JP3246615B2 - Illumination optical device, exposure apparatus, and exposure method - Google Patents

Illumination optical device, exposure apparatus, and exposure method

Info

Publication number
JP3246615B2
JP3246615B2 JP21978292A JP21978292A JP3246615B2 JP 3246615 B2 JP3246615 B2 JP 3246615B2 JP 21978292 A JP21978292 A JP 21978292A JP 21978292 A JP21978292 A JP 21978292A JP 3246615 B2 JP3246615 B2 JP 3246615B2
Authority
JP
Japan
Prior art keywords
light
illumination
reticle
optical system
illumination optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21978292A
Other languages
Japanese (ja)
Other versions
JPH0653120A (en
Inventor
眞人 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP21978292A priority Critical patent/JP3246615B2/en
Publication of JPH0653120A publication Critical patent/JPH0653120A/en
Application granted granted Critical
Publication of JP3246615B2 publication Critical patent/JP3246615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば半導体素子又は
液晶表示素子等を製造する際に使用される投影露光装置
の照明系に適用して好適な照明光学装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an illumination optical apparatus suitable for application to an illumination system of a projection exposure apparatus used for manufacturing, for example, a semiconductor element or a liquid crystal display element.

【0002】[0002]

【従来の技術】半導体素子又は液晶表示素子等をフォト
リソグラフィー技術を用いて製造する際に、フォトマス
ク又はレチクル(以下、「レチクル」と総称する)のパ
ターンを感光基板上に転写する投影露光装置が使用され
ている。斯かる投影露光装置においては、半導体素子等
の高集積化に伴い、より微細なパターンを高解像度で焼
き付けることが要求されている。これを実現する方法と
して、レチクルのパターン領域の異なる透明部からの光
の干渉効果を利用する位相シフトレチクル法が特公昭6
2−50811号公報に開示されている。この方法をラ
イン・アンド・スペース像に応用すると基本的に0次回
折光がなくなり、±1次回折光のみによる結像となり、
同一の開口数の投影光学系でも従来のレチクルの場合よ
りも微細なライン・アンド・スペース像を高い解像度で
焼き付けることができる。
2. Description of the Related Art A projection exposure apparatus for transferring a pattern of a photomask or a reticle (hereinafter, collectively referred to as a "reticle") onto a photosensitive substrate when a semiconductor element or a liquid crystal display element is manufactured by photolithography. Is used. In such a projection exposure apparatus, it is required to print a finer pattern at a high resolution with an increase in integration of semiconductor elements and the like. As a method for realizing this, a phase shift reticle method utilizing the interference effect of light from transparent portions having different reticle pattern areas is disclosed in Japanese Patent Publication No. Sho.
It is disclosed in Japanese Patent Publication No. 2-50811. When this method is applied to a line-and-space image, the 0th-order diffracted light basically disappears, and an image is formed by only ± 1st-order diffracted light.
Even with a projection optical system having the same numerical aperture, a finer line and space image can be printed at a higher resolution than in the case of a conventional reticle.

【0003】また、より解像度を高めるための別のアプ
ローチとして、照明光学系を工夫して、微細なパターン
を高い解像度で且つ比較的深い焦点深度で焼き付ける方
法が本出願人により提案されている(例えば1992年
3月応用物理学関係連合講演会予稿集30−a−NA−
3,4参照)。以下ではその方法を「複数傾斜照明法」
と呼び、図8を参照してその方法につき説明する。先ず
図8(a)は複数傾斜照明法を適用した照明光学系にお
ける2次光源部等の等価光源部10を示し、この図8
(a)において、直交座標系を形成するx軸及びy軸に
対してそれぞれ45°で交差する軸x′及びこの軸x′
とy軸に関して対称な軸に沿って4個の小光源11A〜
11Dが配置されている。この小光源11A〜11Dの
配列は、転写対象とするレチクルのパターンが主にx軸
に平行な長いエッジ又はy軸に平行な長いエッジを有す
るライン・アンド・スペースパターンの場合に適してい
る。
As another approach to further increase the resolution, the present applicant has proposed a method of printing a fine pattern with a high resolution and a relatively deep depth of focus by devising an illumination optical system ( For example, March 1992, Applied Physics Alliance Lecture Meeting 30-a-NA-
See 3, 4). In the following, the method is referred to as the "multi-tilt illumination method."
The method will be described with reference to FIG. First, FIG. 8A shows an equivalent light source unit 10 such as a secondary light source unit in an illumination optical system to which the multiple tilt illumination method is applied.
In (a), an axis x 'that intersects the x-axis and the y-axis forming the rectangular coordinate system at 45 °, respectively, and this axis x'
And four small light sources 11 </ b> A to 11 </ b> A along an axis symmetric with respect to the y-axis.
11D is arranged. The arrangement of the small light sources 11A to 11D is suitable when the pattern of the reticle to be transferred is a line-and-space pattern mainly having a long edge parallel to the x-axis or a long edge parallel to the y-axis.

【0004】図8(b)はその図8(a)の等価光源部
10を光源とする投影露光装置の概略構成を示し、この
図8(b)において、等価光源部10の小光源11Aか
らの照明光の主光線15Aが図示省略したコンデンサー
レンズ系を介してレチクル12に光軸AXに対して斜め
に照射される。等価光源部10は投影光学系13の瞳面
(入射瞳面)10Aと共役であり、この瞳面には開口絞
り13aが設けられている。そのレチクル12からは0
次回折光(これも符号15Aで表す)及び1次回折光1
6Aが光軸AXに対してほぼ対称に射出され、これら0
次回折光15A及び1次回折光16Aは投影光学系13
を経てをほぼ同一の入射角θで感光基板としてのウエハ
14に入射する。この場合、0次回折光15Aと1次回
折光とが光軸AX対して対称に瞳の周縁近くを通過する
ため、投影光学系13の性能限界までの解像度が得られ
る。
FIG. 8B shows a schematic configuration of a projection exposure apparatus using the equivalent light source unit 10 of FIG. 8A as a light source. In FIG. Is irradiated on the reticle 12 obliquely with respect to the optical axis AX via a condenser lens system (not shown). The equivalent light source unit 10 is conjugate with a pupil plane (entrance pupil plane) 10A of the projection optical system 13, and an aperture stop 13a is provided on this pupil plane. 0 from that reticle 12
Order diffracted light (also denoted by reference numeral 15A) and first order diffracted light 1
6A is emitted almost symmetrically with respect to the optical axis AX.
The first order diffracted light 15A and the first order diffracted light 16A
After that, the light enters the wafer 14 as a photosensitive substrate at substantially the same incident angle θ. In this case, since the 0th-order diffracted light 15A and the 1st-order diffracted light pass near the periphery of the pupil symmetrically with respect to the optical axis AX, the resolution up to the performance limit of the projection optical system 13 can be obtained.

【0005】また、従来のように0次回折光がウエハ1
4に垂直に入射する方式では、ウエハ14のデフォーカ
ス量に対する0次回折光の波面収差と他の回折光の波面
収差とが大きく異なることから、焦点深度が浅くなって
いる。これに対して、図8(b)の構成では、0次回折
光と1次回折光とが等しい入射角でウエハ14に入射す
るため、ウエハ14が投影光学系13の焦点位置の前後
にあるときの0次回折光と1次回折光との波面収差は相
等しく、焦点深度が深くなっている。
[0005] Further, as in the conventional case, the 0th-order diffracted light is not reflected on the wafer 1.
In the method of vertically incident on the beam 4, the depth of focus is shallow because the wavefront aberration of the 0th-order diffracted light and the wavefront aberration of the other diffracted lights with respect to the defocus amount of the wafer 14 are greatly different. On the other hand, in the configuration shown in FIG. 8B, the 0th-order diffracted light and the 1st-order diffracted light enter the wafer 14 at the same incident angle, so that the wafer 14 is located before and after the focal position of the projection optical system 13. Wavefront aberrations of the 0th-order diffracted light and the 1st-order diffracted light are equal, and the depth of focus is deep.

【0006】[0006]

【発明が解決しようとする課題】その複数傾斜照明法で
は、x軸方向又はy軸方向のライン・アンド・スペース
パターン8であれば有効である。これに対して、図9に
示すように、長いエッジがx軸又はy軸に対して45゜
の方向のライン・アンド・スペースパターン9の場合
は、10Aが投影光学系の瞳であるとすると、図8
(a)の4つの小光源11A〜11Dのうちの2つの小
光源11B及び11Dからの回折光は、0次回折光15
B及び15Dのみが投影レンズの瞳10Aを通過し、±
1次回折光16B及び16Dは瞳10Aを通過しないた
め、ウエハ14上でパターンを形成することはなく、単
にウエハ14を一様に照明することになる。その結果、
ウエハ14上でのパターンのコントラストが低下するこ
ととなる。
In the multiple oblique illumination method, a line and space pattern 8 in the x-axis direction or the y-axis direction is effective. On the other hand, as shown in FIG. 9, when the long edge is a line and space pattern 9 in a direction of 45 ° with respect to the x-axis or the y-axis, if 10A is the pupil of the projection optical system, , FIG.
The diffracted light from the two small light sources 11B and 11D among the four small light sources 11A to 11D in FIG.
Only B and 15D pass through the pupil 10A of the projection lens, ±
Since the first-order diffracted lights 16B and 16D do not pass through the pupil 10A, no pattern is formed on the wafer 14, and the wafer 14 is simply illuminated uniformly. as a result,
The contrast of the pattern on the wafer 14 will be reduced.

【0007】このことを簡単な数値計算で示す。0次回
折光の強さに対する±1次回折光の強さをaとし、各小
光源11A〜11Dは点光源とみなす。このとき、y軸
方向に長いライン・アンド・スペースパターンの場合の
x軸上の像強度分布I(x)は各小光源による像強度分
布の和として次のようになる。
This will be shown by simple numerical calculations. The intensity of the ± 1st-order diffracted light with respect to the intensity of the 0th-order diffracted light is a, and the small light sources 11A to 11D are regarded as point light sources. At this time, the image intensity distribution I (x) on the x-axis in the case of the line and space pattern long in the y-axis direction is as follows as the sum of the image intensity distributions of the respective small light sources.

【数1】 I(x)=4{1+a2 +2a・cos[(4π/λ)(sinθ)x]}I (x) = 4 {1 + a 2 + 2a · cos [(4π / λ) (sin θ) x]}

【0008】ここで、入射角θは、図8(b)に示すよ
うに、0次回折光又は±1次回折光が光軸AXとなす角
である。これに対して、x軸又はy軸に45゜で交差す
る方向に長いライン・アンド・スペースパターンの場合
に、45゜方向の座標軸をx′軸とすると、強度分布I
(x′)は次のようになる。
Here, the incident angle θ is an angle formed by the 0th-order diffracted light or ± 1st-order diffracted light with the optical axis AX, as shown in FIG. On the other hand, in the case of a line-and-space pattern long in a direction intersecting the x-axis or the y-axis at 45 °, if the coordinate axis in the 45 ° direction is the x′-axis, the intensity distribution I
(X ') is as follows.

