JPH0766121A - Projection aligner and fabrication of semiconductor element employing it - Google Patents
Projection aligner and fabrication of semiconductor element employing itInfo
- Publication number
- JPH0766121A JPH0766121A JP5234100A JP23410093A JPH0766121A JP H0766121 A JPH0766121 A JP H0766121A JP 5234100 A JP5234100 A JP 5234100A JP 23410093 A JP23410093 A JP 23410093A JP H0766121 A JPH0766121 A JP H0766121A
- Authority
- JP
- Japan
- Prior art keywords
- diaphragm
- light source
- optical system
- wafer
- reticle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70191—Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は投影露光装置及びそれを
用いた半導体素子の製造方法に関し、具体的には半導体
素子の製造装置である所謂ステッパーにおいて、レチク
ル面上のパターンを適切なる照度分布の光束で照明し高
い解像力が容易に得られるようにしたものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus and a semiconductor device manufacturing method using the same, and more specifically, in a so-called stepper which is a semiconductor device manufacturing apparatus, a pattern on a reticle surface is provided with an appropriate illuminance distribution. The high luminous flux is used to illuminate and a high resolution can be easily obtained.
【0002】[0002]
【従来の技術】最近の半導体素子の製造技術の進展は目
覚ましく、又それに伴う微細加工技術の進展も著しい。
特に光加工技術は1MDRAM の半導体素子の製造を境にサ
ブミクロンの解像力を有する微細加工の技術まで達して
いる。解像力を向上させる手段として、これまで多くの
場合、露光波長を固定して光学系のNA(開口数)を大
きくしていく方法を用いていた。2. Description of the Related Art The recent progress in manufacturing technology of semiconductor devices is remarkable, and accompanying it, the progress of fine processing technology is remarkable.
In particular, the optical processing technology has reached the level of microfabrication technology with submicron resolution, with the production of 1M DRAM semiconductor devices as the boundary. In many cases, a method of fixing the exposure wavelength and increasing the NA (numerical aperture) of the optical system has been used as a means for improving the resolution.
【0003】しかし最近では露光波長をg線からi線に
変えて超高圧水銀灯を用いた露光法により解像力を向上
させる試みも種々と行なわれている。又、エキシマレー
ザーに代表される、更に短い波長の光を用いることによ
り解像力の向上を図る方法が種々と提案されている。短
波長の光を用いる効果は一般に波長に反比例する効果を
持っていることが知られており、波長を短くした分だけ
焦点深度は深くなる。Recently, however, various attempts have been made to improve the resolution by changing the exposure wavelength from g-line to i-line and using an exposure method using an ultra-high pressure mercury lamp. In addition, various methods have been proposed for improving the resolution by using light of a shorter wavelength, which is represented by an excimer laser. It is known that the effect of using light having a short wavelength generally has an effect that is inversely proportional to the wavelength, and the depth of focus becomes deeper as the wavelength becomes shorter.
【0004】この他、本出願人はレチクル面上への照明
方法を変えることにより、即ちそれに応じて投影光学系
の瞳面上に形成される光強度分布(有効光源分布)を種
々と変えることにより、より解像力を高めた露光方法及
びそれを用いた投影露光装置を、例えば特開平5−47
626号公報、特開平5−47628号公報、特開平5
−47639号公報等で提案している。In addition to this, the present applicant changes the illumination method on the reticle surface, that is, changes the light intensity distribution (effective light source distribution) formed on the pupil surface of the projection optical system accordingly. As described above, an exposure method with a higher resolution and a projection exposure apparatus using the same are disclosed in, for example, Japanese Patent Laid-Open No. 5-47.
626, JP-A-5-47628, and JP-A-5
-47639 gazette etc.
【0005】[0005]
【発明が解決しようとする課題】実際の半導体集積回路
の製造工程は、パターンの高い解像性能が必要とされる
工程、それほどパターンの解像性能は必要とされない工
程と種々様々である。又、レチクル面上に形成されてい
るパターン形状も水平方向、垂直方向の他に斜方向と種
々の形状のパターンがある。There are various actual manufacturing processes of a semiconductor integrated circuit, such as a process requiring a high pattern resolution performance and a process not requiring such a pattern resolution performance. Further, the pattern shape formed on the reticle surface includes various horizontal and vertical patterns as well as oblique patterns.
【0006】一般に投影光学系(投影レンズ)の瞳面上
の有効光源分布(光強度分布)が投影パターン像の像性
能(解像力)に大きく影響してくる。この為、現在の半
導体素子製造用の露光装置には各工程毎に最適な方法で
照明できる照明系が要望されている。Generally, the effective light source distribution (light intensity distribution) on the pupil plane of the projection optical system (projection lens) greatly affects the image performance (resolution) of the projected pattern image. For this reason, there is a demand for an illumination system capable of illuminating the present exposure apparatus for manufacturing semiconductor devices by an optimum method for each process.
【0007】一般に開口形状の異なる絞りを用いて投影
光学系の瞳面上の光強度分布を種々と制御しようとする
とレチクル面上の照度分布が不均一になってくる場合が
ある。Generally, when trying to control various light intensity distributions on the pupil plane of the projection optical system by using diaphragms having different aperture shapes, the illuminance distribution on the reticle plane may become non-uniform.
【0008】本発明は開口形状の異なる絞りを用いて、
投影光学系の瞳面上での有効光源分布を種々と変えたと
きに生ずるレチクル面上の照度分布の不均一を適切なる
分光特性を有した光学素子を用いることにより調整し、
レチクル面上の各種のパターンをウエハ面上に高い解像
力で容易に露光転写することができる投影露光装置及び
それを用いた半導体素子の製造方法の提供を目的とす
る。The present invention uses diaphragms having different aperture shapes,
Adjust the non-uniformity of the illuminance distribution on the reticle surface that occurs when the effective light source distribution on the pupil plane of the projection optical system is changed by using an optical element having appropriate spectral characteristics,
An object of the present invention is to provide a projection exposure apparatus capable of easily exposing and transferring various patterns on a reticle surface onto a wafer surface with high resolution, and a semiconductor element manufacturing method using the projection exposure apparatus.
【0009】[0009]
【課題を解決するための手段】本発明の投影露光装置
は、 (1−1)光源からの光束を照明系により被照射面上の
パターンを照明し、該パターンを投影光学系により基板
面上に投影し露光する際、該照明系は該光源からの光束
を集光して2次光源を形成し、該2次光源を該投影光学
系の瞳面近傍に結像する光学系、該2次光源からの射出
光束を制限する絞りと入射角度によって透過率が異なる
コーティングを施した光学素子とを対向配置した絞り付
きフィルターを複数設けた絞り付きフィルター機構を有
し、該複数の絞り付きフィルターの中から1つを選択
し、光路中に配置して被照射面上の照度分布を制御して
いることを特徴としている。The projection exposure apparatus of the present invention is (1-1) illuminating a light beam from a light source with a lighting system to a pattern on a surface to be illuminated, and projecting the pattern onto a substrate surface with a projection optical system. The optical system for condensing the light flux from the light source to form a secondary light source and projecting the secondary light source into an image in the vicinity of the pupil plane of the projection optical system when the image is projected and exposed on the optical system. It has a filter mechanism with a diaphragm provided with a plurality of filters with a diaphragm that opposes a diaphragm that restricts a light flux emitted from a next light source and an optical element having a coating having a different transmittance depending on an incident angle. One of these is selected and placed in the optical path to control the illuminance distribution on the illuminated surface.
【0010】本発明の半導体素子の製造方法は、 (1−2)光源からの光束を照明系によりレチクル面上
のパターンを照明し、該パターンを投影光学系によりウ
エハ面上に投影し露光した後に、該ウエハを現像処理工
程を介して半導体素子を製造する際、該照明系は該光源
からの光束を集光して2次光源を形成し、該2次光源を
該投影光学系の瞳面近傍に結像すると共に該2次光源か
らの射出光束を制限する絞りと入射角度によって透過率
が異なるコーティングを施した光学素子とを対向配置し
た絞り付きフィルターを用いてレチクル面上の照度分布
を制御していることを特徴としている。According to the method of manufacturing a semiconductor element of the present invention, (1-2) a pattern on the reticle surface is illuminated with a light flux from a light source by an illumination system, and the pattern is projected onto a wafer surface by a projection optical system for exposure. Later, when a semiconductor element is manufactured on the wafer through a developing process, the illumination system collects a light beam from the light source to form a secondary light source, and the secondary light source is used as a pupil of the projection optical system. Illuminance distribution on the reticle surface by using a filter with a diaphragm in which a diaphragm for forming an image near the surface and limiting a light flux emitted from the secondary light source and an optical element with a coating having a different transmittance depending on the incident angle are arranged to face each other. It is characterized by controlling.
【0011】[0011]
【実施例】図1は本発明の実施例1の要部概略図であ
る。Embodiment 1 FIG. 1 is a schematic view of the essential portions of Embodiment 1 of the present invention.
【0012】図中、2は楕円鏡である。1は光源として
の発光管であり、紫外線及び遠紫外線等を放射する高輝
度の発光部1aを有している。発光部1aは楕円鏡2の
第1焦点近傍に配置している。3はコールドミラーであ
り、多層膜より成り、大部分の赤外光を透過すると共に
大部分の紫外光を反射させている。楕円鏡2はコールド
ミラー3を介して第2焦点4近傍に発光部1aの発光部
像(光源像)1bを形成している。In the figure, 2 is an elliptical mirror. Reference numeral 1 denotes a light emitting tube as a light source, which has a light emitting portion 1a of high brightness that emits ultraviolet rays, far ultraviolet rays, and the like. The light emitting unit 1a is arranged near the first focus of the elliptical mirror 2. Reference numeral 3 denotes a cold mirror, which is composed of a multilayer film and transmits most of infrared light and reflects most of ultraviolet light. The elliptic mirror 2 forms a light emitting portion image (light source image) 1b of the light emitting portion 1a in the vicinity of the second focal point 4 via the cold mirror 3.
【0013】5は光学系であり、コンデンサーレンズや
ズームレンズ等から成り、第2焦点4近傍に形成した発
光部像1bをオプティカルインテグレータ6の入射面6
aに結像させている。オプティカルインテグレータ6は
複数の微小レンズ(ハエの眼レンズ)6−i(i=1〜
N)を2次元的に所定のピッチで配列して構成してお
り、その射出面6b近傍に2次光源を形成している。An optical system 5 is composed of a condenser lens, a zoom lens, etc., and the light emitting portion image 1b formed in the vicinity of the second focal point 4 is incident on the incident surface 6 of the optical integrator 6.
The image is formed on a. The optical integrator 6 includes a plurality of minute lenses (fly's eye lenses) 6-i (i = 1 to 1).
N) are arranged two-dimensionally at a predetermined pitch, and a secondary light source is formed near the exit surface 6b.
【0014】7は絞り付きフィルター機構であり、複数
の絞り付きフィルター7a,7b…をターレット式に配
置して構成している。このうち、例えば絞り付きフィル
ター7aは絞り7a1と入射角度によって透過率が異な
るようなコーティングを施した光学素子7a2とを一体
的に貼着又は僅かの空隙を介して対向配置して構成して
いる。Reference numeral 7 denotes a filter mechanism with an aperture, which is constructed by arranging a plurality of filters with apertures 7a, 7b ... In a turret type. Among them, for example, the filter 7a with a diaphragm is configured such that a diaphragm 7a1 and an optical element 7a2 coated with a coating having a different transmittance depending on an incident angle are integrally attached or are arranged to face each other with a slight gap. .
【0015】絞り7a1としては通常の円形開口の絞り
や、図2(A),(B)に示すような後述する投影レン
ズ13の瞳面14上の光強度分布を変化させる輪帯照明
用絞りや4重極照明用絞り等の1つから成っている。他
の絞り付きフィルター7b,7c…も同様である。As the diaphragm 7a1, an ordinary circular aperture diaphragm or an annular illumination diaphragm for changing the light intensity distribution on the pupil plane 14 of the projection lens 13 described later as shown in FIGS. 2A and 2B. And quadrupole illumination diaphragm, etc. The same applies to the other filters with diaphragms 7b, 7c ....
【0016】16はアクチュエータであり、絞り付きフ
ィルター機構7を回動させ光路中に任意の絞り付きフィ
ルター7a,7b…が位置するようにしている。Numeral 16 is an actuator for rotating the filter mechanism 7 with a diaphragm so that arbitrary filters with a diaphragm 7a, 7b ... Are positioned in the optical path.
【0017】本実施例では、絞り付きフィルター機構7
を用いることにより、集光レンズ8に入射する光束を種
々と変えて投影光学系13の瞳面14上の光強度分布、
即ち有効光源分布を種々と変えたときの照射面としての
レチクル12上の照度分布を適切に制御している。In this embodiment, the filter mechanism 7 with a diaphragm is used.
Is used to change the luminous flux incident on the condenser lens 8 variously, and the light intensity distribution on the pupil plane 14 of the projection optical system 13,
That is, the illuminance distribution on the reticle 12 as the irradiation surface when the effective light source distribution is changed variously is appropriately controlled.
【0018】集光レンズ8はオプティカルインテグレー
タ6の射出面6b近傍の2次光源から射出し、絞り付き
フィルター(7a)を通過した複数の光束を集光し、ミ
ラー9で反射させてマスキングブレード10に指向し、
該マスキングブレード10面を均一に照明している。マ
スキングブレード10は複数の可動の遮光板より成り、
任意の開口形状が形成されるようにしている。The condensing lens 8 condenses a plurality of light beams emitted from the secondary light source in the vicinity of the emission surface 6b of the optical integrator 6 and passed through the filter (7a) with a diaphragm, and the light beams are reflected by the mirror 9 to be masked by the masking blade 10. Oriented towards
The masking blade 10 surface is uniformly illuminated. The masking blade 10 is composed of a plurality of movable light shielding plates,
An arbitrary opening shape is formed.
【0019】11は結像レンズであり、マスキングブレ
ード10の開口形状を被照射面としてのレチクル12面
に転写し、レチクル12面上の必要な領域を均一に照明
している。Reference numeral 11 denotes an imaging lens, which transfers the opening shape of the masking blade 10 onto the surface of the reticle 12 as a surface to be illuminated and uniformly illuminates a necessary area on the surface of the reticle 12.
【0020】13は投影光学系(投影レンズ)であり、
レチクル12面上の回路パターンをウエハチャックに載
置したウエハ(基板)15面上に縮小投影している。1
4は投影光学系13の瞳面である。Reference numeral 13 is a projection optical system (projection lens),
The circuit pattern on the surface of the reticle 12 is reduced and projected onto the surface of the wafer (substrate) 15 placed on the wafer chuck. 1
Reference numeral 4 is a pupil plane of the projection optical system 13.
【0021】本実施例における光学系では、発光部1a
と第2焦点4とオプティカルインテグレータ6の入射面
6aが略共役関係となっている。又、マスキングブレー
ド10とレチクル12とウエハ15が共役関係となって
いる。又、絞り7a1と投影光学系13の瞳面14とが
略共役関係となっている。In the optical system of this embodiment, the light emitting section 1a
The second focal point 4 and the incident surface 6a of the optical integrator 6 have a substantially conjugate relationship. Further, the masking blade 10, the reticle 12, and the wafer 15 are in a conjugate relationship. Further, the diaphragm 7a1 and the pupil plane 14 of the projection optical system 13 have a substantially conjugate relationship.
【0022】本実施例では以上のような構成により、レ
チクル12面上のパターンをウエハ15面上に縮小投影
露光している。そして所定の現像処理過程を経て半導体
素子を製造している。In the present embodiment, with the above-described structure, the pattern on the surface of the reticle 12 is reduced and projected onto the surface of the wafer 15 by reduction projection exposure. Then, a semiconductor device is manufactured through a predetermined developing process.
【0023】本実施例では、本出願人が先の特開平5−
47626号公報や特開平5−47640号公報で提案
しているように、レチクル12面上のパターン形状に応
じて開口形状の異なった絞りを選択して用いて、投影光
学系13の瞳面14上に形成される光強度分布を変えて
いる。そして、このときレチクル12面上の照度分布の
不均一をコーティング膜を施した光学素子(7a2)を
用いることにより均一になるようにしている。これによ
りレチクル12面上のパターンを投影光学系13でウエ
ハ15面上に投影する際の解像力の向上を図っている。In the present embodiment, the applicant of the present invention described in Japanese Unexamined Patent Publication No.
As disclosed in Japanese Laid-Open Patent Publication No. 47626 and Japanese Patent Laid-Open No. 5-47640, the pupil plane 14 of the projection optical system 13 is selected by using a diaphragm having a different aperture shape according to the pattern shape on the surface of the reticle 12. The light intensity distribution formed above is changed. At this time, the unevenness of the illuminance distribution on the surface of the reticle 12 is made uniform by using the optical element (7a2) provided with the coating film. This improves the resolution when the projection optical system 13 projects a pattern on the surface of the reticle 12 onto the surface of the wafer 15.
【0024】次に本実施例において、入射角度によって
透過率が異なるようなコーティング膜を施した光学素子
を用いて、レチクル12面上の照度分布を制御する方法
について説明する。Next, in this embodiment, a method for controlling the illuminance distribution on the surface of the reticle 12 by using an optical element having a coating film whose transmittance varies depending on the incident angle will be described.
【0025】図3は、図1の絞り付きフィルター7aに
施した光学薄膜(コーティング膜)の説明図である。同
図では、特定の波長λ0 に対して高い透過率を示す光学
薄膜の分光特性を示している。FIG. 3 is an explanatory view of an optical thin film (coating film) applied to the filter 7a with a diaphragm of FIG. The figure shows the spectral characteristics of an optical thin film that exhibits high transmittance for a specific wavelength λ 0 .
【0026】λ0 は露光波長、曲線aは入射角度θ=
0、曲線bは入射角度θ≠0の場合である。一般に光学
薄膜は入射角度が大きくなると分光特性が短波長側にシ
フトするが、高透過率の帯域が狭い曲線aのような分光
特性の場合、入射角度が0でなくなることにより分光特
性が短波長側にシフトして曲線bの状態になる。このと
きの入射角度の違いによって生じる露光波長λ0 におけ
る透過率の差はΔTであき。Λ 0 is the exposure wavelength, and curve a is the incident angle θ =
0, the curve b is for the incident angle θ ≠ 0. Generally, the optical thin film shifts its spectral characteristic toward the short wavelength side when the incident angle becomes large, but in the case of the spectral characteristic such as the curve a having a narrow band of high transmittance, the spectral characteristic becomes short wavelength because the incident angle is not zero. It shifts to the side and becomes the state of curve b. The difference in transmittance at the exposure wavelength λ 0 caused by the difference in incident angle at this time is ΔT.
【0027】本実施例の光学素子は以上のような分光特
性を利用しており、絞り付きフィルター7aには分光特
性が光線の入射角度に敏感に変化する光学薄膜が施され
ている。The optical element of the present embodiment utilizes the above-mentioned spectral characteristics, and the filter 7a with a diaphragm is provided with an optical thin film whose spectral characteristics change sensitively to the incident angle of a light beam.
【0028】図4は、図1の絞り付きフィルター7aの
部分説明図である。オプティカルインテグレータ6から
の発散光束は、絞り付きフィルター7aを透過しコンデ
ンサーレンズ8によって収斂し、被照射面10を照明す
る。オプティカルインテグレータ6からの射出角が同じ
光は被照射面10上の同じ場所を照明する。FIG. 4 is a partial explanatory view of the filter 7a with a diaphragm shown in FIG. The divergent light flux from the optical integrator 6 passes through the filter 7a with a diaphragm, is converged by the condenser lens 8, and illuminates the illuminated surface 10. The light with the same emission angle from the optical integrator 6 illuminates the same place on the illuminated surface 10.
【0029】即ち、絞り付きフィルター7aへの入射角
が同じものは被照射面10上の同じ場所に入射すること
になり、絞り付きフィルター7aはその表面に入射角度
に応じて透過率が変化する光学薄膜を施されているた
め、被照射面10上において光軸対象な照度分布を形成
する働きをする。That is, those having the same incident angle on the filter with aperture 7a will be incident on the same location on the illuminated surface 10, and the transmittance of the filter with aperture 7a will change depending on the incident angle. Since it is provided with an optical thin film, it functions to form an illuminance distribution on the irradiated surface 10 that is symmetrical with respect to the optical axis.
【0030】そこで、絞り付きフィルター7a上に絞り
固有の照度ムラを打ち消す分光特性の光学薄膜を施して
おくことにより、レチクル12面上の光軸対象な照度ム
ラを低減している。例えば、リング状開口の絞りを用い
たときに、レチクル面上において周辺が中心に対して照
度が高い場合には、リング状開口の絞りと用いる光学素
子には入射角が大きいほど透過率が低下するタイプの光
学薄膜を施している。Therefore, by providing an optical thin film having a spectral characteristic for canceling the illuminance unevenness peculiar to the diaphragm on the filter with diaphragm 7, the illuminance unevenness on the surface of the reticle 12 is reduced. For example, when a ring-shaped aperture stop is used and the illuminance around the reticle surface is high with respect to the center, the transmittance of the optical element used as the ring-shaped aperture stop decreases as the incident angle increases. The type of optical thin film is applied.
【0031】図5は本発明の実施例2の要部概略図であ
る。本実施例では、オプティカルインテグレータ6の射
出面6b近傍に絞り付きフィルター7を配置し、コンデ
ンサーレンズ8にレンズ8の少なくとも1枚のレンズを
光軸に沿って動かす駆動機構17を備えさせている。こ
れは絞り付きフィルター7の光学素子だけではとりきれ
なかった照度ムラをレンズを動かすことにより調整する
ためのものである。駆動機構をもつコンデンサーレンズ
により微妙な照度ムラ調整ができるので、これらの2つ
の要素を同時に用いることにより、レチクル面上にさら
に均一な照度分布を得ることができる。FIG. 5 is a schematic view of the essential portions of Embodiment 2 of the present invention. In this embodiment, a filter 7 with a diaphragm is arranged near the exit surface 6b of the optical integrator 6, and the condenser lens 8 is provided with a drive mechanism 17 for moving at least one lens 8 along the optical axis. This is for adjusting the illuminance unevenness, which cannot be completely eliminated by the optical element of the filter with diaphragm 7, by moving the lens. Since a condenser lens having a drive mechanism can finely adjust the illuminance unevenness, by using these two elements at the same time, a more uniform illuminance distribution can be obtained on the reticle surface.
【0032】次に上記説明した投影露光装置を利用した
半導体デバイスの製造方法の実施例を説明する。Next, an embodiment of a method of manufacturing a semiconductor device using the above-described projection exposure apparatus will be described.
【0033】図6は半導体デバイス(ICやLSI等の
半導体チップ、或いは液晶パネルやCCD等)の製造の
フローを示す。ステップ1(回路設計)では半導体デバ
イスの回路設計を行なう。ステップ2(マスク製作)で
は設計した回路パターンを形成したマスクを製作する。FIG. 6 shows a flow of manufacturing a semiconductor device (semiconductor chip such as IC or LSI, liquid crystal panel, CCD or the like). In step 1 (circuit design), a semiconductor device circuit is designed. In step 2 (mask manufacturing), a mask having the designed circuit pattern is manufactured.
