JPH10206714A - Lens moving device - Google Patents

Lens moving device

Info

Publication number
JPH10206714A
JPH10206714A JP1960197A JP1960197A JPH10206714A JP H10206714 A JPH10206714 A JP H10206714A JP 1960197 A JP1960197 A JP 1960197A JP 1960197 A JP1960197 A JP 1960197A JP H10206714 A JPH10206714 A JP H10206714A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
axis
direction
surface
means
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1960197A
Other languages
Japanese (ja)
Inventor
Eiji Osanai
英司 小山内
Original Assignee
Canon Inc
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Exposure apparatus for microlithography
    • G03F7/708Construction of apparatus, e.g. environment, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals, windows for passing light in- and out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports

Abstract

PROBLEM TO BE SOLVED: To make an inclinable angle large, to make bearing rigidity high in a radial direction, and to prolong stroke in an optical axis direction so as to improve positioning accuracy by supporting the guide surface of a lens holding board by means of a static pressure bearing means in a non-contact state, and respectively and individually supporting driving means by means of a base board. SOLUTION: The inside peripheral surface of a fixing member 2 and the outside peripheral surface being the guide surface of the lens holding board 3 are supported in the non-contact state each other by the static pressure or pressure fluid jetted from a porous pad 7 being an annular porous drawing type static pressure bearing means held by the inside peripheral surface, and a lens 4 can freely reciprocate along the axis (Z axis) of the member 2 and the guiding member 3. By making the size of the pad 7 in the Z-axis direction small, the allowable value of the inclination angle to the Z axis can be made large. A Z linear motor is provided with rotors 51a to 51c and stators 52a to 52c, and disposed outside the member 2 in a peripheral direction at an equal interval; and the rotors 51a to 51c are driven in the Z axis direction in accordance with supplied current amount.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、半導体リソグラフィに用いる投影露光装置、各種精密加工機あるいは各種精密測定器等においてレンズを位置決めするためのレンズ移動装置に関するものである。 The present invention relates to a projection exposure apparatus used in semiconductor lithography, to a lens moving device for positioning the various precision processing machine or a lens in various precision measuring instruments and the like.

【0002】 [0002]

【従来の技術】半導体露光装置の投影レンズの倍率補正手段として、レンズ鏡筒にレンズ移動装置を組み込んだ機構については特公昭62−032613号に記載されている。 As the magnification correcting means of the projection lens of a semiconductor exposure apparatus is described in JP-B 62-032613 for incorporating mechanism of the lens moving device in the lens barrel. ここに記載されたレンズ移動装置は、駆動案内としての静圧空気軸受と、駆動アクチュエータとしての供給空気圧力を制御した静圧空気軸受、電歪素子および磁歪素子、ダイヤフラム等とで構成されている。 Lenses moving device described herein, the aerostatic bearing of the drive guide, hydrostatic air bearings to control the supply air pressure as a drive actuator, an electrostrictive element and the magnetostrictive element, and a diaphragm or the like .

【0003】また、特開平06−226570号には、 [0003] In addition, Japanese Unexamined Patent Publication No. 06-226570,
静圧軸受け手段で支持された楔形状の入力片を用いた変位縮小機構について記載されている。 Have been described for the displacement reducing mechanism using the input piece supported wedge-shaped in hydrostatic bearing means.

【0004】 [0004]

【発明が解決しようとする課題】しかしながら、上記従来例において、特公昭62−032613号に記載されている従来のレンズ移動装置は、レンズ光軸から傾斜させるためにレンズの直径方向の両端間で約1mm程度の駆動ストローク差を必要とする場合、原理的に実施不可能であったり、また、剛性が非常に弱くなる等の欠点があった。 [SUMMARY OF THE INVENTION However, in the conventional example described above, the conventional lens moving device described in JP-B 62-032613 is across the diameter direction of the lens in order to incline in the lens optical axis If you require drive stroke difference of about 1 mm, or a principle impracticable, also it has a disadvantage of such rigidity is very weak. また、特開平06−226570号に記載されているレンズ移動装置では、レンズ光軸方向に数mm程度の駆動ストロークを必要とする場合、レンズの位置決め分解能が粗くなったり、機構自体が大型化してしまう。 Further, in the lens movement device described in JP-A-06-226570, when you need a drive stroke of about several mm in the lens optical axis direction, may become coarse positioning resolution of the lens, mechanism itself is large in size put away. さらに、レンズを移動させる方向をレンズ光軸方向に合わせるには各構成部品の形状寸法を高精度に保たなければならない、という欠点があった。 Furthermore, in aligning the direction of moving the lens to the lens optical axis direction must be kept geometry of the components with high accuracy, there is a drawback.

【0005】本発明は、上述の従来例における問題点に鑑みてなされたもので、傾斜可能な角度を比較的大きくてラジアル方向の軸受剛性が高く、かつ光軸方向の長ストロークが長くて位置決め精度の高いレンズ移動装置を提供することを目的とする。 [0005] The present invention has been made in view of the problems in the conventional example described above, high bearing stiffness of relatively large radial tiltable angle, and long stroke in the optical axis direction is longer positioned and to provide a highly accurate lens moving device.

【0006】 [0006]

【課題を解決するための手段および作用】上記の目的を達成するために本発明では、レンズ光路を遮らないように開口部を有する台盤と、台盤に立設された支持手段と、この支持手段の支持面に対向する案内面を有するレンズ保持盤と、前記支持面と前記案内面を互に非接触に支持する静圧軸受手段と、前記レンズ保持盤を前記支持面に平行な軸に沿って移動させる駆動手段を有し、前記駆動手段が前記レンズ台盤に個別に支持されていることを特徴とする。 In the present invention in order to achieve SUMMARY and operation for solving] The above objects, and Taiban having an opening so as not to block the lens optical path, and a support means which is erected on the weighing table, this a lens holding plate having a guide surface facing the support surface of the support means, a hydrostatic bearing means for supporting said guide surface and said support surface each other in a non-contact, parallel to the lens holding plate on the support surface axis a driving means for moving along, said drive means is characterized by being individually supported on the lens base plate.

【0007】上記構成において、駆動手段によってレンズの光軸方向の位置決めを行なう。 [0007] In the above structure, to position the optical axis of the lens by the drive means. レンズ保持盤の案内面は静圧軸受け手段によって非接触に支持されており、 The guide surface of the lens holding plate is supported in a non-contact by the hydrostatic bearing means,
また、駆動手段はそれぞれ個別に台盤に支持されているため、駆動量を大きくすることができる。 Further, since the driving means is supported by individually Taiban respectively, it can be increased driving amount. 板バネ等の弾性部材を必要としないために、駆動量が大きくても案内面やレンズ保持盤が変形して、レンズ位置決め精度が低下する恐れがない。 In order not to require an elastic member such as a leaf spring, and even guide surfaces and the lens holding plate deformation drive amount is large, the lens positioning accuracy there is no fear of reduction. レンズ変形の恐れもない。 There is no fear of lens deformation. また、駆動手段がレンズ保持盤の周方向の異なる部位にそれぞれ連結された少なくとも3個の駆動装置を有すれば、各駆動装置の駆動量を変えることで、レンズ保持盤およびレンズの中心軸に垂直な平面に対する傾斜角度を調節することができる。 Also, if you have at least three drive devices driving means respectively connected in the peripheral direction different sites of the lens holding plate, the central axis that is, the lens retaining disc and lens for changing the driving amount of each drive unit it is possible to adjust the angle of inclination with respect to the vertical plane.

【0008】 [0008]

【実施例】以下、本発明の実施例を図面に基づいて説明する。 BRIEF DESCRIPTION OF THE PREFERRED embodiment of the present invention with reference to the drawings.

【0009】図1および図2は本発明の一実施例に係るレンズ移動装置の構成を示す。 [0009] Figures 1 and 2 show the configuration of a lens moving device according to an embodiment of the present invention. 図2は平面図であり、図1は図2におけるAーB断面図である。 Figure 2 is a plan view, FIG. 1 is a A-B cross-sectional view in FIG.

【0010】同図のレンズ移動装置は、装置全体を支持する環状の台盤1と、これに一体的に設けられた円筒状の支持手段である固定部材2と、その支持面である内周面に遊合する円筒状のレンズ保持盤3と、該レンズ保持盤3に保持されたレンズ4と、レンズ4を台盤1に対して接近、離間させる3個の駆動手段であるZリニアモータ5a〜5cと、レンズ4の台盤1に対する回転を規制する第2の支持手段(取り付け板15aおよび多孔質パッド17等)を有する。 [0010] FIG lens movement device, and Taiban first annular supporting the entire apparatus, a fixing member 2 is a cylindrical supporting means provided integrally thereto, its inner periphery a support surface a cylindrical lens holding plate 3 which loosely fitted on the surface, the lens 4 held on the lens holding plate 3, close to the lens 4 against Taiban 1, Z linear motors are three drive means to separate has a bodies 5a to 5c, a second support means for restricting the rotation for Taiban first lens 4 (mounting plate 15a and the porous pad 17, etc.). 固定部材2の内周面とレンズ保持盤3の案内面である外周面は、固定部材2の内周面に保持された環状の多孔質絞り型の静圧軸受手段である多孔質パッド7から噴出される加圧流体の静圧によって互に非接触に支持され、従って、レンズ4は、固定部材2 The outer peripheral surface is an inner circumferential surface and the guide surface of the lens holding plate 3 of the fixed member 2, the porous pad 7 which is a porous diaphragm type hydrostatic bearing means cyclic held on the inner peripheral surface of the fixed member 2 supported each other in a non-contact by the hydrostatic pressure of the ejected by the pressurized fluid, thus, the lens 4, the fixed member 2
と案内部材3の中心軸(以下「Z軸」という。)に沿って往復移動自在である。 With the center axis of the guide member 3 (hereinafter referred to as "Z-axis".) Is reciprocally movable along. また、多孔質パッド7の軸受間隙の許す範囲内において、Z軸に対して傾斜自在であり、多孔質パッド7のZ軸方向の寸法を小さくすることで、Z軸に対する傾斜角の許容値を大きくすることができる。 Furthermore, to the extent permitted by the bearing clearance of the porous pad 7 is inclinable with respect to the Z axis, by reducing the Z-axis direction dimension of the porous pad 7, the allowable value of the inclination angle with respect to the Z axis it can be increased. さらに、レンズ保持盤3、レンズ4の重量の大部分は台盤1とリニアモータ可動子51a〜51cの間に設けられた付勢手段であるベローズシリンダ8a〜8c Further, the bellows cylinder 8a~8c majority of the weight of the lens holding plate 3, lens 4 is a biasing means provided between the weighing table 1 and the linear motor movable element 51a~51c
への加圧流体の圧力によって支持される。 It is supported by the pressure of the pressurized fluid to the. 固定部材2は多孔質パッド7に加圧流体を供給する図示しない内部流路を有し、また、台盤1はベローズシリンダ8a〜8c The fixing member 2 has an internal flow path (not shown) for supplying pressurized fluid to the porous pad 7, also weighing table 1 bellows cylinder 8a~8c
に加圧流体を供給する図示しない内部流路を有する。 Having an internal flow path (not shown) for supplying pressurized fluid to the. なお、多孔質パッド7とレンズ保持盤3との間の間隔の寸法は7μm程度である。 The size of the gap between the porous pad 7 and the lens holding plate 3 is about 7 [mu] m.

【0011】Zリニアモータ5a〜5cは取り付け板1 [0011] Z linear motors 5a~5c mounting plate 1
5a〜15cを介してレンズ保持盤3に固設された可動子51a〜51cと台盤1に固設された固定子52a〜 The stator 52a~ which is fixed to the fixed been mover 51a~51c and Taiban 1 to the lens holding plate 3 through the 5a~15c
52cを備え、固定部材2の外側に周方向に等間隔で配設されている。 Includes a 52c, are arranged at equal intervals in the circumferential direction on the outside of the fixed member 2. 可動子51a〜51cは取り付け板15 Mover 51a~51c the mounting plate 15
a〜15cと一体である支持体16a〜16cに固着されたコイルであり、図示しない配線によって所定の駆動回路に接続され、該駆動回路から供給される電流量に応じてZ軸方向へ駆動される。 A coil secured to a~15c a support 16a~16c an integral, connected to a predetermined drive circuit by wires (not shown) is driven in the Z-axis direction according to the amount of current supplied from the driving circuit that. 各Zリニアモータ5a〜5 Each Z linear motor 5a~5
cの固定子52a〜52cは内面に永久磁石を有する筒状の枠体である。 The stator 52a~52c of c is a cylindrical frame having a permanent magnet on the inner surface. 各Zリニアモータ5a〜5cに供給される電流量が同じであれば、レンズ4はZ軸方向に移動し、各Zリニアモータ5a〜5cに供給される電流量を個別に変化させることによってレンズ4のZ軸に対する傾斜角度を変化させることができる。 If the amount of current the same to be supplied to the Z linear motor bodies 5a to 5c, a lens by lens 4 is moved in the Z axis direction, changing the amount of current supplied to the Z linear motor bodies 5a to 5c individually it is possible to change the inclination angle with respect to 4 in the Z-axis.

【0012】図2に示すように、取り付け板15a〜1 [0012] As shown in FIG. 2, the mounting plate 15a~1
5cは、固定部材2の切り欠き部18a〜18cに遊合している。 5c is in loosely fitted to the cutout portion 18a~18c of the fixed member 2. 取り付け板15aの側面と対向する固定部材2の切り欠き部18aの側面には、多孔質絞り型の静圧軸受手段である多孔質パッド17が設けられている。 The side surface of the fixing member 2 of the notched portion 18a for the side surface facing the mounting plate 15a, the porous pad 17 is provided a porous diaphragm type hydrostatic bearing means. 取り付け板15aは、その側面が案内面になっていて対向する一対の多孔質パッド17により非接触で支持される。 Mounting plate 15a, the side surface is supported in a non-contact manner by a pair of porous pads 17 facing they become guide surfaces. 従って、レンズ4はZ軸回りに回動することを規制されている。 Therefore, the lens 4 is restricted to rotation around the Z axis.

【0013】台盤1は各Zリニアモータ5a〜5cに隣接する第1の非接触型の変位センサ9a〜9cを有し、 [0013] weighing table 1 has a displacement sensor 9a~9c of the first non-contact adjacent each Z linear motors bodies 5a to 5c,
各変位センサ9a〜9cは取り付け板15a〜15cの図示下面に対向する検出端を有し、レンズ4のZ軸方向の位置の変化を検出する。 Each displacement sensor 9a~9c has a detection end which faces the illustrated lower surface of the mounting plate 15a to 15c, for detecting a change in the position of the Z-axis direction of the lens 4. 変位センサ9a〜9cの出力を前述の駆動回路にフィードバックすることにより、レンズ4の微動位置決めを自動的に行なうことができる。 By feeding the output of the displacement sensor 9a~9c the aforementioned driving circuit, the fine positioning of the lens 4 can be automatically performed.

【0014】本実施例は、Zリニアモータ5a〜5cがそれぞれ個別に台盤1上に支持されており、また、レンズ保持盤3と台盤1が非接触であるため、レンズ保持盤3の移動中に大きな振動が発生するおそれがない。 [0014] This embodiment, Z linear motors 5a~5c are supported on individual Taiban 1 respectively, In addition, since the lens holding plate 3 and Taiban 1 is a non-contact, the lens holding plate 3 large vibration during movement there is no possibility to occur. また、ベローズシリンダ8a〜8cによってレンズ保持盤3や保持されたレンズ4の重量の大部分を支えているため、Zリニアモータ5a〜5cの駆動力が小さくて済む。 Further, since the supporting most of the weight of the lens holding plate 3 and the held lens 4 by a bellows cylinder 8a to 8c, it requires only a small driving force of the Z linear motor bodies 5a to 5c.

【0015】なお、レンズの初期取り付け状態を調整するために、レンズ4のZ軸に対する傾斜角度を変化させた場合は、これに伴って多孔質パッド7の軸受間隙の寸法と、各Zリニアモータ5a〜5cのそれぞれの永久磁石とコイルの間隙寸法が変化するが、このような傾斜量は微量であるため、多孔質パッド7とレンズ保持盤3が接触したり、あるいはリニアモータの駆動量が著しく制限されるおそれはない。 [0015] In order to adjust the initial mounting state of the lens, when changing the inclination angle with respect to the Z axis of the lens 4, and the size of the bearing gap of the porous pad 7 Along with this, the Z linear motors gap size of each permanent magnet and the coil of 5a~5c changes but, since such amount of tilt is very small, or contact the porous pad 7 and the lens holding plate 3, or the driving of the linear motor there is no possibility to be severely limited. すなわち、通常は、リニアモータの最小間隙は1〜2mm程度であり、例えば、図3に示すように、多孔質パッド7の軸受面の直径をd、Z軸方向の寸法をw、軸受間隙の中心部の寸法をh0、軸受間隙の両端の寸法h1,h2としたとき、d=200m That is, normally, the minimum gap of the linear motor is about 1 to 2 mm, for example, as shown in FIG. 3, the diameter of the bearing surface of the porous pad 7 d, the dimensions of the Z-axis direction w, the bearing gap the dimensions of the center h0, when the dimensions h1, h2 of the two ends of the bearing gap, d = 200 meters
m、w=20mm、レンズ4の傾斜角度の微調節量αが3x10 ー4 radであれば、軸受間隙の寸法の変動量(h1−h2)/2は約3μmとなる(h0の変動量は無視できるほど小さい)が、前述のように、多孔質パッド7の間隙寸法h1,h2の初期設定値は7μm程度に設定されているため、上記のトラブルは発生しない。 m, w = 20mm, if fine adjustment of the inclination angle of the lens 4 alpha is a 3x10 over 4 rad, the fluctuation amount of the size of the bearing gap (h1-h2) / 2 is about 3 [mu] m (amount of variation of h0 is negligibly small) it is, as mentioned above, since the initial setting value of the gap dimensions h1, h2 of the porous pad 7 is set to about 7 [mu] m, the above problems do not occur. また、各リニアモータの可動ストロークは5mm程度まで可能である。 The movable stroke of the linear motors can be up to about 5 mm.

【0016】図4は第2の実施例を示すもので、本実施例は第1の実施例の環状の多孔質軸受7の代わりに、案内面が平面である多孔質軸受パッド27を複数枚対向するように設けた構成である。 [0016] Figure 4 shows a second embodiment, this embodiment is a plurality of sheets Alternatively, a porous bearing pad 27 guide surface is planar annular porous bearing 7 of the first embodiment it is a structure in which to face. 従って、図2の多孔質軸受パッド17のような他の支持手段を付加することなく、 Therefore, without adding other support means such as a porous bearing pad 17 of FIG. 2,
レンズ4はZ軸回りに回動することを規制される。 Lens 4 is restricted to rotation around the Z axis.

【0017】なお、第1および第2の実施例のZリニアモータの代わりに圧電素子や回転モータとネジまたは弾性ヒンジの組み合わせを用いることもできる。 [0017] It is also possible to use a combination of a piezoelectric element or rotary motor and a screw or elastic hinge instead of Z linear motors of the first and second embodiments.

【0018】 [0018]

【発明の効果】本発明のレンズ移動装置では、レンズ保持盤(静圧軸受)の傾斜角度方向のストロークを犠牲にすることなくラジアル方向の軸受剛性を向上させることができるために耐外乱特性が向上し、駆動量が大きく(長ストロークが可能)てもレンズの位置決め精度が低下するおそれがない。 [Effect of the Invention] In the lens moving device of the present invention, resistance to outer turbulence characteristics in order to be able to improve the bearing rigidity of the radial direction without sacrificing stroke of the tilt angle direction of the lens holding plate (hydrostatic bearing) is increased, the driving amount is large (long stroke can) lens positioning accuracy even there is no fear of reduction. 加えて、レンズを安定して支持し、クリーン度が高いためにレンズを汚染する恐れもない。 In addition, lenses stably support the, also no risk of contaminating the lens for high cleanliness. さらに、レンズ光軸の傾斜角度を調節し、レンズを移動させる方向をレンズ光軸方向に合わせることができるため、各構成部品の形状寸法や組み立て精度を緩くでき、コストが安くなる。 Further, by adjusting the inclination angle of the lens optical axis, since the direction of moving the lens can be matched to the lens optical axis direction, can loosely geometry and assembly accuracy of each component, the cost is cheaper.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 本発明の一実施例に係るレンズ移動装置の模式断面図である。 1 is a schematic cross-sectional view of the lens moving device according to an embodiment of the present invention.

【図2】 図1の装置の模式平面図である。 2 is a schematic plan view of the apparatus of FIG.

【図3】 図1の装置の一部分を拡大して示す拡大部分断面図である。 3 is an enlarged partial sectional view showing an enlarged portion of the apparatus of FIG.

【図4】 本発明の他の実施例に係るレンズ移動装置の模式平面図である。 It is a schematic plan view of a lens moving device according to another embodiment of the present invention; FIG.

【符号の説明】 1:台盤、 2:固定部材、 3:レンズ保持盤、 [Description of Reference Numerals] 1: weighing table, 2: fixing member, 3: lens holding plate,
4:レンズ、 5a〜5c:Zリニアモータ、 7,1 4: Lens, bodies 5a to 5c: Z linear motors, 7,1
7,27:多孔質パッド、8a〜8c:ベローズ、 9 7 and 27: a porous pad, 8a~8c: bellows, 9
a〜9c:変位センサ。 a~9c: displacement sensor.

Claims (5)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 レンズ光路を遮らないように開口部を有する台盤と、台盤に立設された支持手段と、該支持手段の支持面に対向する案内面を有するレンズ保持盤と、前記支持面と前記案内面を互に非接触に支持する静圧軸受手段と、前記レンズ保持盤を前記支持面に平行な軸に沿って移動させる駆動手段とを有し、前記駆動手段が前記台盤に個別に支持された複数個の駆動装置を備えていることを特徴とするレンズ移動装置。 And Taiban having an opening to claim 1] does not block the lens optical path and support means provided upright to the base plate, a lens retaining disc having a guide surface facing the support surface of said support means, said a static pressure bearing means for supporting said guide surface and the support surface each other in a non-contact, the lens holding plate and a driving means for moving along an axis parallel to the support surface, said platform said driving means lens moving device, characterized in that it comprises a plurality of driving devices that are individually supported on the board.
  2. 【請求項2】 前記案内面が前記レンズ保持盤と一体である円筒状の案内部材の内周面または外周面であり、前記レンズ保持盤の前記支持面に平行な軸まわりの回転を非接触に規制する第2の静圧軸受手段をさらに有することを特徴とする請求項1記載のレンズ移動装置。 Wherein a inner peripheral surface or an outer peripheral surface of said guide surface is integral with said lens holding plate cylindrical guide member, the non-contact rotation about an axis parallel to the supporting surface of the lens retaining disc lens moving device according to claim 1, further comprising a second hydrostatic bearing means for regulating the.
  3. 【請求項3】 前記静圧軸受手段が多孔質絞り型であることを特徴とする請求項1または2記載のレンズ移動装置。 Wherein said hydrostatic bearing means a lens moving device according to claim 1 or 2, wherein the porous diaphragm type.
  4. 【請求項4】 前記駆動手段が、レンズ保持盤の周方向の異なる部位にそれぞれ連結された少なくとも3個の駆動装置を有することを特徴とする請求項1ないし3のいずれか1項に記載のレンズ移動装置。 Wherein said drive means, according to any one of claims 1 to 3, characterized in that at least three drive devices are respectively connected in the peripheral direction different sites of the lens holding plate lens moving device.
  5. 【請求項5】 前記駆動手段がリニアモータを含むことを特徴とする請求項請求項1ないし4のいずれか1項に記載のレンズ移動装置。 Wherein said driving means is a lens moving device according to any one of claims claims 1 to 4, characterized in that it comprises a linear motor.
JP1960197A 1997-01-20 1997-01-20 Lens moving device Pending JPH10206714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1960197A JPH10206714A (en) 1997-01-20 1997-01-20 Lens moving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1960197A JPH10206714A (en) 1997-01-20 1997-01-20 Lens moving device

Publications (1)

Publication Number Publication Date
JPH10206714A true true JPH10206714A (en) 1998-08-07

Family

ID=12003743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1960197A Pending JPH10206714A (en) 1997-01-20 1997-01-20 Lens moving device

Country Status (1)

Country Link
JP (1) JPH10206714A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016993A1 (en) * 2000-08-18 2002-02-28 Nikon Corporation Optical element holding device
JP2002214504A (en) * 2001-01-19 2002-07-31 Canon Inc Optical device and photographing device
EP1318424A2 (en) * 2001-12-06 2003-06-11 Nikon Corporation Non-contacting holding device for an optical component
US6912094B2 (en) 2001-03-27 2005-06-28 Nikon Corporation Projection optical system, a projection exposure apparatus, and a projection exposure method
US7054079B2 (en) 2003-05-14 2006-05-30 Canon Kabushiki Kaisha Optical element holder, exposure apparatus, and device fabricating method
JP2008306216A (en) * 2004-02-27 2008-12-18 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
JP2009545146A (en) * 2006-07-24 2009-12-17 カール・ツァイス・エスエムティー・アーゲー How to correct or improve the imaging behavior of the optical device and an optical device
JP2010500770A (en) * 2006-08-16 2010-01-07 カール・ツァイス・エスエムティー・アーゲー Optical system for semiconductor lithography
JP4776551B2 (en) * 2004-02-20 2011-09-21 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection objective of a microlithographic projection exposure apparatus
JP2014239234A (en) * 2008-06-10 2014-12-18 カール・ツァイス・エスエムティー・ゲーエムベーハー Optical device that can adjust force action onto optical module
WO2015005018A1 (en) * 2013-07-10 2015-01-15 コニカミノルタ株式会社 Lens drive device and imaging device
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7154684B2 (en) 2000-08-18 2006-12-26 Nikon Corporation Optical element holding apparatus
US7420752B2 (en) 2000-08-18 2008-09-02 Nikon Corporation Holding apparatus
WO2002016993A1 (en) * 2000-08-18 2002-02-28 Nikon Corporation Optical element holding device
JP2002214504A (en) * 2001-01-19 2002-07-31 Canon Inc Optical device and photographing device
US6912094B2 (en) 2001-03-27 2005-06-28 Nikon Corporation Projection optical system, a projection exposure apparatus, and a projection exposure method
EP1318424A2 (en) * 2001-12-06 2003-06-11 Nikon Corporation Non-contacting holding device for an optical component
EP1318424A3 (en) * 2001-12-06 2005-05-04 Nikon Corporation Non-contacting holding device for an optical component
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US7054079B2 (en) 2003-05-14 2006-05-30 Canon Kabushiki Kaisha Optical element holder, exposure apparatus, and device fabricating method
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
JP4776551B2 (en) * 2004-02-20 2011-09-21 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection objective of a microlithographic projection exposure apparatus
JP2008306216A (en) * 2004-02-27 2008-12-18 Asml Netherlands Bv Lithographic apparatus and method of manufacturing device
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2009545146A (en) * 2006-07-24 2009-12-17 カール・ツァイス・エスエムティー・アーゲー How to correct or improve the imaging behavior of the optical device and an optical device
US9383544B2 (en) 2006-08-16 2016-07-05 Carl Zeiss Smt Gmbh Optical system for semiconductor lithography
JP2010500770A (en) * 2006-08-16 2010-01-07 カール・ツァイス・エスエムティー・アーゲー Optical system for semiconductor lithography
US8269947B2 (en) 2006-08-16 2012-09-18 Carl Zeiss Smt Gmbh Optical system for semiconductor lithography
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2014239234A (en) * 2008-06-10 2014-12-18 カール・ツァイス・エスエムティー・ゲーエムベーハー Optical device that can adjust force action onto optical module
US9766549B2 (en) 2008-06-10 2017-09-19 Carl Zeiss Smt Gmbh Optical apparatus with adjustable action of force on an optical module
WO2015005018A1 (en) * 2013-07-10 2015-01-15 コニカミノルタ株式会社 Lens drive device and imaging device

Similar Documents

Publication Publication Date Title
US5446519A (en) Stage device
US6271640B1 (en) Exposure apparatus having reaction frame
US7301607B2 (en) Wafer table for immersion lithography
US5858587A (en) Positioning system and method and apparatus for device manufacture
US6397008B2 (en) Driving system with elastically supporting units
US5610686A (en) Exposure apparatus including an antivibration control system
US6239924B1 (en) Kinematic lens mounting with distributed support and radial flexure
US20080068568A1 (en) Projection Optical Device And Exposure Apparatus
US6363809B1 (en) Precision scanning apparatus and method with fixed and movable guide members
US6842277B2 (en) Deformable mirror with high-bandwidth servo for rigid body control
US20020117109A1 (en) Multiple stage, stage assembly having independent reaction force transfer
US6683433B2 (en) Exposure apparatus and method utilizing isolated reaction frame
US5864389A (en) Stage apparatus and exposure apparatus and device producing method using the same
US6353271B1 (en) Extreme-UV scanning wafer and reticle stages
US6473159B1 (en) Anti-vibration system in exposure apparatus
US6870632B2 (en) Apparatus for mounting an optical element in an optical system
US7365513B1 (en) Positioning device having dynamically isolated frame, and lithographic device provided with such a positioning device
US5839324A (en) Stage apparatus and exposure apparatus provided with the stage apparatus
US5701041A (en) Weight supporting apparatus
US6255796B1 (en) Electromagnetic alignment and scanning apparatus
US6252314B1 (en) Linear motor and stage system, and scanning exposure apparatus using the same
US20030098964A1 (en) System and method for holding a device with minimal deformation
US5142172A (en) Rectilinear-motion driving device for voice coil motor
US6927838B2 (en) Multiple stage, stage assembly having independent stage bases
US6777833B1 (en) Magnetic levitation stage apparatus and method