【数2】 I(x′)=2{1+a2 +2a・cos[(4π/λ)(sinθ)x]} +2{1} =4{1+(a2 /2)+a・cos[(4π/λ)(sinθ)x]}[Number 2] I (x ') = 2 { 1 + a 2 + 2a · cos [(4π / λ) (sinθ) x]} +2 {1} = 4 {1+ (a 2/2) + a · cos [(4π / λ) (sin θ) x]}

【0009】(数1)及び(数2)から各々の強度分布
のコントラストCx及びCx′を求めると、次のように
なる。
When the contrasts Cx and Cx 'of the respective intensity distributions are obtained from (Equation 1) and (Equation 2), the following is obtained.

【数3】 Cx=2a/(1+a2 ),Cx′=a/(1+a2/2 )[Number 3] Cx = 2a / (1 + a 2), Cx '= a / (1 + a 2/2)

【0010】この場合、次式が成立する。 Cx−Cx′=a/{(1+a2 )(1+a2 /2)}>0 従って、次式が成立する。In this case, the following equation is established. Cx-Cx '= a / { (1 + a 2) (1 + a 2/2)}> 0 Therefore, the following equation is established.

【数4】Cx>Cx′## EQU4 ## Cx> Cx '

【0011】従って、x軸に45゜で交差する方向に長
いパターンのコントラストの低下が示される。例えばラ
インとスペースとの幅が等しい場合には、±1次回折光
の強さaは2/πとなるので、次式のようになる。 Cx=0.906,Cx′=0.529
Accordingly, a decrease in the contrast of a pattern long in a direction crossing the x-axis at 45 ° is shown. For example, when the width of the line is equal to the width of the space, the intensity a of the ± 1st-order diffracted light is 2 / π, so that the following expression is obtained. Cx = 0.006, Cx ′ = 0.529

【0012】なお、上述の説明では複数傾斜照明法の場
合を例として説明したが、例えば輪帯照明法等を使用し
た場合でも、像のコントラストをより改善することが望
まれている。本発明は斯かる点に鑑み、光軸に対して傾
斜した照明光を積極的に利用してレチクル等を照明する
照明光学装置及びそのような照明光学装置を使用する露
光方法において、そのレチクル等のパターンがその照明
光の入射面に垂直な方向を長手方向とするライン・アン
ド・スペースパターンであるような場合に、投影光学系
でそのレチクル等のパターンを投影したときに照明光学
装置側の工夫でその像のコントラストを改善できるよう
にすることを目的とする。
In the above description, the case of the multiple oblique illumination method has been described as an example. However, for example, even when the annular illumination method or the like is used, it is desired to further improve the image contrast. In view of the above, the present invention provides an illumination optical device that illuminates a reticle or the like by positively utilizing illumination light inclined with respect to an optical axis, and an exposure device using such an illumination optical device.
In the optical method , when the pattern of the reticle or the like is a line-and-space pattern whose longitudinal direction is perpendicular to the incident surface of the illumination light, the pattern of the reticle or the like is projected by the projection optical system. It is an object of the present invention to sometimes improve the contrast of the image by devising the illumination optical device side.

【0013】[0013]

【課題を解決するための手段】本発明による第1の照明
光学装置は、例えば図3に示すように、照明光学系から
の照明光によって物体(12)上の所定領域を均一に照
明する照明光学装置において、その照明光学系は、その
所定領域を斜め方向から照明する傾斜光(27B,27
C)を形成する傾斜光形成手段(24)と、その所定領
域を斜め方向から照明する(傾斜照明する)その傾斜光
を変換して、この傾斜光の入射面に対し直交した方向に
直線偏光する照明光を形成する偏光手段(25B,25
C)とを有するものである。
A first illumination optical device according to the present invention, as shown in FIG. 3, for example, illuminates a predetermined area on an object (12) uniformly with illumination light from an illumination optical system. In the optical device, the illumination optical system includes inclined light (27B, 27B) that illuminates a predetermined area in an oblique direction.
C), and a predetermined area thereof.
Pass the illuminating obliquely (inclined illumination) and converts the inclined light, polarizing means for forming an illumination light linearly polarized in the direction orthogonal to the incident surface of the inclined light (25B, 25
C).

【0014】また、第2の照明光学装置は、例えば図3
に示すように、照明光を供給する光源(20)とこの照
明光で物体(12)上の所定領域を均一に照明する集光
光学系(26)とを有する照明光学装置において、その
照明光によってその集光光学系の光軸に対し偏心した2
次光源を形成してその所定領域を斜め方向から照明する
傾斜光を形成する傾斜光形成手段(24)をその光源
(20)とその集光光学系(26)との間に配置し、
の所定領域を斜め方向から照明する(傾斜照明する)そ
傾斜光を変換して、この傾斜光の入射面に対し直交し
た方向に直線偏光する照明光を形成する偏光手段(25
B,25C)をその傾斜光形成手段(24)とその集光
光学系(26)との間に配置したものである。この場
合、その傾斜光形成手段は、凹部を有する第1多面体プ
リズム(32)と凸部を有する第2多面体プリズム(3
3)とを有するものでもよい。また、本発明の露光装置
は、その物体としてのレチクルを照明する本発明の照明
光学装置と、そのレチクルのパターン像を感光基板に投
影する投影光学系(13)とを有するものである。
た、本発明による露光方法は、本発明の照明光学装置を
用いてその物体としてのレチクルを照明し、そのレチク
ルのパターンを転写するものである。
The second illumination optical device is, for example, as shown in FIG.
As shown in (1), in an illumination optical device having a light source (20) for supplying illumination light and a condensing optical system (26) for uniformly illuminating a predetermined area on an object (12) with the illumination light, 2 decentered with respect to the optical axis of the focusing optical system
Form a secondary light source and illuminate a predetermined area from an oblique direction
Inclined light forming means for forming a slope light (24) is arranged between the light source (20) and its condensing optical system (26), its
To illuminate a predetermined area in an oblique direction (oblique illumination)
Converts the inclined light, polarizing means for forming an illumination light linearly polarized in the direction orthogonal to the incident surface of the inclined light (25
B, 25C) are arranged between the inclined light forming means (24) and the condensing optical system (26). This place
In this case, the inclined light forming means includes a first polyhedron plate having a concave portion.
Rhythm (32) and second polyhedral prism (3
3). Further, the exposure apparatus of the present invention
Is a lighting device of the present invention for illuminating a reticle as the object.
The optical device and its reticle pattern image are projected onto the photosensitive substrate.
And a projection optical system (13) for shadowing. An exposure method according to the present invention illuminates a reticle as an object using the illumination optical device of the present invention, and transfers a pattern of the reticle.

【0015】[0015]

【作用】以下、本発明の原理につき偏心した4個の小光
源からの照明光で物体を照明する複数傾斜照明法を例に
とって説明する。先ず、本発明の第1の照明光学装置に
よれば、例えば図3に示すように、物体(12)の所定
領域を斜め方向から照明する傾斜光(27B,27C)
が形成され、これら傾斜光(27B,27C)はそれぞ
れ物体(12)に対する入射面(紙面)に垂直な方向に
直線偏光(入射面に垂直な方向に電気ベクトルが振動)
している。なお、直線偏光とは、光波の電気ベクトルの
振動方向が一平面内にある状態を意味し、電気ベクトル
の振動方向を直線偏光の方向と定義する。また、入射面
とは、光が媒質の境界面に達した時に、その点での面の
法線と光の入射方向とを含む面の事と定義する。その図
3の照明光学装置を簡略化すると図1のようになる。
The principle of the present invention will be described below with reference to an example of a multiple oblique illumination method for illuminating an object with illumination light from four decentered small light sources. First, according to the first illumination optical device of the present invention, for example, as shown in FIG. 3, inclined light (27B, 27C) for illuminating a predetermined area of the object (12) from an oblique direction.
Are formed, and these inclined lights (27B, 27C) are linearly polarized in the direction perpendicular to the incident surface (paper surface) with respect to the object (12) (the electric vector oscillates in the direction perpendicular to the incident surface).
are doing. Note that the linearly polarized light means a state in which the vibration direction of the electric vector of the light wave is within one plane, and the vibration direction of the electric vector is defined as the direction of the linearly polarized light. The term “incident surface” is defined as a surface that includes, when light reaches a boundary surface of a medium, a normal line of the surface at that point and a light incident direction. FIG. 1 is a simplified view of the illumination optical device shown in FIG.

【0016】図1(a)は図3の照明光学装置の2次光
源部等の等価光源部10を示し、この図1(a)におい
て、直交座標系を形成するx軸及びy軸に対してそれぞ
れ45°で交差する軸x′及びこの軸x′とy軸に関し
て対称な軸に沿って4個の小光源11A〜11Dが配置
されている。
FIG. 1A shows an equivalent light source unit 10 such as a secondary light source unit of the illumination optical apparatus shown in FIG. 3. In FIG. 1A, an x-axis and a y-axis forming a rectangular coordinate system are shown. The four small light sources 11A to 11D are arranged along an axis x 'which intersects at 45 ° and an axis symmetrical with respect to the axis x' and the y axis.

【0017】図1(b)はその図3の照明光学装置を用
いた投影露光装置の概略構成を示し、この図1(b)に
おいて、等価光源部10は図1(a)の等価光源部と等
しい。その等価光源部10の小光源11Aからの露光光
の主光線15Aが図示省略したコンデンサーレンズ系を
介してレチクル12に光軸AXに対して斜めに照射され
る。その主光線15Aが図3の傾斜光(27B,27
C)に対応する。その主光線15Aの入射面は図1
(b)の紙面に平行であるため、本発明によれば、その
主光線15Aは図1(b)の紙面に垂直な方向に直線偏
光(紙面に垂直な方向に電気ベクトルが振動)してレチ
クル12に入射する。同様に、図1(a)において、各
小光源11B〜11Dからの光は、図1(a)の矢印の
方向即ち、レチクル12に対する入射面に垂直な方向に
直線偏光して図1(b)のレチクル12に入射する。
FIG. 1B shows a schematic configuration of a projection exposure apparatus using the illumination optical device shown in FIG. 3, and in FIG. 1B, an equivalent light source unit 10 shown in FIG. Is equal to A principal ray 15A of the exposure light from the small light source 11A of the equivalent light source unit 10 is applied to the reticle 12 obliquely with respect to the optical axis AX via a condenser lens system not shown. The principal ray 15A is inclined light (27B, 27B) shown in FIG.
Corresponds to C). The incident surface of the principal ray 15A is shown in FIG.
According to the present invention, the principal ray 15A is linearly polarized in a direction perpendicular to the plane of FIG. 1B (the electric vector oscillates in a direction perpendicular to the plane of FIG. 1B). The light enters the reticle 12. Similarly, in FIG. 1A, light from each of the small light sources 11B to 11D is linearly polarized in a direction indicated by an arrow in FIG. )).

【0018】また、レチクル12からの0次回折光(こ
れをも符号15Aで表す)及び1次回折光16Aは投影
光学系13を経てウエハ14上に入射する。先ず、その
レチクル12に形成されたパターンが、従来例に好適な
パターンである図1(a)のx軸又はy軸に平行な方向
に長いライン・アンド・スペースパターンであるとする
と、そのパターンによりx方向又はy方向に回折された
照明光は、偏光方向がそのパターンに対して45゜方向
であるので、ランダム偏光と同じ結像状況である。従っ
て、コントラストは従来例と同様である。
The 0th-order diffracted light (also denoted by reference numeral 15A) and the 1st-order diffracted light 16A from the reticle 12 enter the wafer 14 via the projection optical system 13. First, assuming that the pattern formed on the reticle 12 is a line and space pattern long in a direction parallel to the x-axis or the y-axis in FIG. Since the illumination light diffracted in the x or y direction by the polarization direction is at 45 ° to the pattern, the illumination light has the same image forming state as the random polarization. Therefore, the contrast is the same as in the conventional example.

【0019】これに対して、そのレチクル12に形成さ
れたパターンが、図1(a)のx′軸に垂直な方向に長
いライン・アンド・スペースパターン9であるとする
と、小光源11Aからの照明光15Aの1次回折光が投
影光学系13の瞳内に入ることになる。尚、図1(b)
ではx′軸は紙面と平行になっている。ここで、図1
(b)に示すように、その照明光15Aの0次回折光1
5A及び1次回折光15Bは共に偏光方向(電気ベクト
ルの振動する方向)がウエハ14の表面で平行なS偏光
(図1(b)の紙面に垂直な方向に電気ベクトルが振動
する光)である。従って、ウエハ14上における干渉効
果がランダム偏光のときよりも大きくなり、高コントラ
ストの像が作られる。このため、図9を用いて説明した
ようにx′方向に回折された場合に、回折光の一部が瞳
外に出てしまうことによりコントラストが低下するとい
う従来の不都合が補われることになる。
On the other hand, if the pattern formed on the reticle 12 is a line and space pattern 9 which is long in a direction perpendicular to the x 'axis in FIG. The first-order diffracted light of the illumination light 15A enters the pupil of the projection optical system 13. In addition, FIG.
In this case, the x 'axis is parallel to the paper surface. Here, FIG.
As shown in (b), the 0th-order diffracted light 1 of the illumination light 15A
5A and the first-order diffracted light 15B are both S-polarized light (light whose electric vector oscillates in a direction perpendicular to the plane of FIG. 1B) whose polarization direction (the direction in which the electric vector oscillates) is parallel to the surface of the wafer 14. . Therefore, the interference effect on the wafer 14 is larger than that of the case of random polarization, and a high-contrast image is formed. For this reason, as described with reference to FIG. 9, when the light is diffracted in the x 'direction, a part of the diffracted light goes out of the pupil to reduce the conventional disadvantage that the contrast is reduced. .

【0020】ここで、偏光方向による強度分布の差を簡
単に以下に述べる。図2では、像面、即ちウエハ14の
表面付近の様子をP偏光(電気ベクトルの振動方向が入
射面内にある光)とS偏光(電気ベクトルの振動方向が
入射面と垂直な光)を用いて示してある。0次回折光1
5A及び1次回折光16Aの入射角をそれぞれθ0 及び
θ1 とすると、S偏光の場合の像面上の強度分布Is
(x)は振幅分布Us(x)を用いて次のように簡単に
示される。
Here, the difference in intensity distribution depending on the polarization direction will be briefly described below. In FIG. 2, the image plane, that is, the state near the surface of the wafer 14 is represented by P-polarized light (light in which the vibration direction of the electric vector is in the incident plane) and S-polarized light (light in which the vibration direction of the electric vector is perpendicular to the incident plane). Shown. 0th order diffracted light 1
Assuming that the incident angles of the 5A and the first-order diffracted light 16A are θ 0 and θ 1 , respectively, the intensity distribution Is on the image plane in the case of S-polarized light
(X) is simply shown as follows using the amplitude distribution Us (x).

【数5】 Is(x)=|Us(x)|2 , Vs(x)=a0 ・exp〔−i(2π/λ)(sinθ0 )x〕 +a1 ・exp〔−i(2π/λ)(sinθ 1)x〕Is (x) = | Us (x) | 2 , Vs (x) = a 0 exp [−i (2π / λ) (sin θ 0 ) x] + a 1 exp [−i (2π / λ) (sin θ 1 ) x]

【0021】従って、強度分布Is(x)は次のように
なる。
Therefore, the intensity distribution Is (x) is as follows.

【数6】 Is(x)=a0 2+a1 2 +2a01 ・cos〔(2π/λ)(sinθ0 −sinθ1 )x〕 ここで、係数a0 及びa1 はそれぞれ0次回折光及び1
次回折光の強さ(振幅)である。x′方向にピッチを持
つライン・アンド・スペースパターンの場合、4つの小
光源の内、2つは0次回折光しか投影光学系13を通過
しないのでS偏光のコントラストCsは次のようにな
る。
[6] Is (x) = a 0 2 + a 1 2 + 2a 0 a 1 · cos [(2π / λ) (sinθ 0 -sinθ 1) x ], where the coefficients a 0 and a 1, respectively 0-order diffracted light And 1
This is the intensity (amplitude) of the next-order diffracted light. In the case of a line-and-space pattern having a pitch in the x 'direction, two of the four small light sources pass only the zero-order diffracted light through the projection optical system 13, so that the contrast Cs of the S-polarized light is as follows.

【数7】Cs=2a01/(2a0 2+a1 2Cs = 2a 0 a 1 / (2a 0 2 + a 1 2 )

【0022】一方、P偏光の場合は、偏光のx成分と、
z成分とを考えなくてはいけない。P偏光の場合の像面
上の振幅分布Up(x)をベクトルで表して、x成分と
z成分とを示すと次式が得られる。
On the other hand, in the case of P-polarized light, the x component of polarized light and
You must consider the z component. When the amplitude distribution Up (x) on the image plane in the case of P-polarized light is represented by a vector, and the x component and the z component are indicated, the following expression is obtained.

【数8】 Up(x)=(a0 ・exp 〔−i(2π/λ)(sin θ0 )x〕・cos θ0 +a1 ・exp 〔−i(2π/λ)(sin θ1 )x〕・cos θ1 , a0 ・exp 〔−i(2π/λ)(sin θ0 )x〕・sin θ0 +a1 ・exp 〔−i(2π/λ)(sin θ1 )x〕・sin θ1Up (x) = (a 0 · exp [−i (2π / λ) (sin θ 0 ) x] · cos θ 0 + a 1 · exp [−i (2π / λ) (sin θ 1 )] x] · cos θ 1 , a 0 · exp [−i (2π / λ) (sin θ 0 ) x] · sin θ 0 + a 1 · exp [−i (2π / λ) (sin θ 1 ) x] · sin θ 1 )

【0023】従って、P偏光の場合の像面上の強度分布
Ip(x)は次のようになる。
Accordingly, the intensity distribution Ip (x) on the image plane for P-polarized light is as follows.

【数9】 Ip(x)=|Up(x)|2 =a0 2+a1 2+2a01 ×(cosθ0 cosθ1 +sinθ0 sinθ1 ) ×cos〔(2π/λ)(sinθ0 −sinθ1 )x〕Equation 9] Ip (x) = | Up ( x) | 2 = a 0 2 + a 1 2 + 2a 0 a 1 × (cosθ 0 cosθ 1 + sinθ 0 sinθ 1) × cos [(2π / λ) (sinθ 0 - sin θ 1 ) x]

【0024】従って、P偏光の場合のコントラストCp
は次のようになる。
Therefore, the contrast Cp for P-polarized light
Is as follows.

【数10】 Cp=2a01 cos(θ0 −θ1 )/(2a0 2+a1 2) (数7)と(数10)とを比較して、P偏光の場合は、
コントラストがcos(θ0 −θ1 )倍となることが分
かる。例えば、sinθ0 =0.4、sinθ1 =−
0.4の場合を考えると、cos(θ0 −θ1 )=0.
68となり、P偏光の場合とS偏光の場合とでは大きな
差がつく。ランダム偏光は、P偏光とS偏光との平均と
考えられるので、コントラストは(1/2)(1+0.
68)=0.84である。
Equation 10] Compared Cp = 2a 0 a 1 cos ( θ 0 -θ 1) / (2a 0 2 + a 1 2) and (7) and (Equation 10), in the case of P-polarized light,
It can be seen that the contrast becomes cos (θ 0 −θ 1 ) times. For example, sin θ 0 = 0.4, sin θ 1 = −
Considering the case of 0.4, cos (θ 0 −θ 1 ) = 0.
68, which is a great difference between the case of P-polarized light and the case of S-polarized light. Since the randomly polarized light is considered to be the average of the P-polarized light and the S-polarized light, the contrast is (1/2) (1 + 0.
68) = 0.84.

【0025】このように、S偏光とすることにより、コ
ントラストに大きな差が生じる。即ち、図1(a)のよ
うな偏光状態の照明光を使用すると、x軸及びy軸に対
して45゜で交差する方向にエッジが平行なライン・ア
ンド・スペースパターンに対して、従来よりも2割程度
のコントラストの増加が見込まれ、微細パターンに有効
であることが分かる。
As described above, the use of S-polarized light causes a large difference in contrast. That is, when illumination light having a polarization state as shown in FIG. 1A is used, a line-and-space pattern whose edge is parallel to a direction crossing the x-axis and the y-axis at 45 ° is conventionally used. In this case, the contrast is expected to increase by about 20%, which is effective for fine patterns.

【0026】なお、これまでは複数傾斜照明法を例にと
って説明したが、本発明を例えば輪帯照明法に適用する
と、例えば図7(a)に示すように、等価光源部10の
輪帯状の光源からの光をそれぞれ入射面に垂直な方向、
即ち光軸を中心とした円の接線方向に直線偏光する光に
変換すればよい。
Although the above description has been made with reference to the multiple oblique illumination method as an example, when the present invention is applied to, for example, an annular illumination method, for example, as shown in FIG. The light from the light source in the direction perpendicular to the plane of incidence,
That is, the light may be converted into light that is linearly polarized in the tangential direction of a circle centered on the optical axis.

【0027】次に、本発明の第2の照明光学装置によれ
ば、例えば図3に示すように、傾斜光を形成するのに、
光源からの照明光により偏心した2次光源が形成されて
いる。その2次光源を例えば図1(a)の等価光源10
とみなせば、上述の説明はそのまま本発明にも適用され
る。
Next, according to the second illumination optical device of the present invention, for example, as shown in FIG.
A secondary light source decentered by the illumination light from the light source is formed. The secondary light source is, for example, an equivalent light source 10 shown in FIG.
If so, the above description applies to the present invention as it is.

【0028】[0028]

【実施例】以下、本発明の第1実施例につき図3及び図
4を参照して説明する。本例は投影露光装置の照明光学
系に本発明を適用したものである。図3は本実施例の投
影露光装置の照明光学系を示し、この図3において、水
銀ランプよりなる光源20からの照明光が楕円鏡21で
集光され、この集光された照明光がコリメータレンズ2
2を介してフライアイレンズ23(オプティカルインテ
グレータ)に入射する。フライアイレンズ23の射出側
(レチクル側)の焦点面には面状の2次光源が形成され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIGS. In this embodiment, the present invention is applied to an illumination optical system of a projection exposure apparatus. FIG. 3 shows an illumination optical system of the projection exposure apparatus according to the present embodiment. In FIG. 3, illumination light from a light source 20 composed of a mercury lamp is condensed by an elliptical mirror 21, and the collected illumination light is collimated. Lens 2
The light enters the fly-eye lens 23 (optical integrator) via the second lens 2. A planar secondary light source is formed on the focal plane on the emission side (reticle side) of the fly-eye lens 23.

【0029】フライアイレンズ23の射出端付近に光軸
AXに対して偏心した4個の開口が形成された空間フィ
ルター24を設ける。また、この空間フィルター24の
4個の開口のレチクル側(又は光源20側でもよい)に
それぞれ偏光板25A〜25Dを被着する。但し、図3
では偏光板25B及び25Cのみが現れている。図4
(a)は図3の空間フィルター24をレチクル側から見
た正面図、図4(b)は図4(a)のAA線に沿う断面
図であり、これら図4(a)及び(b)に示すように、
空間フィルター24には光軸AXを中心として、90°
間隔で4個の開口24a〜24dが形成され、これら開
口がそれぞれ偏光板25A〜25Dで覆われている。ま
た、それら偏光板25A〜25Dの偏光方向はそれぞれ
矢印で示すように、光軸AXを中心とした円周の接線方
向に設定されている。従って、その空間フィルター24
の開口24a〜24dから射出される照明光は、それぞ
れ光軸AXを中心とした円周の接線方向にほぼ平行な方
向に直線偏光している。
A spatial filter 24 having four openings eccentric to the optical axis AX is provided near the exit end of the fly-eye lens 23. Further, polarizing plates 25A to 25D are respectively attached to the four openings of the spatial filter 24 on the reticle side (or on the light source 20 side). However, FIG.
Shows only the polarizing plates 25B and 25C. FIG.
4A is a front view of the spatial filter 24 of FIG. 3 as viewed from the reticle side, and FIG. 4B is a cross-sectional view taken along line AA of FIG. 4A. As shown in
The spatial filter 24 has a 90 ° angle around the optical axis AX.
Four openings 24a to 24d are formed at intervals, and these openings are respectively covered with polarizing plates 25A to 25D. Further, the polarization directions of the polarizing plates 25A to 25D are set to the tangential directions of the circumference around the optical axis AX as indicated by arrows. Therefore, the spatial filter 24
Illumination light emitted from the openings 24a to 24d is linearly polarized in a direction substantially parallel to a tangential direction of a circle around the optical axis AX.

【0030】図3に戻り、空間フィルター24により光
軸AXに対して偏心した4個の2次光源が形成される。
それら4個の2次光源から射出された照明光はそれぞれ
偏光板25A〜25Dを通過した後に、コンデンサーレ
ンズ系26を経てレチクル12に入射する。尚、コンデ
ンサーレンズ系26の前側焦点(光源側焦点)位置に
は、空間フィルター24(偏光板25A〜25D)が設
けられており、レチクル12のパターン形成面はコンデ
ンサーレンズ系26に関して空間フィルター24の配置
面とフーリエ変換の関係にある。この場合、例えば空間
フィルター24の開口24b及び24cから射出された
主光線27B及び27Cはコンデンサーレンズ系26を
経てそれぞれレチクル12上に光軸AXに対して斜めに
入射する。また、これら主光線27B及び27Cはそれ
ぞれレチクル12に対する入射面(紙面方向)に対して
垂直な方向に直線偏光している。
Referring back to FIG. 3, the spatial filter 24 forms four secondary light sources decentered with respect to the optical axis AX.
The illumination light emitted from the four secondary light sources passes through the polarizing plates 25A to 25D, and then enters the reticle 12 via the condenser lens system 26. A spatial filter 24 (polarizing plates 25A to 25D) is provided at the front focal point (light source side focal point) of the condenser lens system 26, and the pattern forming surface of the reticle 12 is There is a relationship between the arrangement plane and the Fourier transform. In this case, for example, the principal rays 27B and 27C emitted from the openings 24b and 24c of the spatial filter 24 enter the reticle 12 obliquely with respect to the optical axis AX via the condenser lens system 26, respectively. Each of the principal rays 27B and 27C is linearly polarized in a direction perpendicular to the plane of incidence (on the paper) of the reticle 12.

【0031】このような照明光学系を使用すると、本発
明の原理説明で説明したように、例えばレチクル12上
に図4(a)の開口24aと24cとを結ぶ直線に対し
て平行又は垂直な方向に長いエッジを有するライン・ア
ンド・スペースパターンが形成されている場合に、従来
よりも良好なコントラストのもとでそのパターンを投影
光学系13を通してウエハ14上に投影することができ
る。ここで、図3の装置では、フライアイレンズ23の
入射側面と物体面(レチクル12又はウエハ14)とが
共役に構成されており、フライアイレンズ23の射出側
面(2次光源10)と投影光学系13の瞳面10Aとが
共役に構成されている。なお、図3の構成の他に、フラ
イアイレンズ23と空間フィルター24との間に別の大
きな偏光板を配置し、空間フィルター24の4個の開口
24a〜24dの一部又は全部に1/2波長板を配置し
て、各1/2波長板の回転角を調整するようにしてもよ
い。これによっても、図4(a)に示すような、光軸A
Xを中心とする円周の接線方向に偏光した照明光が得ら
れる。この場合、別の大きな偏光板の偏光方向によつて
は、1/2波長板は空間フィルター24のすべての開口
に設ける必要はない。
When such an illumination optical system is used, as described in the explanation of the principle of the present invention, for example, the reticle 12 is parallel or perpendicular to a straight line connecting the openings 24a and 24c in FIG. When a line-and-space pattern having a long edge in the direction is formed, the pattern can be projected onto the wafer 14 through the projection optical system 13 with better contrast than before. Here, in the apparatus shown in FIG. 3, the incident side surface of the fly-eye lens 23 and the object surface (the reticle 12 or the wafer 14) are conjugated to each other, and the exit side surface (the secondary light source 10) of the fly-eye lens 23 is projected. The pupil plane 10A of the optical system 13 is conjugated. In addition to the configuration of FIG. 3, another large polarizing plate is disposed between the fly-eye lens 23 and the spatial filter 24, and a part or all of the four openings 24 a to 24 d of the spatial filter 24 A two-wavelength plate may be provided to adjust the rotation angle of each half-wavelength plate. This also allows the optical axis A as shown in FIG.
Illumination light polarized in the tangential direction of the circumference around X is obtained. In this case, depending on the polarization direction of another large polarizing plate, it is not necessary to provide the half-wave plate at every opening of the spatial filter 24.

【0032】更に、例えば光源として直線偏光のレーザ
ービームが射出されるようなレーザー光源を使用するこ
とにより、等価光源となる図3の空間フィルター24の
全体を直線偏光の照明光で照明する場合には、空間フィ
ルター24の4個の開口24a〜24dの一部または全
部に適当な回転方向の1/2波長板を設けるだけでよ
い。この場合、一部の開口に1/2波長板を設けるだけ
でもよいが、全部の開口に1/2波長板を設けるほうが
照明のバラツキを低減する上で効果がある。このように
1/2波長板を使用して偏光方向を調整した場合には、
照明光の損失がないので照明効率が良い。
Further, for example, by using a laser light source that emits a linearly polarized laser beam as a light source, the entire spatial filter 24 shown in FIG. 3 as an equivalent light source can be illuminated with linearly polarized illumination light. It is only necessary to provide an appropriate half-wave plate in the rotation direction in a part or all of the four openings 24a to 24d of the spatial filter 24. In this case, it is sufficient to provide a half-wave plate in some of the openings, but providing a half-wave plate in all of the openings is more effective in reducing variations in illumination. When the polarization direction is adjusted using a half-wave plate as described above,
Lighting efficiency is good because there is no loss of illumination light.

【0033】また、全体として円偏光の照明光を発生す
る装置を用いて、等価光源となる図3の空間フィルター
24を照明する場合には、空間フィルター24の各開口
に適当な回転方向の1/4波長板を設けることがよい。
When illuminating the spatial filter 24 shown in FIG. 3 as an equivalent light source by using a device that generates illumination light of circular polarization as a whole, each opening of the spatial filter 24 has an appropriate rotation direction. It is preferable to provide a / 4 wavelength plate.

【0034】次に、本発明の第2実施例につき図5を参
照して説明する。図5は本例の投影露光装置を示し、こ
の図5において、光源20からの照明光は楕円鏡21、
折り曲げミラー28及びインプットレンズ29を経てほ
ぼ平行光束になる。その楕円鏡21と折り曲げミラー2
8との間にシャッター30を配置し、このシャッター3
0を駆動モーター31で閉じることにより、インプット
レンズ29に対する照明光の供給を随時停止する。光源
1としては、水銀ランプの外に、例えばKrFレーザー
光等を発生するエキシマレーザー光源等を使用すること
ができる。エキシマレーザー光源を使用する場合には、
楕円鏡21〜インプットレンズ29までの光学系の代わ
りにビームエクスパンダ等が使用される。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 5 shows a projection exposure apparatus of the present example. In FIG.
After passing through the bending mirror 28 and the input lens 29, the light beam becomes a substantially parallel light beam. The elliptical mirror 21 and the folding mirror 2
8 and the shutter 30 is arranged.
By closing 0 with the drive motor 31, the supply of the illumination light to the input lens 29 is stopped at any time. As the light source 1, for example, an excimer laser light source that generates a KrF laser beam or the like can be used in addition to a mercury lamp. When using an excimer laser light source,
Instead of the optical system from the elliptical mirror 21 to the input lens 29, a beam expander or the like is used.

【0035】そして、インプットレンズ29から順に、
4角錐型(ピラミッド型)の凹部を有する第1の多面体
プリズム32及び4角錐型(ピラミッド型)の凸部を有
する第2の多面体プリズム33を配置する。この第2の
多面体プリズム33から射出される照明光は、光軸を中
心として光軸の周囲に等角度で4個の光束に分割されて
いる。
Then, in order from the input lens 29,
A first polyhedral prism 32 having a quadrangular pyramid (pyramid) concave portion and a second polyhedral prism 33 having a quadrangular pyramid (pyramid) convex portion are arranged. The illumination light emitted from the second polyhedral prism 33 is divided into four light beams at equal angles around the optical axis with the optical axis as the center.

【0036】これら4個に分割された光束をそれぞれ第
2群のフライアイレンズ34A,34B,34C及び3
4Dに入射させる。図5ではフライアイレンズ34A及
び34Bのみが示されているが、図5の紙面に垂直な方
向に光軸を挟んで2個のフライアイレンズ34C及び3
4Dが配置されている。そして、フライアイレンズ34
Aから射出された光束は、レンズ系35A及び36Aよ
りなるガイド光学系を介してほぼ平行光束に変換されて
第1群のフライアイレンズ37Aに入射する。同様に、
第2群のフライアイレンズ34Bを射出した光束は、レ
ンズ系35B及び36Bよりなるガイド光学系を介して
ほぼ平行光束に変換されて第1群のフライアイレンズ3
7Bに入射し、図示省略するも、第2群のフライアイレ
ンズ34C及び34Dを射出した光束は、それぞれガイ
ド光学系を介して第1群のフライアイレンズ37C及び
37Dに入射する。
The light beams divided into four light beams are used as fly eye lenses 34A, 34B, 34C and 3
4D is incident. Although only the fly-eye lenses 34A and 34B are shown in FIG. 5, the two fly-eye lenses 34C and 34C sandwich the optical axis in a direction perpendicular to the plane of FIG.
4D is arranged. And the fly-eye lens 34
The light beam emitted from A is converted into a substantially parallel light beam via a guide optical system including lens systems 35A and 36A, and is incident on the first group fly-eye lens 37A. Similarly,
The light beam emitted from the second group fly-eye lens 34B is converted into a substantially parallel light beam through a guide optical system including lens systems 35B and 36B, and the first group fly-eye lens 3
Although not shown in the figure, the light fluxes which have entered the second group fly-eye lenses 34C and 34D enter the first group fly-eye lenses 37C and 37D via guide optical systems, respectively, although not shown.

【0037】第1群のフライアイレンズ37A〜37D
は光軸の回りに90°間隔で配置されている。第1群の
フライアイレンズ37A〜37Dのレチクル側焦点面に
はそれぞれ面状の2次光源が形成されるが、それら2次
光源の形成面にそれぞれ可変開口絞り38A〜38Dを
配置する。更に、これら可変開口絞り38A〜38Dの
レチクル側にそれぞれ偏光板39A〜39Dを配置す
る。なお、図5では可変開口絞り13A,13B及び偏
光板39A,39Bのみが現れている。
First group fly-eye lenses 37A-37D
Are arranged at 90 ° intervals around the optical axis. A planar secondary light source is formed on the reticle-side focal plane of each of the first group fly-eye lenses 37A to 37D, and variable aperture stops 38A to 38D are arranged on the formation surface of the secondary light sources. Further, polarizing plates 39A to 39D are arranged on the reticle side of these variable aperture stops 38A to 38D, respectively. In FIG. 5, only the variable aperture stops 13A and 13B and the polarizing plates 39A and 39B are shown.

【0038】それら可変開口絞り38A〜38Dから偏
光板39A〜39Dを透過して射出した照明光は、それ
ぞれ補助コンデンサーレンズ40、ミラー41及び主コ
ンデンサーレンズ42を経て適度に集光されてレチクル
12をほぼ均一な照度で照明する。そのレチクル12の
パターンが投影光学系13によりウエハステージWS上
のウエハ14に所定の縮小倍率βで転写される。それら
偏光板39A〜39Dの偏光方向は、光軸AXを中心と
する円周の接線方向に平行である。例えば可変開口絞り
38Aから偏光板39Aを透過して射出される光束の主
光線43Aは、紙面に垂直な方向に直線偏光した状態で
レチクル12上に光軸AXに対して斜めに入射する。な
お、図5に示した偏光板39A〜39Dは、実質的に、
補助コンデンサーレンズ40と主コンデンサーレンズと
の合成系のコンデンサーレンズ系の前側焦点(光源側焦
点)位置に設けられており、この位置は実質的に投影光
学系13の瞳面10Aと共役である。
The illumination light emitted from the variable aperture stops 38A to 38D through the polarizing plates 39A to 39D is appropriately condensed through the auxiliary condenser lens 40, the mirror 41, and the main condenser lens 42, respectively, and is focused on the reticle 12. Illuminate with almost uniform illuminance. The pattern of the reticle 12 is transferred by the projection optical system 13 onto the wafer 14 on the wafer stage WS at a predetermined reduction magnification β. The polarization directions of the polarizing plates 39A to 39D are parallel to the tangential direction of the circumference around the optical axis AX. For example, the principal ray 43A of the light beam transmitted through the polarizing plate 39A from the variable aperture stop 38A is obliquely incident on the reticle 12 with respect to the optical axis AX while being linearly polarized in a direction perpendicular to the paper surface. The polarizing plates 39A to 39D shown in FIG.
It is provided at the front focal point (light source side focal point) of the condenser lens system of the combined system of the auxiliary condenser lens 40 and the main condenser lens, and this position is substantially conjugate with the pupil plane 10A of the projection optical system 13.

【0039】本例によっても、レチクル12上の所定の
方向のライン・アンド・スペースパターンのウエハ14
上の投影像のコントラストを改善することができる。更
に、第1群のフライアイレンズ37A〜37Dの他に第
2群のフライアイレンズ34A〜34Dが設けられてい
るので、レチクル12上の照度の均一性が更に改善され
ている。なお、図5において、偏光板39A及び39B
はそれぞれ例えばリレー光学系の間の位置44A及び4
4Bに配置してもよく、更に他の位置に配置してもよ
い。また、光源20からの照明光が既に直線偏光である
ような場合には、偏光板39A及び39Bの代わりに1
/2波長板を使用してもよい。
According to this embodiment, the wafer 14 having a line and space pattern in a predetermined direction on the reticle 12 is also provided.
The contrast of the upper projected image can be improved. Further, since the second group fly-eye lenses 34A to 34D are provided in addition to the first group fly-eye lenses 37A to 37D, the uniformity of the illuminance on the reticle 12 is further improved. In FIG. 5, the polarizing plates 39A and 39B
Are, for example, positions 44A and 4 between the relay optics, respectively.
4B, or may be arranged at another position. In the case where the illumination light from the light source 20 is already linearly polarized light, 1 is used instead of the polarizing plates 39A and 39B.
A / 2 wavelength plate may be used.

【0040】次に、本発明の第3実施例につき図6及び
図7を参照して説明する。本実施例は、先に説明した図
3に示す第1実施例の空間フィルター24を変えて、図
6(a)に示す如き輪帯状の開口240aを有する空間
フィルター240をフライアイレンズ23の射出側に設
けた例を示すものである。この空間フィルター240の
配置により、フライアイレンズ23の射出側には、図6
(a)に示す如く、光軸AXから偏心した輪帯状の2次
光源45が形成され、この輪帯状の2次光源45からの
光が、図3に示す如く、コンデンサーレンズ26、レチ
クル12を介して投影光学系13の瞳面10A(入射瞳
面)に達する。ここで、説明を簡単にするために、レチ
クル12のライン・アンド・スペースパターンの回折作
用による0次回折光と1次回折光との様子について考え
ると、この投影光学系13の瞳面10Aには、図6
(b)に示す如く、輪帯光源45と相似な輪帯状の0次
回折光45Aと輪帯状の0次回折光45Aを横ずれさせ
た輪帯状の1次回折光45Bが形成される。
Next, a third embodiment of the present invention will be described with reference to FIGS. In this embodiment, the spatial filter 240 having a ring-shaped opening 240a as shown in FIG. 6A is changed from the spatial filter 24 of the first embodiment shown in FIG. It shows an example provided on the side. Due to the arrangement of the spatial filter 240, the exit side of the fly-eye lens 23
As shown in FIG. 3A, an annular secondary light source 45 decentered from the optical axis AX is formed, and the light from the annular secondary light source 45 passes through the condenser lens 26 and the reticle 12 as shown in FIG. The light reaches the pupil plane 10A (the entrance pupil plane) of the projection optical system 13 via the optical path. Here, in order to simplify the description, considering the state of the 0th-order diffracted light and the 1st-order diffracted light due to the diffraction action of the line and space pattern of the reticle 12, the pupil plane 10A of the projection optical system 13 has: FIG.
As shown in (b), an annular 0th-order diffracted light 45A similar to the annular light source 45 and an annular 1st-order diffracted light 45B obtained by laterally shifting the annular 0th-order diffracted light 45A are formed.

【0041】この場合、本例では図7(a)に示すよう
に、等価光源部10の輪帯状の2次光源45から射出さ
れる照明光をそれぞれ光軸AXを中心とする円周の接線
方向に偏光させる輪帯状の偏光板250が空間フィルタ
ー240上に設けられている。これにより、微細パター
ンに対して高コントラストの像を得ることができる。な
お、図7(b)に示すように輪帯状光源を円弧状の各ゾ
ーンに分ける開口を持つ空間フィルター240を用い
て、各ゾーン上に偏光板250A〜250Hを設けて、
各ゾーンごとに光軸AXを軸とする円周の接線方向の直
線偏光の照明光となるようにしてもよい。
In this case, in this example, as shown in FIG. 7A, the illumination light emitted from the annular secondary light source 45 of the equivalent light source unit 10 is tangent to the circumference of the light axis AX. A ring-shaped polarizing plate 250 that polarizes light in the direction is provided on the spatial filter 240. Thereby, a high-contrast image can be obtained for a fine pattern. As shown in FIG. 7B, polarizing plates 250A to 250H are provided on each zone using a spatial filter 240 having an opening for dividing the annular light source into arc-shaped zones.
The illumination light may be linearly polarized light in the tangential direction of the circumference around the optical axis AX for each zone.

【0042】なお、本発明は上述実施例に限定されず本
発明の要旨を逸脱しない範囲で種々の構成を取り得るこ
とは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, but can adopt various configurations without departing from the spirit of the present invention.

【0043】[0043]

【発明の効果】本発明によれば、物体に対して傾斜して
入射する照明光が入射面に垂直な方向に偏光しているの
で、その物体上のパターンがその照明光の入射面に垂直
な方向を長手方向とするライン・アンド・スペースパタ
ーンであるような場合に、投影光学系でその物体のパタ
ーンを投影したときにその像のコントラストを大幅に改
善できる利点がある。
According to the present invention, since the illumination light obliquely incident on the object is polarized in the direction perpendicular to the plane of incidence, the pattern on the object is perpendicular to the plane of incidence of the illumination light. In the case of a line-and-space pattern whose longitudinal direction is set in a desired direction, there is an advantage that the contrast of the image can be greatly improved when the pattern of the object is projected by the projection optical system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明による照明光学装置の原理の説
明に供する等価光源を示す図、(b)は図1(a)の等
価光源を使用した投影露光装置を示す概略構成図であ
る。
1A is a diagram showing an equivalent light source for explaining the principle of an illumination optical device according to the present invention, and FIG. 1B is a schematic configuration diagram showing a projection exposure apparatus using the equivalent light source in FIG. is there.

【図2】本発明の原理の説明に供する図である。FIG. 2 is a diagram for explaining the principle of the present invention.

【図3】本発明の第1実施例の投影露光装置の照明光学
系を示す構成図である。
FIG. 3 is a configuration diagram showing an illumination optical system of the projection exposure apparatus according to the first embodiment of the present invention.

【図4】(a)は図3の空間フィルター24及び偏光板
25A〜25Dを示す正面図、(b)は図4(a)のA
A線に沿う断面図である。
4A is a front view showing the spatial filter 24 and the polarizing plates 25A to 25D in FIG. 3, and FIG. 4B is a front view showing A in FIG.
It is sectional drawing which follows the A line.

【図5】本発明の第2実施例の投影露光装置を示す構成
図である。
FIG. 5 is a configuration diagram illustrating a projection exposure apparatus according to a second embodiment of the present invention.

【図6】(a)は本発明の第3実施例の等価光源及び空
間フィルター240を示す図、(b)は空間フィルター
240を用いた事による投影光学系13の瞳での回折光
の様子を示す図である。
6A is a diagram illustrating an equivalent light source and a spatial filter 240 according to a third embodiment of the present invention, and FIG. 6B is a diagram illustrating a state of diffracted light at a pupil of the projection optical system 13 using the spatial filter 240. FIG.

【図7】(a)は第3実施例の等価光源からの照明光の
偏光状態を示す図、(b)は第3実施例の変形例の等価
光源を示す図である。
7A is a diagram illustrating a polarization state of illumination light from an equivalent light source according to a third embodiment, and FIG. 7B is a diagram illustrating an equivalent light source according to a modification of the third embodiment.

【図8】(a)は複数傾斜照明の等価光源を示す図、
(b)は図8(a)の等価光源を用いた場合の投影光学
系13の瞳での回折光の様子を示す図である。
FIG. 8A is a diagram illustrating an equivalent light source of a plurality of oblique illuminations,
FIG. 9B is a diagram showing a state of diffracted light at the pupil of the projection optical system 13 when the equivalent light source of FIG.

【図9】複数傾斜照明で特定のパターンを照明した場合
を示す図である。
FIG. 9 is a diagram illustrating a case where a specific pattern is illuminated by a plurality of oblique illuminations.

【符号の説明】[Explanation of symbols]

10 等価光源 11A〜11D 小光源 12 レチクル 13 投影光学系 14 ウエハ 20 光源 22 コリメータレンズ 23 フライアイレンズ 24 空間フィルター 24a〜24d 開口 25A〜25D 偏光板 26 コンデンサーレンズ系 DESCRIPTION OF SYMBOLS 10 Equivalent light source 11A-11D Small light source 12 Reticle 13 Projection optical system 14 Wafer 20 Light source 22 Collimator lens 23 Fly-eye lens 24 Spatial filter 24a-24d Opening 25A-25D Polarizer 26 Condenser lens system

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/027 Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) H01L 21/027

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 照明光学系からの照明光によって物体上
の所定領域を均一に照明する照明光学装置において、 前記照明光学系は、前記所定領域を斜め方向から照明す
る傾斜光を形成する傾斜光形成手段と、前記所定領域を
斜め方向から照明する前記傾斜光を変換して、傾斜光
の入射面に対し直交した方向に直線偏光する照明光を形
成する偏光手段とを有することを特徴とする照明光学装
置。
1. An illumination optical device for uniformly illuminating a predetermined area on an object with illumination light from an illumination optical system, wherein the illumination optical system forms inclined light for illuminating the predetermined area from an oblique direction. Forming means, and the predetermined area
By converting the slope light for illuminating obliquely, illumination optical apparatus characterized by having a polarization means for forming an illumination light linearly polarized in the direction orthogonal to the incident surface of the inclined light.
【請求項2】 照明光を供給する光源と該照明光で物体
上の所定領域を均一に照明する集光光学系とを有する照
明光学装置において、 前記照明光によって前記集光光学系の光軸に対し偏心し
た2次光源を形成して前記所定領域を斜め方向から照明
する傾斜光を形成する傾斜光形成手段を前記光源と前記
集光光学系との間に配置し、前記所定領域を斜め方向から照明する前記 傾斜光を変換
して、傾斜光の入射面に対し直交した方向に直線偏光
する照明光を形成する偏光手段を前記傾斜光形成手段と
前記集光光学系との間に配置したことを特徴とする照明
光学装置。
2. An illumination optical apparatus comprising: a light source for supplying illumination light; and a condensing optical system for uniformly illuminating a predetermined area on an object with the illumination light. to form a secondary light source eccentrically arranged tilting light forming means for forming a slope light to illuminate the predetermined area in an oblique direction between the condensing optical system and the light source with respect to the diagonal of the predetermined area by converting the slope light for illuminating from the direction, polarization means for forming an illumination light linearly polarized in the direction orthogonal to the incident surface of the inclined light between the focusing optical system and the inclined light forming means An illumination optical device, which is arranged.
【請求項3】 前記傾斜光形成手段は、凹部を有する第
1多面体プリズムと凸部を有する第2多面体プリズムと
を有することを特徴とする請求項1又は2に記載の照明
光学装置。
3. The illumination optical device according to claim 1, wherein the inclined light forming means has a first polyhedral prism having a concave portion and a second polyhedral prism having a convex portion.
【請求項4】 前記物体としてのレチクルを照明する請
求項1又は2に記載の照明光学装置と、 前記レチクルのパターン像を感光基板に投影する投影光
学系とを有することを特徴とする露光装置。
Wherein exposure and having an illumination optical device according to claim 1 or 2 for illuminating a reticle as the object, a projection optical system for projecting a pattern image of the reticle onto a photosensitive substrate device .
【請求項5】 請求項1又は2に記載の照明光学装置を
用いて前記物体としてのレチクルを照明し、前記レチク
ルのパターンを転写することを特徴とする露光方法。
5. An exposure method comprising illuminating a reticle as the object using the illumination optical device according to claim 1 and transferring a pattern of the reticle.
JP21978292A 1992-07-27 1992-07-27 Illumination optical device, exposure apparatus, and exposure method Expired - Lifetime JP3246615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21978292A JP3246615B2 (en) 1992-07-27 1992-07-27 Illumination optical device, exposure apparatus, and exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21978292A JP3246615B2 (en) 1992-07-27 1992-07-27 Illumination optical device, exposure apparatus, and exposure method

Publications (2)

Publication Number Publication Date
JPH0653120A JPH0653120A (en) 1994-02-25
JP3246615B2 true JP3246615B2 (en) 2002-01-15

Family

ID=16740926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21978292A Expired - Lifetime JP3246615B2 (en) 1992-07-27 1992-07-27 Illumination optical device, exposure apparatus, and exposure method

Country Status (1)

Country Link
JP (1) JP3246615B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050718A1 (en) 2003-11-20 2005-06-02 Nikon Corporation Light flux conversion element, lighting optical device, exposure system, and exposure method
WO2006016469A1 (en) 2004-08-10 2006-02-16 Nikon Corporation Illumination optical equipment, exposure system and method
US7072040B2 (en) 2003-10-07 2006-07-04 Kabushiki Kaisha Toshiba Mask for inspecting an exposure apparatus, a method of inspecting an exposure apparatus, and an exposure apparatus
JP2007121413A (en) * 2005-10-25 2007-05-17 Toshiba Corp Method for screening substrate for photomask, method for manufacturing photomask, and method for manufacturing semiconductor device
US7265816B2 (en) 2004-06-21 2007-09-04 Canon Kabushiki Kaisha Illumination optical system, exposure apparatus, and device manufacturing method with modified illumination generator
US7309870B2 (en) 2003-05-06 2007-12-18 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7436491B2 (en) 2004-12-20 2008-10-14 Kabushiki Kaisha Toshiba Exposure system, exposure method and method for manufacturing a semiconductor device
US20090073441A1 (en) * 2004-02-06 2009-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US7672047B2 (en) 2004-01-14 2010-03-02 Carl Zeiss Smt Ag Catadioptric projection objective
US7859748B2 (en) 2000-01-14 2010-12-28 Carl Zeiss Smt Gmbh Microlithographic reduction projection catadioptric objective
WO2011021444A1 (en) 2009-08-17 2011-02-24 Nikon Corporation Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method
US8199400B2 (en) 2004-01-14 2012-06-12 Carl Zeiss Smt Gmbh Catadioptric projection objective
US8259393B2 (en) 2004-01-16 2012-09-04 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US8279524B2 (en) 2004-01-16 2012-10-02 Carl Zeiss Smt Gmbh Polarization-modulating optical element
WO2012172705A1 (en) 2011-06-13 2012-12-20 株式会社ニコン Illumination optical assembly, exposure device, and device manufacture method
US8363315B2 (en) 2004-04-08 2013-01-29 Carl Zeiss Smt Gmbh Catadioptric projection objective with mirror group
US8482717B2 (en) 2004-01-16 2013-07-09 Carl Zeiss Smt Gmbh Polarization-modulating optical element
EP2672307A2 (en) 2003-05-06 2013-12-11 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8913316B2 (en) 2004-05-17 2014-12-16 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9599905B2 (en) 2011-06-07 2017-03-21 Nikon Corporation Illumination optical system, exposure apparatus, device production method, and light polarization unit
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183201A (en) * 1993-12-21 1995-07-21 Nec Corp Exposure device and method therefor
EP1429190B1 (en) 2002-12-10 2012-05-09 Canon Kabushiki Kaisha Exposure apparatus and method
US6943941B2 (en) * 2003-02-27 2005-09-13 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
KR101238142B1 (en) 2003-04-10 2013-02-28 가부시키가이샤 니콘 Environmental system including a transport region for an immersion lithography apparatus
KR101886027B1 (en) 2003-04-10 2018-09-06 가부시키가이샤 니콘 Environmental system including vaccum scavange for an immersion lithography apparatus
JP4837556B2 (en) 2003-04-11 2011-12-14 株式会社ニコン Optical element cleaning method in immersion lithography
TW201806001A (en) 2003-05-23 2018-02-16 尼康股份有限公司 Exposure device and device manufacturing method
EP3104396B1 (en) 2003-06-13 2018-03-21 Nikon Corporation Exposure method, substrate stage, exposure apparatus, and device manufacturing method
KR101211451B1 (en) 2003-07-09 2012-12-12 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
KR101343720B1 (en) 2003-07-28 2013-12-20 가부시키가이샤 니콘 Exposure apparatus device producing method and exposure apparatus controlling method
TWI525660B (en) 2003-09-29 2016-03-11 尼康股份有限公司 An exposure apparatus and an exposure method, and an element manufacturing method
KR101319108B1 (en) 2003-09-29 2013-10-17 가부시키가이샤 니콘 Projection exposure device, projection exposure method, and device manufacturing method
TWI553701B (en) 2003-10-09 2016-10-11 尼康股份有限公司 Exposure apparatus and exposure method, component manufacturing method
JPWO2005036619A1 (en) * 2003-10-09 2007-11-22 株式会社ニコン Illumination optical apparatus, exposure apparatus, and exposure method
KR20140049044A (en) 2003-10-22 2014-04-24 가부시키가이샤 니콘 Exposure apparatus, exposure method, and method for manufacturing device
KR100676576B1 (en) * 2003-10-28 2007-01-30 주식회사 하이닉스반도체 Polarized manual blade and method of manufacturing the same
JP2005136244A (en) * 2003-10-31 2005-05-26 Semiconductor Leading Edge Technologies Inc Exposure method
JP4976094B2 (en) * 2003-11-20 2012-07-18 株式会社ニコン Illumination optical apparatus, exposure apparatus, exposure method, and microdevice manufacturing method
JP4552428B2 (en) * 2003-12-02 2010-09-29 株式会社ニコン Illumination optical apparatus, projection exposure apparatus, exposure method, and device manufacturing method
CN102163004B (en) 2003-12-03 2014-04-09 株式会社尼康 Exposure apparatus, exposure method and device producing method
WO2005067013A1 (en) 2004-01-05 2005-07-21 Nikon Corporation Exposure apparatus, exposure method, and device producing method
EP2037489A3 (en) 2004-01-15 2010-01-06 Nikon Corporation Exposure apparatus and device producing method
WO2005071717A1 (en) 2004-01-26 2005-08-04 Nikon Corporation Exposure apparatus and device producing method
US7990516B2 (en) 2004-02-03 2011-08-02 Nikon Corporation Immersion exposure apparatus and device manufacturing method with liquid detection apparatus
KR101942136B1 (en) 2004-02-04 2019-01-24 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device producing method
CN101078811B (en) * 2004-02-06 2012-04-25 株式会社尼康 Polarizing transforming element, optical lighting device, exposure device and exposure method
JP4748015B2 (en) * 2004-02-06 2011-08-17 株式会社ニコン Illumination optical apparatus, exposure apparatus, exposure method, and microdevice manufacturing method
JP4752702B2 (en) * 2004-02-06 2011-08-17 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
KR101166007B1 (en) 2004-02-10 2012-07-17 가부시키가이샤 니콘 Aligner, device manufacturing method, maintenance method and aligning method
EP1727188A4 (en) 2004-02-20 2008-11-26 Nikon Corp Exposure apparatus, supply method and recovery method, exposure method, and device producing method
DE102004010569A1 (en) * 2004-02-26 2005-09-15 Carl Zeiss Smt Ag Illumination system for a microlithography projection exposure apparatus
JP4497968B2 (en) 2004-03-18 2010-07-07 キヤノン株式会社 Illumination apparatus, exposure apparatus, and device manufacturing method
TW201816844A (en) 2004-03-25 2018-05-01 日商尼康股份有限公司 Exposure apparatus, exposure method, and device manufacturing method
US7034917B2 (en) 2004-04-01 2006-04-25 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
EP2490248A3 (en) 2004-04-19 2018-01-03 Nikon Corporation Exposure apparatus and device manufacturing method
US7486381B2 (en) 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7324280B2 (en) * 2004-05-25 2008-01-29 Asml Holding N.V. Apparatus for providing a pattern of polarization
SG153813A1 (en) 2004-06-09 2009-07-29 Nikon Corp Substrate holding device, exposure apparatus having same, exposure method, method for producing device, and liquid repellent plate
WO2005122218A1 (en) 2004-06-09 2005-12-22 Nikon Corporation Exposure system and device production method
US8717533B2 (en) 2004-06-10 2014-05-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8508713B2 (en) 2004-06-10 2013-08-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8373843B2 (en) 2004-06-10 2013-02-12 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
KR20120026639A (en) 2004-06-10 2012-03-19 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device producing method
KR101556454B1 (en) 2004-06-10 2015-10-13 가부시키가이샤 니콘 Exposure equipment, exposure method and device manufacturing method
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
EP3098835B1 (en) 2004-06-21 2017-07-26 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
KR101378688B1 (en) 2004-06-21 2014-03-27 가부시키가이샤 니콘 Exposure equipment and device manufacturing method
US7463330B2 (en) 2004-07-07 2008-12-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
ATE441937T1 (en) 2004-07-12 2009-09-15 Nikon Corp EXPOSURE DEVICE AND COMPONENT PRODUCTION METHOD
KR101202231B1 (en) 2004-07-21 2012-11-16 가부시키가이샤 니콘 Exposure method and method for producing device
EP3267257B1 (en) 2004-08-03 2019-02-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
JP2006113533A (en) 2004-08-03 2006-04-27 Nikon Corp Projection optical system, exposure apparatus, and exposure method
JP5179754B2 (en) 2004-08-09 2013-04-10 株式会社ニコン Optical characteristic measuring apparatus, optical characteristic measuring method, exposure apparatus, exposure method, and device manufacturing method
WO2006030908A1 (en) 2004-09-17 2006-03-23 Nikon Corporation Substrate holding apparatus, exposure apparatus and device manufacturing method
TWI417940B (en) 2004-09-17 2013-12-01 尼康股份有限公司 Exposure apparatus, exposure method, and device manufacturing method
JP4595481B2 (en) * 2004-10-06 2010-12-08 凸版印刷株式会社 Rotationally symmetric polarizing plate and method for producing the same
US8040489B2 (en) 2004-10-26 2011-10-18 Nikon Corporation Substrate processing method, exposure apparatus, and method for producing device by immersing substrate in second liquid before immersion exposure through first liquid
JP4565270B2 (en) 2004-11-11 2010-10-20 株式会社ニコン Exposure method, device manufacturing method
US7345740B2 (en) * 2004-12-28 2008-03-18 Asml Netherlands B.V. Polarized radiation in lithographic apparatus and device manufacturing method
US7450217B2 (en) 2005-01-12 2008-11-11 Asml Netherlands B.V. Exposure apparatus, coatings for exposure apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby
KR101555707B1 (en) 2005-04-18 2015-09-25 가부시키가이샤 니콘 Exposure device exposure method and device manufacturing method
KR101762083B1 (en) 2005-05-12 2017-07-26 가부시키가이샤 니콘 Projection optical system, exposure apparatus and exposure method
US8253924B2 (en) 2005-05-24 2012-08-28 Nikon Corporation Exposure method, exposure apparatus and device manufacturing method
JP2007103835A (en) 2005-10-07 2007-04-19 Toshiba Corp Aligner and exposure method
US8125610B2 (en) 2005-12-02 2012-02-28 ASML Metherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
KR101486589B1 (en) 2006-04-17 2015-01-26 가부시키가이샤 니콘 Illuminating optical apparatus, exposure apparatus and device manufacturing method
JP5105316B2 (en) * 2006-07-07 2012-12-26 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
WO2008010316A1 (en) * 2006-07-17 2008-01-24 Photonic Lattice, Inc. Polarizer and microscope with polarizer
DE102006038643B4 (en) 2006-08-17 2009-06-10 Carl Zeiss Smt Ag Microlithographic projection exposure apparatus and microlithographic exposure method
US7973910B2 (en) 2006-11-17 2011-07-05 Nikon Corporation Stage apparatus and exposure apparatus
JP5267029B2 (en) 2007-10-12 2013-08-21 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP5032972B2 (en) * 2007-12-28 2012-09-26 キヤノン株式会社 Computer generated hologram, generation method and exposure apparatus
US20090233456A1 (en) * 2008-03-17 2009-09-17 Sony Corporation Irradiation optical system, irradiation apparatus and fabrication method for semiconductor device
NL2003363A (en) 2008-09-10 2010-03-15 Asml Netherlands Bv Lithographic apparatus, method of manufacturing an article for a lithographic apparatus and device manufacturing method.
JP4952801B2 (en) * 2010-01-12 2012-06-13 株式会社ニコン Illumination optical system, exposure apparatus, and exposure method
JP4952800B2 (en) * 2010-01-12 2012-06-13 株式会社ニコン Illumination optical system, exposure apparatus, and exposure method
JP4553066B2 (en) * 2010-01-14 2010-09-29 株式会社ニコン Polarization conversion member, illumination optical apparatus, projection exposure apparatus, exposure method, and device manufacturing method
JP4626719B2 (en) * 2010-01-14 2011-02-09 株式会社ニコン Illumination optical apparatus, projection exposure apparatus, exposure method, and device manufacturing method
US9116303B2 (en) 2010-03-05 2015-08-25 Canon Kabushiki Kaisha Hologram with cells to control phase in two polarization directions and exposure apparatus
JP5338863B2 (en) * 2011-07-04 2013-11-13 株式会社ニコン Illumination optical system, exposure apparatus, exposure method, and device manufacturing method
JP2012156536A (en) * 2012-03-28 2012-08-16 Nikon Corp Illumination optical device, exposure device and exposure method
JP5533917B2 (en) * 2012-03-28 2014-06-25 株式会社ニコン Illumination optical system, exposure apparatus, and device manufacturing method
JP5644921B2 (en) * 2013-09-09 2014-12-24 株式会社ニコン Illumination optics
JP5786919B2 (en) * 2013-10-28 2015-09-30 株式会社ニコン Projection optical system, exposure apparatus and exposure method
JP5761329B2 (en) * 2013-12-27 2015-08-12 株式会社ニコン Illumination optical apparatus, exposure apparatus, and exposure method
TWI617841B (en) * 2014-10-22 2018-03-11 英特爾股份有限公司 Anti-moire pattern diffuser for optical systems
JP2015132843A (en) * 2015-03-02 2015-07-23 株式会社ニコン Projection optical system, exposure device, exposure method, and device manufacturing method
JP5928632B2 (en) * 2015-04-03 2016-06-01 株式会社ニコン Illumination optical apparatus, exposure apparatus, and exposure method
JP2016136273A (en) * 2016-03-07 2016-07-28 株式会社ニコン Projection optical system, exposure device, exposure method and device fabrication method
JP6493445B2 (en) * 2017-05-11 2019-04-03 株式会社ニコン Illumination optical apparatus, exposure apparatus, and exposure method
JP2018010303A (en) * 2017-08-03 2018-01-18 株式会社ニコン Light exposure device and device manufacturing method
JP2019082711A (en) * 2019-01-15 2019-05-30 株式会社ニコン Projection optical system, exposure device, exposure method, and device manufacturing method
JP2019091057A (en) * 2019-01-15 2019-06-13 株式会社ニコン Exposure apparatus and device manufacturing method

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7859748B2 (en) 2000-01-14 2010-12-28 Carl Zeiss Smt Gmbh Microlithographic reduction projection catadioptric objective
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9846366B2 (en) 2003-05-06 2017-12-19 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10156792B2 (en) 2003-05-06 2018-12-18 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7309870B2 (en) 2003-05-06 2007-12-18 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7312463B2 (en) 2003-05-06 2007-12-25 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7348575B2 (en) 2003-05-06 2008-03-25 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
EP2722702A2 (en) 2003-05-06 2014-04-23 Nikon Corporation Projection optical system, and exposure apparatus and exposure method
EP2722703A2 (en) 2003-05-06 2014-04-23 Nikon Corporation Projection optical system, and exposure apparatus and exposure method
US9606443B2 (en) 2003-05-06 2017-03-28 Nikon Corporation Reducing immersion projection optical system
EP2722704A2 (en) 2003-05-06 2014-04-23 Nikon Corporation Projection optical system, and exposure apparatus and exposure method
EP2672307A2 (en) 2003-05-06 2013-12-11 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9081295B2 (en) 2003-05-06 2015-07-14 Nikon Corporation Catadioptric projection optical system, exposure apparatus, and exposure method
US9933705B2 (en) 2003-05-06 2018-04-03 Nikon Corporation Reduction projection optical system, exposure apparatus, and exposure method
US9086635B2 (en) 2003-05-06 2015-07-21 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9500943B2 (en) 2003-05-06 2016-11-22 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7072040B2 (en) 2003-10-07 2006-07-04 Kabushiki Kaisha Toshiba Mask for inspecting an exposure apparatus, a method of inspecting an exposure apparatus, and an exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
EP3118890A2 (en) 2003-11-20 2017-01-18 Nikon Corporation Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
WO2005050718A1 (en) 2003-11-20 2005-06-02 Nikon Corporation Light flux conversion element, lighting optical device, exposure system, and exposure method
EP2251896A1 (en) 2003-11-20 2010-11-17 Nikon Corporation Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method
EP2117034A1 (en) 2003-11-20 2009-11-11 Nikon Corporation Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
EP1926129A1 (en) 2003-11-20 2008-05-28 Nikon Corporation Beam transforming element, illumination optical apparatus, exposure apparatus, and exposure method
US8208199B2 (en) 2004-01-14 2012-06-26 Carl Zeiss Smt Gmbh Catadioptric projection objective
US8730572B2 (en) 2004-01-14 2014-05-20 Carl Zeiss Smt Gmbh Catadioptric projection objective
US7672047B2 (en) 2004-01-14 2010-03-02 Carl Zeiss Smt Ag Catadioptric projection objective
US8339701B2 (en) 2004-01-14 2012-12-25 Carl Zeiss Smt Gmbh Catadioptric projection objective
US8355201B2 (en) 2004-01-14 2013-01-15 Carl Zeiss Smt Gmbh Catadioptric projection objective
US9772478B2 (en) 2004-01-14 2017-09-26 Carl Zeiss Smt Gmbh Catadioptric projection objective with parallel, offset optical axes
US8416490B2 (en) 2004-01-14 2013-04-09 Carl Zeiss Smt Gmbh Catadioptric projection objective
US7679821B2 (en) 2004-01-14 2010-03-16 Carl Zeiss Smt Ag Catadioptric projection objective
US7869122B2 (en) 2004-01-14 2011-01-11 Carl Zeiss Smt Ag Catadioptric projection objective
US8199400B2 (en) 2004-01-14 2012-06-12 Carl Zeiss Smt Gmbh Catadioptric projection objective
US8208198B2 (en) 2004-01-14 2012-06-26 Carl Zeiss Smt Gmbh Catadioptric projection objective
US8908269B2 (en) 2004-01-14 2014-12-09 Carl Zeiss Smt Gmbh Immersion catadioptric projection objective having two intermediate images
US8804234B2 (en) 2004-01-14 2014-08-12 Carl Zeiss Smt Gmbh Catadioptric projection objective including an aspherized plate
US8289619B2 (en) 2004-01-14 2012-10-16 Carl Zeiss Smt Gmbh Catadioptric projection objective
US8289623B2 (en) 2004-01-16 2012-10-16 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US8259393B2 (en) 2004-01-16 2012-09-04 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US8270077B2 (en) 2004-01-16 2012-09-18 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US8711479B2 (en) 2004-01-16 2014-04-29 Carl Zeiss Smt Gmbh Illumination apparatus for microlithography projection system including polarization-modulating optical element
US8320043B2 (en) 2004-01-16 2012-11-27 Carl Zeiss Smt Gmbh Illumination apparatus for microlithographyprojection system including polarization-modulating optical element
US8482717B2 (en) 2004-01-16 2013-07-09 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
US8279524B2 (en) 2004-01-16 2012-10-02 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US9581911B2 (en) 2004-01-16 2017-02-28 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US9316772B2 (en) 2004-01-16 2016-04-19 Carl Zeiss Smt Gmbh Producing polarization-modulating optical element for microlithography system
EP3173866A1 (en) 2004-02-06 2017-05-31 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
EP2615479A1 (en) 2004-02-06 2013-07-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
KR20180069120A (en) 2004-02-06 2018-06-22 가부시키가이샤 니콘 Lighting optical device
US20090073441A1 (en) * 2004-02-06 2009-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
EP2618188A1 (en) 2004-02-06 2013-07-24 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
EP2615480A1 (en) 2004-02-06 2013-07-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130242527A1 (en) * 2004-02-06 2013-09-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8363315B2 (en) 2004-04-08 2013-01-29 Carl Zeiss Smt Gmbh Catadioptric projection objective with mirror group
US8913316B2 (en) 2004-05-17 2014-12-16 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9134618B2 (en) 2004-05-17 2015-09-15 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9019596B2 (en) 2004-05-17 2015-04-28 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9726979B2 (en) 2004-05-17 2017-08-08 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US7265816B2 (en) 2004-06-21 2007-09-04 Canon Kabushiki Kaisha Illumination optical system, exposure apparatus, and device manufacturing method with modified illumination generator
WO2006016469A1 (en) 2004-08-10 2006-02-16 Nikon Corporation Illumination optical equipment, exposure system and method
US7436491B2 (en) 2004-12-20 2008-10-14 Kabushiki Kaisha Toshiba Exposure system, exposure method and method for manufacturing a semiconductor device
JP4675745B2 (en) * 2005-10-25 2011-04-27 株式会社東芝 Photomask substrate sorting method, photomask manufacturing method, and semiconductor device manufacturing method
JP2007121413A (en) * 2005-10-25 2007-05-17 Toshiba Corp Method for screening substrate for photomask, method for manufacturing photomask, and method for manufacturing semiconductor device
US7740994B2 (en) 2005-10-25 2010-06-22 Kabushiki Kaisha Toshiba Method for selecting photomask substrate, method for manufacturing photomask, and method for manufacturing semiconductor device
WO2011021444A1 (en) 2009-08-17 2011-02-24 Nikon Corporation Polarization converting unit, illumination optical system, exposure apparatus, and device manufacturing method
US10175583B2 (en) 2011-06-07 2019-01-08 Nikon Corporation Illumination optical system, exposure apparatus, device production method, and light polarization unit
US9599905B2 (en) 2011-06-07 2017-03-21 Nikon Corporation Illumination optical system, exposure apparatus, device production method, and light polarization unit
US10691026B2 (en) 2011-06-07 2020-06-23 Nikon Corporation Illumination optical system, exposure apparatus, device production method, and light polarization unit
US9523918B2 (en) 2011-06-13 2016-12-20 Nikon Corporation Illumination optical assembly, exposure device, and device manufacturing method
WO2012172705A1 (en) 2011-06-13 2012-12-20 株式会社ニコン Illumination optical assembly, exposure device, and device manufacture method
US10353294B2 (en) 2011-06-13 2019-07-16 Nikon Corporation Illumination optical assembly, exposure device, and device manufacturing method
EP3553604A1 (en) 2011-06-13 2019-10-16 Nikon Corporation Illumination optical assembly, exposure device, and device manufacture method
US10564550B2 (en) 2011-06-13 2020-02-18 Nikon Corporation Illumination optical assembly, exposure device, and device manufacturing method

Also Published As

Publication number Publication date
JPH0653120A (en) 1994-02-25

Similar Documents

Publication Publication Date Title
JP3246615B2 (en) Illumination optical device, exposure apparatus, and exposure method
JP2732498B2 (en) Reduction projection type exposure method and apparatus
US5357311A (en) Projection type light exposure apparatus and light exposure method
JP3099933B2 (en) Exposure method and exposure apparatus
JPH0567558A (en) Exposure method
JPH0757993A (en) Projection aligner
JPH07183201A (en) Exposure device and method therefor
JPH06118623A (en) Reticle and semiconductor aligner using the same
JPH07122469A (en) Projection aligner
US5663785A (en) Diffraction pupil filler modified illuminator for annular pupil fills
JPH06163350A (en) Projection exposure method and device thereof
JP2936190B2 (en) Projection exposure apparatus, exposure method, and method of manufacturing semiconductor integrated circuit
JP3148818B2 (en) Projection type exposure equipment
JP3049775B2 (en) Projection exposure apparatus and method, and element manufacturing method
JPH05217851A (en) Projection aligner
JP3339593B2 (en) Projection exposure apparatus and element manufacturing method using the apparatus
JP3189009B2 (en) Exposure apparatus and method, and method of manufacturing semiconductor element
JP3049776B2 (en) Projection exposure apparatus and method, and element manufacturing method
JP3074843B2 (en) Projection exposure apparatus, exposure method, and circuit pattern forming method
JP3316695B2 (en) Scanning exposure method and device manufacturing method using the same, and scanning exposure apparatus and device manufacturing method using the same
JPH04268714A (en) Method of exposure
JP3244076B2 (en) Exposure apparatus and method, and method of manufacturing semiconductor element
JP3316761B2 (en) Scanning exposure apparatus and device manufacturing method using the same
JP3438730B2 (en) Scanning exposure apparatus and device manufacturing method using the scanning exposure apparatus
JP3427210B2 (en) Projection exposure apparatus, projection exposure method, device manufacturing method using the projection exposure method, and device manufactured by the device manufacturing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011005

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11