【0034】一方、ステップ3(ウエハ製造)ではシリ
コン等の材料を用いてウエハを製造する。ステップ4
(ウエハプロセス)は前工程と呼ばれ、上記用意したマ
スクとウエハを用いてリソグラフィ技術によってウエハ
上に実際の回路を形成する。On the other hand, in step 3 (wafer manufacturing), a wafer is manufactured using a material such as silicon. Step 4
The (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by a lithography technique using the mask and the wafer prepared above.
【0035】次のステップ5(組立て)は後工程と呼ば
れ、ステップ4によって作製されたウエハを用いて半導
体チップ化する工程であり、アッセンブリ工程(ダイシ
ング、ボンディング)、パッケージング工程(チップ封
入)等の工程を含む。ステップ6(検査)ではステップ
5で作製された半導体デバイスの動作確認テスト、耐久
性テスト等の検査を行なう。こうした工程を経て半導体
デバイスが完成し、これが出荷(ステップ7)される。The next step 5 (assembly) is called a post-process, and is a process of forming a semiconductor chip using the wafer manufactured in step 4, an assembly process (dicing, bonding), a packaging process (chip encapsulation). Etc. are included. In step 6 (inspection), the semiconductor device manufactured in step 5 undergoes inspections such as an operation confirmation test and a durability test. Through these steps, the semiconductor device is completed and shipped (step 7).
【0036】図7は上記ウエハプロセスの詳細なフロー
を示す。ステップ11(酸化)ではウエハの表面を酸化
させる。ステップ12(CVD)ではウエハ表面に絶縁
膜を形成する。ステップ13(電極形成)ではウエハ上
に電極を蒸着によって形成する。ステップ14(イオン
打込み)ではウエハにイオンを打ち込む。ステップ15
(レジスト処理)ではウエハに感光剤を塗布する。FIG. 7 shows a detailed flow of the wafer process. In step 11 (oxidation), the surface of the wafer is oxidized. In step 12 (CVD), an insulating film is formed on the wafer surface. In step 13 (electrode formation), electrodes are formed on the wafer by vapor deposition. In step 14 (ion implantation), ions are implanted in the wafer. Step 15
In (resist processing), a photosensitive agent is applied to the wafer.
【0037】ステップ16(露光)では上記説明した露
光装置によってマスクの回路パターンをウエハに焼付露
光する。ステップ17(現像)では露光したウエハを現
像する。ステップ18(エッチング)では現像したレジ
スト像以外の部分を削り取る。ステップ19(レジスト
剥離)ではエッチングが済んで不要となったレジストを
取り除く。これらのステップを繰り返し行なうことによ
って、ウエハ上に多重に回路パターンが形成される。In step 16 (exposure), the circuit pattern of the mask is printed and exposed on the wafer by the exposure apparatus described above. In step 17 (development), the exposed wafer is developed. In step 18 (etching), parts other than the developed resist image are removed. In step 19 (resist stripping), the resist that is no longer needed after etching is removed. By repeating these steps, multiple circuit patterns are formed on the wafer.
【0038】本実施例の製造方法を用いれば、高集積度
の半導体デバイスを製造することができる。By using the manufacturing method of this embodiment, a highly integrated semiconductor device can be manufactured.
【0039】[0039]
【発明の効果】本発明によれば以上のように、開口形状
の異なる絞りを用いて、投影光学系の瞳面上での有効光
源分布を種々と変えたときに生ずるレチクル面上の照度
分布の不均一を適切なる分光特性を有した光学素子を用
いることにより調整し、レチクル面上の各種のパターン
をウエハ面上に高い解像力で容易に露光転写することが
できる投影露光装置及びそれを用いた半導体素子の製造
方法を達成することができる。As described above, according to the present invention, the illuminance distribution on the reticle surface generated when various effective light source distributions on the pupil plane of the projection optical system are changed by using diaphragms having different aperture shapes. A projection exposure apparatus capable of adjusting the non-uniformity of the reticle by using an optical element having an appropriate spectral characteristic, and easily exposing and transferring various patterns on the reticle surface onto the wafer surface with high resolution and a projection exposure apparatus using the same. It is possible to achieve the above-described method of manufacturing a semiconductor device.
【図1】 本発明の実施例1の要部概略図FIG. 1 is a schematic view of a main part of a first embodiment of the present invention.
【図2】 図1の絞りの説明図FIG. 2 is an explanatory view of the diaphragm shown in FIG.
【図3】 図1の光学素子の分光特性の説明図3 is an explanatory diagram of spectral characteristics of the optical element of FIG.
【図4】 図1の一部分の拡大説明図FIG. 4 is an enlarged explanatory view of a part of FIG.
【図5】 本発明の実施例2の要部概略図FIG. 5 is a schematic view of the essential portions of Embodiment 2 of the present invention.
【図6】 本発明の半導体素子の製造方法のフローチャ
ートFIG. 6 is a flowchart of a method for manufacturing a semiconductor device of the present invention.
【図7】 本発明の半導体素子の製造方法のフローチャ
ートFIG. 7 is a flowchart of a method for manufacturing a semiconductor device of the present invention.
1 光源 2 楕円鏡 3 コールドミラー 5 光学系 6 オプティカルインテグレータ 7 絞り付きフィルター機構 7a,7b… 絞り付きフィルター 7a1,7b1… 絞り 7a2,7b2… 光学素子 8 集光レンズ 9 ミラー 9a ハーフミラー 10 マスキングブレード 11 結像レンズ 12 レチクル 13 投影光学系 14 瞳面 15 レチクル 1 Light Source 2 Elliptical Mirror 3 Cold Mirror 5 Optical System 6 Optical Integrator 7 Filter Mechanism with Aperture 7a, 7b ... Filter with Aperture 7a1, 7b1 ... Aperture 7a2, 7b2 ... Optical Element 8 Condensing Lens 9 Mirror 9a Half Mirror 10 Masking Blade 11 Imaging lens 12 Reticle 13 Projection optical system 14 Pupil plane 15 Reticle
Claims (2)
上のパターンを照明し、該パターンを投影光学系により
基板面上に投影し露光する際、該照明系は該光源からの
光束を集光して2次光源を形成し、該2次光源を該投影
光学系の瞳面近傍に結像する光学系、該2次光源からの
射出光束を制限する絞りと入射角度によって透過率が異
なるコーティングを施した光学素子とを対向配置した絞
り付きフィルターを複数設けた絞り付きフィルター機構
を有し、該複数の絞り付きフィルターの中から1つを選
択し、光路中に配置して被照射面上の照度分布を制御し
ていることを特徴とする投影露光装置。1. When a light beam from a light source is illuminated by an illumination system onto a pattern on a surface to be illuminated and the pattern is projected onto a substrate surface by a projection optical system for exposure, the illumination system reflects the light beam from the light source. An optical system that collects light to form a secondary light source and forms an image of the secondary light source in the vicinity of the pupil plane of the projection optical system, a diaphragm that limits the light flux emitted from the secondary light source, and a transmittance depending on the incident angle. It has a filter mechanism with a diaphragm provided with a plurality of filters with a diaphragm that opposes optical elements with different coatings, selects one from the plurality of filters with a diaphragm, and arranges it in the optical path for irradiation. A projection exposure apparatus characterized in that the illuminance distribution on the surface is controlled.
面上のパターンを照明し、該パターンを投影光学系によ
りウエハ面上に投影し露光した後に、該ウエハを現像処
理工程を介して半導体素子を製造する際、該照明系は該
光源からの光束を集光して2次光源を形成し、該2次光
源を該投影光学系の瞳面近傍に結像すると共に該2次光
源からの射出光束を制限する絞りと入射角度によって透
過率が異なるコーティングを施した光学素子とを対向配
置した絞り付きフィルターを用いてレチクル面上の照度
分布を制御していることを特徴とする半導体素子の製造
方法。2. A semiconductor device is provided with a light beam from a light source, which illuminates a pattern on a reticle surface by an illumination system, projects the pattern on a wafer surface by a projection optical system to expose the wafer, and then develops the wafer through a developing process. In manufacturing, the illumination system collects the light flux from the light source to form a secondary light source, forms an image of the secondary light source in the vicinity of the pupil plane of the projection optical system, and outputs the light from the secondary light source. A semiconductor device characterized by controlling the illuminance distribution on the reticle surface by using a filter with a diaphragm in which a diaphragm for limiting the emitted light flux and an optical element with a coating having a different transmittance depending on the incident angle are arranged to face each other. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5234100A JP3008744B2 (en) | 1993-08-26 | 1993-08-26 | Projection exposure apparatus and semiconductor device manufacturing method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5234100A JP3008744B2 (en) | 1993-08-26 | 1993-08-26 | Projection exposure apparatus and semiconductor device manufacturing method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0766121A true JPH0766121A (en) | 1995-03-10 |
JP3008744B2 JP3008744B2 (en) | 2000-02-14 |
Family
ID=16965630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5234100A Expired - Fee Related JP3008744B2 (en) | 1993-08-26 | 1993-08-26 | Projection exposure apparatus and semiconductor device manufacturing method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3008744B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09127418A (en) * | 1995-10-27 | 1997-05-16 | Nikon Corp | Illumination optical system |
KR19990083636A (en) * | 1998-04-30 | 1999-11-25 | 미다라이 후지오 | Projection exposure apparatus and device manufacturing method using the same |
KR100727700B1 (en) * | 2005-12-27 | 2007-06-13 | 동부일렉트로닉스 주식회사 | Illumination system of stepper for semiconductor manufacturing |
JP2010157650A (en) * | 2008-12-30 | 2010-07-15 | Nikon Corp | Correction unit, illumination optical system, exposure apparatus, and method of manufacturing device |
JP2010157649A (en) * | 2008-12-30 | 2010-07-15 | Nikon Corp | Correction unit, illumination optical system, aligner, and device manufacturing method |
JP2011187989A (en) * | 2011-06-11 | 2011-09-22 | Nikon Corp | Illumination optical device, method of adjusting illumination optical device, exposure device, and exposure method |
JP5158439B2 (en) * | 2006-04-17 | 2013-03-06 | 株式会社ニコン | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9235133B2 (en) | 2004-08-17 | 2016-01-12 | Nikon Corporation | Lighting optical device, regulation method for lighting optical device, exposure system, and exposure method |
-
1993
- 1993-08-26 JP JP5234100A patent/JP3008744B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09127418A (en) * | 1995-10-27 | 1997-05-16 | Nikon Corp | Illumination optical system |
KR19990083636A (en) * | 1998-04-30 | 1999-11-25 | 미다라이 후지오 | Projection exposure apparatus and device manufacturing method using the same |
US9235133B2 (en) | 2004-08-17 | 2016-01-12 | Nikon Corporation | Lighting optical device, regulation method for lighting optical device, exposure system, and exposure method |
KR100727700B1 (en) * | 2005-12-27 | 2007-06-13 | 동부일렉트로닉스 주식회사 | Illumination system of stepper for semiconductor manufacturing |
JP5158439B2 (en) * | 2006-04-17 | 2013-03-06 | 株式会社ニコン | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9195069B2 (en) | 2006-04-17 | 2015-11-24 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
JP2010157650A (en) * | 2008-12-30 | 2010-07-15 | Nikon Corp | Correction unit, illumination optical system, exposure apparatus, and method of manufacturing device |
JP2010157649A (en) * | 2008-12-30 | 2010-07-15 | Nikon Corp | Correction unit, illumination optical system, aligner, and device manufacturing method |
JP2011187989A (en) * | 2011-06-11 | 2011-09-22 | Nikon Corp | Illumination optical device, method of adjusting illumination optical device, exposure device, and exposure method |
Also Published As
Publication number | Publication date |
---|---|
JP3008744B2 (en) | 2000-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3259657B2 (en) | Projection exposure apparatus and device manufacturing method using the same | |
JP3232473B2 (en) | Projection exposure apparatus and device manufacturing method using the same | |
JP3631094B2 (en) | Projection exposure apparatus and device manufacturing method | |
JP4545874B2 (en) | Illumination optical system, exposure apparatus provided with the illumination optical system, and device manufacturing method using the exposure apparatus | |
JP3610175B2 (en) | Projection exposure apparatus and semiconductor device manufacturing method using the same | |
EP1293834B1 (en) | Illumination apparatus | |
JP2002359176A (en) | Luminaire, illumination control method, aligner, device and manufacturing method thereof | |
JP3057998B2 (en) | Illumination device and projection exposure apparatus using the same | |
JP3817365B2 (en) | Projection exposure apparatus and device manufacturing method using the same | |
JP3599629B2 (en) | Illumination optical system and exposure apparatus using the illumination optical system | |
JPH09219358A (en) | Aligner, and device manufacturing method using the same | |
JP3200244B2 (en) | Scanning exposure equipment | |
TW200839460A (en) | Exposure apparatus and semiconductor device fabrication method | |
JP2002217085A (en) | Illumination system and projection aligner using it | |
JP3008744B2 (en) | Projection exposure apparatus and semiconductor device manufacturing method using the same | |
JP2004055856A (en) | Lighting device, manufacturing method for exposure device and for device utilizing the same | |
JP4545854B2 (en) | Projection exposure equipment | |
JP2008124308A (en) | Exposure method and exposure apparatus, and device manufacturing method using the same | |
JP2000114164A (en) | Scanning projection aligner and manufacture of device using the same | |
JP2005150174A (en) | Illumination optical system and exposure system using it | |
JPH0936026A (en) | Projection aligner and manufacturing method of semiconductor device using the same apparatus | |
JPH0729816A (en) | Projection aligner and fabrication of semiconductor element employing it | |
JP3376043B2 (en) | Illumination device and projection exposure apparatus using the same | |
JP2005310942A (en) | Aligner, exposure method, and device manufacturing method using it | |
JP3571945B2 (en) | Illumination apparatus and projection exposure apparatus using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081203 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091203 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091203 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101203 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111203 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121203 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |