JP2001313250A - Aligner, its adjusting method, and method for fabricating device using aligner - Google Patents

Aligner, its adjusting method, and method for fabricating device using aligner

Info

Publication number
JP2001313250A
JP2001313250A JP2001038326A JP2001038326A JP2001313250A JP 2001313250 A JP2001313250 A JP 2001313250A JP 2001038326 A JP2001038326 A JP 2001038326A JP 2001038326 A JP2001038326 A JP 2001038326A JP 2001313250 A JP2001313250 A JP 2001313250A
Authority
JP
Japan
Prior art keywords
illumination
exposure
optical
exposure beam
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001038326A
Other languages
Japanese (ja)
Inventor
Hisashi Nishinaga
壽 西永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2001038326A priority Critical patent/JP2001313250A/en
Priority to SG200101071A priority patent/SG107560A1/en
Priority to SG200303509A priority patent/SG124257A1/en
Priority to KR1020010009113A priority patent/KR20010085493A/en
Priority to US09/790,616 priority patent/US6771350B2/en
Priority to TW090104135A priority patent/TW546699B/en
Publication of JP2001313250A publication Critical patent/JP2001313250A/en
Priority to US10/876,712 priority patent/US6927836B2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Abstract

PROBLEM TO BE SOLVED: To provide an aligner in which an illumination optical system can be adjusted accurately in a short time. SOLUTION: A reticle R is irradiated with an exposing light IL from an exposing light source 1 through an illumination optical system ILS comprising a first fly eye lens 6, a second fly eye lens 9, lens systems 12, 13 blinds 14A, 14B, and condenser lens systems 17, 18 and the pattern image of the reticle R is projected onto a wafer W through a projection optical system PL. Specific illumination characteristics are measured using an evaluation mark plate 33 on a reticle stage 31, and a spatial image measuring system 46 provided on a wafer state 39 and then the state of the second fly eye lens 9 and the lens systems 12, 13 is adjusted through drive units 23, 24 and 25 based on the measurements.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば半導体素
子、液晶表示素子、プラズマディスプレイ素子、又は薄
膜磁気ヘッド等を製造するためのリソグラフィ工程でマ
スクパターンを投影光学系を介して基板上に転写するた
めに使用される露光装置、及びこの露光装置の調整方法
に関し、特に照明系の調整を自動的に行う機能を備えた
露光装置に関する。
The present invention relates to a method of transferring a mask pattern onto a substrate through a projection optical system in a lithography process for manufacturing, for example, a semiconductor device, a liquid crystal display device, a plasma display device, or a thin film magnetic head. Exposure apparatus used for this, and an exposure apparatus adjustment method, and particularly to an exposure apparatus having a function of automatically adjusting an illumination system.

【0002】[0002]

【従来の技術】半導体デバイスの集積度及び微細度の向
上に対応するため、半導体デバイスを製造するためのリ
ソグラフィ工程(代表的にはレジスト塗布工程、露光工
程、及びレジスト現像工程からなる)を担う露光装置に
おいては、解像力、及び転写忠実度等をより高めること
が要求されている。このように解像力、及び転写忠実度
を高めるためには、露光ビームとしての露光光の波長を
短波長化して、開口数の大きい投影光学系を使用すると
共に、基板としてのウエハ上に塗布されたフォトレジス
トを適正露光量で露光するための露光量制御を高精度に
行う必要がある。そして、その投影光学系の結像特性を
限界まで引き出して、フォトレジストの露光量制御を高
精度に行うためには、マスクとしてのレチクルを露光光
で照明する照明光学系の照明特性をできるだけ高めるよ
うに、その照明光学系の最適化を行う必要がある。
2. Description of the Related Art A lithography process (typically, a resist coating process, an exposure process, and a resist development process) for manufacturing a semiconductor device is performed in order to cope with an improvement in the degree of integration and fineness of a semiconductor device. In an exposure apparatus, it is required to further improve resolution, transfer fidelity, and the like. As described above, in order to increase the resolution and the transfer fidelity, the wavelength of the exposure light as the exposure beam was shortened, and a projection optical system having a large numerical aperture was used. It is necessary to perform exposure amount control for exposing a photoresist at an appropriate exposure amount with high accuracy. In order to bring out the imaging characteristics of the projection optical system to the limit and to control the exposure amount of the photoresist with high accuracy, the illumination characteristics of the illumination optical system that illuminates the reticle as a mask with the exposure light are enhanced as much as possible. Thus, it is necessary to optimize the illumination optical system.

【0003】露光装置の照明光学系を最適化するための
調整は、従来は以下のような工程で行われていた。 (イ)オペレータが照明光学系の調整対象の照明特性
(例えば照度むら)を計測する。 (ロ)その計測結果に基づいて、その照明特性に対応し
た駆動ユニットを用いて所定の光学部材の状態(位置又
は傾斜角等)を調整する。この際の駆動量は、光学設計
値をオペレータの経験に基づいて修正することによっ
て、その照明特性をできるだけ改善するように設定され
る。
Conventionally, adjustment for optimizing the illumination optical system of an exposure apparatus has been performed in the following steps. (A) The operator measures the illumination characteristic (for example, uneven illuminance) of the illumination optical system to be adjusted. (B) Based on the measurement result, the state (position, tilt angle, etc.) of a predetermined optical member is adjusted using a drive unit corresponding to the illumination characteristic. The drive amount at this time is set so as to improve the illumination characteristics as much as possible by modifying the optical design values based on the experience of the operator.

【0004】(ハ)その調整後に、その照明特性の残存
する量を再計測し、その残存する量が許容範囲を超える
際には、その駆動ユニットを介して再調整を行う。 (ニ)その調整の完了後に、その光学部材の最終的な状
態(最適な状態)を記憶する。 そして、複数の照明条件のそれぞれにおいて、上記の調
整工程を調整対象の照明特性毎に繰り返して、対応する
光学部材の最適な状態を記憶し、照明条件が切り換えら
れた際には、対応する光学部材をそれぞれ最適な状態に
設定していた。
(C) After the adjustment, the remaining amount of the illumination characteristic is measured again, and when the remaining amount exceeds the allowable range, readjustment is performed via the drive unit. (D) After the adjustment is completed, the final state (optimal state) of the optical member is stored. Then, in each of the plurality of illumination conditions, the above-described adjustment process is repeated for each illumination characteristic to be adjusted, the optimal state of the corresponding optical member is stored, and when the illumination condition is switched, the corresponding optical Each member was set to an optimal state.

【0005】[0005]

【発明が解決しようとする課題】上記の如く従来の露光
装置の照明光学系を最適化するための調整は、露光装置
の組立調整時、及びメンテナンス時等にオペレータによ
って行われていた。しかしながら、オペレータが調整を
行う場合には、調整に長い時間を要するという不都合が
ある。更に、複数の照明条件の全てについてそれぞれ照
明光学系の調整を行う必要があるため、全体の調整時間
はかなり長くなっていた。また、最適化に要する時間
は、オペレータの熟練度にも左右されるため、オペレー
タによっては更に調整時間が長くなってしまう恐れもあ
った。
As described above, adjustment for optimizing the illumination optical system of the conventional exposure apparatus has been performed by an operator at the time of assembling adjustment of the exposure apparatus and at the time of maintenance. However, when the operator performs the adjustment, there is a disadvantage that the adjustment requires a long time. Furthermore, since it is necessary to adjust the illumination optical system for all of the plurality of illumination conditions, the overall adjustment time has been considerably long. Further, since the time required for the optimization depends on the skill of the operator, the adjustment time may be further increased depending on the operator.

【0006】また、照明光学系中の複数の光学部材の状
態を調整する必要がある場合には、調整に伴う相互の影
響等も考慮する必要があるため、調整工程が極めて煩雑
となっていた。このように従来の照明光学系の調整には
長時間の煩雑な工程を要したため、例えば製造するデバ
イスの要求精度等に応じて所定の照明特性の許容レベル
を変化させるような運用を行うことが困難であった。ま
た、例えば照明特性中の照度むら等は、照明光学系中の
光学部材の曇り、及び硝材の劣化等によって経時的に変
化する場合があるが、このような場合にも従来の調整方
法では迅速に対応することが困難であった。
Further, when it is necessary to adjust the state of a plurality of optical members in the illumination optical system, it is necessary to consider mutual influences caused by the adjustment, so that the adjustment process is extremely complicated. . As described above, since the conventional adjustment of the illumination optical system required a long and complicated process, it was possible to perform an operation of changing the allowable level of the predetermined illumination characteristic according to, for example, the required accuracy of the device to be manufactured. It was difficult. Also, for example, the illuminance unevenness in the illumination characteristics may change with time due to fogging of the optical member in the illumination optical system, deterioration of the glass material, and the like. It was difficult to respond.

【0007】本発明は斯かる点に鑑み、照明光学系の調
整を短時間に正確に行うことができる露光装置を提供す
ることを第1の目的とする。更に本発明は、複数の照明
条件に切り換えることができる照明光学系の調整を実質
的に自動的に行うことができる露光装置を提供すること
を第2の目的とする。
SUMMARY OF THE INVENTION In view of the foregoing, it is a first object of the present invention to provide an exposure apparatus that can accurately adjust an illumination optical system in a short time. Further, it is a second object of the present invention to provide an exposure apparatus capable of substantially automatically adjusting an illumination optical system capable of switching to a plurality of illumination conditions.

【0008】更に本発明は、そのような露光装置の効率
的な使用方法、及びその露光装置を用いた高精度なデバ
イス製造方法を提供することをも目的とする。
Another object of the present invention is to provide a method for efficiently using such an exposure apparatus and a highly accurate device manufacturing method using the exposure apparatus.

【0009】[0009]

【課題を解決するための手段】本発明による第1の露光
装置は、露光ビームで第1物体(R)を照明する照明系
(ILS)を備え、その露光ビームでその第1物体を介
して第2物体(W)を露光する露光装置において、その
照明系中に配置されて、その露光ビームの照明条件を複
数の照明条件の何れかに切り換える照明条件切り換え系
(10,10e)と、その複数の照明条件のそれぞれに
応じてその照明系の所定の照明特性を制御するために、
その照明系中の所定の光学部材(9,12,13)の状
態を調整する調整系(23,24,25)とを設けたも
のである。
A first exposure apparatus according to the present invention includes an illumination system (ILS) for illuminating a first object (R) with an exposure beam, and the illumination beam passes through the first object via the first object. In an exposure apparatus for exposing a second object (W), an illumination condition switching system (10, 10e) arranged in the illumination system for switching the illumination condition of the exposure beam to one of a plurality of illumination conditions, and In order to control a predetermined lighting characteristic of the lighting system according to each of the plurality of lighting conditions,
An adjustment system (23, 24, 25) for adjusting the state of predetermined optical members (9, 12, 13) in the illumination system is provided.

【0010】斯かる本発明によれば、その照明条件切り
換え系によって照明条件を切り換えた際には、切り換え
後の照明条件に応じてその調整系を介してその光学部材
の状態(光軸方向の位置、光軸に垂直な方向の位置、及
びチルト角等)を調整する。これによって、複数の照明
条件に対してそれぞれ実質的に自動的に照明系の所定の
照明特性を所望の状態に制御できる。
According to the present invention, when the illumination condition is switched by the illumination condition switching system, the state of the optical member (in the optical axis direction) is adjusted via the adjustment system according to the switched illumination condition. Position, position in the direction perpendicular to the optical axis, and tilt angle). Thus, the predetermined illumination characteristics of the illumination system can be controlled to a desired state substantially automatically under a plurality of illumination conditions.

【0011】この場合、その評価対象の所定の照明特性
の一例は、その露光ビームの照度むら、及びその露光ビ
ームのテレセントリック性の崩れ量の少なくとも一方で
ある。これらは共にその第2物体上で高い解像度を得る
ために極めて重要な特性である。更に、その評価対象の
照明特性を、その露光ビームの照度むらの傾斜成分及び
凹凸成分、並びにその露光ビームのテレセントリック性
の崩れ量の傾斜成分(2次元のベクトル量)及び倍率成
分とすることが望ましい。この5つの照明特性の成分
は、その照明系中の複数の光学部材を互いに独立に駆動
することによって容易にほぼ単独に制御できるため、特
に自動化を容易に行うことができる。
In this case, an example of the predetermined illumination characteristic to be evaluated is at least one of the illuminance unevenness of the exposure beam and the loss of the telecentricity of the exposure beam. These are both very important properties for obtaining high resolution on the second object. Further, the illumination characteristics to be evaluated may be a slope component and a concavo-convex component of uneven illuminance of the exposure beam, a slope component (two-dimensional vector amount) and a magnification component of a telecentricity collapse amount of the exposure beam. desirable. The components of the five illumination characteristics can be easily and almost independently controlled by driving a plurality of optical members in the illumination system independently of each other, so that automation can be particularly easily performed.

【0012】なお、ここでは、露光ビームのテレセント
リック性の崩れ量は、照明系(又は照明光学系)のテレ
セントリシティである。また、その照明系のその照明特
性を計測する特性計測系(33,46,42)と、この
特性計測系の計測結果に基づいて、その調整系の駆動量
とその照明特性の変化量との関係を求めて記憶する演算
制御系(22)とを有することが望ましい。その照明特
性が経時的に変化する場合には、例えば定期的にその特
性計測系でその照明特性を計測する、或いは先に記憶し
た関係を計算(シミュレーション)にて更新する、又は
両者を併用する(即ち、定期的な照明特性の計測の間は
計算にて上記関係を更新する)と共に、これに基づいて
その調整系を駆動することによって、その照明特性を迅
速に所望の状態に戻すことができる。
Here, the amount of collapse of the telecentricity of the exposure beam is the telecentricity of the illumination system (or the illumination optical system). In addition, a characteristic measurement system (33, 46, 42) for measuring the illumination characteristic of the illumination system, and a driving amount of the adjustment system and a change amount of the illumination characteristic based on a measurement result of the characteristic measurement system. It is desirable to have an arithmetic control system (22) for obtaining and storing the relationship. When the lighting characteristics change over time, for example, the lighting characteristics are periodically measured by the characteristic measurement system, the previously stored relationship is updated by calculation (simulation), or both are used together. (That is, the relationship is updated by calculation during the periodic measurement of the lighting characteristics), and by driving the adjustment system based on this, the lighting characteristics can be quickly returned to the desired state. it can.

【0013】次に、本発明の第2の露光装置は、露光ビ
ームで第1物体(R)を照明する照明系(ILS)を備
え、その露光ビームでその第1物体を介して第2物体
(W)を露光する露光装置において、その照明系の所定
の照明特性を計測する特性計測系(33,46,42)
と、この特性計測系の計測結果に応じてその照明系中の
所定の光学部材の状態を調整する調整系(23,24,
25)とを設けたものである。
Next, the second exposure apparatus of the present invention includes an illumination system (ILS) for illuminating the first object (R) with an exposure beam, and the second object is transmitted through the first object by the exposure beam. In an exposure apparatus for exposing (W), a characteristic measurement system (33, 46, 42) for measuring a predetermined illumination characteristic of the illumination system.
And an adjusting system (23, 24, 24) for adjusting the state of a predetermined optical member in the illumination system according to the measurement result of the characteristic measuring system.
25).

【0014】斯かる本発明によれば、例えば空間像計測
系等を備えたその特性計測系の計測結果に基づいてその
調整系を駆動することによって、その照明系の調整を短
時間に正確に行うことができる。これらの本発明におい
て、その照明系が、オプティカル・インテグレータ
(9)(ユニフォマイザ、又はホモジナイザ)と、その
オプティカル・インテグレータを通過したその露光ビー
ムをその第1物体の被照射面、又はこれと共役な面に導
く第1光学系(12)、及び第2光学系(13)とを有
する場合、これらの光学部材の状態を次のように調整す
ることで、それぞれ以下の照明特性を実質的に互いに独
立に制御できる。
According to the present invention, the adjustment of the illumination system can be accurately performed in a short time by driving the adjustment system based on the measurement result of the characteristic measurement system including the aerial image measurement system. It can be carried out. In these inventions, the illumination system comprises an optical integrator (9) (uniformizer or homogenizer), and the exposure beam passing through the optical integrator is conjugated to the illuminated surface of the first object or the illuminated surface. When the optical system has the first optical system (12) and the second optical system (13) for guiding to the various surfaces, the following illumination characteristics can be substantially adjusted by adjusting the states of these optical members as follows. Can be controlled independently of each other.

【0015】(a1)オプティカル・インテグレータ
(9)の光軸方向の位置調整:露光ビームのテレセント
リック性の崩れ量の倍率成分、(b1)第1光学系の光
軸方向の位置調整:照度むらの凹凸成分、(c1)第2
光学系の光軸に垂直な方向の2次元の位置調整:露光ビ
ームのテレセントリック性の崩れ量の傾斜成分(2次元
のベクトル量)、(d1)第2光学系のチルト角:照度
むらのそのチルトする方向の傾斜成分。そのチルトする
方向は、走査露光方式の露光装置の場合には、走査方向
に直交する非走査方向に対応することが望ましい。これ
は走査方向では積分効果によって照度むらが平均化され
るのに対して、非走査方向では平均化効果が生じないた
めにそのチルトによって補正することが望ましいからで
ある。
(A1) Position adjustment in the optical axis direction of the optical integrator (9): magnification component of the amount of collapse of the telecentricity of the exposure beam, (b1) Position adjustment in the optical axis direction of the first optical system: uneven illuminance Unevenness component, (c1) second
Two-dimensional position adjustment in the direction perpendicular to the optical axis of the optical system: a tilt component (two-dimensional vector amount) of the amount of collapse of the telecentricity of the exposure beam, (d1) the tilt angle of the second optical system: the unevenness of illuminance The tilt component in the tilt direction. In the case of a scanning exposure type exposure apparatus, the tilting direction preferably corresponds to a non-scanning direction orthogonal to the scanning direction. This is because illuminance non-uniformity is averaged in the scanning direction by the integration effect, but is not corrected in the non-scanning direction.

【0016】また、上記の本発明において、その照明系
がその露光ビームの照度分布を変形照明用の局所的な領
域に設定するための光学素子(55)と、露光光源から
の露光ビームをその光学素子に導くビーム成形光学系
(5)と、その光学素子(55)からの露光ビームを導
く集光光学系(7A,7B)と、この集光光学系からの
露光ビームの照度分布を均一化するためのオプティカル
・インテグレータ(9)(ユニフォマイザ、又はホモジ
ナイザ)とを備える場合、その調整系は、その集光光学
系、又はそのビーム成形光学系の状態を調整することが
望ましい。
Further, in the present invention, the illumination system sets the illuminance distribution of the exposure beam to a local area for deformed illumination by the illumination system and the exposure beam from the exposure light source. A beam shaping optical system (5) for guiding the optical element, a condensing optical system (7A, 7B) for guiding an exposure beam from the optical element (55), and a uniform illuminance distribution of the exposure beam from the condensing optical system. When an optical integrator (9) (uniformizer or homogenizer) is provided, it is desirable that the adjustment system adjusts the state of the condensing optical system or the beam shaping optical system.

【0017】この際に、例えばその露光ビームの照度の
大きさ、及びその露光ビームの照度分布のばらつきの大
きさのバランスが取れるようにそのビーム成形光学系を
調整することによって、露光ビームの損失を最小にした
上で照度むらを小さくすることができる。また、本発明
の第3の露光装置は、露光ビームで第1物体(R)を照
明する照明系(ILS)を備え、その露光ビームでその
第1物体を介して第2物体(W)を露光する露光装置に
おいて、その照明系におけるその露光ビームのテレセン
トリック性の崩れ量を傾斜成分と倍率成分とに分けて計
測するものである。このように傾斜成分と倍率成分とに
分けることで、調整をほぼ互いに独立に容易に行うこと
ができる。
At this time, for example, by adjusting the beam shaping optical system so as to balance the magnitude of the illuminance of the exposure beam and the magnitude of the variation in the illuminance distribution of the exposure beam, the loss of the exposure beam is reduced. , And uneven illuminance can be reduced. Further, the third exposure apparatus of the present invention includes an illumination system (ILS) for illuminating the first object (R) with the exposure beam, and the second object (W) is irradiated with the exposure beam via the first object. In an exposure apparatus that performs exposure, the amount of collapse of the telecentricity of the exposure beam in the illumination system is measured separately for a tilt component and a magnification component. By dividing the component into the tilt component and the magnification component in this manner, the adjustment can be easily performed almost independently of each other.

【0018】上記の本発明の露光装置において、その第
1物体が載置される第1可動体(31)と、その第2物
体が載置される第2可動体(39)とを有し、その第1
及び第2可動体を同期駆動する駆動系(34,41)を
更に備え、その第1物体を介してその露光ビームでその
第2物体を走査露光するようにしてもよい。この場合、
その第2物体が配置される所定面上でその露光ビームを
検出して、その露光ビームの照射領域内でその走査露光
時にその第1及び第2物体が移動される走査方向と直交
する非走査方向に関する照度むらの傾斜成分を計測する
ことが望ましい。走査露光を行う場合には、走査方向の
照度むらは平均化効果で低減されるため、非走査方向の
照度むらを計測することで、計測装置を簡素化できる。
The exposure apparatus of the present invention has a first movable body (31) on which the first object is mounted, and a second movable body (39) on which the second object is mounted. , The first
And a drive system (34, 41) for synchronously driving the second movable body, and the second object may be scanned and exposed by the exposure beam via the first object. in this case,
The exposure beam is detected on a predetermined surface on which the second object is disposed, and a non-scanning direction orthogonal to the scanning direction in which the first and second objects are moved during the scanning exposure in the irradiation area of the exposure beam. It is desirable to measure a tilt component of the illuminance unevenness in the direction. When performing the scanning exposure, the illuminance unevenness in the scanning direction is reduced by the averaging effect. Therefore, the measuring device can be simplified by measuring the illuminance unevenness in the non-scanning direction.

【0019】また、その第1可動体上でその第1物体以
外に設けられるマーク(36A)に照射される露光ビー
ムを検出して、その崩れ量を計測するようにしてもよ
い。これによってその第1物体(マスク等)のパターン
に依らずに、必要に応じて照明特性を計測することがで
きる。次に、本発明の第1の露光装置の調整方法は、照
明系(ILS)を通る露光ビームを第1物体(R)に照
射し、その第1物体を介してその露光ビームで第2物体
(W)を露光する露光装置の調整方法において、その第
2物体が配置される所定面上でその露光ビームを検出し
て、その照明系のテレセントリシティと、その露光ビー
ムの照射領域内での照度又は光量の分布との少なくとも
一方を含む照明特性を計測すると共に、その計測された
照明特性に基づいてその照明系内の光学部材(9,1
2,13)を駆動し、その照明特性を次に計測するまで
は、その計測された照明特性を計算にて更新すると共
に、その更新された照明特性に基づいてその光学部材を
駆動するものである。
Further, an exposure beam applied to a mark (36A) provided on the first movable body other than the first object may be detected to measure the amount of collapse. As a result, the illumination characteristics can be measured as necessary without depending on the pattern of the first object (such as a mask). Next, according to the first method of adjusting the exposure apparatus of the present invention, the first object (R) is irradiated with an exposure beam passing through the illumination system (ILS), and the second object is irradiated with the exposure beam via the first object. In the method for adjusting an exposure apparatus for exposing (W), the exposure beam is detected on a predetermined surface on which the second object is arranged, and the telecentricity of the illumination system and the exposure beam within the irradiation area of the exposure beam are detected. And measuring the illumination characteristics including at least one of the illuminance and the light amount distribution, and based on the measured illumination characteristics, the optical member (9, 1) in the illumination system.
2 and 13), and until the illumination characteristic is measured next, the measured illumination characteristic is updated by calculation, and the optical member is driven based on the updated illumination characteristic. is there.

【0020】斯かる本発明によれば、その照明特性の計
測頻度を少なくして、その照明系の照明特性を短時間に
高精度に調整できる。この場合、その第1物体が載置さ
れる第1可動体(31)と、その第2物体が載置される
第2可動体(39)とを同期駆動して、その第1物体を
介してその露光ビームでその第2物体を走査露光し、そ
の第1可動体上でその第1物体以外に設けられるマーク
(36A)を用いてその照明特性を計測するようにして
もよい。
According to the present invention, the illumination characteristic of the illumination system can be adjusted in a short time and with high accuracy by reducing the frequency of measurement of the illumination characteristic. In this case, the first movable body (31) on which the first object is mounted and the second movable body (39) on which the second object is mounted are driven synchronously to allow the first object to move through the first object. Then, the second object may be scanned and exposed with the exposure beam, and its illumination characteristics may be measured using a mark (36A) provided on the first movable body other than the first object.

【0021】更に、その第2物体が配置される所定面上
でその露光ビームを検出して、その露光ビームの照射領
域内でその走査露光時にその第1及び第2物体が移動さ
れる走査方向と直交する非走査方向に関する照度むらの
傾斜成分を計測するようにしてもよい。走査露光方式の
場合には、走査方向の照度むらは平均化効果で低減され
るため、非走査方向の成分を計測することで、計測工程
を簡素化して、必要な照明特性を効率的に計測できる。
Further, the exposure beam is detected on a predetermined surface on which the second object is arranged, and a scanning direction in which the first and second objects are moved during the scanning exposure in an irradiation area of the exposure beam. The inclination component of the illuminance unevenness in the non-scanning direction orthogonal to the above may be measured. In the case of the scanning exposure method, illuminance unevenness in the scanning direction is reduced by the averaging effect, so measuring the components in the non-scanning direction simplifies the measurement process and efficiently measures the required illumination characteristics. it can.

【0022】次に、本発明の第2の露光装置の調整方法
は、露光ビームで第1物体を照明する照明系(ILS)
を備え、その露光ビームでその第1物体を介して第2物
体を露光する露光装置の調整方法において、その照明系
中の所定の光学部材(9,12,13)の状態を複数の
状態に設定して、それぞれその照明系の所定の照明特性
の計測を行い、この計測結果に基づいて、その光学部材
の駆動量とその照明特性の変化量との関係(比率等)を
求めて記憶し、この記憶された関係に基づいて、その照
明特性を制御するためにその光学部材を駆動するもので
ある。本発明によれば、予めその光学部材の駆動量とそ
の照明特性の変化量との関係を求めておくことで、照明
特性を効率的に調整できる。
Next, a second method for adjusting an exposure apparatus according to the present invention is directed to an illumination system (ILS) for illuminating a first object with an exposure beam.
A method for adjusting an exposure apparatus for exposing a second object with the exposure beam through the first object, wherein the state of the predetermined optical member (9, 12, 13) in the illumination system is changed to a plurality of states. Then, a predetermined illumination characteristic of the illumination system is measured, and a relationship (ratio, etc.) between the driving amount of the optical member and the variation amount of the illumination characteristic is obtained and stored based on the measurement result. Based on the stored relationship, the optical member is driven to control the illumination characteristics. According to the present invention, the illumination characteristics can be efficiently adjusted by previously obtaining the relationship between the drive amount of the optical member and the change amount of the illumination characteristics.

【0023】また、本発明のデバイス製造方法は、本発
明の露光装置を用いてデバイスパターン(R)をワーク
ピース(W)上に転写する工程を含むものである。本発
明によって集積度の高いデバイスを高精度に量産するこ
とができる。
Further, the device manufacturing method of the present invention includes a step of transferring a device pattern (R) onto a workpiece (W) using the exposure apparatus of the present invention. According to the present invention, highly integrated devices can be mass-produced with high accuracy.

【0024】[0024]

【発明の実施の形態】以下、本発明の実施の形態の一例
につき図面を参照して説明する。本例は、ステップ・ア
ンド・スキャン方式又はステップ・アンド・スティッチ
方式の走査露光型の投影露光装置に本発明を適用したも
のである。図1は、本例の投影露光装置の概略構成を示
し、この図1において、露光光源1としてはArFエキ
シマレーザ光源(波長193nm)が使用されている。
但し、露光光源1としては、KrFエキシマレーザ(波
長248nm)、F2 レーザ(波長157nm)、Kr
2 レーザ(波長146nm)、YAGレーザの高調波発
生装置、半導体レーザの高調波発生装置、又は水銀ラン
プ等を使用することができる。露光光源1からの波長1
93nmの紫外パルス光よりなる露光光IL(露光ビー
ム)は、露光装置本体との間で光路を位置的にマッチン
グさせるためのビームマッチングユニット(BMU)2
を通り、光アッテネータとしての可変減光器3に入射す
る。ウエハ上のフォトレジストに対する露光量を制御す
るための露光制御ユニット21が、露光光源1の発光の
開始及び停止、並びに出力(発振周波数、パルスエネル
ギー)を制御すると共に、可変減光器3における減光率
を段階的、又は連続的に調整する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In this embodiment, the present invention is applied to a scanning exposure type projection exposure apparatus of a step-and-scan method or a step-and-stitch method. FIG. 1 shows a schematic configuration of a projection exposure apparatus of this embodiment. In FIG. 1, an ArF excimer laser light source (wavelength 193 nm) is used as an exposure light source 1.
However, as the exposure light source 1, KrF excimer laser (wavelength 248 nm), F 2 laser (wavelength 157 nm), Kr
A two- laser (wavelength: 146 nm), a harmonic generator of a YAG laser, a harmonic generator of a semiconductor laser, a mercury lamp, or the like can be used. Wavelength 1 from exposure light source 1
Exposure light IL (exposure beam) composed of 93 nm ultraviolet pulse light is a beam matching unit (BMU) 2 for positionally matching an optical path with an exposure apparatus main body.
And enters the variable attenuator 3 as an optical attenuator. An exposure control unit 21 for controlling the amount of exposure to the photoresist on the wafer controls the start and stop of light emission of the exposure light source 1 and the output (oscillation frequency, pulse energy), and the light reduction in the variable dimmer 3. The luminous efficiency is adjusted stepwise or continuously.

【0025】可変減光器3を通った露光光ILは、所定
の光軸に沿って配置される第1レンズ系4A及び第2レ
ンズ系4Bよりなるビーム成形系5を経て第1段のオプ
ティカル・インテグレータ(ユニフォマイザ、又はホモ
ジナイザ)としての第1フライアイレンズ6に入射す
る。この第1フライアイレンズ6から射出された露光光
ILは、第1レンズ系7A、光路折り曲げ用のミラー
8、及び第2レンズ系7Bを介して第2段のオプティカ
ル・インテグレータとしての第2フライアイレンズ9に
入射する。第1レンズ系7A及び第2レンズ系7Bより
集光光学系としてのリレー光学系(又はビーム成形系と
も呼ぶことができる)が構成されている。
The exposure light IL that has passed through the variable dimmer 3 passes through a beam shaping system 5 composed of a first lens system 4A and a second lens system 4B arranged along a predetermined optical axis, and a first-stage optical system. The light enters the first fly-eye lens 6 as an integrator (uniformizer or homogenizer). The exposure light IL emitted from the first fly-eye lens 6 passes through a first lens system 7A, a mirror 8 for bending the optical path, and a second lens system 7B as a second stage optical integrator. The light enters the eye lens 9. The first lens system 7A and the second lens system 7B constitute a relay optical system (or a beam shaping system) as a condensing optical system.

【0026】第2フライアイレンズ9の射出面、即ち露
光対象のレチクルRのパターン面(レチクル面)に対す
る光学的なフーリエ変換面(照明系の瞳面)には開口絞
り板10が、駆動モータ10eによって回転自在に配置
されている。開口絞り板10には、図6(b)に正面図
で示すように、通常照明用の円形の開口絞り10a、変
形照明の一例としての輪帯照明用の開口絞り10b、変
形照明の別の例としての変形光源(又はいわゆる傾斜照
明)用の複数(本例では4個)の偏心した小開口よりな
る開口絞り10c、及び小さいコヒーレンスファクタ
(σ値)用の小円形の開口絞り10dが切り換え自在に
配置されている。開口絞り10cは、4極照明用の開口
絞りとも言うことができる。開口絞り板10及び駆動モ
ータ10eより照明条件を複数の照明条件(通常照明、
変形照明、及び小σ値照明)の何れかに切り換える「照
明条件切り換え系」が構成されており、装置全体の動作
を統轄制御する主制御系22が駆動モータ10eを介し
て照明条件を設定する。
An aperture stop plate 10 is provided on the exit surface of the second fly-eye lens 9, that is, an optical Fourier transform surface (pupil surface of the illumination system) with respect to the pattern surface (reticle surface) of the reticle R to be exposed. 10e rotatably arranged. As shown in a front view in FIG. 6B, the aperture stop plate 10 has a circular aperture stop 10a for normal illumination, an aperture stop 10b for annular illumination as an example of modified illumination, and another modified illumination for modified illumination. The aperture stop 10c composed of a plurality of (four in this example) eccentric small apertures for the deformed light source (or so-called oblique illumination) and the small circular aperture stop 10d for the small coherence factor (σ value) are switched. It is arranged freely. The aperture stop 10c can also be called an aperture stop for quadrupole illumination. The illumination conditions are changed from the aperture stop plate 10 and the drive motor 10e to a plurality of illumination conditions (normal illumination,
A “lighting condition switching system” for switching to any of the modified lighting and the small σ value lighting is configured, and a main control system 22 that supervises and controls the operation of the entire apparatus sets lighting conditions via a drive motor 10e. .

【0027】図1において、第2フライアイレンズ9の
射出面に通常照明用の開口絞り10aが設置されてお
り、第2フライアイレンズ9から射出されて開口絞り1
0aを通過した露光光ILは、透過率が高く反射率が低
いビームスプリッタ11に入射する。ビームスプリッタ
11で反射された露光光は、集光用のレンズ19を介し
て光電検出器よりなるインテグレータセンサ20に入射
し、インテグレータセンサ20の検出信号S1は露光制
御ユニット21に供給されている。インテグレータセン
サ20の検出信号と被露光基板としてのウエハW上での
露光光ILの照度との関係は予め高精度に計測されて、
露光制御ユニット21内のメモリに記憶されている。露
光制御ユニット21は、インテグレータセンサ20の検
出信号より間接的にウエハWに対する露光光ILの照度
(平均値)、及びその積分値をモニタできるように構成
されている。
In FIG. 1, an aperture stop 10a for normal illumination is provided on the exit surface of the second fly-eye lens 9, and the aperture stop 10a is emitted from the second fly-eye lens 9 to emit light.
The exposure light IL that has passed through 0a is incident on the beam splitter 11 having a high transmittance and a low reflectance. The exposure light reflected by the beam splitter 11 is incident on an integrator sensor 20 composed of a photoelectric detector via a converging lens 19, and a detection signal S 1 of the integrator sensor 20 is supplied to an exposure control unit 21. The relationship between the detection signal of the integrator sensor 20 and the illuminance of the exposure light IL on the wafer W as a substrate to be exposed is measured in advance with high accuracy.
It is stored in a memory in the exposure control unit 21. The exposure control unit 21 is configured to monitor the illuminance (average value) of the exposure light IL on the wafer W indirectly from the detection signal of the integrator sensor 20 and the integrated value thereof.

【0028】ビームスプリッタ11を透過した露光光I
Lは、光軸IAXに沿って第1レンズ系12(第1光学
系)及び第2レンズ系13(第2光学系)を経て順次、
固定ブラインド(固定照明視野絞り)14A及び可動ブ
ラインド(可動照明視野絞り)14Bに入射する。後者
の可動ブラインド14Bはレチクル面に対する共役面に
設置され、前者の固定ブラインド14Aはその共役面か
ら所定量だけデフォーカスした面に配置されている。固
定ブラインド14Aは、例えば特開平4−196513
号公報に開示されているように、投影光学系PLの円形
視野内で光軸AXをほぼ中心とし、走査露光時にレチク
ルR及びウエハWが移動される走査方向(Y方向)と直
交する非走査方向(X方向)に直線スリット状、又は矩
形状(以下、まとめて「スリット状」と言う)に伸びる
ように配置された開口部を有する。即ち、固定ブライン
ド14Aは、本例では露光光ILが照射されるレチクル
R上の照明領域35、及びウエハW上の露光領域35P
(投影光学系PLに関して照明領域35と共役で、照明
領域35内のパターン像が形成される投影領域)を規定
すると共に、少なくとも走査方向に関する幅が固定であ
る関口部を有する。
Exposure light I transmitted through beam splitter 11
L sequentially passes through the first lens system 12 (first optical system) and the second lens system 13 (second optical system) along the optical axis IAX,
The light enters the fixed blind (fixed illumination field stop) 14A and the movable blind (movable illumination field stop) 14B. The latter movable blind 14B is disposed on a conjugate plane with respect to the reticle plane, and the former fixed blind 14A is disposed on a plane defocused by a predetermined amount from the conjugate plane. The fixed blind 14A is disclosed in, for example, JP-A-4-196513.
As disclosed in Japanese Patent Application Laid-Open Publication No. H11-260, non-scanning that is substantially centered on the optical axis AX within the circular visual field of the projection optical system PL and is orthogonal to the scanning direction (Y direction) in which the reticle R and the wafer W are moved during scanning exposure. It has an opening arranged so as to extend in a linear slit shape or a rectangular shape (hereinafter, collectively referred to as “slit shape”) in the direction (X direction). That is, in this example, the fixed blind 14A includes an illumination area 35 on the reticle R to which the exposure light IL is irradiated, and an exposure area 35P on the wafer W.
The projection optical system PL defines a projection area in which a pattern image in the illumination area 35 is formed in a conjugate with the illumination area 35, and has at least a fixed width in the scanning direction.

【0029】更に、可動ブラインド14Bは、ウエハW
上の各ショット領域への走査露光の開始時及び終了時に
不要な露光を防止するために、固定ブラインド14Aに
よって規定される照明領域35、及び露光領域35Pの
走査方向の幅を可変とするために使用される。可動ブラ
インド14Bは、更に走査方向SDと直交した方向(非
走査方向)に関してレチクルRのパターン領域のサイズ
に応じてその幅を可変とするためにも使用される。可動
ブラインド14Bの開口率の情報は露光制御ユニット2
1にも供給され、インテグレータセンサ20の検出信号
から求められる照度にその開口率を乗じた値が、ウエハ
W上の実際の照度となる。なお、固定ブラインド14A
及び可動ブラインド14Bはその配置が図1に限定され
るものではなく、例えば固定ブラインド14Aを、レチ
クルRと照明光学系との間でレチクルRに近接させて配
置してもよい。
Further, the movable blind 14 B
To prevent unnecessary exposure at the start and end of scanning exposure on each of the above shot areas, the illumination area 35 defined by the fixed blind 14A and the width of the exposure area 35P in the scanning direction are made variable. used. The movable blind 14B is also used for making the width thereof variable in the direction (non-scanning direction) orthogonal to the scanning direction SD according to the size of the pattern area of the reticle R. The information on the aperture ratio of the movable blind 14B is stored in the exposure control unit 2
1, the value obtained by multiplying the illuminance obtained from the detection signal of the integrator sensor 20 by the aperture ratio is the actual illuminance on the wafer W. The fixed blind 14A
The arrangement of the movable blind 14B is not limited to that shown in FIG. 1. For example, the fixed blind 14A may be arranged close to the reticle R between the reticle R and the illumination optical system.

【0030】露光時に固定ブラインド14Aを通過した
露光光ILは、光路折り曲げ用のミラー15、結像用の
レンズ系16、副コンデンサレンズ系17、及び主コン
デンサレンズ系18を介して、マスクとしてのレチクル
Rのパターン面(下面)の照明領域(照明視野領域)3
5を照明する。露光光ILのもとで、レチクルRの照明
領域内の回路パターンの像が両側テレセントリックな投
影光学系PLを介して所定の投影倍率β(βは例えば1
/4,1/5等)で、投影光学系PLの結像面に配置さ
れた基板(被露光基板)としてのウエハW上のフォトレ
ジスト層のスリット状の露光領域35Pに転写される。
レチクルR及びウエハWがそれぞれ本発明の第1物体及
び第2物体に対応しており、ウエハ(wafer)Wは例えば
半導体(シリコン等)又はSOI(silicon on insulato
r)等の円板状の基板である。本例の投影系としての投影
光学系PLは、ジオプトリック系(屈折系)であるが、
カタジオプトリック系(反射屈折系)や反射系も使用で
きることは言うまでもない。以下、投影光学系PLの光
軸AXに平行にZ軸を取り、Z軸に垂直な平面内で走査
方向(ここでは図1の紙面に平行な方向)にY軸を取
り、走査方向に直交する非走査方向(ここでは図1の紙
面に垂直な方向)にX軸を取って説明する。
The exposure light IL that has passed through the fixed blind 14A during exposure passes through a mirror 15 for bending the optical path, a lens system 16 for imaging, a sub-condenser lens system 17, and a main condenser lens system 18 to serve as a mask. Illumination area (illumination visual field area) 3 on the pattern surface (lower surface) of reticle R
Light 5 Under the exposure light IL, an image of the circuit pattern in the illumination area of the reticle R is projected at a predetermined projection magnification β (β is, for example, 1 through a bi-telecentric projection optical system PL.
/ 4, 1/5, etc.), the image is transferred to a slit-shaped exposure area 35P of a photoresist layer on a wafer W as a substrate (substrate to be exposed) disposed on the image plane of the projection optical system PL.
The reticle R and the wafer W correspond to the first object and the second object, respectively, of the present invention, and the wafer (wafer) W is, for example, a semiconductor (such as silicon) or SOI (silicon on insulator).
This is a disk-shaped substrate such as r). The projection optical system PL as the projection system in this example is a diopter system (refraction system).
It goes without saying that a catadioptric system (catadioptric system) or a reflective system can also be used. Hereinafter, the Z axis is taken in parallel with the optical axis AX of the projection optical system PL, the Y axis is taken in the scanning direction (here, the direction parallel to the plane of FIG. 1) in a plane perpendicular to the Z axis, and orthogonal to the scanning direction. The description will be made by taking the X axis in the non-scanning direction (in this case, the direction perpendicular to the paper surface of FIG. 1).

【0031】図1において、露光光源1、ビームマッチ
ングユニット2、可変減光器3、ビーム成形系5、第1
フライアイレンズ6、第1レンズ系7A、第2レンズ系
7B、第2フライアイレンズ9、第1レンズ系12、第
2レンズ系13、固定ブラインド14A、可動ブライン
ド14B、結像レンズ系16、副コンデンサレンズ系1
7、及び主コンデンサレンズ系18等より照明光学系I
LSが構成され、照明光学系ILSが本発明の照明系に
対応している。そして、照明光学系ILSの光軸IAX
は、レチクルR上で投影光学系PLの光軸AXと合致し
ている。本例では、第2フライアイレンズ9、第1レン
ズ系12、及び第2レンズ系13にそれぞれ第1駆動ユ
ニット23、第2駆動ユニット24、及び駆動ユニット
群25が装着されている。
In FIG. 1, an exposure light source 1, a beam matching unit 2, a variable dimmer 3, a beam shaping system 5, a first
Fly-eye lens 6, first lens system 7A, second lens system 7B, second fly-eye lens 9, first lens system 12, second lens system 13, fixed blind 14A, movable blind 14B, imaging lens system 16, Sub condenser lens system 1
7 and the illumination optical system I from the main condenser lens system 18 and the like.
An illumination optical system ILS corresponds to the illumination system of the present invention. Then, the optical axis IAX of the illumination optical system ILS
Coincides with the optical axis AX of the projection optical system PL on the reticle R. In this example, a first drive unit 23, a second drive unit 24, and a drive unit group 25 are mounted on the second fly-eye lens 9, the first lens system 12, and the second lens system 13, respectively.

【0032】図2は、図1の第2フライアイレンズ9か
ら第2レンズ系13までの光学系と、照明領域35との
関係を示す斜視図であり、この図2において、照明領域
35に対するレチクルの走査方向SD(Y方向)、及び
非走査方向(X方向)に対応する第2フライアイレンズ
9上での方向をそれぞれy方向及びx方向としている。
そして、第1駆動ユニット23は第2フライアイレンズ
9の光軸IAX方向(矢印A1の方向)の位置を調整
し、第2駆動ユニット24は第1レンズ系12の光軸I
AXの方向(矢印A2の方向)の位置を調整する。ま
た、図1の駆動ユニット群25は、図2の第3の駆動ユ
ニット25X、第4の駆動ユニット25Y、及び第5の
駆動ユニット25Tより構成され、駆動ユニット25X
及び25Yはそれぞれ第2レンズ系13の光軸IAXに
垂直なx方向(矢印A3の方向)及びy方向(矢印A4
の方向)の位置を調整し、駆動ユニット25Tは、第2
レンズ系13の光軸IAXを通りy軸に平行な軸の回り
(矢印A5の方向)のチルト角を調整する。駆動ユニッ
ト25Tは、照明領域35の非走査方向に対応する方向
で第2レンズ系13のチルト角(傾斜角)を調整すると
も言うことができる。
FIG. 2 is a perspective view showing the relationship between the optical system from the second fly-eye lens 9 to the second lens system 13 in FIG. 1 and the illumination area 35. In FIG. The directions on the second fly-eye lens 9 corresponding to the scanning direction SD (Y direction) and the non-scanning direction (X direction) of the reticle are the y direction and the x direction, respectively.
The first drive unit 23 adjusts the position of the second fly-eye lens 9 in the optical axis IAX direction (the direction of arrow A1), and the second drive unit 24 adjusts the optical axis I of the first lens system 12.
The position in the direction of AX (direction of arrow A2) is adjusted. The drive unit group 25 shown in FIG. 1 includes a third drive unit 25X, a fourth drive unit 25Y, and a fifth drive unit 25T shown in FIG.
And 25Y are the x direction (direction of arrow A3) and the y direction (arrow A4) perpendicular to the optical axis IAX of the second lens system 13, respectively.
Direction) is adjusted, and the drive unit 25T
The tilt angle around an axis passing through the optical axis IAX of the lens system 13 and parallel to the y-axis (in the direction of arrow A5) is adjusted. The drive unit 25T can be said to adjust the tilt angle (tilt angle) of the second lens system 13 in a direction corresponding to the non-scanning direction of the illumination area 35.

【0033】駆動ユニット23〜25Tとしては、例え
ば電気式のマイクロメータ、又はピエゾ素子等の駆動素
子で駆動対象の光学部材のフランジ部を変位させる駆動
装置を使用することができる。この場合、駆動ユニット
23〜25Tにはそれぞれ駆動可能範囲(駆動ストロー
ク)内での光学部材の変位量を示すエンコーダ(ロータ
リエンコーダ等)(不図示)が組み込まれており、これ
らのエンコーダの検出信号が図1の駆動系26に供給さ
れ、その検出信号、及び主制御系22からの駆動情報に
基づいて駆動系26は駆動ユニット23〜25Tを介し
て第2フライアイレンズ9、第1レンズ系12、及び第
2レンズ系13の状態を制御する。なお、駆動ユニット
23〜25T用のエンコーダとして、例えば静電容量セ
ンサなどを用いてもよい。
As the drive units 23 to 25T, for example, a drive device for displacing a flange portion of an optical member to be driven by a drive element such as an electric micrometer or a piezo element can be used. In this case, each of the drive units 23 to 25T incorporates an encoder (such as a rotary encoder) (not shown) indicating an amount of displacement of the optical member within a drivable range (drive stroke). Is supplied to the drive system 26 of FIG. 1 and the drive system 26 is driven by the second fly-eye lens 9 and the first lens system via drive units 23 to 25T based on the detection signal and the drive information from the main control system 22. 12 and the state of the second lens system 13 are controlled. Note that, for example, a capacitance sensor or the like may be used as the encoder for the drive units 23 to 25T.

【0034】また、本例では変形照明を行う場合に図6
(a)に示すように、交換装置56を用いて第1フライ
アイレンズ6を回折光学素子(Diffractive Optical El
ement:DOE)よりなる光量分布変換素子55で交換で
きるように構成されている。光量分布変換素子55が、
露光ビームを局所的な領域に設定するための光学素子に
対応している。
In the present embodiment, when performing modified illumination, FIG.
As shown in (a), the first fly-eye lens 6 is changed to a diffractive optical element (Diffractive Optical El
ement: DOE). The light amount distribution conversion element 55
It corresponds to an optical element for setting an exposure beam to a local area.

【0035】図6(a)において、変形照明を行う場合
には、一例として第2フライアイレンズ9の射出面に輪
帯状の開口絞り10b(又は4極照明用の開口絞り10
c)が設置され、光量分布変換素子55は、回折効果に
よって露光光ILを第2フライアイレンズ9の入射面の
ほぼ輪帯状の領域に集光する。光量分布変換素子55も
照明光学系ILSに含まれている。これによって、露光
光ILの利用効率が高められて、変形照明を行う場合に
もウエハ上で高い照度が得られる。この際に、第2レン
ズ系7Bの光軸IAX方向の位置を調整するための駆動
ユニット58、第1レンズ系7Aの光軸に垂直な2次元
方向の位置を調整するための駆動ユニット62、及びビ
ーム成形系5の第2レンズ系4Bの光軸IAX方向の位
置uを調整するための駆動ユニット57が使用される。
電気式のマイクロメータ等から構成される駆動ユニット
57,58,62にもそれぞれエンコーダが備えられ、
これらのエンコーダの検出信号、及び図1の主制御系2
2の駆動情報に基づいて、駆動系26が駆動ユニット5
7,58,62を介して第2レンズ系57、第2レンズ
系7B、及び第1レンズ系7Aの状態を制御できるよう
に構成されている。
In FIG. 6A, when performing modified illumination, as an example, an annular aperture stop 10b (or an aperture stop 10 for quadrupole illumination) is formed on the exit surface of the second fly-eye lens 9.
c) is installed, and the light quantity distribution conversion element 55 condenses the exposure light IL to a substantially annular area on the incident surface of the second fly-eye lens 9 by the diffraction effect. The light quantity distribution conversion element 55 is also included in the illumination optical system ILS. As a result, the utilization efficiency of the exposure light IL is enhanced, and a high illuminance can be obtained on the wafer even when performing modified illumination. At this time, a drive unit 58 for adjusting the position of the second lens system 7B in the optical axis IAX direction, a drive unit 62 for adjusting the position of the first lens system 7A in the two-dimensional direction perpendicular to the optical axis, A drive unit 57 for adjusting the position u of the second lens system 4B of the beam shaping system 5 in the optical axis IAX direction is used.
Driving units 57, 58, and 62 composed of electric micrometers and the like are also provided with encoders, respectively.
The detection signals of these encoders and the main control system 2 shown in FIG.
The drive system 26 is driven based on the drive information
The state of the second lens system 57, the second lens system 7B, and the first lens system 7A can be controlled via 7, 58, and 62.

【0036】なお、第2フライアイレンズ9の入射面上
での照射領域(強度分布)が異なる露光光ILを発生す
る複数の光量分布変換素子(回折光学素子)を交換装置
56に設け、照明条件(即ち、照明光学系の瞳面上での
露光光ILの強度分布、本例では照明光路内に配置され
る複数の開口絞り10a〜10dの1つ)に応じて、最
も露光光ILの利用効率が高くなる光量分布変換素子を
選択して照明光路内に配置するようにしてもよい。この
とき、第1フライアイレンズ6を交換装置56に設けな
くてもよい。
A plurality of light quantity distribution conversion elements (diffractive optical elements) for generating exposure light IL having different irradiation areas (intensity distributions) on the incident surface of the second fly-eye lens 9 are provided in the exchange device 56, and the illumination is performed. Depending on the condition (that is, the intensity distribution of the exposure light IL on the pupil plane of the illumination optical system, in this example, one of the plurality of aperture stops 10a to 10d arranged in the illumination light path), It is also possible to select a light amount distribution conversion element having a high utilization efficiency and arrange it in the illumination light path. At this time, the first fly-eye lens 6 need not be provided in the replacement device 56.

【0037】図1に戻り、レチクルRは、レチクルステ
ージ31上に吸着保持され、レチクルステージ31は、
レチクルベース32上にY方向に等速移動できると共
に、X方向、Y方向、回転方向に微動できるように載置
されている。レチクルステージ31(レチクルR)の2
次元的な位置、及び回転角は駆動制御ユニット34内の
レーザ干渉計によってリアルタイムに計測されている。
この計測結果、及び主制御系22からの制御情報に基づ
いて、駆動制御ユニット34内の駆動モータ(リニアモ
ータやボイスコイルモータ等)は、レチクルステージ3
1の走査速度、及び位置の制御を行う。また、レチクル
ステージ31のレチクルRの近傍にガラス基板よりなる
評価マーク板33が固定されている。
Referring back to FIG. 1, the reticle R is held by suction on a reticle stage 31.
The reticle base 32 is mounted on the reticle base 32 so as to be able to move at a constant speed in the Y direction and to be finely movable in the X direction, the Y direction, and the rotation direction. Reticle stage 31 (Reticle R) 2
The dimensional position and the rotation angle are measured in real time by a laser interferometer in the drive control unit 34.
Based on the measurement result and the control information from the main control system 22, the drive motor (such as a linear motor or a voice coil motor) in the drive control unit 34
The control of the scanning speed and the position is performed. An evaluation mark plate 33 made of a glass substrate is fixed near the reticle R of the reticle stage 31.

【0038】図3(a)は図1のレチクルステージ31
を示す平面図であり、この図3(a)において、レチク
ルステージ31のレチクルRに対して走査方向SD(Y
方向)に隣接する領域の開口上に評価マーク板33が固
定され、評価マーク板33のほぼ照明領域35と同じ大
きさの領域内に、ほぼ均一な分布で一例として13個の
2次元の同一の評価用マーク36A,36B,…36M
が形成されている。評価用マーク36Aは、X方向に所
定ピッチで配列されたライン・アンド・スペースパター
ンよりなるX軸のマーク37Xと、Y方向に所定ピッチ
で配列されたライン・アンド・スペースパターンよりな
るY軸のマーク37Yとを組み合わせた2次元マークで
あるが、この他にボックス・イン・ボックスマーク等も
使用することができる。本例では、後述のように露光光
ILのテレセントリック性の崩れ量、即ち照明光学系の
テレセントリシティを計測する際に、レチクルステージ
31をY方向に駆動して、評価マーク板33の中心(評
価用マーク36Gの中心)を照明領域35の中心(光軸
AX)に合わせて、評価用マーク36A,36B,…3
6Mの像を投影光学系PLを介してウエハ側に投影す
る。評価用マーク36Aの像36APが図3(b)の拡
大図に示されている。
FIG. 3A shows the reticle stage 31 shown in FIG.
FIG. 3A is a plan view showing the reticle R of the reticle stage 31 in the scanning direction SD (Y
The evaluation mark plate 33 is fixed on an opening of a region adjacent to the (direction), and in the region of the evaluation mark plate 33 having substantially the same size as the illumination region 35, for example, thirteen two-dimensional identical parts having a substantially uniform distribution. 36A, 36B,... 36M
Are formed. The evaluation mark 36A has an X-axis mark 37X composed of a line and space pattern arranged at a predetermined pitch in the X direction, and a Y-axis mark 37X composed of a line and space pattern arranged at a predetermined pitch in the Y direction. The two-dimensional mark is a combination of the mark 37Y and a box-in-box mark. In this example, when measuring the amount of collapse of the telecentricity of the exposure light IL, that is, the telecentricity of the illumination optical system, as described later, the reticle stage 31 is driven in the Y direction and the center of the evaluation mark plate 33 ( The center of the evaluation mark 36G) is aligned with the center of the illumination area 35 (optical axis AX), and the evaluation marks 36A, 36B,.
The 6M image is projected on the wafer side via the projection optical system PL. An image 36AP of the evaluation mark 36A is shown in the enlarged view of FIG.

【0039】図1に戻り、ウエハWは、ウエハホルダ3
8を介してウエハステージ39上に吸着保持され、ウエ
ハステージ39は、ウエハベース40上で投影光学系P
Lの像面と平行なXY平面に沿って2次元移動する。即
ち、ウエハステージ39は、ウエハベース40上でY方
向に一定速度で移動すると共に、X方向、Y方向にステ
ップ移動する。更に、ウエハステージ39には、ウエハ
WのZ方向の位置(フォーカス位置)、及びX軸及びY
軸の回りの傾斜角を制御するZレベリング機構も組み込
まれており、ウエハWの表面の複数の計測点でフォーカ
ス位置を計測するための多点のオートフォーカスセンサ
(不図示)も設けられている。露光時には、そのオート
フォーカスセンサの計測値に基づいてオートフォーカス
方式でZレベリング機構を駆動することで、ウエハWの
表面が投影光学系PLの像面に合焦される。また、照明
特性の計測時には、一例としてそのオートフォーカスセ
ンサの計測値に基づいて、ウエハステージ39内のZレ
ベリング機構を駆動することによって、ウエハステージ
39の上面のフォーカス位置を任意の量だけ制御するこ
とができる。
Returning to FIG. 1, the wafer W
The wafer stage 39 is attracted and held on the wafer stage 39 through the projection optical system 8 on the wafer base 40.
It moves two-dimensionally along an XY plane parallel to the image plane of L. That is, the wafer stage 39 moves at a constant speed in the Y direction on the wafer base 40, and moves stepwise in the X direction and the Y direction. Further, the position (focus position) of the wafer W in the Z direction, the X axis and the Y
A Z-leveling mechanism for controlling the tilt angle around the axis is also incorporated, and a multipoint autofocus sensor (not shown) for measuring a focus position at a plurality of measurement points on the surface of the wafer W is also provided. . At the time of exposure, the surface of the wafer W is focused on the image plane of the projection optical system PL by driving the Z leveling mechanism by the autofocus method based on the measurement value of the autofocus sensor. Further, at the time of measuring the illumination characteristics, for example, the Z-leveling mechanism in the wafer stage 39 is driven based on the measurement value of the auto focus sensor to control the focus position on the upper surface of the wafer stage 39 by an arbitrary amount. be able to.

【0040】ウエハステージ39のX方向、Y方向の位
置、及びX軸、Y軸、Z軸の回りの回転角は駆動制御ユ
ニット41内のレーザ干渉計によってリアルタイムに計
測されている。この計測結果及び主制御系22からの制
御情報に基づいて、駆動制御ユニット41内の駆動モー
タ(リニアモータ等)は、ウエハステージ39の走査速
度、及び位置の制御を行う。
The positions of the wafer stage 39 in the X and Y directions and the rotation angles around the X, Y, and Z axes are measured in real time by a laser interferometer in the drive control unit 41. The drive motor (such as a linear motor) in the drive control unit 41 controls the scanning speed and the position of the wafer stage 39 based on the measurement result and the control information from the main control system 22.

【0041】主制御系22は、レチクルステージ31、
及びウエハステージ39のそれぞれの移動位置、移動速
度、移動加速度、位置オフセット等の各種情報を駆動制
御ユニット34及び41に送る。そして、走査露光時に
は、レチクルステージ31を介して露光光ILの照明領
域35に対してレチクルRが+Y方向(又は−Y方向)
に速度Vrで走査されるのに同期して、ウエハステージ
39を介してレチクルRのパターン像の露光領域35P
に対してウエハWが−Y方向(又は+Y方向)に速度β
・Vr(βはレチクルRからウエハWへの投影倍率)で
走査される。この際の走査露光の開始時及び終了時に不
要な部分への露光を防止するために、駆動制御ユニット
34によって可動ブラインド14Bの開閉動作が制御さ
れる。
The main control system 22 includes a reticle stage 31,
And various information such as the moving position, moving speed, moving acceleration, and position offset of the wafer stage 39 are sent to the drive control units 34 and 41. At the time of scanning exposure, the reticle R is moved in the + Y direction (or -Y direction) with respect to the illumination area 35 of the exposure light IL via the reticle stage 31.
In synchronization with the scanning at the speed Vr, the exposure area 35P of the pattern image of the reticle R via the wafer stage 39.
Of the wafer W in the −Y direction (or + Y direction)
Scanning is performed at Vr (β is a projection magnification from the reticle R to the wafer W). At this time, at the start and end of the scanning exposure, the drive control unit 34 controls the opening and closing operation of the movable blind 14B in order to prevent unnecessary portions from being exposed.

【0042】更に主制御系22は、ウエハW上の各ショ
ット領域のフォトレジストを適正露光量で走査露光する
ための各種露光条件を露光データファイルより読み出し
て、露光制御ユニット21とも連携して最適な露光シー
ケンスを実行する。即ち、ウエハW上の1つのショット
領域への走査露光開始の指令が主制御系22から露光制
御ユニット21に発せられると、露光制御ユニット21
は露光光源1の発光を開始すると共に、インテグレータ
センサ20を介してウエハWに対する露光光ILの照度
(単位時間当たりのパルスエネルギーの和)の積分値を
算出する。その積分値は走査露光開始時に0にリセット
されている。そして、露光制御ユニット21では、その
照度の積分値を逐次算出し、この結果に応じて、走査露
光後のウエハW上のフォトレジストの各点で適正露光量
が得られるように、露光光源1の出力(発振周波数、及
びパルスエネルギー)及び可変減光器3の減光率を制御
する。そして、当該ショット領域への走査露光の終了時
に、露光光源1の発光が停止される。
Further, the main control system 22 reads from the exposure data file various exposure conditions for scanning and exposing the photoresist in each shot area on the wafer W with an appropriate exposure amount, and optimizes the exposure conditions in cooperation with the exposure control unit 21. A simple exposure sequence. That is, when a command to start scanning exposure to one shot area on the wafer W is issued from the main control system 22 to the exposure control unit 21, the exposure control unit 21
Starts the emission of the exposure light source 1 and calculates the integrated value of the illuminance (the sum of the pulse energy per unit time) of the exposure light IL to the wafer W via the integrator sensor 20. The integrated value is reset to 0 at the start of the scanning exposure. Then, the exposure control unit 21 sequentially calculates the integrated value of the illuminance, and according to the result, sets the exposure light source 1 so that an appropriate exposure amount can be obtained at each point of the photoresist on the wafer W after the scanning exposure. (Oscillation frequency and pulse energy) and the dimming rate of the variable dimmer 3 are controlled. Then, at the end of the scanning exposure on the shot area, the emission of the exposure light source 1 is stopped.

【0043】さて、本例のウエハステージ39上のウエ
ハホルダ38の近傍には、光電検出器よりなりピンホー
ル状の受光部42a(図4(a)参照)を有する照度む
らセンサ42が設置され、照度むらセンサ42の検出信
号S2も露光制御ユニット21に供給されている。な
お、照度むらセンサ42はピンホール状の受光部42a
の代わりに、或いはそれと組み合わせて、例えば露光領
域35Pに対するウエハWの走査方向(Y方向)に沿っ
て延びる、ラインセンサ或いはCCDなどからなる受光
部を用いてもよい。この場合、露光領域35P内で走査
方向と直交する非走査方向(X方向)の各位置で、走査
方向に関して照度を積算し、この積算値に基づいて非走
査方向に関する照度分布を求めてもよく、これによっ
て、走査露光による走査方向の照度むらの平均化効果を
加味した非走査方向の照度分布(照度むら)、即ち走査
露光後のウエハ上での非走査方向に関する露光量分布
(露光量むら)を得ることができる。従って、この計測
結果を用いて後述する照明特性の最適化(照度むらの補
正)を行うようにしてもよい。なお、照度計測時にウエ
ハステージ39を2次元移動することにより、ピンホー
ル状の受光部42aを用いても同様の照度分布を求める
ことが可能である。
In the vicinity of the wafer holder 38 on the wafer stage 39 of this embodiment, an uneven illuminance sensor 42 comprising a photodetector and having a pinhole-shaped light receiving portion 42a (see FIG. 4A) is installed. The detection signal S2 of the uneven illuminance sensor 42 is also supplied to the exposure control unit 21. The uneven illuminance sensor 42 has a pinhole-shaped light receiving portion 42a.
Instead of, or in combination with, a light receiving unit such as a line sensor or a CCD extending in the scanning direction (Y direction) of the wafer W with respect to the exposure area 35P may be used. In this case, the illuminance may be integrated in the scanning direction at each position in the non-scanning direction (X direction) orthogonal to the scanning direction in the exposure area 35P, and the illuminance distribution in the non-scanning direction may be obtained based on the integrated value. Accordingly, the illuminance distribution in the non-scanning direction (illuminance unevenness) in consideration of the averaging effect of the illuminance unevenness in the scanning direction due to the scanning exposure, that is, the exposure amount distribution (irradiation amount unevenness) in the non-scanning direction on the wafer after the scanning exposure. ) Can be obtained. Therefore, optimization of illumination characteristics (correction of illuminance unevenness) described later may be performed using the measurement result. Incidentally, by moving the wafer stage 39 two-dimensionally at the time of illuminance measurement, the same illuminance distribution can be obtained even by using the pinhole-shaped light receiving section 42a.

【0044】また、不図示であるが、露光領域35Pの
全体を覆う受光部を有する照射量モニタも設置され、こ
の照射量モニタの検出信号とインテグレータセンサ20
の検出信号とに基づいて、インテグレータセンサ20の
検出信号からウエハW上の照度を間接的に求めるための
係数が算出される。更に、ウエハステージ39上のウエ
ハホルダ38の近傍には、ガラス基板よりなる走査板4
3が設置され、走査板43上の遮光膜中にほぼ正方形の
開口パターン43aが形成されている。そして、ウエハ
ステージ39中の走査板43の底面側に集光レンズ4
4、及び光電検出器45が配置され、走査板43、集光
レンズ44、及び光電検出器45より空間像計測系46
が構成され、光電検出器45の検出信号S3は露光制御
ユニット21内の演算部に供給されている。
Although not shown, a dose monitor having a light receiving portion covering the entire exposure area 35P is also provided, and a detection signal of the dose monitor and the integrator sensor 20 are provided.
Is calculated from the detection signal of the integrator sensor 20 to indirectly obtain the illuminance on the wafer W from the detection signal. Further, a scanning plate 4 made of a glass substrate is provided near the wafer holder 38 on the wafer stage 39.
3, a substantially square opening pattern 43a is formed in the light shielding film on the scanning plate 43. The condensing lens 4 is provided on the bottom side of the scanning plate 43 in the wafer stage 39.
4 and a photoelectric detector 45 are arranged, and the scanning plate 43, the condenser lens 44, and the aerial image measuring system 46 are provided by the photoelectric detector 45.
The detection signal S3 of the photoelectric detector 45 is supplied to a calculation unit in the exposure control unit 21.

【0045】なお、空間像計測系46はその一部(例え
ば、本例では走査板43と、集光レンズ44などを含む
送光系の少なくとも一部とを含む)のみをウエハステー
ジ39に設け、残りの構成要素(光電検出器45など)
をウエハステージ39の外部に配置してもよい。また、
空間像計測系46は走査板43に1つの開ロパターン4
3aのみが形成され、後述する照明特性の計測時には、
ウエハステージ39を2次元的にステッピングさせると
共に、照明領域35内に配置される複数(本例では13
個)の評価用マークの像の各々に対して、開口パターン
43aを走査方向及び非走査方向(Y方向及びX方向)
にそれぞれ相対移動するが、例えばその複数の評価用マ
ークと同数の開口パターン43aを走査板43に形成
し、走査方向に関する評価用マークの像と開口パターン
との相対移動時と、非走査方向に関する評価用マークの
像と開口パターンとの相対移動時にそれぞれその複数の
評価用マークの像を一括検出してもよい。
The aerial image measurement system 46 has only a part thereof (for example, at least a part of the light transmission system including the scanning plate 43 and the condenser lens 44 in this example) provided on the wafer stage 39. , The remaining components (photoelectric detector 45, etc.)
May be arranged outside the wafer stage 39. Also,
The aerial image measurement system 46 includes one open pattern 4 on the scanning plate 43.
3a is formed, and at the time of measuring the illumination characteristics described later,
The wafer stage 39 is two-dimensionally stepped, and a plurality of wafer stages 39 (13 in this example) are arranged in the illumination area 35.
Aperture pattern 43a in the scanning direction and the non-scanning direction (Y direction and X direction) for each of the evaluation mark images.
For example, the plurality of evaluation marks and the same number of aperture patterns 43a are formed on the scanning plate 43, and the relative movement between the image of the evaluation marks and the aperture pattern in the scanning direction and the non-scanning direction are performed. When the image of the evaluation mark and the aperture pattern move relative to each other, the images of the plurality of evaluation marks may be collectively detected.

【0046】更に、その複数の評価用マークのうち、例
えば非走査方向に離れる複数(本例では5個)の評価用
マークと同数の開口パターン43aを非走査方向に沿っ
て走査板43に形成し、ウエハステージ39を走査方向
に移動して、各開口パターン毎に、走査方向に配列され
る各評価用マークの像を連続して検出してもよいし、こ
れとは逆に、走査方向に関して評価用マークと同数の開
ロパターン43aを走査板43に形成し、ウエハステー
ジ39を非走査方向に移動して、各開口パターン毎に評
価用マークの像を連続して検出してもよい。このとき、
その複数の評価用マークの検出中に照明領域35の一部
のみに露光光ILが照射されるように、ウエハステージ
39の移動に応じて可動ブラインド14Bを駆動するこ
とが好ましい。なお、前者の方法では非走査方向に関し
て評価用マークの像と開口パターンとを相対移動すると
きに、ウエハステージ39を走査方向にステッピングさ
せる必要があり、後者の方法では走査方向に関して評価
用マークの像と開口パターンとを相対移動するときに、
ウエハステージ39を非走査方向にステッピングさせる
必要があるため、両者を組み合わせて、ウエハステージ
39を走査方向と非走査方向とに1回ずつ移動させるだ
けでもよい。
Further, of the plurality of evaluation marks, for example, the same number of aperture patterns 43a as the plurality (five in this example) of evaluation marks separated in the non-scanning direction are formed on the scanning plate 43 along the non-scanning direction. Then, the wafer stage 39 may be moved in the scanning direction, and the images of the evaluation marks arranged in the scanning direction may be continuously detected for each opening pattern. The same number of open patterns 43a as the evaluation marks may be formed on the scanning plate 43, and the wafer stage 39 may be moved in the non-scanning direction to continuously detect the images of the evaluation marks for each opening pattern. . At this time,
It is preferable that the movable blind 14B be driven in accordance with the movement of the wafer stage 39 so that only a part of the illumination area 35 is irradiated with the exposure light IL during the detection of the plurality of evaluation marks. In the former method, it is necessary to step the wafer stage 39 in the scanning direction when the image of the evaluation mark and the aperture pattern are relatively moved in the non-scanning direction. In the latter method, the evaluation mark is not moved in the scanning direction. When moving the image and the aperture pattern relatively,
Since it is necessary to step the wafer stage 39 in the non-scanning direction, both may be combined and the wafer stage 39 may be moved only once in the scanning direction and once in the non-scanning direction.

【0047】例えば図3(a),(b)に示すように、
評価用マーク36Aの像36APのY方向の位置を計測
する場合には、像36APの手前に走査板43の開口パ
ターン43aを移動した後、ウエハステージ39を駆動
して開口パターン43aで像36APを走査する。この
際に、露光制御ユニット21には主制御系22を介して
ウエハステージ39の位置情報も供給されており、露光
制御ユニット21内の演算部では、光電検出器45の検
出信号をウエハステージ39のX方向の位置に関して微
分して得られた信号より、像36APのY方向の位置を
算出する。同様に像36APを開口パターン43aでX
方向に走査することによって、像36APのX方向の位
置も算出され、像36APのX方向、Y方向の位置情報
は主制御系22に供給される。
For example, as shown in FIGS.
When measuring the position of the image 36AP of the evaluation mark 36A in the Y direction, the opening pattern 43a of the scanning plate 43 is moved before the image 36AP, and then the wafer stage 39 is driven to form the image 36AP with the opening pattern 43a. Scan. At this time, the position information of the wafer stage 39 is also supplied to the exposure control unit 21 via the main control system 22. The arithmetic unit in the exposure control unit 21 converts the detection signal of the photoelectric detector 45 into the wafer stage 39. The position of the image 36AP in the Y direction is calculated from the signal obtained by differentiating the position in the X direction. Similarly, the image 36AP is formed by the opening pattern 43a with X
By scanning in the direction, the position of the image 36AP in the X direction is also calculated, and the position information of the image 36AP in the X and Y directions is supplied to the main control system 22.

【0048】図1に戻り、レチクルステージ31上の評
価マーク板33、ウエハステージ39側の照度むらセン
サ42、及び空間像計測系46が、本発明の所定の照明
特性(光学特性)を計測する特性計測系に対応してい
る。次に、本例の照明光学系の所定の照明特性を最適化
するための調整動作の一例につき説明する。本例では、
その所定の照明特性の第1の組として、照明領域35、
ひいては露光領域35Pでの露光光ILの照度分布のば
らつき(以下、「照度むら」と呼ぶ)、及びレチクルR
に対する露光光ILのテレセントリック性の崩れ量(以
下、「照明テレセン」と呼ぶ)を選択する。これは、こ
の2つの照明特性が投影光学系PLによる投影像、及び
ウエハW上のフォトレジストに対して最も大きな影響を
与えるためである。
Returning to FIG. 1, the evaluation mark plate 33 on the reticle stage 31, the uneven illuminance sensor 42 on the wafer stage 39 side, and the aerial image measurement system 46 measure predetermined illumination characteristics (optical characteristics) of the present invention. It corresponds to the characteristic measurement system. Next, an example of an adjustment operation for optimizing a predetermined illumination characteristic of the illumination optical system of the present example will be described. In this example,
As a first set of the predetermined illumination characteristics, an illumination area 35,
Consequently, the illuminance distribution of the exposure light IL in the exposure region 35P varies (hereinafter, referred to as “illuminance unevenness”), and the reticle R
Of the telecentricity of the exposure light IL (hereinafter referred to as "illumination telecentricity") is selected. This is because these two illumination characteristics have the greatest influence on the image projected by the projection optical system PL and the photoresist on the wafer W.

【0049】そして、その照度むらを露光領域35Pの
非走査方向(X方向)の位置に関する1次成分(これを
「傾斜成分」と呼ぶ)と、その位置に関する2次成分
(これを「凹凸成分」と呼ぶ)とに分ける。即ち、照度
を位置Xの関数PF(X)とすると、照度PF(X)は
以下のように近似でき、係数aが傾斜成分、係数bが凹
凸成分となる。この際に、走査方向(Y方向)の照度む
ら成分は、走査露光によって平均化されるため、本例で
は特に評価対象とはしていない。その凹凸成分は光軸に
関して対称な成分(軸対称成分)でもある。
Then, the uneven illuminance is referred to as a primary component relating to the position in the non-scanning direction (X direction) of the exposure area 35P (this is referred to as an “inclination component”), and a secondary component relating to the position (this is referred to as a “concavo-convex component”). "). That is, assuming that the illuminance is a function PF (X) of the position X, the illuminance PF (X) can be approximated as follows, and the coefficient a is a slope component and the coefficient b is a concavo-convex component. At this time, since the illuminance unevenness component in the scanning direction (Y direction) is averaged by the scanning exposure, it is not particularly evaluated in this example. The uneven component is also a component symmetric with respect to the optical axis (axially symmetric component).

【0050】 PF(X)=a・X+b・X2 +オフセット …(1) また、その照明テレセンを照明領域35(露光領域35
P)内での露光光の平均的なX方向、及びY方向への傾
斜角に対応する傾斜成分(シフト成分)c,dと、露光
光の光軸に対して半径方向に対する平均的な傾斜角に対
応する倍率成分eとに分ける。この場合、本例ではウエ
ハステージ39のフォーカス位置を合焦位置に対して±
δだけデフォーカスさせた位置に設定して、各フォーカ
ス位置で多数の評価用マークの像の位置(ディストーシ
ョン量)を空間像計測系46で計測し、フォーカス位置
の変化量に対する評価用マークの像の平均的なシフト量
から傾斜成分c,dを求め、それらの評価用マークの像
の半径方向に対する平均的なシフト量から倍率成分eを
求めることができる。
PF (X) = a · X + b · X 2 + offset (1) Further, the illumination telecentric is set to the illumination area 35 (the exposure area 35).
P) the inclination components (shift components) c and d corresponding to the average inclination angles of the exposure light in the X and Y directions, and the average inclination with respect to the optical axis of the exposure light in the radial direction. And a magnification component e corresponding to the corner. In this case, in this example, the focus position of the wafer stage 39 is ±
The positions (distortion amounts) of a large number of evaluation mark images are measured at each focus position by the aerial image measurement system 46 at the positions defocused by δ, and the evaluation mark images corresponding to the change amount of the focus position are measured. Can be obtained from the average shift amounts of the evaluation marks, and the magnification component e can be obtained from the average shift amounts of the evaluation marks in the radial direction of the image.

【0051】また、本例では図2を参照して説明したよ
うに、5個の駆動ユニット23,24,25X,25
Y,25Tを介してそれぞれ第2フライアイレンズ9、
第1レンズ系12、及び第2レンズ系13の状態を制御
できるが、これらの制御によって以下のように上記の各
照明特性をほぼ独立に制御することができる。 (a2)第1駆動ユニット23による第2フライアイレ
ンズ9の光軸方向の位置調整:照明テレセンの倍率成分
e[mrad]、 (b2)第2駆動ユニット24による第1レンズ系12
の光軸方向の位置調整:照度むらの凹凸成分b[%]、 (c2)第3駆動ユニット25Xによる第2レンズ系1
3のx方向の位置調整:照明テレセンのX方向の傾斜成
分c[mrad]、 (c3)第4駆動ユニット25Yによる第2レンズ系1
3のy方向の位置調整:照明テレセンのY方向の傾斜成
分d[mrad]、 (d2)第5駆動ユニット25Tによる第2レンズ系1
3のチルト角調整:照度むらの非走査方向の傾斜成分a
[%]。
In this example, as described with reference to FIG. 2, the five drive units 23, 24, 25X, 25
A second fly-eye lens 9 via Y and 25T,
Although the states of the first lens system 12 and the second lens system 13 can be controlled, the above-described illumination characteristics can be controlled almost independently as described below. (A2) Position adjustment of the second fly-eye lens 9 in the optical axis direction by the first drive unit 23: magnification component e [mrad] of the illumination telecentric; (b2) first lens system 12 by the second drive unit 24
Position adjustment in the optical axis direction: unevenness component b [%] of uneven illuminance, (c2) second lens system 1 by third drive unit 25X
(3) X-direction position adjustment: X-direction tilt component of illumination telecentric c [mrad], (c3) Second lens system 1 by fourth drive unit 25Y
(3) Position adjustment in y direction: tilt component d [mrad] of illumination telecentric in Y direction, (d2) Second lens system 1 by fifth drive unit 25T
3. Tilt angle adjustment: Non-scanning direction tilt component a of uneven illuminance
[%].

【0052】このように本例では、複数の駆動ユニット
23〜25Tの内の任意の一つの駆動ユニットによって
対応する光学部材の状態を制御したときに、実質的にた
だ1種類の照明特性(光学特性)のみが変化して、他の
照明特性は変化しないように状態を制御できる光学部材
の組み合わせが最適化されている。これによって、照明
特性の自動的な調整を簡単な制御で、かつ高精度に実行
することができる。また、駆動ユニットの個数を5個と
することで、基本的な全部の照明特性を自動的に制御す
ることができる。但し、制御対象の照明特性を例えば照
明テレセンのみとするような場合には、駆動ユニットの
個数を3個とするなど、制御対象の照明特性に応じて駆
動ユニットの個数及び配置は変化する。
As described above, in this example, when the state of the corresponding optical member is controlled by any one of the plurality of drive units 23 to 25T, substantially only one kind of illumination characteristic (optical The combination of the optical members that can control the state so that only the characteristic changes and other illumination characteristics do not change is optimized. As a result, automatic adjustment of the illumination characteristics can be performed with simple control and with high accuracy. Further, by setting the number of drive units to five, all the basic lighting characteristics can be automatically controlled. However, when the illumination characteristic of the control target is only the illumination telecentric, for example, the number and arrangement of the drive units change according to the illumination characteristic of the control target, such as three drive units.

【0053】なお、実際には5個の駆動ユニット間で僅
かに他の照明特性に対して影響を与える恐れもあるた
め、他の照明特性に対する影響も考慮することが望まし
い。このため、先ず図8のフローチャートに示すよう
に、5個の駆動ユニット23,24,25X,25Y,
25Tを単位量駆動したときに対応する照明特性をどれ
だけ変化させることができるかを示す駆動レートを求め
る。
Incidentally, since there is a possibility that the other driving characteristics may be slightly affected among the five driving units, it is desirable to consider the effects on the other driving characteristics. Therefore, first, as shown in the flowchart of FIG. 8, the five drive units 23, 24, 25X, 25Y,
A drive rate indicating how much the corresponding illumination characteristic can be changed when 25T is driven by a unit amount is obtained.

【0054】即ち、図8のステップ101において、図
1の開口絞り板10を制御して照明条件を通常照明、変
形照明(輪帯照明、若しくは4極照明)、又は小σ値照
明の何れかに設定する。次のステップ102において、
5個の駆動ユニット23〜25T中のi番目(i=1〜
5)の駆動ユニットを選択する。ここでは第1レンズ系
12に対応する2番目の駆動ユニット24を選択したも
のとする。次のステップ103において、その駆動ユニ
ット24の駆動量d2を駆動可能範囲の中央(d2=
0)に設定して、第1レンズ系12を設計上の位置であ
る光学原点に設定した状態で、照度むら、及び照明テレ
センの計測を行う。
That is, in step 101 of FIG. 8, the illumination condition is controlled by controlling the aperture stop plate 10 of FIG. 1 to one of normal illumination, deformed illumination (ring zone illumination or quadrupole illumination), or small σ value illumination. Set to. In the next step 102,
The ith (i = 1 to 1) among the five drive units 23 to 25T
5) The drive unit is selected. Here, it is assumed that the second drive unit 24 corresponding to the first lens system 12 has been selected. In the next step 103, the drive amount d2 of the drive unit 24 is set at the center of the drivable range (d2 =
0), and the first lens system 12 is set at the optical origin, which is the designed position, to measure the illuminance unevenness and the illumination telecentricity.

【0055】その照度むらの計測を行うために、図1に
おいてレチクルステージ31上にレチクルRの代わりに
パターンの形成されていないガラス基板を設置して、照
明領域35に露光光ILを照射して、露光領域35Pを
照度むらセンサ42の受光部で非走査方向(X方向)に
走査して、照度むらセンサ42の検出信号S2を露光制
御ユニット21に取り込む。なお、そのガラス基板の代
わりに、レチクルRの内のパターンの形成されていない
領域、又は評価マーク板33中の評価用マークの形成さ
れていない領域を使用してもよい。
In order to measure the uneven illuminance, a glass substrate having no pattern is set on the reticle stage 31 instead of the reticle R in FIG. 1, and the illumination area 35 is irradiated with exposure light IL. The exposure area 35P is scanned in the non-scanning direction (X direction) by the light receiving section of the uneven illuminance sensor 42, and the detection signal S2 of the uneven illuminance sensor 42 is taken into the exposure control unit 21. Instead of the glass substrate, an area of the reticle R where no pattern is formed, or an area of the evaluation mark plate 33 where no evaluation mark is formed may be used.

【0056】図4(a)は露光領域35Pを照度むらセ
ンサ42の受光部42aでX方向に走査する状態を示
し、図4(b)の曲線51Aは、そのときに照度むらセ
ンサ42(ウエハステージ39)のX方向の位置に対応
させてプロットした検出信号S2を示している。本例の
露光制御ユニット21内の演算部は、曲線51Aを
(1)式の右辺に対して最小自乗法で近似することによ
って、照度むらの傾斜成分aの値a1、及び凹凸成分b
の値b1を算出する。この際のX方向の原点は投影光学
系PLの光軸AXとする。曲線51Aを点線で示すよう
に1次の直線52A及び2次曲線53Aに分けた場合、
直線52Aの傾きがa1となり、2次曲線53AのX2
の係数がb1となる。
FIG. 4A shows a state in which the exposure area 35P is scanned in the X direction by the light receiving portion 42a of the uneven illuminance sensor 42, and a curve 51A in FIG. The detection signal S2 plotted corresponding to the position of the stage 39) in the X direction is shown. The calculation unit in the exposure control unit 21 of this example approximates the curve 51A to the right side of the equation (1) by the least square method, thereby obtaining the value a1 of the slope component a of the uneven illuminance and the unevenness component b.
Is calculated. The origin in the X direction at this time is the optical axis AX of the projection optical system PL. When the curve 51A is divided into a primary straight line 52A and a secondary curve 53A as shown by a dotted line,
The slope of the straight line 52A becomes a1, and X 2 of the quadratic curve 53A
Becomes b1.

【0057】次に、照明テレセンを計測するために、図
1において、レチクルステージ31を駆動して照明領域
35の中心に評価マーク板33の中心を移動して、ウエ
ハステージ39を駆動して露光領域35Pの近傍に空間
像計測系46の走査板43を移動する。そして、ウエハ
ステージ39内のZレベリング機構を駆動して、走査板
43のフォーカス位置を投影光学系PLに対する像面
(ベストフォーカス位置)から+δだけ(δは所定の解
像度が得られる範囲内で予め設定されている)高く設定
し、露光光ILの照射を開始して、図5(a)に示すよ
うに評価マーク板33の評価用マーク36A〜36Mの
像36AP〜36MPをウエハステージ39上に投影す
る。この状態で、図3(b)を参照して説明したよう
に、走査板43の開口パターン43aでそれらの像36
AP〜36MPをX方向、Y方向に走査して、得られる
検出信号S3を露光制御ユニット21内の演算部で処理
することによって、それらの像36AP〜36MPのX
方向、Y方向の位置を算出し、算出結果を主制御系22
に供給する。この場合の原点は、例えば中央の評価用マ
ーク36Gの像36GPの中心である。
Next, in order to measure the illumination telecentricity, the reticle stage 31 is driven to move the center of the evaluation mark plate 33 to the center of the illumination area 35 in FIG. The scanning plate 43 of the aerial image measurement system 46 is moved near the region 35P. Then, the Z leveling mechanism in the wafer stage 39 is driven to shift the focus position of the scanning plate 43 from the image plane (best focus position) with respect to the projection optical system PL by + δ (δ is a predetermined value within a range where a predetermined resolution can be obtained). (Set), and the irradiation of the exposure light IL is started, and the images 36AP to 36MP of the evaluation marks 36A to 36M of the evaluation mark plate 33 are placed on the wafer stage 39 as shown in FIG. Project. In this state, as described with reference to FIG. 3B, the images 36 are formed by the aperture pattern 43a of the scanning plate 43.
AP to 36MP are scanned in the X direction and the Y direction, and the obtained detection signal S3 is processed by the arithmetic unit in the exposure control unit 21 so that the X of these images 36AP to 36MP is
And the position in the Y direction are calculated, and the calculation result is transmitted to the main control system 22.
To supply. The origin in this case is, for example, the center of the image 36GP of the central evaluation mark 36G.

【0058】なお、ウエハステージ39の移動に応じて
可動ブラインド14Bを駆動し、上記検出動作中に照明
領域35の一部のみ、例えば空間像計測系46にてその
像を検出すべき評価用マークのみに露光光ILを照射す
ることが望ましい。このように走査板43を+δだけデ
フォーカスさせて計測された評価用マーク36A〜36
Mの像を図5(a)の点線の格子上の像54A〜54M
とする。なお、説明の便宜上、点線の格子は矩形に描か
れているが、実際にはディストーションによって或る程
度は歪んでいることがある。
The movable blind 14B is driven in accordance with the movement of the wafer stage 39, and only a part of the illumination area 35, for example, an evaluation mark to be detected by the aerial image measurement system 46 during the detection operation. It is desirable to irradiate only the exposure light IL. Thus, the evaluation marks 36A-36 measured by defocusing the scanning plate 43 by + δ.
5A are images 54A to 54M on the dotted grid in FIG.
And Although the dotted grid is drawn as a rectangle for convenience of explanation, it may actually be distorted to some extent due to distortion.

【0059】次に、走査板43のフォーカス位置をベス
トフォーカス位置から−δだけ低く設定し、同様に空間
像計測系46を用いて評価用マーク36A,36B,…
36Mの像36AP〜36MPのX方向、Y方向の位置
を求めて、主制御系22に供給する。図5(a)には、
この場合の像36AP〜36MP、及び先に計測した像
54A〜54Mが表示されている。主制御系22では、
図5(a)に示すように、フォーカス位置を+δだけデ
フォーカスさせた場合の像54A〜54Mに対して、フ
ォーカス位置を−δだけデフォーカスさせた場合の像3
6AP〜36MPのX方向、Y方向への2次元的な位置
ずれ量をベクトル<VA>〜<VM>として求める。ま
た、これらのベクトルの単純な平均値<V1>(=(c
1,d1))、及び原点に対して半径方向(R方向)へ
の成分の平均値<V2>(=e1)が図5(b),
(c)に示すように算出される。平均値(c1,d1)
が照明テレセンの傾斜成分、平均値e1が照明テレセン
の倍率成分である。
Next, the focus position of the scanning plate 43 is set lower than the best focus position by -δ, and the evaluation marks 36A, 36B,.
The positions of the 36M images 36AP to 36MP in the X and Y directions are obtained and supplied to the main control system 22. In FIG. 5A,
In this case, images 36AP to 36MP and images 54A to 54M measured earlier are displayed. In the main control system 22,
As shown in FIG. 5A, the image 54A to 54M when the focus position is defocused by + δ, the image 3 when the focus position is defocused by −δ.
The two-dimensional displacement amounts in the X and Y directions of 6AP to 36MP are obtained as vectors <VA> to <VM>. Also, a simple average value <V1> (= (c
1, d1)) and the average value <V2> (= e1) of the components in the radial direction (R direction) with respect to the origin are shown in FIG.
It is calculated as shown in (c). Average value (c1, d1)
Is an inclination component of the illumination telecentric, and the average value e1 is a magnification component of the illumination telecentric.

【0060】次に、ステップ104において、その駆動
ユニット24の駆動量d2を駆動可能範囲の+側の端部
(d2=d2max )に設定した状態で、照度むら、及び
照明テレセンの計測を行う。これによって、図4(c)
に示すように、照度むらセンサ42の検出信号S2の曲
線51Bが得られ、この曲線51Bを1次の直線52B
及び2次曲線53Bに分けることで、照度むらの傾斜成
分a2、及び凹凸成分b2が得られる。また、図5
(d)の評価用マーク36A〜36Mの像36AP〜3
6MPの位置ずれのベクトル<VA>〜<VM>から、
図5(e),(f)に示すように、照明テレセンの傾斜
成分(c2,d2)、及び照明テレセンの倍率成分e2
が得られる。
Next, in step 104, with the drive amount d2 of the drive unit 24 set to the + end (d2 = d2 max ) of the drivable range, the illuminance unevenness and the illumination telecentricity are measured. . As a result, FIG.
As shown in the figure, a curve 51B of the detection signal S2 of the uneven illuminance sensor 42 is obtained, and this curve 51B is
And the quadratic curve 53B, the inclination component a2 of uneven illuminance and the unevenness component b2 are obtained. FIG.
(D) Images 36AP-3 of evaluation marks 36A-36M
From the displacement vectors <VA> to <VM> of 6MP,
As shown in FIGS. 5E and 5F, the tilt component (c2, d2) of the illumination telecentric and the magnification component e2 of the illumination telecentric.
Is obtained.

【0061】次に、ステップ105において、その駆動
ユニット24の駆動量d2を駆動可能範囲の−側の端部
(d2=−d2max )に設定した状態で、照度むら、及
び照明テレセンの計測を行う。これによって同様に、照
度むらの傾斜成分a3、凹凸成分b3、及び照明テレセ
ンの傾斜成分(c3,d3)、倍率成分e3が得られ
る。なお、更に高精度に駆動レートを算出したい場合に
は、駆動ユニット24の駆動量を4箇所以上に設定し
て、照度むら及び照明テレセンを計測することが望まし
い。
Next, in step 105, with the drive amount d2 of the drive unit 24 set to the negative end (d2 = -d2 max ) of the drivable range, the measurement of the illuminance unevenness and the illumination telecentricity is performed. Do. In this manner, similarly, the inclination component a3 and unevenness component b3 of the illuminance unevenness, the inclination components (c3 and d3) of the illumination telecentric, and the magnification component e3 are obtained. If it is desired to calculate the drive rate with higher accuracy, it is desirable to set the drive amount of the drive unit 24 to four or more places and measure uneven illuminance and illumination telecentricity.

【0062】その後のステップ106において、上記の
計測値を用いて駆動ユニット24(第1レンズ系12)
の駆動レートを算出する。一例として、駆動量d2を
0,d2max ,−d2max に設定したときの照度むらの
傾斜成分aは、それぞれa1,a2,a3であるため、
傾斜成分aに対する駆動レートka2[%/mm]は次
のようになる。 ka2=[(a2−a1)/d2max -(a3−a1)/(2・d2max )]/2…(2)
In the subsequent step 106, the drive unit 24 (first lens system 12) is used by using the above measured values.
Is calculated. For an example, the driving amount d2 0, d2 max, tilting component a of the illuminance unevenness when set to -d2 max are respectively a1, a2, a3,
The driving rate ka2 [% / mm] for the inclination component a is as follows. ka2 = [(a2-a1) / d2 max- (a3-a1) / (2 · d2 max )] / 2 (2)

【0063】同様にして、照度むらの凹凸成分b、照明
テレセンの傾斜成分c,d、及び照明テレセンの倍率成
分eに対する駆動レートkb2[%/mm],kc2
[mrad/mm],kd2[mrad/mm],ke2[mrad
/mm]も算出されて、主制御系22内の記憶部に記憶
される。この際に、支配的な値は照度むらの凹凸成分b
に対する駆動レートkb2のみであるが、その他の値で
も所定レベルを超えているものについてはそのまま記憶
し、所定レベル内の値については0として記憶してもよ
い。
Similarly, drive rates kb2 [% / mm] and kc2 for the unevenness component b of the uneven illuminance, the inclination components c and d of the illumination telecentric, and the magnification component e of the illumination telecentric.
[Mrad / mm], kd2 [mrad / mm], ke2 [mrad
/ Mm] is also calculated and stored in the storage unit in the main control system 22. At this time, the dominant value is the unevenness component b of uneven illuminance.
However, only the drive rate kb2 with respect to the threshold value may be stored as it is for other values exceeding a predetermined level, and 0 may be stored for a value within the predetermined level.

【0064】具体的に第1レンズ系12を駆動する場合
には、凹凸成分bと同じく中心対称(軸対称)の特性を
有する照明テレセンの倍率成分eに対する駆動レートk
e2が所定レベルを超える可能性がある。このようにし
て全ての駆動ユニット23〜25Tについてステップ1
02〜106の動作を実行して、駆動レートkai、k
bi、kci、kdi、kei(i=1〜5)を算出し
て主制御系22内に照明条件毎のパラメータとして記憶
する。その後、ステップ107からステップ108に移
行して、必要な全ての照明条件について駆動レートを算
出したかどうかを判定し、終了していない場合には、ス
テップ101に戻って照明条件を切り換えて駆動レート
を算出する。なお、ここでは全ての照明条件について駆
動レートを算出するものとしたが、本例はこれに限定さ
れるものではなく、例えば全ての照明条件の一部のみに
ついて駆動レートを算出し、残りの照明条件については
他の照明条件の駆動レートに基づき、補間計算などによ
って駆動レートを決定するようにしてもよい。
Specifically, when the first lens system 12 is driven, the driving rate k for the magnification component e of the illumination telecentric having the same central symmetric (axially symmetric) characteristics as the uneven component b.
e2 may exceed a predetermined level. Step 1 is performed for all the drive units 23 to 25T in this manner.
The operations of 02 to 106 are executed, and the driving rates kai, k
Bi, kci, kdi, and kei (i = 1 to 5) are calculated and stored in the main control system 22 as parameters for each lighting condition. Thereafter, the process proceeds from step 107 to step 108 to determine whether or not the drive rates have been calculated for all necessary lighting conditions. If not completed, the process returns to step 101 to switch the lighting conditions and change the drive rate. Is calculated. Note that, here, the drive rate is calculated for all the lighting conditions, but the present example is not limited to this. For example, the drive rate is calculated for only a part of all the lighting conditions, and the remaining lighting conditions are calculated. As for the condition, the driving rate may be determined by interpolation calculation or the like based on the driving rate of another lighting condition.

【0065】この際に、第2駆動ユニット24(第1レ
ンズ系12)の場合、中心非対称な成分に関する駆動レ
ートka2,kc2,kd2は本来は無視できる程度の
量である。これらの駆動レートが或る値以上に大きい場
合は、第1レンズ系12が偏心していたり、傾いていた
りする可能性があり、この段階でこれらの不具合を検知
することができ、これに基づいて調整を行うことができ
る。
At this time, in the case of the second drive unit 24 (first lens system 12), the drive rates ka2, kc2, and kd2 relating to the center asymmetric component are essentially negligible. If these drive rates are higher than a certain value, the first lens system 12 may be decentered or tilted, and these defects can be detected at this stage. Adjustments can be made.

【0066】次に、上記のようにして求めた駆動レート
を用いて、照明光学系の調整を自動的に行うシーケンス
の一例につき図9のフローチャートを参照して説明す
る。先ず、図9のステップ111において、図1の開口
絞り板10を介して照明条件を選択し、全部の駆動ユニ
ット23,24,25X〜25Tの駆動量を中立位置に
設定し、対応する光学部材を光学原点に設定する。次の
ステップ112において、図8のステップ103と同様
に照度むら及び照明テレセンを計測する。そして、ステ
ップ113において、図4、図5に示した手順で、照度
むらの傾斜成分(1次成分)a、凹凸成分(2次成分)
bを算出し、照明テレセンの傾斜成分(シフト成分)
c,d、及び倍率成分eを算出する。次のステップ11
4において照度むらa,b及び照明テレセンc,d,e
がそれぞれ許容範囲内かどうかを判定し、何れかが許容
範囲から外れている場合にはステップ115に移行し
て、主制御系22内に記憶してある駆動レートkai、
kbi、kci、kdi、kei(i=1〜5)を用い
て、照度むらa,b及び照明テレセンc,d,eをそれ
ぞれ計算上で0にするための5個の駆動ユニット23〜
25Tの駆動量di(i=1〜5)を算出する。この場
合には、以下の連立方程式を解けばよい。
Next, an example of a sequence for automatically adjusting the illumination optical system using the drive rate obtained as described above will be described with reference to the flowchart in FIG. First, in step 111 of FIG. 9, the illumination conditions are selected via the aperture stop plate 10 of FIG. 1, the drive amounts of all the drive units 23, 24, 25X to 25T are set to the neutral positions, and the corresponding optical members are set. Is set to the optical origin. In the next step 112, uneven illuminance and illumination telecentricity are measured as in step 103 of FIG. Then, in step 113, the inclination component (primary component) a and the unevenness component (secondary component) of the illuminance unevenness are obtained by the procedure shown in FIGS.
b is calculated and the tilt component (shift component) of the illumination telecentric
c, d and a magnification component e are calculated. Next Step 11
In FIG. 4, the illuminance unevenness a, b and the illumination telecentric c, d, e
Are within the allowable range, and if any of them are out of the allowable range, the routine proceeds to step 115, where the drive rates kai,
Using kbi, kci, kdi, and kei (i = 1 to 5), five driving units 23 to 23 for calculating the illumination unevenness a and b and the illumination telecentric c, d and e to 0, respectively.
A drive amount di (i = 1 to 5) of 25T is calculated. In this case, the following simultaneous equations may be solved.

【0067】−a=ka1・d1+ka2・d2+ka3・d
3+ka4・d4+ka5・d5 −b=kb1・d1+kb2・d2+kb3・d3+kb4・d
4+kb5・d5 −c=kc1・d1+kc2・d2+kc3・d3+kc4・d
4+kc5・d5 −d=kd1・d1+kd2・d2+kd3・d3+kd4・d
4+kd5・d5 −e=ke1・d1+ke2・d2+ke3・d3+ke4・d
4+ke5・d5 但し、実際には、これらの駆動レート中で0でないもの
は各行で1個、又は2個程度であるため、この連立方程
式は極めて容易に解くことができる。算出された駆動量
di(i=1〜5)も、複数の照明条件のそれぞれに対
応させてパラメータとして主制御系22内の記憶部に保
存される。
-A = ka1 · d1 + ka2 · d2 + ka3 · d
3 + ka4 · d4 + ka5 · d5-b = kb1 · d1 + kb2 · d2 + kb3 · d3 + kb4 · d
4 + kb5 · d5-c = kc1 · d1 + kc2 · d2 + kc3 · d3 + kc4 · d
4 + kc5 · d5-d = kd1 · d1 + kd2 · d2 + kd3 · d3 + kd4 · d
4 + kd5 · d5-e = ke1 · d1 + ke2 · d2 + ke3 · d3 + ke4 · d
4 + ke5 · d5 However, in reality, one or two of these driving rates are not 0 in each row, so that this simultaneous equation can be solved very easily. The calculated driving amount di (i = 1 to 5) is also stored in the storage unit in the main control system 22 as a parameter corresponding to each of the plurality of illumination conditions.

【0068】具体的に、駆動ユニット24と駆動ユニッ
ト23とが共に照度むらの凹凸成分bと照明テレセンの
倍率成分eに影響を及ぼし、駆動ユニット25Tと駆動
ユニット25Xとが共に照度むらの傾斜成分aと照明テ
レセンの傾斜成分cに影響を及ぼし、駆動ユニット25
Yのみが照明テレセンの傾斜成分dに影響を及ぼすとい
う関係があると考えられる。
More specifically, both the drive unit 24 and the drive unit 23 affect the unevenness component b of the uneven illuminance and the magnification component e of the illumination telecentric, and both the drive unit 25T and the drive unit 25X have the inclination component of the uneven illuminance. a and the tilt component c of the illumination telecentric,
It is considered that there is a relationship that only Y affects the tilt component d of the illumination telecentric.

【0069】次に、ステップ116に移行して、5個の
駆動ユニット23〜25Tをそれぞれ算出された駆動量
di(i=1〜5)だけ駆動する。その後、ステップ1
12,113に移行して、照度むらa,b及び照明テレ
センc,d,eを再計測し、ステップ114において、
それらの値が全部許容範囲内に収まらない場合には、再
びステップ115に移行して計算を実行し、それらの値
が全部許容範囲内に収まった場合には自動調整を終了す
る。そして、次に同じ照明条件が設定された場合には、
記憶されている駆動量diに基づいて駆動ユニット23
〜25Tを駆動するのみで、極めて短時間に照明光学系
の調整が完了する。
Next, the routine proceeds to step 116, where the five drive units 23 to 25T are driven by the calculated drive amounts di (i = 1 to 5). Then step 1
The process proceeds to steps 12 and 113, and the illumination unevenness a and b and the illumination telecentric c, d and e are measured again.
If all the values do not fall within the allowable range, the process returns to step 115 to execute the calculation. If all the values fall within the allowable range, the automatic adjustment ends. Then, when the same lighting conditions are set next,
Drive unit 23 based on the stored drive amount di
The adjustment of the illumination optical system is completed in a very short time only by driving up to 25T.

【0070】このように、本例では照明特性を自動的に
計測できるため、図8の駆動レートの計測シーケンス及
び図9の照明光学系の自動調整シーケンスは、全てアシ
ストレスで行うことができる。次に、本例の照明光学系
で図6(a)に示すように、第2フライアイレンズ9の
射出面に輪帯照明の開口絞り10b(又は4極照明の開
口絞り10c)を設置して変形照明を行う場合の調整方
法の一例につき説明する。
As described above, in this example, the illumination characteristics can be automatically measured. Therefore, the drive rate measurement sequence of FIG. 8 and the illumination optical system automatic adjustment sequence of FIG. 9 can all be performed without assistance. Next, as shown in FIG. 6A, an aperture stop 10b for annular illumination (or an aperture stop 10c for quadrupole illumination) is installed on the exit surface of the second fly-eye lens 9 in the illumination optical system of the present example. An example of an adjustment method when performing deformed illumination will be described.

【0071】この場合には、図1の第1フライアイレン
ズ6の代わりに回折光学素子(DOE)よりなる光量分
布変換素子55が設置される。なお、回折光学素子の代
わりに円錐プリズム(アキシコン、輪帯照明用)、又は
四角錐型(ピラミッド型)のプリズム(4極照明用)等
のプリズムを使用してもよい。そして、使用される開口
絞りが開口絞り10b又は10cの何れかに応じて第2
フライアイレンズ9に対する露光光ILの照射領域を調
整するために、第1レンズ系7Aを駆動ユニット62に
よって光軸に垂直な方向に駆動でき、かつ第2レンズ系
7Bを駆動ユニット58によって光軸方向に駆動できる
ようにしておく。なお、レンズ系7A,7Bよりなる集
光光学系(ビーム成形光学系)の代わりに、ズーム光学
系、収差を連続的に変化させるような光学系、又はシリ
ンドリカルレンズを回転させてビーム断面を歪ませるよ
うな光学系を使用しても良い。
In this case, a light quantity distribution conversion element 55 composed of a diffractive optical element (DOE) is provided instead of the first fly-eye lens 6 in FIG. Instead of the diffractive optical element, a prism such as a conical prism (for axicon and annular illumination) or a quadrangular pyramid (pyramid) prism (for quadrupole illumination) may be used. The second aperture stop is used depending on whether the aperture stop used is the aperture stop 10b or 10c.
In order to adjust the irradiation area of the exposure light IL to the fly-eye lens 9, the first lens system 7A can be driven in a direction perpendicular to the optical axis by the drive unit 62, and the second lens system 7B is driven by the drive unit 58 in the optical axis. Be able to drive in the direction. Note that, instead of the condensing optical system (beam shaping optical system) including the lens systems 7A and 7B, a zoom optical system, an optical system that continuously changes aberration, or a cylindrical lens is rotated to deform the beam cross section. Such an optical system may be used.

【0072】図6(a)の光学系の場合、第2フライア
イレンズ9を局所的に照明する際の照明領域によって、
照度むらが急激に変化することが本発明者によって確か
められている。具体的にその照度むらの変化要因は以下
の要因に分けられる。 1)局所照明エリアが小さい場合、開口絞りを通過する
光量が多いので像面照度は上昇するが、第2フライアイ
レンズ9の有効なエレメントのうち幾つかは中途半端に
照明され、これが照度むらに悪影響を及ぼす。
In the case of the optical system shown in FIG. 6A, depending on the illumination area when the second fly-eye lens 9 is locally illuminated,
It has been confirmed by the present inventors that the illuminance unevenness changes rapidly. Specifically, the change factors of the uneven illuminance can be divided into the following factors. 1) When the local illumination area is small, the image plane illuminance increases because the amount of light passing through the aperture stop is large. However, some of the effective elements of the second fly-eye lens 9 are illuminated halfway, and this causes uneven illuminance. Adversely affect

【0073】2)局所照明エリアが大きい場合、照度む
らは劣化しないが、当然開口絞り10b,10cに遮ら
れる光量が多くなり、像面照度は低下する。 3)局所照明エリアが偏心している場合、像面上の照明
むらも左右どちらかが低くなる傾向(傾斜成分)があ
る。これは第2フライアイレンズ9の各エレメントが有
限の大きさを有していることに起因している。よって、
本例では光量分布変換素子55を用いて変形照明を行う
場合は、図10に示すように特別の調整シーケンスを用
意している。
2) When the local illumination area is large, the illuminance unevenness does not deteriorate, but the amount of light blocked by the aperture stops 10b and 10c naturally increases, and the image plane illuminance decreases. 3) When the local illumination area is decentered, illumination unevenness on the image plane tends to be lower on either the left or right side (tilt component). This is because each element of the second fly-eye lens 9 has a finite size. Therefore,
In this example, when performing modified illumination using the light quantity distribution conversion element 55, a special adjustment sequence is prepared as shown in FIG.

【0074】そこで、図10のステップ121におい
て、図1の状態で、即ち通常照明に設定して、図8の駆
動レート計測、及び図9の自動調整シーケンスを実行す
る。次のステップ122において、図6(a)に示すよ
うに、第1フライアイレンズ6を光量分布変換素子55
に変更し、第2フライアイレンズ9の射出面の開口絞り
を変形照明用の開口絞り10b又は10cに設定する。
次のステップ123において、図1の照度むらセンサ4
2を用いて照度むらを計測し、図4に示したようにその
傾斜成分a及び凹凸成分bを算出する。この際に、照度
分布の非走査方向の両側に極端な傾斜の照度むらが発生
して、傾斜成分aが許容範囲を超えた場合には、前述の
ように局所照明エリアが偏心している可能性がある。こ
の場合には、その傾斜成分aが許容範囲内に収まるよう
に、第1レンズ系7Aを光軸に垂直な面内でX方向、Y
方向に対応する方向にシフトさせる。
Therefore, in step 121 of FIG. 10, the drive rate measurement of FIG. 8 and the automatic adjustment sequence of FIG. 9 are executed in the state of FIG. In the next step 122, as shown in FIG. 6A, the first fly-eye lens 6 is
And the aperture stop on the exit surface of the second fly-eye lens 9 is set to the aperture stop 10b or 10c for deformed illumination.
In the next step 123, the uneven illuminance sensor 4 of FIG.
2, the illuminance unevenness is measured, and the inclination component a and the unevenness component b are calculated as shown in FIG. At this time, if the illuminance distribution has extreme uneven illuminance on both sides in the non-scanning direction and the inclination component a exceeds the allowable range, the local illumination area may be eccentric as described above. There is. In this case, the first lens system 7A is moved in the X direction and the Y direction in a plane perpendicular to the optical axis so that the tilt component a falls within the allowable range.
Shift in the direction corresponding to the direction.

【0075】そして、この状態で照度むらの凹凸成分b
を評価対象とする。即ち、ステップ124に移行して、
凹凸成分bが許容範囲内かどうかを判定し、許容範囲外
であるときにはステップ125に移行して、第2レンズ
系7Bを光軸方向に所定ステップ量だけシフトさせてか
らステップ123に戻って、再び照度むらの凹凸成分b
を計測し、それが許容範囲内かどうかを判定する。この
補正動作は、ステップ124で凹凸成分bが許容範囲内
に収まるまで実行される。
Then, in this state, the unevenness component b of uneven illuminance
Is to be evaluated. That is, the process proceeds to step 124,
It is determined whether the concavo-convex component b is within the permissible range. If the permissible component b is outside the permissible range, the process proceeds to step 125, where the second lens system 7B is shifted by a predetermined step amount in the optical axis direction, and then returns to step 123. Irregularity unevenness component b again
Is measured, and it is determined whether or not it is within an allowable range. This correction operation is performed until the unevenness component b falls within the allowable range in step 124.

【0076】ステップ124で凹凸成分bが許容範囲内
に収まった後、ステップ126に移行して、図6(a)
のビーム成形系5のレンズ系4Bを光軸方向に所定量ず
つ次第に変化させて(走査して)、レンズ系4Bの各位
置(位置u)で図1の照度むらセンサ42をパターン像
の無い露光領域35Pで非走査方向に走査して、検出信
号S2のデータ列を露光制御ユニット21に取り込むと
共に、インテグレータセンサ20の検出信号S1も露光
制御ユニット21に取り込む。
After the concavo-convex component b falls within the allowable range in step 124, the process proceeds to step 126, where FIG.
The lens system 4B of the beam forming system 5 is gradually changed (scanned) by a predetermined amount in the optical axis direction, and the illuminance unevenness sensor 42 of FIG. 1 has no pattern image at each position (position u) of the lens system 4B. Scanning is performed in the non-scanning direction in the exposure area 35 </ b> P, and the data sequence of the detection signal S <b> 2 is taken into the exposure control unit 21, and the detection signal S <b> 1 of the integrator sensor 20 is taken into the exposure control unit 21.

【0077】次のステップ127において、レンズ系4
Bの各位置uにおいて、検出信号S2(照度)の最大値
と最小値との差分ΔIPを照度むらとして求め、インテ
グレータセンサ20の検出信号S1より像面での照度の
大きさ(平均値)IPを間接的に求める。そして、露光
制御ユニット21内の演算部は、レンズ系4Bの各位置
uに対して照度むらΔIPの逆数(1/ΔIP)、及び
像面照度IPを対応付ける。分かり易いように、位置u
に対して像面照度IP及び照度むらの逆数(1/ΔI
P)をプロットした図が図7である。
In the next step 127, the lens system 4
At each position u of B, the difference ΔIP between the maximum value and the minimum value of the detection signal S2 (illuminance) is obtained as uneven illuminance, and the magnitude (average value) IP of the illuminance on the image plane is obtained from the detection signal S1 of the integrator sensor 20. Is obtained indirectly. Then, the calculation unit in the exposure control unit 21 associates each position u of the lens system 4B with the reciprocal (1 / ΔIP) of the uneven illuminance ΔIP and the image plane illuminance IP. For clarity, position u
With respect to the image plane illuminance IP and the reciprocal of the illuminance unevenness (1 / ΔI
FIG. 7 is a diagram plotting P).

【0078】図7において、横軸はレンズ系4Bの位置
u、縦軸は像面照度IP、及び照度むらΔIPの逆数
(1/ΔIP)である。そして、曲線59が像面照度I
P、曲線60が照度むらの逆数(1/ΔIP)を表して
いる。この場合、像面照度IPが大きくなると、照度む
らの逆数(1/ΔIP)が小さくなって照度むらが大き
くなることから、像面照度と照度むらとがトレードオフ
の関係であることが分かる。そこで、本例では像面照度
が許容値TL1(位置u2)以上となり、照度むらの逆
数が許容値TL2(位置u1)以上となる位置uの範囲
61(u1≦u≦u2)を、レンズ系4Bの設定可能範
囲として求めて主制御系22に供給する。
In FIG. 7, the horizontal axis represents the position u of the lens system 4B, and the vertical axis represents the image plane illuminance IP and the reciprocal (1 / ΔIP) of the illuminance unevenness ΔIP. The curve 59 indicates the image plane illuminance I
P and a curve 60 represent the reciprocal (1 / ΔIP) of the uneven illuminance. In this case, when the image plane illuminance IP increases, the reciprocal (1 / ΔIP) of the illuminance unevenness decreases, and the illuminance unevenness increases. Therefore, it can be seen that there is a trade-off relationship between the image plane illuminance and the illuminance unevenness. Therefore, in this example, the range 61 (u1 ≦ u ≦ u2) of the position u where the image plane illuminance is equal to or more than the allowable value TL1 (position u2) and the reciprocal of the uneven illuminance is equal to or more than the allowable value TL2 (position u1) is set to It is obtained as a settable range of 4B and supplied to the main control system 22.

【0079】次のステップ128において、図1の主制
御系22は駆動系26を介して図6(a)のレンズ系4
Bの位置uを設定可能範囲61内に設定する。これによ
って、高い像面照度が得られて露光工程のスループット
を向上できると共に、照度むらが小さくなって、高い結
像精度が得られる。また、像面上で微細なランダムな照
度むらが計測される場合は、変形照明用の光学素子を光
軸方向にシフトさせれば、ランダムな照度むらを解消さ
せることができる場合がある。以上のように、照明光学
系の任意の光学部材を駆動させることにより、各種の照
明光学系の特性が変化するが、これらを設計段階で選択
し、最適な駆動ユニットを自動調整シーケンスに組み込
むことにより、より照度むら及び照明テレセンの追い込
み精度を向上させることができる。
In the next step 128, the main control system 22 shown in FIG.
The position u of B is set within the settable range 61. As a result, a high image plane illuminance can be obtained and the throughput of the exposure step can be improved, and the illuminance non-uniformity is reduced, and a high imaging accuracy is obtained. Further, when fine random illumination unevenness is measured on the image plane, the random illumination unevenness can be sometimes eliminated by shifting the optical element for deformed illumination in the optical axis direction. As described above, by driving any optical member of the illumination optical system, the characteristics of various illumination optical systems change.However, these are selected at the design stage, and the optimal drive unit is incorporated in the automatic adjustment sequence. Thereby, it is possible to further improve the illuminance unevenness and the driving precision of the illumination telecentric.

【0080】なお、上記の実施の形態では、照度むらと
テレセントリシティとの両方を計測(検出)するものと
したが、どちらか一方を計測するのみでもよい。更に、
テレセントリシティではその傾斜成分をX方向とY方向
とに分けて計測したが、どちらか一方のみでもよいこと
がある。また、上記の実施の形態では走査露光方式の露
光装置で非走査方向の照度むらを検出するものとした
が、静止露光方式の露光装置ではX方向及びY方向でそ
れぞれ照度むらを検出してその補正を行うことが好まし
い。
In the above embodiment, both the uneven illuminance and the telecentricity are measured (detected), but only one of them may be measured. Furthermore,
In the telecentricity, the tilt component is measured separately in the X direction and the Y direction, but only one of them may be used. Further, in the above embodiment, the illuminance non-uniformity in the non-scanning direction is detected by the scanning exposure type exposure apparatus, but the illuminance non-uniformity is detected in the X direction and the Y direction by the static exposure type exposure apparatus. Preferably, a correction is made.

【0081】更に、上記の各実施形態では照明特性(照
明テレセンと照度むらとの少なくとも一方)の計測時に
その調整を行うものとしたが、その計測時以外に照明特
性の調整を行ってもよい。例えば、照明特性の変化を計
算(シミュレーションなど)し、この計算結果に基づい
て照明特性を逐次調整してもよい。また、定期的に照明
特性を計測してその調整を行うと共に、その定期的な計
測の間は上記計算にて照明特性の調整を行うようにして
もよい。更に、照度むらについては照明条件、即ち照明
光学系の瞳面上での露光光ILの強度分布(特にその形
状)の変更時に照度むらの傾斜成分と中心対称成分(凹
凸成分)との両方を調整し、次に照明条件を変更するま
では凹凸成分のみを調整するだけでもよい。
Further, in each of the above embodiments, the adjustment is performed at the time of measuring the illumination characteristic (at least one of the illumination telecentricity and the uneven illuminance). However, the adjustment of the illumination characteristic may be performed other than at the time of the measurement. . For example, a change in the illumination characteristic may be calculated (simulation or the like), and the illumination characteristic may be sequentially adjusted based on the calculation result. Further, the illumination characteristics may be periodically measured and adjusted, and the illumination characteristics may be adjusted by the above calculation during the periodic measurement. Further, regarding the illuminance unevenness, when the illumination condition, that is, the intensity distribution (especially, the shape) of the exposure light IL on the pupil plane of the illumination optical system is changed, both the inclination component and the centrally symmetric component (unevenness component) of the illuminance unevenness are changed. Until the adjustment is made and then the illumination condition is changed, only the unevenness component may be adjusted.

【0082】また、図6(a)では変形照明時に第1フ
ライアイレンズ6との交換で光量分布変換素子55を露
光光の光路中に配置するものとしたが、例えば露光光源
1とオプティカル・インテグレータ(本例では第1フラ
イアイレンズ6)との間にその光量分布変換素子55を
配置するようにしてもよい。このとき、照明条件の変更
に応じてその光量分布変換素子55を、異なる光量分布
を生成する別の素子に交換するようにしてもよい。ま
た、図6(a)の構成例においても、輪帯照明と4極照
明とで、光量分布変換素子55を交換するようにしても
よい。
In FIG. 6A, the light amount distribution conversion element 55 is arranged in the optical path of the exposure light by exchanging the first fly-eye lens 6 at the time of deformed illumination. The light amount distribution conversion element 55 may be arranged between the integrator (the first fly-eye lens 6 in this example). At this time, the light amount distribution conversion element 55 may be replaced with another element that generates a different light amount distribution according to a change in the illumination condition. Also, in the configuration example of FIG. 6A, the light amount distribution conversion element 55 may be replaced between the annular illumination and the quadrupole illumination.

【0083】更に、図1の照明条件切り換え系は、開口
絞り板10と、オプティカル・インテグレータ(第1フ
ライアイレンズ6)及び光量分布変換素子(回折光学素
子55)の交換を行う交換装置56との両方を含むもの
としたが、その照明条件切り換え系は、開口絞り板10
のみ、或いは交換装置56のみを含むものでもよいし、
交換装置56は前述した複数の光量分布変換素子の交換
のみを行うだけでもよい。更に、開口絞り板10及び交
換装置56の少なくとも一方と組み合わせて、或いは開
口絞り板10及び交換装置56の代わりに、例えばズー
ム光学系と、照明光学系の光軸方向に相対移動可能な一
対のプリズム(円錐プリズム(アキシコン)、又は四角
錐プリズムなど)との少なくとも一方を、露光光源1と
オプティカル・インテグレータ(第2フライアイレンズ
9)との間に配置してもよい。
Further, the illumination condition switching system of FIG. 1 includes an aperture stop plate 10, an exchange device 56 for exchanging an optical integrator (first fly-eye lens 6) and a light quantity distribution conversion element (diffractive optical element 55). The illumination condition switching system includes the aperture stop plate 10.
Only, or may include only the exchange device 56,
The exchange device 56 may perform only the exchange of the plurality of light amount distribution conversion elements described above. Further, in combination with at least one of the aperture stop plate 10 and the exchange device 56 or instead of the aperture stop plate 10 and the exchange device 56, for example, a zoom optical system and a pair of relatively movable optical axis directions of the illumination optical system. At least one of a prism (such as a conical prism (axicon) or a quadrangular pyramid prism) may be disposed between the exposure light source 1 and the optical integrator (the second fly-eye lens 9).

【0084】なお、上記の実施の形態では、オプティカ
ル・インテグレータとしてフライアイレンズ6,9が使
用されているが、オプティカル・インテグレータとして
内面反射型インテグレータ(ロッドインテグレータ)を
使用する場合も本発明が適用できることは明きらかであ
る。更に、上記の実施の形態では2段のフライアイレン
ズ6,9を用いるいわゆるダブル・フライアイ方式の照
明光学系ILSが使用されているが、1段のオプティカ
ル・インテグレータ(フライアイレンズ、ロッドインテ
グレータ等)のみを用いる照明光学系の調整を行う場合
にも本発明を適用することができる。更に、変形照明だ
けでなく、通常照明や小σ値の照明などでも、前述の回
折光学素子(DOE)をオプティカル・インテグレータ
として用いてもよい。勿論この場合、複数の回折光学素
子を用意して照明条件に応じてその交換を行うことが望
ましい。
Although the fly-eye lenses 6 and 9 are used as optical integrators in the above-described embodiment, the present invention is also applicable to a case where an internal reflection type integrator (rod integrator) is used as an optical integrator. What you can do is clear. Further, in the above embodiment, a so-called double fly-eye type illumination optical system ILS using two-stage fly-eye lenses 6 and 9 is used, but a one-stage optical integrator (fly-eye lens, rod integrator) is used. The present invention can also be applied to a case where adjustment of an illumination optical system using only the above-described method is performed. Further, the above-described diffractive optical element (DOE) may be used as an optical integrator not only for modified illumination but also for ordinary illumination and illumination with a small σ value. Of course, in this case, it is desirable to prepare a plurality of diffractive optical elements and replace them according to the illumination conditions.

【0085】なお、オプティカル・インテグレータ
(9)として、例えば入射面が照明光学系の瞳面に配置
され、かつ射出面がレチクルRのパターン面と共役に配
置される内面反射型インテグレータを用い、かつ露光光
源1とオプティカル・インテグレータ(9)との間に、
前述した複数の光量分布変換素子(回折光学素子)、ズ
ーム光学系、及び一対のプリズムの少なくとも1つを含
む光学ユニットを配置する場合、照明条件の変更時に、
その内面反射型インテグレータに入射する露光光ILの
入射角度範囲が変更されることになる。また、オプティ
カル・インテグレータ(9)としてフライアイレンズを
用いるときはその射出面側に複数の光源像からなる面光
源、即ち2次光源が形成され、内面反射型インテグレー
タを用いるときはその入射面側に複数の虚像からなる2
次光源が形成される。従って、上記各実施形態における
照明条件の変更とは、照明光学系の瞳面上での露光光I
Lの強度分布を変更すること、及び照明光学系の瞳面上
に形成される2次光源の大きさ及び形状の少なくとも一
方を変更することと等価である。
As the optical integrator (9), for example, an internal reflection type integrator in which the entrance plane is arranged on the pupil plane of the illumination optical system and the exit plane is arranged conjugate with the pattern plane of the reticle R, and Between the exposure light source 1 and the optical integrator (9),
When an optical unit including at least one of the plurality of light amount distribution conversion elements (diffractive optical elements), the zoom optical system, and the pair of prisms described above is arranged, when the illumination condition is changed,
The incident angle range of the exposure light IL incident on the internal reflection type integrator is changed. When a fly-eye lens is used as the optical integrator (9), a surface light source composed of a plurality of light source images, that is, a secondary light source is formed on the exit surface thereof, and when an internal reflection type integrator is used, its entrance surface is used. Consisting of multiple virtual images
A secondary light source is formed. Therefore, the change of the illumination condition in each of the above embodiments means that the exposure light I on the pupil plane of the illumination optical system is changed.
It is equivalent to changing the intensity distribution of L and changing at least one of the size and shape of the secondary light source formed on the pupil plane of the illumination optical system.

【0086】また、上記の実施の形態は、本発明を走査
露光方式の投影露光装置に適用したものであるが、本発
明はステップ・アンド・リピート方式(一括露光方式)
の投影露光装置(ステッパー)、及び投影系を用いない
プロキシミティ方式等の露光装置にも適用することがで
きる。また、露光光(露光ビーム)は上記の紫外光に限
られるものではなく、例えばレーザプラズマ光源又はS
OR(Synchrotron Orbital Radiation)リングから発生
する軟X線領域(波長5〜50nm)のEUV光を用い
てもよい。EUV露光装置では、照明光学系及び投影光
学系はそれぞれ複数の反射光学素子のみから構成され
る。
In the above embodiment, the present invention is applied to a scanning exposure type projection exposure apparatus, but the present invention is applied to a step-and-repeat type (batch exposure type).
The present invention can also be applied to a projection exposure apparatus (stepper) described above and an exposure apparatus of a proximity system or the like that does not use a projection system. Further, the exposure light (exposure beam) is not limited to the above-described ultraviolet light, and may be, for example, a laser plasma light source or an S beam.
EUV light in the soft X-ray region (wavelength 5 to 50 nm) generated from an OR (Synchrotron Orbital Radiation) ring may be used. In the EUV exposure apparatus, the illumination optical system and the projection optical system each include only a plurality of reflection optical elements.

【0087】そして、図1のウエハWより半導体デバイ
スが製造できる。その半導体デバイスは、デバイスの機
能・性能設計を行うステップ、このステップに基づいた
レチクルを製造するステップ、シリコン材料からウエハ
を制作するステップ、前述した実施の形態の投影露光装
置によりレチクルのパターンをウエハに露光するステッ
プ、デバイス組み立てステップ(ダイシング工程、ボン
ディング工程、パッケージ工程を含む)、検査ステップ
等を経て製造される。
Then, semiconductor devices can be manufactured from the wafer W of FIG. The semiconductor device has a step of designing the function and performance of the device, a step of manufacturing a reticle based on this step, a step of manufacturing a wafer from a silicon material, and a step of forming a reticle pattern on the wafer by the projection exposure apparatus of the above-described embodiment. , A device assembling step (including a dicing step, a bonding step, and a package step), an inspection step, and the like.

【0088】なお、露光装置の用途としては半導体素子
製造用の露光装置に限定されることなく、例えば、角型
のガラスプレートに形成される液晶表示素子、若しくは
プラズマディスプレイ等のディスプレイ装置用の露光装
置や、撮像素子(CCD等)、マイクロマシン、薄膜磁
気ヘッド、又はDNAチップ等の各種デバイスを製造す
るための露光装置にも広く適用できる。更に、本発明
は、各種デバイスのマスクパターンが形成されたマスク
(フォトマスク、レチクル等)をフォトリソグフィ工程
を用いて製造する際の、露光工程(露光装置)にも適用
することができる。
The application of the exposure apparatus is not limited to an exposure apparatus for manufacturing a semiconductor device. For example, an exposure apparatus for a liquid crystal display element formed on a square glass plate or an exposure apparatus for a display apparatus such as a plasma display. The present invention can be widely applied to an apparatus and an exposure apparatus for manufacturing various devices such as an imaging device (CCD or the like), a micromachine, a thin-film magnetic head, and a DNA chip. Further, the present invention can be applied to an exposure step (exposure apparatus) when manufacturing a mask (photomask, reticle, or the like) on which a mask pattern of various devices is formed by using a photolithography step.

【0089】なお、本発明は上述の実施の形態に限定さ
れず、本発明の要旨を逸脱しない範囲で種々の構成を取
り得ることは勿論である。
The present invention is not limited to the above-described embodiment, but can take various configurations without departing from the gist of the present invention.

【0090】[0090]

【発明の効果】本発明によれば、露光装置の照明系(照
明光学系)の調整を短時間に正確に行うことができる。
また、照明系の照明特性を計測する特性計測系を備えた
場合には、複数の照明条件を有する照明系の調整を自動
的に行うことができる。また、照明特性として露光ビー
ムのテレセントリック性の崩れ量(照明系のテレセント
リシティ)の傾斜成分と倍率成分とを分けて計測する場
合には、両者を独立に調整することによって調整を短時
間に正確に行うことができる。
According to the present invention, the illumination system (illumination optical system) of the exposure apparatus can be accurately adjusted in a short time.
When a characteristic measurement system for measuring the illumination characteristics of the illumination system is provided, adjustment of the illumination system having a plurality of illumination conditions can be automatically performed. In addition, when the inclination component and the magnification component of the amount of collapse of the telecentricity of the exposure beam (telecentricity of the illumination system) are separately measured as the illumination characteristics, the adjustment can be performed in a short time by adjusting both independently. Can be done accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態の一例の投影露光装置を
示す一部を切り欠いた正面図である。
FIG. 1 is a partially cutaway front view showing a projection exposure apparatus according to an example of an embodiment of the present invention.

【図2】 図1の第2フライアイレンズ9から第2レン
ズ系13までの光学系及び照明領域35を示す斜視図で
ある。
FIG. 2 is a perspective view showing an optical system from a second fly-eye lens 9 to a second lens system 13 and an illumination area 35 in FIG.

【図3】 (a)はレチクルステージ31及び評価マー
ク板33を示す平面図、(b)は評価用マークの像36
APの検出方法の説明に供する拡大平面図である。
3A is a plan view showing a reticle stage 31 and an evaluation mark plate 33, and FIG. 3B is an image 36 of an evaluation mark.
FIG. 3 is an enlarged plan view for explaining an AP detection method.

【図4】 照度むらの傾斜成分及び凹凸成分の計測方法
の説明図である。
FIG. 4 is an explanatory diagram of a method for measuring a tilt component and an uneven component of uneven illuminance.

【図5】 照明テレセンの傾斜成分及び倍率成分の計測
方法の説明図である。
FIG. 5 is an explanatory diagram of a method of measuring a tilt component and a magnification component of an illumination telecentric.

【図6】 (a)は図1の照明光学系ILSにおいて変
形照明を行う場合の要部を示す一部を切り欠いた図、
(b)は図6(a)の開口絞り板10を示す正面図であ
る。
FIG. 6A is a partially cutaway view showing a main part when performing modified illumination in the illumination optical system ILS of FIG. 1;
FIG. 7B is a front view showing the aperture stop plate 10 of FIG.

【図7】 変形照明を行う場合の照度の大きさと照度む
らとの関係の一例を示す図である。
FIG. 7 is a diagram illustrating an example of a relationship between illuminance magnitude and illuminance unevenness when performing modified illumination.

【図8】 照明光学系中の全部の駆動ユニットの駆動レ
ートの計測シーケンスの一例を示すフローチャートであ
る。
FIG. 8 is a flowchart illustrating an example of a measurement sequence of drive rates of all drive units in the illumination optical system.

【図9】 照明光学系の自動調整シーケンスの一例を示
すフローチャートである。
FIG. 9 is a flowchart illustrating an example of an automatic adjustment sequence of the illumination optical system.

【図10】 変形照明用の調整シーケンスの一例を示す
フローチャートである。
FIG. 10 is a flowchart illustrating an example of an adjustment sequence for modified illumination.

【符号の説明】[Explanation of symbols]

1…露光光源、5…ビーム成形系、6…第1フライアイ
レンズ、9…第2フライアイレンズ、10…開口絞り
板、12…第1レンズ系、13…第2レンズ系、14A
…固定ブラインド、R…レチクル、PL…投影光学系、
W…ウエハ、20…インテグレータセンサ、21…露光
制御ユニット、22…主制御系、23,24,25X,
25Y,25T…駆動ユニット、26…駆動系、31…
レチクルステージ、33…評価マーク板、36A〜36
M…評価用マーク、42…照度むらセンサ、46…空間
像計測系、55…光量分布変換素子
DESCRIPTION OF SYMBOLS 1 ... Exposure light source, 5 ... Beam shaping system, 6 ... 1st fly-eye lens, 9 ... 2nd fly-eye lens, 10 ... Aperture stop plate, 12 ... 1st lens system, 13 ... 2nd lens system, 14A
... fixed blind, R ... reticle, PL ... projection optical system,
W: wafer, 20: integrator sensor, 21: exposure control unit, 22: main control system, 23, 24, 25X,
25Y, 25T: drive unit, 26: drive system, 31 ...
Reticle stage, 33 ... Evaluation mark plate, 36A-36
M: evaluation mark, 42: uneven illuminance sensor, 46: aerial image measurement system, 55: light intensity distribution conversion element

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】 露光ビームで第1物体を照明する照明系
を備え、前記露光ビームで前記第1物体を介して第2物
体を露光する露光装置において、 前記照明系中に配置されて、前記露光ビームの照明条件
を複数の照明条件の何れかに切り換える照明条件切り換
え系と、 前記複数の照明条件のそれぞれに応じて前記照明系の所
定の照明特性を制御するために、前記照明系中の所定の
光学部材の状態を調整する調整系とを設けたことを特徴
とする露光装置。
1. An exposure apparatus, comprising: an illumination system that illuminates a first object with an exposure beam; and an exposure apparatus that exposes a second object via the first object with the exposure beam. An illumination condition switching system for switching the illumination condition of the exposure beam to any one of a plurality of illumination conditions; and in order to control a predetermined illumination characteristic of the illumination system in accordance with each of the plurality of illumination conditions, An exposure apparatus, comprising: an adjustment system for adjusting a state of a predetermined optical member.
【請求項2】 前記照明特性は、前記露光ビームの照度
むら、及び前記露光ビームのテレセントリック性の崩れ
量の少なくとも一方であることを特徴とする請求項1に
記載の露光装置。
2. The exposure apparatus according to claim 1, wherein the illumination characteristic is at least one of uneven illuminance of the exposure beam and an amount of collapse of the telecentricity of the exposure beam.
【請求項3】 前記照明特性は、前記露光ビームの照度
むらの傾斜成分及び凹凸成分、並びに前記露光ビームの
テレセントリック性の崩れ量の傾斜成分及び倍率成分で
あることを特徴とする請求項2に記載の露光装置。
3. The illumination device according to claim 2, wherein the illumination characteristics are a slope component and a concavo-convex component of uneven illuminance of the exposure beam, and a slope component and a magnification component of a telecentricity loss amount of the exposure beam. Exposure apparatus according to the above.
【請求項4】 前記照明系の前記照明特性を計測する特
性計測系と、 該特性計測系の計測結果に基づいて、前記調整系の駆動
量と前記照明特性の変化量との関係を求めて記憶する演
算制御系とを有することを特徴とする請求項1、2、又
は3に記載の露光装置。
4. A characteristic measurement system for measuring the illumination characteristics of the illumination system, and a relationship between a drive amount of the adjustment system and a change amount of the illumination characteristics is determined based on a measurement result of the characteristic measurement system. 4. The exposure apparatus according to claim 1, further comprising an arithmetic control system for storing.
【請求項5】 露光ビームで第1物体を照明する照明系
を備え、前記露光ビームで前記第1物体を介して第2物
体を露光する露光装置において、 前記照明系の所定の照明特性を計測する特性計測系と、 該特性計測系の計測結果に応じて前記照明系中の所定の
光学部材の状態を調整する調整系とを設けたことを特徴
とする露光装置。
5. An exposure apparatus, comprising: an illumination system for illuminating a first object with an exposure beam; and exposing a second object via the first object with the exposure beam, wherein a predetermined illumination characteristic of the illumination system is measured. An exposure apparatus, comprising: a characteristic measurement system that performs a measurement; and an adjustment system that adjusts a state of a predetermined optical member in the illumination system in accordance with a measurement result of the characteristic measurement system.
【請求項6】 前記照明系は、オプティカル・インテグ
レータを有し、 前記調整系は、前記オプティカル・インテグレータの光
軸方向の位置を調整することを特徴とする請求項1〜5
の何れか一項に記載の露光装置。
6. The illumination system according to claim 1, wherein the illumination system has an optical integrator, and the adjustment system adjusts a position of the optical integrator in an optical axis direction.
The exposure apparatus according to claim 1.
【請求項7】 前記照明系は、前記オプティカル・イン
テグレータを通過した前記露光ビームを前記第1物体の
被照射面、又はこれと共役な面に導く第1光学系、及び
第2光学系を更に有し、 前記調整系は、前記オプティカル・インテグレータの光
軸方向の位置、前記第1光学系の光軸方向の位置、並び
に前記第2光学系の光軸に垂直な方向の位置及びチルト
角を調整することを特徴とする請求項6に記載の露光装
置。
7. The illumination system further includes a first optical system and a second optical system that guide the exposure beam having passed through the optical integrator to a surface to be irradiated of the first object or a surface conjugate to the surface. The adjustment system has a position in the optical axis direction of the optical integrator, a position in the optical axis direction of the first optical system, and a position and a tilt angle in a direction perpendicular to the optical axis of the second optical system. The exposure apparatus according to claim 6, wherein the adjustment is performed.
【請求項8】 前記照明系は、 前記露光ビームの照度分布を変形照明用の局所的な領域
に設定するための光学素子と、 該光学素子からの露光ビームを導く集光光学系と、 該集光光学系からの露光ビームの照度分布を均一化する
ためのオプティカル・インテグレータとを有し、 前記調整系は、前記集光光学系を構成する光学部材の状
態を調整することを特徴とする請求項1〜7の何れか一
項に記載の露光装置。
8. An illumination system, comprising: an optical element for setting an illuminance distribution of the exposure beam to a local area for deformed illumination; a condensing optical system for guiding an exposure beam from the optical element; An optical integrator for equalizing the illuminance distribution of the exposure beam from the converging optical system, wherein the adjusting system adjusts a state of an optical member constituting the converging optical system. The exposure apparatus according to claim 1.
【請求項9】 前記照明系は、露光光源からの露光ビー
ムを成形して前記光学素子に導くビーム成形光学系を備
え、 前記露光ビームの照度の大きさ、及び前記露光ビームの
照度分布のばらつきの大きさのバランスが取れるように
前記調整系によって前記ビーム成形光学系の状態を調整
することを特徴とする請求項8に記載の露光装置。
9. The illumination system includes a beam shaping optical system that shapes an exposure beam from an exposure light source and guides the beam to the optical element; and a magnitude of illuminance of the exposure beam and a variation in illuminance distribution of the exposure beam. 9. The exposure apparatus according to claim 8, wherein the state of the beam shaping optical system is adjusted by the adjustment system so that the size of the beam shaping optical system is balanced.
【請求項10】 露光ビームで第1物体を照明する照明
系を備え、前記露光ビームで前記第1物体を介して第2
物体を露光する露光装置において、 前記照明系における前記露光ビームのテレセントリック
性の崩れ量を傾斜成分と倍率成分とに分けて計測するこ
とを特徴とする露光装置。
10. An illumination system for illuminating a first object with an exposure beam, and a second system through the first object with the exposure beam.
An exposure apparatus for exposing an object, wherein an amount of collapse of telecentricity of the exposure beam in the illumination system is measured separately for a tilt component and a magnification component.
【請求項11】 前記照明系による前記露光ビームの照
度むらを傾斜成分と凹凸成分とに分けて計測することを
特徴とする請求項10に記載の露光装置。
11. The exposure apparatus according to claim 10, wherein the illuminance unevenness of the exposure beam by the illumination system is measured separately for a tilt component and a concavo-convex component.
【請求項12】 前記第1物体が載置される第1可動体
と、前記第2物体が載置される第2可動体とを有し、前
記第1及び第2可動体を同期駆動する駆動系を更に備
え、前記第1物体を介して前記露光ビームで前記第2物
体を走査露光することを特徴とする請求項1〜11の何
れか一項に記載の露光装置。
12. A first movable body on which the first object is mounted and a second movable body on which the second object is mounted, wherein the first and second movable bodies are synchronously driven. The exposure apparatus according to claim 1, further comprising a driving system, wherein the exposure apparatus scans and exposes the second object with the exposure beam via the first object.
【請求項13】 前記第2物体が配置される所定面上で
前記露光ビームを検出して、前記露光ビームの照射領域
内で前記走査露光時に前記第1及び第2物体が移動され
る走査方向と直交する非走査方向に関する照度むらの傾
斜成分を計測することを特徴とする請求項12に記載の
露光装置。
13. A scanning direction in which the exposure beam is detected on a predetermined surface on which the second object is arranged, and the first and second objects are moved during the scanning exposure within an irradiation area of the exposure beam. 13. The exposure apparatus according to claim 12, wherein a slope component of illuminance unevenness in a non-scanning direction orthogonal to the direction is measured.
【請求項14】 前記露光ビームの照射領域内で、前記
走査方向に関して照度又は光量を積算して得られる、前
記非走査方向に関する積算分布に基づいて、前記照度む
らの凹凸成分と前記非走査方向に関する傾斜成分とを決
定することを特徴とする請求項13に記載の露光装置。
14. An unevenness component of the uneven illuminance and the non-scanning direction based on an integrated distribution in the non-scanning direction obtained by integrating illuminance or light amount in the scanning direction within an irradiation area of the exposure beam. 14. The exposure apparatus according to claim 13, wherein a tilt component related to the exposure is determined.
【請求項15】 前記第1可動体上で前記第1物体以外
に設けられるマークに照射される露光ビームを検出し
て、その崩れ量を計測することを特徴とする請求項1
2、13、又は14に記載の露光装置。
15. The method according to claim 1, wherein an exposure beam applied to a mark provided on the first movable body other than the first object is detected, and an amount of collapse is measured.
15. The exposure apparatus according to 2, 13, or 14.
【請求項16】 照明系を通る露光ビームを第1物体に
照射し、前記第1物体を介して前記露光ビームで第2物
体を露光する露光装置の調整方法において、 前記第2物体が配置される所定面上で前記露光ビームを
検出して、前記照明系のテレセントリシティと、前記露
光ビームの照射領域内での照度又は光量の分布との少な
くとも一方を含む照明特性を計測すると共に、前記計測
された照明特性に基づいて前記照明系内の光学部材を駆
動し、前記照明特性を次に計測するまでは、前記計測さ
れた照明特性を計算にて更新すると共に、前記更新され
た照明特性に基づいて前記光学部材を駆動することを特
徴とする露光装置の調整方法。
16. A method for adjusting an exposure apparatus that irradiates a first object with an exposure beam passing through an illumination system and exposes a second object with the exposure beam via the first object, wherein the second object is arranged Detecting the exposure beam on a predetermined surface, measuring the illumination characteristics including at least one of the telecentricity of the illumination system and the distribution of illuminance or light amount in the irradiation area of the exposure beam, Driving an optical member in the illumination system based on the measured illumination characteristics, and updating the measured illumination characteristics by calculation until the next measurement of the illumination characteristics, and updating the updated illumination characteristics A method for adjusting the exposure apparatus, wherein the optical member is driven based on the condition.
【請求項17】 前記第1物体が載置される第1可動体
と、前記第2物体が載置される第2可動体とを同期駆動
して、前記第1物体を介して前記露光ビームで前記第2
物体を走査露光し、前記第1可動体上で前記第1物体以
外に設けられるマークを用いて前記照明特性を計測する
ことを特徴とする請求項16に記載の露光装置の調整方
法。
17. The exposure beam is driven via the first object by synchronously driving a first movable body on which the first object is mounted and a second movable body on which the second object is mounted. The second
17. The method according to claim 16, wherein the object is scanned and exposed, and the illumination characteristic is measured using a mark provided on the first movable body other than the first object.
【請求項18】 前記第2物体が配置される所定面上で
前記露光ビームを検出して、前記露光ビームの照射領域
内で前記走査露光時に前記第1及び第2物体が移動され
る走査方向と直交する非走査方向に関する照度むらの傾
斜成分を計測することを特徴とする請求項17に記載の
露光装置の調整方法。
18. A scanning direction in which the exposure beam is detected on a predetermined surface on which the second object is arranged, and the first and second objects are moved during the scanning exposure within an irradiation area of the exposure beam. 18. The method according to claim 17, wherein a slope component of illuminance unevenness in a non-scanning direction orthogonal to the scan direction is measured.
【請求項19】 露光ビームで第1物体を照明する照明
系を備え、前記露光ビームで前記第1物体を介して第2
物体を露光する露光装置の調整方法において、 前記照明系中の所定の光学部材の状態を複数の状態に設
定して、それぞれ前記照明系の所定の照明特性の計測を
行い、 該計測結果に基づいて、前記光学部材の駆動量と前記照
明特性の変化量との関係を求めて記憶し、 該記憶された関係に基づいて、前記照明特性を制御する
ために前記光学部材を駆動することを特徴とする露光装
置の調整方法。
19. An illumination system for illuminating a first object with an exposure beam, and a second system through the first object with the exposure beam.
In the method of adjusting an exposure apparatus that exposes an object, a state of a predetermined optical member in the illumination system is set to a plurality of states, and a predetermined illumination characteristic of the illumination system is measured, based on the measurement result. Determining and storing a relationship between the drive amount of the optical member and the change amount of the illumination characteristic, and driving the optical member to control the illumination characteristic based on the stored relationship. Adjustment method of exposure apparatus.
【請求項20】 前記照明系の照明条件を複数の照明条
件の何れかに切り換え可能にしておき、 前記複数の照明条件のそれぞれに対して前記光学部材の
最適位置を求めて記憶しておき、 前記照明系の照明条件が切り換えられた際に、前記光学
部材の位置を切り換え後の照明条件に対する最適位置に
設定することを特徴とする請求項19に記載の露光装置
の調整方法。
20. An illumination condition of the illumination system can be switched to any one of a plurality of illumination conditions, and an optimum position of the optical member is obtained and stored for each of the plurality of illumination conditions. 20. The method according to claim 19, wherein when the illumination condition of the illumination system is switched, the position of the optical member is set to an optimal position with respect to the switched illumination condition.
【請求項21】 請求項1〜15の何れか一項に記載の
露光装置を用いてデバイスパターンをワークピース上に
転写する工程を含むデバイス製造方法。
21. A device manufacturing method including a step of transferring a device pattern onto a workpiece using the exposure apparatus according to claim 1. Description:
JP2001038326A 2000-02-25 2001-02-15 Aligner, its adjusting method, and method for fabricating device using aligner Withdrawn JP2001313250A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001038326A JP2001313250A (en) 2000-02-25 2001-02-15 Aligner, its adjusting method, and method for fabricating device using aligner
SG200101071A SG107560A1 (en) 2000-02-25 2001-02-23 Exposure apparatus and exposure method capable of controlling illumination distribution
SG200303509A SG124257A1 (en) 2000-02-25 2001-02-23 Exposure apparatus and exposure method capable of controlling illumination distribution
KR1020010009113A KR20010085493A (en) 2000-02-25 2001-02-23 Exposure apparatus, method for adjusting the same, and method for manufacturing device using the exposure apparatus
US09/790,616 US6771350B2 (en) 2000-02-25 2001-02-23 Exposure apparatus and exposure method capable of controlling illumination distribution
TW090104135A TW546699B (en) 2000-02-25 2001-02-23 Exposure apparatus and exposure method capable of controlling illumination distribution
US10/876,712 US6927836B2 (en) 2000-02-25 2004-06-28 Exposure apparatus and exposure method capable of controlling illumination distribution

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-49740 2000-02-25
JP2000049740 2000-02-25
JP2001038326A JP2001313250A (en) 2000-02-25 2001-02-15 Aligner, its adjusting method, and method for fabricating device using aligner

Publications (1)

Publication Number Publication Date
JP2001313250A true JP2001313250A (en) 2001-11-09

Family

ID=26586124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001038326A Withdrawn JP2001313250A (en) 2000-02-25 2001-02-15 Aligner, its adjusting method, and method for fabricating device using aligner

Country Status (1)

Country Link
JP (1) JP2001313250A (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150297A (en) * 2005-11-23 2007-06-14 Asml Netherlands Bv Method of measuring magnification of projection system, manufacturing method for device, and computer program product
WO2007097466A1 (en) 2006-02-21 2007-08-30 Nikon Corporation Measuring device and method, processing device and method, pattern forming device and method, exposing device and method, and device fabricating method
WO2007097380A1 (en) 2006-02-21 2007-08-30 Nikon Corporation Pattern forming apparatus, pattern forming method, mobile object driving system, mobile body driving method, exposure apparatus, exposure method and device manufacturing method
WO2007097379A1 (en) 2006-02-21 2007-08-30 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method and device manufacturing method
WO2007135998A1 (en) 2006-05-24 2007-11-29 Nikon Corporation Holding device and exposure device
WO2008026742A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008026732A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive system and mobile body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision method
WO2008026739A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008029758A1 (en) 2006-09-01 2008-03-13 Nikon Corporation Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
WO2008029757A1 (en) 2006-09-01 2008-03-13 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method
JP2008529290A (en) * 2005-01-29 2008-07-31 カール・ツァイス・エスエムティー・アーゲー Irradiation system, specifically, an irradiation system for a projection exposure apparatus in a semiconductor lithography
JP2009004771A (en) * 2007-05-29 2009-01-08 Nikon Corp Exposure method, exposure apparatus, and method for producing device
WO2009011356A1 (en) 2007-07-18 2009-01-22 Nikon Corporation Measurement method, stage apparatus, and exposure apparatus
WO2009013903A1 (en) 2007-07-24 2009-01-29 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
WO2009013905A1 (en) 2007-07-24 2009-01-29 Nikon Corporation Position measuring system, exposure device, position measuring method, exposure method, device manufacturing method, tool, and measuring method
WO2009101958A1 (en) 2008-02-14 2009-08-20 Nikon Corporation Illumination optical system, exposure device, device manufacturing method, correction filter, and exposure optical system
US7838858B2 (en) 2005-05-31 2010-11-23 Nikon Corporation Evaluation system and method of a search operation that detects a detection subject on an object
EP2267759A2 (en) 2004-02-02 2010-12-29 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP2275869A2 (en) 2003-06-19 2011-01-19 Nikon Corporation Exposure apparatus and device manufacturing method
JP2011014934A (en) * 2004-12-28 2011-01-20 Asml Holding Nv Method of calculating intensity integral
US7948616B2 (en) 2007-04-12 2011-05-24 Nikon Corporation Measurement method, exposure method and device manufacturing method
US8023106B2 (en) 2007-08-24 2011-09-20 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US8098362B2 (en) 2007-05-30 2012-01-17 Nikon Corporation Detection device, movable body apparatus, pattern formation apparatus and pattern formation method, exposure apparatus and exposure method, and device manufacturing method
JP2012104813A (en) * 2010-10-26 2012-05-31 Carl Zeiss Smt Gmbh Polarization actuator
US8194232B2 (en) 2007-07-24 2012-06-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, position control method and position control system, and device manufacturing method
US8218129B2 (en) 2007-08-24 2012-07-10 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, measuring method, and position measurement system
US8237919B2 (en) 2007-08-24 2012-08-07 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method for continuous position measurement of movable body before and after switching between sensor heads
US8323855B2 (en) 2007-03-01 2012-12-04 Nikon Corporation Pellicle frame apparatus, mask, exposing method, exposure apparatus, and device fabricating method
US8435723B2 (en) 2008-09-11 2013-05-07 Nikon Corporation Pattern forming method and device production method
US8547527B2 (en) 2007-07-24 2013-10-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and pattern formation apparatus, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
EP2772804A1 (en) 2004-11-18 2014-09-03 Nikon Corporation Positioning and loading a substrate in an exposure apparatus
US8867022B2 (en) 2007-08-24 2014-10-21 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, and device manufacturing method
US9304412B2 (en) 2007-08-24 2016-04-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and measuring method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9366974B2 (en) 2007-03-05 2016-06-14 Nikon Corporation Movable body apparatus, pattern forming apparatus and pattern forming method, device manufacturing method, manufacturing method of movable body apparatus, and movable body drive method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9500960B2 (en) 2003-04-11 2016-11-22 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
JP2018010105A (en) * 2016-07-13 2018-01-18 キヤノン株式会社 Exposure device, exposure method, and article manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9946163B2 (en) 2003-04-11 2018-04-17 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9500960B2 (en) 2003-04-11 2016-11-22 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
EP2278401A2 (en) 2003-06-19 2011-01-26 Nikon Corporation Exposure apparatus and device manufacturing method
US10007188B2 (en) 2003-06-19 2018-06-26 Nikon Corporation Exposure apparatus and device manufacturing method
US9551943B2 (en) 2003-06-19 2017-01-24 Nikon Corporation Exposure apparatus and device manufacturing method
US8436979B2 (en) 2003-06-19 2013-05-07 Nikon Corporation Exposure apparatus, and device manufacturing method
US9810995B2 (en) 2003-06-19 2017-11-07 Nikon Corporation Exposure apparatus and device manufacturing method
EP2275869A2 (en) 2003-06-19 2011-01-19 Nikon Corporation Exposure apparatus and device manufacturing method
US10191388B2 (en) 2003-06-19 2019-01-29 Nikon Corporation Exposure apparatus, and device manufacturing method
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
EP2287893A2 (en) 2004-02-02 2011-02-23 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US9632431B2 (en) 2004-02-02 2017-04-25 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US10139737B2 (en) 2004-02-02 2018-11-27 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
EP2267759A2 (en) 2004-02-02 2010-12-29 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US9665016B2 (en) 2004-02-02 2017-05-30 Nikon Corporation Lithographic apparatus and method having substrate table and sensor table to hold immersion liquid
EP2980834A1 (en) 2004-02-02 2016-02-03 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP2998982A1 (en) 2004-02-02 2016-03-23 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP2284866A2 (en) 2004-02-02 2011-02-16 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP2287894A2 (en) 2004-02-02 2011-02-23 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP3139401A1 (en) 2004-02-02 2017-03-08 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP2960927A2 (en) 2004-02-02 2015-12-30 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US9684248B2 (en) 2004-02-02 2017-06-20 Nikon Corporation Lithographic apparatus having substrate table and sensor table to measure a patterned beam
US10007196B2 (en) 2004-02-02 2018-06-26 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
EP3346486A1 (en) 2004-11-18 2018-07-11 Nikon Corporation Exposure method and exposure apparatus, and semiconductor device manufacturing methods
EP2772803A1 (en) 2004-11-18 2014-09-03 Nikon Corporation Positioning and loading a substrate in an exposure apparatus
EP2772804A1 (en) 2004-11-18 2014-09-03 Nikon Corporation Positioning and loading a substrate in an exposure apparatus
JP2011014934A (en) * 2004-12-28 2011-01-20 Asml Holding Nv Method of calculating intensity integral
JP2008529290A (en) * 2005-01-29 2008-07-31 カール・ツァイス・エスエムティー・アーゲー Irradiation system, specifically, an irradiation system for a projection exposure apparatus in a semiconductor lithography
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7838858B2 (en) 2005-05-31 2010-11-23 Nikon Corporation Evaluation system and method of a search operation that detects a detection subject on an object
JP2007150297A (en) * 2005-11-23 2007-06-14 Asml Netherlands Bv Method of measuring magnification of projection system, manufacturing method for device, and computer program product
JP4527099B2 (en) * 2005-11-23 2010-08-18 エーエスエムエル ネザーランズ ビー.ブイ. Method for measuring the magnification of a projection system, device manufacturing method and computer program product
US9989859B2 (en) 2006-02-21 2018-06-05 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10088343B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
EP2541325A1 (en) 2006-02-21 2013-01-02 Nikon Corporation Exposure apparatus and exposure method
EP3270226A1 (en) 2006-02-21 2018-01-17 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP3267258A1 (en) 2006-02-21 2018-01-10 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP3293577A1 (en) 2006-02-21 2018-03-14 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP3327507A1 (en) 2006-02-21 2018-05-30 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP3267259A1 (en) 2006-02-21 2018-01-10 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP2813893A1 (en) 2006-02-21 2014-12-17 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US9857697B2 (en) 2006-02-21 2018-01-02 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US9329060B2 (en) 2006-02-21 2016-05-03 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10012913B2 (en) 2006-02-21 2018-07-03 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US9690214B2 (en) 2006-02-21 2017-06-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
EP3279739A1 (en) 2006-02-21 2018-02-07 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US10088759B2 (en) 2006-02-21 2018-10-02 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10132658B2 (en) 2006-02-21 2018-11-20 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10139738B2 (en) 2006-02-21 2018-11-27 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
US10234773B2 (en) 2006-02-21 2019-03-19 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
US10345121B2 (en) 2006-02-21 2019-07-09 Nikon Corporation Measuring apparatus and method, processing apparatus and method, pattern forming apparatus and method, exposure apparatus and method, and device manufacturing method
US10409173B2 (en) 2006-02-21 2019-09-10 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method, and device manufacturing method
WO2007097466A1 (en) 2006-02-21 2007-08-30 Nikon Corporation Measuring device and method, processing device and method, pattern forming device and method, exposing device and method, and device fabricating method
EP3115844A1 (en) 2006-02-21 2017-01-11 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
WO2007097379A1 (en) 2006-02-21 2007-08-30 Nikon Corporation Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method and device manufacturing method
WO2007097380A1 (en) 2006-02-21 2007-08-30 Nikon Corporation Pattern forming apparatus, pattern forming method, mobile object driving system, mobile body driving method, exposure apparatus, exposure method and device manufacturing method
WO2007135998A1 (en) 2006-05-24 2007-11-29 Nikon Corporation Holding device and exposure device
US9958792B2 (en) 2006-08-31 2018-05-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US9983486B2 (en) 2006-08-31 2018-05-29 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008026742A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US10353302B2 (en) 2006-08-31 2019-07-16 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP3291010A1 (en) 2006-08-31 2018-03-07 Nikon Corporation Exposure apparatus and method, and device manufacturing method
US10353301B2 (en) 2006-08-31 2019-07-16 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
WO2008026732A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive system and mobile body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision method
EP3064999A1 (en) 2006-08-31 2016-09-07 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP3067748A1 (en) 2006-08-31 2016-09-14 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US10338482B2 (en) 2006-08-31 2019-07-02 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP3279738A1 (en) 2006-08-31 2018-02-07 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP3312676A1 (en) 2006-08-31 2018-04-25 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP2993688A2 (en) 2006-08-31 2016-03-09 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP3418807A1 (en) 2006-08-31 2018-12-26 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8203697B2 (en) 2006-08-31 2012-06-19 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
EP2991101A2 (en) 2006-08-31 2016-03-02 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP2990872A2 (en) 2006-08-31 2016-03-02 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US10067428B2 (en) 2006-08-31 2018-09-04 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
EP2988320A1 (en) 2006-08-31 2016-02-24 Nikon Corporation Exposure apparatus, exposure method, and device manufactuing method
WO2008026739A1 (en) 2006-08-31 2008-03-06 Nikon Corporation Mobile body drive method and mobile body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US8947639B2 (en) 2006-08-31 2015-02-03 Nikon Corporation Exposure method and apparatus measuring position of movable body based on information on flatness of encoder grating section
EP2738608A1 (en) 2006-08-31 2014-06-04 Nikon Corporation Method and system for driving a movable body in an exposure apparatus
US10073359B2 (en) 2006-08-31 2018-09-11 Nikon Corporation Movable body drive system and movable body drive method, pattern formation apparatus and method, exposure apparatus and method, device manufacturing method, and decision-making method
US8937710B2 (en) 2006-08-31 2015-01-20 Nikon Corporation Exposure method and apparatus compensating measuring error of encoder due to grating section and displacement of movable body in Z direction
US10101673B2 (en) 2006-08-31 2018-10-16 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
US10162274B2 (en) 2006-08-31 2018-12-25 Nikon Corporation Movable body drive method and system, pattern formation method and apparatus, exposure method and apparatus for driving movable body based on measurement value of encoder and information on flatness of scale, and device manufacturing method
EP2993524A2 (en) 2006-09-01 2016-03-09 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9846374B2 (en) 2006-09-01 2017-12-19 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US10197924B2 (en) 2006-09-01 2019-02-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
WO2008029757A1 (en) 2006-09-01 2008-03-13 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus, device manufacturing method and calibration method
WO2008029758A1 (en) 2006-09-01 2008-03-13 Nikon Corporation Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
US9760021B2 (en) 2006-09-01 2017-09-12 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9740114B2 (en) 2006-09-01 2017-08-22 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US10289012B2 (en) 2006-09-01 2019-05-14 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9874822B2 (en) 2006-09-01 2018-01-23 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP3361317A1 (en) 2006-09-01 2018-08-15 Nikon Corporation Exposure apparatus and exposure method
US9625834B2 (en) 2006-09-01 2017-04-18 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US10289010B2 (en) 2006-09-01 2019-05-14 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
EP2993523A2 (en) 2006-09-01 2016-03-09 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US9971253B2 (en) 2006-09-01 2018-05-15 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US9377698B2 (en) 2006-09-01 2016-06-28 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and calibration method
US8323855B2 (en) 2007-03-01 2012-12-04 Nikon Corporation Pellicle frame apparatus, mask, exposing method, exposure apparatus, and device fabricating method
US10228625B2 (en) 2007-03-05 2019-03-12 Nikon Corporation Movable body apparatus, pattern forming apparatus and pattern forming method, device manufacturing method, manufacturing method of movable body apparatus, and movable body drive method
US10627725B2 (en) 2007-03-05 2020-04-21 Nikon Corporation Movable body apparatus, pattern forming apparatus and pattern forming method, device manufacturing method, manufacturing method of movable body apparatus, and movable body drive method
US9366974B2 (en) 2007-03-05 2016-06-14 Nikon Corporation Movable body apparatus, pattern forming apparatus and pattern forming method, device manufacturing method, manufacturing method of movable body apparatus, and movable body drive method
US7948616B2 (en) 2007-04-12 2011-05-24 Nikon Corporation Measurement method, exposure method and device manufacturing method
US8164736B2 (en) 2007-05-29 2012-04-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
JP2009004771A (en) * 2007-05-29 2009-01-08 Nikon Corp Exposure method, exposure apparatus, and method for producing device
US8098362B2 (en) 2007-05-30 2012-01-17 Nikon Corporation Detection device, movable body apparatus, pattern formation apparatus and pattern formation method, exposure apparatus and exposure method, and device manufacturing method
EP2818927A2 (en) 2007-07-18 2014-12-31 Nikon Corporation Measurement method, stage apparatus, and exposure apparatus
US9316917B2 (en) 2007-07-18 2016-04-19 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
US9804506B2 (en) 2007-07-18 2017-10-31 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
EP2818926A2 (en) 2007-07-18 2014-12-31 Nikon Corporation Measurement method, stage apparatus, and exposure apparatus
EP2933683A1 (en) 2007-07-18 2015-10-21 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
WO2009011356A1 (en) 2007-07-18 2009-01-22 Nikon Corporation Measurement method, stage apparatus, and exposure apparatus
EP3447582A1 (en) 2007-07-18 2019-02-27 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
EP3056945A1 (en) 2007-07-18 2016-08-17 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
EP3246755A1 (en) 2007-07-18 2017-11-22 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US9372410B2 (en) 2007-07-18 2016-06-21 Nikon Corporation Measuring method, stage apparatus, and exposure apparatus
US8194232B2 (en) 2007-07-24 2012-06-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, position control method and position control system, and device manufacturing method
US8264669B2 (en) 2007-07-24 2012-09-11 Nikon Corporation Movable body drive method, pattern formation method, exposure method, and device manufacturing method for maintaining position coordinate before and after switching encoder head
US8582084B2 (en) 2007-07-24 2013-11-12 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, position control method and position control system, and device manufacturing method
US8547527B2 (en) 2007-07-24 2013-10-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and pattern formation apparatus, and device manufacturing method
WO2009013905A1 (en) 2007-07-24 2009-01-29 Nikon Corporation Position measuring system, exposure device, position measuring method, exposure method, device manufacturing method, tool, and measuring method
WO2009013903A1 (en) 2007-07-24 2009-01-29 Nikon Corporation Mobile object driving method, mobile object driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
US9612539B2 (en) 2007-07-24 2017-04-04 Nikon Corporation Movable body drive method, pattern formation method, exposure method, and device manufacturing method for maintaining position coordinate before and after switching encoder head
US8243257B2 (en) 2007-07-24 2012-08-14 Nikon Corporation Position measurement system, exposure apparatus, position measuring method, exposure method and device manufacturing method, and tool and measuring method
US8023106B2 (en) 2007-08-24 2011-09-20 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US8867022B2 (en) 2007-08-24 2014-10-21 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, and device manufacturing method
US9304412B2 (en) 2007-08-24 2016-04-05 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, and measuring method
US8767182B2 (en) 2007-08-24 2014-07-01 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method
US8218129B2 (en) 2007-08-24 2012-07-10 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, device manufacturing method, measuring method, and position measurement system
US8237919B2 (en) 2007-08-24 2012-08-07 Nikon Corporation Movable body drive method and movable body drive system, pattern formation method and apparatus, exposure method and apparatus, and device manufacturing method for continuous position measurement of movable body before and after switching between sensor heads
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
WO2009101958A1 (en) 2008-02-14 2009-08-20 Nikon Corporation Illumination optical system, exposure device, device manufacturing method, correction filter, and exposure optical system
EP3306398A1 (en) 2008-02-14 2018-04-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method, compensation filter, and exposure optical system
US8435723B2 (en) 2008-09-11 2013-05-07 Nikon Corporation Pattern forming method and device production method
JP2012104813A (en) * 2010-10-26 2012-05-31 Carl Zeiss Smt Gmbh Polarization actuator
US8373847B2 (en) 2010-10-26 2013-02-12 Carl Zeiss Smt Gmbh Polarization actuator
JP2018010105A (en) * 2016-07-13 2018-01-18 キヤノン株式会社 Exposure device, exposure method, and article manufacturing method

Similar Documents

Publication Publication Date Title
JP2001313250A (en) Aligner, its adjusting method, and method for fabricating device using aligner
TW546699B (en) Exposure apparatus and exposure method capable of controlling illumination distribution
JP4923370B2 (en) Illumination optical system, exposure apparatus, and microdevice manufacturing method
US20050200823A1 (en) Scanning exposure method, scanning exposure apparatus and its making method, and device and its manufacturing method
JP3631094B2 (en) Projection exposure apparatus and device manufacturing method
JP2002100561A (en) Aligning method and aligner and method for fabricating device
US20050179881A1 (en) Exposure apparatus and method
JP2003243276A (en) Aligner, exposure method and device manufacturing method using the same
US7369214B2 (en) Lithographic apparatus and device manufacturing method utilizing a metrology system with sensors
JP4392879B2 (en) Projection exposure apparatus and device manufacturing method
US8343693B2 (en) Focus test mask, focus measurement method, exposure method and exposure apparatus
JP2016072507A (en) Exposure device, exposure method and device manufacturing method
JP2005093948A (en) Aligner and its adjustment method, exposure method, and device manufacturing method
JP2002033272A (en) Method and device for exposure and device manufacturing method
JPH0737774A (en) Scanning aligner
JP2007194600A (en) Lithography device, and device manufacturing method
US20100123888A1 (en) Exposure apparatus and method of manufacturing device
US6172739B1 (en) Exposure apparatus and method
JP2000235945A (en) Scanning type aligner and its method
JP2000114164A (en) Scanning projection aligner and manufacture of device using the same
KR20080066595A (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2007158224A (en) Exposure method
JP2011003714A (en) Exposure method, mask and method of manufacturing device
JP2003318095A (en) Flame measuring method and flare measuring device, aligning method and aligner, and method for adjusting aligner
JP2000133563A (en) Exposure method and aligner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513