WO2008010316A1 - Polarizer and microscope with polarizer - Google Patents

Polarizer and microscope with polarizer Download PDF

Info

Publication number
WO2008010316A1
WO2008010316A1 PCT/JP2007/000767 JP2007000767W WO2008010316A1 WO 2008010316 A1 WO2008010316 A1 WO 2008010316A1 JP 2007000767 W JP2007000767 W JP 2007000767W WO 2008010316 A1 WO2008010316 A1 WO 2008010316A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
light
transmitted
light source
sample
Prior art date
Application number
PCT/JP2007/000767
Other languages
French (fr)
Japanese (ja)
Inventor
Shojiro Kawakami
Yoshihiko Inoue
Original Assignee
Photonic Lattice, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photonic Lattice, Inc. filed Critical Photonic Lattice, Inc.
Priority to JP2008525785A priority Critical patent/JP5021645B2/en
Publication of WO2008010316A1 publication Critical patent/WO2008010316A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/14Condensers affording illumination for phase-contrast observation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a polarizer, and a microscope using the polarizer. More specifically, the present invention uses a polarizer designed to have a concentric transmission axis, a polarizer designed to have a transmission axis radially, and a combination of such polarizers. This is related to a microscope that can effectively extract and observe only the components.
  • Polarizers are elements that have the effect of transmitting only the polarization component of the incident light along the transmission axis, and are widely used for measuring the polarization state, microscopes using polarized light, sunglasses, etc. (For example, see Japanese Patent No. 3 4 8 6 3 5 5). Ordinary polarizers have a unidirectional transmission axis indicated by a straight line and a unidirectional blocking axis.
  • Polarizing microscopes are used for the purpose of observing an observation target composed of a transparent substance, for example, a living cell under a microscope. This uses the change in the refractive index of the object to be observed and birefringence, and is used to observe living cells without staining.
  • This polarizing microscope generally uses a polarizer for irradiating the observation object with polarized light and a polarizer (analyzer) for adjusting the brightness of the observation image according to the direction of the polarized light. For example, when the polarization axes of the irradiation-side polarizer and the observation-side polarizer are orthogonal, only the part of the observation target that has a polarization conversion effect is brightly observed. Based on this principle, a polarizing microscope may be able to observe the internal structure of transparent bodies that cannot be seen normally. For polarizing microscopes with these characteristics, polarizers with a transmission axis that is linearly unidirectional have been used.
  • Patent Document 1 Japanese Patent No. 2 8 2 4 5 1
  • Patent Document 1 states that “a cold mirror film that reflects infrared rays of incident light rays and transmits visible light is formed on a glass substrate. The other side of the glass substrate is coated with a polarizing beam splitter film that splits the incident unpolarized light beam into two linearly polarized light beams whose polarization planes intersect each other.
  • a polarizer characterized by this is disclosed (claim 8), and a polarizing microscope using the polarizer is disclosed.
  • the polarizing microscope disclosed in the above document is intended to use one or more polarizers having a linear polarization axis.
  • the polarization rotation phenomenon associated with the lens transmission described above is based on the fact that the transmittance on an inclined surface that is not perpendicular to the light traveling direction is a P wave whose incident surface and electric field vibration direction are parallel, and an s wave perpendicular to this.
  • One of the causes is different.
  • a shift in the phase of the P wave and s wave caused by a multilayer film such as an antireflection film provided on the lens surface also causes the polarization state to change. In this way, by generating different transmittance and phase difference between the P wave and s wave on the lens surface, the light containing both wave components changes from linearly polarized light to elliptically polarized light, and the principal axis direction rotates.
  • the present invention uses a polarizer having a rotationally symmetric polarization axis instead of a linear polarization axis so that the polarization plane deviation caused by a lens or the like can be reduced when used in a polarization microscope.
  • the purpose is to provide a new polarizer that is not easily affected.
  • An object of the present invention is to provide a polarizing microscope that uses a novel polarizer and blocks light at a high extinction ratio when there is no sample.
  • An object of the present invention is to provide a polarizing microscope capable of obtaining an observation image having no direction dependency by a single observation.
  • An object of the present invention is to provide a polarization microscope capable of effectively observing minute defects, scratches, fiber structures, and the like.
  • the first aspect of the present invention basically provides a polarizer having a transmission axis concentrically or radially that is not a polarizer having parallel polarization planes.
  • These polarizers are basically polarized light that has a concentric transmission axis or a radial transmission axis (thus, the blocking axis is concentric) for the irradiation-side and observation-side polarizers.
  • Useful for microscopes In other words, in a polarization microscope, local disturbance of the polarization state (polarization conversion) occurs due to the lens of the objective lens.
  • an irradiation-side polarizer and an observation-side polarizer each having a concentric transmission axis or a radial transmission axis (thus, a blocking axis is concentric) are used.
  • the microscope is basically an axisymmetric optical system, except for possible causes such as assembly errors and the photoelastic effect due to the residual stress of the lens.
  • light with concentric polarization is not converted to light with radial polarization when passing through a lens or space, and vice versa, so with the polarizer of the present invention, A polarizing microscope that is not affected by a lens or the like can be obtained.
  • the first aspect of the present invention relates to a polarizer in which transmission axes are provided concentrically.
  • the transmission axis is the polarizer described above, wherein a plurality of the transmission axes are provided concentrically from one center.
  • a polarizer may be manufactured by a self-cloning method using a substrate that has a plurality of concavities and convexities on the surface. That is, for example, the layers constituting the polarizer have a plurality of concentric periodic structures, and such layers need only be formed in multiple layers.
  • a polarizer having transmission axes concentrically arranged may be a polarizer having a layer in which a radial periodic structure is formed in multiple stages from the center to the outer edge.
  • a preferred embodiment of the first aspect of the present invention relates to the polarizer described in any one of the above, which is composed of a self-cloning photonic crystal.
  • a specific example of a polarizer with concentric transmission axes is a concentric periodic structure composed of self-cloning photonic crystals composed of multiple layers, each layer having a period of 2 3 2 nm.
  • the thickness of the S i 0 2 layer is 5 8 nm
  • the thickness of the Ta 2 O 5 layer is 81 nm
  • the Si 0 2 layer and the Ta 2 0 5 layer are alternately 4
  • One example is a polarizer that consists of zero layers and transmits polarized light having an electric field component parallel to the tangent of the circumference of each concentric circle for input light with a wavelength between 5220 nm and 540 nm.
  • a polarizer having transmission axes concentrically arranged is a self-cloning photonic crystal composed of multiple layers, has a radial periodic structure, and a substrate pitch of 2 At 45 nm, S i 0 2 is 1 45 nm, Ta 2 0 5 is 1 25 nm, and there are 27 layers of polarizers.
  • the present invention relates to a polarizer in which a transmission axis is provided radially from one point (thus, a blocking axis is concentric).
  • the present invention relates to the polarizer described above, which has a layer in which a radial periodic structure is formed in multiple stages from the center to the outer edge, and further comprises a self-cloning photonic crystal.
  • the layers constituting the polarizer have a periodic structure, and the radial structure is formed in multiple stages from the center to the outer edge in order to keep the interval between the radially formed periodic structures within a certain range.
  • a polarizer with a transmission axis radiating from one point is used as a self-chromoscope composed of multiple layers.
  • each layer has a radial periodic structure of 2 3 2 nm, the Si 0 2 layer thickness is 5 8 nm, and the Ta 2 0 5 layer thickness is 8 1 nm, 40 and 40 layers of S i 0 2 layers and Ta 2 0 5 layers are stacked alternately.
  • a polarizer that transmits polarized light having an electric field component perpendicular to the tangent line of the circumference.
  • a polarizer with a transmission axis radiating from one point is composed of a self-cloning photonic crystal composed of multiple layers, has a concentric periodic structure from the center, and a substrate pitch of 2 45 nm.
  • S i 0 2 is 1 4 5 nm
  • D 3 2 0 5 is 1 2 5 ⁇ .
  • a second aspect of the present invention includes: a light source; and a first polarizer that transmits light from the light source, the transmission axis of which is provided concentrically around the optical axis; and the first polarization
  • the present invention relates to a polarizing microscope comprising: an objective lens; and a second polarizer in which light transmitted through the objective lens is transmitted and a transmission axis is provided radially about the optical axis.
  • the “second polarizer in which the transmission axis is provided radially from the optical axis” is preferably the polarizer described above in which the transmission axis is provided radially from the center of the polarizer. That is, as the first polarizer and the second polarizer, the above-described polarizers can be used as appropriate.
  • a conventional polarizing microscope uses a polarizer having a linear polarization axis, and therefore it is affected by the lens and cannot obtain a high extinction ratio. won.
  • a polarizer having a transmission axis concentrically arranged and a polarizer having a transmission axis radially arranged around the optical axis are used in combination. The extinction ratio can be obtained.
  • Another aspect of the second aspect of the present invention is a light source; and a first polarizer that transmits light from the light source, and whose transmission axis is provided radially about the optical axis;
  • a polarizing microscope comprising: an objective lens that transmits light; and a second polarizer that transmits light that has passed through the objective lens and that has a transmission axis concentrically centered on the optical axis.
  • Another aspect of the second aspect of the present invention is different from the above in that a light source; the light from the light source is transmitted; a transmission axis is radial about the optical axis or concentric about the optical axis
  • a first polarizer provided on the observation sample an observation sample stage on which a sample irradiated with light transmitted through the first polarizer is mounted; a light transmitted through the sample mounted on the observation sample stage; or Light reflected from the sample mounted on the observation sample stage is transmitted; an object lens; light transmitted through the objective lens is transmitted; an optical rotator that makes the polarization main axis direction orthogonal; and light transmitted through the optical rotator is And a second polarizer having a transmission axis similar to that of the first polarizer, and a polarizing microscope.
  • a second polarizer having a transmission axis similar to that of the first polarizer means, for example, that the first polarizer is a polarizer in which the transmission axis is provided concentrically around the optical axis.
  • the polarizers may be the same polarizers, or the transmission axes may be provided concentrically around the optical axis, and the first polarizer may be provided radially around the optical axis.
  • a polarizer it may be the same polarizer or a polarizer whose transmission axis is provided radially around the optical axis.
  • Another embodiment of the second aspect of the present invention is different from the above in that a light source; light from the light source is transmitted; a transmission axis is radial about the optical axis or concentric about the optical axis.
  • a first polarizer provided in the optical axis; a light rotator that transmits light transmitted through the first polarizer; a polarization rotator that orthogonally crosses the principal axis direction of polarization; and a sample irradiated with light transmitted through the optical rotator
  • a second polarizer having a transmission axis similar to that of the first polarizer, and a polarizing microscope comprising:
  • a preferred embodiment of the polarization microscope according to the second aspect of the present invention includes a condensing lens that condenses light from the light source between the light source and the first polarizer;
  • the first polarizer is disposed between the light source and the observation sample and is disposed at the pupil position of the condenser lens;
  • the second polarizer is disposed at the pupil position of the objective lens;
  • the present invention relates to any one of the polarizing microscopes.
  • the polarization microscope of the present invention by arranging a polarizer having a rotationally symmetric polarization axis at the pupil position of the condenser lens and the objective lens, or at a position conjugate to them, the omnidirectional straight line is obtained. Because the light with the same polarization mixed is incident on the sample, an observation image with no direction dependency can be obtained with a single observation.
  • this polarizing microscope when the sample surface is a uniform transparent body, the light that has passed through a certain point of the concentric polarizer placed at the front stage of the observation sample is reflected by the radial polarizer placed at the rear stage of the observation sample. It is blocked by gathering at one corresponding point.
  • the polarization microscope according to this mode is suitable for observing minute defects, scratches, and fibrous structures.
  • the microscope according to the third aspect of the present invention includes a concentric polarizer with a transmission axis and a radial polarizer with a transmission axis at the pupil position of the condenser lens and the pupil position of the objective lens.
  • a finer structure can obtain higher resolution images. It relates to the microscope.
  • this microscope has a polarizer with a concentric transmission axis at the pupil position of the condenser lens, for example, and a polarizer with a radial transmission axis at the pupil position of the objective lens.
  • this microscope has a polarizer with a radial transmission axis at the position of the condensing lens and a polarizer with a concentric transmission axis at the pupil position of the objective lens.
  • a concentric polarizer with a transmission axis or a radial polarizer with a transmission axis at the vertical position of the condenser lens and the vertical position of the objective lens The higher the resolution, the higher the resolution.
  • a configuration of a normal microscope can be appropriately adopted as a configuration other than the above polarizer.
  • a novel polarizer having a transmission axis that is concentric or a transmission axis that is radial (and thus the blocking axis is concentric) that is not obtained by a polarizer having parallel polarization planes. They can be used effectively in the polarizing microscopes mentioned above.
  • the irradiation-side polarizer and the observation-side polarizer each have a concentric transmission axis or a radial transmission axis (thus, the blocking axis is concentric). Therefore, it is possible to provide a polarizing microscope that is not affected by the distortion of the polarization plane caused by a lens such as an objective lens, and that blocks light when there is no sample.
  • Figure 1 shows the direction of the transmission axis in a polarizer with transmission axes concentrically arranged.
  • the first aspect of the present invention relates to a polarizer in which transmission axes are provided concentrically.
  • a polarizer for example, has multiple concavities and convexities on the surface. What is necessary is just to manufacture by the self-cloning method using such a board
  • Figure 2 shows the direction of the transmission axis in a polarizer with a transmission axis radiating from one point.
  • the transmission axis is radiated at a uniform rate from one point (preferably the center of gravity of the polarizer). Since the transmission axis and the blocking axis are orthogonal, the blocking axis of such a polarizer is concentric.
  • Fig. 3 shows a schematic diagram of a polarizer having a transmission axis in a concentric or radiant shape using a self-cloning photonic crystal.
  • Figure 3 (a) shows an example of a polarizer with transmission axes concentrically arranged.
  • Figure 3 (b) shows an example of a polarizer with a transmission axis radiating from one point.
  • Figure 3 (c) shows an example of a polarizer having layers in which radial periodic structures are formed in multiple stages.
  • Figure 4 shows an example of a self-cloning photonic crystal. As shown in Fig.
  • a self-cloning photonic crystal is generally formed by stacking a number of layers with a specific periodic structure in a direction parallel to and perpendicular to the grooves on the surface.
  • Different transmission characteristics can be designed for each polarized light with electric field oscillation. For example, as shown in Fig. 4, polarized light having electric field vibration parallel to the groove can be reflected, and polarized light having electric field vibration perpendicular to the groove can be transmitted. Also, by adjusting the pitch of the unevenness and the film thickness of the multilayer film, it is possible to transmit only polarized light having electric field vibration parallel to the grooves, contrary to Fig. 4. Therefore, according to the self-cloning method, a polarizer having the shape shown in Fig. 3 (a) and Fig. 3 (b) can be manufactured.
  • the one shown in Fig. 3 (c) is designed to have three steps so that the radial periodic structure is divided into three equal parts from the center to the outer edge. It is not limited to the one, but it may be 2 steps or 4 steps or more.
  • a preferred embodiment of such a polarizer is that the layers constituting the polarizer have a periodic structure, so that the interval between the radially formed periodic structures is within a certain range. Thus, a radial periodic structure is formed in multiple stages.
  • the size of the polarizer is not particularly limited, but is preferably a size that can be used as a lens for a polarizing microscope.
  • the polarizer as described above is, for example, disclosed in JP-A-10-335758, JP-A-2000-258645, JP-A-2001-74954, JP-A-2 001-249235, JP-A-2004.
  • _45779 can be appropriately created using a manufacturing technique disclosed in the publication.
  • a desirable method for producing self-cloning photonic crystals is described below. Quartz is used as the substrate material, and periodic irregularities with a pitch of about half the operating wavelength are formed using a photolithography process.
  • a photonic crystal can be obtained by forming a film using a sputtering apparatus.
  • the substrate pitch (one period of irregularities) is 232 nm
  • the S i O 2 layer thickness is 58 nm
  • Ta 2 O When 40 layers each with a thickness of 81 nm are stacked, only polarized light having an electric field component parallel to the unevenness is transmitted at a wavelength of 520 to 540 n (with an extinction ratio of 40 dB or more). did it.
  • the substrate groove is concentric
  • a transmission axis having a concentric shape can be obtained.
  • the transmission axis can be made radial.
  • the groove provided on the plate and the polarizer with parallel transmission axes should be adjusted appropriately according to the groove shape of the substrate, the substrate pitch, the material constituting each layer, and the film thickness of each layer.
  • the substrate pitch is not particularly limited, but is appropriately adjusted within about half the wavelength of incident light, for example, in the range of 50 nm to 60 nm, preferably in the range of 100 nm to 500 nm. do it.
  • each layer composing a polarizer composed of self-cloning crystals may be adjusted as appropriate from 20 nm to 150 nm.
  • each layer has two different types of layers as one pair, and multiple pairs are stacked.
  • the number of such pairs is, for example, from 10 to 20 layers, and may be from 20 to 100 layers.
  • the substrate pitch is 2 45 nm
  • S i 0 2 is 1 45 nm
  • Ta 2 0 5 is 1 2 5 nm.
  • a polarizer that transmits only polarized light having an electric field component perpendicular to the irregularities at a wavelength of 520 to 5500 nm is obtained.
  • the substrate groove is concentric, a polarizer with a radial transmission axis can be obtained, and if the substrate groove is radial, a transmission axis can be obtained with a concentric circle.
  • the polarizer with the transmission axis orthogonal to the groove provided on the substrate is adjusted according to this example by adjusting the groove shape of the substrate, the substrate pitch, the material constituting each layer, the film thickness of each layer, etc. Can be manufactured.
  • the substrate pitch is not particularly limited, but is appropriately adjusted within about half the wavelength of the incident light, for example, in the range of 50 nm to 60 nm, preferably in the range of 100 nm to 500 nm. That's fine.
  • each layer composing a polarizer composed of self-cloning crystals may be adjusted as appropriate from 20 nm to 150 nm. In addition, it is preferable that each layer has two different layers as one pair, and multiple pairs are stacked. The number of such pairs (number of layers) is, for example, 10 or more and 20 or less layers, and may be 20 or more and 100 or less layers.
  • a polarizer having a radial transmission axis can be realized by a wire grid polarizer having a shape as shown in FIG. 5, for example.
  • Figure 5 is a schematic diagram of a wire-grid polarizer.
  • self-cloning photonic crystals are preferred because they can be manufactured with high accuracy and can exhibit the polarization adjustment function.
  • a polarizing microscope according to the second aspect of the present invention.
  • a light source a first polarizer that transmits light from the light source, a transmission axis that is provided concentrically with the optical axis as a center; and transmission through the first polarizer.
  • a second polarizer that transmits light passing through the objective lens and whose transmission axis is provided radially around the optical axis.
  • the optical axis is the axis through which light passes in a polarizing microscope.
  • a polarizer having a transmission axis concentrically arranged and a polarizer having a transmission axis radially arranged around the optical axis are used in combination.
  • a high extinction ratio can be obtained.
  • Another aspect of the second aspect of the present invention is the light source; a first polarizer that transmits light from the light source, the transmission axis is provided radially about the optical axis; An observation sample stage on which a sample irradiated with light transmitted through the first polarizer is mounted; light transmitted through the sample mounted on the observation sample stage or reflected from a sample mounted on the observation sample stage
  • a polarizing microscope comprising: an objective lens that transmits light; and a second polarizer that transmits light that has passed through the objective lens and that has a transmission axis concentrically centered on the optical axis.
  • FIG. 6 shows an example of the configuration of a polarizing microscope.
  • the microscope (1 1) in Fig. 6 the light collected by the condenser lens (1 3) and output horizontally in the lamp house (1 2) is bent upward by the mirror (1 4) at the bottom of the microscope. Passes in the order of irradiation side polarizer (15), condenser lens (16), observation sample (17), objective lens (18), observation side polarizer (analyzer) (19).
  • FIG. 3 An image is obtained through the eyepiece [20].
  • This microscope has a transmissive configuration.
  • One of the irradiation side polarizer (15) and the observation side polarizer (analyzer) (19) is a polarizer having a concentric transmission axis as shown in Fig. 1, and the rest are shown in Fig. 2.
  • Such a polarizer has a radial transmission axis.
  • a polarizer with a concentric or radiative transmission axis is realized with a self-cloning photonic crystal polarizer. ).
  • a microscope with a configuration other than that shown in Fig. 6, such as a reflection type may be used.
  • a high-sensitivity polarization microscope that is not affected by polarization conversion by the lens is configured by providing a concentric or radial polarizer with transmission axes at the position of the irradiation side polarizer and observation side polarizer in Fig. 6. can do.
  • FIG. 7 is a diagram showing an example of a polarization microscope in which an optical rotator composed of a crystal rotator or a liquid crystal is inserted between the irradiation side polarizer and the observation side polarizer.
  • an optical rotator composed of a crystal rotator or a liquid crystal is inserted between the irradiation side polarizer and the observation side polarizer.
  • the extinction state between the two polarizers can be reduced to some extent.
  • the amount of light transmitted through the viewing-side polarizer can be relaxed and contribute to preliminary positioning for observation.
  • FIG. 8 is a diagram showing an example of a polarization microscope in which a rotator (Faraday element) using the Faraday effect is provided between the irradiation side polarizer and the observation side polarizer.
  • the irradiation-side polarizer and the observation-side polarizer can be shared by a single polarizer (2 2) through the Faraday element (2 1).
  • a polarizer having a concentric transmission axis is used as the irradiation side polarizer, the light transmitted through the sample surface without the observation sample reaches the observation side polarizer without being converted in polarization state. Therefore, it can be blocked by a polarizer having a radial transmission axis.
  • the optical rotator of the present invention a known optical rotator can be used as long as it has a function of orthogonally crossing the polarization main axis direction.
  • a Faraday rotator using magnetism for example, JP 2 0 0 5 _ 2 8 3 6 3 5 publication, Toshiaki Sugawara “Lightwave optics” (see Corona, 1 998, page 2 2 3)
  • the polarization microscope of the embodiment shown in FIG. 8 includes a light source; a first polarizer that transmits light from the light source, and whose transmission axis is provided radially or concentrically; and the first polarizer.
  • An observation sample stage on which a sample irradiated with light that has passed through is irradiated; light transmitted through the sample mounted on the observation sample stage, or light reflected from the sample mounted on the observation sample stage is transmitted; A lens; a light rotator that transmits the light transmitted through the objective lens; a polarization rotator that orthogonally crosses the polarization main axis direction; and a second rotator that transmits the light transmitted through the optical rotator and has a transmission axis similar to that of the first polarizer.
  • the present invention relates to a polarizing microscope comprising: a polarizer;
  • a second polarizer having a transmission axis similar to that of the first polarizer means, for example, that the first polarizer is a polarizer in which the transmission axis is provided concentrically around the optical axis.
  • the polarizers may be the same polarizers, or the transmission axes may be provided concentrically around the optical axis, and the first polarizer may be provided radially around the optical axis.
  • a polarizer In the case of a polarizer, it may be the same polarizer or a polarizer whose transmission axis is provided radially around the optical axis.
  • the Faraday rotator using magnetism reflects the light that has been transmitted through the Faraday rotator, and then reflects it again from the opposite side. When transmitted, it has the property of rotating twice.
  • an optical rotator made of crystal or liquid crystal once the optical rotator is transmitted and the optical rotator is transmitted from the opposite side, the optical rotation is reversed in the opposite direction to that transmitted from the forward side. Disappear.
  • a Faraday rotator that uses magnetism when the irradiation light from the sample and the observation light from the sample pass through the same path as in a reflection microscope.
  • any type of optical rotator can be used in a transmission-type polarization microscope in which the path between the irradiation light and the observation light is completely separated.
  • Such a polarization microscope also includes a light source; a first polarization that transmits light from the light source, the transmission axis is provided radially around the optical axis or concentrically around the optical axis.
  • An optical sample that transmits light transmitted through the first polarizer, an optical rotator that orthogonally crosses the direction of the principal axis of polarization, an observation sample stage that mounts a sample irradiated with the light transmitted through the optical rotator, and the observation sample base
  • An objective lens that transmits light that has passed through the sample mounted on the sample, or light that has been reflected from the sample mounted on the observation sample stage; and the first polarizer that transmits light that has passed through the optical rotator.
  • a polarization microscope comprising: a second polarizer having a similar transmission axis;
  • the light passing through the concentric or radial polarizer arranged at the pupil position of the condenser lens in the front stage of the sample is affected by the light reaching the image plane.
  • the light beam that has passed through the entire surface of the condensing lens ⁇ in the same direction is collected at one point on the image plane. Therefore, the light that illuminates a point on the image plane is a collection of light that has passed through all the surfaces of concentric or radial polarizers, and is light of any polarization orientation.
  • these lights reach radial or concentric polarizers arranged at the pupil position of the objective lens, and these polarizers are orthogonal to the polarization directions of the respective rays. Since it has a transmission axis, all light is blocked.
  • the sample has birefringence
  • the polarization orientation does not change before and after passing through the sample and when it is orthogonal. All states can be expressed as a combination of these two states.
  • the component light beam penetrating the sample in a straight line is a radial ray placed at the pupil position of the objective lens, and at the point where it reaches the concentric polarizer, the polarization direction and the transmission axis of the polarizer are orthogonal. Blocked.
  • the diffracted light is generated according to the fineness of the sample in addition to the light beam penetrating the sample linearly, the light reaching the objective lens pupil position irradiates a wide area.
  • the polarization direction of the light beam and the transmission axis deviate from orthogonal, and a component that is not blocked is generated according to the amount of deviation.
  • the amount of deviation between the polarization direction of the light beam and the orthogonal direction of the polarizer transmission axis increases as the spread of the light beam increases, that is, as the component away from the center of the light beam increases.
  • the spread of the luminous flux increases as the spatial frequency component of the scatterer increases, that is, as the scatterer becomes finer. Therefore, it can be seen that the non-blocking component increases as the sample becomes finer.
  • Figure 9 is a graph showing the relationship between the transmittance and the spatial frequency component of the sample when there is no polarization conversion by the sample.
  • a preferred embodiment of the polarizing microscope of the present invention includes a condensing lens that collects light from the light source between the light source and the first polarizer; Between the light source and the observation sample, disposed at a pupil position of the condenser lens; and the second polarizer is disposed at a pupil position of the objective lens; This relates to a polarizing microscope.
  • “pupil position of condensing lens” means the focal position of the condensing lens.
  • the pupil position of the objective lens means the focal position of the objective lens.
  • the polarization microscope of the present invention by arranging a polarizer having a rotationally symmetric polarization axis at the pupil position of the condenser lens and the objective lens, or at a position conjugate with them, a straight line in all directions. Because the light with the same polarization mixed is incident on the sample, an observation image with no direction dependency can be obtained with a single observation.
  • this polarizing microscope when the sample surface is a uniform transparent body, the light that has passed through a certain point of the concentric polarizer placed at the front stage of the observation sample is reflected by the radial polarizer placed at the rear stage of the observation sample. It is blocked by gathering at one corresponding point.
  • the polarization microscope according to this mode is suitable for observing minute defects, scratches, and fibrous structures.
  • Fig. 11 is a conceptual diagram of the board obtained in Example 1.
  • the uneven width should be about half the normal wavelength, and the depth should be about half the wavelength.
  • a self-cloning photonic crystal of 3; 0 2 and 3 2 0 5 was prepared using a quartz substrate provided with a plurality of concentric grooves. 40 layers were stacked with a substrate pitch of 2 3 2 nm, 3 10 2 5 8 mm, and Ta 2 O 5 8 1 nm. In this way, it was possible to obtain a polarizer that transmits only polarized light having an electric field component parallel to the unevenness at a wavelength of 520 to 50 nm (with an extinction ratio of 40 dB or more).
  • film formation was performed by the autocloning method. Specifically, the substrate shown in Fig. 11 is installed in the sputtering equipment,
  • FIG. 12 shows a schematic diagram of the equipment used for autocloning and a schematic diagram of the autocloning method. Incidentally, a film was formed and silicon oxide tantalum dioxide (T a 2 O s) alternately.
  • Figure 13 shows a conceptual diagram of the obtained polarizer.
  • Figure 14 shows a photograph replacing the drawing of the obtained polarizer. As shown in Fig. 14, a polarizer was actually obtained based on this method.
  • Figure 15 is a graph replacing the drawing showing the spectral characteristics evaluation results of the prototype self-cloning photonic crystal polarizer.
  • a measurement sample with linear grooves was used, which was formed at the same time as a substrate having concentric grooves.
  • the TE wave with the electric field vibration component parallel to the concavo-convex groove shows a transmittance of 0.1% or less in the band below 500 nm
  • the TM wave with the electric field vibration component orthogonal to the concavo-convex groove It shows a high transmittance of 90% or more in the band above nm, indicating that it has a high polarization separation function.
  • the band operating as a polarizer can be adjusted in various ways by changing the pitch of the concavo-convex grooves and the lamination period of the multilayer film. From the above data, it is clear that the prototype polarizer with concentric grooves has realized a polarization function with concentric cut-off axes and radial transmission axes.
  • Figure 16 shows the results of simulating the images obtained when scatterers of various shapes are placed on the observation surface with the polarizing microscope of the present invention.
  • Figure 16 (a) shows the images observed with a polarizing microscope for scatterers with the same edge sharpness but different sizes.
  • Figure 16 (b) shows the images observed with a polarizing microscope for scatterers of the same size but different edge sharpness. From Fig. 16 (a), it can be seen that the brightness of the obtained image increases as the object becomes smaller if the polarizing microscope of the present invention is used. From Fig. 16 (b), it can be seen that the sharper the edge, the higher the brightness of the obtained image.
  • the polarizer of the present invention is widely used not only in a polarizing microscope but also in the optical element industry. Can be used. On the other hand, the polarizing microscope of the present invention is widely used as a microscope because it is effectively used for observation of biological samples.
  • Fig. 1 is a diagram showing the direction of the transmission axis in a polarizer in which the transmission axes are concentrically arranged.
  • Fig. 2 is a diagram showing the direction of the transmission axis in a polarizer whose transmission axis is arranged radially from one point.
  • FIG. 3 shows a schematic diagram of a polarizer having transmission axes in concentric or radial fashion using self-cloning photonic crystals.
  • Figure 3 (a) shows an example of a polarizer with transmission axes concentrically arranged.
  • Figure 3 (b) shows an example of a polarizer with a transmission axis that radiates from one point.
  • Figure 3 (c) shows an example of a polarizer whose transmission axis is arranged in multiple stages radially from the center of the polarizer.
  • Figure 4 shows an example of a self-cloning photonic crystal.
  • Fig. 5 is a schematic diagram of a wire-and-grid polarizer.
  • FIG. 6 shows an example of the configuration of a polarizing microscope.
  • FIG. 7 is a diagram showing an example of a polarization microscope in which an optical rotator composed of a crystal rotator or liquid crystal is inserted between an irradiation side polarizer and an observation side polarizer.
  • Fig. 8 shows an example of a polarizing microscope in which a rotator (Faraday element) using the Faraday effect is provided between the irradiation side polarizer and the observation side polarizer.
  • Fig. 9 is a graph showing the relationship between the transmittance and the spatial frequency component of the sample when there is no polarization conversion by the sample.
  • Fig. 10 is a graph showing the relationship between the transmittance and the spatial frequency component of the sample when the polarization orientation is converted by 90 ° by the sample.
  • FIG. 11 is a conceptual diagram of the substrate obtained in Example 1.
  • FIG. 11 is a conceptual diagram of the substrate obtained in Example 1.
  • Fig. 12 shows a schematic diagram of the equipment used for autocloning and a schematic diagram of the autocloning method.
  • Figure 13 shows a conceptual diagram of the obtained polarizer.
  • Fig.14 shows a photograph replacing the drawing of the obtained polarizer.
  • Fig. 15 is a graph instead of a drawing showing the spectral characteristics evaluation results of the prototype self-cloning photonic crystal polarizer.
  • Fig. 16 shows the results of simulating the images obtained when various shapes of scatterers were placed on the observation surface in the polarizing microscope of the present invention.
  • Figure 16 (a) shows the images observed with a polarizing microscope for scatterers with the same edge sharpness but different sizes.
  • Figure 16 (b) shows the images observed with a polarizing microscope for scatterers of the same size but different edge sharpness.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)
  • Polarising Elements (AREA)

Abstract

[PROBLEMS] To provide not a polarizer having a liner polarization axis but a novel polarizer not influenced by polarization state conversion attributed to a lens and so forth (removal) when used in a polarization microscope and a polarization microscope in which a novel polarizer is used and light is ideally blocked when a sample having no polarization conversion action is observed. [MEANS FOR SOLVING PROBLEMS] The above problem is unavoidable when a lens is constituted of a curved surface rotationally symmetric with respect to the optical axis and the polarizing axis is linear. Therefore, the problem can be fundamentally solved by using a polarizer having a transmission axis rotationally symmetric with respect to the optical axis similarly to the lens. That is, the problem can be solved by using a polarizer having a concentric transmission axis or a redial transmission axis in a polarization microscope.

Description

明 細 書  Specification
偏光子, 及び偏光子を用いた顕微鏡  Polarizer, and microscope using polarizer
技術分野  Technical field
[0001 ] 本発明は, 偏光子, 及び偏光子を用いた顕微鏡などに関する。 より詳しく 説明すると, 本発明は, 同心円状の透過軸を有するように設計された偏光子 , 放射状に透過軸を有するように設計された偏光子, 及びそのような偏光子 を組み合せて用い, 特定の成分のみを効果的に抽出し, 観測できる顕微鏡な どに関する。  [0001] The present invention relates to a polarizer, and a microscope using the polarizer. More specifically, the present invention uses a polarizer designed to have a concentric transmission axis, a polarizer designed to have a transmission axis radially, and a combination of such polarizers. This is related to a microscope that can effectively extract and observe only the components.
背景技術  Background art
[0002] 偏光子は入射光のうち透過軸に沿った偏光成分のみを透過させる作用を有 する素子であり, 偏光状態の測定や, 偏光を利用した顕微鏡, サングラスな どに広く用いられている (たとえば, 特許 3 4 8 6 3 5 5号公報を参照) 。 通常の偏光子は, 直線で示される一方向の透過軸とこれに直交する一方向の 遮断軸を有する。  [0002] Polarizers are elements that have the effect of transmitting only the polarization component of the incident light along the transmission axis, and are widely used for measuring the polarization state, microscopes using polarized light, sunglasses, etc. (For example, see Japanese Patent No. 3 4 8 6 3 5 5). Ordinary polarizers have a unidirectional transmission axis indicated by a straight line and a unidirectional blocking axis.
[0003] 透明な物質で構成された観察対象, 例えば生体細胞などを顕微鏡観察する などの目的で, 偏光顕微鏡が利用される。 これは, 観察対象の屈折率変化や 複屈折性などを利用しており, 生きたままの細胞などを無染色で観察したい 場合などに用いられる。 この偏光顕微鏡には, 観察対象を偏光照射するため の偏光子と, 観察像の明るさを偏光の向きによって調節するための偏光子(検 光子)が用いられるのが一般的である。 例えば照射側偏光子と観察側偏光子の 偏光軸を直交させた場合, 観察対象の偏光変換作用のある部位のみが明るく 観察されることになる。 偏光顕微鏡は, このような原理に基づいて, 通常で は見ることのできない透明体の内部構造などを観察できる場合がある。 この ような特徴を有する偏光顕微鏡には, 従来透過軸が直線的に一方向であるよ うな偏光子が用いられてきた。  [0003] Polarizing microscopes are used for the purpose of observing an observation target composed of a transparent substance, for example, a living cell under a microscope. This uses the change in the refractive index of the object to be observed and birefringence, and is used to observe living cells without staining. This polarizing microscope generally uses a polarizer for irradiating the observation object with polarized light and a polarizer (analyzer) for adjusting the brightness of the observation image according to the direction of the polarized light. For example, when the polarization axes of the irradiation-side polarizer and the observation-side polarizer are orthogonal, only the part of the observation target that has a polarization conversion effect is brightly observed. Based on this principle, a polarizing microscope may be able to observe the internal structure of transparent bodies that cannot be seen normally. For polarizing microscopes with these characteristics, polarizers with a transmission axis that is linearly unidirectional have been used.
[0004] 例えば, 特許 2 8 2 8 4 5 1号公報 (特許文献 1 ) には, 「入射された光 線のうち赤外線を反射して可視光を透過するコールドミラー膜をガラス基板 の一方の面にコーティングし, 入射された無偏光の光線を偏光面が互いに直 交する 2つの直線偏光の光線に分岐する偏光ビームスプリッタ膜を前記ガラ ス基板の他方の面にコーティングして成ることを特徴とする偏光子」 (請求 項 8 ) が開示され, そして, その偏光子を用いた偏光顕微鏡が開示されてい る。 やはり, 上記の文献に開示される偏光顕微鏡においても, 直線的な偏光 軸を有する偏光子を一つ, 又は複数用いることが意図されている。 [0004] For example, Japanese Patent No. 2 8 2 4 5 1 (Patent Document 1) states that “a cold mirror film that reflects infrared rays of incident light rays and transmits visible light is formed on a glass substrate. The other side of the glass substrate is coated with a polarizing beam splitter film that splits the incident unpolarized light beam into two linearly polarized light beams whose polarization planes intersect each other. A polarizer characterized by this is disclosed (claim 8), and a polarizing microscope using the polarizer is disclosed. Again, the polarizing microscope disclosed in the above document is intended to use one or more polarizers having a linear polarization axis.
[0005] しかしながら, 照射側偏光子と観察側偏光子に, 直線的な偏光軸を有する 偏光子を用いた場合, 対物レンズが曲面を有しているので, 対物レンズによ り光の偏光状態が変化してしまい, 結局観察試料が何もない場合であっても , 完全に暗くすることができないという問題があった。 特に倍率の高い対物 レンズを用いた偏光顕微鏡では, 上記偏光変換が顕著に発生するという問題 がある。 すなわち, 従来のような直線的な偏光軸を有する偏光子を用いた偏 光顕微鏡では, 高い消光比を達成することが困難であった。  [0005] However, when a polarizer having a linear polarization axis is used for the irradiation-side polarizer and the observation-side polarizer, the objective lens has a curved surface. As a result, there was a problem that even if there was no observation sample, it could not be completely darkened. In particular, a polarization microscope using a high-magnification objective lens has a problem that the above-described polarization conversion occurs remarkably. In other words, it was difficult to achieve a high extinction ratio with a polarization microscope using a polarizer having a linear polarization axis as in the past.
[0006] 上記のレンズ透過に伴う偏光回転現象は, 光の進行方向に垂直ではない傾 斜面における透過率が, 入射面と電界の振動方向が平行な P波と, これに垂直 な s波とで異なることが原因の一つである。 また, レンズ表面に設けられた反 射防止膜などの多層膜によって, 前記 P波と s波との位相にずれが生じること も, 偏光状態を変えてしまう原因になる。 このように P波と s波とで異なる透 過率と位相差をレンズ表面で発生することにより, 両波の成分を含む光は直 線偏光が楕円偏光に変化したり主軸方向が回転したりしてしまう。 このため , 例えば照射側偏光子と観察側偏光子とを互いの透過軸を直交させて用いた 場合, 観察試料の存在していない部分でも完全な暗部にすることができず, 従って観察試料に起因する微弱な偏光変換作用の検出を阻害するという問題 がある。  [0006] The polarization rotation phenomenon associated with the lens transmission described above is based on the fact that the transmittance on an inclined surface that is not perpendicular to the light traveling direction is a P wave whose incident surface and electric field vibration direction are parallel, and an s wave perpendicular to this. One of the causes is different. In addition, a shift in the phase of the P wave and s wave caused by a multilayer film such as an antireflection film provided on the lens surface also causes the polarization state to change. In this way, by generating different transmittance and phase difference between the P wave and s wave on the lens surface, the light containing both wave components changes from linearly polarized light to elliptically polarized light, and the principal axis direction rotates. Resulting in. For this reason, for example, when the irradiation-side polarizer and the observation-side polarizer are used with their transmission axes orthogonal to each other, even a portion where the observation sample does not exist cannot be made a complete dark portion. There is a problem that the detection of the weak polarization conversion effect is obstructed.
[0007] 更に, 直線偏光を照射光として用いた偏光観察では, 照射した偏光軸に平 行及び直交する方位に光学異方性軸を有するような, 観察試料の光学特性は 観察できなかった。 このため, 偏光観察を行う際, 照射光の偏光方位を少な くても 2つの方向に設定した複数の観察結果を比較して, 試料の評価をする ことが多く行われており, 観察の為のプロセスの増加の一因となっていた。 特許文献 1 :特許 2 8 2 8 4 5 1号公報 [0007] Furthermore, in the polarization observation using linearly polarized light as the irradiation light, the optical characteristics of the observation sample having an optical anisotropy axis in the direction parallel and perpendicular to the irradiated polarization axis could not be observed. For this reason, when performing polarization observation, the sample is evaluated by comparing multiple observation results in which the polarization direction of the irradiated light is set in at least two directions. A lot of things happened, which contributed to the increase in the observation process. Patent Document 1: Japanese Patent No. 2 8 2 8 4 5 1
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明は, 偏光軸が直線的な偏光子ではなく, 回転対称な偏光軸を有する 偏光子を用いることにより, 偏光顕微鏡に用いた場合に, レンズなどに由来 する偏光面のずれの影響を受けにくい新規な偏光子を提供することを目的と する。  [0008] The present invention uses a polarizer having a rotationally symmetric polarization axis instead of a linear polarization axis so that the polarization plane deviation caused by a lens or the like can be reduced when used in a polarization microscope. The purpose is to provide a new polarizer that is not easily affected.
[0009] 本発明は, 新規な偏光子を用いた, 試料がない場合には, 高い消光比で光 が遮断される偏光顕微鏡を提供することを目的とする。  [0009] An object of the present invention is to provide a polarizing microscope that uses a novel polarizer and blocks light at a high extinction ratio when there is no sample.
[0010] 本発明は, 一度の観察で方向依存性の無い観察像を取得できる偏光顕微鏡 を提供することを目的とする。  [0010] An object of the present invention is to provide a polarizing microscope capable of obtaining an observation image having no direction dependency by a single observation.
[001 1 ] 本発明は, 微小な欠陥や傷や繊維質構造などを効果的に観測できる偏光顕 微鏡を提供することを目的とする。  [001 1] An object of the present invention is to provide a polarization microscope capable of effectively observing minute defects, scratches, fiber structures, and the like.
課題を解決するための手段  Means for solving the problem
[0012] 本発明の第 1の側面は, 基本的には, 偏光面が平行な偏光子ではなぐ 透 過軸が同心円状又は放射状の偏光子を提供するものである。 これらの偏光子 は, 基本的には, 照射側偏光子と観察側偏光子に, それぞれ透過軸が同心円 状のもの又は透過軸が放射状 (従って, 遮断軸が同心円状) のものを用いた 偏光顕微鏡に有用である。 すなわち, 偏光顕微鏡では, 対物レンズなどのレ ンズにより, 偏光状態の局所的な乱れ (偏光変換) が生ずる。 もちろん, 偏 光顕微鏡以外の顕微鏡では, 偏光状態の局所的な乱れは何ら問題とならない し, 偏光顕微鏡であっても, レンズによる偏光状態変換による光はわずかで ある。 しかしながら, 特に生物試料の観察に偏光顕微鏡を用いる場合など, わずかな偏光変換作用を有する試料の観察をする場合, そのわずかなレンズ 自体による偏光変換作用が微弱な信号光の検出限界に影響を与える。 本発明 では, 基本的には, 照射側偏光子と観察側偏光子に, それぞれ透過軸が同心 円状のもの又は透過軸が放射状 (従って, 遮断軸が同心円状) のものを用い る。 組立て誤差やレンズの残留応力による光弾性効果など除去できる原因を 別として, 顕微鏡は基本的に軸対称な光学系である。 そのような系において , 同心円状の偏光を持つ光はレンズや空間を通過する際, 放射状の偏光を持 つ光に一切変換されず, 逆もまた成り立つので, 本発明の偏光子を用いれば , レンズなどの影響を受けない偏光顕微鏡を得ることができる。 [0012] The first aspect of the present invention basically provides a polarizer having a transmission axis concentrically or radially that is not a polarizer having parallel polarization planes. These polarizers are basically polarized light that has a concentric transmission axis or a radial transmission axis (thus, the blocking axis is concentric) for the irradiation-side and observation-side polarizers. Useful for microscopes. In other words, in a polarization microscope, local disturbance of the polarization state (polarization conversion) occurs due to the lens of the objective lens. Of course, in a microscope other than the polarization microscope, local disturbance of the polarization state does not cause any problem, and even in the polarization microscope, the light due to the polarization state conversion by the lens is negligible. However, when observing a sample with a slight polarization conversion effect, such as when using a polarizing microscope to observe a biological sample, the polarization conversion effect of the slight lens itself affects the detection limit of weak signal light. . In the present invention, basically, an irradiation-side polarizer and an observation-side polarizer each having a concentric transmission axis or a radial transmission axis (thus, a blocking axis is concentric) are used. The The microscope is basically an axisymmetric optical system, except for possible causes such as assembly errors and the photoelastic effect due to the residual stress of the lens. In such a system, light with concentric polarization is not converted to light with radial polarization when passing through a lens or space, and vice versa, so with the polarizer of the present invention, A polarizing microscope that is not affected by a lens or the like can be obtained.
[0013] すなわち, 本発明の第 1の側面は, 透過軸が同心円状に設けられる偏光子 に関する。 そして, 本発明の第 1の側面の好ましい態様は, 前記透過軸は, 一つの中心から同心円状に複数設けられる上記に記載の偏光子であるもので ある。 このような偏光子は, たとえば, 表面の凹凸が同心円状に複数となる ような基板を用いて自己クロ一ニング法により製造すればよい。 すなわち, 例えば, 偏光子を構成する層が複数の同心円状の周期構造を有するものであ り, そのような層が多層形成されていればよい。 また, 透過軸が同心円状に 設けられる偏光子は, 放射状の周期構造が中心から外縁部まで多段に形成さ れている層を有する偏光子であってもよい。 本発明の第 1の側面の好ましい 態様は, 自己クロ一ニングフォトニック結晶により構成される上記いずれか に記載の偏光子に関する。 透過軸が同心円状に設けられる偏光子の具体例と して, 複数の層により構成される自己クロ一ニングフォトニック結晶により 構成され, 各層の周期が 2 3 2 n mである同心円状の周期構造を有し, S i 0 2層の厚さが 5 8 n m , T a 2 O 5層の厚さが 8 1 n mであり, S i 0 2層と T a 2 0 5層とが交互に 4 0層積層し, 波長が 5 2 0 n m以上 5 4 0 n m以下 の入力光に対して, 各同心円の円周の接線に平行な電界成分を有する偏光を 透過する偏光子があげられる。 透過軸が同心円状に設けられる偏光子の上記 とは別の具体例として, 複数の層により構成される自己クロ一ニングフォト ニック結晶により構成され, 放射状の周期構造を有し, 基板ピッチが 2 4 5 n mで S i 0 2が 1 4 5 n m , T a 2 0 5が 1 2 5 n mで各 2 7層の偏光子があ げられる。 That is, the first aspect of the present invention relates to a polarizer in which transmission axes are provided concentrically. In a preferred embodiment of the first aspect of the present invention, the transmission axis is the polarizer described above, wherein a plurality of the transmission axes are provided concentrically from one center. For example, such a polarizer may be manufactured by a self-cloning method using a substrate that has a plurality of concavities and convexities on the surface. That is, for example, the layers constituting the polarizer have a plurality of concentric periodic structures, and such layers need only be formed in multiple layers. In addition, a polarizer having transmission axes concentrically arranged may be a polarizer having a layer in which a radial periodic structure is formed in multiple stages from the center to the outer edge. A preferred embodiment of the first aspect of the present invention relates to the polarizer described in any one of the above, which is composed of a self-cloning photonic crystal. A specific example of a polarizer with concentric transmission axes is a concentric periodic structure composed of self-cloning photonic crystals composed of multiple layers, each layer having a period of 2 3 2 nm. The thickness of the S i 0 2 layer is 5 8 nm, the thickness of the Ta 2 O 5 layer is 81 nm, and the Si 0 2 layer and the Ta 2 0 5 layer are alternately 4 One example is a polarizer that consists of zero layers and transmits polarized light having an electric field component parallel to the tangent of the circumference of each concentric circle for input light with a wavelength between 5220 nm and 540 nm. Another specific example of a polarizer having transmission axes concentrically arranged is a self-cloning photonic crystal composed of multiple layers, has a radial periodic structure, and a substrate pitch of 2 At 45 nm, S i 0 2 is 1 45 nm, Ta 2 0 5 is 1 25 nm, and there are 27 layers of polarizers.
[0014] 本発明の第 1の側面の上記とは別の態様は, 透過軸が 1点から放射状に設 けられる (従って, 遮断軸が同心円状である) 偏光子に関する。 この態様の 好ましい態様は, 放射状の周期構造が中心から外縁部まで多段に形成されて いる層を有するものであり, さらには, 自己クローニングフォトニック結晶 により構成される上記に記載の偏光子に関する。 より具体的には, 偏光子を 構成する層が周期構造を有するもので, 放射状に形成された周期構造の間隔 が一定範囲になることを目的として, 中心から外縁部まで多段に放射型の周 期構造が形成されているものがあげられる。 より具体的には, 透過軸が 1点 から放射状に設けられる偏光子として, 複数の層により構成される自己クロ[0014] Another aspect of the first aspect of the present invention, which is different from the above, relates to a polarizer in which a transmission axis is provided radially from one point (thus, a blocking axis is concentric). Of this aspect In a preferred embodiment, the present invention relates to the polarizer described above, which has a layer in which a radial periodic structure is formed in multiple stages from the center to the outer edge, and further comprises a self-cloning photonic crystal. More specifically, the layers constituting the polarizer have a periodic structure, and the radial structure is formed in multiple stages from the center to the outer edge in order to keep the interval between the radially formed periodic structures within a certain range. The thing in which the period structure is formed is mention | raise | lifted. More specifically, a polarizer with a transmission axis radiating from one point is used as a self-chromoscope composed of multiple layers.
—ニングフォトニック結晶により構成され, 各層の周期が 2 3 2 n mである 放射状の周期構造を有し, S i 0 2層の厚さが 5 8 n m , T a 2 0 5層の厚さが 8 1 n mであり, S i 0 2層と T a 2 0 5層とが交互に 4 0層積層し, 波長が 5 2 0 n m以上 5 4 0 n m以下の入力光に対して, 各同心円の円周の接線に垂 直な電界成分を有する偏光を透過する偏光子があげられる。 透過軸が 1点か ら放射状に設けられる偏光子として, 複数の層により構成される自己クロー ニングフォトニック結晶により構成され, 中心から同心円状の周期構造を有 し, 基板ピッチが 2 4 5 n mで S i 0 2が 1 4 5 n m , 丁 3 2 0 5が1 2 5 门 で各 2 7層の偏光子があげられる。 —Consisting of a ning photonic crystal, each layer has a radial periodic structure of 2 3 2 nm, the Si 0 2 layer thickness is 5 8 nm, and the Ta 2 0 5 layer thickness is 8 1 nm, 40 and 40 layers of S i 0 2 layers and Ta 2 0 5 layers are stacked alternately. For input light with a wavelength of 5 20 nm or more and 5 40 nm or less, One example is a polarizer that transmits polarized light having an electric field component perpendicular to the tangent line of the circumference. A polarizer with a transmission axis radiating from one point is composed of a self-cloning photonic crystal composed of multiple layers, has a concentric periodic structure from the center, and a substrate pitch of 2 45 nm. Thus, S i 0 2 is 1 4 5 nm, and D 3 2 0 5 is 1 2 5 。.
[0015] 本発明の第 2の側面は, 光源と ;前記光源からの光が透過する, 透過軸が 光軸を中心とする同心円状に設けられる第 1の偏光子と ;前記第 1の偏光子 を透過した光が照射する試料を搭載する観察試料台と ;前記観察試料台に搭 載される試料を透過した光, 又は前記観察試料台に搭載される試料から反射 した光が透過する, 対物レンズと ;前記対物レンズを透過した光が透過する , 透過軸が光軸を中心として放射状に設けられる第 2の偏光子と ; を具備す る偏光顕微鏡に関する。 「透過軸が光軸を中心として放射状に設けられる第 2の偏光子」 は, 好ましくは透過軸が偏光子の中心から放射状に設けられる 先に説明した偏光子である。 すなわち, 第 1の偏光子及び第 2の偏光子とし て, 上記した偏光子を適宜用いることができる。  [0015] A second aspect of the present invention includes: a light source; and a first polarizer that transmits light from the light source, the transmission axis of which is provided concentrically around the optical axis; and the first polarization An observation sample stage on which a sample irradiated with light transmitted through a child is mounted; light transmitted through a sample mounted on the observation sample stage or light reflected from a sample mounted on the observation sample stage is transmitted; The present invention relates to a polarizing microscope comprising: an objective lens; and a second polarizer in which light transmitted through the objective lens is transmitted and a transmission axis is provided radially about the optical axis. The “second polarizer in which the transmission axis is provided radially from the optical axis” is preferably the polarizer described above in which the transmission axis is provided radially from the center of the polarizer. That is, as the first polarizer and the second polarizer, the above-described polarizers can be used as appropriate.
[001 6] すなわち, 従来の偏光顕微鏡では, 直線的な偏光軸を有する偏光子を用い ていたので, レンズなどによる影響を受け, 高い消光比を得ることができな かった。 本発明の偏光顕微鏡では, 透過軸が同心円状に設けられる偏光子と 透過軸が光軸を中心として放射状に設けられる偏光子を組み合わせて用いた ので, レンズなどによる影響を抑えることができ, 高い消光比を得ることが できるというものである。 [001 6] In other words, a conventional polarizing microscope uses a polarizer having a linear polarization axis, and therefore it is affected by the lens and cannot obtain a high extinction ratio. won. In the polarizing microscope of the present invention, a polarizer having a transmission axis concentrically arranged and a polarizer having a transmission axis radially arranged around the optical axis are used in combination. The extinction ratio can be obtained.
[0017] 本発明の第 2の側面の上記とは別の態様は, 光源と ;前記光源からの光が 透過する, 透過軸が光軸を中心として放射状に設けられる第 1の偏光子と ; 前記第 1の偏光子を透過した光が照射する試料を搭載する観察試料台と ;前 記観察試料台に搭載される試料を透過した光, 又は前記観察試料台に搭載さ れる試料から反射した光が透過する, 対物レンズと ;前記対物レンズを透過 した光が透過する, 透過軸が光軸を中心とする同心円状に設けられる第 2の 偏光子と ; を具備する偏光顕微鏡に関する。  [0017] Another aspect of the second aspect of the present invention, different from the above, is a light source; and a first polarizer that transmits light from the light source, and whose transmission axis is provided radially about the optical axis; An observation sample stage on which a sample irradiated with light transmitted through the first polarizer is mounted; light transmitted through the sample mounted on the observation sample stage or reflected from a sample mounted on the observation sample stage A polarizing microscope comprising: an objective lens that transmits light; and a second polarizer that transmits light that has passed through the objective lens and that has a transmission axis concentrically centered on the optical axis.
[0018] 本発明の第 2の側面の上記とは別の態様は, 光源と ;前記光源からの光が 透過する, 透過軸が光軸を中心として放射状もしくは光軸を中心とする同心 円状に設けられる第 1の偏光子と ;前記第 1の偏光子を透過した光が照射す る試料を搭載する観察試料台と ;前記観察試料台に搭載される試料を透過し た光, 又は前記観察試料台に搭載される試料から反射した光が透過する, 対 物レンズと ;前記対物レンズを透過した光が透過する, 偏光主軸方向を直交 させる旋光子と ;前記旋光子を透過した光が透過する, 第 1の偏光子と同様の 透過軸を有する第 2の偏光子と ; を具備する偏光顕微鏡に関する。  [0018] Another aspect of the second aspect of the present invention is different from the above in that a light source; the light from the light source is transmitted; a transmission axis is radial about the optical axis or concentric about the optical axis A first polarizer provided on the observation sample; an observation sample stage on which a sample irradiated with light transmitted through the first polarizer is mounted; a light transmitted through the sample mounted on the observation sample stage; or Light reflected from the sample mounted on the observation sample stage is transmitted; an object lens; light transmitted through the objective lens is transmitted; an optical rotator that makes the polarization main axis direction orthogonal; and light transmitted through the optical rotator is And a second polarizer having a transmission axis similar to that of the first polarizer, and a polarizing microscope.
[0019] すなわち, 旋光子を具備することにより, 偏光面が 9 0度ずれるので, 1 種類 (好ましくは 1枚) の偏光子により上記した偏光顕微鏡の機能を達成す ることができる。 すなわち, 「第 1の偏光子と同様の透過軸を有する第 2の偏 光子」 とは, 例えば, 第 1の偏光子が, 透過軸が光軸を中心とする同心円状 に設けられる偏光子の場合は, 全く同じ偏光子であるか, 又は透過軸が光軸 を中心とする同心円状に設けられる偏光子があげられ, 第 1の偏光子が透過 軸が光軸を中心として放射状に設けられる偏光子の場合は, 全く同じ偏光子 であるか, 又は透過軸が光軸を中心として放射状に設けられる偏光子であれ ばよい。 [0020] 本発明の第 2の側面の上記とは別の態様は, 光源と ;前記光源からの光が 透過する, 透過軸が光軸を中心として放射状もしくは光軸を中心とする同心 円状に設けられる第 1の偏光子と ;前記第 1の偏光子を透過した光が透過す る, 偏光主軸方向を直交させる旋光子と ;前記旋光子を透過した光が照射す る試料を搭載する観察試料台と ;前記観察試料台に搭載される試料を透過し た光, 又は前記観察試料台に搭載される試料から反射した光が透過する, 対 物レンズと ;前記旋光子を透過した光が透過する, 第 1の偏光子と同様の透過 軸を有する第 2の偏光子と ; を具備する偏光顕微鏡に関する。 That is, by providing the optical rotator, the polarization plane is shifted by 90 degrees, so that the function of the polarizing microscope described above can be achieved by one type (preferably one) polarizer. In other words, “a second polarizer having a transmission axis similar to that of the first polarizer” means, for example, that the first polarizer is a polarizer in which the transmission axis is provided concentrically around the optical axis. In this case, the polarizers may be the same polarizers, or the transmission axes may be provided concentrically around the optical axis, and the first polarizer may be provided radially around the optical axis. In the case of a polarizer, it may be the same polarizer or a polarizer whose transmission axis is provided radially around the optical axis. [0020] Another embodiment of the second aspect of the present invention is different from the above in that a light source; light from the light source is transmitted; a transmission axis is radial about the optical axis or concentric about the optical axis. A first polarizer provided in the optical axis; a light rotator that transmits light transmitted through the first polarizer; a polarization rotator that orthogonally crosses the principal axis direction of polarization; and a sample irradiated with light transmitted through the optical rotator An observation sample stage; light transmitted through the sample mounted on the observation sample stage or light reflected from the sample mounted on the observation sample stage is transmitted; an object lens; and light transmitted through the optical rotator And a second polarizer having a transmission axis similar to that of the first polarizer, and a polarizing microscope comprising:
[0021 ] 本発明の第 2の側面に係る偏光顕微鏡の好ましい態様は, 前記光源と前記 第 1の偏光子の間に, 前記光源からの光を集光する集光レンズを具備し;前 記第 1の偏光子は, 前記光源と前記観察試料の間であって, 前記集光レンズ の瞳位置に配置され;前記第 2の偏光子は, 前記対物レンズの瞳位置に配置 される ;上記いずれかに記載の偏光顕微鏡に関する。  [0021] A preferred embodiment of the polarization microscope according to the second aspect of the present invention includes a condensing lens that condenses light from the light source between the light source and the first polarizer; The first polarizer is disposed between the light source and the observation sample and is disposed at the pupil position of the condenser lens; the second polarizer is disposed at the pupil position of the objective lens; The present invention relates to any one of the polarizing microscopes.
[0022] この態様に係る本発明の偏光顕微鏡は, 回転対称な偏光軸を有する偏光子 を集光レンズ及び対物レンズの瞳位置, 又はそれらと共役な位置に配置する ことにより, 全方位の直線偏光が等しく混ざった光が試料へ入射するので, 一度の観察で方向依存性の無い観察像を取得できる。 また, この偏光顕微鏡 は, 試料面が一様な透明体の場合, 観察試料の前段に配置された同心円状偏 光子のある一点を通過した光は, 観察試料後段に配置された放射状偏光子の 対応する一点に集まることで遮断される。 一方, 観察試料が一様でない成分 を有する場合, その不均質さに応じて透過される成分が多くなる。 従って, 観察試料中の不均質点が微小であるほど, 透過率は上昇する傾向を有し, 全 体として高周波成分を強調した観察像を得ることができる。 よって, この態 様に係る偏光顕微鏡は, 微小な欠陥や傷や繊維質構造などの観察に好適であ る。  [0022] In the polarization microscope of the present invention according to this aspect, by arranging a polarizer having a rotationally symmetric polarization axis at the pupil position of the condenser lens and the objective lens, or at a position conjugate to them, the omnidirectional straight line is obtained. Because the light with the same polarization mixed is incident on the sample, an observation image with no direction dependency can be obtained with a single observation. In addition, in this polarizing microscope, when the sample surface is a uniform transparent body, the light that has passed through a certain point of the concentric polarizer placed at the front stage of the observation sample is reflected by the radial polarizer placed at the rear stage of the observation sample. It is blocked by gathering at one corresponding point. On the other hand, if the observed sample has non-uniform components, more components are transmitted depending on the heterogeneity. Therefore, the smaller the inhomogeneity point in the observation sample is, the more the transmittance tends to increase, and an observation image that emphasizes high-frequency components as a whole can be obtained. Therefore, the polarization microscope according to this mode is suitable for observing minute defects, scratches, and fibrous structures.
[0023] 本発明の第 3の側面に係る顕微鏡は, 集光レンズの瞳位置及び対物レンズ の瞳位置に, 透過軸が同心円状の偏光子及び透過軸が放射状の偏光子のいず れかを具備し, 微細な構造体ほど高い解像度の像が得られることを特徴とす る, 顕微鏡に関する。 すなわち, この顕微鏡は, たとえば集光レンズの瞳位 置に透過軸が同心円状の偏光子を具備するとともに, 対物レンズの瞳位置に 透過軸が放射状の偏光子を具備する。 又はこの顕微鏡は, たとえば集光レン ズの曈位置に透過軸が放射状の偏光子を具備するとともに, 対物レンズの瞳 位置に透過軸が同心円の偏光子を具備する。 後述する実施例により実証され たとおり, 集光レンズの曈位置及び対物レンズの曈位置に, 透過軸が同心円 状の偏光子及び透過軸が放射状の偏光子のいずれかを具備することで, 微細 な構造体ほど高い解像度の像を得ることが得きる。 なお, この態様の顕微鏡 として, 上記の偏光子以外の構成は, 通常の顕微鏡の構成を適宜採用するこ とができる。 [0023] The microscope according to the third aspect of the present invention includes a concentric polarizer with a transmission axis and a radial polarizer with a transmission axis at the pupil position of the condenser lens and the pupil position of the objective lens. A finer structure can obtain higher resolution images. It relates to the microscope. In other words, this microscope has a polarizer with a concentric transmission axis at the pupil position of the condenser lens, for example, and a polarizer with a radial transmission axis at the pupil position of the objective lens. Alternatively, for example, this microscope has a polarizer with a radial transmission axis at the position of the condensing lens and a polarizer with a concentric transmission axis at the pupil position of the objective lens. As demonstrated by the examples to be described later, by providing either a concentric polarizer with a transmission axis or a radial polarizer with a transmission axis at the vertical position of the condenser lens and the vertical position of the objective lens, The higher the resolution, the higher the resolution. In addition, as a microscope of this aspect, a configuration of a normal microscope can be appropriately adopted as a configuration other than the above polarizer.
発明の効果  The invention's effect
[0024] 本発明によれば, 偏光面が平行な偏光子ではなぐ 透過軸が同心円状のも の又は透過軸が放射状 (従って, 遮断軸が同心円状) である新規な偏光子を 提供することができ, それらは, 上述した偏光顕微鏡などに効果的に用いら れうる。  [0024] According to the present invention, there is provided a novel polarizer having a transmission axis that is concentric or a transmission axis that is radial (and thus the blocking axis is concentric) that is not obtained by a polarizer having parallel polarization planes. They can be used effectively in the polarizing microscopes mentioned above.
[0025] 本発明によれば, 照射側偏光子と観察側偏光子に, それぞれ透過軸が同心 円状のもの又は透過軸が放射状 (従って, 遮断軸が同心円状) のものを用い ることで, 対物レンズなどのレンズによる偏光面の歪みの影響を受けなくし , 試料がない場合には, きちんと光が遮断される偏光顕微鏡を提供できる。  [0025] According to the present invention, the irradiation-side polarizer and the observation-side polarizer each have a concentric transmission axis or a radial transmission axis (thus, the blocking axis is concentric). Therefore, it is possible to provide a polarizing microscope that is not affected by the distortion of the polarization plane caused by a lens such as an objective lens, and that blocks light when there is no sample.
[0026] 本発明によれば, 一度の観察で方向依存性の無い観察像を取得できる偏光 顕微鏡を提供することができる。  [0026] According to the present invention, it is possible to provide a polarization microscope capable of acquiring an observation image having no direction dependency by one observation.
[0027] 本発明によれば, 微小な欠陥や傷や繊維質構造などを効果的に観測できる 偏光顕微鏡を提供することができる。  [0027] According to the present invention, it is possible to provide a polarizing microscope capable of effectively observing minute defects, scratches, fibrous structures, and the like.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 以下, 図面に従って, 本発明を詳細に説明する。 図 1は, 透過軸が同心円 状に設けられる偏光子における, 透過軸の方向を示す図である。 図 1に示さ れるように, 本発明の第 1の側面は, 透過軸が同心円状に設けられる偏光子 に関する。 このような偏光子は, たとえば, 表面の凹凸が同心円状に複数と なるような基板を用いて自己クロ一ニング法により製造すればよい。 すなわ ち, 例えば, 偏光子を構成する層が複数の同心円状の周期構造を有するもの であり, そのような層が多層形成されていればよい。 図 2は, 透過軸が 1点 から放射状に設けられる偏光子における, 透過軸の方向を示す図である。 図 2に示されるように, 透過軸が 1点から放射状に設けられる偏光子では, 透 過軸が 1点 (好ましくは偏光子の重心) から均等な割合で, 透過軸が放射状 に設けられる。 透過軸と遮断軸とは直交するので, このような偏光子の遮断 軸は, 同心円状となる。 Hereinafter, the present invention will be described in detail with reference to the drawings. Figure 1 shows the direction of the transmission axis in a polarizer with transmission axes concentrically arranged. As shown in FIG. 1, the first aspect of the present invention relates to a polarizer in which transmission axes are provided concentrically. Such a polarizer, for example, has multiple concavities and convexities on the surface. What is necessary is just to manufacture by the self-cloning method using such a board | substrate. That is, for example, the layers constituting the polarizer have a plurality of concentric periodic structures, and such layers need only be formed in multiple layers. Figure 2 shows the direction of the transmission axis in a polarizer with a transmission axis radiating from one point. As shown in Fig. 2, in a polarizer with a transmission axis that radiates from one point, the transmission axis is radiated at a uniform rate from one point (preferably the center of gravity of the polarizer). Since the transmission axis and the blocking axis are orthogonal, the blocking axis of such a polarizer is concentric.
