JPH0737774A - Scanning aligner - Google Patents

Scanning aligner

Info

Publication number
JPH0737774A
JPH0737774A JP5176781A JP17678193A JPH0737774A JP H0737774 A JPH0737774 A JP H0737774A JP 5176781 A JP5176781 A JP 5176781A JP 17678193 A JP17678193 A JP 17678193A JP H0737774 A JPH0737774 A JP H0737774A
Authority
JP
Japan
Prior art keywords
exposure
scanning
intensity distribution
light
exposure apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5176781A
Other languages
Japanese (ja)
Other versions
JP3200244B2 (en
Inventor
Takanaga Shiozawa
崇永 塩澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP17678193A priority Critical patent/JP3200244B2/en
Publication of JPH0737774A publication Critical patent/JPH0737774A/en
Application granted granted Critical
Publication of JP3200244B2 publication Critical patent/JP3200244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Abstract

PURPOSE:To accurately correct exposure nonuniformity, by changing intensity distribution relative to a first direction of an exposure beam formed by a stop means capable of changing the aperture width relative to a second direction at a plurality of points along the first direction. CONSTITUTION:An exposure nonuniformity detecting circuit 19 controls electric power inputted in a lamp 1 according to the detection result of a first light quantity detector 18, and keeps the illuminance of (the whole) illumination region 90 of a reticle 12 to be a constant value. A second light quantity detector 17 is made to scan an illumination region 100 (the image of the region 90) by moving a wafer stage 16, and detects the illumination distribution of the illumination region 100. The exposure nonuniformity detecting circuit 19 detects exposure nonuniformity which is to be generated on a wafer 14, on the basis of the detection result of the light quantity detector 17. The output from the exposure nonuniformity detecting circuit 19 restrains exposure nonuniformity of the illumination region 100 clue to an illuminance distribution changing lens 7 and a viable slit 9 to a minimum via an exposure nonuniformity correcting circuit 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は走査型露光装置、特にI
CやLSI等の半導体デバイスやCCD等の撮像デバイ
スや液晶パネル等の表示デバイスや磁気ヘッド等の各種
デバイスを製造するために使用される、走査型露光装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning type exposure apparatus, especially I
The present invention relates to a scanning exposure apparatus used for manufacturing semiconductor devices such as C and LSI, imaging devices such as CCDs, display devices such as liquid crystal panels, and various devices such as magnetic heads.

【0002】[0002]

【従来の技術】半導体デバイスの高集積化、微細パタ−
ン化が進むに従い製造工程のわずかな条件変化が不良率
の上昇による歩留まりの低下を招くようになった。
2. Description of the Related Art High integration and fine pattern of semiconductor devices
As manufacturing progresses, a slight change in the manufacturing process has led to a decrease in yield due to an increase in the defect rate.

【0003】特に、スリット状の光束に対してマスクと
ウエハとを相対的に走査することによってマスク上のパ
タ−ンをウエハ−上に投影する走査型露光装置において
は、スリットの長さ方向(スリット状光束の走査方向と
垂直な方向)の露光むらが半導体デバイスを製造する際
の不良率を上げている。
Particularly, in a scanning type exposure apparatus for projecting a pattern on a mask onto a wafer by relatively scanning the mask and the wafer with respect to a slit-shaped light beam, the slit length direction ( Exposure unevenness in the direction perpendicular to the scanning direction of the slit-shaped light flux increases the defect rate in manufacturing semiconductor devices.

【0004】[0004]

【発明が解決しようとする課題】図10(A)はウエハ
−14内に複数の素子パタ−ンを順次走査露光してゆく
様子を示したており、図中の斜線部はある時間での露光
領域である。この露光領域が矢印で示すようにスキャン
とステップを繰り返すことにより素子パタ−ンが露光さ
れてゆく。このような露光方法においては、図10
(B)に拡大して示す1ショット14a(1回のスキャ
ンにより露光される範囲)内の露光むらは図8(C)に
示す通りx方向(走査方向と平行な方向)では大体均一
であるが、y方向(走査方向と垂直な方向)では、スリ
ット状光束自体の光強度分布のむらやスリットの幅の場
所による違いによる露光量のむらが生じてしまう。
FIG. 10A shows a state in which a plurality of element patterns are sequentially scanned and exposed within the wafer 14, and the hatched portion in the drawing indicates a certain time. This is the exposed area. The element pattern is exposed by repeating scanning and steps in this exposure area as shown by the arrow. In such an exposure method, as shown in FIG.
The exposure unevenness within one shot 14a (the range exposed by one scan) shown enlarged in FIG. 8B is almost uniform in the x direction (direction parallel to the scanning direction) as shown in FIG. 8C. However, in the y direction (direction perpendicular to the scanning direction), unevenness in the light intensity distribution of the slit-shaped light beam itself and unevenness in the exposure amount due to the difference in the slit width depending on the location occur.

【0005】走査露光時のウエハ−上での露光むらの補
正には、特開昭62−193125号公報に開示されて
いるように、スリットの幅を部分的に変化させて各部分
の露光量を調整する方法がある。図11は、リング状の
光束で走査露光を行なう走査型露光装置におけるスリッ
ト幅可変のスリットの一例を示している。スリットを多
数の遮光部材により構成し、多数の遮光部材を各々独立
に動かして位置を調整することによりスリットの幅を部
分的に変化させている。この方法においては、露光むら
を小さく抑えるためには非常に多数の可動の遮光部材が
必要であり、複雑な機構になってしまう。
To correct the exposure unevenness on the wafer during scanning exposure, as disclosed in Japanese Patent Laid-Open No. 62-193125, the width of the slit is partially changed and the exposure amount of each portion is changed. There is a way to adjust. FIG. 11 shows an example of slits with variable slit width in a scanning type exposure apparatus that performs scanning exposure with a ring-shaped light beam. The slit is composed of a large number of light shielding members, and the plurality of light shielding members are independently moved to adjust their positions, thereby partially changing the width of the slit. In this method, a large number of movable light-shielding members are required in order to suppress uneven exposure, resulting in a complicated mechanism.

【0006】一方、特開昭61−267722号公報に
開示されているように、照明光学系内の複数のレンズを
光軸方向に動かすことにより、照度分布を変える方法も
ある。図12、図13に、このような複数のレンズと、
これらの光軸方向への移動による照度分布の変化を示
す。図13において横軸は被照射面上での位置(光軸か
らの距離)を示し、縦軸は光軸上(中心)の照度を1と
したときの各位置(軸外)での照度を示している。図1
2(A)に示すレンズ位置の場合は図13のグラフ内の
(a)のような照度分布となり、図12(B)に示すレ
ンズ位置の場合は図13のグラフ内の(b)のような照
度分布となる。この例においては、図13の照度分布
(a),(b)を両極端の分布とし、レンズ位置により
照度分布が図13の斜線の範囲内で、連続的に変化させ
ることができる。
On the other hand, as disclosed in JP-A-61-267722, there is also a method of changing the illuminance distribution by moving a plurality of lenses in the illumination optical system in the optical axis direction. 12 and 13 show a plurality of such lenses,
The change in the illuminance distribution due to the movement in the optical axis direction is shown. In FIG. 13, the horizontal axis represents the position on the illuminated surface (distance from the optical axis), and the vertical axis represents the illuminance at each position (off-axis) when the illuminance on the optical axis (center) is 1. Shows. Figure 1
In the case of the lens position shown in FIG. 2 (A), the illuminance distribution is as shown in FIG. 13 (a), and in the case of the lens position shown in FIG. 12 (B), it is as shown in FIG. 13 (b). The illuminance distribution is stable. In this example, the illuminance distributions (a) and (b) in FIG. 13 are made extreme distributions, and the illuminance distribution can be continuously changed within the shaded area in FIG. 13 depending on the lens position.

【0007】しかしながら、この照度分布の変化は、図
14のa〜eに示すように基準に対して2次曲線もしく
は2次曲線に近い曲線で変化するものであり、ある像高
で照度の補正量を決めてしまうと、他の像高の照度の補
正量も一意的に決まる。例えば、レンズを移動して図1
5(A)に示す照度分布を図15(B)に示す分布の如
く均一に補正できても、図15(C)に示す照度分布は
図15(D)程度にしか補正できない場合もある。
However, the change of the illuminance distribution changes with a quadratic curve or a curve close to the quadratic curve with respect to the reference as shown in a to e of FIG. 14, and the illuminance is corrected at a certain image height. Once the amount has been determined, the correction amount of the illuminance at other image heights is also uniquely determined. For example, by moving the lens,
Even if the illuminance distribution shown in FIG. 5 (A) can be corrected uniformly as shown in FIG. 15 (B), the illuminance distribution shown in FIG. 15 (C) may be corrected only to the extent shown in FIG. 15 (D).

【0008】[0008]

【課題を解決するための手段】本発明は上記問題点に鑑
みて成されたものであり、露光むらを正確に補正するこ
とができる走査型露光装置を提供することを目的として
いる。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a scanning type exposure apparatus capable of accurately correcting exposure unevenness.

【0009】本発明の走査型露光装置は、上記目的を達
成すべく、マスクと被露光基板を第1方向に延びた断面
形状を有する露光ビ−ムで当該第1方向と交差する第2
の方向に走査することにより前記マスクのパタ−ンを前
記被露光基板上に順次投影する装置において、前記第1
方向に延びる開口を備え、前記第1方向に沿った複数の
箇所で前記第2方向に関する前記開口の幅を変えうる、
前記露光ビ−ムを形成するための絞り手段と、前記露光
ビ−ムの前記第1方向に関する強度分布を変化せしめる
強度分布変更手段とを有する。
In order to achieve the above-mentioned object, the scanning exposure apparatus of the present invention has a second exposure beam which intersects the first direction with an exposure beam having a cross-sectional shape extending in the first direction through the mask and the substrate to be exposed.
In the apparatus for sequentially projecting the pattern of the mask on the substrate to be exposed by scanning in the direction of
A plurality of openings along the first direction, and the width of the opening in the second direction can be changed at a plurality of locations along the first direction.
It has diaphragm means for forming the exposure beam, and intensity distribution changing means for changing the intensity distribution of the exposure beam in the first direction.

【0010】本発明の走査型露光装置の好ましい形態で
は、前記第1方向に沿って動く、スリット状の開口を備
える光検出器等を備えた、前記露光ビ−ムの前記第1方
向に関する強度分布を検出する手段を備える。
In a preferred form of the scanning type exposure apparatus of the present invention, the intensity of the exposure beam in the first direction is provided with a photodetector or the like having a slit-shaped opening that moves along the first direction. A means for detecting the distribution is provided.

【0011】本発明の走査型露光装置の好ましい形態で
は、前記絞り手段は、前記露光ビ−ムの前記第1方向に
関する両端のエッジを定める少なくとも2枚の遮光部材
と、前記露光ビ−ムの前記第2方向に関する一方の側の
エッジを定める少なくとも1枚の遮光部材と、前記露光
ビ−ムの前記第2方向に関する他方の側のエッジを定め
る少なくとも2枚の遮光部材とを有し、前記露光ビ−ム
の前記第2方向に関する他方の側のエッジを定める2枚
の遮光部材のエッジの前記第1方向に対する角度を変え
る手段を有する。
In a preferred form of the scanning type exposure apparatus of the present invention, the diaphragm means includes at least two light shielding members that define edges of both ends of the exposure beam in the first direction, and the exposure beam. And at least one light blocking member that defines an edge on one side in the second direction, and at least two light blocking members that define an edge on the other side in the second direction of the exposure beam. There is provided means for changing the angle of the edges of the two light shielding members defining the edge on the other side of the exposure beam in the second direction with respect to the first direction.

【0012】本発明の走査型露光装置のある形態は、前
記強度分布変更手段が光軸方向に移動可能な複数のレン
ズを備える。
In one mode of the scanning type exposure apparatus of the present invention, the intensity distribution changing means includes a plurality of lenses that are movable in the optical axis direction.

【0013】本発明の走査型露光装置のある形態は、前
記強度分布変更手段が光線の入射角度によって透過率の
異なるコ−ティングを施した光学素子の透過率特性の異
なるものを複数個備え、該複数個の光学素子の内の所望
の光学素子を系の瞳面近傍に配置することより前記露光
ビ−ムの強度分布を変えるものであったり、また、これ
と共に前記光軸方向に移動可能な複数のレンズを備え
る。
In one mode of the scanning type exposure apparatus of the present invention, the intensity distribution changing means is provided with a plurality of optical elements having different transmittance characteristics coated with different transmittances depending on the incident angle of a light beam. By arranging a desired optical element of the plurality of optical elements in the vicinity of the pupil plane of the system, the intensity distribution of the exposure beam can be changed, and along with this, it can be moved in the optical axis direction. It is equipped with multiple lenses.

【0014】本発明の走査型露光装置を用いることによ
り、ICやLSI等の半導体デバイスやCCD等の撮像
デバイスや液晶パネル等の表示デバイスや磁気ヘッド等
の各種デバイスを歩留良く正確に製造することが可能に
なる。
By using the scanning type exposure apparatus of the present invention, various devices such as semiconductor devices such as IC and LSI, imaging devices such as CCD, display devices such as liquid crystal panels, magnetic heads, etc. can be manufactured accurately with good yield. It will be possible.

【0015】[0015]

【実施例】図1は本発明の一実施例を示す概略図であ
り、ICやLSI等の半導体デバイスやCCD等の撮像
デバイスや液晶パネル等の表示デバイスや磁気ヘッド等
の各種デバイスを製造するための走査型投影露光装置を
示している。1は超高圧水銀ランプ等の紫外線を発する
光源であり、1aは光源1の発光部である。2は楕円ミ
ラ−であり、楕円ミラ−2の第1焦点近傍に光源1の発
光部1aが配置され、発光部1aから射出された光束は
楕円ミラ−2の第2焦点3に集光され、第2焦点3に発
光部像1bを形成する。第2焦点3の発光部像1bから
の光は、コンデンサ−レンズ4、ミラ−5を介してオプ
ティカルインテグレ−タであるハエノ目レンズ6の光入
射面に集光せしめられ、ハエノ面レンズ6の光射出面6
a近傍に複数の2次光源を形成する。7はレチクル12
上での照度分布を変える機能を備えたコンデンサ−レン
ズ(照度分布可変レンズ)であり、レンズ7はハエノ面
レンズ6の光射出面6aに形成された複数の2次光源か
らの光束を開口幅を変え得る可変スリット9に指向し、
可変スリット9をケ−ラ−照明する。可変スリット9と
レチクル12は結像レンズとミラ−11とを介して光学
的に共役な位置に配置されており、可変スリット9の開
口がレチクル12のデバイスパタ−ン形成面に結像す
る。従って、可変スリット9の開口の寸法/形状により
レチクル12における照明領域90の寸法/形状が決ま
る。13は屈折光学系や反射屈折光学系等で構成された
投影光学系であり、レチクル12のデバイスパタ−ンを
ウエハ−14上に投影する。15はウエハ−チャック、
16はウエハ−ステ−ジである。レチクル12とウエハ
−14は、夫々、不図示の対応する駆動装置により前記
投影光学系13の倍率に応じた速度比で同期して所定の
走査方向に移せしめられ、この時、レチクル12のデバ
イスパタ−ンが照明領域90を横切っていくことにより
レチクル12のデバイスパタ−ンがウエハ−14上に転
写される。
1 is a schematic view showing an embodiment of the present invention, in which semiconductor devices such as IC and LSI, image pickup devices such as CCD, display devices such as liquid crystal panels, and various devices such as magnetic heads are manufactured. 1 shows a scanning projection exposure apparatus for. Reference numeral 1 denotes a light source that emits ultraviolet rays such as an ultra-high pressure mercury lamp, and 1a denotes a light emitting portion of the light source 1. Reference numeral 2 denotes an elliptical mirror. The light emitting portion 1a of the light source 1 is arranged in the vicinity of the first focus of the elliptical mirror-2, and the light flux emitted from the light emitting portion 1a is condensed at the second focus 3 of the elliptical mirror-2. , The light emitting portion image 1b is formed at the second focal point 3. The light from the light emitting portion image 1b at the second focus 3 is condensed on the light incident surface of the fly-eye lens 6 which is an optical integrator via the condenser lens 4 and the mirror 5, and the fly-eye lens 6 emits light. Light exit surface 6
A plurality of secondary light sources are formed near a. 7 is a reticle 12
Is a condenser lens (variable illuminance distribution variable lens) having a function of changing the illuminance distribution above, and the lens 7 has an aperture width of light fluxes from a plurality of secondary light sources formed on the light exit surface 6 a of the fly-eye surface lens 6. To the variable slit 9 that can change
The variable slit 9 is illuminated with a cable. The variable slit 9 and the reticle 12 are arranged at optically conjugate positions via the imaging lens and the mirror 11, and the opening of the variable slit 9 forms an image on the device pattern forming surface of the reticle 12. Therefore, the size / shape of the opening of the variable slit 9 determines the size / shape of the illumination region 90 in the reticle 12. Reference numeral 13 denotes a projection optical system including a refracting optical system, a catadioptric optical system, and the like, which projects the device pattern of the reticle 12 onto the wafer 14. 15 is a wafer chuck,
16 is a wafer stage. The reticle 12 and the wafer 14 are synchronously moved in a predetermined scanning direction by a corresponding driving device (not shown) at a speed ratio according to the magnification of the projection optical system 13. At this time, the device of the reticle 12 is moved. The device pattern of the reticle 12 is transferred onto the wafer 14 as the pattern crosses the illumination area 90.

【0016】18は光量検出器であり、ハ−フミラ−8
により照明領域90を定める露光光の一部を受光して強
度を検出する。露光むら検出回路19は光量検出器18
による検出結果に基づきランプ1に入力する電力を制御
し、レチクル12の照明領域90(全体)の照度を一定
の値に維持している。17は2番目の光量検出器であ
り、ウエハ−ステ−ジ16上に載置される(別のステ−
ジに載置される場合もある)。光量検出器17は、ウエ
ハ−ステ−ジ16を移動させることにより照明領域10
0(領域90の像)内で走査せしめられ、照明領域10
0内の照度分布を検出する。露光むら検出回路19は光
量検出器17による検出結果に基づきウエハ−14を露
光する時に生じるであろう露光むらを検出する。露光む
ら検出回路19からの出力が露光むら補正回路20を介
して照度分布可変レンズ7と可変スリット9による照明
領域100の露光むらを最小限に抑える動作を行なわせ
る。
Reference numeral 18 denotes a light quantity detector, which is a half mirror-8.
Due to this, a part of the exposure light that defines the illumination area 90 is received and the intensity is detected. The uneven exposure detection circuit 19 includes a light amount detector 18
The electric power input to the lamp 1 is controlled on the basis of the detection result of 1. to maintain the illuminance of the illumination area 90 (entire) of the reticle 12 at a constant value. Reference numeral 17 denotes a second light amount detector, which is mounted on the wafer stage 16 (another stage).
Sometimes placed on the). The light amount detector 17 moves the wafer stage 16 to move the illumination area 10
0 (the image of the area 90) and the illuminated area 10 is scanned.
The illuminance distribution within 0 is detected. The uneven exposure detection circuit 19 detects uneven exposure that may occur when the wafer 14 is exposed, based on the detection result of the light amount detector 17. The output from the exposure unevenness detection circuit 19 causes the exposure unevenness correction circuit 20 to perform an operation of minimizing the exposure unevenness of the illumination region 100 by the illuminance distribution variable lens 7 and the variable slit 9.

【0017】以下に、図1の装置における露光むら検出
方法と露光むらの補正方法を詳しく説明する。
The exposure unevenness detecting method and the exposure unevenness correcting method in the apparatus of FIG. 1 will be described in detail below.

【0018】露光むらの検出は前述した通りウエハ−ス
テ−ジ16上に載置した光量検出器17を用いて行な
う。ウエハ−14のショット上の照明領域100の照度
分布の内、走査方向の照度分布のむらは露光むらに対し
て影響が小さい。従って、ここでは、走査方向と直交す
る方向(スリット9の開口の長手方向に相当する)に関
する、走査方向の照度分布の積算値の分布を測定するこ
とにより露光むらを得ている。まず走査方向の照度(光
強度)分布の積算値を計測するために、光量検出器17
に入射する光を、図5のスリット30の如き走査方向に
関し照明領域10より長い絞りにより制限し、この絞り
を介して光量検出器17に入る光束(もしくは絞りを通
過後NDフィルタ−等により減光した光束)を光電的に
検出するようにし、走査方向と直交する方向にこのスリ
ット状の絞り付きの光量検出器17を動かして検出を繰
り返し、当該直交する方向に沿った各位置での照度分布
積算値を検出する。スリット状絞りを走査方向と直交す
る方向に走査して露光むらを検出する代わりに、ピンホ
−ルを走査方向及び走査方向と直交する方向とに走査し
て走査方向と直交する方向(スリット9の開口の長手方
向に相当する)に関する、走査方向の照度分布の積算値
の分布を測定することにより露光むらを検出してもい
い。
The unevenness of exposure is detected by using the light quantity detector 17 mounted on the wafer stage 16 as described above. Among the illuminance distributions of the illumination area 100 on the shot of the wafer-14, the unevenness of the illuminance distribution in the scanning direction has a small effect on the exposure unevenness. Therefore, here, the exposure unevenness is obtained by measuring the distribution of the integrated value of the illuminance distribution in the scanning direction in the direction orthogonal to the scanning direction (corresponding to the longitudinal direction of the opening of the slit 9). First, in order to measure the integrated value of the illuminance (light intensity) distribution in the scanning direction, the light amount detector 17
The light incident on is limited by a diaphragm longer than the illumination area 10 in the scanning direction, such as the slit 30 in FIG. 5, and is reduced by a light beam entering the light quantity detector 17 through this diaphragm (or an ND filter after passing through the diaphragm). (Light flux emitted) is detected photoelectrically, the light quantity detector 17 with a slit-like diaphragm is moved in a direction orthogonal to the scanning direction, and detection is repeated, and illuminance at each position along the orthogonal direction. Detect the integrated value of distribution. Instead of scanning the slit-shaped diaphragm in the direction orthogonal to the scanning direction to detect the exposure unevenness, the pinhole is scanned in the scanning direction and in the direction orthogonal to the scanning direction, and the direction orthogonal to the scanning direction (of the slit 9). The uneven exposure may be detected by measuring the distribution of the integrated value of the illuminance distribution in the scanning direction (corresponding to the longitudinal direction of the opening).

【0019】露光むらの補正は照度分布可変レンズ7と
可変スリット9とを用いている。図1の可変スリット9
は図2に示す通り5枚のブレ−ド(遮光板)9a〜9e
を備えており、図2(A)、(B)、(C)に示すよう
に可動ブレ−ド9a,9bのエッジの走査方向に対する
角度を変えることにより、走査方向と直交する方向に沿
った各位置でのスリット幅を線形的に変えている。例え
ば、ブレ−ド9a,9bの走査方向に対する角度θ1
θ2 が図2(A)に示すようにθ1 =θ2 =90。の時
には走査方向と直交する方向の露光量分布が図3の
(a)で示す如く均一になり、角度θ1 ,θ2 が図2
(B)に示すようにθ1 =θ2 <90。の時には走査方
向と直交する方向の露光量分布が図3の(b)で示す如
き分布になり、角度θ1 ,θ2 が図2(C)に示すよう
にθ1 =θ2 >90。の時には走査方向と直交する方向
の露光量分布が図3の(c)の如き分布になる。このよ
うに可変スリット9のブレ−ド9a,9bのエッジの走
査方向に対する角度を変えることにより、図3に示す通
り、走査方向と直交する方向の露光量分布を変える。照
度分布可変レンズ7は、例えば特開昭61−26772
2号公報に開示されたレンズ系より成り、図13で示し
たようにある曲線に沿って照明領域90、100の照度
分布を変えることができるので、走査方向と直交する方
向の露光量分布を変えることができる。
The exposure unevenness is corrected by using the illuminance distribution variable lens 7 and the variable slit 9. Variable slit 9 of FIG.
As shown in FIG. 2, five blades (light shielding plates) 9a to 9e are provided.
2A, 2B, and 2C, by changing the angle of the edges of the movable blades 9a and 9b with respect to the scanning direction, the direction along the direction orthogonal to the scanning direction is provided. The slit width at each position is changed linearly. For example, the angles θ 1 of the blades 9a and 9b with respect to the scanning direction,
θ 2 is θ 1 = θ 2 = 90 as shown in FIG. In this case, the exposure amount distribution in the direction orthogonal to the scanning direction becomes uniform as shown in FIG. 3 (a), and the angles θ 1 and θ 2 are shown in FIG.
As shown in (B), θ 1 = θ 2 <90. At this time, the exposure amount distribution in the direction orthogonal to the scanning direction becomes the distribution shown in FIG. 3B, and the angles θ 1 and θ 2 are θ 1 = θ 2 > 90 as shown in FIG. 2C. In the case of, the exposure amount distribution in the direction orthogonal to the scanning direction becomes the distribution as shown in FIG. By changing the angles of the edges of the blades 9a and 9b of the variable slit 9 with respect to the scanning direction in this manner, the exposure amount distribution in the direction orthogonal to the scanning direction is changed as shown in FIG. The variable illuminance distribution lens 7 is disclosed in, for example, Japanese Patent Laid-Open No. 61-26772.
The illuminance distribution of the illumination regions 90 and 100 can be changed along a certain curve as shown in FIG. 13 by the lens system disclosed in Japanese Patent Publication No. Can be changed.

【0020】図4は照度分布可変レンズ7と可変スリッ
ト9により露光むらを補正する方法を示す説明図であ
り、図4(A)に示す走査方向と直交するy方向の露光
むらを補正する様子を示したものである。図4(B)は
照度分布可変レンズ7により図4(A)の曲線状の非均
一な露光量分布を直線状の分布に変化させる様子を示
し、図4(C)は可変スリット9により図4(B)の直
線状の非均一な露光量分布を均一な露光量分布に変換す
る様子を示す。
FIG. 4 is an explanatory view showing a method of correcting the exposure unevenness by the variable illuminance distribution lens 7 and the variable slit 9, and a state of correcting the exposure unevenness in the y direction orthogonal to the scanning direction shown in FIG. 4 (A). Is shown. FIG. 4B shows how the illuminance distribution variable lens 7 changes the curved non-uniform exposure amount distribution of FIG. 4A into a linear distribution, and FIG. 4 (B) shows how a linear non-uniform exposure amount distribution is converted into a uniform exposure amount distribution.

【0021】このように2つの露光むら補正手段を用い
ることにより走査方向と直交する方向の露光むらを最小
限に抑えることができる。この補正を行なう時の照度分
布可変レンズ7の可動レンズの光軸方向への移動量や可
変スリット9の可動ブレ−ドの傾き角は、露光むらに合
わせて予め計算により一意的に決めておいてもいいし、
光量検出器17等と照度分布可変レンズ7と可変スリッ
ト9を用いて露光むらの検出と補正を繰り返すことによ
り露光量分布の最適化をしてもいい。
By using the two exposure unevenness correcting means in this way, it is possible to minimize the exposure unevenness in the direction orthogonal to the scanning direction. The amount of movement of the movable lens of the variable illuminance distribution lens 7 in the direction of the optical axis and the tilt angle of the movable blade of the variable slit 9 when performing this correction are uniquely determined in advance by calculation in accordance with the exposure unevenness. You can
The exposure amount distribution may be optimized by repeatedly detecting and correcting the exposure unevenness using the light amount detector 17, etc., the illuminance distribution variable lens 7, and the variable slit 9.

【0022】図6は露光むらを補正する手段の他の実施
例を示す。本実施例では、照明光学系内のハエノ目レン
ズ6の光射出面6a近傍に、光線の入射角度によって透
過率の異なるコ−ティングを透明平行平面板に施した光
学素子30aを配置するようにし、特性の違う複数枚の
前記光学素子(30a,30b,…)の中から所望の光
学素子を選択的に光射出面6a近傍に配置することによ
りウエハ−14上での照度分布を変える。図7に相異な
る光学素子を選択的に光射出面6a近傍に配置した時の
露光量分布を示す。この光学素子は可変スリット9、照
度分布可変レンズ7と併用しても良いし、可変スリット
9とのみ併用してもいい。
FIG. 6 shows another embodiment of means for correcting uneven exposure. In this embodiment, an optical element 30a having a transparent parallel plane plate coated with a different transmittance depending on the incident angle of the light beam is arranged near the light exit surface 6a of the fly-eye lens 6 in the illumination optical system. , A desired optical element is selectively arranged from the plurality of optical elements (30a, 30b, ...) Having different characteristics in the vicinity of the light exit surface 6a to change the illuminance distribution on the wafer-14. FIG. 7 shows an exposure dose distribution when different optical elements are selectively arranged near the light exit surface 6a. This optical element may be used in combination with the variable slit 9 and the illuminance distribution variable lens 7, or may be used only with the variable slit 9.

【0023】また、上記実施例においては可変スリット
9のブレ−ド9a,9bの角度θ1,θ2 をθ1 =θ2
としているが、必ずしもその必要は無く、例えば、ウエ
ハ−14の走査方向と直交する方向に非対称な露光むら
がある場合、θ1 ≠θ2 のように設定しても構わない。
また、可変スリット9の可動のブレ−ドは図2に示すよ
うにブレ−ド9a,9bの2枚に限定されるものではな
く、例えば3枚や4枚の可動のブレ−ドを供給し、それ
ぞれ独立に角度を設定しても良い。
Further, in the above embodiment, the angles θ 1 and θ 2 of the blades 9a and 9b of the variable slit 9 are θ 1 = θ 2
However, this is not always necessary. For example, when there is asymmetric exposure unevenness in the direction orthogonal to the scanning direction of the wafer 14, θ 1 ≠ θ 2 may be set.
Further, the movable blade of the variable slit 9 is not limited to the two blades 9a and 9b as shown in FIG. 2, and for example, three or four movable blades can be supplied. The angles may be set independently of each other.

【0024】また上記実施例では光源として超高圧水銀
ランプを用いているが、光源として例えばエキシマレ−
ザ−等のレ−ザ−を用いることもできる。
In the above embodiment, an ultrahigh pressure mercury lamp is used as the light source, but as the light source, for example, an excimer lamp is used.
A laser such as a laser can also be used.

【0025】次に図1の走査型投影露光装置を利用した
半導体デバイスの製造方法の実施例を説明する。図8は
半導体装置(ICやLSI等の半導体チップ、液晶パネ
ルやCCD)の製造フロ−を示す。ステップ1(回路設
計)では半導体装置の回路設計を行なう。ステップ2
(マスク製作)では設計した回路パタ−ンを形成したマ
スク(レチクル304)を製作する。一方、ステップ3
(ウエハ−製造)ではシリコン等の材料を用いてウエハ
−(ウエハ−306)を製造する。ステップ4(ウエハ
−プロセス)は前工程と呼ばれ、上記用意したマスクと
ウエハ−とを用いて、リソグラフィ−技術によってウエ
ハ−上に実際の回路を形成する。次のステップ5(組み
立て)は後工程と呼ばれ、ステップ4よって作成された
ウエハ−を用いてチップ化する工程であり、アッセンブ
リ工程(ダイシング、ボンデ ング)、パッケ−ジング
工程(チップ封入)等の工程を含む。ステップ6(検
査)ではステップ5で作成された半導体装置の動作確認
テスト、耐久性テスト等の検査を行なう。こうした工程
を経て半導体装置が完成し、これが出荷(ステップ7)
される。
Next, an embodiment of a method of manufacturing a semiconductor device using the scanning projection exposure apparatus of FIG. 1 will be described. FIG. 8 shows a manufacturing flow of a semiconductor device (semiconductor chip such as IC or LSI, liquid crystal panel or CCD). In step 1 (circuit design), the circuit of the semiconductor device is designed. Step two
In (mask manufacturing), a mask (reticle 304) on which the designed circuit pattern is formed is manufactured. On the other hand, step 3
In (wafer-manufacturing), a wafer (wafer-306) is manufactured using a material such as silicon. Step 4 (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by the lithography technique using the mask and the wafer prepared above. The next step 5 (assembly) called a post-process, Step 4 thus wafer created - a step of chip the, assembly process (dicing, Bonde b ring), package - managing step (chip encapsulation) Etc. are included. In step 6 (inspection), the semiconductor device manufactured in step 5 undergoes inspections such as an operation confirmation test and a durability test. Through these steps, the semiconductor device is completed and shipped (step 7).
To be done.

【0026】図9は上記ウエハ−プロセスの詳細なフロ
−を示す。ステップ11(酸化)ではウエハ−(ウエハ
−306)の表面を酸化させる。ステップ12(CV
D)ではウエハ−の表面に絶縁膜を形成する。ステップ
13(電極形成)ではウエハ−上に電極を蒸着によって
形成する。ステップ14(イオン打ち込み)ではウエハ
−にイオンを打ち込む。ステップ15(レジスト処理)
ではウエハ−にレジスト(感材)を塗布する。ステップ
16(露光)では上記投影露光装置によってマスク(レ
チクル304)の回路パタ−ンの像でウエハ−を露光す
る。ステップ17(現像)では露光したウエハ−を現像
する。ステップ18(エッチング)では現像したレジス
ト以外の部分を削り取る。ステップ19(レジスト剥
離)ではエッチングが済んで不要となったレジストを取
り除く。これらステップを繰り返し行なうことによりウ
エハ−上に回路パタ−ンが形成される。
FIG. 9 shows a detailed flow chart of the wafer process. In step 11 (oxidation), the surface of the wafer (wafer 306) is oxidized. Step 12 (CV
In D), an insulating film is formed on the surface of the wafer. In step 13 (electrode formation), electrodes are formed on the wafer by vapor deposition. In step 14 (ion implantation), ions are implanted in the wafer. Step 15 (resist processing)
Then, a resist (sensitive material) is applied to the wafer. In step 16 (exposure), the projection exposure apparatus exposes the wafer with an image of the circuit pattern of the mask (reticle 304). In step 17 (development), the exposed wafer is developed. In step 18 (etching), parts other than the developed resist are scraped off. In step 19 (resist stripping), the resist that is no longer needed after etching is removed. By repeating these steps, a circuit pattern is formed on the wafer.

【0027】本実施例の製造方法を用いれば、従来は難
しかった高集積度の半導体素子を製造することが可能に
なる。
By using the manufacturing method of this embodiment, it becomes possible to manufacture a highly integrated semiconductor device, which has been difficult in the past.

【0028】[0028]

【発明の効果】以上、本発明によれば、露光むらを正確
に補正することができる。
As described above, according to the present invention, exposure unevenness can be accurately corrected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概略図である。FIG. 1 is a schematic view showing an embodiment of the present invention.

【図2】図1の可変スリットの構成、機能を示す説明図
である。
FIG. 2 is an explanatory diagram showing the configuration and function of the variable slit shown in FIG.

【図3】図1の可変スリットによる露光量分布の変化の
様子を示す図である。
FIG. 3 is a diagram showing how the exposure amount distribution is changed by the variable slit shown in FIG.

【図4】図1の照度分布可変レンズと可変スリットとを
用いて露光むらを補正する様子を示す説明図である。
FIG. 4 is an explanatory diagram showing a manner of correcting exposure unevenness using the variable illuminance distribution lens and the variable slit shown in FIG. 1;

【図5】露光量分布を検出する方法を説明するための説
明図である。
FIG. 5 is an explanatory diagram for explaining a method of detecting an exposure amount distribution.

【図6】露光むらを補正する手段の他の実施例を示す図
である。
FIG. 6 is a diagram showing another embodiment of means for correcting uneven exposure.

【図7】図6の補正手段による露光量分布の変化の様子
を示す図である。
FIG. 7 is a diagram showing how the exposure amount distribution is changed by the correction means in FIG.

【図8】半導体デバイスの製造フロ−を示す図である。FIG. 8 is a diagram showing a manufacturing flow of a semiconductor device.

【図9】図8のウエハプロセスを示す図である。FIG. 9 is a diagram showing the wafer process of FIG. 8;

【図10】走査露光の様子を示す説明図である。FIG. 10 is an explanatory diagram showing a state of scanning exposure.

【図11】可変スリットの一例を示す図である。FIG. 11 is a diagram showing an example of a variable slit.

【図12】照度分布可変レンズの構成の一例を示す図で
ある。
FIG. 12 is a diagram showing an example of a configuration of an illuminance distribution variable lens.

【図13】照度分布可変レンズによる照度分布の変化を
示す説明図である。
FIG. 13 is an explanatory diagram showing a change in illuminance distribution by the illuminance distribution variable lens.

【図14】照度分布可変レンズによる照度分布の変化を
示す他の説明図である。
FIG. 14 is another explanatory diagram showing changes in the illuminance distribution by the illuminance distribution variable lens.

【図15】照度分布可変レンズによる照度むらの補正を
示す説明図である。
FIG. 15 is an explanatory diagram showing correction of uneven illuminance by a variable illuminance distribution lens.

【符号の説明】[Explanation of symbols]

1 水銀灯 2 楕円ミラ− 4 コンデンサ−レンズ 6 ハエノ目レンズ 7 照度分布可変レンズ 9 可変スリット 9a,9b 可動ブレ−ド 10 結像レンズ 12 レチクル 13 投影光学系 14 ウエハ− 15 ウエハ−チャック 16 ウエハ−ステ−ジ 17、18 光量検出器 19 露光むら検出回路 20 露光むら補正回路 30a,30b 照度分布可変素子 DESCRIPTION OF SYMBOLS 1 Mercury lamp 2 Elliptical mirror 4 Condenser lens 6 Fly-eye lens 7 Illuminance distribution variable lens 9 Variable slits 9a, 9b Movable blade 10 Imaging lens 12 Reticle 13 Projection optical system 14 Wafer 15 Wafer chuck 16 Wafer stage -17, 18 Light amount detector 19 Exposure unevenness detection circuit 20 Exposure unevenness correction circuit 30a, 30b Illuminance distribution variable element

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 マスクと被露光基板を第1方向に延びた
断面形状を有する露光ビ−ムで当該第1方向と交差する
第2の方向に走査することにより前記マスクのパタ−ン
を前記被露光基板上に順次投影する走査型露光装置にお
いて、前記第1方向に延びる開口を備え、前記第1方向
に沿った複数の箇所で前記第2方向に関する前記開口の
幅を変えうる、前記露光ビ−ムを形成するための絞り手
段と、前記露光ビ−ムの前記第1方向に関する強度分布
を変化せしめる強度分布変更手段とを有することを特徴
とする走査型露光装置。
1. The pattern of the mask is scanned by scanning the mask and the substrate to be exposed with an exposure beam having a cross-sectional shape extending in the first direction in a second direction intersecting the first direction. A scanning type exposure apparatus for sequentially projecting onto an exposure target substrate, comprising: an opening extending in the first direction, wherein the width of the opening in the second direction can be changed at a plurality of locations along the first direction. A scanning exposure apparatus comprising: a diaphragm means for forming a beam; and an intensity distribution changing means for changing an intensity distribution of the exposure beam in the first direction.
【請求項2】 前記露光ビ−ムの前記第1方向に関する
強度分布を検出する手段を備えることを特徴とする請求
項1の走査型露光装置。
2. The scanning exposure apparatus according to claim 1, further comprising means for detecting an intensity distribution of the exposure beam in the first direction.
【請求項3】 前記強度分布変更手段は、光軸方向に移
動可能な複数のレンズを備えることを特徴とする請求項
1、2の走査型露光装置。
3. The scanning exposure apparatus according to claim 1, wherein the intensity distribution changing unit includes a plurality of lenses that are movable in the optical axis direction.
【請求項4】 前記強度分布変更手段は、光線の入射角
度によって透過率の異なるコ−ティングを施した光学素
子の透過率特性の異なるものを複数個備え、該複数個の
光学素子の内の所望の光学素子を系の瞳面近傍に配置す
ることより前記露光ビ−ムの強度分布を変えることを特
徴とする請求項1〜3の走査型露光装置。
4. The intensity distribution changing means comprises a plurality of optical elements having different transmittance characteristics coated with different transmittances depending on the incident angle of a light beam, and the plurality of optical elements among the plurality of optical elements are provided. 4. The scanning exposure apparatus according to claim 1, wherein the intensity distribution of the exposure beam is changed by disposing a desired optical element near the pupil plane of the system.
【請求項5】 前記絞り手段は、前記露光ビ−ムの前記
第1方向に関する両端のエッジを定める少なくとも2枚
の遮光部材と、前記露光ビ−ムの前記第2方向に関する
一方の側のエッジを定める少なくとも1枚の遮光部材
と、前記露光ビ−ムの前記第2方向に関する他方の側の
エッジを定める少なくとも2枚の遮光部材とを有するこ
とを特徴とする請求項1の走査型露光装置。
5. The diaphragm means includes at least two light-shielding members that define edges of both ends of the exposure beam in the first direction, and one edge of the exposure beam in one side of the second direction. 2. The scanning type exposure apparatus according to claim 1, further comprising at least one light-shielding member that defines an edge of the exposure beam, and at least two light-shielding members that define an edge of the exposure beam on the other side in the second direction. .
【請求項6】 前記露光ビ−ムの前記第2方向に関する
他方の側のエッジを定める2枚の遮光部材のエッジの前
記第1方向に対する角度を変える手段を有することを特
徴とする請求項5の走査型露光装置。
6. The device according to claim 5, further comprising means for changing an angle of the edges of the two light shielding members defining the other side edge of the exposure beam in the second direction with respect to the first direction. Scanning exposure equipment.
【請求項7】 前記強度分布検出手段は、前記第1方向
に沿って動く、スリット状の開口を備える光検出器を有
することを特徴とする請求項2の走査型露光装置。
7. The scanning exposure apparatus according to claim 2, wherein the intensity distribution detecting means includes a photodetector having a slit-shaped opening that moves along the first direction.
【請求項8】 前記強度分布変更手段が、前記露光ビ−
ムの前記第2方向に関する強度分布を変化させることを
特徴とする請求項1の走査型露光装置。
8. The exposure beam is changed by the intensity distribution changing means.
2. The scanning type exposure apparatus according to claim 1, wherein the intensity distribution of the beam in the second direction is changed.
【請求項9】 請求項1乃至請求項8の走査型露光装置
を用いてマスクのデバイスパタ−ンを被露光基板上に転
写する段階を含むことを特徴とするデバイス製造方法。
9. A device manufacturing method, comprising the step of transferring a device pattern of a mask onto a substrate to be exposed by using the scanning type exposure apparatus according to any one of claims 1 to 8.
JP17678193A 1993-07-16 1993-07-16 Scanning exposure equipment Expired - Fee Related JP3200244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17678193A JP3200244B2 (en) 1993-07-16 1993-07-16 Scanning exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17678193A JP3200244B2 (en) 1993-07-16 1993-07-16 Scanning exposure equipment

Publications (2)

Publication Number Publication Date
JPH0737774A true JPH0737774A (en) 1995-02-07
JP3200244B2 JP3200244B2 (en) 2001-08-20

Family

ID=16019734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17678193A Expired - Fee Related JP3200244B2 (en) 1993-07-16 1993-07-16 Scanning exposure equipment

Country Status (1)

Country Link
JP (1) JP3200244B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127418A (en) * 1995-10-27 1997-05-16 Nikon Corp Illumination optical system
JPH10209019A (en) * 1997-01-27 1998-08-07 Sony Corp Exposure pattern projection device and aligner
US6285442B1 (en) 1998-04-30 2001-09-04 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method using the exposure apparatus
US6657725B1 (en) 1998-06-04 2003-12-02 Canon Kabushiki Kaisha Scanning type projection exposure apparatus and device production method using the same
US6665052B2 (en) 1998-01-30 2003-12-16 Canon Kabushiki Kaisha Illumination optical system and projection exposure apparatus
WO2005048326A1 (en) * 2003-11-13 2005-05-26 Nikon Corporation Variable slit apparatus, illumination apparatus, exposure apparatus, exposure method, and device producing method
JP2006134932A (en) * 2004-11-02 2006-05-25 Nikon Corp Variable slit device, illumination optical device, aligner, and method of exposure
JP2006135325A (en) * 2004-11-03 2006-05-25 Asml Netherlands Bv Lithography apparatus and method of manufacturing device
JP2006186028A (en) * 2004-12-27 2006-07-13 Nikon Corp Exposure apparatus
US7130024B2 (en) 2003-05-22 2006-10-31 Canon Kabushiki Kaisha Exposure apparatus
KR100716108B1 (en) * 1999-12-29 2007-05-08 칼 짜이스 에스엠테 아게 Optical arrangement
JP2008172256A (en) * 1997-03-31 2008-07-24 Asml Holding Nv Adjustable slit device and method of varying line width
JP2009147321A (en) * 2007-11-28 2009-07-02 Asml Netherlands Bv Lithographic apparatus and lithographic method
CN107621754A (en) * 2016-07-13 2018-01-23 佳能株式会社 Exposure device, exposure method and article manufacturing method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127418A (en) * 1995-10-27 1997-05-16 Nikon Corp Illumination optical system
JPH10209019A (en) * 1997-01-27 1998-08-07 Sony Corp Exposure pattern projection device and aligner
JP2008172256A (en) * 1997-03-31 2008-07-24 Asml Holding Nv Adjustable slit device and method of varying line width
US6665052B2 (en) 1998-01-30 2003-12-16 Canon Kabushiki Kaisha Illumination optical system and projection exposure apparatus
US6285442B1 (en) 1998-04-30 2001-09-04 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method using the exposure apparatus
US6657725B1 (en) 1998-06-04 2003-12-02 Canon Kabushiki Kaisha Scanning type projection exposure apparatus and device production method using the same
KR100716108B1 (en) * 1999-12-29 2007-05-08 칼 짜이스 에스엠테 아게 Optical arrangement
US7130024B2 (en) 2003-05-22 2006-10-31 Canon Kabushiki Kaisha Exposure apparatus
US7889320B2 (en) 2003-11-13 2011-02-15 Nikon Corporation Variable slit apparatus, illumination apparatus, exposure apparatus, exposure method, and device fabrication method
WO2005048326A1 (en) * 2003-11-13 2005-05-26 Nikon Corporation Variable slit apparatus, illumination apparatus, exposure apparatus, exposure method, and device producing method
JP4631707B2 (en) * 2003-11-13 2011-02-16 株式会社ニコン Illumination device, an exposure device, manufacturing method for an exposure method and device
JPWO2005048326A1 (en) * 2003-11-13 2007-05-31 株式会社ニコン Variable slit device, illumination device, exposure apparatus, exposure method, and device manufacturing method
JP2006134932A (en) * 2004-11-02 2006-05-25 Nikon Corp Variable slit device, illumination optical device, aligner, and method of exposure
JP2006135325A (en) * 2004-11-03 2006-05-25 Asml Netherlands Bv Lithography apparatus and method of manufacturing device
JP2006186028A (en) * 2004-12-27 2006-07-13 Nikon Corp Exposure apparatus
JP2009147321A (en) * 2007-11-28 2009-07-02 Asml Netherlands Bv Lithographic apparatus and lithographic method
US8441611B2 (en) 2007-11-28 2013-05-14 Asml Netherlands B.V. Lithographic apparatus and method
CN107621754A (en) * 2016-07-13 2018-01-23 佳能株式会社 Exposure device, exposure method and article manufacturing method

Also Published As

Publication number Publication date
JP3200244B2 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
US7123346B2 (en) Projection exposure apparatus with line width calculator controlled diaphragm unit
JP3610175B2 (en) Projection exposure apparatus and semiconductor device manufacturing method using the same
JP4865270B2 (en) Exposure apparatus and device manufacturing method using the same
US20030170552A1 (en) Method of determining exposure conditions, exposure method, device manufacturing method, and storage medium
KR100485314B1 (en) Projection exposure apparatus and device manufacturing method using the same
JP3817365B2 (en) Projection exposure apparatus and device manufacturing method using the same
JP3599629B2 (en) Illumination optical system and exposure apparatus using the illumination optical system
JP3262039B2 (en) Exposure apparatus and device manufacturing method using the same
JP3200244B2 (en) Scanning exposure equipment
JP4392879B2 (en) Projection exposure apparatus and device manufacturing method
JP2002033272A (en) Method and device for exposure and device manufacturing method
KR100846337B1 (en) Exposure method and exposure apparatus
US7130024B2 (en) Exposure apparatus
JPH11354425A (en) Scanning projection aligner and manufacture of device using the same
JP4545854B2 (en) Projection exposure equipment
JP2005302825A (en) Exposure system
JP2000114164A (en) Scanning projection aligner and manufacture of device using the same
JP2008124308A (en) Exposure method and exposure apparatus, and device manufacturing method using the same
JPH0766121A (en) Projection aligner and fabrication of semiconductor element employing it
JP2010118403A (en) Scanning aligner and method of manufacturing device
JPH0729816A (en) Projection aligner and fabrication of semiconductor element employing it
KR20070033136A (en) Method for adjusting focal length of an exposure apparatus
JPH0936026A (en) Projection aligner and manufacturing method of semiconductor device using the same apparatus
JP3376043B2 (en) Illumination device and projection exposure apparatus using the same
JP3223646B2 (en) Projection exposure apparatus and method for manufacturing semiconductor device using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees