy or the like of the device prepared, for example, It was difficult. また、例えば照明特性中の照度むら等は、照明光学系中の光学部材の曇り、及び硝材の劣化等によって経時的に変化する場合があるが、このような場合にも従来の調整方法では迅速に対応することが困難であった。 Further, for example, illuminance unevenness in illumination properties, fogging of the optical member in the illumination optical system, and there is a case where change over time due to deterioration or the like of the glass material, rapidly in such case also the conventional adjusting method it was difficult to respond to.

【0007】本発明は斯かる点に鑑み、照明光学系の調整を短時間に正確に行うことができる露光装置を提供することを第1の目的とする。 [0007] The present invention has been made in consideration of the point mow 斯, a first object to provide an exposure apparatus capable of accurately in a short time to adjust the illumination optical system. 更に本発明は、複数の照明条件に切り換えることができる照明光学系の調整を実質的に自動的に行うことができる露光装置を提供することを第2の目的とする。 The present invention is to provide an exposure apparatus capable of adjusting the illumination optical system can be switched to a plurality of illumination conditions substantially automatically second object.

【0008】更に本発明は、そのような露光装置の効率的な使用方法、及びその露光装置を用いた高精度なデバイス製造方法を提供することをも目的とする。 [0008] The present invention is directed to such efficient use of the exposure apparatus, and also aims to provide a high-precision device manufacturing method using the exposure apparatus.

【0009】 [0009]

【課題を解決するための手段】本発明による第1の露光装置は、露光ビームで第1物体(R)を照明する照明系(ILS)を備え、その露光ビームでその第1物体を介して第2物体(W)を露光する露光装置において、その照明系中に配置されて、その露光ビームの照明条件を複数の照明条件の何れかに切り換える照明条件切り換え系(10,10e)と、その複数の照明条件のそれぞれに応じてその照明系の所定の照明特性を制御するために、 The first exposure apparatus according to the present invention SUMMARY OF THE INVENTION comprises an illumination system for illuminating the first object (R) with an exposure beam (ILS), via the first object with the exposure beam the exposure apparatus comprising a second object (W), is arranged in the illumination system, the illumination condition switching system for switching the lighting conditions of the exposure beam to one of a plurality of illumination conditions and (10,10e), its to control the predetermined illumination characteristic of the illumination system in accordance with each of the plurality of illumination conditions,
その照明系中の所定の光学部材(9,12,13)の状態を調整する調整系(23,24,25)とを設けたものである。 The adjustment system (23, 24, 25) the state to adjust the predetermined optical member in the illumination system (9,12,13) ​​and in which the provided.

【0010】斯かる本発明によれば、その照明条件切り換え系によって照明条件を切り換えた際には、切り換え後の照明条件に応じてその調整系を介してその光学部材の状態(光軸方向の位置、光軸に垂直な方向の位置、及びチルト角等)を調整する。 [0010] According to such present invention, when switching the illumination condition by the illumination condition switching system of the optical member through the adjustment system in accordance with the illumination condition after switching state (in the optical axis direction position, the position in the direction perpendicular to the optical axis, and the tilt angle, etc.) to adjust. これによって、複数の照明条件に対してそれぞれ実質的に自動的に照明系の所定の照明特性を所望の状態に制御できる。 Thus, substantially automatically a predetermined illumination characteristic of the illumination system, respectively can be controlled to a desired state for a plurality of illumination conditions.

【0011】この場合、その評価対象の所定の照明特性の一例は、その露光ビームの照度むら、及びその露光ビームのテレセントリック性の崩れ量の少なくとも一方である。 [0011] In this case, an example of the predetermined illumination characteristic of the evaluation object, illuminance unevenness of the exposure beam, and at least one of telecentricity collapse of the exposure beam. これらは共にその第2物体上で高い解像度を得るために極めて重要な特性である。 These are very important properties in order to obtain both high resolution in its second object. 更に、その評価対象の照明特性を、その露光ビームの照度むらの傾斜成分及び凹凸成分、並びにその露光ビームのテレセントリック性の崩れ量の傾斜成分(2次元のベクトル量)及び倍率成分とすることが望ましい。 Further, the illumination characteristics of the evaluation target, the inclination component and uneven components of the uneven illuminance of the exposure beam, as well as be a telecentricity collapse of the inclined component (two-dimensional vector quantity) and the magnification component of the exposure beam desirable. この5つの照明特性の成分は、その照明系中の複数の光学部材を互いに独立に駆動することによって容易にほぼ単独に制御できるため、特に自動化を容易に行うことができる。 Components of the five lighting characteristics, because it can easily be controlled substantially solely by driving the independently a plurality of optical members in the illumination system, in particular to automate easily.

【0012】なお、ここでは、露光ビームのテレセントリック性の崩れ量は、照明系(又は照明光学系)のテレセントリシティである。 [0012] Here, collapse of telecentricity of the exposure beam is a telecentricity of the illumination system (or an illumination optical system). また、その照明系のその照明特性を計測する特性計測系(33,46,42)と、この特性計測系の計測結果に基づいて、その調整系の駆動量とその照明特性の変化量との関係を求めて記憶する演算制御系(22)とを有することが望ましい。 Further, the characteristic measuring system (33,46,42) for measuring the illumination characteristics of the illumination system, based on the measurement result of the characteristic measuring system, the driving amount of the adjustment system and the variation of the illumination characteristics it is desirable to have an arithmetic control system for storing seeking relationship (22). その照明特性が経時的に変化する場合には、例えば定期的にその特性計測系でその照明特性を計測する、或いは先に記憶した関係を計算(シミュレーション)にて更新する、又は両者を併用する(即ち、定期的な照明特性の計測の間は計算にて上記関係を更新する)と共に、これに基づいてその調整系を駆動することによって、その照明特性を迅速に所望の状態に戻すことができる。 If the illumination characteristics change over time, for example to measure periodically the illumination characteristics in its characteristic measuring system, or to update the relationship previously stored in calculation (simulation), or a combination of both (i.e., during the measurement of the periodic illumination characteristic updating the relationship in calculation) with, by driving the adjustment system based on this, be returned to the illumination properties quickly desired state it can.

【0013】次に、本発明の第2の露光装置は、露光ビームで第1物体(R)を照明する照明系(ILS)を備え、その露光ビームでその第1物体を介して第2物体(W)を露光する露光装置において、その照明系の所定の照明特性を計測する特性計測系(33,46,42) [0013] Next, the second is the exposure apparatus includes an illumination system for illuminating the first object (R) with an exposure beam (ILS), the second object via the first object with the exposure beam of the present invention the exposure apparatus comprising (W), the characteristics measuring system for measuring a predetermined illumination characteristics of the illumination system (33,46,42)
と、この特性計測系の計測結果に応じてその照明系中の所定の光学部材の状態を調整する調整系(23,24, When the adjustment system (23, 24 depending on the measurement result of the characteristic measuring system to condition the predetermined optical member in the illumination system,
25)とを設けたものである。 It is provided with a 25) and.

【0014】斯かる本発明によれば、例えば空間像計測系等を備えたその特性計測系の計測結果に基づいてその調整系を駆動することによって、その照明系の調整を短時間に正確に行うことができる。 [0014] According to such present invention, for example, by driving the adjustment system based on the measurement result of the characteristic measuring system having a spatial image-measuring system and the like, a short time accurately adjust the illumination system It can be carried out. これらの本発明において、その照明系が、オプティカル・インテグレータ(9)(ユニフォマイザ、又はホモジナイザ)と、そのオプティカル・インテグレータを通過したその露光ビームをその第1物体の被照射面、又はこれと共役な面に導く第1光学系(12)、及び第2光学系(13)とを有する場合、これらの光学部材の状態を次のように調整することで、それぞれ以下の照明特性を実質的に互いに独立に制御できる。 In these invention, the illumination system, an optical integrator (9) (uniformizer, or homogenizer) and, the exposure beam having passed through the optical integrator illuminated surface of the first object, or its conjugate first optical system for guiding the a surface (12), and if a second optical system (13), by adjusting the states of these optical members, as follows, respectively lighting characteristics following substantially each other can be controlled independently.

【0015】(a1)オプティカル・インテグレータ(9)の光軸方向の位置調整:露光ビームのテレセントリック性の崩れ量の倍率成分、(b1)第1光学系の光軸方向の位置調整:照度むらの凹凸成分、(c1)第2 [0015] (a1) an optical integrator (9) in the optical axis direction position adjustment: telecentricity collapse of magnification component of the exposure beam, (b1) adjusting the position of the optical axis of the first optical system: the uneven illuminance profile-component, (c1) second
光学系の光軸に垂直な方向の2次元の位置調整:露光ビームのテレセントリック性の崩れ量の傾斜成分(2次元のベクトル量)、(d1)第2光学系のチルト角:照度むらのそのチルトする方向の傾斜成分。 Two-dimensional position adjustment of the direction perpendicular to the optical axis of the optical system: the exposure telecentricity collapse of the inclined component (two-dimensional vector quantity) of the beam, (d1) the tilt angle of the second optical system: the uneven illuminance inclination component in the direction of tilt. そのチルトする方向は、走査露光方式の露光装置の場合には、走査方向に直交する非走査方向に対応することが望ましい。 Direction thereof tilt in the case of the exposure apparatus of scanning exposure system, it is desirable to correspond to the non-scanning direction perpendicular to the scanning direction. これは走査方向では積分効果によって照度むらが平均化されるのに対して、非走査方向では平均化効果が生じないためにそのチルトによって補正することが望ましいからである。 This is because illuminance non-uniformity by the integrating effect in the scanning direction with respect to being averaged, it is desirable that the non-scanning direction is corrected by the tilt for no averaging effect.

【0016】また、上記の本発明において、その照明系がその露光ビームの照度分布を変形照明用の局所的な領域に設定するための光学素子(55)と、露光光源からの露光ビームをその光学素子に導くビーム成形光学系(5)と、その光学素子(55)からの露光ビームを導く集光光学系(7A,7B)と、この集光光学系からの露光ビームの照度分布を均一化するためのオプティカル・インテグレータ(9)(ユニフォマイザ、又はホモジナイザ)とを備える場合、その調整系は、その集光光学系、又はそのビーム成形光学系の状態を調整することが望ましい。 Further, in the above-mentioned present invention, the optical element (55) for the illumination system is set to the local area for modified illumination illuminance distribution of the exposure beam, the exposure beam from an exposure light source beam shaping optical system for guiding the optical element (5), the optical element condensing optical system that guides an exposure beam from (55) (7A, 7B) and the illuminance distribution of the exposure beam from the focusing optical system uniformly If and an optical integrator for reduction (9) (uniformizer or homogenizer), the adjustment system, the condensing optical system, or it is desirable to adjust the state of the beam forming optical system.

【0017】この際に、例えばその露光ビームの照度の大きさ、及びその露光ビームの照度分布のばらつきの大きさのバランスが取れるようにそのビーム成形光学系を調整することによって、露光ビームの損失を最小にした上で照度むらを小さくすることができる。 [0017] At this time, by adjusting, for example, the size of the intensity of the exposure beam, and the beam shaping optics as variations in size balance of the illuminance distribution can be taken of the exposure beam, the loss of exposure beam it is possible to reduce unevenness of illumination on with minimal. また、本発明の第3の露光装置は、露光ビームで第1物体(R)を照明する照明系(ILS)を備え、その露光ビームでその第1物体を介して第2物体(W)を露光する露光装置において、その照明系におけるその露光ビームのテレセントリック性の崩れ量を傾斜成分と倍率成分とに分けて計測するものである。 A third exposure apparatus of the present invention includes an illumination system for illuminating the first object (R) with an exposure beam (ILS), the second object (W) through the first object with the exposure beam in an exposure apparatus for exposing, and measures separately collapse of telecentricity of the exposure beam in the illumination system to the inclination component and the magnification component. このように傾斜成分と倍率成分とに分けることで、調整をほぼ互いに独立に容易に行うことができる。 By thus divided into a slope component and a magnification component, it can be easily performed substantially independently of each other adjustments.

【0018】上記の本発明の露光装置において、その第1物体が載置される第1可動体(31)と、その第2物体が載置される第2可動体(39)とを有し、その第1 [0018] In the exposure apparatus of the present invention has a first movable body that the first object is placed (31), and a second movable body that its second object is placed (39) , first the
及び第2可動体を同期駆動する駆動系(34,41)を更に備え、その第1物体を介してその露光ビームでその第2物体を走査露光するようにしてもよい。 And further comprising a drive system (34, 41) for synchronously driving the second movable member, the second object with the exposure beam through the first object may be scanned and exposed. この場合、 in this case,
その第2物体が配置される所定面上でその露光ビームを検出して、その露光ビームの照射領域内でその走査露光時にその第1及び第2物体が移動される走査方向と直交する非走査方向に関する照度むらの傾斜成分を計測することが望ましい。 Part a second object detects the exposure beam on the predetermined surface disposed, non-scanning a first and second object during the scanning exposure in the irradiation area of ​​the exposure beam is perpendicular to the scanning direction to be moved it is desirable to measure the tilt component of the illuminance unevenness with respect to the direction. 走査露光を行う場合には、走査方向の照度むらは平均化効果で低減されるため、非走査方向の照度むらを計測することで、計測装置を簡素化できる。 When performing scanning exposure, illuminance unevenness in the scanning direction is to be reduced by an averaging effect, by measuring the illuminance unevenness in the non-scanning direction, it can be simplified measuring device.

【0019】また、その第1可動体上でその第1物体以外に設けられるマーク(36A)に照射される露光ビームを検出して、その崩れ量を計測するようにしてもよい。 Further, by detecting the exposure beam irradiated on the mark (36A) provided in addition to the first object in that on the first movable body, it may be measured and the collapse amount. これによってその第1物体(マスク等)のパターンに依らずに、必要に応じて照明特性を計測することができる。 This irrespective of the pattern of the first object (mask, etc.), it is possible to measure the illumination characteristics as required. 次に、本発明の第1の露光装置の調整方法は、照明系(ILS)を通る露光ビームを第1物体(R)に照射し、その第1物体を介してその露光ビームで第2物体(W)を露光する露光装置の調整方法において、その第2物体が配置される所定面上でその露光ビームを検出して、その照明系のテレセントリシティと、その露光ビームの照射領域内での照度又は光量の分布との少なくとも一方を含む照明特性を計測すると共に、その計測された照明特性に基づいてその照明系内の光学部材(9,1 Next, the adjustment method of the first exposure apparatus of the present invention irradiates an exposure beam through an illumination system for (ILS) to the first object (R), the second object with the exposure beam through the first object in the adjustment method for an exposure apparatus which exposes a (W), and detecting the exposure beam on the predetermined surface of the second object are arranged, a telecentricity of the illumination system, in the irradiation area of ​​the exposure beam illumination or with measuring the illumination characteristics including at least one of the distribution of light intensity, the optical member in the illumination system based on the measured illumination characteristics of the (9,1
2,13)を駆動し、その照明特性を次に計測するまでは、その計測された照明特性を計算にて更新すると共に、その更新された照明特性に基づいてその光学部材を駆動するものである。 2,13) ​​drives, until then measuring the illumination characteristics, and updates the measured illumination characteristics in calculation, intended for driving the optical member based on the updated illumination characteristics is there.

【0020】斯かる本発明によれば、その照明特性の計測頻度を少なくして、その照明系の照明特性を短時間に高精度に調整できる。 [0020] According to such present invention, by reducing the measurement frequency of the illumination characteristics can be adjusted with high precision illumination characteristics of the illumination system in a short time. この場合、その第1物体が載置される第1可動体(31)と、その第2物体が載置される第2可動体(39)とを同期駆動して、その第1物体を介してその露光ビームでその第2物体を走査露光し、その第1可動体上でその第1物体以外に設けられるマーク(36A)を用いてその照明特性を計測するようにしてもよい。 In this case, the first movable member (31) to which the first object is placed, the second movable member in which the second object is placed (39) and with synchronously driven, via the first object the exposure beam and the second object by scanning exposure with Te, may be measured the illumination characteristic with a mark (36A) provided in addition to the first object in that the first movable member.

【0021】更に、その第2物体が配置される所定面上でその露光ビームを検出して、その露光ビームの照射領域内でその走査露光時にその第1及び第2物体が移動される走査方向と直交する非走査方向に関する照度むらの傾斜成分を計測するようにしてもよい。 Furthermore, by detecting the exposure beam on the predetermined surface of the second object is located, the scanning direction within the irradiation area of ​​the exposure beam during the scanning exposure its first and second objects are moved and the inclination component of the uneven illuminance regarding the non-scanning direction may be measured perpendicular. 走査露光方式の場合には、走査方向の照度むらは平均化効果で低減されるため、非走査方向の成分を計測することで、計測工程を簡素化して、必要な照明特性を効率的に計測できる。 In the case of scanning exposure system, since the illuminance unevenness in the scanning direction is reduced by the averaging effect, by measuring the non-scanning direction of the component, to simplify the measuring process, efficiently measure the required illumination characteristics it can.

【0022】次に、本発明の第2の露光装置の調整方法は、露光ビームで第1物体を照明する照明系(ILS) Next, the adjustment method of the second exposure apparatus of the present invention, an illumination system for illuminating a first object with an exposure beam (ILS)
を備え、その露光ビームでその第1物体を介して第2物体を露光する露光装置の調整方法において、その照明系中の所定の光学部材(9,12,13)の状態を複数の状態に設定して、それぞれその照明系の所定の照明特性の計測を行い、この計測結果に基づいて、その光学部材の駆動量とその照明特性の変化量との関係(比率等)を求めて記憶し、この記憶された関係に基づいて、その照明特性を制御するためにその光学部材を駆動するものである。 The provided, in the adjustment method for an exposure apparatus for exposing a second object through the first object with the exposure beam, a predetermined state of the optical member (9, 12, 13) in the illumination system into a plurality of states set, respectively performs a measurement of the predetermined illumination characteristic of the illumination system, on the basis of the measurement results, stores seeking relationships (ratios, etc.) of the driving amount of the optical member and the amount of change of the illumination properties , based on the stored relationship, and drives the optical member in order to control the illumination characteristics. 本発明によれば、予めその光学部材の駆動量とその照明特性の変化量との関係を求めておくことで、照明特性を効率的に調整できる。 According to the present invention, pre-driving amount of the optical member and that is obtained in advance the relationship between the variation of the illumination characteristics can be adjusted lighting characteristics efficiently.

【0023】また、本発明のデバイス製造方法は、本発明の露光装置を用いてデバイスパターン(R)をワークピース(W)上に転写する工程を含むものである。 Further, the device manufacturing method of the present invention, the exposure apparatus of the present invention is intended to include a step of transferring a device pattern (R) on the workpiece (W) with. 本発明によって集積度の高いデバイスを高精度に量産することができる。 It can be mass-produced highly integrated device with high precision by the present invention.

【0024】 [0024]

【発明の実施の形態】以下、本発明の実施の形態の一例につき図面を参照して説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, will be explained with reference to the drawings an embodiment of the present invention. 本例は、ステップ・アンド・スキャン方式又はステップ・アンド・スティッチ方式の走査露光型の投影露光装置に本発明を適用したものである。 This example is an application of the present invention to a scanning exposure type projection exposure apparatus by a step-and-scan manner or step-and-stitch method. 図1は、本例の投影露光装置の概略構成を示し、この図1において、露光光源1としてはArFエキシマレーザ光源(波長193nm)が使用されている。 Figure 1 shows a schematic arrangement of a projection exposure apparatus of this embodiment, in FIG. 1, ArF excimer laser light source (wavelength 193 nm) is used as the exposure light source 1.
但し、露光光源1としては、KrFエキシマレーザ(波長248nm)、F 2レーザ(波長157nm)、Kr However, as the exposure light source 1, KrF excimer laser (wavelength 248 nm), F 2 laser (wavelength 157 nm), Kr
2レーザ(波長146nm)、YAGレーザの高調波発生装置、半導体レーザの高調波発生装置、又は水銀ランプ等を使用することができる。 2 laser (wavelength 146 nm), harmonics generator of YAG laser, it is possible to use a semiconductor laser of the harmonic generator, or mercury lamp. 露光光源1からの波長1 Wavelength from the exposure light source 1 1
93nmの紫外パルス光よりなる露光光IL(露光ビーム)は、露光装置本体との間で光路を位置的にマッチングさせるためのビームマッチングユニット(BMU)2 Consisting of ultraviolet pulse light of 93nm exposure light IL (exposure beam), the beam matching unit for positionally matching the optical path between the exposure apparatus main body (BMU) 2
を通り、光アッテネータとしての可変減光器3に入射する。 The street, entering the variable Dimmer 3 as an optical attenuator. ウエハ上のフォトレジストに対する露光量を制御するための露光制御ユニット21が、露光光源1の発光の開始及び停止、並びに出力(発振周波数、パルスエネルギー)を制御すると共に、可変減光器3における減光率を段階的、又は連続的に調整する。 Exposure control unit 21 for controlling the exposure amount for the photoresist on the wafer, the start and stop of emission of the exposure light source 1, and the output (oscillation frequency, pulse energy) to control the, reduction in the variable Dimmer 3 graded optical index, or continuously adjusted.

【0025】可変減光器3を通った露光光ILは、所定の光軸に沿って配置される第1レンズ系4A及び第2レンズ系4Bよりなるビーム成形系5を経て第1段のオプティカル・インテグレータ(ユニフォマイザ、又はホモジナイザ)としての第1フライアイレンズ6に入射する。 [0025] Variable Dimmer 3 exposure light IL passing through a predetermined optical first stage through the beam shaping system 5 consisting of a first lens system 4A and the second lens system 4B is positioned along the optical axis integrator incident (uniformizer, or homogenizer) to the first fly-eye lens 6 as. この第1フライアイレンズ6から射出された露光光ILは、第1レンズ系7A、光路折り曲げ用のミラー8、及び第2レンズ系7Bを介して第2段のオプティカル・インテグレータとしての第2フライアイレンズ9に入射する。 The first fly-eye lens exposure light IL emitted from 6 includes a first lens system 7A, the second fly as an optical integrator of the second stage via a mirror 8 for bending the optical path, and a second lens system 7B It enters the eye lens 9. 第1レンズ系7A及び第2レンズ系7Bより集光光学系としてのリレー光学系(又はビーム成形系とも呼ぶことができる)が構成されている。 The first lens system 7A and the second lens system 7B from the relay optical system as light collection optical system (or may also be referred to as a beam shaping system) is constructed.

【0026】第2フライアイレンズ9の射出面、即ち露光対象のレチクルRのパターン面(レチクル面)に対する光学的なフーリエ変換面(照明系の瞳面)には開口絞り板10が、駆動モータ10eによって回転自在に配置されている。 The exit surface of the second fly-eye lens 9, namely on the pattern surface of the reticle R to be exposed optical Fourier transform plane with respect to (reticle surface) (the pupil plane of the illumination system) is an aperture stop plate 10, a drive motor It is arranged rotatably by 10e. 開口絞り板10には、図6(b)に正面図で示すように、通常照明用の円形の開口絞り10a、変形照明の一例としての輪帯照明用の開口絞り10b、変形照明の別の例としての変形光源(又はいわゆる傾斜照明)用の複数(本例では4個)の偏心した小開口よりなる開口絞り10c、及び小さいコヒーレンスファクタ(σ値)用の小円形の開口絞り10dが切り換え自在に配置されている。 The aperture stop plate 10, as shown in a front view in FIG. 6 (b), for normal illumination circular aperture stop 10a, an aperture stop 10b for annular illumination as an example of a modified illumination, another of the modified illumination (in this example four) multiple modified light source (or so-called oblique illumination) for the examples switching is eccentric small opening consists of the aperture stop 10c and small coherence factor (sigma value) small circular aperture 10d for, It is freely arranged. 開口絞り10cは、4極照明用の開口絞りとも言うことができる。 Aperture stop 10c may be referred to as a throttle opening for quadrupole illumination. 開口絞り板10及び駆動モータ10eより照明条件を複数の照明条件(通常照明、 Aperture stop plate 10 and the drive motor 10e from lighting conditions multiple illumination conditions (normal illumination,
変形照明、及び小σ値照明)の何れかに切り換える「照明条件切り換え系」が構成されており、装置全体の動作を統轄制御する主制御系22が駆動モータ10eを介して照明条件を設定する。 Modified illumination, and are "illumination condition switching system" is configured to switch to one of the small σ value illumination), the main control system 22 for supervising controlling the operation of the entire apparatus to set the illumination condition via the drive motor 10e .

【0027】図1において、第2フライアイレンズ9の射出面に通常照明用の開口絞り10aが設置されており、第2フライアイレンズ9から射出されて開口絞り1 [0027] In FIG. 1, are normally installed aperture stop 10a for illumination in the exit surface of the second fly-eye lens 9, it is emitted from the second fly-eye lens 9 aperture stop 1
0aを通過した露光光ILは、透過率が高く反射率が低いビームスプリッタ11に入射する。 The exposure light IL that has passed through the 0a, the transmittance is high reflectance is incident to the low beam splitter 11. ビームスプリッタ11で反射された露光光は、集光用のレンズ19を介して光電検出器よりなるインテグレータセンサ20に入射し、インテグレータセンサ20の検出信号S1は露光制御ユニット21に供給されている。 Exposure light reflected by the beam splitter 11 is incident on the integrator sensor 20 composed of a photoelectric detector through a lens 19 for condensing the detection signal S1 of the integrator sensor 20 is supplied to the exposure control unit 21. インテグレータセンサ20の検出信号と被露光基板としてのウエハW上での露光光ILの照度との関係は予め高精度に計測されて、 Relationship between the illuminance of the exposure light IL on the wafer W as a detection signal and the exposed substrate of the integrator sensor 20 is measured in advance high precision,
露光制御ユニット21内のメモリに記憶されている。 Stored in the memory of the exposure control unit 21. 露光制御ユニット21は、インテグレータセンサ20の検出信号より間接的にウエハWに対する露光光ILの照度(平均値)、及びその積分値をモニタできるように構成されている。 Exposure control unit 21, the illuminance (average value) of the exposure light IL for indirectly wafer W from the detection signal of the integrator sensor 20, and is configured to be monitored and the integral value.

【0028】ビームスプリッタ11を透過した露光光I The exposure light I transmitted through the beam splitter 11
Lは、光軸IAXに沿って第1レンズ系12(第1光学系)及び第2レンズ系13(第2光学系)を経て順次、 L sequentially through the first lens system 12 along the optical axis IAX (first optical system) and a second lens system 13 (second optical system),
固定ブラインド(固定照明視野絞り)14A及び可動ブラインド(可動照明視野絞り)14Bに入射する。 Fixed blind (fixed throttle illumination field) 14A and (diaphragm movable illumination field) movable blind incident on 14B. 後者の可動ブラインド14Bはレチクル面に対する共役面に設置され、前者の固定ブラインド14Aはその共役面から所定量だけデフォーカスした面に配置されている。 The latter movable blind 14B is disposed at a conjugate plane with respect to the reticle surface, the former fixed blind 14A is disposed on the surface defocused by a predetermined amount from the conjugate plane. 固定ブラインド14Aは、例えば特開平4−196513 Fixed blind 14A is, for example JP-A-4-196513
号公報に開示されているように、投影光学系PLの円形視野内で光軸AXをほぼ中心とし、走査露光時にレチクルR及びウエハWが移動される走査方向(Y方向)と直交する非走査方向(X方向)に直線スリット状、又は矩形状(以下、まとめて「スリット状」と言う)に伸びるように配置された開口部を有する。 No. As disclosed in Japanese approximately centered to, non-scanning perpendicular to the scanning direction of reticle R and the wafer W during scanning exposure is moved (Y-direction) of the optical axis AX within the circular field of the projection optical system PL direction (X direction) in a linear slit-like or rectangular shape (hereinafter, collectively referred to as "slit-shaped") having the opening provided so as to extend in. 即ち、固定ブラインド14Aは、本例では露光光ILが照射されるレチクルR上の照明領域35、及びウエハW上の露光領域35P That is, the fixed blind 14A is exposed region on the illumination region 35, and the wafer W on the reticle R in this example the exposure light IL is irradiated 35P
(投影光学系PLに関して照明領域35と共役で、照明領域35内のパターン像が形成される投影領域)を規定すると共に、少なくとも走査方向に関する幅が固定である関口部を有する。 (In the illumination area 35 is conjugate with respect to the projection optical system PL, the projection area in which the pattern image of the illuminated region 35 is formed) while defining, with a Sekiguchi unit width with respect to at least the scanning direction is fixed.

【0029】更に、可動ブラインド14Bは、ウエハW [0029] In addition, the movable blind 14B, the wafer W
上の各ショット領域への走査露光の開始時及び終了時に不要な露光を防止するために、固定ブラインド14Aによって規定される照明領域35、及び露光領域35Pの走査方向の幅を可変とするために使用される。 To prevent unnecessary exposure at the beginning and end of scanning exposure for the respective shot areas on the illumination region 35, and the width of the scanning direction of the exposure area 35P to the variable is defined by the fixed blind 14A used. 可動ブラインド14Bは、更に走査方向SDと直交した方向(非走査方向)に関してレチクルRのパターン領域のサイズに応じてその幅を可変とするためにも使用される。 Movable blind 14B is also used to a width variable in further accordance with the size of the pattern area in the scanning direction SD and the reticle with respect to orthogonal directions (non-scanning direction) R. 可動ブラインド14Bの開口率の情報は露光制御ユニット2 Information of the aperture ratio of the movable blind 14B is an exposure control unit 2
1にも供給され、インテグレータセンサ20の検出信号から求められる照度にその開口率を乗じた値が、ウエハW上の実際の照度となる。 Also supplied to 1, a value obtained by multiplying the opening ratio of the illuminance obtained from the detection signal of the integrator sensor 20, the actual illuminance on the wafer W. なお、固定ブラインド14A It should be noted that the fixed blind 14A
及び可動ブラインド14Bはその配置が図1に限定されるものではなく、例えば固定ブラインド14Aを、レチクルRと照明光学系との間でレチクルRに近接させて配置してもよい。 And the movable blind 14B is not limited in its arrangement is limited to 1, for example, a fixed blind 14A, may be arranged close to the reticle R between the reticle R and the illumination optical system.

【0030】露光時に固定ブラインド14Aを通過した露光光ILは、光路折り曲げ用のミラー15、結像用のレンズ系16、副コンデンサレンズ系17、及び主コンデンサレンズ系18を介して、マスクとしてのレチクルRのパターン面(下面)の照明領域(照明視野領域)3 The exposure light IL passing through the fixed blind 14A at the time of exposure, the mirror 15 for bending an optical path, a lens system 16 for image formation, the sub-condenser lens system 17, and via the main condenser lens system 18, as a mask the illumination area of ​​the pattern surface of the reticle R (the lower surface) (illumination field region) 3
5を照明する。 5 to illuminate the. 露光光ILのもとで、レチクルRの照明領域内の回路パターンの像が両側テレセントリックな投影光学系PLを介して所定の投影倍率β(βは例えば1 Under the exposure light IL, an image of the circuit pattern in the illumination area of ​​the reticle R via a double telecentric projection optical system PL a predetermined projection magnification beta (beta, for example 1
/4,1/5等)で、投影光学系PLの結像面に配置された基板(被露光基板)としてのウエハW上のフォトレジスト層のスリット状の露光領域35Pに転写される。 / 4,1 / 5, etc. In), is transferred to the slit-like exposure region 35P of the photoresist layer on the wafer W as a substrate disposed on the imaging plane of the projection optical system PL (substrate to be exposed).
レチクルR及びウエハWがそれぞれ本発明の第1物体及び第2物体に対応しており、ウエハ(wafer)Wは例えば半導体(シリコン等)又はSOI(silicon on insulato The reticle R and wafer W corresponds to the first object and the second object of the present invention, respectively, the wafer (Wafer) W is for example a semiconductor (silicon or the like) or SOI (silicon on insulato
r)等の円板状の基板である。 r) is a disk-shaped substrate such as. 本例の投影系としての投影光学系PLは、ジオプトリック系(屈折系)であるが、 Projection optical system PL as the projection system of the present example is a dioptric system (refracting system),
カタジオプトリック系(反射屈折系)や反射系も使用できることは言うまでもない。 Catadioptric system (catadioptric system) or reflection system also can of course be used. 以下、投影光学系PLの光軸AXに平行にZ軸を取り、Z軸に垂直な平面内で走査方向(ここでは図1の紙面に平行な方向)にY軸を取り、走査方向に直交する非走査方向(ここでは図1の紙面に垂直な方向)にX軸を取って説明する。 Hereinafter, parallel to take the Z-axis to the optical axis AX of the projection optical system PL, (here a direction parallel to the plane of FIG. 1) the scanning direction in a plane perpendicular to the Z axis represents the Y-axis, the perpendicular to the scanning direction non-scanning direction (here the direction perpendicular to the paper surface in FIG. 1) taking the X-axis will be described in the.

【0031】図1において、露光光源1、ビームマッチングユニット2、可変減光器3、ビーム成形系5、第1 [0031] In FIG 1, the exposure light source 1, a beam matching unit 2, variable Dimmer 3, the beam shaping system 5, first
フライアイレンズ6、第1レンズ系7A、第2レンズ系7B、第2フライアイレンズ9、第1レンズ系12、第2レンズ系13、固定ブラインド14A、可動ブラインド14B、結像レンズ系16、副コンデンサレンズ系1 Fly-eye lens 6, the first lens system 7A, the second lens system 7B, the second fly's eye lens 9, the first lens system 12, the second lens system 13, the fixed blind 14A, the movable blind 14B, imaging lens system 16, secondary condenser lens system 1
7、及び主コンデンサレンズ系18等より照明光学系I 7, and the illumination optical system I from the main condenser lens system 18, etc.
LSが構成され、照明光学系ILSが本発明の照明系に対応している。 LS is configured, the illumination optical system ILS corresponds to the illumination system of the present invention. そして、照明光学系ILSの光軸IAX Then, the optical axis IAX of the illumination optical system ILS
は、レチクルR上で投影光学系PLの光軸AXと合致している。 Is consistent with the optical axis AX of the projection optical system PL on the reticle R. 本例では、第2フライアイレンズ9、第1レンズ系12、及び第2レンズ系13にそれぞれ第1駆動ユニット23、第2駆動ユニット24、及び駆動ユニット群25が装着されている。 In this example, the second fly's eye lens 9, the first lens system 12, and a second lens system 13 to each of the first driving unit 23, the second driving unit 24, and the drive unit group 25 is mounted.

【0032】図2は、図1の第2フライアイレンズ9から第2レンズ系13までの光学系と、照明領域35との関係を示す斜視図であり、この図2において、照明領域35に対するレチクルの走査方向SD(Y方向)、及び非走査方向(X方向)に対応する第2フライアイレンズ9上での方向をそれぞれy方向及びx方向としている。 [0032] Figure 2 is a perspective view showing an optical system of the second fly-eye lens 9 of Figure 1 to the second lens system 13, the relationship between the illumination region 35, in FIG. 2, with respect to the illumination area 35 the reticle in the scanning direction SD (Y direction), and has a y-direction and x-direction respectively direction on the second fly-eye lens 9 that corresponds to the non-scanning direction (X direction).
そして、第1駆動ユニット23は第2フライアイレンズ9の光軸IAX方向(矢印A1の方向)の位置を調整し、第2駆動ユニット24は第1レンズ系12の光軸I Then, the first driving unit 23 to adjust the position of the optical axis IAX direction of the second fly's eye lens 9 (the direction of the arrow A1), the second driving unit 24 is the optical axis I of the first lens system 12
AXの方向(矢印A2の方向)の位置を調整する。 Adjusting the position of the direction (direction of the arrow A2) of AX. また、図1の駆動ユニット群25は、図2の第3の駆動ユニット25X、第4の駆動ユニット25Y、及び第5の駆動ユニット25Tより構成され、駆動ユニット25X The drive unit group 25 in FIG. 1, the third drive unit 25X of FIG. 2, is constituted by a fourth drive unit 25Y, and a fifth drive unit 25T, the drive unit 25X
及び25Yはそれぞれ第2レンズ系13の光軸IAXに垂直なx方向(矢印A3の方向)及びy方向(矢印A4 And 25Y are perpendicular x direction to the optical axis IAX of the second lens system 13, respectively (the direction of arrow A3) and the y direction (arrow A4
の方向)の位置を調整し、駆動ユニット25Tは、第2 Position the direction), the drive unit 25T includes a second
レンズ系13の光軸IAXを通りy軸に平行な軸の回り(矢印A5の方向)のチルト角を調整する。 The optical axis IAX of the lens system 13 as y-axis to adjust the tilt angle around (the direction of arrow A5) of parallel axes. 駆動ユニット25Tは、照明領域35の非走査方向に対応する方向で第2レンズ系13のチルト角(傾斜角)を調整するとも言うことができる。 Drive unit 25T may be also referred to as adjusting the tilt angle of the second lens system 13 in the direction corresponding to the non-scanning direction of the illumination area 35 (the inclination angle).

【0033】駆動ユニット23〜25Tとしては、例えば電気式のマイクロメータ、又はピエゾ素子等の駆動素子で駆動対象の光学部材のフランジ部を変位させる駆動装置を使用することができる。 [0033] The drive unit 23~25T, can be used, for example, an electric micrometer or the drive device for displacing the flange portion of the driven object of the optical member driving device such as a piezoelectric element. この場合、駆動ユニット23〜25Tにはそれぞれ駆動可能範囲(駆動ストローク)内での光学部材の変位量を示すエンコーダ(ロータリエンコーダ等)(不図示)が組み込まれており、これらのエンコーダの検出信号が図1の駆動系26に供給され、その検出信号、及び主制御系22からの駆動情報に基づいて駆動系26は駆動ユニット23〜25Tを介して第2フライアイレンズ9、第1レンズ系12、及び第2レンズ系13の状態を制御する。 In this case, each driving range to the driving unit 23~25T encoder indicating the displacement of the optical member in (driven stroke) in (a rotary encoder or the like) (not shown) is incorporated, the detection signals of the encoders There is supplied to the driving system 26 in FIG. 1, the second fly-eye lens 9 via the detection signal, and the drive system 26 based on the drive information from the main control system 22 the drive unit 23~25T, a first lens system 12, and controls the state of the second lens system 13. なお、駆動ユニット23〜25T用のエンコーダとして、例えば静電容量センサなどを用いてもよい。 As an encoder for the drive unit 23~25T, for example, it may be used, such as capacitive sensors.

【0034】また、本例では変形照明を行う場合に図6 Further, in the present embodiment that performs modified illumination 6
(a)に示すように、交換装置56を用いて第1フライアイレンズ6を回折光学素子(Diffractive Optical El (A), the diffractive optical element of the first fly-eye lens 6 by using a switching device 56 (Diffractive Optical El
ement:DOE)よりなる光量分布変換素子55で交換できるように構成されている。 ement: is configured to be replaced by light intensity distribution converting device 55 composed of a DOE). 光量分布変換素子55が、 Light intensity distribution converting device 55,
露光ビームを局所的な領域に設定するための光学素子に対応している。 It corresponds to the optical element for setting the exposure beam in localized regions.

【0035】図6(a)において、変形照明を行う場合には、一例として第2フライアイレンズ9の射出面に輪帯状の開口絞り10b(又は4極照明用の開口絞り10 [0035] In FIG. 6 (a), when performing a modified illumination, an aperture stop of the second exit surface to the annular aperture stop 10b of the fly eye lens 9 (or quadrupole illumination as an example 10
c)が設置され、光量分布変換素子55は、回折効果によって露光光ILを第2フライアイレンズ9の入射面のほぼ輪帯状の領域に集光する。 c) is installed, the light amount distribution converting element 55 focuses the exposure light IL in substantially annular region of the incident surface of the second fly-eye lens 9 by the diffraction effect. 光量分布変換素子55も照明光学系ILSに含まれている。 Light intensity distribution converting device 55 are also included in the illumination optical system ILS. これによって、露光光ILの利用効率が高められて、変形照明を行う場合にもウエハ上で高い照度が得られる。 Thus, the enhanced efficiency of use of the exposure light IL, a high intensity can be obtained on the wafer even when performing modified illumination. この際に、第2レンズ系7Bの光軸IAX方向の位置を調整するための駆動ユニット58、第1レンズ系7Aの光軸に垂直な2次元方向の位置を調整するための駆動ユニット62、及びビーム成形系5の第2レンズ系4Bの光軸IAX方向の位置uを調整するための駆動ユニット57が使用される。 At this time, the drive unit 58 for adjusting the optical axis IAX position of the second lens system 7B, the driving unit 62 for adjusting the position of the vertical two-dimensional direction to the optical axis of the first lens system 7A, and the drive unit 57 for adjusting the position u of the optical axis IAX direction of the second lens system 4B of the beam shaping system 5 is used.
電気式のマイクロメータ等から構成される駆動ユニット57,58,62にもそれぞれエンコーダが備えられ、 Encoder respectively provided in electric micrometer or the like from the configured drive unit 57,58,62,
これらのエンコーダの検出信号、及び図1の主制御系2 Detection signals of these encoders, and the main control system of FIG. 1 2
2の駆動情報に基づいて、駆動系26が駆動ユニット5 Based on the second drive information, the drive system 26 is driven unit 5
7,58,62を介して第2レンズ系57、第2レンズ系7B、及び第1レンズ系7Aの状態を制御できるように構成されている。 The second lens system 57 through 7,58,62, and is configured to be able to control the state of the second lens system 7B, and the first lens system 7A.

【0036】なお、第2フライアイレンズ9の入射面上での照射領域(強度分布)が異なる露光光ILを発生する複数の光量分布変換素子(回折光学素子)を交換装置56に設け、照明条件(即ち、照明光学系の瞳面上での露光光ILの強度分布、本例では照明光路内に配置される複数の開口絞り10a〜10dの1つ)に応じて、最も露光光ILの利用効率が高くなる光量分布変換素子を選択して照明光路内に配置するようにしてもよい。 It should be noted, provided to a plurality of light intensity distribution converting element (diffractive optical element) the exchange device 56 irradiated region on the incident surface of the second fly-eye lens 9 (intensity distribution) generates a different exposure light IL, the illumination condition (i.e., the intensity distribution of the exposure light IL on the pupil plane of the illumination optical system, in this example one of the plurality of aperture stop 10a~10d disposed in the illumination optical path) in accordance with, the most exposure light IL it may be arranged in the illumination beam path to select the light amount distribution converting device utilization efficiency is increased. このとき、第1フライアイレンズ6を交換装置56に設けなくてもよい。 In this case, it is not provided with the first fly-eye lens 6 to the switching device 56.

【0037】図1に戻り、レチクルRは、レチクルステージ31上に吸着保持され、レチクルステージ31は、 [0037] Returning to Figure 1, the reticle R is held by suction on a reticle stage 31, reticle stage 31,
レチクルベース32上にY方向に等速移動できると共に、X方向、Y方向、回転方向に微動できるように載置されている。 It is possible even movement in the Y direction on the reticle base 32, X-direction, Y-direction, are mounted so as to be finely moved in the direction of rotation. レチクルステージ31(レチクルR)の2 The reticle stage 31 2 (reticle R)
次元的な位置、及び回転角は駆動制御ユニット34内のレーザ干渉計によってリアルタイムに計測されている。 Dimensional position and the angle of rotation are measured in real time by the laser interferometer of the drive control unit 34.
この計測結果、及び主制御系22からの制御情報に基づいて、駆動制御ユニット34内の駆動モータ(リニアモータやボイスコイルモータ等)は、レチクルステージ3 The measurement results, and based on the control information from main control system 22, the drive motor of the drive control unit 34 (a linear motor or a voice coil motor, etc.) is a reticle stage 3
1の走査速度、及び位置の制御を行う。 1 scanning speed, and the control of the position performed. また、レチクルステージ31のレチクルRの近傍にガラス基板よりなる評価マーク板33が固定されている。 The evaluation mark plate 33 made of a glass substrate is fixed in the vicinity of the reticle R of the reticle stage 31.

【0038】図3(a)は図1のレチクルステージ31 [0038] FIG. 3 (a) of Figure 1 reticle stage 31
を示す平面図であり、この図3(a)において、レチクルステージ31のレチクルRに対して走査方向SD(Y Is a plan view showing the, in this FIG. 3 (a), the scanning direction SD to the reticle R of the reticle stage 31 (Y
方向)に隣接する領域の開口上に評価マーク板33が固定され、評価マーク板33のほぼ照明領域35と同じ大きさの領域内に、ほぼ均一な分布で一例として13個の2次元の同一の評価用マーク36A,36B,…36M Fixed evaluation mark plate 33 on the opening of the adjacent regions in the direction), substantially in the illumination area 35 the same size of the area and, 13 two-dimensional identity as an example with a substantially uniform distribution of the evaluation mark plate 33 evaluation mark 36A of, 36B, ... 36M
が形成されている。 There has been formed. 評価用マーク36Aは、X方向に所定ピッチで配列されたライン・アンド・スペースパターンよりなるX軸のマーク37Xと、Y方向に所定ピッチで配列されたライン・アンド・スペースパターンよりなるY軸のマーク37Yとを組み合わせた2次元マークであるが、この他にボックス・イン・ボックスマーク等も使用することができる。 Evaluation mark 36A is a mark 37X of the X-axis consisting of the line-and-space pattern arranged at a predetermined pitch in the X direction, the Y axis composed of line-and-space pattern arranged at a predetermined pitch in the Y-direction is a 2-dimensional mark of a combination of a mark 37Y, can also be used box-in-box marks etc. in addition. 本例では、後述のように露光光ILのテレセントリック性の崩れ量、即ち照明光学系のテレセントリシティを計測する際に、レチクルステージ31をY方向に駆動して、評価マーク板33の中心(評価用マーク36Gの中心)を照明領域35の中心(光軸AX)に合わせて、評価用マーク36A,36B,…3 In this example, telecentricity collapse of the exposure light IL as described later, i.e. when measuring the telecentricity of the illumination optical system, a reticle stage 31 is driven in the Y direction, the center of the evaluation mark plate 33 ( center) of the evaluation marks 36G in accordance with the center of the illumination area 35 (optical axis AX), evaluation marks 36A, 36B, ... 3
6Mの像を投影光学系PLを介してウエハ側に投影する。 An image of 6M via the projection optical system PL for projecting the wafer side. 評価用マーク36Aの像36APが図3(b)の拡大図に示されている。 Image 36AP evaluation mark 36A is shown in the enlarged view of FIG. 3 (b).

【0039】図1に戻り、ウエハWは、ウエハホルダ3 [0039] Referring back to FIG. 1, the wafer W, the wafer holder 3
8を介してウエハステージ39上に吸着保持され、ウエハステージ39は、ウエハベース40上で投影光学系P 8 is attracted and held on the wafer stage 39 via the wafer stage 39, a projection optical system P on the wafer base 40
Lの像面と平行なXY平面に沿って2次元移動する。 Two-dimensionally moved to along the L image plane parallel to the XY plane of. 即ち、ウエハステージ39は、ウエハベース40上でY方向に一定速度で移動すると共に、X方向、Y方向にステップ移動する。 That is, the wafer stage 39, on the wafer base 40 while moving in the Y direction at a constant velocity, X direction and step movement in the Y direction. 更に、ウエハステージ39には、ウエハWのZ方向の位置(フォーカス位置)、及びX軸及びY Further, the wafer stage 39, Z-direction position of the wafer W (focus position), and X-axis and Y
軸の回りの傾斜角を制御するZレベリング機構も組み込まれており、ウエハWの表面の複数の計測点でフォーカス位置を計測するための多点のオートフォーカスセンサ(不図示)も設けられている。 Z-leveling mechanism for controlling the inclination angle about the axis and also built-in, automatic focus sensor (not shown) of the multi-point for measuring the focus position at a plurality of measurement points on the surface of the wafer W is also provided . 露光時には、そのオートフォーカスセンサの計測値に基づいてオートフォーカス方式でZレベリング機構を駆動することで、ウエハWの表面が投影光学系PLの像面に合焦される。 During exposure, by driving the Z leveling mechanism in autofocusing based on the measurement values ​​of the autofocus sensor, the surface of the wafer W is focused on the image plane of the projection optical system PL. また、照明特性の計測時には、一例としてそのオートフォーカスセンサの計測値に基づいて、ウエハステージ39内のZレベリング機構を駆動することによって、ウエハステージ39の上面のフォーカス位置を任意の量だけ制御することができる。 Further, at the time of measurement of the illumination characteristic, based on the measurement values ​​of the auto focus sensor as an example, by driving the Z leveling mechanism in the wafer stage 39 controls the focus position of the upper surface of the wafer stage 39 by an arbitrary amount be able to.

【0040】ウエハステージ39のX方向、Y方向の位置、及びX軸、Y軸、Z軸の回りの回転角は駆動制御ユニット41内のレーザ干渉計によってリアルタイムに計測されている。 [0040] X direction of the wafer stage 39, Y-direction position, and the X-axis, Y-axis, the rotation angle about the Z-axis is measured in real time by the laser interferometer of the drive control unit 41. この計測結果及び主制御系22からの制御情報に基づいて、駆動制御ユニット41内の駆動モータ(リニアモータ等)は、ウエハステージ39の走査速度、及び位置の制御を行う。 Based on the control information from the measurement result and the main control system 22, the drive motor of the drive control unit 41 (linear motor) controls the scanning speed, and the position of the wafer stage 39.

【0041】主制御系22は、レチクルステージ31、 The main control system 22, a reticle stage 31,
及びウエハステージ39のそれぞれの移動位置、移動速度、移動加速度、位置オフセット等の各種情報を駆動制御ユニット34及び41に送る。 And each moving position of the wafer stage 39, the moving speed, moving acceleration, and sends various kinds of information such as position offset to the drive control unit 34 and 41. そして、走査露光時には、レチクルステージ31を介して露光光ILの照明領域35に対してレチクルRが+Y方向(又は−Y方向) At the time of scanning exposure, the reticle R is + Y direction with respect to the illumination area 35 of the exposure light IL through the reticle stage 31 (or the -Y direction)
に速度Vrで走査されるのに同期して、ウエハステージ39を介してレチクルRのパターン像の露光領域35P Synchronization to be scanned at a speed Vr in the exposed areas of the pattern image of the reticle R via the wafer stage 39 35P
に対してウエハWが−Y方向(又は+Y方向)に速度β Speed ​​wafer W is -Y direction (or the + Y direction) with respect to β
・Vr(βはレチクルRからウエハWへの投影倍率)で走査される。 · Vr (beta projection magnification from the reticle R to the wafer W) is scanned. この際の走査露光の開始時及び終了時に不要な部分への露光を防止するために、駆動制御ユニット34によって可動ブラインド14Bの開閉動作が制御される。 To prevent exposure to unnecessary portions at the beginning and end of the scanning exposure during this opening and closing operation of the movable blind 14B is controlled by a drive control unit 34.

【0042】更に主制御系22は、ウエハW上の各ショット領域のフォトレジストを適正露光量で走査露光するための各種露光条件を露光データファイルより読み出して、露光制御ユニット21とも連携して最適な露光シーケンスを実行する。 [0042] Furthermore the main control system 22, various exposure conditions for scan exposure of the photoresist of each shot area on the wafer W with proper exposure amount is read out from the exposure data file, in cooperation both exposure control unit 21 optimally to run Do not exposure sequence. 即ち、ウエハW上の1つのショット領域への走査露光開始の指令が主制御系22から露光制御ユニット21に発せられると、露光制御ユニット21 That is, when the command of the scanning exposure start for one shot area on the wafer W is issued from the main control system 22 to the exposure control unit 21, an exposure control unit 21
は露光光源1の発光を開始すると共に、インテグレータセンサ20を介してウエハWに対する露光光ILの照度(単位時間当たりのパルスエネルギーの和)の積分値を算出する。 The starts the emission of the exposure light source 1, and calculates the integral value of the illuminance of the exposure light IL (sum of pulse energy per unit time) with respect to the wafer W via the integrator sensor 20. その積分値は走査露光開始時に0にリセットされている。 The integrated value is reset to 0 when the scanning exposure start. そして、露光制御ユニット21では、その照度の積分値を逐次算出し、この結果に応じて、走査露光後のウエハW上のフォトレジストの各点で適正露光量が得られるように、露光光源1の出力(発振周波数、及びパルスエネルギー)及び可変減光器3の減光率を制御する。 Then, the exposure control unit 21, and sequentially calculates the integral value of the illuminance, depending on the result, as proper exposure amount at each point of the photoresist on the wafer W after the scanning exposure is obtained, the exposure light source 1 controlling the output (oscillation frequency and pulse energy) and extinction ratio of the variable dimmer 3. そして、当該ショット領域への走査露光の終了時に、露光光源1の発光が停止される。 Then, at the end of the scanning exposure for the corresponding shot area, emission of the exposure light source 1 is stopped.

【0043】さて、本例のウエハステージ39上のウエハホルダ38の近傍には、光電検出器よりなりピンホール状の受光部42a(図4(a)参照)を有する照度むらセンサ42が設置され、照度むらセンサ42の検出信号S2も露光制御ユニット21に供給されている。 [0043] Now, in the vicinity of the wafer holder 38 on the wafer stage 39 of this embodiment, the uneven illuminance sensor 42 having become a photoelectric detector pinhole-shaped light-receiving section 42a (see FIG. 4 (a)) is installed, detection signal S2 of the uneven illuminance sensor 42 is also supplied to the exposure control unit 21. なお、照度むらセンサ42はピンホール状の受光部42a Incidentally, the uneven illuminance sensor 42 is pinhole-shaped light-receiving section 42a
の代わりに、或いはそれと組み合わせて、例えば露光領域35Pに対するウエハWの走査方向(Y方向)に沿って延びる、ラインセンサ或いはCCDなどからなる受光部を用いてもよい。 Instead of, or in combination with, for example, extends along the scanning direction of the wafer W with respect to the exposure area 35P (Y direction), may be used a light-receiving portion composed of a line sensor or a CCD. この場合、露光領域35P内で走査方向と直交する非走査方向(X方向)の各位置で、走査方向に関して照度を積算し、この積算値に基づいて非走査方向に関する照度分布を求めてもよく、これによって、走査露光による走査方向の照度むらの平均化効果を加味した非走査方向の照度分布(照度むら)、即ち走査露光後のウエハ上での非走査方向に関する露光量分布(露光量むら)を得ることができる。 In this case, at each position in the non-scanning direction perpendicular to the scanning direction in the exposure region 35P (X direction), and integrating the illuminance in the scanning direction, it may be calculated illuminance distribution for the non-scanning direction based on the integrated value whereby the illuminance distribution (uneven illuminance) of the non-scanning direction in consideration of the averaging effect of the illuminance unevenness in the scanning direction by the scanning exposure, i.e., exposure distribution for the non-scanning direction on the wafer after the scanning exposure (exposure amount irregularity ) can be obtained. 従って、この計測結果を用いて後述する照明特性の最適化(照度むらの補正)を行うようにしてもよい。 Thus, it may be performed to optimize the illumination characteristic, which is described below with reference to the measurement result (the correction of the uneven illuminance). なお、照度計測時にウエハステージ39を2次元移動することにより、ピンホール状の受光部42aを用いても同様の照度分布を求めることが可能である。 Incidentally, by moving the wafer stage 39 two-dimensionally at the time of illuminance measurement, using a pinhole-shaped light-receiving section 42a can be determined the same illuminance distribution even.

【0044】また、不図示であるが、露光領域35Pの全体を覆う受光部を有する照射量モニタも設置され、この照射量モニタの検出信号とインテグレータセンサ20 [0044] Although not shown, the exposure area irradiation monitor having a light receiving portion to cover the entire 35P also be installed, the detection signal and the integrator sensor 20 in this irradiation monitor
の検出信号とに基づいて、インテグレータセンサ20の検出信号からウエハW上の照度を間接的に求めるための係数が算出される。 Based detection signal and the coefficient for calculating the illuminance on the wafer W from the detection signal of the integrator sensor 20 indirectly is calculated. 更に、ウエハステージ39上のウエハホルダ38の近傍には、ガラス基板よりなる走査板4 Further, in the vicinity of the wafer holder 38 on the wafer stage 39, the scanning plate 4 made of a glass substrate
3が設置され、走査板43上の遮光膜中にほぼ正方形の開口パターン43aが形成されている。 3 is installed, generally square aperture pattern 43a in the light shielding film on the scanning plate 43 is formed. そして、ウエハステージ39中の走査板43の底面側に集光レンズ4 Then, it focused on the bottom side of the scanning plate 43 in the wafer stage 39 lens 4
4、及び光電検出器45が配置され、走査板43、集光レンズ44、及び光電検出器45より空間像計測系46 4, and the photoelectric detector 45 is arranged, scanning plate 43, condenser lens 44, and the spatial image-measuring system from the photoelectric detector 45 46
が構成され、光電検出器45の検出信号S3は露光制御ユニット21内の演算部に供給されている。 There is configured, the detection signal S3 of the photoelectric detector 45 is supplied to the arithmetic unit of the exposure control unit 21.

【0045】なお、空間像計測系46はその一部(例えば、本例では走査板43と、集光レンズ44などを含む送光系の少なくとも一部とを含む)のみをウエハステージ39に設け、残りの構成要素(光電検出器45など) [0045] Incidentally, some of the spatial image-measuring system 46 (e.g., a scanning plate 43 in this example, and at least a portion of the light transmitting system including the condenser lens 44) is provided only on the wafer stage 39 , the remaining components (such as a photoelectric detector 45)
をウエハステージ39の外部に配置してもよい。 The may be arranged outside of the wafer stage 39. また、 Also,
空間像計測系46は走査板43に1つの開ロパターン4 The spatial image-measuring system 46 in the scanning plate 43 1 TsunoHiraki B pattern 4
3aのみが形成され、後述する照明特性の計測時には、 3a only is formed, at the time of measurement of the illumination characteristics to be described later,
ウエハステージ39を2次元的にステッピングさせると共に、照明領域35内に配置される複数(本例では13 It causes the wafer stage 39 two-dimensionally stepping, multiple (in this example, which is arranged in the illumination region 35 13
個)の評価用マークの像の各々に対して、開口パターン43aを走査方向及び非走査方向(Y方向及びX方向) For each of the image of the evaluation mark of pieces), an opening pattern 43a scanning direction and the non-scanning direction (Y-direction and X-direction)
にそれぞれ相対移動するが、例えばその複数の評価用マークと同数の開口パターン43aを走査板43に形成し、走査方向に関する評価用マークの像と開口パターンとの相対移動時と、非走査方向に関する評価用マークの像と開口パターンとの相対移動時にそれぞれその複数の評価用マークの像を一括検出してもよい。 Each is moved relative, for example, the plurality of evaluation marks as many opening pattern 43a is formed in the scanning plate 43, and during the relative movement between the image and the aperture pattern of the evaluation mark in the scanning direction relates to the non-scanning direction respectively during the relative movement between the image and the aperture pattern of the evaluation marks may be collectively detect an image of the plurality of evaluation marks.

【0046】更に、その複数の評価用マークのうち、例えば非走査方向に離れる複数(本例では5個)の評価用マークと同数の開口パターン43aを非走査方向に沿って走査板43に形成し、ウエハステージ39を走査方向に移動して、各開口パターン毎に、走査方向に配列される各評価用マークの像を連続して検出してもよいし、これとは逆に、走査方向に関して評価用マークと同数の開ロパターン43aを走査板43に形成し、ウエハステージ39を非走査方向に移動して、各開口パターン毎に評価用マークの像を連続して検出してもよい。 [0046] Furthermore, among the plurality of evaluation marks, for example, formed in the scanning plate 43 for evaluation mark as many opening pattern 43a along the non-scanning direction a plurality of (five in this example) away in the non-scanning direction and, by moving the wafer stage 39 in the scanning direction, for each opening pattern may be detected continuously images of the evaluation marks arranged in the scanning direction, on the contrary, the scanning direction the evaluation marks as many open b patterns 43a formed on the scanning plate 43 with respect to, and moves the wafer stage 39 in the non-scanning direction may be detected continuously image evaluation mark for each opening pattern . このとき、 At this time,
その複数の評価用マークの検出中に照明領域35の一部のみに露光光ILが照射されるように、ウエハステージ39の移動に応じて可動ブラインド14Bを駆動することが好ましい。 As only some exposure light IL is irradiated to the illumination area 35 on the detection in the plurality of evaluation mark, it is preferable to drive the movable blind 14B according to the movement of the wafer stage 39. なお、前者の方法では非走査方向に関して評価用マークの像と開口パターンとを相対移動するときに、ウエハステージ39を走査方向にステッピングさせる必要があり、後者の方法では走査方向に関して評価用マークの像と開口パターンとを相対移動するときに、 Note that when the former method of relatively moving the image and the aperture pattern of the evaluation mark with respect to the non-scanning direction, it is necessary to stepping the wafer stage 39 in the scanning direction, in the latter method of evaluation marks in the scanning direction when relatively moving the image and the opening pattern,
ウエハステージ39を非走査方向にステッピングさせる必要があるため、両者を組み合わせて、ウエハステージ39を走査方向と非走査方向とに1回ずつ移動させるだけでもよい。 Since it is necessary to stepping the wafer stage 39 in the non-scanning direction, a combination of both, may only be moved once the wafer stage 39 in the scanning direction and the non-scanning direction.

【0047】例えば図3(a),(b)に示すように、 [0047] For example FIG. 3 (a), (b), the
評価用マーク36Aの像36APのY方向の位置を計測する場合には、像36APの手前に走査板43の開口パターン43aを移動した後、ウエハステージ39を駆動して開口パターン43aで像36APを走査する。 When measuring the Y direction position of the image 36AP evaluation mark 36A, after moving the opening pattern 43a of the scanning plate 43 in front of the image 36AP, the image 36AP in the opening pattern 43a of the wafer stage 39 is driven scanning. この際に、露光制御ユニット21には主制御系22を介してウエハステージ39の位置情報も供給されており、露光制御ユニット21内の演算部では、光電検出器45の検出信号をウエハステージ39のX方向の位置に関して微分して得られた信号より、像36APのY方向の位置を算出する。 At this time, the position information of the wafer stage 39 in the exposure control unit 21 via the main control system 22 also supplied, in the calculation of the exposure control unit 21, a detection signal of the photoelectric detector 45 wafer stage 39 from the signal obtained by differentiating with respect to position in the X direction, and calculates the Y position of the image 36AP. 同様に像36APを開口パターン43aでX Similarly X image 36AP in the opening pattern 43a
方向に走査することによって、像36APのX方向の位置も算出され、像36APのX方向、Y方向の位置情報は主制御系22に供給される。 By scanning direction, X-direction position of the image 36AP also calculated, X direction of the image 36AP, positional information in the Y direction is supplied to the main control system 22.

【0048】図1に戻り、レチクルステージ31上の評価マーク板33、ウエハステージ39側の照度むらセンサ42、及び空間像計測系46が、本発明の所定の照明特性(光学特性)を計測する特性計測系に対応している。 [0048] Returning to Figure 1, the evaluation mark plate 33 on the reticle stage 31, the uneven illuminance sensor 42 of the wafer stage 39 side and the spatial image-measuring system 46, is to measure the predetermined illumination characteristic of the present invention (optical properties) It corresponds to the characteristic measurement system. 次に、本例の照明光学系の所定の照明特性を最適化するための調整動作の一例につき説明する。 It will now be described an example of an adjustment operation for optimizing the predetermined illumination characteristics of the illumination optical system of the present embodiment. 本例では、 In the present example,
その所定の照明特性の第1の組として、照明領域35、 As the first set of the predetermined illumination characteristic, the illumination region 35,
ひいては露光領域35Pでの露光光ILの照度分布のばらつき(以下、「照度むら」と呼ぶ)、及びレチクルR Hence variations in the illuminance distribution of the exposure light IL in the exposure region 35P (hereinafter, referred to as "uneven illuminance"), and the reticle R
に対する露光光ILのテレセントリック性の崩れ量(以下、「照明テレセン」と呼ぶ)を選択する。 Collapse of telecentricity of the exposure light IL for (hereinafter, referred to as "illumination telecentricity") is selected. これは、この2つの照明特性が投影光学系PLによる投影像、及びウエハW上のフォトレジストに対して最も大きな影響を与えるためである。 This is the two illumination characteristics is to provide the greatest effect on the photoresist on the projected image, and the wafer W by the projection optical system PL.

【0049】そして、その照度むらを露光領域35Pの非走査方向(X方向)の位置に関する1次成分(これを「傾斜成分」と呼ぶ)と、その位置に関する2次成分(これを「凹凸成分」と呼ぶ)とに分ける。 [0049] Then, "uneven components with the primary component related to the position (this is referred to as" tilt component "), a secondary component about the position (this the non-scanning direction of the uneven illuminance exposure region 35P (X direction) "and referred to) and to divide. 即ち、照度を位置Xの関数PF(X)とすると、照度PF(X)は以下のように近似でき、係数aが傾斜成分、係数bが凹凸成分となる。 That is, when a function PF (X) of the illumination position X, illuminance PF (X) can be approximated as follows, the coefficient a is inclined component coefficient b becomes uneven components. この際に、走査方向(Y方向)の照度むら成分は、走査露光によって平均化されるため、本例では特に評価対象とはしていない。 In this case, illuminance unevenness component in the scanning direction (Y direction), because it is averaged by the scanning exposure, not to be particularly evaluated in this example. その凹凸成分は光軸に関して対称な成分(軸対称成分)でもある。 The unevenness component is also symmetrical component (axisymmetric component) with respect to the optical axis.

【0050】 PF(X)=a・X+b・X 2 +オフセット …(1) また、その照明テレセンを照明領域35(露光領域35 [0050] PF (X) = a · X + b · X 2 + Offset ... (1) In addition, the illumination telecentricity illumination area 35 (exposure area 35
P)内での露光光の平均的なX方向、及びY方向への傾斜角に対応する傾斜成分(シフト成分)c,dと、露光光の光軸に対して半径方向に対する平均的な傾斜角に対応する倍率成分eとに分ける。 Average X direction of the exposure light in the P), and the inclination component (shift component) c corresponding to the inclination angle in the Y direction, and d, the average inclination with respect to the radial direction with respect to the optical axis of the exposure light divided into a magnification component e corresponding to the corner. この場合、本例ではウエハステージ39のフォーカス位置を合焦位置に対して± In this case, in this example ± the focus position of the wafer stage 39 relative to the focus position
δだけデフォーカスさせた位置に設定して、各フォーカス位置で多数の評価用マークの像の位置(ディストーション量)を空間像計測系46で計測し、フォーカス位置の変化量に対する評価用マークの像の平均的なシフト量から傾斜成分c,dを求め、それらの評価用マークの像の半径方向に対する平均的なシフト量から倍率成分eを求めることができる。 Is set to a position obtained by defocused [delta], the position of the multiple images of the evaluation marks at each focus position (distortion amount) measured by the spatial image-measuring system 46, the image of the evaluation mark with respect to the amount of change in focus position tilt component c from the average amount of shift to obtain the d, it can be determined magnification component e from the average shift amount with respect to the radial direction of their image evaluation mark.

【0051】また、本例では図2を参照して説明したように、5個の駆動ユニット23,24,25X,25 [0051] Further, as described with reference to FIG. 2 in this example, five drive units 23,24,25X, 25
Y,25Tを介してそれぞれ第2フライアイレンズ9、 Y, the second fly-eye lens, respectively through 25T 9,
第1レンズ系12、及び第2レンズ系13の状態を制御できるが、これらの制御によって以下のように上記の各照明特性をほぼ独立に制御することができる。 The first lens system 12, and can control the state of the second lens system 13, can be independently controlled each of the above illumination characteristics as follows These control. (a2)第1駆動ユニット23による第2フライアイレンズ9の光軸方向の位置調整:照明テレセンの倍率成分e[mrad]、 (b2)第2駆動ユニット24による第1レンズ系12 (A2) the optical axis direction position adjustment of the second fly-eye lens 9 by the first drive unit 23: magnification component e of the illumination telecentricity [mrad], (b2) a first lens system according to the second driving unit 24 12
の光軸方向の位置調整:照度むらの凹凸成分b[%]、 (c2)第3駆動ユニット25Xによる第2レンズ系1 Position adjustment of the optical axis: uneven component b [%] of the uneven illuminance, (c2) a third by the drive unit 25X second lens system 1
3のx方向の位置調整:照明テレセンのX方向の傾斜成分c[mrad]、 (c3)第4駆動ユニット25Yによる第2レンズ系1 3 in the x direction alignment: slope component c in the X direction of the illumination telecentricity [mrad], (c3) a second lens system according to the fourth drive unit 25Y 1
3のy方向の位置調整:照明テレセンのY方向の傾斜成分d[mrad]、 (d2)第5駆動ユニット25Tによる第2レンズ系1 3 in the y direction alignment: slope component d in the Y direction of the illumination telecentricity [mrad], (d2) a second lens system according to the fifth driving unit 25T 1
3のチルト角調整:照度むらの非走査方向の傾斜成分a 3 the tilt angle adjustment: tilt component in the non-scanning direction of the uneven illuminance a
[%]。 [%].

【0052】このように本例では、複数の駆動ユニット23〜25Tの内の任意の一つの駆動ユニットによって対応する光学部材の状態を制御したときに、実質的にただ1種類の照明特性(光学特性)のみが変化して、他の照明特性は変化しないように状態を制御できる光学部材の組み合わせが最適化されている。 [0052] In the present example this manner, when controlling the state of the corresponding optical member by any one of the drive units of the plurality of drive units 23~25T, substantially only one type of illumination characteristics (optical characteristics) only is changed, the other illumination characteristics of the combination of the optical member that can control the state so as not to change is optimized. これによって、照明特性の自動的な調整を簡単な制御で、かつ高精度に実行することができる。 Thereby, it is possible to perform automatic adjustment of the illumination characteristic by a simple control, and with high precision. また、駆動ユニットの個数を5個とすることで、基本的な全部の照明特性を自動的に制御することができる。 Further, the number of the drive units by a five, it is possible to automatically control the illumination characteristics of the basic all. 但し、制御対象の照明特性を例えば照明テレセンのみとするような場合には、駆動ユニットの個数を3個とするなど、制御対象の照明特性に応じて駆動ユニットの個数及び配置は変化する。 However, when the illumination characteristics of the controlled object such as, for example, the illumination telecentricity only, such as the three the number of drive units, the number and arrangement of the drive unit in accordance with the illumination characteristics of the controlled object changes.

【0053】なお、実際には5個の駆動ユニット間で僅かに他の照明特性に対して影響を与える恐れもあるため、他の照明特性に対する影響も考慮することが望ましい。 [0053] Actually, since there is a possibility that an influence on the slightly other illumination characteristics among the five drive units, it is desirable to consider the influence on other illumination characteristics. このため、先ず図8のフローチャートに示すように、5個の駆動ユニット23,24,25X,25Y, Therefore, first, as shown in the flowchart of FIG. 8, the five drive units 23,24,25X, 25Y,
25Tを単位量駆動したときに対応する照明特性をどれだけ変化させることができるかを示す駆動レートを求める。 Obtaining a driving rate indicating whether it is possible to how much change the lighting characteristic corresponding to when the unit amount of driving the 25T.

【0054】即ち、図8のステップ101において、図1の開口絞り板10を制御して照明条件を通常照明、変形照明(輪帯照明、若しくは4極照明)、又は小σ値照明の何れかに設定する。 [0054] That is, in step 101 of FIG. 8, normal illumination lighting conditions by controlling the aperture stop plate 10 in FIG. 1, modified illumination (annular illumination or quadrupole illumination), or any small σ value illumination It is set to. 次のステップ102において、 In the next step 102,
5個の駆動ユニット23〜25T中のi番目(i=1〜 i-th in the five drive units 23~25T (i = 1~
5)の駆動ユニットを選択する。 5) selecting a drive unit. ここでは第1レンズ系12に対応する2番目の駆動ユニット24を選択したものとする。 Here, it is assumed that selects the second drive unit 24 corresponding to the first lens system 12. 次のステップ103において、その駆動ユニット24の駆動量d2を駆動可能範囲の中央(d2= In the next step 103, the center of the driving range of the driving amount d2 of the driving unit 24 (d2 =
0)に設定して、第1レンズ系12を設計上の位置である光学原点に設定した状態で、照度むら、及び照明テレセンの計測を行う。 Is set to 0), in a state of setting the optical origin is the position of the design of the first lens system 12, performs the illuminance unevenness, and the measurement of the illumination telecentricity.

【0055】その照度むらの計測を行うために、図1においてレチクルステージ31上にレチクルRの代わりにパターンの形成されていないガラス基板を設置して、照明領域35に露光光ILを照射して、露光領域35Pを照度むらセンサ42の受光部で非走査方向(X方向)に走査して、照度むらセンサ42の検出信号S2を露光制御ユニット21に取り込む。 [0055] To perform the measurement of the uneven illuminance, by installing a glass substrate is not formed in the pattern instead of the reticle R on the reticle stage 31 in FIG. 1, the exposure light IL in the illumination region 35 the exposed region 35P is scanned in the non-scanning direction (X direction) by the light receiving portion of the uneven illuminance sensor 42 captures a detection signal S2 of the uneven illuminance sensor 42 to an exposure control unit 21. なお、そのガラス基板の代わりに、レチクルRの内のパターンの形成されていない領域、又は評価マーク板33中の評価用マークの形成されていない領域を使用してもよい。 Note that the instead of the glass substrate, may be used an area not formed with the evaluation marks in the formed non region or evaluation mark plate 33, the pattern of the reticle R.

【0056】図4(a)は露光領域35Pを照度むらセンサ42の受光部42aでX方向に走査する状態を示し、図4(b)の曲線51Aは、そのときに照度むらセンサ42(ウエハステージ39)のX方向の位置に対応させてプロットした検出信号S2を示している。 [0056] FIG. 4 (a) shows a state in which scanning in the X direction an exposure region 35P in the light receiving section 42a of the uneven illuminance sensor 42, curve 51A is uneven illuminance sensor 42 (wafer at that time shown in FIG. 4 (b) It shows the detection signal S2 which is plotted in correspondence with the position in the X direction of the stage 39). 本例の露光制御ユニット21内の演算部は、曲線51Aを(1)式の右辺に対して最小自乗法で近似することによって、照度むらの傾斜成分aの値a1、及び凹凸成分b Calculation of the exposure control unit 21 of the present embodiment, by approximating the least squares method with respect to the right side of the curve 51A (1) formula, the value a1 of the inclined component a illuminance unevenness and irregularities component b
の値b1を算出する。 To calculate the value of b1. この際のX方向の原点は投影光学系PLの光軸AXとする。 X direction of the origin in this case the optical axis AX of the projection optical system PL. 曲線51Aを点線で示すように1次の直線52A及び2次曲線53Aに分けた場合、 If the curve 51A is divided into first-order linear 52A and secondary curve 53A as indicated by the dotted line,
直線52Aの傾きがa1となり、2次曲線53AのX 2 Slope becomes a1 linear 52A, of the quadratic curve 53A X 2
の係数がb1となる。 Coefficient of is b1.

【0057】次に、照明テレセンを計測するために、図1において、レチクルステージ31を駆動して照明領域35の中心に評価マーク板33の中心を移動して、ウエハステージ39を駆動して露光領域35Pの近傍に空間像計測系46の走査板43を移動する。 Next, in order to measure the illumination telecentricity, in FIG. 1, by moving the center of the evaluation mark plate 33 to the center of the illumination area 35 by driving the reticle stage 31, by driving the wafer stage 39 exposure move scanning plate 43 of aerial image measurement system 46 in the vicinity of the region 35P. そして、ウエハステージ39内のZレベリング機構を駆動して、走査板43のフォーカス位置を投影光学系PLに対する像面(ベストフォーカス位置)から+δだけ(δは所定の解像度が得られる範囲内で予め設定されている)高く設定し、露光光ILの照射を開始して、図5(a)に示すように評価マーク板33の評価用マーク36A〜36Mの像36AP〜36MPをウエハステージ39上に投影する。 Then, by driving the Z leveling mechanism in the wafer stage 39, pre-image-plane focus position of the scanning plate 43 with respect to the projection optical system PL (best focus position) from + [delta] alone ([delta] is within the predetermined resolution is obtained set set by that) high, the start of irradiation of the exposure light IL, an image 36AP~36MP evaluation mark 36A~36M evaluation mark plate 33 as shown in FIG. 5 (a) on a wafer stage 39 projected. この状態で、図3(b)を参照して説明したように、走査板43の開口パターン43aでそれらの像36 In this state, as described with reference to FIG. 3 (b), those of the image at the aperture pattern 43a of the scanning plate 43 36
AP〜36MPをX方向、Y方向に走査して、得られる検出信号S3を露光制御ユニット21内の演算部で処理することによって、それらの像36AP〜36MPのX AP~36MP the X direction, by scanning in the Y direction, by processing the detection signal S3 obtained by the arithmetic unit in the exposure control unit 21, X their image 36AP~36MP
方向、Y方向の位置を算出し、算出結果を主制御系22 Direction, and calculates the position in the Y direction, the calculation result main control system 22
に供給する。 Supplied to. この場合の原点は、例えば中央の評価用マーク36Gの像36GPの中心である。 The origin of the case is, for example, the center of the image 36GP central evaluation mark 36G.

【0058】なお、ウエハステージ39の移動に応じて可動ブラインド14Bを駆動し、上記検出動作中に照明領域35の一部のみ、例えば空間像計測系46にてその像を検出すべき評価用マークのみに露光光ILを照射することが望ましい。 [0058] Incidentally, by driving the movable blind 14B according to the movement of the wafer stage 39, only a portion, marks for evaluation to be detected that image, for example, by the spatial image measuring system 46 of the detection operation in the illumination region 35 it is desirable to exposure light IL only. このように走査板43を+δだけデフォーカスさせて計測された評価用マーク36A〜36 Thus measured the scanning plate 43 + [delta] only by defocusing the evaluation mark 36A~36
Mの像を図5(a)の点線の格子上の像54A〜54M Image 54A~54M on dotted grid of FIGS. 5 (a) the M image of
とする。 To. なお、説明の便宜上、点線の格子は矩形に描かれているが、実際にはディストーションによって或る程度は歪んでいることがある。 For convenience of description, the dotted lines of the grating is depicted in a rectangular, actually sometimes some extent is distorted by the distortion.

【0059】次に、走査板43のフォーカス位置をベストフォーカス位置から−δだけ低く設定し、同様に空間像計測系46を用いて評価用マーク36A,36B,… Next, the scanning plate 43 a focus position to set the best focus position -δ as low, likewise marks for evaluation using the spatial image-measuring system 46 36A, 36B, ...
36Mの像36AP〜36MPのX方向、Y方向の位置を求めて、主制御系22に供給する。 X direction of the image 36AP~36MP of 36M, seeking position in the Y direction, and supplies to the main control system 22. 図5(a)には、 In FIG. 5 (a),
この場合の像36AP〜36MP、及び先に計測した像54A〜54Mが表示されている。 This image 36AP~36MP cases, and the image 54A~54M measured previously are displayed. 主制御系22では、 In the main control system 22,
図5(a)に示すように、フォーカス位置を+δだけデフォーカスさせた場合の像54A〜54Mに対して、フォーカス位置を−δだけデフォーカスさせた場合の像3 Figure 5 (a), the image 3 when with respect to the image 54A~54M when was defocused by the focus position + [delta], and the focus position is defocused -δ
6AP〜36MPのX方向、Y方向への2次元的な位置ずれ量をベクトル<VA>〜<VM>として求める。 X direction 6AP~36MP, the two-dimensional positional deviation amount vector <VA> ~ in the Y direction obtained as <VM>. また、これらのベクトルの単純な平均値<V1>(=(c Also, a simple average value of the vectors <V1> (= (c
1,d1))、及び原点に対して半径方向(R方向)への成分の平均値<V2>(=e1)が図5(b), 1, d1)), and radial with respect to the origin (the average value of the components of the R direction) <V2> (= e1) is FIG. 5 (b), the
(c)に示すように算出される。 It is calculated as shown in (c). 平均値(c1,d1) The average value (c1, d1)
が照明テレセンの傾斜成分、平均値e1が照明テレセンの倍率成分である。 There inclination component of the illumination telecentricity, the average value e1 is the magnification component of the illumination telecentricity.

【0060】次に、ステップ104において、その駆動ユニット24の駆動量d2を駆動可能範囲の+側の端部(d2=d2 max )に設定した状態で、照度むら、及び照明テレセンの計測を行う。 Next, in step 104, performed while setting the driving amount d2 of the drive unit 24 to the end of the positive side of the driving range (d2 = d2 max), the uneven illuminance, and the measurement of the illumination telecentricity . これによって、図4(c) Thus, and FIG. 4 (c)
に示すように、照度むらセンサ42の検出信号S2の曲線51Bが得られ、この曲線51Bを1次の直線52B As shown in the curve 51B of the detection signal S2 of the uneven illuminance sensor 42 is obtained, the curve 51B 1-order linear 52B
及び2次曲線53Bに分けることで、照度むらの傾斜成分a2、及び凹凸成分b2が得られる。 And by dividing the quadratic curve 53B, the inclined component a2, and profile-component b2 illuminance unevenness can be obtained. また、図5 In addition, FIG. 5
(d)の評価用マーク36A〜36Mの像36AP〜3 (D) the image of the evaluation mark 36A~36M of 36AP~3
6MPの位置ずれのベクトル<VA>〜<VM>から、 Vector of positional deviation of the 6MP <VA> ~ from <VM>,
図5(e),(f)に示すように、照明テレセンの傾斜成分(c2,d2)、及び照明テレセンの倍率成分e2 FIG. 5 (e), the (f), the slope component of the illumination telecentricity (c2, d2), and the illumination magnification component of telecentricity e2
が得られる。 It is obtained.

【0061】次に、ステップ105において、その駆動ユニット24の駆動量d2を駆動可能範囲の−側の端部(d2=−d2 max )に設定した状態で、照度むら、及び照明テレセンの計測を行う。 Next, in step 105, the drive amount d2 of the driving unit 24 driving range of - a state mounted at the end of the side (d2 = -d2 max), the uneven illuminance, and the measurement of the illumination telecentricity do. これによって同様に、照度むらの傾斜成分a3、凹凸成分b3、及び照明テレセンの傾斜成分(c3,d3)、倍率成分e3が得られる。 Thus Similarly, tilting component a3, profile-component b3, and the illumination telecentricity tilt component of the illuminance unevenness (c3, d3), magnification component e3 is obtained. なお、更に高精度に駆動レートを算出したい場合には、駆動ユニット24の駆動量を4箇所以上に設定して、照度むら及び照明テレセンを計測することが望ましい。 When it is desired to calculate the drive rate further with high accuracy, by setting the driving amount of the drive unit 24 to four or more positions, it is desirable to measure the illuminance unevenness and illumination telecentricity.

【0062】その後のステップ106において、上記の計測値を用いて駆動ユニット24(第1レンズ系12) [0062] In a subsequent step 106, the drive unit 24 by using the measured values ​​(the first lens system 12)
の駆動レートを算出する。 To calculate the drive rate. 一例として、駆動量d2を0,d2 max ,−d2 maxに設定したときの照度むらの傾斜成分aは、それぞれa1,a2,a3であるため、 For an example, the driving amount d2 0, d2 max, tilting component a of the illuminance unevenness when set to -d2 max are respectively a1, a2, a3,
傾斜成分aに対する駆動レートka2[%/mm]は次のようになる。 Driving rate ka2 against tilting component a [% / mm] is as follows. ka2=[(a2−a1)/d2 max -(a3−a1)/(2・d2 max )]/2…(2) ka2 = [(a2-a1) / d2 max - (a3-a1) / (2 · d2 max)] / 2 ... (2)

【0063】同様にして、照度むらの凹凸成分b、照明テレセンの傾斜成分c,d、及び照明テレセンの倍率成分eに対する駆動レートkb2[%/mm],kc2 [0063] In the same manner, unevenness of component b illuminance unevenness, inclination component c of the illumination telecentricity, d, and the driving rate kb2 for magnification component e of the illumination telecentricity [% / mm], kc2
[mrad/mm],kd2[mrad/mm],ke2[mrad [Mrad / mm], kd2 [mrad / mm], ke2 [mrad
/mm]も算出されて、主制御系22内の記憶部に記憶される。 / Mm] be calculated and stored in the storage unit in the main control system 22. この際に、支配的な値は照度むらの凹凸成分b In this case, the dominant values ​​are uneven component of the uneven illuminance b
に対する駆動レートkb2のみであるが、その他の値でも所定レベルを超えているものについてはそのまま記憶し、所定レベル内の値については0として記憶してもよい。 Although only the driving rate kb2 against, as it is stored for those exceeding the predetermined level in other values, it may be stored as 0 for values ​​within a predetermined level.

【0064】具体的に第1レンズ系12を駆動する場合には、凹凸成分bと同じく中心対称(軸対称)の特性を有する照明テレセンの倍率成分eに対する駆動レートk [0064] To drive the concrete first lens system 12, the drive rate k for magnification component e of the illumination telecentricity having the characteristics of same centrosymmetric uneven component b (axisymmetric)
e2が所定レベルを超える可能性がある。 e2 can exceed the predetermined level. このようにして全ての駆動ユニット23〜25Tについてステップ1 This way, all of the drive units 23~25T Step 1
02〜106の動作を実行して、駆動レートkai、k To perform the operations of the 02-106, driving rates kai, k
bi、kci、kdi、kei(i=1〜5)を算出して主制御系22内に照明条件毎のパラメータとして記憶する。 bi, kci, kdi, and stores the calculated kei (i = 1~5) in the main control system 22 as parameters for each illumination condition. その後、ステップ107からステップ108に移行して、必要な全ての照明条件について駆動レートを算出したかどうかを判定し、終了していない場合には、ステップ101に戻って照明条件を切り換えて駆動レートを算出する。 Then goes from step 107 to step 108, it determines whether the calculated drive rate for all lighting conditions required, if it is not finished, the driving rate by switching the illumination condition returns to step 101 It is calculated. なお、ここでは全ての照明条件について駆動レートを算出するものとしたが、本例はこれに限定されるものではなく、例えば全ての照明条件の一部のみについて駆動レートを算出し、残りの照明条件については他の照明条件の駆動レートに基づき、補間計算などによって駆動レートを決定するようにしてもよい。 Here, it is assumed to calculate the drive rate for all lighting conditions, the present embodiment is not limited thereto, for example, for only a part of all lighting conditions to calculate the drive rate, lighting remaining based on the driving rate of the other lighting conditions the conditions may be determined driving rate such as by interpolation calculation.

【0065】この際に、第2駆動ユニット24(第1レンズ系12)の場合、中心非対称な成分に関する駆動レートka2,kc2,kd2は本来は無視できる程度の量である。 [0065] At this time, when the second driving unit 24 (the first lens system 12), driven about the central asymmetrical component rate ka2, kc2, kd2 is the amount of degrees originally negligible. これらの駆動レートが或る値以上に大きい場合は、第1レンズ系12が偏心していたり、傾いていたりする可能性があり、この段階でこれらの不具合を検知することができ、これに基づいて調整を行うことができる。 If these driving rate is greater than a certain value, or are the first lens system 12 is eccentric, there is a possibility that or inclined, it is possible to detect these defects at this stage, on the basis of this adjustment can be performed.

【0066】次に、上記のようにして求めた駆動レートを用いて、照明光学系の調整を自動的に行うシーケンスの一例につき図9のフローチャートを参照して説明する。 Next, using the driving rate calculated as described above, with reference to the flowchart of FIG. 9 will be described an example of automatically performing a sequence of adjustments of the illumination optical system. 先ず、図9のステップ111において、図1の開口絞り板10を介して照明条件を選択し、全部の駆動ユニット23,24,25X〜25Tの駆動量を中立位置に設定し、対応する光学部材を光学原点に設定する。 First, in step 111 of FIG. 9, to select the illumination condition through the aperture stop plate 10 in FIG. 1, and set the drive amount of all of the drive units 23,24,25X~25T to the neutral position, the corresponding optical member setting the optical origin. 次のステップ112において、図8のステップ103と同様に照度むら及び照明テレセンを計測する。 In the next step 112, as in step 103 of FIG. 8 for measuring the uneven illuminance and the illumination telecentricity. そして、ステップ113において、図4、図5に示した手順で、照度むらの傾斜成分(1次成分)a、凹凸成分(2次成分) Then, in step 113, FIG. 4, the procedure shown in FIG. 5, the inclination component (primary component) of the uneven illuminance a, profile-component (secondary component)
bを算出し、照明テレセンの傾斜成分(シフト成分) Calculates b, the inclination component of the illumination telecentricity (shift component)
c,d、及び倍率成分eを算出する。 c, calculated d, and the magnification component e. 次のステップ11 The next step 11
4において照度むらa,b及び照明テレセンc,d,e Uneven illuminance a in 4, b and the illumination telecentricity c, d, e
がそれぞれ許容範囲内かどうかを判定し、何れかが許容範囲から外れている場合にはステップ115に移行して、主制御系22内に記憶してある駆動レートkai、 There is judged whether the allowable range, respectively, one is shifted to step 115 if you are out of the allowable range, are stored in the main control system 22 driving rate kai,
kbi、kci、kdi、kei(i=1〜5)を用いて、照度むらa,b及び照明テレセンc,d,eをそれぞれ計算上で0にするための5個の駆動ユニット23〜 kbi, kci, kdi, kei (i = 1~5) using, uneven illuminance a, b and the illumination telecentricity c, d, 5 pieces of the drive unit for the 0 on a computing respective e. 23 to
25Tの駆動量di(i=1〜5)を算出する。 Calculating a 25T drive amount di (i = 1~5). この場合には、以下の連立方程式を解けばよい。 In this case, it is solving the following simultaneous equations.

【0067】−a=ka1・d1+ka2・d2+ka3・d [0067] -a = ka1 · d1 + ka2 · d2 + ka3 · d
3+ka4・d4+ka5・d5 −b=kb1・d1+kb2・d2+kb3・d3+kb4・d 3 + ka4 · d4 + ka5 · d5 -b = kb1 · d1 + kb2 · d2 + kb3 · d3 + kb4 · d
4+kb5・d5 −c=kc1・d1+kc2・d2+kc3・d3+kc4・d 4 + kb5 · d5 -c = kc1 · d1 + kc2 · d2 + kc3 · d3 + kc4 · d
4+kc5・d5 −d=kd1・d1+kd2・d2+kd3・d3+kd4・d 4 + kc5 · d5 -d = kd1 · d1 + kd2 · d2 + kd3 · d3 + kd4 · d
4+kd5・d5 −e=ke1・d1+ke2・d2+ke3・d3+ke4・d 4 + kd5 · d5 -e = ke1 · d1 + ke2 · d2 + ke3 · d3 + ke4 · d
4+ke5・d5 但し、実際には、これらの駆動レート中で0でないものは各行で1個、又は2個程度であるため、この連立方程式は極めて容易に解くことができる。 4 + ke5 · d5 However, in practice, since those that are not 0 in these driving rates one for each row, or 2 or so, the simultaneous equations can be solved very easily. 算出された駆動量di(i=1〜5)も、複数の照明条件のそれぞれに対応させてパラメータとして主制御系22内の記憶部に保存される。 Calculated driving amount di (i = 1~5) are also stored in the storage unit in the main control system 22 as to correspond to each parameter of the plurality of illumination conditions.

【0068】具体的に、駆動ユニット24と駆動ユニット23とが共に照度むらの凹凸成分bと照明テレセンの倍率成分eに影響を及ぼし、駆動ユニット25Tと駆動ユニット25Xとが共に照度むらの傾斜成分aと照明テレセンの傾斜成分cに影響を及ぼし、駆動ユニット25 [0068] Specifically, the drive unit 24 and drive unit 23 are both affect the magnification component of the illumination telecentricity uneven component b illuminance unevenness e, the inclination component of both illuminance unevenness drive unit 25T and the drive unit 25X is a and affects the slope component c of the illumination telecentricity, the driving unit 25
Yのみが照明テレセンの傾斜成分dに影響を及ぼすという関係があると考えられる。 Y only be related that affect slope component d of the illumination telecentricity.

【0069】次に、ステップ116に移行して、5個の駆動ユニット23〜25Tをそれぞれ算出された駆動量di(i=1〜5)だけ駆動する。 Next, the process proceeds to step 116, the five drive units 23~25T the calculated respectively driving amount di (i = 1~5) only drives. その後、ステップ1 Then, step 1
12,113に移行して、照度むらa,b及び照明テレセンc,d,eを再計測し、ステップ114において、 12,113 goes to, and re-measured illuminance unevenness a, b and the illumination telecentricity c, d, and e, in step 114,
それらの値が全部許容範囲内に収まらない場合には、再びステップ115に移行して計算を実行し、それらの値が全部許容範囲内に収まった場合には自動調整を終了する。 If not fit in their values ​​permissible total range, and perform calculations proceeds again to step 115, these values ​​and the automatic control is ended if falls within all allowable range. そして、次に同じ照明条件が設定された場合には、 When the next same illumination condition is set,
記憶されている駆動量diに基づいて駆動ユニット23 Based on the driving amount di stored drive unit 23
〜25Tを駆動するのみで、極めて短時間に照明光学系の調整が完了する。 Only to drive the ~25T, completing the adjustment of the illumination optical system in a very short time.

【0070】このように、本例では照明特性を自動的に計測できるため、図8の駆動レートの計測シーケンス及び図9の照明光学系の自動調整シーケンスは、全てアシストレスで行うことができる。 [0070] Thus, in the present embodiment can automatically measure the illumination characteristic, automatic adjustment sequence of the illumination optical system of the measurement sequence and 9 of the drive rate of 8 can be carried out all the assist-less. 次に、本例の照明光学系で図6(a)に示すように、第2フライアイレンズ9の射出面に輪帯照明の開口絞り10b(又は4極照明の開口絞り10c)を設置して変形照明を行う場合の調整方法の一例につき説明する。 Next, as shown in FIG. 6 (a) in the illumination optical system of the present embodiment, the aperture stop 10b of the exit surface in annular illumination (or quadrupole illumination aperture stop 10c) installed in the second fly-eye lens 9 It will be described an example of an adjustment method in the case of performing the modified illumination Te.

【0071】この場合には、図1の第1フライアイレンズ6の代わりに回折光学素子(DOE)よりなる光量分布変換素子55が設置される。 [0071] In this case, the light amount distribution converting device 55 composed of a diffractive optical element (DOE) in place of the first fly-eye lens 6 in FIG. 1 is installed. なお、回折光学素子の代わりに円錐プリズム(アキシコン、輪帯照明用)、又は四角錐型(ピラミッド型)のプリズム(4極照明用)等のプリズムを使用してもよい。 Incidentally, the conical prism instead of the diffractive optical element (axicon, for annular illumination), or a prism such as a square pyramid type (for quadrupole illumination) prism (pyramid) may be used. そして、使用される開口絞りが開口絞り10b又は10cの何れかに応じて第2 Then, the throttle opening is used according to any one of the aperture stop 10b or 10c 2
フライアイレンズ9に対する露光光ILの照射領域を調整するために、第1レンズ系7Aを駆動ユニット62によって光軸に垂直な方向に駆動でき、かつ第2レンズ系7Bを駆動ユニット58によって光軸方向に駆動できるようにしておく。 In order to adjust the irradiation area of ​​the exposure light IL for the fly-eye lens 9, the first lens system 7A can be driven in a direction perpendicular to the optical axis by the drive unit 62, and the optical axis by a drive unit 58 of the second lens system 7B keep to be driven in the direction. なお、レンズ系7A,7Bよりなる集光光学系(ビーム成形光学系)の代わりに、ズーム光学系、収差を連続的に変化させるような光学系、又はシリンドリカルレンズを回転させてビーム断面を歪ませるような光学系を使用しても良い。 Instead of the lens system 7A, consisting 7B focusing optical system (beam forming optical system), a zoom optical system, an optical system such as to continuously change the aberrations, or distortion of the beam cross-section by rotating the cylindrical lens it may be used an optical system such as Maseru.

【0072】図6(a)の光学系の場合、第2フライアイレンズ9を局所的に照明する際の照明領域によって、 [0072] When the optical system of FIG. 6 (a), by the illumination area when the locally illuminate the second fly's eye lens 9,
照度むらが急激に変化することが本発明者によって確かめられている。 The uneven illuminance suddenly changes are confirmed by the present inventors. 具体的にその照度むらの変化要因は以下の要因に分けられる。 Change factors specific illuminance unevenness is divided into the following factors. 1)局所照明エリアが小さい場合、開口絞りを通過する光量が多いので像面照度は上昇するが、第2フライアイレンズ9の有効なエレメントのうち幾つかは中途半端に照明され、これが照度むらに悪影響を及ぼす。 1) When the topical illumination area is small, the amount of light passing through the aperture stop is large image plane illuminance is increased, but some of the active elements of the second fly-eye lens 9 is halfway illuminated, this uneven illuminance adversely affect the.

【0073】2)局所照明エリアが大きい場合、照度むらは劣化しないが、当然開口絞り10b,10cに遮られる光量が多くなり、像面照度は低下する。 [0073] 2) If the local illumination area is large, but the illuminance unevenness is not degraded naturally aperture stop 10b, it is the amount of light being blocked by the many 10c, image plane illuminance is lowered. 3)局所照明エリアが偏心している場合、像面上の照明むらも左右どちらかが低くなる傾向(傾斜成分)がある。 3) If the local illumination area is eccentric, there is a tendency (gradient components) also uneven illumination in the image plane left or right decreases. これは第2フライアイレンズ9の各エレメントが有限の大きさを有していることに起因している。 This is due to the fact that each element of the second fly-eye lens 9 has a finite size. よって、 Thus,
本例では光量分布変換素子55を用いて変形照明を行う場合は、図10に示すように特別の調整シーケンスを用意している。 When performing modified illumination with a light intensity distribution converting device 55 in the present example is prepared a special adjustment sequence as shown in Figure 10.

【0074】そこで、図10のステップ121において、図1の状態で、即ち通常照明に設定して、図8の駆動レート計測、及び図9の自動調整シーケンスを実行する。 [0074] Therefore, in step 121 of FIG. 10, in the state of FIG. 1, i.e. normally set to the illumination, the drive rate measuring 8, and executes the automatic adjustment sequence in FIG. 次のステップ122において、図6(a)に示すように、第1フライアイレンズ6を光量分布変換素子55 In the next step 122, as shown in FIG. 6 (a), the light amount distribution converting device 55 of the first fly's eye lens 6
に変更し、第2フライアイレンズ9の射出面の開口絞りを変形照明用の開口絞り10b又は10cに設定する。 It was changed to set the aperture stop of the exit surface of the second fly-eye lens 9 on the aperture stop 10b or 10c for the modified illumination.
次のステップ123において、図1の照度むらセンサ4 In the next step 123, the uneven illuminance sensor 4 of FIG. 1
2を用いて照度むらを計測し、図4に示したようにその傾斜成分a及び凹凸成分bを算出する。 2 to measure the illuminance unevenness is used to calculate the gradient components a and uneven components b as shown in FIG. この際に、照度分布の非走査方向の両側に極端な傾斜の照度むらが発生して、傾斜成分aが許容範囲を超えた場合には、前述のように局所照明エリアが偏心している可能性がある。 At this time, in the uneven illuminance extreme slope on both sides of the non-scanning direction of the illumination distribution is generated, when the inclination component a exceeds the allowable range, possibly eccentric local illumination areas, as described above there is. この場合には、その傾斜成分aが許容範囲内に収まるように、第1レンズ系7Aを光軸に垂直な面内でX方向、Y In this case, so that its inclination component a is within the allowable range, X-direction in the plane perpendicular to the first lens system 7A to the optical axis, Y
方向に対応する方向にシフトさせる。 Shifting in a direction corresponding to the direction.

【0075】そして、この状態で照度むらの凹凸成分b [0075] Then, unevenness component b of the uneven illuminance in this state
を評価対象とする。 And evaluation target. 即ち、ステップ124に移行して、 That is, the process proceeds to step 124,
凹凸成分bが許容範囲内かどうかを判定し、許容範囲外であるときにはステップ125に移行して、第2レンズ系7Bを光軸方向に所定ステップ量だけシフトさせてからステップ123に戻って、再び照度むらの凹凸成分b It determines irregularities component b is whether within the allowable range, the process proceeds to step 125 when it is out of the allowable range, returning from the second lens system 7B is shifted by a predetermined step amount in the optical axis direction to step 123, again of the uneven illuminance unevenness component b
を計測し、それが許容範囲内かどうかを判定する。 It was measured to determine whether it is within an allowable range. この補正動作は、ステップ124で凹凸成分bが許容範囲内に収まるまで実行される。 This correction operation, irregularities component b is executed to fall within the allowable range in step 124.

【0076】ステップ124で凹凸成分bが許容範囲内に収まった後、ステップ126に移行して、図6(a) [0076] After the profile-component b in step 124 falls within the allowable range, the process proceeds to step 126, FIGS. 6 (a)
のビーム成形系5のレンズ系4Bを光軸方向に所定量ずつ次第に変化させて(走査して)、レンズ系4Bの各位置(位置u)で図1の照度むらセンサ42をパターン像の無い露光領域35Pで非走査方向に走査して、検出信号S2のデータ列を露光制御ユニット21に取り込むと共に、インテグレータセンサ20の検出信号S1も露光制御ユニット21に取り込む。 Without the lens system 4B of the beam shaping system 5 by changing gradually in the direction of the optical axis by a predetermined amount (scanned by), the pattern image of the uneven illuminance sensor 42 of FIG. 1 at each position of the lens system 4B (position u) by scanning in the non-scanning direction in the exposure region 35P, fetches the data string of the detection signal S2 to the exposure control unit 21, the detection signal S1 of the integrator sensor 20 is also incorporated in the exposure control unit 21.

【0077】次のステップ127において、レンズ系4 [0077] In the next step 127, the lens system 4
Bの各位置uにおいて、検出信号S2(照度)の最大値と最小値との差分ΔIPを照度むらとして求め、インテグレータセンサ20の検出信号S1より像面での照度の大きさ(平均値)IPを間接的に求める。 In each position u of B, the maximum value obtains a difference ΔIP unevenness in illuminance between the minimum value, the magnitude of the illuminance on the image plane from the detection signal S1 of the integrator sensor 20 (average value) of the detection signal S2 (illuminance) IP indirectly seek. そして、露光制御ユニット21内の演算部は、レンズ系4Bの各位置uに対して照度むらΔIPの逆数(1/ΔIP)、及び像面照度IPを対応付ける。 The arithmetic unit in the exposure control unit 21, the inverse of the uneven illuminance Delta] Ip for each position u of the lens system 4B (1 / ΔIP), and associates the image plane illuminance IP. 分かり易いように、位置u So in easy to understand, position u
に対して像面照度IP及び照度むらの逆数(1/ΔI Image plane illuminance IP and the reciprocal of the uneven illuminance against (1 / [Delta] I
P)をプロットした図が図7である。 P) were plotted figure is a diagram 7.

【0078】図7において、横軸はレンズ系4Bの位置u、縦軸は像面照度IP、及び照度むらΔIPの逆数(1/ΔIP)である。 [0078] In FIG. 7, the horizontal axis represents the position u of the lens system 4B, the vertical axis represents the image plane illuminance IP, and the reciprocal of the uneven illuminance ΔIP (1 / ΔIP). そして、曲線59が像面照度I And, curve 59 is the image plane illumination I
P、曲線60が照度むらの逆数(1/ΔIP)を表している。 P, curve 60 represents the inverse of the uneven illuminance (1 / ΔIP). この場合、像面照度IPが大きくなると、照度むらの逆数(1/ΔIP)が小さくなって照度むらが大きくなることから、像面照度と照度むらとがトレードオフの関係であることが分かる。 In this case, the image plane illuminance IP increases, since the illuminance unevenness becomes larger reciprocal of the uneven illuminance (1 / ΔIP) becomes small, it is seen that the image plane illuminance and illuminance unevenness is a trade-off relationship. そこで、本例では像面照度が許容値TL1(位置u2)以上となり、照度むらの逆数が許容値TL2(位置u1)以上となる位置uの範囲61(u1≦u≦u2)を、レンズ系4Bの設定可能範囲として求めて主制御系22に供給する。 Therefore, it is the image plane illuminance is tolerance TL1 (position u2) above in this example, the range of positions u to reciprocal of illuminance unevenness becomes the allowable value TL2 (position u1) or 61 (u1 ≦ u ≦ u2), the lens system supplied to the main control system 22 obtains a settable range of 4B.

【0079】次のステップ128において、図1の主制御系22は駆動系26を介して図6(a)のレンズ系4 [0079] In the next step 128, the main control system 22 of Figure 1 via the drive system 26 the lens system of FIG. 6 (a) 4
Bの位置uを設定可能範囲61内に設定する。 Setting the position u of B to settable range 61. これによって、高い像面照度が得られて露光工程のスループットを向上できると共に、照度むらが小さくなって、高い結像精度が得られる。 Thus, it is possible to improve the throughput of high image plane illuminance is obtained by the exposure process, and illuminance unevenness is reduced, resulting a high imaging accuracy. また、像面上で微細なランダムな照度むらが計測される場合は、変形照明用の光学素子を光軸方向にシフトさせれば、ランダムな照度むらを解消させることができる場合がある。 Also, if the fine random uneven illuminance on the image plane is measured, the optical element for the modified illumination be shifted in the optical axis direction, it is sometimes possible to eliminate the random illuminance unevenness. 以上のように、照明光学系の任意の光学部材を駆動させることにより、各種の照明光学系の特性が変化するが、これらを設計段階で選択し、最適な駆動ユニットを自動調整シーケンスに組み込むことにより、より照度むら及び照明テレセンの追い込み精度を向上させることができる。 As described above, by driving any optical member of the illumination optical system, but the characteristics of the various illumination optical system is changed by selecting them in the design stage, to incorporate the optimum driving unit for automatic adjustment sequence Accordingly, it is possible to further improve the uneven illuminance and the thrust accuracy of illumination telecentricity.

【0080】なお、上記の実施の形態では、照度むらとテレセントリシティとの両方を計測(検出)するものとしたが、どちらか一方を計測するのみでもよい。 [0080] In the embodiment described above, both the illumination unevenness and the telecentricity was to be measured (detected), or only to measure either. 更に、 In addition,
テレセントリシティではその傾斜成分をX方向とY方向とに分けて計測したが、どちらか一方のみでもよいことがある。 The telecentricity was measured separately the inclination component in the X and Y directions, it may either be a one only. また、上記の実施の形態では走査露光方式の露光装置で非走査方向の照度むらを検出するものとしたが、静止露光方式の露光装置ではX方向及びY方向でそれぞれ照度むらを検出してその補正を行うことが好ましい。 Further, in the above embodiment it is assumed that detects the illuminance unevenness in the non-scanning direction in the exposure apparatus of scanning exposure system, the exposure apparatus of static exposure method to detect each uneven illuminance in the X direction and the Y direction thereof it is preferable to perform the correction.

【0081】更に、上記の各実施形態では照明特性(照明テレセンと照度むらとの少なくとも一方)の計測時にその調整を行うものとしたが、その計測時以外に照明特性の調整を行ってもよい。 [0081] Further, in the embodiments described above it is assumed to perform the adjustment during the measurement (at least one of the illumination telecentricity and uneven illuminance) illumination characteristics may be carried out adjusting the illumination characteristics except during the measurement . 例えば、照明特性の変化を計算(シミュレーションなど)し、この計算結果に基づいて照明特性を逐次調整してもよい。 For example, a change in illumination characteristics calculated (such as simulation) may be sequentially adjusted illumination characteristics based on the calculation result. また、定期的に照明特性を計測してその調整を行うと共に、その定期的な計測の間は上記計算にて照明特性の調整を行うようにしてもよい。 Further, it performs the adjustment by measuring the periodic illumination characteristics during its periodic measurements may be performed to adjust the illumination characteristic in the above calculation. 更に、照度むらについては照明条件、即ち照明光学系の瞳面上での露光光ILの強度分布(特にその形状)の変更時に照度むらの傾斜成分と中心対称成分(凹凸成分)との両方を調整し、次に照明条件を変更するまでは凹凸成分のみを調整するだけでもよい。 Furthermore, the illumination conditions for illumination unevenness, i.e. both the inclination component and the central symmetric element of the uneven illuminance when changing the intensity distribution of the exposure light IL on the pupil plane of the illumination optical system (in particular the shape) (unevenness component) adjusted, until the next change the illumination condition may only be adjusted only uneven components.

【0082】また、図6(a)では変形照明時に第1フライアイレンズ6との交換で光量分布変換素子55を露光光の光路中に配置するものとしたが、例えば露光光源1とオプティカル・インテグレータ(本例では第1フライアイレンズ6)との間にその光量分布変換素子55を配置するようにしてもよい。 [0082] Further, it is assumed that placing the replacement optical path of the exposure light quantity distribution converting element 55 in the first fly-eye lens 6 when the modified illumination FIG. 6 (a), the example exposure light source 1 and Optical integrator (in this example the first fly-eye lens 6) may be arranged that the light quantity distribution converting element 55 between. このとき、照明条件の変更に応じてその光量分布変換素子55を、異なる光量分布を生成する別の素子に交換するようにしてもよい。 At this time, the light intensity distribution converting device 55 according to the change of the illumination condition may be replaced with another element that generates different light intensity distributions. また、図6(a)の構成例においても、輪帯照明と4極照明とで、光量分布変換素子55を交換するようにしてもよい。 Further, in the configuration example of FIG. 6 (a), in the annular illumination and the quadrupole illumination, may be exchanged light amount distribution converting element 55.

【0083】更に、図1の照明条件切り換え系は、開口絞り板10と、オプティカル・インテグレータ(第1フライアイレンズ6)及び光量分布変換素子(回折光学素子55)の交換を行う交換装置56との両方を含むものとしたが、その照明条件切り換え系は、開口絞り板10 [0083] In addition, the illumination condition switching system of FIG. 1, the aperture stop plate 10, a switching device 56 for exchanging optical integrator (first fly-eye lens 6) and the light quantity distribution converting element (diffractive optical element 55) It was intended to include both, the illumination condition switching system aperture stop plate 10
のみ、或いは交換装置56のみを含むものでもよいし、 Only, or it may be one containing only exchange device 56,
交換装置56は前述した複数の光量分布変換素子の交換のみを行うだけでもよい。 Changer 56 may only perform only replacement of a plurality of light intensity distribution converting device mentioned above. 更に、開口絞り板10及び交換装置56の少なくとも一方と組み合わせて、或いは開口絞り板10及び交換装置56の代わりに、例えばズーム光学系と、照明光学系の光軸方向に相対移動可能な一対のプリズム(円錐プリズム(アキシコン)、又は四角錐プリズムなど)との少なくとも一方を、露光光源1とオプティカル・インテグレータ(第2フライアイレンズ9)との間に配置してもよい。 Furthermore, in combination with at least one of the aperture stop plate 10 and the exchange device 56, or in place of the aperture stop plate 10 and the exchange device 56, for example, a zoom optical system, the optical axis direction movable pair relative to the illumination optical system prism (conical prism (axicon), or a four-like pyramid prism) at least one of the may be disposed between the exposure light source 1 and the optical integrator (second fly-eye lens 9).

【0084】なお、上記の実施の形態では、オプティカル・インテグレータとしてフライアイレンズ6,9が使用されているが、オプティカル・インテグレータとして内面反射型インテグレータ(ロッドインテグレータ)を使用する場合も本発明が適用できることは明きらかである。 [0084] In the above embodiment, although the fly-eye lens 6 and 9 is used as the optical integrator, the present invention is also applicable to the internal reflection type integrator (rod integrator) as an optical integrator applicable it is either perforated et al can. 更に、上記の実施の形態では2段のフライアイレンズ6,9を用いるいわゆるダブル・フライアイ方式の照明光学系ILSが使用されているが、1段のオプティカル・インテグレータ(フライアイレンズ、ロッドインテグレータ等)のみを用いる照明光学系の調整を行う場合にも本発明を適用することができる。 Further, in the above embodiment the illumination optical system ILS of a so-called double fly-eye method using a fly-eye lens 6 and 9 of the two stages are used, one stage optical integrator of (a fly-eye lens, a rod integrator also possible to apply the present invention when adjusting the illumination optical system using an equal) only. 更に、変形照明だけでなく、通常照明や小σ値の照明などでも、前述の回折光学素子(DOE)をオプティカル・インテグレータとして用いてもよい。 Furthermore, not only the modified illumination, even lighting of normal lighting and the small σ value, may be used the aforementioned diffractive optical element (DOE) as an optical integrator. 勿論この場合、複数の回折光学素子を用意して照明条件に応じてその交換を行うことが望ましい。 Of course in this case, it is desirable to perform the replacement depending on the illumination condition by preparing a plurality of diffractive optical elements.

【0085】なお、オプティカル・インテグレータ(9)として、例えば入射面が照明光学系の瞳面に配置され、かつ射出面がレチクルRのパターン面と共役に配置される内面反射型インテグレータを用い、かつ露光光源1とオプティカル・インテグレータ(9)との間に、 [0085] Incidentally, as an optical integrator (9), for example, the incident surface is arranged in a pupil plane of the illumination optical system, and using the internal reflection type integrator exit surface is arranged in a pattern surface conjugate of the reticle R, and between the exposure light source 1 and the optical integrator (9),
前述した複数の光量分布変換素子(回折光学素子)、ズーム光学系、及び一対のプリズムの少なくとも1つを含む光学ユニットを配置する場合、照明条件の変更時に、 A plurality of light intensity distribution converting device mentioned above (diffractive optical element), the zoom optical system, and when arranging the optical unit comprising at least one of the pair of prisms, when changing the lighting conditions,
その内面反射型インテグレータに入射する露光光ILの入射角度範囲が変更されることになる。 So that the incident angle range of the exposure light IL incident to the internal reflection type integrator is changed. また、オプティカル・インテグレータ(9)としてフライアイレンズを用いるときはその射出面側に複数の光源像からなる面光源、即ち2次光源が形成され、内面反射型インテグレータを用いるときはその入射面側に複数の虚像からなる2 Further, a plurality of surface light source comprising a light source image on the exit surface side when using a fly-eye lens as an optical integrator (9), i.e. the secondary light source is formed, when using internal reflection type integrator that incident surface consisting of a plurality of virtual image 2
次光源が形成される。 The following light sources are formed. 従って、上記各実施形態における照明条件の変更とは、照明光学系の瞳面上での露光光I Therefore, the change of the lighting conditions in the above respective embodiments, the exposure light I on the pupil plane of the illumination optical system
Lの強度分布を変更すること、及び照明光学系の瞳面上に形成される2次光源の大きさ及び形状の少なくとも一方を変更することと等価である。 Changing the intensity distribution of the L, and is equivalent to changing at least one of the size and shape of the secondary light source formed on the pupil plane of the illumination optical system.

【0086】また、上記の実施の形態は、本発明を走査露光方式の投影露光装置に適用したものであるが、本発明はステップ・アンド・リピート方式(一括露光方式) [0086] Further, the above-described embodiment, although the present invention is applied to a projection exposure apparatus of scanning exposure system, the present invention is a step-and-repeat system (batch exposure type)
の投影露光装置(ステッパー)、及び投影系を用いないプロキシミティ方式等の露光装置にも適用することができる。 Can projection exposure apparatus (stepper), and an exposure apparatus such as a proximity type without using a projection system to apply. また、露光光(露光ビーム)は上記の紫外光に限られるものではなく、例えばレーザプラズマ光源又はS The exposure light (exposure beam) is not limited to the above-described ultraviolet light, for example laser plasma light source or S
OR(Synchrotron Orbital Radiation)リングから発生する軟X線領域(波長5〜50nm)のEUV光を用いてもよい。 OR (Synchrotron Orbital Radiation) may be used EUV light in a soft X-ray range (wavelength 5 to 50 nm) generated from the ring. EUV露光装置では、照明光学系及び投影光学系はそれぞれ複数の反射光学素子のみから構成される。 In the EUV exposure apparatus, an illumination optical system and projection optical system are each composed of only a plurality of reflective optical elements.

【0087】そして、図1のウエハWより半導体デバイスが製造できる。 [0087] Then, it can be manufactured semiconductor devices than the wafer W in FIG. その半導体デバイスは、デバイスの機能・性能設計を行うステップ、このステップに基づいたレチクルを製造するステップ、シリコン材料からウエハを制作するステップ、前述した実施の形態の投影露光装置によりレチクルのパターンをウエハに露光するステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。 Its semiconductor device, the step of performing the function and performance design of the device, the step of manufacturing a reticle based on the step, the step of producing a wafer from a silicon material, a wafer pattern on the reticle by the projection exposure apparatus of the above-described embodiment step, a device assembly step of exposing the (dicing, bonding, including packaging step), and an inspection step or the like.

【0088】なお、露光装置の用途としては半導体素子製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに形成される液晶表示素子、若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、撮像素子(CCD等)、マイクロマシン、薄膜磁気ヘッド、又はDNAチップ等の各種デバイスを製造するための露光装置にも広く適用できる。 [0088] As the use of the exposure apparatus is not limited to semiconductor device fabrication exposure apparatuses, for example, a liquid crystal display device, or exposure for a display device of a plasma display or the like formed on rectangular glass plates device and an imaging device (CCD etc.), micromachines, can be widely applied to an exposure apparatus for manufacture of various devices of the thin film magnetic head, or the DNA chip or the like. 更に、本発明は、各種デバイスのマスクパターンが形成されたマスク(フォトマスク、レチクル等)をフォトリソグフィ工程を用いて製造する際の、露光工程(露光装置)にも適用することができる。 Furthermore, the present invention is a mask in which the mask pattern of the various devices are formed (photomask, reticle, etc.) for the production using a photolithography grayed Fi step a, it can be applied to the exposure step (exposure apparatus).

【0089】なお、本発明は上述の実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得ることは勿論である。 [0089] The present invention is not limited to the above embodiments, it may take various arrangements without departing from the gist of the invention.

【0090】 [0090]

【発明の効果】本発明によれば、露光装置の照明系(照明光学系)の調整を短時間に正確に行うことができる。 According to the present invention, it is possible to accurately in a short time to adjust the exposure device illumination system (illumination optical system).
また、照明系の照明特性を計測する特性計測系を備えた場合には、複数の照明条件を有する照明系の調整を自動的に行うことができる。 Further, if provided with a characteristic measuring system for measuring the illumination characteristics of the illumination system can adjust the illumination system having a plurality of illumination conditions automatically. また、照明特性として露光ビームのテレセントリック性の崩れ量(照明系のテレセントリシティ)の傾斜成分と倍率成分とを分けて計測する場合には、両者を独立に調整することによって調整を短時間に正確に行うことができる。 Also, when measuring separately the gradient component and a magnification component in the collapse of telecentricity of the exposure beam as illumination characteristics (telecentricity of the illumination system), a short time adjusted by adjusting both independently it can be carried out accurately.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 本発明の実施の形態の一例の投影露光装置を示す一部を切り欠いた正面図である。 1 is a front view, with parts cut away showing a projection exposure apparatus of an exemplary embodiment of the present invention.

【図2】 図1の第2フライアイレンズ9から第2レンズ系13までの光学系及び照明領域35を示す斜視図である。 2 is a perspective view showing an optical system and the illumination region 35 from the second fly-eye lens 9 of Figure 1 to the second lens system 13.

【図3】 (a)はレチクルステージ31及び評価マーク板33を示す平面図、(b)は評価用マークの像36 3 (a) is a plan view showing a reticle stage 31 and the evaluation mark plate 33, (b) the image of the mark for evaluation 36
APの検出方法の説明に供する拡大平面図である。 Is an enlarged plan view for explaining the detection method of the AP.

【図4】 照度むらの傾斜成分及び凹凸成分の計測方法の説明図である。 4 is an explanatory diagram of a method for measuring tilt component and uneven components of the uneven illuminance.

【図5】 照明テレセンの傾斜成分及び倍率成分の計測方法の説明図である。 5 is an explanatory diagram of a method for measuring tilt component and the magnification component of the illumination telecentricity.

【図6】 (a)は図1の照明光学系ILSにおいて変形照明を行う場合の要部を示す一部を切り欠いた図、 6 (a) is a view partially cut away showing a main part of the case of the modified illumination in the illumination optical system ILS in Fig. 1,
(b)は図6(a)の開口絞り板10を示す正面図である。 (B) is a front view of an aperture stop plate 10 in FIG. 6 (a).

【図7】 変形照明を行う場合の照度の大きさと照度むらとの関係の一例を示す図である。 7 is a diagram showing an example of the relationship between the magnitude and the illuminance unevenness of illuminance in the case of performing modified illumination.

【図8】 照明光学系中の全部の駆動ユニットの駆動レートの計測シーケンスの一例を示すフローチャートである。 8 is a flow chart showing an example of a measurement sequence of the drive rate of all the drive units in the illumination optical system.

【図9】 照明光学系の自動調整シーケンスの一例を示すフローチャートである。 9 is a flow chart showing an example of automatic adjustment sequence of the illumination optical system.

【図10】 変形照明用の調整シーケンスの一例を示すフローチャートである。 10 is a flow chart showing an example of the adjustment sequence for the modified illumination.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…露光光源、5…ビーム成形系、6…第1フライアイレンズ、9…第2フライアイレンズ、10…開口絞り板、12…第1レンズ系、13…第2レンズ系、14A 1 ... exposure light source, 5 ... beam shaping system, 6 ... first fly-eye lens, 9: second fly-eye lens, 10 ... aperture stop plate, 12 ... first lens system, 13 ... second lens system, 14A
…固定ブラインド、R…レチクル、PL…投影光学系、 ... fixed blind, R ... reticle, PL ... projection optical system,
W…ウエハ、20…インテグレータセンサ、21…露光制御ユニット、22…主制御系、23,24,25X, W ... wafer, 20 ... integrator sensor, 21 ... exposure control unit, 22 ... main control system, 23,24,25X,
25Y,25T…駆動ユニット、26…駆動系、31… 25Y, 25T ... drive unit, 26 ... drive system, 31 ...
レチクルステージ、33…評価マーク板、36A〜36 Reticle stage, 33 ... evaluation mark plate, 36A~36
M…評価用マーク、42…照度むらセンサ、46…空間像計測系、55…光量分布変換素子 M ... evaluation mark, 42 ​​... uneven illuminance sensor, 46 ... aerial image measurement system, 55 ... light intensity distribution converting element

Claims (21)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 露光ビームで第1物体を照明する照明系を備え、前記露光ビームで前記第1物体を介して第2物体を露光する露光装置において、 前記照明系中に配置されて、前記露光ビームの照明条件を複数の照明条件の何れかに切り換える照明条件切り換え系と、 前記複数の照明条件のそれぞれに応じて前記照明系の所定の照明特性を制御するために、前記照明系中の所定の光学部材の状態を調整する調整系とを設けたことを特徴とする露光装置。 [Claim 1 further comprising an illumination system for illuminating the first object with an exposure beam, an exposure apparatus for exposing a second object through said first object with the exposure beam, are disposed in the illumination system, the an illumination condition switching system for switching the lighting condition of the exposure beam to one of a plurality of lighting conditions, in order to control the predetermined illumination characteristic of the illumination system according to each of the plurality of illumination conditions, in the illumination system exposure apparatus is characterized by providing an adjustment system for adjusting the state of the predetermined optical member.
  2. 【請求項2】 前記照明特性は、前記露光ビームの照度むら、及び前記露光ビームのテレセントリック性の崩れ量の少なくとも一方であることを特徴とする請求項1に記載の露光装置。 Wherein said illumination characteristic is the exposure device according to claim 1, wherein the uneven illuminance of the exposure beam, and at least one of telecentricity collapse of the exposure beam.
  3. 【請求項3】 前記照明特性は、前記露光ビームの照度むらの傾斜成分及び凹凸成分、並びに前記露光ビームのテレセントリック性の崩れ量の傾斜成分及び倍率成分であることを特徴とする請求項2に記載の露光装置。 Wherein said illumination characteristic is inclined component and uneven components of the uneven illuminance of the exposure beam, as well as in claim 2, wherein the a tilt component and the magnification component of telecentricity collapse of exposure beam the exposure apparatus according.
  4. 【請求項4】 前記照明系の前記照明特性を計測する特性計測系と、 該特性計測系の計測結果に基づいて、前記調整系の駆動量と前記照明特性の変化量との関係を求めて記憶する演算制御系とを有することを特徴とする請求項1、2、又は3に記載の露光装置。 4. A characteristic measuring system for measuring the illumination characteristics of the illumination system, based on the measurement result of the characteristic measuring system and obtained relation between the variation of the illumination characteristics and drive amount of the adjustment system an apparatus according to claim 1, 2, or 3; and a calculation control system for storing.
  5. 【請求項5】 露光ビームで第1物体を照明する照明系を備え、前記露光ビームで前記第1物体を介して第2物体を露光する露光装置において、 前記照明系の所定の照明特性を計測する特性計測系と、 該特性計測系の計測結果に応じて前記照明系中の所定の光学部材の状態を調整する調整系とを設けたことを特徴とする露光装置。 5. an illumination system for illuminating the first object with an exposure beam, an exposure apparatus for exposing a second object through said first object with the exposure beam, measuring a predetermined illumination characteristics of the illumination system a property measurement system for an exposure apparatus which is characterized by providing an adjustment system for adjusting the state of the predetermined optical member in the illumination system in accordance with measurement results of the characteristic measurement system.
  6. 【請求項6】 前記照明系は、オプティカル・インテグレータを有し、 前記調整系は、前記オプティカル・インテグレータの光軸方向の位置を調整することを特徴とする請求項1〜5 Wherein said illumination system has an optical integrator, wherein the adjustment system according to claim 1, wherein adjusting the position of the optical axis of the optical integrator
    の何れか一項に記載の露光装置。 An apparatus according to any one of.
  7. 【請求項7】 前記照明系は、前記オプティカル・インテグレータを通過した前記露光ビームを前記第1物体の被照射面、又はこれと共役な面に導く第1光学系、及び第2光学系を更に有し、 前記調整系は、前記オプティカル・インテグレータの光軸方向の位置、前記第1光学系の光軸方向の位置、並びに前記第2光学系の光軸に垂直な方向の位置及びチルト角を調整することを特徴とする請求項6に記載の露光装置。 Wherein said illumination system, the surface to be illuminated of said exposure beam having passed through the optical integrator the first object, or which the first optical system for guiding the plane conjugate, and further the second optical system a, the adjustment system, the optical axis position of the optical integrator, the position of the optical axis of the first optical system, and the position and tilt angle in the direction perpendicular to the optical axis of said second optical system an apparatus according to claim 6, characterized in that the adjusting.
  8. 【請求項8】 前記照明系は、 前記露光ビームの照度分布を変形照明用の局所的な領域に設定するための光学素子と、 該光学素子からの露光ビームを導く集光光学系と、 該集光光学系からの露光ビームの照度分布を均一化するためのオプティカル・インテグレータとを有し、 前記調整系は、前記集光光学系を構成する光学部材の状態を調整することを特徴とする請求項1〜7の何れか一項に記載の露光装置。 Wherein said illumination system includes an optical element for setting the illuminance distribution of the exposure beam in a local area for modified illumination, a focusing optical system that guides an exposure beam from the optical element, the and a optical integrator for uniformizing the illuminance distribution of the exposure beam from the condensing optical system, the adjustment system, and adjusts the state of the optical member constituting the light converging optical system An apparatus according to any one of claims 1 to 7.
  9. 【請求項9】 前記照明系は、露光光源からの露光ビームを成形して前記光学素子に導くビーム成形光学系を備え、 前記露光ビームの照度の大きさ、及び前記露光ビームの照度分布のばらつきの大きさのバランスが取れるように前記調整系によって前記ビーム成形光学系の状態を調整することを特徴とする請求項8に記載の露光装置。 Wherein said illumination system, by molding the exposure beam from the exposure light source comprises a beam shaping optical system for guiding the optical element, the magnitude of the illuminance of the exposure beam, and the variations of the illuminance distribution of the exposure beam an apparatus according to claim 8, wherein the adjusting the state of the beam shaping optical system by the adjusting system so balanced in size can be taken in.
  10. 【請求項10】 露光ビームで第1物体を照明する照明系を備え、前記露光ビームで前記第1物体を介して第2 10. an illumination system for illuminating the first object with an exposure beam, the second through the first object with the exposure beam
    物体を露光する露光装置において、 前記照明系における前記露光ビームのテレセントリック性の崩れ量を傾斜成分と倍率成分とに分けて計測することを特徴とする露光装置。 In an exposure apparatus that exposes an object, the exposure apparatus characterized by measuring separately collapse of telecentricity of the exposure beam in the illumination system to the inclination component and the magnification component.
  11. 【請求項11】 前記照明系による前記露光ビームの照度むらを傾斜成分と凹凸成分とに分けて計測することを特徴とする請求項10に記載の露光装置。 11. The exposure apparatus according to claim 10, characterized in that to measure separately the uneven illuminance of the exposure beam by the illumination system into a slope component and uneven components.
  12. 【請求項12】 前記第1物体が載置される第1可動体と、前記第2物体が載置される第2可動体とを有し、前記第1及び第2可動体を同期駆動する駆動系を更に備え、前記第1物体を介して前記露光ビームで前記第2物体を走査露光することを特徴とする請求項1〜11の何れか一項に記載の露光装置。 12. A first movable member, wherein the first object is placed, and a second movable member that the second object is placed, synchronously driving said first and second movable member further comprising a drive system, an exposure apparatus according to any one of claims 1 to 11, characterized in that the scanning exposing the second object with the exposure beam via the first object.
  13. 【請求項13】 前記第2物体が配置される所定面上で前記露光ビームを検出して、前記露光ビームの照射領域内で前記走査露光時に前記第1及び第2物体が移動される走査方向と直交する非走査方向に関する照度むらの傾斜成分を計測することを特徴とする請求項12に記載の露光装置。 13. detecting said exposure beam on a predetermined surface on which the second object is located, the scanning direction of the first and second object during the scanning exposure in the irradiation area of ​​the exposure beam is moved an apparatus according to claim 12, characterized in that to measure the tilt component of the illuminance unevenness concerning the non-scanning direction perpendicular to the.
  14. 【請求項14】 前記露光ビームの照射領域内で、前記走査方向に関して照度又は光量を積算して得られる、前記非走査方向に関する積算分布に基づいて、前記照度むらの凹凸成分と前記非走査方向に関する傾斜成分とを決定することを特徴とする請求項13に記載の露光装置。 In 14. the irradiation area of ​​the exposure beam, obtained by integrating the intensity or amount of light with respect to the scanning direction, based on the integrated distribution for the non-scanning direction, unevenness component and the non-scanning direction of the uneven illuminance determining the inclination component to an exposure apparatus according to claim 13, wherein.
  15. 【請求項15】 前記第1可動体上で前記第1物体以外に設けられるマークに照射される露光ビームを検出して、その崩れ量を計測することを特徴とする請求項1 15. detecting an exposure beam is irradiated on the mark provided in addition to the first object on the first movable member, according to claim 1, characterized by measuring the collapse amount
    2、13、又は14に記載の露光装置。 2,13, or exposure apparatus according to 14.
  16. 【請求項16】 照明系を通る露光ビームを第1物体に照射し、前記第1物体を介して前記露光ビームで第2物体を露光する露光装置の調整方法において、 前記第2物体が配置される所定面上で前記露光ビームを検出して、前記照明系のテレセントリシティと、前記露光ビームの照射領域内での照度又は光量の分布との少なくとも一方を含む照明特性を計測すると共に、前記計測された照明特性に基づいて前記照明系内の光学部材を駆動し、前記照明特性を次に計測するまでは、前記計測された照明特性を計算にて更新すると共に、前記更新された照明特性に基づいて前記光学部材を駆動することを特徴とする露光装置の調整方法。 16. irradiated with exposure light beam passing through the illumination system to the first object, the method of adjusting an exposure apparatus for exposing a second object with the exposure beam through the first object, the second object is placed that detects the exposure beam on the predetermined plane, a telecentricity of the illumination system, the measured illumination characteristics including at least one of the illuminance or light intensity distribution of the irradiation area of ​​the exposure beam, wherein driving the optical member in the illumination system on the basis of measured illumination characteristics, until the next measuring the illumination characteristics, and updates the measured illumination characteristics by calculating the updated illumination characteristics adjustment method for an exposure apparatus characterized by driving the optical member based on.
  17. 【請求項17】 前記第1物体が載置される第1可動体と、前記第2物体が載置される第2可動体とを同期駆動して、前記第1物体を介して前記露光ビームで前記第2 A first movable member 17. The first object is placed, the second object is driven synchronously with the second movable member to be placed, the exposure beam via the first object in the second
    物体を走査露光し、前記第1可動体上で前記第1物体以外に設けられるマークを用いて前記照明特性を計測することを特徴とする請求項16に記載の露光装置の調整方法。 Object to scanning exposure, the adjustment method for an exposure apparatus according to claim 16, characterized by measuring the illumination characteristics using the marks provided in addition to the first object in the first movable member.
  18. 【請求項18】 前記第2物体が配置される所定面上で前記露光ビームを検出して、前記露光ビームの照射領域内で前記走査露光時に前記第1及び第2物体が移動される走査方向と直交する非走査方向に関する照度むらの傾斜成分を計測することを特徴とする請求項17に記載の露光装置の調整方法。 18. detecting said exposure beam on a predetermined surface on which the second object is located, the scanning direction of the first and second object during the scanning exposure in the irradiation area of ​​the exposure beam is moved adjustment method for an exposure apparatus according to claim 17, characterized in that to measure the tilt component of the illuminance unevenness concerning the non-scanning direction perpendicular to the.
  19. 【請求項19】 露光ビームで第1物体を照明する照明系を備え、前記露光ビームで前記第1物体を介して第2 19. an illumination system for illuminating the first object with an exposure beam, the second through the first object with the exposure beam
    物体を露光する露光装置の調整方法において、 前記照明系中の所定の光学部材の状態を複数の状態に設定して、それぞれ前記照明系の所定の照明特性の計測を行い、 該計測結果に基づいて、前記光学部材の駆動量と前記照明特性の変化量との関係を求めて記憶し、 該記憶された関係に基づいて、前記照明特性を制御するために前記光学部材を駆動することを特徴とする露光装置の調整方法。 In the adjustment method for an exposure apparatus that exposes an object, sets the state of the predetermined optical member in the illumination system into a plurality of states, each performed measurement of the given illumination characteristics of the illumination system, based on the measurement result Te, characterized in that said storing seeking relationship between the driving amount and the change amount of the illumination characteristics of the optical member, based on the stored relationship, and drives the optical member in order to control the illumination characteristics adjustment method for an exposure apparatus to be.
  20. 【請求項20】 前記照明系の照明条件を複数の照明条件の何れかに切り換え可能にしておき、 前記複数の照明条件のそれぞれに対して前記光学部材の最適位置を求めて記憶しておき、 前記照明系の照明条件が切り換えられた際に、前記光学部材の位置を切り換え後の照明条件に対する最適位置に設定することを特徴とする請求項19に記載の露光装置の調整方法。 20. Leave the switchable illumination conditions of the illumination system to one of a plurality of illumination conditions, is stored in search of the optimum position of the optical member to each of the plurality of illumination conditions, when illumination condition of said illumination system has been switched, the adjustment method for an exposure apparatus according to claim 19, characterized in that setting the optimum position with respect to the illumination conditions after switching the position of the optical member.
  21. 【請求項21】 請求項1〜15の何れか一項に記載の露光装置を用いてデバイスパターンをワークピース上に転写する工程を含むデバイス製造方法。 21. The device manufacturing method comprising the step of transferring a device pattern on a workpiece by using the exposure apparatus according to any one of claims 1 to 15.
JP2001038326A 2000-02-25 2001-02-15 Aligner, its adjusting method, and method for fabricating device using aligner Withdrawn JP2001313250A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000-49740 2000-02-25
JP2000049740 2000-02-25
JP2001038326A JP2001313250A (en) 2000-02-25 2001-02-15 Aligner, its adjusting method, and method for fabricating device using aligner

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2001038326A JP2001313250A (en) 2000-02-25 2001-02-15 Aligner, its adjusting method, and method for fabricating device using aligner
TW090104135A TW546699B (en) 2000-02-25 2001-02-23 Exposure apparatus and exposure method capable of controlling illumination distribution
SG200101071A SG107560A1 (en) 2000-02-25 2001-02-23 Exposure apparatus and exposure method capable of controlling illumination distribution
KR1020010009113A KR20010085493A (en) 2000-02-25 2001-02-23 Exposure apparatus, method for adjusting the same, and method for manufacturing device using the exposure apparatus
US09/790,616 US6771350B2 (en) 2000-02-25 2001-02-23 Exposure apparatus and exposure method capable of controlling illumination distribution
SG200303509A SG124257A1 (en) 2000-02-25 2001-02-23 Exposure apparatus and exposure method capable of controlling illumination distribution
US10/876,712 US6927836B2 (en) 2000-02-25 2004-06-28 Exposure apparatus and exposure method capable of controlling illumination distribution

Publications (1)

Publication Number Publication Date
JP2001313250A true JP2001313250A (en) 2001-11-09

Family

ID=26586124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001038326A Withdrawn JP2001313250A (en) 2000-02-25 2001-02-15 Aligner, its adjusting method, and method for fabricating device using aligner

Country Status (1)

Country Link
JP (1) JP2001313250A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150297A (en) * 2005-11-23 2007-06-14 Asml Netherlands Bv Method of measuring magnification of projection system, manufacturing method for device, and computer program product
WO2007097466A1 (en) 2006-02-21 2007-08-30 Nikon Corporation Measuring device and method, processing device and method, pattern forming device and method, exposing device and method, and device fabricating method
WO2007097380A1 (en) 2006-02-21 2007-08-30 Nikon Corporation Pattern forming apparatus, pattern forming method, mobile object driving system, mobile body driving method, exposure apparatus, exposure method and device manufacturing method
WO2007097379A1 (en) 2006-02-21 2007-08-30 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method and device manufacturing method
WO2007135998A1 (en) 2006-05-24 2007-11-29 Nikon Corporation Holding device and exposure device
WO2008026742A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008026732A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive system and mobile body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision method
WO2008026739A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008029757A1 (en) 2006-09-01 2008-03-13 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method
WO2008029758A1 (en) 2006-09-01 2008-03-13 Nikon Corporation Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
JP2008529290A (en) * 2005-01-29 2008-07-31 カール・ツァイス・エスエムティー・アーゲー Illumination system, specifically, the illumination system for a projection exposure apparatus in a semiconductor lithography
JP2009004771A (en) * 2007-05-29 2009-01-08 Nikon Corp Exposure method, exposure apparatus, and method for producing device
WO2009011356A1 (en) 2007-07-18 2009-01-22 Nikon Corporation Measurement method, stage apparatus, and exposure apparatus
WO2009013903A1 (en) 2007-07-24 2009-01-29 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
WO2009013905A1 (en) 2007-07-24 2009-01-29 Nikon Corporation Position measuring system, exposure device, position measuring method, exposure method, device manufacturing method, tool, and measuring method
WO2009101958A1 (en) 2008-02-14 2009-08-20 Nikon Corporation Illumination optical system, exposure device, device manufacturing method, correction filter, and exposure optical system
US7838858B2 (en) 2005-05-31 2010-11-23 Nikon Corporation Evaluation system and method of a search operation that detects a detection subject on an object
EP2267759A2 (en) 2004-02-02 2010-12-29 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP2275869A2 (en) 2003-06-19 2011-01-19 Nikon Corporation Exposure apparatus and device manufacturing method
JP2011014934A (en) * 2004-12-28 2011-01-20 Asml Holding Nv Method of calculating intensity integral
US7948616B2 (en) 2007-04-12 2011-05-24 Nikon Corporation Measurement method, exposure method and device manufacturing method
US8023106B2 (en) 2007-08-24 2011-09-20 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US8098362B2 (en) 2007-05-30 2012-01-17 Nikon Corporation Detection device, movable body apparatus, pattern formation apparatus and pattern formation method, exposure apparatus and exposure method, and device manufacturing method
JP2012104813A (en) * 2010-10-26 2012-05-31 Carl Zeiss Smt Gmbh Polarization actuator
US8194232B2 (en) 2007-07-24 2012-06-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, position control method and position control system, and device manufacturing method
US8218129B2 (en) 2007-08-24 2012-07-10 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, measuring method, and position measurement system
US8237919B2 (en) 2007-08-24 2012-08-07 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method for continuous position measurement of movable body before and after switching between sensor heads
US8323855B2 (en) 2007-03-01 2012-12-04 Nikon Corporation Pellicle frame apparatus, mask, exposing method, exposure apparatus, and device fabricating method
US8435723B2 (en) 2008-09-11 2013-05-07 Nikon Corporation Pattern forming method and device production method
US8547527B2 (en) 2007-07-24 2013-10-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and pattern formation apparatus, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
EP2772804A1 (en) 2004-11-18 2014-09-03 Nikon Corporation Positioning and loading a substrate in an exposure apparatus
US8867022B2 (en) 2007-08-24 2014-10-21 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, and device manufacturing method
US9304412B2 (en) 2007-08-24 2016-04-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and measuring method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9366974B2 (en) 2007-03-05 2016-06-14 Nikon Corporation Movable body apparatus, pattern forming apparatus and pattern forming method, device manufacturing method, manufacturing method of movable body apparatus, and movable body drive method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9500960B2 (en) 2003-04-11 2016-11-22 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9500960B2 (en) 2003-04-11 2016-11-22 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9946163B2 (en) 2003-04-11 2018-04-17 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US10191388B2 (en) 2003-06-19 2019-01-29 Nikon Corporation Exposure apparatus, and device manufacturing method
EP2278401A2 (en) 2003-06-19 2011-01-26 Nikon Corporation Exposure apparatus and device manufacturing method
EP2275869A2 (en) 2003-06-19 2011-01-19 Nikon Corporation Exposure apparatus and device manufacturing method
US9551943B2 (en) 2003-06-19 2017-01-24 Nikon Corporation Exposure apparatus and device manufacturing method
US9810995B2 (en) 2003-06-19 2017-11-07 Nikon Corporation Exposure apparatus and device manufacturing method
US10007188B2 (en) 2003-06-19 2018-06-26 Nikon Corporation Exposure apparatus and device manufacturing method
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
EP3139401A1 (en) 2004-02-02 2017-03-08 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US10007196B2 (en) 2004-02-02 2018-06-26 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
EP2998982A1 (en) 2004-02-02 2016-03-23 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US9665016B2 (en) 2004-02-02 2017-05-30 Nikon Corporation Lithographic apparatus and method having substrate table and sensor table to hold immersion liquid
US9684248B2 (en) 2004-02-02 2017-06-20 Nikon Corporation Lithographic apparatus having substrate table and sensor table to measure a patterned beam
US10139737B2 (en) 2004-02-02 2018-11-27 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US9632431B2 (en) 2004-02-02 2017-04-25 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
EP2960927A2 (en) 2004-02-02 2015-12-30 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
EP2284866A2 (en) 2004-02-02 2011-02-16 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP2287894A2 (en) 2004-02-02 2011-02-23 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP2287893A2 (en) 2004-02-02 2011-02-23 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP2980834A1 (en) 2004-02-02 2016-02-03 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP2267759A2 (en) 2004-02-02 2010-12-29 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
EP2772804A1 (en) 2004-11-18 2014-09-03 Nikon Corporation Positioning and loading a substrate in an exposure apparatus
EP2772803A1 (en) 2004-11-18 2014-09-03 Nikon Corporation Positioning and loading a substrate in an exposure apparatus
EP3346486A1 (en) 2004-11-18 2018-07-11 Nikon Corporation Exposure method and exposure apparatus, and semiconductor device manufacturing methods
JP2011014934A (en) * 2004-12-28 2011-01-20 Asml Holding Nv Method of calculating intensity integral
JP2008529290A (en) * 2005-01-29 2008-07-31 カール・ツァイス・エスエムティー・アーゲー Illumination system, specifically, the illumination system for a projection exposure apparatus in a semiconductor lithography
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7838858B2 (en) 2005-05-31 2010-11-23 Nikon Corporation Evaluation system and method of a search operation that detects a detection subject on an object
JP4527099B2 (en) * 2005-11-23 2010-08-18 エーエスエムエル ネザーランズ ビー.ブイ. Method of measuring the magnification of the projection system, device manufacturing method, and computer program products
JP2007150297A (en) * 2005-11-23 2007-06-14 Asml Netherlands Bv Method of measuring magnification of projection system, manufacturing method for device, and computer program product
US10139738B2 (en) 2006-02-21 2018-11-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
EP2541325A1 (en) 2006-02-21 2013-01-02 Nikon Corporation Exposure apparatus and exposure method
US10012913B2 (en) 2006-02-21 2018-07-03 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10088759B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10088343B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US9329060B2 (en) 2006-02-21 2016-05-03 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10132658B2 (en) 2006-02-21 2018-11-20 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
EP3293577A1 (en) 2006-02-21 2018-03-14 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP2813893A1 (en) 2006-02-21 2014-12-17 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10234773B2 (en) 2006-02-21 2019-03-19 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
EP3327507A1 (en) 2006-02-21 2018-05-30 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US9857697B2 (en) 2006-02-21 2018-01-02 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
EP3267258A1 (en) 2006-02-21 2018-01-10 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP3267259A1 (en) 2006-02-21 2018-01-10 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP3270226A1 (en) 2006-02-21 2018-01-17 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
WO2007097379A1 (en) 2006-02-21 2007-08-30 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method and device manufacturing method
WO2007097380A1 (en) 2006-02-21 2007-08-30 Nikon Corporation Pattern forming apparatus, pattern forming method, mobile object driving system, mobile body driving method, exposure apparatus, exposure method and device manufacturing method
WO2007097466A1 (en) 2006-02-21 2007-08-30 Nikon Corporation Measuring device and method, processing device and method, pattern forming device and method, exposing device and method, and device fabricating method
EP3279739A1 (en) 2006-02-21 2018-02-07 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US9989859B2 (en) 2006-02-21 2018-06-05 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
EP3115844A1 (en) 2006-02-21 2017-01-11 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
WO2007135998A1 (en) 2006-05-24 2007-11-29 Nikon Corporation Holding device and exposure device
EP3279738A1 (en) 2006-08-31 2018-02-07 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US9983486B2 (en) 2006-08-31 2018-05-29 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP2993688A2 (en) 2006-08-31 2016-03-09 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008026742A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US9958792B2 (en) 2006-08-31 2018-05-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP3312676A1 (en) 2006-08-31 2018-04-25 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
WO2008026732A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive system and mobile body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision method
EP2990872A2 (en) 2006-08-31 2016-03-02 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP2991101A2 (en) 2006-08-31 2016-03-02 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP3064999A1 (en) 2006-08-31 2016-09-07 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP3067748A1 (en) 2006-08-31 2016-09-14 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP2988320A1 (en) 2006-08-31 2016-02-24 Nikon Corporation Exposure apparatus, exposure method, and device manufactuing method
EP3291010A1 (en) 2006-08-31 2018-03-07 Nikon Corporation Exposure apparatus and method, and device manufacturing method
US8947639B2 (en) 2006-08-31 2015-02-03 Nikon Corporation Exposure method and apparatus measuring position of movable body based on information on flatness of encoder grating section
US8937710B2 (en) 2006-08-31 2015-01-20 Nikon Corporation Exposure method and apparatus compensating measuring error of encoder due to grating section and displacement of movable body in Z direction
EP2738608A1 (en) 2006-08-31 2014-06-04 Nikon Corporation Method and system for driving a movable body in an exposure apparatus
WO2008026739A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US10067428B2 (en) 2006-08-31 2018-09-04 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
US10073359B2 (en) 2006-08-31 2018-09-11 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
US10101673B2 (en) 2006-08-31 2018-10-16 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
US8203697B2 (en) 2006-08-31 2012-06-19 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
US10162274B2 (en) 2006-08-31 2018-12-25 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
EP3418807A1 (en) 2006-08-31 2018-12-26 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP3361317A1 (en) 2006-09-01 2018-08-15 Nikon Corporation Exposure apparatus and exposure method
US10197924B2 (en) 2006-09-01 2019-02-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9760021B2 (en) 2006-09-01 2017-09-12 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US10289012B2 (en) 2006-09-01 2019-05-14 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
WO2008029758A1 (en) 2006-09-01 2008-03-13 Nikon Corporation Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
US9740114B2 (en) 2006-09-01 2017-08-22 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9846374B2 (en) 2006-09-01 2017-12-19 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
WO2008029757A1 (en) 2006-09-01 2008-03-13 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method
US9625834B2 (en) 2006-09-01 2017-04-18 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9377698B2 (en) 2006-09-01 2016-06-28 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9971253B2 (en) 2006-09-01 2018-05-15 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
EP2993523A2 (en) 2006-09-01 2016-03-09 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US9874822B2 (en) 2006-09-01 2018-01-23 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP2993524A2 (en) 2006-09-01 2016-03-09 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US10289010B2 (en) 2006-09-01 2019-05-14 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US8323855B2 (en) 2007-03-01 2012-12-04 Nikon Corporation Pellicle frame apparatus, mask, exposing method, exposure apparatus, and device fabricating method
US10228625B2 (en) 2007-03-05 2019-03-12 Nikon Corporation Movable body apparatus, pattern forming apparatus and pattern forming method, device manufacturing method, manufacturing method of movable body apparatus, and movable body drive method
US9366974B2 (en) 2007-03-05 2016-06-14 Nikon Corporation Movable body apparatus, pattern forming apparatus and pattern forming method, device manufacturing method, manufacturing method of movable body apparatus, and movable body drive method
US7948616B2 (en) 2007-04-12 2011-05-24 Nikon Corporation Measurement method, exposure method and device manufacturing method
US8164736B2 (en) 2007-05-29 2012-04-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
JP2009004771A (en) * 2007-05-29 2009-01-08 Nikon Corp Exposure method, exposure apparatus, and method for producing device
US8098362B2 (en) 2007-05-30 2012-01-17 Nikon Corporation Detection device, movable body apparatus, pattern formation apparatus and pattern formation method, exposure apparatus and exposure method, and device manufacturing method
EP3447582A1 (en) 2007-07-18 2019-02-27 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
EP3246755A1 (en) 2007-07-18 2017-11-22 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US9372410B2 (en) 2007-07-18 2016-06-21 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
US9316917B2 (en) 2007-07-18 2016-04-19 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
US9804506B2 (en) 2007-07-18 2017-10-31 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
EP2818926A2 (en) 2007-07-18 2014-12-31 Nikon Corporation Measurement method, stage apparatus, and exposure apparatus
EP2818927A2 (en) 2007-07-18 2014-12-31 Nikon Corporation Measurement method, stage apparatus, and exposure apparatus
WO2009011356A1 (en) 2007-07-18 2009-01-22 Nikon Corporation Measurement method, stage apparatus, and exposure apparatus
EP3056945A1 (en) 2007-07-18 2016-08-17 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
EP2933683A1 (en) 2007-07-18 2015-10-21 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
US8194232B2 (en) 2007-07-24 2012-06-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, position control method and position control system, and device manufacturing method
WO2009013903A1 (en) 2007-07-24 2009-01-29 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
WO2009013905A1 (en) 2007-07-24 2009-01-29 Nikon Corporation Position measuring system, exposure device, position measuring method, exposure method, device manufacturing method, tool, and measuring method
US8582084B2 (en) 2007-07-24 2013-11-12 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, position control method and position control system, and device manufacturing method
US8264669B2 (en) 2007-07-24 2012-09-11 Nikon Corporation Movable body drive method, pattern formation method, exposure method, and device manufacturing method for maintaining position coordinate before and after switching encoder head
US8243257B2 (en) 2007-07-24 2012-08-14 Nikon Corporation Position measurement system, exposure apparatus, position measuring method, exposure method and device manufacturing method, and tool and measuring method
US8547527B2 (en) 2007-07-24 2013-10-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and pattern formation apparatus, and device manufacturing method
US9612539B2 (en) 2007-07-24 2017-04-04 Nikon Corporation Movable body drive method, pattern formation method, exposure method, and device manufacturing method for maintaining position coordinate before and after switching encoder head
US8023106B2 (en) 2007-08-24 2011-09-20 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US8218129B2 (en) 2007-08-24 2012-07-10 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, measuring method, and position measurement system
US9304412B2 (en) 2007-08-24 2016-04-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and measuring method
US8237919B2 (en) 2007-08-24 2012-08-07 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method for continuous position measurement of movable body before and after switching between sensor heads
US8867022B2 (en) 2007-08-24 2014-10-21 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, and device manufacturing method
US8767182B2 (en) 2007-08-24 2014-07-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
EP3306398A1 (en) 2008-02-14 2018-04-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method, compensation filter, and exposure optical system
WO2009101958A1 (en) 2008-02-14 2009-08-20 Nikon Corporation Illumination optical system, exposure device, device manufacturing method, correction filter, and exposure optical system
US8435723B2 (en) 2008-09-11 2013-05-07 Nikon Corporation Pattern forming method and device production method
US8373847B2 (en) 2010-10-26 2013-02-12 Carl Zeiss Smt Gmbh Polarization actuator
JP2012104813A (en) * 2010-10-26 2012-05-31 Carl Zeiss Smt Gmbh Polarization actuator

Similar Documents

Publication Publication Date Title
US6991877B2 (en) Exposure method and apparatus
US7102731B2 (en) Projection optical system adjustment method, prediction method, evaluation method, adjustment method, exposure method and exposure apparatus, program, and device manufacturing method
US6583855B2 (en) Lithographic apparatus, device manufacturing method, and device manufactured thereby
KR100554255B1 (en) Lithographic Apparatus, Device Manufacturing Method, and Device Manufactured Thereby
US20060109463A1 (en) Latent overlay metrology
US6819403B2 (en) Illumination optical system, exposure apparatus, and microdevice manufacturing method
KR100599932B1 (en) Method of measuring aberration in an optical imaging system
JP2940553B2 (en) Exposure method
US20020041377A1 (en) Aerial image measurement method and unit, optical properties measurement method and unit, adjustment method of projection optical system, exposure method and apparatus, making method of exposure apparatus, and device manufacturing method
US6677088B2 (en) Photomask producing method and apparatus and device manufacturing method
EP0952491A2 (en) Lithography apparatus
JP3826047B2 (en) Exposure apparatus, exposure method, and device manufacturing method using the same
JP4034262B2 (en) Lithographic apparatus and device manufacturing method
US6927836B2 (en) Exposure apparatus and exposure method capable of controlling illumination distribution
US7123346B2 (en) Projection exposure apparatus with line width calculator controlled diaphragm unit
KR100554887B1 (en) Lithography apparatus
EP1154330A2 (en) Exposure method and exposure apparatus
US6366341B1 (en) Exposure method and exposure apparatus
JPWO2007058188A1 (en) Exposure apparatus and an exposure method, and device manufacturing method
US20050200823A1 (en) Scanning exposure method, scanning exposure apparatus and its making method, and device and its manufacturing method
WO1999031717A1 (en) Projection exposure method and projection aligner
JP2002334835A (en) Lithographic system, method of manufacturing device, and device manufactured thereby
US6710850B2 (en) Exposure apparatus and exposure method
CN102122117A (en) Lithographic apparatus and method
JP3969855B2 (en) Exposure method and apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513