[0029] 図 3に, 自己クロ一ニングフォトニック結晶による, 同心円状もしくは放 射状に透過軸を有する偏光子の模式図を示す。 図 3 ( a ) は, 透過軸が同心 円状に設けられる偏光子の例を示す。 図 3 ( b ) は, 透過軸が 1点から放射 状に設けられる偏光子の例を示す。 図 3 ( c ) は, 放射状の周期構造が多段 に形成されている層を有する偏光子の例を示す。 図 4は, 自己クローニング フォトニック結晶の例を示す図である。 図 4に示されるように, 自己クロ一 ニングフォトニック結晶は, 一般に, 特定の周期構造を有する層が多数積み 重ねられて形成され, 表面凹凸の溝に平行な方向とこれに垂直な方向にそれ ぞれ電界振動を持つ偏光に対して異なる透過特性を設計することができる。 例えば図 4に示すように溝に平行な電界振動を持つ偏光を反射し, 溝に垂直 な電界振動を有する偏光を透過させることができる。 また, 凹凸のピッチや 多層膜の膜厚の調整により, 図 4とは逆に, 溝に平行な電界振動を持つ偏光 のみを透過させることもできる。 従って, 自己クロ一ニング法によれば, 図 3 ( a ) 及び図 3 ( b ) のような形状を有する偏光子を製造することができ る。 [0029] Fig. 3 shows a schematic diagram of a polarizer having a transmission axis in a concentric or radiant shape using a self-cloning photonic crystal. Figure 3 (a) shows an example of a polarizer with transmission axes concentrically arranged. Figure 3 (b) shows an example of a polarizer with a transmission axis radiating from one point. Figure 3 (c) shows an example of a polarizer having layers in which radial periodic structures are formed in multiple stages. Figure 4 shows an example of a self-cloning photonic crystal. As shown in Fig. 4, a self-cloning photonic crystal is generally formed by stacking a number of layers with a specific periodic structure in a direction parallel to and perpendicular to the grooves on the surface. Different transmission characteristics can be designed for each polarized light with electric field oscillation. For example, as shown in Fig. 4, polarized light having electric field vibration parallel to the groove can be reflected, and polarized light having electric field vibration perpendicular to the groove can be transmitted. Also, by adjusting the pitch of the unevenness and the film thickness of the multilayer film, it is possible to transmit only polarized light having electric field vibration parallel to the grooves, contrary to Fig. 4. Therefore, according to the self-cloning method, a polarizer having the shape shown in Fig. 3 (a) and Fig. 3 (b) can be manufactured.
[0030] 図 3 ( c ) に示されるものは, 放射状の周期構造が中心から外縁部までを 三等分するように三段階になるように設計されているが, 本発明の偏光子は このものに限定されず, 2段階でもよぐ 4段階以上であってもよい。 この ような偏光子の好ましい態様は, 偏光子を構成する層が周期構造を有するも ので, 放射状に形成された周期構造の間隔が一定範囲になることを目的とし て, 多段に放射型の周期構造が形成されているものである。 なお, 偏光子の 大きさは, 特に限定されないが, 偏光顕微鏡のレンズなどとして用いられる 程度の大きさであるものが好ましい。 [0030] The one shown in Fig. 3 (c) is designed to have three steps so that the radial periodic structure is divided into three equal parts from the center to the outer edge. It is not limited to the one, but it may be 2 steps or 4 steps or more. A preferred embodiment of such a polarizer is that the layers constituting the polarizer have a periodic structure, so that the interval between the radially formed periodic structures is within a certain range. Thus, a radial periodic structure is formed in multiple stages. The size of the polarizer is not particularly limited, but is preferably a size that can be used as a lens for a polarizing microscope.
[0031] 上記のような偏光子は, 例えば, 特開平 1 0— 335758号公報, 特開 2000-258645号公報, 特開 2001—74954号公報, 特開 2 001 -249235号公報, 特開 2004 _ 45779号公報などに開示 される製造技術を用いて適宜作成することができる。 自己クローニングフォ トニック結晶の望ましい製造方法を以下に記す。 基板材料に石英を用い, フ ォトリソグラフィ一プロセスを用いて動作波長の半分程度のピッチの周期的 な凹凸を形成する。 これをスパッタリング装置を用いて成膜することにより , フォトニック結晶を得ることができる。 成膜する材料は, 例えば S i o2, N b2Os, 又は T a 205など, スパッタリングすることができる材料から適 宜選択することができる。 例えば S i 02及び N b2Osを用いて多層膜を自己 クローニング成膜する場合, 成膜装置内に 4 : 1の分圧で A rと酸素ガスと を流しながら約 0. 5 P aのガス圧で電圧印加, スパッタリングを行えばよ し、。 同時に基板バイアスを印加することにより, 成膜とエッチングとを同時 に行うことができ, これにより, 自己クロ一ニング成膜を実現できる。 なお , 基板バイアスに印加する電力は, 成膜電力の 1 0%以下であることが望ま しい。 [0031] The polarizer as described above is, for example, disclosed in JP-A-10-335758, JP-A-2000-258645, JP-A-2001-74954, JP-A-2 001-249235, JP-A-2004. _45779 can be appropriately created using a manufacturing technique disclosed in the publication. A desirable method for producing self-cloning photonic crystals is described below. Quartz is used as the substrate material, and periodic irregularities with a pitch of about half the operating wavelength are formed using a photolithography process. A photonic crystal can be obtained by forming a film using a sputtering apparatus. Materials for forming, for example S io 2, N b 2 O s, or the like T a 2 0 5, it is possible to apply Yibin selected from materials that can be sputtered. For example S i 0 2 and N b 2 O if s self cloning deposited a multilayer film using a 4 in the film forming apparatus: while flowing the A r and oxygen gas in the first partial pressure of about 0. 5 P Apply voltage with a gas pressure of a and perform sputtering. By applying the substrate bias at the same time, film formation and etching can be performed at the same time, and self-cloning film formation can be realized. Note that the power applied to the substrate bias should be 10% or less of the deposition power.
[0032] 後述する実施例により実証されたとおり, 例えば, 石英基板を用いて, 基 板ピッチ(凹凸の一周期)が 232 n m, S i O 2層の厚さが 58 n m, T a 2 O 5層の厚さが 81 n mで各 40層積層した場合, 波長 520〜 540 n で 凹凸に平行な電界成分を有する偏光のみが透過する(消光比 40 d B以上の) 偏光子を得ることができた。 つまり, この場合は基板溝が同心円状の場合に , 透過軸が同心円状のものを得ることができる。 逆に, 基板溝が放射状のも のを用いれば, 透過軸が放射状のものを製造することができる。 たとえば, 放射状の周期構造が中心から外縁部まで多段に形成されている層を有する偏 光子であっても透過軸が放射状のものを得ることができる。 このように, 基 板に設けられた溝と, 透過軸が平行な偏光子は, この実施例に基づき, 適宜 基板の溝形状, 基板ピッチ, 各層を構成する材料, 及び各層の膜厚などを適 宜調整することで, 製造できる。 基板ピッチは, 特に限定されないが, 入射 光の波長の半分程度, 例えば, 5 0 n m以上 6 0 0 n m以下の範囲, 好まし くは 1 0 0 n m以上 5 0 0 n m以下の範囲において適宜調整すればよい。 自 己クローニング結晶からなる偏光子を構成する各層の厚さは, 例えば, 2 0 n m以上 1 5 0 n m以下から適宜調整すればよい。 また, 各層は異なる 2種 類の層がひとつのペアとなり, そのペアが複数積み重ねられるようにされて いるものが好ましい。 そのようなペアの数 (層数) として, 例えば 1 0層以 上 2 0 0層以下があげられ, 2 0層以上 1 0 0層以下であってもよい。 [0032] As demonstrated by the examples described later, for example, using a quartz substrate, the substrate pitch (one period of irregularities) is 232 nm, the S i O 2 layer thickness is 58 nm, Ta 2 O When 40 layers each with a thickness of 81 nm are stacked, only polarized light having an electric field component parallel to the unevenness is transmitted at a wavelength of 520 to 540 n (with an extinction ratio of 40 dB or more). did it. In other words, in this case, when the substrate groove is concentric, a transmission axis having a concentric shape can be obtained. Conversely, if the substrate groove is radial, the transmission axis can be made radial. For example, even if the polarizer has a layer in which a radial periodic structure is formed in multiple stages from the center to the outer edge, a transmission axis having a radial transmission axis can be obtained. Thus, the basis Based on this embodiment, the groove provided on the plate and the polarizer with parallel transmission axes should be adjusted appropriately according to the groove shape of the substrate, the substrate pitch, the material constituting each layer, and the film thickness of each layer. Can be manufactured. The substrate pitch is not particularly limited, but is appropriately adjusted within about half the wavelength of incident light, for example, in the range of 50 nm to 60 nm, preferably in the range of 100 nm to 500 nm. do it. The thickness of each layer composing a polarizer composed of self-cloning crystals may be adjusted as appropriate from 20 nm to 150 nm. In addition, it is preferable that each layer has two different types of layers as one pair, and multiple pairs are stacked. The number of such pairs (number of layers) is, for example, from 10 to 20 layers, and may be from 20 to 100 layers.
一方, 後述する実施例において実証されたとおり, 同じ材料を用いても, 基 板ピッチが 2 4 5 n mで S i 0 2が 1 4 5 n m , T a 2 0 5が 1 2 5 n mで各 2 7層の場合, 波長 5 2 0〜 5 5 0 n mで凹凸に垂直は電界成分を有する偏光 のみが透過する偏光子が得られる。 この場合は, 基板溝が同心円状の場合, 透過軸が放射状の偏光子が得られ, 基板溝が放射状の場合, 透過軸が同心円 状のものが得られる。 たとえば, 放射状の周期構造が中心から外縁部まで多 段に形成されている層を有する偏光子であっても, 透過軸が同心円状のもの を得ることができる。 このように, 基板に設けられた溝と, 透過軸が直交す る偏光子は, この実施例に基づき適宜, 基板の溝形状, 基板ピッチ, 各層を 構成する材料, 各層の膜厚などを調整することで製造することができる。 基 板ピッチは, 特に限定されないが, 入射光の波長の半分程度, 例えば, 5 0 n m以上 6 0 0 n m以下の範囲, 好ましくは 1 0 0 n m以上 5 0 0 n m以下 の範囲において適宜調整すればよい。 自己クローニング結晶からなる偏光子 を構成する各層の厚さは, 例えば, 2 0 n m以上 1 5 0 n m以下から適宜調 整すればよい。 また, 各層は異なる 2種類の層がひとつのペアとなり, その ペアが複数積み重ねられるようにされているものが好ましい。 そのようなぺ ァの数 (層数) として, 例えば 1 0層以上 2 0 0層以下があげられ, 2 0層 以上 1 0 0層以下であってもよい。 [0034] また, 自己クローニングフォトニック結晶以外にも, 例えば図 5のような 形状のワイヤーグリッド型の偏光子により放射状に透過軸を有する偏光子を 実現することができる。 図 5は, ワイヤ一グリッド型の偏光子の模式図であ る。 ただし, 自己クローニングフォトニック結晶によるものの方が, 高い精 度を持って製造でき, 偏光調整機能を発揮できるので好ましい。 On the other hand, as demonstrated in the examples described later, even if the same material is used, the substrate pitch is 2 45 nm, S i 0 2 is 1 45 nm, and Ta 2 0 5 is 1 2 5 nm. In the case of 27 layers, a polarizer that transmits only polarized light having an electric field component perpendicular to the irregularities at a wavelength of 520 to 5500 nm is obtained. In this case, if the substrate groove is concentric, a polarizer with a radial transmission axis can be obtained, and if the substrate groove is radial, a transmission axis can be obtained with a concentric circle. For example, even a polarizer having a layer in which a radial periodic structure is formed in multiple stages from the center to the outer edge can be obtained with concentric transmission axes. As described above, the polarizer with the transmission axis orthogonal to the groove provided on the substrate is adjusted according to this example by adjusting the groove shape of the substrate, the substrate pitch, the material constituting each layer, the film thickness of each layer, etc. Can be manufactured. The substrate pitch is not particularly limited, but is appropriately adjusted within about half the wavelength of the incident light, for example, in the range of 50 nm to 60 nm, preferably in the range of 100 nm to 500 nm. That's fine. The thickness of each layer composing a polarizer composed of self-cloning crystals may be adjusted as appropriate from 20 nm to 150 nm. In addition, it is preferable that each layer has two different layers as one pair, and multiple pairs are stacked. The number of such pairs (number of layers) is, for example, 10 or more and 20 or less layers, and may be 20 or more and 100 or less layers. In addition to the self-cloning photonic crystal, a polarizer having a radial transmission axis can be realized by a wire grid polarizer having a shape as shown in FIG. 5, for example. Figure 5 is a schematic diagram of a wire-grid polarizer. However, self-cloning photonic crystals are preferred because they can be manufactured with high accuracy and can exhibit the polarization adjustment function.
[0035] 次に本発明の第 2の側面に係る偏光顕微鏡について説明する。 本発明の第 2の側面は, 光源と ;前記光源からの光が透過する, 透過軸が光軸を中心と する同心円状に設けられる第 1の偏光子と ;前記第 1の偏光子を透過した光 が照射する試料を搭載する観察試料台と ;前記観察試料台に搭載される試料 を透過した光, 又は前記観察試料台に搭載される試料から反射した光が透過 する, 対物レンズと ;前記対物レンズを透過した光が透過する, 透過軸が光 軸を中心として放射状に設けられる第 2の偏光子と ; を具備する偏光顕微鏡 に関する。 なお, 光軸とは, 偏光顕微鏡における光が通る軸を意味する。 本 発明の偏光顕微鏡では, 透過軸が同心円状に設けられる偏光子と透過軸が光 軸を中心として放射状に設けられる偏光子を組み合わせて用いたので, レン ズなどによる影響を抑えることができ, 高い消光比を得ることができる。  Next, a polarizing microscope according to the second aspect of the present invention will be described. According to a second aspect of the present invention, there is provided a light source; a first polarizer that transmits light from the light source, a transmission axis that is provided concentrically with the optical axis as a center; and transmission through the first polarizer. An observation sample stage on which the sample irradiated with the irradiated light is mounted; an objective lens through which the light transmitted through the sample mounted on the observation sample stage or the light reflected from the sample mounted on the observation sample stage is transmitted; And a second polarizer that transmits light passing through the objective lens and whose transmission axis is provided radially around the optical axis. The optical axis is the axis through which light passes in a polarizing microscope. In the polarization microscope of the present invention, a polarizer having a transmission axis concentrically arranged and a polarizer having a transmission axis radially arranged around the optical axis are used in combination. A high extinction ratio can be obtained.
[0036] 本発明の第 2の側面の上記とは別の態様は, 光源と ;前記光源からの光が 透過する, 透過軸が光軸を中心として放射状に設けられる第 1の偏光子と ; 前記第 1の偏光子を透過した光が照射する試料を搭載する観察試料台と ;前 記観察試料台に搭載される試料を透過した光, 又は前記観察試料台に搭載さ れる試料から反射した光が透過する, 対物レンズと ;前記対物レンズを透過 した光が透過する, 透過軸が光軸を中心とする同心円状に設けられる第 2の 偏光子と ; を具備する偏光顕微鏡に関する。 光源からの光が第 1の偏光子を 透過すると, その偏光面が調整される。 そのような第 1の偏光子を透過した 光は, 観察試料台上の試料に照射される。 観察試料を透過した光, 又は前記 観察試料から反射した光は, 対物レンズを透過する。 対物レンズを透過した 光は, 第 2の偏光子を透過する。 そして, 第 2の偏光子を透過した光は, 適 宜対物レンズなどを通して観測されることとなる。 [0037] 図 6に偏光顕微鏡の装置構成例を示す。 図 6の顕微鏡 (1 1 ) では, ラン プハウス (1 2) において集光レンズ (1 3) にて集光され水平に出力され た光が顕微鏡下部のミラー (1 4) により上方に曲げられ, 照射側偏光子 ( 1 5) , コンデンサレンズ (1 6) , 観察試料 (1 7) , 対物レンズ (1 8 ) , 観察側偏光子 (検光子) (1 9) の順に通過する。 そして, 接眼レンズ (20) を介して, 像が得られる。 この顕微鏡は透過型の構成である。 照射 側偏光子 (1 5) 及び観察側偏光子 (検光子) (1 9) は, いずれかが図 1 のような同心円状の透過軸を有する偏光子であり, 残りが図 2に示されるよ うな放射状の透過軸を有する偏光子である。 このように同心円状もしくは放 射状に透過軸を有する偏光子を自己クローニング形フォトニック結晶偏光子 で実現した場合の概観図は図 3 (a) ,図 3 (b) ,及び図 3 (c) に示され るとおりである。 照射側偏光子 (1 5) にて, 所定の透過パターンを有する こととされた光は, そのまま偏光面が調整されないまま観察側偏光子へと到 達した場合, 観察側偏光子 (検光子) (1 9) によりすベて遮断されること となる。 しかしながら, 観察試料 (1 7) により偏光面がずらされた成分の みが観測されることとなる。 勿論, 反射型などの図 6以外の構成の顕微鏡で あってもかまわない。 図 6の照射側偏光子と観察側偏光子の位置に, 同心円 状もしくは放射状に透過軸を配置された偏光子を設けることにより, レンズ による偏光変換の影響をうけない高感度な偏光顕微鏡を構成することができ る。 [0036] Another aspect of the second aspect of the present invention is the light source; a first polarizer that transmits light from the light source, the transmission axis is provided radially about the optical axis; An observation sample stage on which a sample irradiated with light transmitted through the first polarizer is mounted; light transmitted through the sample mounted on the observation sample stage or reflected from a sample mounted on the observation sample stage A polarizing microscope comprising: an objective lens that transmits light; and a second polarizer that transmits light that has passed through the objective lens and that has a transmission axis concentrically centered on the optical axis. When the light from the light source passes through the first polarizer, the plane of polarization is adjusted. The light transmitted through the first polarizer is irradiated onto the sample on the observation sample stage. Light transmitted through the observation sample or reflected from the observation sample passes through the objective lens. The light that has passed through the objective lens passes through the second polarizer. The light that has passed through the second polarizer will be observed through an objective lens. FIG. 6 shows an example of the configuration of a polarizing microscope. In the microscope (1 1) in Fig. 6, the light collected by the condenser lens (1 3) and output horizontally in the lamp house (1 2) is bent upward by the mirror (1 4) at the bottom of the microscope. Passes in the order of irradiation side polarizer (15), condenser lens (16), observation sample (17), objective lens (18), observation side polarizer (analyzer) (19). An image is obtained through the eyepiece [20]. This microscope has a transmissive configuration. One of the irradiation side polarizer (15) and the observation side polarizer (analyzer) (19) is a polarizer having a concentric transmission axis as shown in Fig. 1, and the rest are shown in Fig. 2. Such a polarizer has a radial transmission axis. As shown in Fig. 3 (a), Fig. 3 (b), and Fig. 3 (c), a polarizer with a concentric or radiative transmission axis is realized with a self-cloning photonic crystal polarizer. ). The light that has a predetermined transmission pattern in the irradiation-side polarizer (15) reaches the observation-side polarizer without adjusting the polarization plane, and the observation-side polarizer (analyzer) (1 9) means that everything will be shut off. However, only the component whose polarization plane is shifted by the observed sample (17) is observed. Of course, a microscope with a configuration other than that shown in Fig. 6, such as a reflection type, may be used. A high-sensitivity polarization microscope that is not affected by polarization conversion by the lens is configured by providing a concentric or radial polarizer with transmission axes at the position of the irradiation side polarizer and observation side polarizer in Fig. 6. can do.
[0038] 図 7は, 照射側偏光子と観察側偏光子の間に, 水晶旋光子もしくは液晶な どで構成された旋光素子を挿入した偏光顕微鏡の例を示す図である。 図 7に 示されるように, 照射側偏光子と観察側偏光子の間に, 水晶旋光子もしくは 液晶などで構成された旋光素子を挿入することにより, 二つの偏光子の間の 消光状態をある程度緩和して観察側偏光子を透過する光量を増やし, 観察の ための予備的な位置決めに資することができる。  FIG. 7 is a diagram showing an example of a polarization microscope in which an optical rotator composed of a crystal rotator or a liquid crystal is inserted between the irradiation side polarizer and the observation side polarizer. As shown in Fig. 7, by inserting an optical rotator composed of a crystal rotator or a liquid crystal between the irradiation side polarizer and the observation side polarizer, the extinction state between the two polarizers can be reduced to some extent. The amount of light transmitted through the viewing-side polarizer can be relaxed and contribute to preliminary positioning for observation.
[0039] 図 8は, 照射側偏光子と観察側偏光子の間に, ファラデー効果を用いた旋 光子 (ファラデー素子) を設けた偏光顕微鏡の例を示す図である。 図 8に示 されるように, ファラデー素子(2 1 )を介することで, 照射側偏光子と観察 側偏光子を一枚の偏光子(2 2 )で共用できる。 前記のとおり, 例えば同心円 状に透過軸を有する偏光子を照射側偏光子として用いた場合, 観察試料の無 い試料面を透過した光は, 偏光状態変換されることなく観察側偏光子に到達 することから, 放射状に透過軸を有する偏光子により遮断することができる 。 本発明の旋光子として, 偏光主軸方向を直交させる機能を有するものであ れば公知のものを適宜用いることができ, 具体的な旋光子として, 磁気を用 いるファラデー旋光子 (例えば, 特開 2 0 0 5 _ 2 8 3 6 3 5号公報, 栖原 敏明著 「光波光学」 ' コロナ社, 1 9 9 8年, 2 2 3頁を参照。 ) の他, そ のような機能を有し, 水晶又は液晶により構成されるものがあげられる。 す なわち, 図 8に示される態様の偏光顕微鏡は, 光源と ;前記光源からの光が 透過する, 透過軸が放射状もしくは同心円状に設けられる第 1の偏光子と ; 前記第 1の偏光子を透過した光が照射する試料を搭載する観察試料台と ;前 記観察試料台に搭載される試料を透過した光, 又は前記観察試料台に搭載さ れる試料から反射した光が透過する, 対物レンズと ;前記対物レンズを透過 した光が透過する, 偏光主軸方向を直交させる旋光子と ;前記旋光子を透過 した光が透過する, 第 1の偏光子と同様の透過軸を有する第 2の偏光子と ; を 具備する偏光顕微鏡に関する。 FIG. 8 is a diagram showing an example of a polarization microscope in which a rotator (Faraday element) using the Faraday effect is provided between the irradiation side polarizer and the observation side polarizer. Shown in Figure 8 As shown, the irradiation-side polarizer and the observation-side polarizer can be shared by a single polarizer (2 2) through the Faraday element (2 1). As described above, for example, when a polarizer having a concentric transmission axis is used as the irradiation side polarizer, the light transmitted through the sample surface without the observation sample reaches the observation side polarizer without being converted in polarization state. Therefore, it can be blocked by a polarizer having a radial transmission axis. As the optical rotator of the present invention, a known optical rotator can be used as long as it has a function of orthogonally crossing the polarization main axis direction. As a specific optical rotator, a Faraday rotator using magnetism (for example, JP 2 0 0 5 _ 2 8 3 6 3 5 publication, Toshiaki Sugawara “Lightwave optics” (see Corona, 1 998, page 2 2 3)) and other functions , Those composed of crystal or liquid crystal. That is, the polarization microscope of the embodiment shown in FIG. 8 includes a light source; a first polarizer that transmits light from the light source, and whose transmission axis is provided radially or concentrically; and the first polarizer. An observation sample stage on which a sample irradiated with light that has passed through is irradiated; light transmitted through the sample mounted on the observation sample stage, or light reflected from the sample mounted on the observation sample stage is transmitted; A lens; a light rotator that transmits the light transmitted through the objective lens; a polarization rotator that orthogonally crosses the polarization main axis direction; and a second rotator that transmits the light transmitted through the optical rotator and has a transmission axis similar to that of the first polarizer. The present invention relates to a polarizing microscope comprising: a polarizer;
すなわち, 旋光子を具備することにより, 偏光面が 9 0度ずれるので, 1 種類 (好ましくは 1枚) の偏光子により上記した偏光顕微鏡の機能を達成す ることができる。 すなわち, 「第 1の偏光子と同様の透過軸を有する第 2の偏 光子」 とは, 例えば, 第 1の偏光子が, 透過軸が光軸を中心とする同心円状 に設けられる偏光子の場合は, 全く同じ偏光子であるか, 又は透過軸が光軸 を中心とする同心円状に設けられる偏光子があげられ, 第 1の偏光子が透過 軸が光軸を中心として放射状に設けられる偏光子の場合は, 全く同じ偏光子 であるか, 又は透過軸が光軸を中心として放射状に設けられる偏光子であれ ばよい。 ただし, 磁気を用いるファラデー旋光子は, いったんファラデー旋 光子を透過させた光を, 反射させた後, 再度反対側からファラデー旋光子を 透過させると, 2倍旋光させる性質がある。 一方, 水晶又は液晶による旋光 子の場合, いったん旋光子を透過させ, 反対側から旋光子を透過させると, 順側から透過させたのと逆向きに旋光するので旋光が打ち消され, 旋光量が なくなる。 よって, 反射型顕微鏡のように試料への照射光と, 試料からの観 察光とが同じ経路を通る場合は, 磁気を用いるファラデー旋光子を用いるこ とが好ましい。 一方, 照射光と観察光との経路が完全に分離している透過型 の偏光顕微鏡においては, いずれのタイプの旋光子をも用いることができる 。 すなわち, 図 8に示されるような反射型の偏光顕微鏡においては, ファラ デ一旋光子を用いることが好ましい。 In other words, by providing an optical rotator, the plane of polarization is shifted by 90 degrees, so the function of the polarizing microscope described above can be achieved with one type (preferably one) of polarizers. In other words, “a second polarizer having a transmission axis similar to that of the first polarizer” means, for example, that the first polarizer is a polarizer in which the transmission axis is provided concentrically around the optical axis. In this case, the polarizers may be the same polarizers, or the transmission axes may be provided concentrically around the optical axis, and the first polarizer may be provided radially around the optical axis. In the case of a polarizer, it may be the same polarizer or a polarizer whose transmission axis is provided radially around the optical axis. However, the Faraday rotator using magnetism reflects the light that has been transmitted through the Faraday rotator, and then reflects it again from the opposite side. When transmitted, it has the property of rotating twice. On the other hand, in the case of an optical rotator made of crystal or liquid crystal, once the optical rotator is transmitted and the optical rotator is transmitted from the opposite side, the optical rotation is reversed in the opposite direction to that transmitted from the forward side. Disappear. Therefore, it is preferable to use a Faraday rotator that uses magnetism when the irradiation light from the sample and the observation light from the sample pass through the same path as in a reflection microscope. On the other hand, any type of optical rotator can be used in a transmission-type polarization microscope in which the path between the irradiation light and the observation light is completely separated. In other words, it is preferable to use a Faraday rotator in a reflective polarization microscope as shown in Fig. 8.
[0041 ] このような偏光顕微鏡はまた, 光源と ;前記光源からの光が透過する, 透 過軸が光軸を中心として放射状もしくは光軸を中心とする同心円状に設けら れる第 1の偏光子と ;前記第 1の偏光子を透過した光が透過する, 偏光主軸 方向を直交させる旋光子と ;前記旋光子を透過した光が照射する試料を搭載 する観察試料台と ;前記観察試料台に搭載される試料を透過した光, 又は前 記観察試料台に搭載される試料から反射した光が透過する, 対物レンズと ; 前記旋光子を透過した光が透過する, 第 1の偏光子と同様の透過軸を有する第 2の偏光子と ; を具備する偏光顕微鏡であってもよい。  [0041] Such a polarization microscope also includes a light source; a first polarization that transmits light from the light source, the transmission axis is provided radially around the optical axis or concentrically around the optical axis. An optical sample that transmits light transmitted through the first polarizer, an optical rotator that orthogonally crosses the direction of the principal axis of polarization, an observation sample stage that mounts a sample irradiated with the light transmitted through the optical rotator, and the observation sample base An objective lens that transmits light that has passed through the sample mounted on the sample, or light that has been reflected from the sample mounted on the observation sample stage; and the first polarizer that transmits light that has passed through the optical rotator. A polarization microscope comprising: a second polarizer having a similar transmission axis;
[0042] 以下, 試料前段の集光レンズの瞳位置に配置された同心円もしくは放射状 偏光子を通過した光がどのような作用を受けて像面に達するかを説明する。 集光レンズ曈位置の全面を同じ方向に通過した光線は, 像面の一点に集光さ れる。 従って, 像面の一点を照らす光は, 同心円もしくは放射状偏光子の全 ての面を通過した光の集合体であり, あらゆる偏光方位の光である。 これら の光は, 像面に物体が存在しない場合にはそれぞれ対物レンズの瞳位置に配 置された放射状もしくは同心円状の偏光子に到達し, この偏光子はそれぞれ の光線の偏光方位に直交する透過軸を有するので, 全ての光は遮断される。  [0042] Hereinafter, it will be described how the light passing through the concentric or radial polarizer arranged at the pupil position of the condenser lens in the front stage of the sample is affected by the light reaching the image plane. The light beam that has passed through the entire surface of the condensing lens 曈 in the same direction is collected at one point on the image plane. Therefore, the light that illuminates a point on the image plane is a collection of light that has passed through all the surfaces of concentric or radial polarizers, and is light of any polarization orientation. When no object is present on the image plane, these lights reach radial or concentric polarizers arranged at the pupil position of the objective lens, and these polarizers are orthogonal to the polarization directions of the respective rays. Since it has a transmission axis, all light is blocked.
[0043] 一方, 試料面に散乱体が存在した場合, 集光レンズ瞳位置の一点を通過し た光線は, 散乱体に入射後に対物レンズの瞳面(すなわち, フーリエ面)には , 一点ではなく広がりを持った光束を形成する。 以下, 試料が複屈折性を有 する場合, 即ち試料を通過した光線が通過前と直交する成分の偏光を持つ場 合も考慮する為に, 試料通過前後で偏光方位が変化しない場合と直交する場 合の 2状態を考察する。 全ての状態を, この 2状態の組み合わせで表現でき る。 [0043] On the other hand, when a scatterer is present on the sample surface, the light beam that has passed through one point of the condenser lens pupil position is incident on the pupil plane of the objective lens (ie, the Fourier plane) after entering the scatterer at one point. Forms a light beam with a broad spread. Below, the sample has birefringence In other words, in order to consider the case where the light beam that has passed through the sample has a polarization component that is orthogonal to that before the sample passage, two states are considered: when the polarization orientation does not change before and after passing through the sample and when it is orthogonal. All states can be expressed as a combination of these two states.
まず, 試料通過前後で偏光方位が変化しない場合について考察する。 試料 を直線的に貫く成分の光線は, 対物レンズの瞳位置に配置された放射状もし <は同心円状偏光子に到達した点では, 偏光方位と偏光子の透過軸は直交す るので, 完全に遮断される。 しかしながら, 前記試料を直線的に貫く光線以 外にも, 試料の微細度に応じて回折光が生じる為, 前記の対物レンズ瞳位置 に到達した光は, 広がりを持った領域を照射する。 その中央部以外の領域で は, 光線の偏光方位と透過軸とが直交からずれが生じる為, そのズレ量に応 じて遮断されない成分が発生する。 また, 光線の偏光方位と偏光子透過軸の 直交方位からのズレ量は, 光束の広がりが大きいほど, 即ち光束の中心から 離れた成分が大きいほど多くなる。 更に, 光束の広がりは, 散乱体の空間周 波数成分が大きいほど, 即ち散乱体が微細であるほど大きくなる。 従って, 前記の非遮断成分は, 試料が微細であるほど大きくなることがわかる。 試料 が十分に微細である場合, 即ち試料による回折光が対物レンズ瞳位置全体に 広がる場合, 透過率は 5 0 %になる。 この様子を図 9に示す。 図 9は, 試料 による偏光変換が無い場合における透過率と試料の空間周波数成分との関係 を示すグラフである。  First, let us consider the case where the polarization orientation does not change before and after passing through the sample. The component light beam penetrating the sample in a straight line is a radial ray placed at the pupil position of the objective lens, and at the point where it reaches the concentric polarizer, the polarization direction and the transmission axis of the polarizer are orthogonal. Blocked. However, since the diffracted light is generated according to the fineness of the sample in addition to the light beam penetrating the sample linearly, the light reaching the objective lens pupil position irradiates a wide area. In the region other than the center, the polarization direction of the light beam and the transmission axis deviate from orthogonal, and a component that is not blocked is generated according to the amount of deviation. In addition, the amount of deviation between the polarization direction of the light beam and the orthogonal direction of the polarizer transmission axis increases as the spread of the light beam increases, that is, as the component away from the center of the light beam increases. Furthermore, the spread of the luminous flux increases as the spatial frequency component of the scatterer increases, that is, as the scatterer becomes finer. Therefore, it can be seen that the non-blocking component increases as the sample becomes finer. When the sample is sufficiently fine, that is, when the diffracted light from the sample spreads over the entire objective lens pupil position, the transmittance is 50%. This is shown in Fig. 9. Figure 9 is a graph showing the relationship between the transmittance and the spatial frequency component of the sample when there is no polarization conversion by the sample.
次に, 試料通過前後で偏光方位が 9 0度変化する場合について考察する。 この場合, 試料を直線的に貫く光線は, 対物レンズ瞳位置の偏光子の透過軸 と平行な偏光であるので, 1 0 0 %透過する。 試料が小さくなるほど前記光 線の周囲に回折光が存在する為, 透過しない成分が生じることになる。 つま り, 試料が微細であるほど遮断成分が増え, 十分に微細である場合, やはり 試料からの回折光が対物レンズ瞳位置全体に広がる為に, 透過率は 5 0 %に なる。 この様子を図 1 0に示す。 図 1 0は, 試料により偏光方位が 9 0度変 換される場合における透過率と試料の空間周波数成分との関係を示すグラフ である。 Next, let us consider the case where the polarization orientation changes 90 degrees before and after passing through the sample. In this case, the light beam penetrating the sample in a straight line passes through 100% because it is polarized parallel to the transmission axis of the polarizer at the objective lens pupil position. As the sample becomes smaller, diffracted light is present around the light beam, resulting in components that do not transmit. In other words, the finer the sample, the more the blocking component increases. If the sample is sufficiently fine, the diffracted light from the sample spreads to the entire objective lens pupil position, and the transmittance is 50%. This is shown in FIG. Figure 10 is a graph showing the relationship between the transmittance and the spatial frequency component of the sample when the polarization orientation is changed by 90 degrees depending on the sample. It is.
[0045] 以上の考察から, 試料面に何も無い場合には完全な暗部が得られ, 試料面の 物体が十分に微細である場合, その物体に複屈折性がある無しにかかわらず 5 0 %の光線透過率が得られ, その反対に物体が完全に一様である場合には , その物体のもつ複屈折性に応じた透過率が得られることがわかる。 従って , 複屈折性の有無だけではなぐ 試料の微細度に応じた感度をもつ観察像が 得られることになる。  [0045] From the above considerations, when there is nothing on the sample surface, a complete dark area is obtained, and when the object on the sample surface is sufficiently fine, regardless of whether the object has birefringence or not, it is 0. On the other hand, if the object is perfectly uniform, the transmittance corresponding to the birefringence of the object can be obtained. Therefore, an observation image having sensitivity corresponding to the fineness of the sample can be obtained not only by the presence or absence of birefringence.
[0046] 本発明の偏光顕微鏡の好ましい態様は, 前記光源と前記第 1の偏光子の間 に, 前記光源からの光を集光する集光レンズを具備し;前記第 1の偏光子は , 前記光源と前記観察試料の間であって, 前記集光レンズの瞳位置に配置さ れ;前記第 2の偏光子は, 前記対物レンズの瞳位置に配置される ;上記いず れかに記載の偏光顕微鏡に関する。 本明細書において, 「集光レンズの瞳位 置」 とは, 集光レンズの焦点位置を意味する。 一方, 「対物レンズの瞳位置 」 とは, 対物レンズの焦点位置を意味する。  [0046] A preferred embodiment of the polarizing microscope of the present invention includes a condensing lens that collects light from the light source between the light source and the first polarizer; Between the light source and the observation sample, disposed at a pupil position of the condenser lens; and the second polarizer is disposed at a pupil position of the objective lens; This relates to a polarizing microscope. In this specification, “pupil position of condensing lens” means the focal position of the condensing lens. On the other hand, “the pupil position of the objective lens” means the focal position of the objective lens.
[0047] この態様に係る本発明の偏光顕微鏡は, 回転対称な偏光軸を有する偏光子 を集光レンズ及び対物レンズの瞳位置, 又はそれらと共役な位置に配置する ことにより, 全方位の直線偏光が等しく混ざった光が試料へ入射するので, 一度の観察で方向依存性の無い観察像を取得できる。 また, この偏光顕微鏡 は, 試料面が一様な透明体の場合, 観察試料の前段に配置された同心円状偏 光子のある一点を通過した光は, 観察試料後段に配置された放射状偏光子の 対応する一点に集まることで遮断される。 一方, 観察試料が一様でない成分 を有する場合, その不均質さに応じて透過される成分が多くなる。 従って, 観察試料中の不均質点が微小であるほど, 透過率は上昇する傾向を有し, 全 体として高周波成分を強調した観察像を得ることができる。 よって, この態 様に係る偏光顕微鏡は, 微小な欠陥や傷や繊維質構造などの観察に好適であ る。  [0047] In the polarization microscope of the present invention according to this aspect, by arranging a polarizer having a rotationally symmetric polarization axis at the pupil position of the condenser lens and the objective lens, or at a position conjugate with them, a straight line in all directions. Because the light with the same polarization mixed is incident on the sample, an observation image with no direction dependency can be obtained with a single observation. In addition, in this polarizing microscope, when the sample surface is a uniform transparent body, the light that has passed through a certain point of the concentric polarizer placed at the front stage of the observation sample is reflected by the radial polarizer placed at the rear stage of the observation sample. It is blocked by gathering at one corresponding point. On the other hand, if the observed sample has non-uniform components, more components are transmitted depending on the heterogeneity. Therefore, the smaller the inhomogeneity point in the observation sample is, the more the transmittance tends to increase, and an observation image that emphasizes high-frequency components as a whole can be obtained. Therefore, the polarization microscope according to this mode is suitable for observing minute defects, scratches, and fibrous structures.
[0048] 以下, 実施例を用いて本発明を具体的に説明する。 しかしながら, 本発明 は, 以下の実施例に限定されるものではない。 また, 本発明は, 公知技術に 従つて適宜修正を加えることができ, 適宜公知技術を取り入れることができ る。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples. In addition, the present invention is a well-known technology. Therefore, modifications can be made as appropriate, and known techniques can be incorporated as appropriate.
実施例 1  Example 1
[0049] 1 . 基板作成  [0049] 1. Substrate creation
偏光子を作成するための基板を作成した。 具体的には, 石英基板にイオン ビーム露光を施して, 矩形の凹凸を同心円状となるように複数設けた。 得ら れた基板を図 1 1に示す。 すなわち, 図 1 1は, 実施例 1により得られた基 板の概念図である。 なお, 凹凸の幅は, 通常波長の半分程度の深さとし, 深 さもほぼ波長の半分程度とすればよい。  A substrate for making a polarizer was prepared. Specifically, the quartz substrate was subjected to ion beam exposure, and a plurality of rectangular irregularities were provided so as to be concentric. The obtained substrate is shown in Fig. 11. In other words, Fig. 11 is a conceptual diagram of the board obtained in Example 1. The uneven width should be about half the normal wavelength, and the depth should be about half the wavelength.
[0050] 具体的には, 同心円状の溝を複数設けた石英基板を用いて, 3 ; 0 2と丁 3 2 0 5との自己クロ一ニングフォトニック結晶を作成した。 基板ピッチ(凹凸の —周期)が 2 3 2 n m , 3 1 0 2が5 8 门 , T a 2 O 5が 8 1 n mで各 4 0層 積層した。 このようにして, 波長 5 2 0〜5 4 0 n mで凹凸に平行な電界成 分を有する偏光のみが透過する(消光比 4 0 d B以上の)偏光子を得ることが できた。 また, 基板に中心から放射状に伸びる複数の溝を有する石英基板を 用いて偏光子を製造した。 この偏光子は, 透過軸も放射状であった。 [0050] Specifically, a self-cloning photonic crystal of 3; 0 2 and 3 2 0 5 was prepared using a quartz substrate provided with a plurality of concentric grooves. 40 layers were stacked with a substrate pitch of 2 3 2 nm, 3 10 2 5 8 mm, and Ta 2 O 5 8 1 nm. In this way, it was possible to obtain a polarizer that transmits only polarized light having an electric field component parallel to the unevenness at a wavelength of 520 to 50 nm (with an extinction ratio of 40 dB or more). We also manufactured a polarizer using a quartz substrate with a plurality of grooves extending radially from the center. This polarizer also had a radial transmission axis.
[0051 ] —方, 同じ材料を用いて, 基板ピッチが 2 4 5 n mで S i 0 2が 1 4 5 n m , T a 2 0 5が 1 2 5 n mで各 2 7層の偏光子を製造した。 波長 5 2 0〜5 5 0 n mで凹凸に垂直は電界成分を有する偏光のみが透過する偏光子を得ること ができた。 この偏光子の消光比 4 0 d B以上のものが得られた。 基板溝が同 心円状の場合, 透過軸が放射状の偏光子を得ることができ, 基板溝が放射状 のものを用いた場合, 透過軸は同心円状の偏光子を得ることができた。 [0051] —On the other hand, using the same material, manufacture 2 7 layers of polarizers with substrate pitch of 2 45 nm, S i 0 2 of 1 45 nm and Ta 2 0 5 of 1 2 5 nm did. It was possible to obtain a polarizer that transmitted only polarized light having an electric field component perpendicular to the unevenness at a wavelength of 520 to 5500 nm. A polarizer having an extinction ratio of 40 dB or more was obtained. When the substrate groove is concentric, a polarizer with a radial transmission axis can be obtained. When a substrate with a radial groove is used, a polarizer with a concentric transmission axis can be obtained.
[0052] 2 . 製膜プロセス  [0052] 2. Film-forming process
図 1 1に示される基板を用いてォ一トクローニング法により成膜を行った 。 具体的には, スパッタリング装置内に, 図 1 1で示される基板を設置し, Using the substrate shown in Fig. 11, film formation was performed by the autocloning method. Specifically, the substrate shown in Fig. 11 is installed in the sputtering equipment,
( a ) 成膜粒子の堆積, (b ) A rイオンによるプラズマ■エッチング, 及 び (c ) エッチングにより飛び出した表面構成粒子の再付着の 3つの現象を バランスよく同時進行させることにより, 安定した三角波形状の最表面層を 維持し続けた。 図 1 2は, ォ一トクローニングに用いた装置の概略図と, ォ 一トクローニング法の概略図である。 なお, 二酸化ケイ素と酸化タンタル ( T a 2 O s ) を交互に製膜した。 図 1 3は, 得られた偏光子の概念図を示す。 図 1 4は, 得られた偏光子の図面に替わる写真を示す。 図 1 4に示されるよ うに, 本方法に基づいて, 実際に偏光子を得ることができた。 (a) Deposition of deposited particles, (b) Plasma etching with Ar ions, and (c) Re-adhesion of surface constituent particles popped out by etching are carried out in a balanced manner. Triangular wave shape outermost layer Continued to maintain. Figure 12 shows a schematic diagram of the equipment used for autocloning and a schematic diagram of the autocloning method. Incidentally, a film was formed and silicon oxide tantalum dioxide (T a 2 O s) alternately. Figure 13 shows a conceptual diagram of the obtained polarizer. Figure 14 shows a photograph replacing the drawing of the obtained polarizer. As shown in Fig. 14, a polarizer was actually obtained based on this method.
[0053] 3 . 特性評価 [0053] 3. Characterization
得られた偏光子の特性を測定した。 図 1 5は, 試作した自己クローニング フォトニック結晶偏光子の分光特性評価結果を示す図面に替わるグラフであ る。 測定には, 同心円状に溝を有する基板と同時に成膜を行った直線的に溝 を有する測定用サンプルを用いた。 凹凸溝に平行な電界振動成分を有する T E波は 5 0 0 n m以下の帯域で 0 . 1 %以下の透過率を示しており, 凹凸溝 に直交する電界振動成分を有する T M波は 4 0 5 n m以上の帯域で 9 0 %以 上の高い透過率を示しており, 高い偏光分離機能を有することが分る。 なお , 凹凸溝ピッチや多層膜の積層周期を変える事により, 偏光子として動作す る帯域を様々に調整できる。 以上のデータから, 同心円状に溝を有する試作 偏光子で, 同心円状に遮断軸を, 放射状に透過軸を有する偏光機能が実現さ れていることが分る。  The characteristics of the obtained polarizer were measured. Figure 15 is a graph replacing the drawing showing the spectral characteristics evaluation results of the prototype self-cloning photonic crystal polarizer. For the measurement, a measurement sample with linear grooves was used, which was formed at the same time as a substrate having concentric grooves. The TE wave with the electric field vibration component parallel to the concavo-convex groove shows a transmittance of 0.1% or less in the band below 500 nm, and the TM wave with the electric field vibration component orthogonal to the concavo-convex groove It shows a high transmittance of 90% or more in the band above nm, indicating that it has a high polarization separation function. Note that the band operating as a polarizer can be adjusted in various ways by changing the pitch of the concavo-convex grooves and the lamination period of the multilayer film. From the above data, it is clear that the prototype polarizer with concentric grooves has realized a polarization function with concentric cut-off axes and radial transmission axes.
[0054] 4 . シミュレーション [0054] 4. Simulation
図 1 6に, 本発明の偏光顕微鏡で観察面に様々な形状の散乱体が配置され た場合に得られる像をシミュレーションした結果を示す。 図 1 6 ( a ) は, エッジのシャープさが同じで大きさが異なる散乱体について偏光顕微鏡で観 測される像を示す図である。 図 1 6 ( b ) は, 大きさが同じでエッジのシャ ープさが異なる散乱体について偏光顕微鏡で観測される像を示す図である。 図 1 6 ( a ) から, 本発明の偏光顕微鏡を用いれば, 小さい物体ほど得られ る像の輝度が高くなることがわかる。 また, 図 1 6 ( b ) から, エッジがシ ヤープなものほど得られる像の輝度が高くなる傾向がわかる。  Figure 16 shows the results of simulating the images obtained when scatterers of various shapes are placed on the observation surface with the polarizing microscope of the present invention. Figure 16 (a) shows the images observed with a polarizing microscope for scatterers with the same edge sharpness but different sizes. Figure 16 (b) shows the images observed with a polarizing microscope for scatterers of the same size but different edge sharpness. From Fig. 16 (a), it can be seen that the brightness of the obtained image increases as the object becomes smaller if the polarizing microscope of the present invention is used. From Fig. 16 (b), it can be seen that the sharper the edge, the higher the brightness of the obtained image.
産業上の利用可能性  Industrial applicability
[0055] 本発明の偏光子は, 偏光顕微鏡のみならず, 光学素子産業において広く利 用されうる。 一方, 本発明の偏光顕微鏡は, 生体試料の観測などに効果的に 用いられるので, 広く顕微鏡として利用される。 [0055] The polarizer of the present invention is widely used not only in a polarizing microscope but also in the optical element industry. Can be used. On the other hand, the polarizing microscope of the present invention is widely used as a microscope because it is effectively used for observation of biological samples.
図面の簡単な説明 Brief Description of Drawings
[図 1 ]図 1は, 透過軸が同心円状に設けられる偏光子における, 透過軸の方向 を示す図である。 [Fig. 1] Fig. 1 is a diagram showing the direction of the transmission axis in a polarizer in which the transmission axes are concentrically arranged.
[図 2]図 2は, 透過軸が 1点から放射状に設けられる偏光子における, 透過軸 の方向を示す図である。  [Fig. 2] Fig. 2 is a diagram showing the direction of the transmission axis in a polarizer whose transmission axis is arranged radially from one point.
[図 3]図 3に, 自己クロ一ニングフォトニック結晶による, 同心円状もしくは 放射状に透過軸を有する偏光子の模式図を示す。 図 3 ( a ) は, 透過軸が同 心円状に設けられる偏光子の例を示す。 図 3 ( b ) は, 透過軸が 1点から放 射状に設けられる偏光子の例を示す。 図 3 ( c ) は, 透過軸が偏光子の中心 から多段階の放射状に設けられる偏光子の例を示す。  [Fig. 3] Fig. 3 shows a schematic diagram of a polarizer having transmission axes in concentric or radial fashion using self-cloning photonic crystals. Figure 3 (a) shows an example of a polarizer with transmission axes concentrically arranged. Figure 3 (b) shows an example of a polarizer with a transmission axis that radiates from one point. Figure 3 (c) shows an example of a polarizer whose transmission axis is arranged in multiple stages radially from the center of the polarizer.
[図 4]図 4は, 自己クローニングフォトニック結晶の例を示す図である。 [Figure 4] Figure 4 shows an example of a self-cloning photonic crystal.
[図 5]図 5は, ワイヤ一グリツド型の偏光子の模式図である。 [Fig. 5] Fig. 5 is a schematic diagram of a wire-and-grid polarizer.
[図 6]図 6に偏光顕微鏡の装置構成例を示す。 FIG. 6 shows an example of the configuration of a polarizing microscope.
[図 7]図 7は, 照射側偏光子と観察側偏光子の間に, 水晶旋光子もしくは液晶 などで構成された旋光素子を挿入した偏光顕微鏡の例を示す図である。  [FIG. 7] FIG. 7 is a diagram showing an example of a polarization microscope in which an optical rotator composed of a crystal rotator or liquid crystal is inserted between an irradiation side polarizer and an observation side polarizer.
[図 8]図 8は, 照射側偏光子と観察側偏光子の間に, ファラデー効果を用いた 旋光子 (ファラデー素子) を設けた偏光顕微鏡の例を示す図である。  [Fig. 8] Fig. 8 shows an example of a polarizing microscope in which a rotator (Faraday element) using the Faraday effect is provided between the irradiation side polarizer and the observation side polarizer.
[図 9]図 9は, 試料による偏光変換が無い場合における透過率と試料の空間周 波数成分との関係を示すグラフである。  [Fig. 9] Fig. 9 is a graph showing the relationship between the transmittance and the spatial frequency component of the sample when there is no polarization conversion by the sample.
[図 10]図 1 0は, 試料により偏光方位が 9 0度変換される場合における透過 率と試料の空間周波数成分との関係を示すグラフである。  [Fig. 10] Fig. 10 is a graph showing the relationship between the transmittance and the spatial frequency component of the sample when the polarization orientation is converted by 90 ° by the sample.
[図 1 1 ]図 1 1は, 実施例 1により得られた基板の概念図である。  [Fig. 1 1] FIG. 11 is a conceptual diagram of the substrate obtained in Example 1. FIG.
[図 12]図 1 2は, ォ一トクローニングに用いた装置の概略図と, オートクロ 一二ング法の概略図である。 なお, 二酸化ケイ素と酸化タンタル (T a 2 0 5 [Fig. 12] Fig. 12 shows a schematic diagram of the equipment used for autocloning and a schematic diagram of the autocloning method. Silicon dioxide and tantalum oxide (T a 2 0 5
) を交互に製膜した。 ) Were alternately formed.
[図 13]図 1 3は, 得られた偏光子の概念図を示す。 [図 14]図 1 4は, 得られた偏光子の図面に替わる写真を示す。 [Figure 13] Figure 13 shows a conceptual diagram of the obtained polarizer. [Fig.14] Fig.14 shows a photograph replacing the drawing of the obtained polarizer.
[図 15]図 1 5は, 試作した自己クロ一ニングフォトニック結晶偏光子の分光 特性評価結果を示す図面に替わるグラフである。  [Fig. 15] Fig. 15 is a graph instead of a drawing showing the spectral characteristics evaluation results of the prototype self-cloning photonic crystal polarizer.
[図 16]図 1 6は, 本発明の偏光顕微鏡で観察面に様々な形状の散乱体が配置 された場合に得られる像をシミュレーションした結果を示す。 図 1 6 ( a ) は, エッジのシャープさが同じで大きさが異なる散乱体について偏光顕微鏡 で観測される像を示す図である。 図 1 6 ( b ) は, 大きさが同じでエッジの シャープさが異なる散乱体について偏光顕微鏡で観測される像を示す図であ る。  [Fig. 16] Fig. 16 shows the results of simulating the images obtained when various shapes of scatterers were placed on the observation surface in the polarizing microscope of the present invention. Figure 16 (a) shows the images observed with a polarizing microscope for scatterers with the same edge sharpness but different sizes. Figure 16 (b) shows the images observed with a polarizing microscope for scatterers of the same size but different edge sharpness.
符号の説明 Explanation of symbols
1 1 偏光顕微鏡  1 1 Polarizing microscope
1 2 ランプハウス  1 2 Lamphouse
1 3 集光レンズ  1 3 Condensing lens
1 4 ミラ一  1 4 Mira
1 5 照射側偏光子  1 5 Irradiation side polarizer
1 6 コンデンサレンズ  1 6 Condenser lens
1 7 観察試料  1 7 Observation sample
1 8 対物レンズ  1 8 Objective lens
1 9 観察側偏光子 (検光子)  1 9 Observation side polarizer (analyzer)
2 0 接眼レンズ  2 0 Eyepiece
2 1 ファラデー素子  2 1 Faraday element

Claims

請求の範囲 The scope of the claims
[1 ] 透過軸が同心円状に設けられる偏光子。  [1] A polarizer in which transmission axes are provided concentrically.
[2] 自己クロ一ニングフォトニック結晶により構成される請求項 1に記載の偏 光子。  [2] The polarizer according to [1], comprising a self-cloning photonic crystal.
[3] 透過軸が 1点から放射状に設けられる偏光子。  [3] A polarizer whose transmission axis is provided radially from one point.
[4] 自己クロ一ニングフォトニック結晶により構成される請求項 3に記載の偏 光子。  [4] The polarizer according to [3], comprising a self-cloning photonic crystal.
[5] 光源と ; [5] with light source;
前記光源からの光が透過する, 透過軸が光軸を中心とする同心円状に設け られる第 1の偏光子と ;  A first polarizer through which light from the light source is transmitted, the transmission axis being provided concentrically around the optical axis;
前記第 1の偏光子を透過した光が照射する試料を搭載する観察試料台と ; 前記観察試料台に搭載される試料を透過した光, 又は前記観察試料台に搭 載される試料から反射した光が透過する, 対物レンズと ;  An observation sample stage on which a sample irradiated with light transmitted through the first polarizer is mounted; light transmitted through the sample mounted on the observation sample stage, or reflected from a sample mounted on the observation sample stage Light is transmitted through the objective lens;
前記対物レンズを透過した光が透過する, 透過軸が光軸を中心として放射状 に設けられる第 2の偏光子と ;  A second polarizer in which light transmitted through the objective lens is transmitted, the transmission axis being provided radially around the optical axis;
を具備する偏光顕微鏡。  A polarizing microscope.
[6] 前記光源と前記第 1の偏光子の間に, 前記光源からの光を集光する集光レ ンズを具備し; [6] A condensing lens for condensing light from the light source is provided between the light source and the first polarizer;
前記第 1の偏光子は,  The first polarizer is:
前記光源と前記観察試料の間であって, 前記集光レンズの瞳位置に配置 され;  Between the light source and the observation sample and disposed at a pupil position of the condenser lens;
前記第 2の偏光子は,  The second polarizer is:
前記対物レンズの瞳位置に配置される ;  Arranged at the pupil position of the objective lens;
請求項 5に記載の偏光顕微鏡。  The polarizing microscope according to claim 5.
[7] 光源と ; [7] with light source;
前記光源からの光が透過する, 透過軸が光軸を中心として放射状に設けら れる第 1の偏光子と ;  A first polarizer that transmits light from the light source, and whose transmission axis is provided radially about the optical axis;
前記第 1の偏光子を透過した光が照射する試料を搭載する観察試料台と ; 前記観察試料台に搭載される試料を透過した光, 又は前記観察試料台に搭 載される試料から反射した光が透過する, 対物レンズと ; An observation sample stage carrying a sample irradiated with light transmitted through the first polarizer; An objective lens that transmits light transmitted through a sample mounted on the observation sample stage or light reflected from a sample mounted on the observation sample stage;
前記対物レンズを透過した光が透過する, 透過軸が光軸を中心とする同心 円状に設けられる第 2の偏光子と ;  Light transmitted through the objective lens is transmitted; and a second polarizer provided with a transmission axis concentrically centered on the optical axis;
を具備する偏光顕微鏡。  A polarizing microscope.
[8] 前記光源と前記第 1の偏光子の間に, 前記光源からの光を集光する集光レ ンズを具備し; [8] A condensing lens for condensing light from the light source is provided between the light source and the first polarizer;
前記第 1の偏光子は,  The first polarizer is:
前記光源と前記観察試料の間であって, 前記集光レンズの瞳位置に配置 され;  Between the light source and the observation sample and disposed at a pupil position of the condenser lens;
前記第 2の偏光子は,  The second polarizer is:
前記対物レンズの瞳位置に配置される ;  Arranged at the pupil position of the objective lens;
請求項 7に記載の偏光顕微鏡。  The polarizing microscope according to claim 7.
[9] 光源と ; [9] with light source;
前記光源からの光が透過する, 透過軸が光軸を中心として放射状もしくは 光軸を中心とする同心円状に設けられる第 1の偏光子と ;  A first polarizer that transmits light from the light source, the transmission axis is provided radially around the optical axis or concentrically around the optical axis;
前記第 1の偏光子を透過した光が照射する試料を搭載する観察試料台と ; 前記観察試料台に搭載される試料を透過した光, 又は前記観察試料台に搭 載される試料から反射した光が透過する, 対物レンズと ;  An observation sample stage on which a sample irradiated with light transmitted through the first polarizer is mounted; light transmitted through the sample mounted on the observation sample stage, or reflected from a sample mounted on the observation sample stage Light is transmitted through the objective lens;
前記対物レンズを透過した光が透過する, 偏光主軸方向を直交させる旋光 子と ;  An optical rotator that transmits the light transmitted through the objective lens and orthogonally crosses the direction of the polarization main axis;
前記旋光子を透過した光が透過する, 第 1の偏光子と同様の透過軸を有する 第 2の偏光子と ;  A second polarizer having a transmission axis similar to that of the first polarizer, through which the light transmitted through the optical rotator is transmitted;
を具備する偏光顕微鏡。  A polarizing microscope.
[10] 前記光源と前記第 1の偏光子の間に, 前記光源からの光を集光する集光レ ンズを具備し; [10] A condensing lens for condensing light from the light source is provided between the light source and the first polarizer;
前記第 1の偏光子は,  The first polarizer is:
前記光源と前記観察試料の間であって, 前記集光レンズの瞳位置に配置 され; Arranged between the light source and the observation sample and at the pupil position of the condenser lens Is;
前記第 2の偏光子は,  The second polarizer is:
前記対物レンズの瞳位置に配置される ;  Arranged at the pupil position of the objective lens;
請求項 9に記載の偏光顕微鏡。  The polarizing microscope according to claim 9.
[1 1 ] 前記第 1の偏光子と前記第 2の偏光子とは同一の偏光子である請求項 9に 記載の偏光顕微鏡。 [1 1] The polarizing microscope according to claim 9, wherein the first polarizer and the second polarizer are the same polarizer.
[12] 光源と ; [12] with a light source;
前記光源からの光が透過する, 透過軸が光軸を中心として放射状もしくは 光軸を中心とする同心円状に設けられる第 1の偏光子と ;  A first polarizer that transmits light from the light source, the transmission axis is provided radially around the optical axis or concentrically around the optical axis;
前記第 1の偏光子を透過した光が透過する, 偏光主軸方向を直交させる旋 光子と ;  A light transmissive element through which the light transmitted through the first polarizer is transmitted;
前記旋光子を透過した光が照射する試料を搭載する観察試料台と ;  An observation sample stage carrying a sample irradiated with light transmitted through the optical rotator;
前記観察試料台に搭載される試料を透過した光, 又は前記観察試料台に搭 載される試料から反射した光が透過する, 対物レンズと ;  An objective lens that transmits light transmitted through a sample mounted on the observation sample stage or light reflected from a sample mounted on the observation sample stage;
前記旋光子を透過した光が透過する, 第 1の偏光子と同様の透過軸を有する 第 2の偏光子と ;  A second polarizer having a transmission axis similar to that of the first polarizer, through which the light transmitted through the optical rotator is transmitted;
を具備する偏光顕微鏡。  A polarizing microscope.
[13] 前記光源と前記第 1の偏光子の間に, 前記光源からの光を集光する集光レ ンズを具備し; [13] A condensing lens for condensing light from the light source is provided between the light source and the first polarizer;
前記第 1の偏光子は,  The first polarizer is:
前記光源と前記観察試料の間であって, 前記集光レンズの瞳位置に配置 され;  Between the light source and the observation sample and disposed at a pupil position of the condenser lens;
前記第 2の偏光子は,  The second polarizer is:
前記対物レンズの瞳位置に配置される ;  Arranged at the pupil position of the objective lens;
請求項 1 2に記載の偏光顕微鏡。  The polarizing microscope according to claim 12.
[14] 前記第 1の偏光子と前記第 2の偏光子とは同一の偏光子である請求項 1 2 に記載の偏光顕微鏡。 14. The polarizing microscope according to claim 12, wherein the first polarizer and the second polarizer are the same polarizer.
[15] 集光レンズの瞳位置及び対物レンズの瞳位置に, 透過軸が同心円状の偏光 子及び透過軸が放射状の偏光子のいずれかを具備し, 微細な構造体ほど高い 解像度の像が得られることを特徴とする, 顕微鏡。 [15] Polarized light with concentric transmission axes at the pupil position of the condenser lens and the pupil position of the objective lens A microscope comprising a polarizer and a polarizer having a radial transmission axis, wherein a finer structure can obtain a higher resolution image.
PCT/JP2007/000767 2006-07-17 2007-07-17 Polarizer and microscope with polarizer WO2008010316A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008525785A JP5021645B2 (en) 2006-07-17 2007-07-17 Polarizer and microscope using the polarizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006194991 2006-07-17
JP2006-194991 2006-07-17

Publications (1)

Publication Number Publication Date
WO2008010316A1 true WO2008010316A1 (en) 2008-01-24

Family

ID=38956651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000767 WO2008010316A1 (en) 2006-07-17 2007-07-17 Polarizer and microscope with polarizer

Country Status (2)

Country Link
JP (1) JP5021645B2 (en)
WO (1) WO2008010316A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012048028A (en) * 2010-08-27 2012-03-08 Hamamatsu Photonics Kk Optical element and manufacturing method thereof
CN111474173A (en) * 2020-04-26 2020-07-31 山东省地质矿产勘查开发局第一地质大队 Method and system for determining transparent mineral protrusion grade in rock and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100732A (en) * 1985-10-29 1987-05-11 Seiko Epson Corp Liquid crystal dimmer
JPH02150886A (en) * 1988-12-02 1990-06-11 Hitachi Ltd Liquid crystal projector device, polarizer used for same, and polarizing microscope using polarizer
JP2000056133A (en) * 1998-08-07 2000-02-25 Shojiro Kawakami Polarizer and its production

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590128A (en) * 1991-06-13 1993-04-09 Nikon Corp Aligner
JP3246615B2 (en) * 1992-07-27 2002-01-15 株式会社ニコン Illumination optical device, exposure apparatus, and exposure method
DE10010131A1 (en) * 2000-03-03 2001-09-06 Zeiss Carl Microlithography projection exposure with tangential polarization involves using light with preferred direction of polarization oriented perpendicularly with respect to plane of incidence
US6943941B2 (en) * 2003-02-27 2005-09-13 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
TWI395068B (en) * 2004-01-27 2013-05-01 尼康股份有限公司 Optical system, exposure device and method of exposure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100732A (en) * 1985-10-29 1987-05-11 Seiko Epson Corp Liquid crystal dimmer
JPH02150886A (en) * 1988-12-02 1990-06-11 Hitachi Ltd Liquid crystal projector device, polarizer used for same, and polarizing microscope using polarizer
JP2000056133A (en) * 1998-08-07 2000-02-25 Shojiro Kawakami Polarizer and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012048028A (en) * 2010-08-27 2012-03-08 Hamamatsu Photonics Kk Optical element and manufacturing method thereof
CN111474173A (en) * 2020-04-26 2020-07-31 山东省地质矿产勘查开发局第一地质大队 Method and system for determining transparent mineral protrusion grade in rock and application
CN111474173B (en) * 2020-04-26 2022-12-16 山东省地质矿产勘查开发局第一地质大队 Method and system for determining transparent mineral protrusion grade in rock and application

Also Published As

Publication number Publication date
JP5021645B2 (en) 2012-09-12
JPWO2008010316A1 (en) 2009-12-17

Similar Documents

Publication Publication Date Title
US7203001B2 (en) Optical retarders and related devices and systems
JP4950234B2 (en) Ellipsometer
TWI420158B (en) Thin-film optical retarders
Gu et al. Optimal broadband Mueller matrix ellipsometer using multi-waveplates with flexibly oriented axes
US20120183739A1 (en) High ultraviolet transmitting double-layer wire grid polarizer for fabricating photo-alignment layer and fabrication method thereof
JP5140409B2 (en) Polarimeter, measurement system
US20090122402A1 (en) Achromatic Converter Of A Spatial Distribution Of Polarization Of Light
JP6520951B2 (en) Birefringence measuring apparatus and birefringence measuring method
JP2007263593A (en) Measuring instrument for phase difference and optical axis direction
CN105593982B (en) Broadband and wide visual field angle compensator
Zhang et al. Giant optical activity in dielectric planar metamaterials with two-dimensional chirality
Chen et al. Calibration of polarization effect of a high-numerical-aperture objective lens with Mueller matrix polarimetry
JPH03115834A (en) Method of inspecting physical characteris- tics of thin layer
JP5965476B2 (en) Assembly for generation of differential interference contrast images
MacNally et al. Glancing-angle-deposited silica films for ultraviolet wave plates
Britton et al. Compact Dual‐Band Multi‐Focal Diffractive Lenses
JPWO2008105156A1 (en) Polarization imaging apparatus and differential interference microscope
Liu et al. Computing Liquid‐Crystal Photonics Platform Enabled Wavefront Sensing
JP2010197764A (en) Polarization controlling element and image display apparatus using the same
JP5021645B2 (en) Polarizer and microscope using the polarizer
JP2015166861A (en) Method for manufacturing optical device and optical device
Jiang et al. Patterned achromatic elliptical polarizer for short-wave infrared imaging polarimetry
Mawet et al. Fresnel rhombs as achromatic phase shifters for infrared nulling interferometry
Yang et al. Optical, mechanical, and photoelastic anisotropy of biaxially stretched polyethylene terephthalate films studied using transmission ellipsometer equipped with strain camera and stress gauge
Ju et al. Design and Fabrication of Bilayer Wire Grid Polarizer Using Ultraviolet Replicated Nanograting against Nickel Electroformed Nanostamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790263

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008525785

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07790263

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)